[go: up one dir, main page]

WO2018124068A1 - タービン及びガスタービン - Google Patents

タービン及びガスタービン Download PDF

Info

Publication number
WO2018124068A1
WO2018124068A1 PCT/JP2017/046634 JP2017046634W WO2018124068A1 WO 2018124068 A1 WO2018124068 A1 WO 2018124068A1 JP 2017046634 W JP2017046634 W JP 2017046634W WO 2018124068 A1 WO2018124068 A1 WO 2018124068A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
axis
strut
inner cylinder
vortex
Prior art date
Application number
PCT/JP2017/046634
Other languages
English (en)
French (fr)
Inventor
尚教 永井
博善 鳥飼
浩史 渡邊
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016252020A external-priority patent/JP6821426B2/ja
Priority claimed from JP2016252008A external-priority patent/JP6820735B2/ja
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US16/316,519 priority Critical patent/US10982544B2/en
Priority to DE112017006555.0T priority patent/DE112017006555T5/de
Priority to CN201780042574.7A priority patent/CN109477430B/zh
Publication of WO2018124068A1 publication Critical patent/WO2018124068A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/127Vortex generators, turbulators, or the like, for mixing

Definitions

  • the present invention relates to a turbine and a gas turbine.
  • This application claims priority based on Japanese Patent Application No. 2016-252008 filed on December 26, 2016 and Japanese Patent Application No. 2016-252020 filed on December 26, 2016, the contents of which are incorporated herein by reference. To do.
  • a gas turbine in general, includes a compressor, a combustor, and a turbine.
  • the compressor compresses outside air to generate high-pressure air
  • the combustor generates high-temperature and high-pressure combustion gas by mixing and burning high-pressure air and fuel generated by the compressor.
  • the turbine is driven by the combustion gas generated by this combustor.
  • a diffuser is provided on the downstream side of the turbine (see, for example, Patent Document 1).
  • Some diffusers include an inner cylinder, an outer cylinder, and a strut.
  • the inner cylinder is disposed on the inner peripheral side of the diffuser, and the outer cylinder forms an exhaust passage between the inner cylinder and the inner cylinder by covering the inner cylinder from the outer peripheral side.
  • a plurality of struts are provided at intervals in the circumferential direction, and each strut extends from the outer circumferential surface of the inner cylinder in the radial direction of the turbine.
  • the inner cylinder and the outer cylinder are connected via these struts.
  • the exhaust passage of the diffuser is formed such that the passage area gradually increases from upstream to downstream in the direction in which the combustion gas flows.
  • the combustion gas (exhaust gas) that has driven the turbine is recovered by static pressure by passing through the exhaust passage formed in this way.
  • the flow of combustion gas discharged from the turbine includes an axial direction component and a swirl flow component (swirl component) that swirls in the circumferential direction around the axis. Therefore, when the flow of exhaust gas passes around the strut, shape resistance is generated by the strut or separation of the flow occurs. These shape resistance and flow separation are factors that increase pressure loss. This increase in pressure loss may reduce the static pressure recovery amount of the diffuser and reduce the overall efficiency of the gas turbine. In particular, flow separation is a factor that increases pressure loss. Further, when the turbine is partially loaded, the angle of the swirl flow (swivel angle) increases. For this reason, flow separation is more likely to occur in the struts, which may increase the pressure loss. These increases in pressure loss reduce the amount of static pressure recovery of the diffuser and reduce the overall efficiency of the gas turbine.
  • the present invention has been made in view of the above circumstances, and provides a turbine and a gas turbine capable of suppressing pressure loss and improving performance.
  • the turbine extends along the axis and is rotatable toward one side in the circumferential direction of the axis, the turbine casing covering the turbine rotor from the outer periphery side, A plurality of turbine rotor blades arranged in the circumferential direction of the axis on the outer circumferential surface of the turbine rotor and having at least a portion on the other side in the axial direction curved from one side to the other side in the circumferential direction; Provided adjacent to the turbine blades in the axial direction on the inner peripheral surface, and provided on the other axial side of the turbine blades, and a plurality of turbine stationary blades arranged in the circumferential direction, A diffuser that forms an exhaust passage through which exhaust gas flows from one side in the axial direction toward the other side, and the diffuser extends along the axis An inner cylinder that covers the inner cylinder from the outer periphery side, an outer cylinder that forms
  • the fluid that has passed through the turbine blades often forms a swirl flow as a result of the flow pattern design of the turbine blades and turbine vanes. Further, when the axial flow velocity is relatively small as in partial load, the swirl flow becomes larger than that at rated load.
  • a so-called horseshoe vortex is generated. This horseshoe vortex extends so that vortices generated on both sides of the structure become vortex tubes and wrap around the structure.
  • this separation vortex also winds up the horseshoe vortex formed on the front side of the strut in the rotational direction toward the radially outer side. Due to these windings, the boundary layer formed on the outer peripheral surface of the inner cylinder may become unstable from the center of the strut in the axial direction to the rear edge of the strut, and separation may occur.
  • the protrusions protruding from the outer peripheral surface of the inner cylinder and extending in the axial direction are arranged between the struts adjacent in the circumferential direction, so that the protrusions serve as partitions and rotate among the struts adjacent in the circumferential direction. It is possible to suppress the peeling vortex generated in the struts in the rearward direction from affecting the horseshoe vortex generated in the rearward in the rotational direction of the struts forward in the rotational direction. Therefore, the horseshoe vortex formed at the rear of the strut in the forward direction of the rotation makes the boundary layer formed on the outer peripheral surface of the inner cylinder unstable from the center of the strut to the rear edge of the strut in the axial direction. This can be suppressed.
  • a part of the separation vortex formed on the struts at the rear in the rotational direction gets over the ridges when heading toward the struts at the front in the rotational direction.
  • a longitudinal vortex having a vortex axis along the ridge extending in the axial direction is generated.
  • This longitudinal vortex becomes a vortex tube that rotates in the same direction as the rotation direction of the horseshoe vortex formed in front of the aforementioned strut rotation direction and extends downstream of the strut.
  • the protrusion according to the first aspect is formed to be tapered toward the one side in the axial direction when viewed from the radially outer side centering on the axis, and toward the other side in the axial direction. And may be tapered. By comprising in this way, the shape resistance with respect to the mainstream of the exhaust gas which flows into an axial direction can be reduced.
  • the turbine according to the first aspect may include a convex portion protruding from the suction surface of the strut.
  • a vortex can be formed on both sides of a convex part similarly to the horseshoe vortex mentioned above.
  • the vortex formed by this convex part interferes with the separation vortex formed on the suction surface of the strut by the swirling flow. Therefore, the development of the separation vortex can be suppressed. That is, it can reduce that the boundary layer of an inner cylinder is wound up by peeling vortex.
  • the convex part which concerns on a 3rd aspect may be arrange
  • the gas turbine is driven by the compressor that generates compressed air obtained by compressing air, the combustor that generates fuel by mixing fuel with the compressed air, and the combustion gas. And the turbine according to any one of the first to fourth aspects. By configuring in this way, the pressure recovery in the turbine diffuser can be performed efficiently, so that the performance can be improved.
  • the diffuser is a diffuser provided on the downstream side of the turbine rotating about the axis, and covers the inner cylinder extending along the axis from the outer peripheral side,
  • An outer cylinder that forms an exhaust passage between the inner cylinder and the inner cylinder is provided with a circumferential interval in the exhaust passage, and connects the inner cylinder and the outer cylinder, and from the radially inner side.
  • a plurality of struts extending forward in the rotational direction of the turbine as it goes outward, and arranged on the outer peripheral surface of the inner cylinder, arranged in the center between a pair of struts adjacent in the circumferential direction, And a convex portion disposed in a region of ⁇ 10% of the total length of the strut in the axial direction with respect to the position of the front edge on one side in the axial direction.
  • the flow between struts adjacent in the circumferential direction around the axis generally forms a boundary layer on the outer peripheral surface of the inner cylinder. Since the diffuser flow is an inverse pressure gradient, the momentum tends to decrease in the boundary layer flow.
  • This vertical vortex extends downstream from the convex portion to form a vortex tube (horse-shoe vortex).
  • a guide plate extending in the axial direction with a space may be provided on the downstream side of the convex portion.
  • the convex portion according to the sixth aspect is within a region of ⁇ 5% of the total length of the strut in the axial direction with reference to the position of the front edge on one side in the axial direction of the strut. It may be arranged.
  • a convex part can be arrange
  • the convex portion according to any one of the sixth to eighth aspects may be tapered toward the outside in the radial direction centering on the axis. By comprising in this way, it can suppress that a shape resistance increases with respect to the mainstream of a diffuser. As a result, pressure loss can be reduced.
  • the diffuser is a diffuser provided on the downstream side of the turbine that rotates about the axis, and covers the inner cylinder extending along the axis from the outer peripheral side,
  • An outer cylinder that forms the exhaust flow path between the inner cylinder and the inner cylinder is provided with a circumferential interval in the exhaust flow path, and connects the inner cylinder and the outer cylinder and is radially inward.
  • a plurality of struts extending forward in the rotational direction of the turbine from the outside to the outside, and formed on the outer peripheral surface of the inner cylinder and disposed in the center between a pair of adjacent struts in the circumferential direction, and in the axial direction And a guide convex portion extending from the region of ⁇ 10% of the total length in the axial direction of the strut to the rear edge position of the strut with reference to the front edge position of the strut.
  • This vertical vortex extends downstream from the guide convex portion to form a vortex tube (horse-shoe vortex). Thereby, a stable vertical vortex can be generated on the outer peripheral surface of the inner cylinder. Furthermore, since the guide convex portion continuously extends to the rear edge position of the strut, the convex portion can function as a guide plate. That is, it is possible to arrange (rectify) the disturbance of the vertical vortex while maintaining the vertical vortex to the downstream side by the guide convex portion. As a result, momentum is given to the fluid in the boundary layer by the vertical vortex, and the boundary layer can be prevented from developing and causing separation. As a result, pressure loss can be suppressed and performance can be improved.
  • the turbine extends along the axis and is rotatable toward one side in the circumferential direction of the axis, and a turbine casing that covers the turbine rotor from the outer periphery side;
  • a plurality of turbine vanes arranged in the circumferential direction and a diffuser according to any one of the sixth to tenth aspects are provided. This configuration can suppress fluid separation in the diffuser, thereby suppressing turbine pressure loss. As a result, the kinetic energy of the exhaust gas discharged from the turbine can be efficiently converted into pressure energy.
  • a gas turbine includes a compressor that generates compressed air obtained by compressing air, a combustor that generates fuel by mixing fuel with the compressed air, and the combustion gas.
  • a driven turbine according to the eleventh aspect By comprising in this way, since the pressure loss of a turbine can be suppressed, the performance of a gas turbine can be improved.
  • the 1st aspect of the invention mentioned above can also be demonstrated as follows.
  • the turbine extends along the axis and is rotatable toward one side in the circumferential direction of the axis, the turbine casing covering the turbine rotor from the outer periphery side, A plurality of turbine rotor blades arranged in the circumferential direction of the axis on the outer circumferential surface of the turbine rotor and having at least a portion on the other side in the axial direction curved from one side to the other side in the circumferential direction; Provided adjacent to the turbine blades in the axial direction on the inner peripheral surface, and provided on the other axial side of the turbine blades, and a plurality of turbine stationary blades arranged in the circumferential direction, A diffuser that forms an exhaust passage through which exhaust gas flows from one side in the axial direction toward the other side, and the diffuser extends along the axis An inner cylinder that covers the inner cylinder from the outer periphery side, an outer cylinder that forms the exhaust passage between the inner cylinder and the inner cylinder;
  • the fluid that has passed through the turbine blades often forms a swirl flow as a result of the flow pattern design of the turbine blades and turbine vanes. Further, when the axial flow velocity is relatively small as in partial load, the swirl flow becomes larger than that at rated load.
  • a so-called horseshoe vortex is generated. This horseshoe vortex is a secondary flow in which the vorticity supplied from the velocity gradient in the boundary layer near the wall surface becomes a vortex tube and winds at the base of the structure, and the vortex axis of the vortex tube extends in the flow direction. is there.
  • the horseshoe vortex acts in a direction that disturbs the main flow, and the boundary layer formed on the outer peripheral surface of the inner cylinder becomes more unstable from the center of the strut to the rear edge of the strut in the axial direction, and the separation state is reduced. make worse.
  • the protrusions protruding from the outer peripheral surface of the inner cylinder and extending in the axial direction are arranged between the struts adjacent in the circumferential direction, so that the protrusions serve as partitions, and among the struts adjacent in the circumferential direction, the struts It is possible to suppress the separation vortex developed from the wing tip on the suction surface side from affecting the horseshoe vortex on the downstream side of the strut suction surface. Therefore, the behavior change of the horseshoe vortex downstream of the strut prevents the boundary layer formed on the outer peripheral surface of the inner cylinder from becoming unstable from the center of the strut to the rear edge of the strut in the axial direction. it can.
  • the separation vortex formed on the strut suction surface faces between the struts adjacent to each other in the circumferential direction, a part of the separation vortex passes over the protrusion.
  • the direction of the vortex axis of the separation vortex falls to the mainstream side, and a vertical vortex having a vortex axis along the ridge extending in the axial direction is generated.
  • the longitudinal vortex has a vortex tube arrangement that rotates in the same direction as the rotation direction of the horseshoe vortex on the strut pressure side facing the above and extends downstream of the strut.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2. It is a perspective view of the inner cylinder between the adjacent 1st struts in 1st embodiment of this invention. It is a graph which shows the turning angle of the exhaust gas with respect to the radial direction position of the exhaust passage inlet_port
  • FIG. 3 in 2nd embodiment of this invention It is a perspective view equivalent to FIG. 4 in 2nd embodiment of this invention.
  • FIG. 11 in 4th embodiment of this invention It is a figure equivalent to FIG. 11 in 5th embodiment of this invention.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a gas turbine according to a first embodiment of the present invention.
  • the gas turbine 100 ⁇ / b> A according to the first embodiment includes a compressor 1, a combustor 3, and a turbine 2.
  • Compressor 1 generates high-pressure air.
  • the compressor 1 includes a compressor rotor 11 and a compressor casing 12.
  • the compressor casing 12 covers the compressor rotor 11 from the outer peripheral side, and extends along the axis Am.
  • a plurality of compressor blade stages 13 arranged at intervals in the axis Am direction are provided on the outer peripheral surface of the compressor rotor 11.
  • Each of the compressor blade stages 13 includes a plurality of compressor blades 14.
  • the compressor blades 14 of each compressor blade stage 13 are arranged on the outer peripheral surface of the compressor rotor 11 at intervals in the circumferential direction of the axis Am.
  • a plurality of compressor vane stages 15 arranged at intervals in the axis Am direction are provided on the inner peripheral surface of the compressor casing 12. These compressor stationary blade stages 15 are arranged alternately with the compressor moving blade stages 13 in the direction of the axis Am.
  • Each of the compressor vane stages 15 includes a plurality of compressor vanes 16. The compressor vanes 16 of each compressor vane stage 15 are arranged on the inner circumferential surface of the compressor casing 12 at intervals in the circumferential direction of the axis Am.
  • the combustor 3 generates combustion gas by mixing the high-pressure air generated by the compressor 1 and burning the fuel.
  • the combustor 3 is provided between the compressor casing 12 and the turbine casing 22 of the turbine 2.
  • the combustion gas generated by the combustor 3 is supplied to the turbine 2.
  • the turbine 2 is driven by the combustion gas generated by the combustor 3.
  • the turbine 2 includes a turbine rotor 21, a turbine casing 22, and a diffuser 4A.
  • the turbine rotor 21 extends along the axis Am.
  • a plurality of turbine rotor blade stages 23 arranged at intervals in the axis Am direction are provided on the outer peripheral surface of the turbine rotor 21.
  • Each of these turbine blade stages 23 includes a plurality of turbine blades 24.
  • the turbine rotor blades 24 of the turbine rotor blade stages 23 are arranged on the outer peripheral surface of the turbine rotor 21 at intervals in the circumferential direction of the axis Am.
  • the turbine rotor blade 24 constituting the final stage turbine rotor blade stage 23 arranged on the most downstream side has a portion on the other side in the axis Am direction around the axis Am. Curved from one side of the direction to the other.
  • the turbine blade 24 of the turbine blade stage 23 in the final stage is curved so that the downstream edge portion (rear edge) faces the rear side in the rotational direction of the turbine rotor 21.
  • at least the turbine blade 24 of the turbine blade stage 23 in the final stage only needs to be curved as described above, and is not limited to the above configuration.
  • the turbine blades 24 of other turbine blade stages 23 may be curved in the same manner as the turbine blades 24 of the final turbine blade stage 23.
  • the turbine casing 22 covers the turbine rotor 21 from the outer peripheral side.
  • a plurality of turbine vane stages 25 arranged at intervals in the direction of the axis Am are provided on the inner peripheral surface of the turbine casing 22.
  • the turbine stationary blade stages 25 are arranged alternately with the turbine rotor blade stages 23 in the axis Am direction.
  • Each of these turbine stationary blade stages 25 includes a plurality of turbine stationary blades 26.
  • the turbine stationary blades 26 of each turbine stationary blade stage 25 are arranged on the inner peripheral surface of the turbine casing 22 at intervals in the circumferential direction of the axis Am.
  • the compressor rotor 11 and the turbine rotor 21 are integrally connected in the axis Am direction.
  • the compressor rotor 11 and the turbine rotor 21 constitute a gas turbine rotor 91.
  • the compressor casing 12 and the turbine casing 22 are integrally connected along the axis Am.
  • the compressor casing 12 and the turbine casing 22 constitute a gas turbine casing 92.
  • the gas turbine rotor 91 is integrally rotatable around the axis Am within the gas turbine casing 92.
  • the compressor rotor 11 (gas turbine rotor 91) is rotationally driven by an external drive source.
  • the compressor rotor 11 rotates, external air is sequentially compressed to generate high-pressure air.
  • This high-pressure air is supplied into the combustor 3 through the compressor casing 12.
  • the fuel is mixed with the high-pressure air and burned to generate high-temperature and high-pressure combustion gas.
  • Combustion gas is supplied into the turbine 2 through the turbine casing 22.
  • the combustion gas sequentially collides with the turbine rotor blade stage 23 and the turbine stationary blade stage 25, whereby a rotational driving force is given to the turbine rotor 21 (gas turbine rotor 91).
  • This rotational energy is used, for example, for driving the generator G connected to the shaft end.
  • the combustion gas that has driven the turbine 2 is discharged to the outside after the pressure (static pressure) is increased as it passes through the diffuser 4A as exhaust gas.
  • FIG. 2 is a sectional view taken along the axis of the diffuser in the first embodiment of the present invention. 1 and 2, the diffuser 4A is provided integrally with the turbine casing 22 (gas turbine casing 92).
  • the diffuser 4 ⁇ / b> A includes an inner cylinder 41, an outer cylinder 42, a first strut 43 ⁇ / b> A, and a second strut 44.
  • the inner cylinder 41 is formed in a cylindrical shape extending along the axis Am.
  • the inner cylinder 41 is formed such that its outer peripheral surface 41A gradually decreases in diameter from one side to the other side in the axis Am direction.
  • a bearing device (not shown) that rotatably supports the shaft end portion 91A of the gas turbine rotor 91 is provided inside the inner cylinder 41.
  • the outer cylinder 42 is formed in a cylindrical shape that covers the inner cylinder 41 from the outer peripheral side.
  • the outer cylinder 42 forms an exhaust passage C between which the exhaust gas discharged from the turbine 2 flows.
  • the outer cylinder 42 is formed such that its inner peripheral surface 42A gradually increases in diameter from one side to the other side in the axis Am direction. That is, the cross-sectional area of the exhaust passage C formed between the outer cylinder 42 and the inner cylinder 41 (cross-sectional area perpendicular to the axis Am) gradually increases in diameter as it goes from one side to the other in the axis Am direction. is doing. As the cross-sectional area of the exhaust passage C gradually increases in this way, the kinetic energy of the exhaust gas flowing through the exhaust passage C is gradually converted into pressure energy (pressure recovery).
  • the first struts 43 ⁇ / b> A and the second struts 44 are disposed in the exhaust flow path C and connect the inner cylinder 41 and the outer cylinder 42.
  • the outer cylinder 42 is fixed and supported to the inner cylinder 41 by the first struts 43A and the second struts 44.
  • the first strut 43A is arranged adjacent to the last turbine rotor blade stage 23 located on the most other side in the axis Am direction among the plurality of turbine rotor blade stages 23 in the axis Am direction. .
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • a plurality of first struts 43 ⁇ / b> A are provided in the exhaust flow path C at intervals in the circumferential direction around the axis Am.
  • a case where six first struts 43A extending radially toward the outer periphery side with the inner cylinder 41 as a center is illustrated. These first struts 43A are arranged at equal intervals in the circumferential direction around the axis Am.
  • first struts 43A are so-called tangential struts inclined with respect to the normal line of the outer peripheral surface 41A of the inner cylinder 41. More specifically, the first strut 43A is arranged on the front side in the rotational direction of the turbine rotor 21 (indicated by an arrow A in FIG. 3) from the radially inner side to the outer side with the axis Am as the center. So as to be inclined.
  • a tangential strut it is possible to reduce the shift of the axial center due to thermal elongation.
  • the surface of the first strut 43A facing the rear side in the rotational direction becomes the positive pressure surface S1
  • the surface of the first strut 43A facing the front side in the rotational direction becomes the negative pressure surface S2.
  • the positive pressure surface S1 and the negative pressure surface S2 are both formed to extend in the same direction from the outer peripheral surface 41A of the inner cylinder 41 to the inner peripheral surface 42A of the outer cylinder 42. ing.
  • the second strut 44 is provided mainly for the purpose of distributing the load burden of the first strut 43A.
  • the second strut 44 is provided at a position separated from the first strut 43A on the other side in the axis Am direction.
  • the second struts 44 of the first embodiment are provided as two, and each of the second struts 44 is illustrated as extending from the outer peripheral surface 41A of the inner cylinder 41 in the opposite direction. These second struts 44 extend in the radial direction around the axis Am.
  • the first struts 43A and the second struts 44 in the first embodiment have a shape that can reduce the shape resistance against the exhaust gas. Examples of the shape that can reduce the shape resistance to the exhaust gas include an elliptical cross section that is long in the direction in which the exhaust gas flows, and a blade shape in which the chord extends in the direction in which the exhaust gas flows.
  • FIG. 4 is a perspective view of an inner cylinder between adjacent first struts in the first embodiment of the present invention.
  • the diffuser 4 ⁇ / b> A includes a protrusion 50 between the first struts 43 ⁇ / b> A adjacent in the circumferential direction around the axis Am.
  • One protrusion 50 is provided between each of the plurality of first struts 43A arranged side by side in the circumferential direction.
  • the protrusion 50 protrudes from the outer peripheral surface 41A of the inner cylinder 41 and extends in the axis Am direction.
  • the protrusion 50 in the first embodiment protrudes from the outer peripheral surface 41A toward the outer side in the radial direction with the axis Am as the center.
  • the protrusion 50 in the first embodiment is formed at the center (50%) of the adjacent first struts 43A when the distance between the adjacent first struts 43A is 100% in the circumferential direction around the axis Am. It can be formed within a range of ⁇ 30% from the position. Further, the protrusion 50 may be arranged at a position ⁇ 20% from the position of the center (50%) in the circumferential direction around the axis Am. Further, the protrusion 50 may be arranged at a position ⁇ 10% from the position of the center (50%) in the circumferential direction around the axis Am.
  • the protrusion 50 has a front end portion (in other words, an end portion on one side in the axis Am direction) 51 and a front edge (in other words, an edge portion on one side in the axis Am direction) 43a of the first strut 43A and the first strut 43A. And the rear edge (in other words, the edge on the other side in the axis Am direction) 43b.
  • the chord length of the first strut 43A having an airfoil is 100%
  • the position of the front end portion 51 of the protrusion 50 is 50% of the chord length in the chord direction of the first strut 43A. It can arrange
  • the position of the front end portion 51 of the protrusion 50 may be arranged in a range of ⁇ 20% from a position of 50% of the chord length in the chord direction of the first strut 43A, for example. Furthermore, the position of the front end portion 51 of the protrusion 50 may be arranged in a range of ⁇ 10% from the position of 50% of the chord length in the chord direction of the first strut 43A, for example.
  • the protrusion 50 has a rear end portion (in other words, an end portion on the other side in the axial Am direction) 52 disposed on the other side in the axial Am direction with respect to the rear edge 43b of the first strut 43A.
  • the rear end portion 52 can be arranged at a position as far as possible from the rear edge 43b in the range on the other side in the axis Am direction from the rear edge 43b. That is, the protrusion 50 may be formed as long as possible toward the other side in the axis Am direction.
  • the position of the front edge 43 a in the direction of the axis Am is indicated by “F”
  • the center position is indicated by “M”
  • the position of the rear edge 43 b is indicated by “R”.
  • the height of the protrusion 50 protruding from the outer peripheral surface 41A of the inner cylinder 41 is such that the pressure loss due to the shape resistance of the protrusion 50 is smaller than the pressure loss due to the separation of the exhaust gas generated on the outer peripheral surface 41A of the inner cylinder 41. Can be as high as possible. Furthermore, the height of the protrusion 50 can be set to a height corresponding to the thickness of the boundary layer formed on the outer peripheral surface 41A, for example, 3% with respect to the blade height of the first strut 43A, for example. To a height of about 1%.
  • the height of the protrusion 50 may be adjusted as appropriate according to the thickness of the boundary layer. Moreover, you may form the protrusion 50 so that it may become higher than the thickness of a boundary layer. Thus, by forming the protrusion 50 higher than the thickness of the boundary layer, it becomes possible to entrain the main flow of the exhaust gas, and the development of the boundary layer can be further suppressed.
  • the protrusion 50 has a wing shape. More specifically, the protrusion 50 is formed to be tapered toward the one side in the axis Am direction and to be tapered toward the other side in the axis Am direction when viewed from the radial outside centered on the axis Am. Has been. In other words, the width dimension of the protrusion 50 gradually decreases toward both sides in the direction of the axis Am.
  • the protrusion 50 in this 1st embodiment has illustrated the case where the ridgeline extended in an axis line Am direction is formed gradually reducing the width dimension toward radial direction outer side, it is restricted to this shape. It is not a thing.
  • FIG. 5 is a graph showing the exhaust gas swirl angle with respect to the radial position of the exhaust passage inlet in the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the rotation directions of the longitudinal vortex and the horseshoe vortex as viewed from one side in the axial direction according to the first embodiment of the present invention.
  • the horizontal axis represents the swirl angle of the swirl flow
  • the vertical axis represents the radial position of the exhaust channel C inlet.
  • the plus (+) side of the horizontal axis shows a state where the swirling flow is flowing from the other side in the circumferential direction to the one side
  • the minus ( ⁇ ) side of the horizontal axis is a state where the swirling flow is from the one side in the circumferential direction
  • the state which is flowing toward is shown.
  • the vertical axis represents the position in the exhaust passage C on the radially outer side centered on the axis Am with the position of the outer peripheral surface 41A of the inner cylinder 41 as the origin.
  • the swirl angle of the swirl flow around the first strut 43A has a distribution as indicated by a broken line in the graph of FIG. .
  • the direction of the swirl angle of the swirl flow becomes negative, and the outer peripheral surface 41A and the inner peripheral surface 42A
  • the direction of the swirling angle of the swirling flow becomes positive near the center in the radial direction between the two. This is because the pressure loss due to the interference between the fluid flow and the flow path structure is designed to be minimized during rated operation.
  • the absolute value of the swirl angle of the swirl flow can be reduced in the rated operation.
  • the swirl angle of the swirl flow is increased to the minus side in the entire radial direction of the exhaust passage C inlet.
  • the distribution of the turning angle when the gas turbine 100A is operated at a partial load is the distribution of the turning angle at the rated operation (shown by the broken line in FIG. 5). ) Is shifted to the minus side.
  • the swivel angle increases in the negative direction in this manner, the flow separation due to the structure in the exhaust passage C tends to increase, and the pressure loss generated in the diffuser 4A increases accordingly.
  • the protrusions 50 are arranged between the first struts 43 ⁇ / b> A adjacent in the circumferential direction around the axis Am. And these protrusion 50 protrudes from 41 A of outer peripheral surfaces of the inner cylinder 41, and is extended in the axis line Am direction. Therefore, the protrusion 50 becomes a partition, and is generated on the negative pressure surface S2 side of the first strut 43A arranged behind the turbine rotor 21 in the rotation direction of the first struts 43A adjacent in the circumferential direction around the axis Am.
  • the protrusion 50 when viewed from the outside in the radial direction centered on the axis Am, the protrusion 50 is formed to be tapered toward one side in the axis Am direction and to be tapered toward the other side in the axis Am direction.
  • the shape resistance of the protrusion 50 can be reduced with respect to the main flow of exhaust gas flowing in the direction of the axis Am.
  • FIG. 7 is a cross-sectional view corresponding to FIG. 3 in the second embodiment of the present invention.
  • FIG. 8 is a perspective view corresponding to FIG. 4 in the second embodiment of the present invention.
  • the diffuser 4B of the gas turbine 100B according to the second embodiment is provided integrally with the turbine casing 22 (gas turbine casing 92), similarly to the diffuser 4A according to the first embodiment described above. It has been.
  • the gas turbine 100B of this second embodiment is provided with the compressor 1, the combustor 3, and the turbine 2, respectively, like the gas turbine 100A of the first embodiment.
  • the diffuser 4 ⁇ / b> B includes an inner cylinder 41, an outer cylinder 42, a first strut 43 ⁇ / b> B, and a second strut 44.
  • the first strut 43B is disposed in the exhaust flow path C and connects the inner cylinder 41 and the outer cylinder 42 in the same manner as the first strut 43A described above.
  • the outer cylinder 42 is fixed and supported with respect to the inner cylinder 41 by the first struts 43 ⁇ / b> B and the second struts 44.
  • the first struts 43B are disposed adjacent to each other in the axial Am direction with respect to the final turbine moving blade stage 23 positioned on the othermost side in the axial Am direction among the plurality of turbine moving blade stages 23. .
  • a plurality of first struts 43 ⁇ / b> B are provided in the exhaust passage C at intervals in the circumferential direction around the axis Am.
  • first struts 43B extending radially toward the outer peripheral side with the inner cylinder 41 as the center is illustrated. These first struts 43B are arranged at equal intervals in the circumferential direction around the axis Am.
  • first struts 43B are so-called tangential struts inclined with respect to the normal line of the outer peripheral surface 41A of the inner cylinder 41, like the first struts 43A described above. More specifically, the first strut 43B is disposed on the front side in the rotational direction of the turbine rotor 21 (indicated by an arrow A in FIG. 7) from the radially inner side to the outer side with the axis Am as the center. So as to be inclined.
  • the surface of the first strut 43B facing the rear side in the rotational direction becomes the positive pressure surface S1
  • the surface of the first strut 43B facing the front side in the rotational direction becomes the negative pressure surface S2.
  • the positive pressure surface S1 and the negative pressure surface S2 are both formed to extend in the same direction from the outer peripheral surface 41A of the inner cylinder 41 to the inner peripheral surface 42A of the outer cylinder 42. ing.
  • the diffuser 4 ⁇ / b> B includes a convex portion 53.
  • the convex portions 53 protrude from the suction surfaces S2 of the plurality of first struts 43B.
  • the convex part 53 generates the vertical vortex V4 on the suction surface S2 of the first strut 43B.
  • the vertical vortex V4 is generated on both sides of the convex portion 53 in the radial direction centered on the axis Am.
  • the vertical vortex V4 is a vortex tube that extends downstream of the exhaust gas (on the other side in the axis Am direction) so as to wrap around the convex portion 53.
  • the vertical vortex V4 generated by the convex portion 53 interferes with the separation vortex V2 generated in the region near the front edge 43a of the first strut 43B. This interference hinders the development of the separation vortex V2.
  • the convex portion 53 may be provided on the upstream side of the portion where the separation vortex V2 is generated. By doing in this way, it can suppress that peeling vortex V2 arises by the vertical vortex V4 formed of the convex part 53 itself. Further, when the distance from the outer peripheral surface 41A of the inner cylinder 41 to the inner peripheral surface 42A of the outer cylinder 42 is 100% in the radial direction with the axis Am as the center, the convex portion 53 is located more than the position of 50%. You may arrange
  • the convex portion 53 may be arranged on the side closer to the outer peripheral surface 41A of the inner cylinder 41 than the position of 30% in the radial direction centering on the axis Am.
  • the protrusion 53 may protrude from the negative pressure surface S2 so that the pressure loss due to the shape resistance of the protrusion 53 does not become larger than the pressure loss caused by the separation vortex V2.
  • the shape of the convex part 53 should just protrude from the negative pressure surface S2, and is not restricted to the shape shown in FIG. 7, FIG.
  • the diffuser 4B includes the ridges 50 between the first struts 43B adjacent in the circumferential direction around the axis Am, similarly to the diffuser 4A described above. Since this protrusion 50 is the same structure as 1st embodiment, detailed description is abbreviate
  • the vertical vortex V4 similar to the horseshoe vortex mentioned above on both sides of the convex part 53 is provided. It is formed.
  • the vertical vortex V4 formed by the convex portion 53 interferes with the separation vortex V2 formed on the suction surface S2 of the first strut 43B by the swirling flow of the exhaust gas. Therefore, the development of the separation vortex V2 is suppressed. That is, it can reduce that the boundary layer formed in 41 A of outer peripheral surfaces of the inner cylinder 41 is wound up radially outside by peeling vortex V2.
  • the convex portion 53 is disposed at a position closer to the inner cylinder 41 than the central position in the radial direction (the above-described 50% position). Therefore, the vertical vortex V4 that interferes with the separation vortex V2 can be formed by the convex portion 53, particularly at a position where the separation vortex V2 is easily formed by the swirling flow. As a result, the generation of the separation vortex V2 can be efficiently suppressed.
  • the present invention is not limited to the configuration of each of the embodiments described above, and the design can be changed without departing from the gist thereof.
  • the plurality of protrusions 50 may have different configurations (shape, arrangement, etc.).
  • the position, height, and width of the front end portion 51 and the rear end portion 52 of the protrusion 50 may be different for each of the plurality of protrusions 50.
  • the convex part 53 demonstrated the case where it arrange
  • the convex portion 53 may be arranged within a range of ⁇ 30% in the radial direction with respect to a position of 50%.
  • FIG. 9 is a configuration diagram showing a schematic configuration of the gas turbine in the third embodiment of the present invention.
  • the gas turbine 1000 according to the third embodiment includes a compressor 10, a combustor 30, and a turbine 20A.
  • Compressor 10 generates high-pressure air.
  • the compressor 10 includes a compressor rotor 110 and a compressor casing 120.
  • the compressor casing 120 covers the compressor rotor 110 from the outer peripheral side, and extends along the axis Am.
  • a plurality of compressor rotor blade stages 130 arranged at intervals in the axis Am direction are provided on the outer peripheral surface of the compressor rotor 110.
  • Each of these compressor blade stages 130 includes a plurality of compressor blades 140.
  • the compressor blades 140 of each compressor blade stage 130 are arranged on the outer peripheral surface of the compressor rotor 110 at intervals in the circumferential direction of the axis Am.
  • a plurality of compressor vane stages 150 arranged at intervals in the axis Am direction are provided on the inner peripheral surface of the compressor casing 120.
  • the compressor vane stages 150 are alternately arranged with the compressor rotor stage 130 in the direction of the axis Am.
  • Each of the compressor vane stages 150 includes a plurality of compressor vanes 160.
  • the compressor vanes 160 of each compressor vane stage 150 are arranged on the inner circumferential surface of the compressor casing 120 at intervals in the circumferential direction of the axis Am.
  • the combustor 30 generates combustion gas by mixing fuel with the high-pressure air generated by the compressor 10 and burning it.
  • the combustor 30 is provided between the compressor casing 120 and the turbine casing 220 of the turbine 20A.
  • the combustion gas generated by the combustor 30 is supplied to the turbine 20A.
  • the turbine 20 ⁇ / b> A is driven by the combustion gas generated by the combustor 30.
  • the turbine 20A includes a turbine rotor 210, a turbine casing 220, and a diffuser 40A.
  • the turbine rotor 210 extends along the axis Am.
  • a plurality of turbine rotor blade stages 230 arranged at intervals in the axis Am direction are provided on the outer peripheral surface of the turbine rotor 210.
  • Each of these turbine blade stages 230 includes a plurality of turbine blades 240.
  • the turbine rotor blades 240 of each turbine rotor blade stage 230 are arranged on the outer peripheral surface of the turbine rotor 210 at intervals in the circumferential direction of the axis Am.
  • the turbine rotor blade 240 constituting the final stage turbine rotor blade stage 230 arranged on the most downstream side has a portion around the other side in the axis Am direction around the axis Am. Curved from one side of the direction to the other.
  • the turbine blade 240 of the turbine blade stage 230 at the final stage is curved so that the downstream edge portion (rear edge) faces the rear side in the rotational direction of the turbine rotor 210.
  • at least the turbine blade 240 of the turbine blade stage 230 at the final stage only needs to be curved as described above, and is not limited to the above configuration.
  • the turbine blades 240 of other turbine blade stages 230 may be curved in the same manner as the turbine blades 240 of the final turbine blade stage 230.
  • the turbine casing 220 covers the turbine rotor 210 from the outer peripheral side.
  • a plurality of turbine vane stages 250 arranged at intervals in the axis Am direction are provided on the inner peripheral surface of the turbine casing 220.
  • the turbine stationary blade stage 250 is alternately arranged with the turbine rotor blade stage 230 in the axis Am direction.
  • Each of these turbine vane stages 250 includes a plurality of turbine vanes 260.
  • the turbine vanes 260 of each turbine vane stage 250 are arranged on the inner circumferential surface of the turbine casing 220 at intervals in the circumferential direction of the axis Am.
  • the compressor rotor 110 and the turbine rotor 210 are integrally connected in the axis Am direction.
  • the compressor rotor 110 and the turbine rotor 210 constitute a gas turbine rotor 910.
  • the compressor casing 120 and the turbine casing 220 are integrally connected along the axis Am.
  • a gas turbine casing 920 is constituted by the compressor casing 120 and the turbine casing 220.
  • the gas turbine rotor 910 can rotate integrally around the axis Am within the gas turbine casing 920.
  • the compressor rotor 110 (gas turbine rotor 910) is first rotationally driven by an external drive source.
  • the compressor rotor 110 rotates, the external air is sequentially compressed to generate high-pressure air.
  • This high-pressure air is supplied into the combustor 30 through the compressor casing 120.
  • the fuel is mixed with the high-pressure air and burned to generate high-temperature and high-pressure combustion gas.
  • the combustion gas is supplied into the turbine 20 ⁇ / b> A through the turbine casing 220.
  • the turbine 20A the combustion gas sequentially collides with the turbine rotor blade stage 230 and the turbine stationary blade stage 250, whereby a rotational driving force is applied to the turbine rotor 210 (gas turbine rotor 910).
  • This rotational energy is used, for example, for driving the generator G connected to the shaft end.
  • the combustion gas that has driven the turbine 20A is discharged to the outside after the pressure (static pressure) is increased when passing through the diffuser 40A as exhaust gas.
  • FIG. 10 is a sectional view taken along the axis of the diffuser in the third embodiment of the present invention.
  • the diffuser 40A is provided integrally with the turbine casing 220 (gas turbine casing 920).
  • the diffuser 40A includes an inner cylinder 410, an outer cylinder 420, a first strut 430, a second strut 440, and a convex portion 500 (see FIG. 11).
  • the inner cylinder 410 is formed in a cylindrical shape that extends along the axis Am.
  • the inner cylinder 410 is formed such that its outer peripheral surface 410A gradually decreases in diameter as it goes from one side to the other side in the axis Am direction.
  • a bearing device 300 that rotatably supports the shaft end portion 910A of the gas turbine rotor 910 is provided inside the inner cylinder 410.
  • the bearing device 300 includes a bearing 310 and a bearing housing 320.
  • the bearing housing 320 is mainly supported by the outer cylinder 420 by the first strut 430.
  • the outer cylinder 420 is formed in a cylindrical shape that covers the inner cylinder 410 from the outer peripheral side.
  • the outer cylinder 420 forms an exhaust passage C between which the exhaust gas discharged from the turbine 20A flows.
  • the outer cylinder 420 is formed such that an inner peripheral surface 420A thereof gradually increases in diameter from one side to the other side in the axis Am direction. That is, the cross-sectional area of the exhaust passage C formed between the outer cylinder 420 and the inner cylinder 410 (the cross-sectional area perpendicular to the axis Am) gradually increases in diameter from one side to the other side in the axis Am direction. is doing.
  • the cross-sectional area of the exhaust passage C gradually increases in this way, the kinetic energy of the exhaust gas flowing through the exhaust passage C is gradually converted into pressure energy (pressure recovery).
  • the first strut 430 is covered with a strut cover 450 so as not to be exposed to high-temperature exhaust gas.
  • a so-called tangential strut that is inclined with respect to the normal line of the outer peripheral surface 410A of the inner cylinder 410 can be used. By adopting such a tangential strut, it is possible to reduce the shift of the axial center due to thermal elongation.
  • the second strut 440 functions as a passage that distributes the load burden of the first strut 430 and allows a person to enter the bearing 310 of the gas turbine 1000, for example.
  • the second strut 440 is formed in a cylindrical shape extending in the radial direction about the axis Am.
  • the second strut 440 is provided at a position separated from the first strut 430 on the other side in the axis Am direction.
  • the strut cover 450 and the second strut 440 in the third embodiment have a shape that can reduce the shape resistance against the exhaust gas.
  • Examples of the shape that can reduce the shape resistance to the exhaust gas include an elliptical cross section that is long in the direction in which the exhaust gas flows, and a blade shape in which the chord extends in the direction in which the exhaust gas flows.
  • the gas turbine 1000 includes a seal mechanism (not shown).
  • a seal mechanism (not shown).
  • a part of the compressed air generated by the compressor 10 is used as a sealing gas to flow into the exhaust passage C from the gap between the above-described inner cylinder 410 of the diffuser 40A and the turbine rotor 210. Yes.
  • This sealing mechanism prevents the exhaust gas from flowing out from the gap.
  • FIG. 11 is a perspective view of an inner cylinder between adjacent first struts in the third embodiment of the present invention.
  • the diffuser 40 ⁇ / b> A includes a convex portion 500 between first struts 430 (strut covers 450) that are adjacent in the circumferential direction around the axis Am.
  • One convex portion 500 is provided between each of the plurality of first struts 430 arranged side by side in the circumferential direction.
  • the convex portion 500 protrudes from the outer peripheral surface 410 ⁇ / b> A of the inner cylinder 410.
  • the convex portion 500 in the third embodiment protrudes outward from the outer peripheral surface 410A in the radial direction centering on the axis Am.
  • the protruding amount of the convex portion 500 (in other words, the radial height) is slightly smaller than the thickness of the boundary layer (not shown) formed on the outer peripheral surface 410A of the inner cylinder 410 by the flow of exhaust gas. Can be lowered. More specifically, the protrusion amount of the convex portion 500 may be a protrusion amount of 5% with respect to the height (blade height) of the first strut 430 in the radial direction around the axis Am. Furthermore, the protruding amount of the convex portion 500 may be 3% with respect to the height of the first strut 430. Further, the protruding amount of the convex portion 500 may be 1% with respect to the height of the first strut 430. In addition, since the thickness of the boundary layer changes according to the specification of the diffuser 40A, the protruding amount of the convex portion 500 may be appropriately adjusted according to the thickness of the boundary layer.
  • the convex portion 500 in the third embodiment has a center (50%) of the adjacent first struts 430 when the distance between the adjacent first struts 430 is 100%. It can be formed within a range of ⁇ 30% from the position. Furthermore, the convex portion 500 may be arranged at a position of ⁇ 20% from the position of the center (50%) in the circumferential direction around the axis Am. Furthermore, the convex portion 500 may be arranged at a position ⁇ 10% from the position of the center (50%) in the circumferential direction around the axis Am.
  • the convex portion 500 has a front edge of the first strut 430 in the axis Am direction (in other words, an edge on one side in the axis Am direction) 430a when the total length of the first strut 430 in the axis Am direction is 100%.
  • the position (hereinafter simply referred to as “the position of the leading edge”.
  • the position indicated by a two-dot chain line F in FIG. 11) can be arranged in a region of ⁇ 10% of the total length of the first strut 430.
  • the convex portion 500 may be arranged in a region of ⁇ 5% with respect to the position of the front edge in the axis Am direction.
  • the convex portion 500 may be disposed in a region of ⁇ 3% with respect to the position of the front edge in the axis Am direction. Furthermore, the convex portion 500 may be arranged in a region of ⁇ 2% with respect to the position of the front edge in the axis Am direction.
  • the length of the convex portion 500 in the direction of the axis Am may be any length as long as it is within the above-described region with respect to the position of the front edge 430a. For example, you may form in the length equivalent to the length of the said area
  • the convex portion 500 may be tapered as it goes outward in the radial direction with the axis Am as the center.
  • FIG. 11 the case where it forms so that the protrusion amount of the convex part 500 may increase as it goes to the other side (downstream side) from one side (upstream side) of an axis Am direction as a taper shape is illustrated.
  • it is not limited to this shape as long as it is tapered.
  • the seal gas may flow inward in the radial direction around the axis Am at the inlet of the diffuser 40A.
  • This seal gas interferes with the flow in the unstable boundary layer formed on the outer peripheral surface 410 ⁇ / b> A of the inner cylinder 410.
  • the flow in the boundary layer is primarily a secondary flow typified by a horseshoe vortex generated at the joint between the first strut 430 and the outer peripheral surface 410A of the inner cylinder 410, or a pressure due to the circumferential inclination of the first strut 430. Due to the gradient, the flow becomes a three-dimensional flow, and separation tends to occur when the disturbance increases.
  • the flow in the boundary layer increases the vorticity in the vertical direction due to the inflow of the seal gas. That is, the flow in the boundary layer mainly includes the vortex V20 (see FIG. 11) having a circumferential vortex axis centered on the axis Am.
  • the boundary layer with increased vorticity in the vertical direction is greatly developed as it proceeds downstream as compared with the case where seal gas does not flow.
  • the cross-sectional area of the flow path rapidly increases with the position of the rear edge 430b of the first strut 430 as a boundary, the flow velocity may further decrease, and boundary layer separation may occur.
  • the convex portion 500 is disposed between the first struts 430 adjacent in the circumferential direction around the axis Am. These convex portions 500 are arranged near the position of the front edge 430a of the first strut 430 in the direction of the axis Am. The flow in the boundary layer having the vertical vorticity due to the interference of the seal gas described above is wound around the convex portion 500 in the vicinity of the position of the front edge 430a of the first strut 430.
  • the vertical vortex V30 having a vortex axis in the direction in which the exhaust gas flows is formed on both sides of the convex portion 500 in the circumferential direction.
  • the vertical vortex V30 extends downstream from the convex portion 500 to form a vortex tube.
  • the vertical vortex V30 imparts momentum to the exhaust gas in the boundary layer downstream from the vicinity of the front edge 430a of the first strut 430. Therefore, even when the seal gas flows in as described above, momentum is given to the flow in the boundary layer before the boundary layer develops, so that the boundary layer develops and so-called boundary layer separation is suppressed. it can. As a result, the pressure loss of the diffuser 40A can be suppressed and the performance can be improved.
  • FIG. 12 is a view of the vortex around the convex portion in the third embodiment of the present invention viewed from one side in the axial direction.
  • the longitudinal vortex V30 rotates in the opposite direction to the adjacent horseshoe vortex V10.
  • the rotation directions of the vertical vortex V30 and the horseshoe vortex V10 are opposite to each other, so that the flow of the vertical vortex V30 and the flow of the horseshoe vortex V10 flow in the same direction at adjacent locations. It acts in the direction of promoting without inhibiting the rotation of the longitudinal vortex V30 and the horseshoe vortex V10. Therefore, the longitudinal vortex V30 and the horseshoe vortex V10 are easily maintained even downstream of the first strut 430, and the development of the boundary layer can be further suppressed.
  • the gas turbine 1000 of the fourth embodiment includes the compressor 10, the combustor 30, and the turbine 20B, as in the third embodiment described above. Further, the turbine 20B includes a turbine rotor 210, a turbine casing 220, and a diffuser 40B.
  • FIG. 13 is a view corresponding to FIG. 11 in the fourth embodiment of the present invention.
  • the diffuser 40 ⁇ / b> B in the fourth embodiment includes an inner cylinder 410, an outer cylinder 420 (not shown in FIG. 13), a first strut 430, a second strut 440, and a convex portion 500. And a guide plate 510.
  • the convex portion 500 has the same configuration as that of the third embodiment, and is provided one by one between the plurality of first struts 430 arranged side by side in the circumferential direction around the axis Am. These convex portions 500 protrude from the outer peripheral surface 410A of the inner cylinder 410, respectively.
  • the guide plate 510 guides the vertical vortex V30 generated at the convex portion 500 to the downstream side.
  • One guide plate 510 is provided between each of the plurality of first struts 430 arranged side by side in the circumferential direction with the axis Am as the center, like the convex portion 500.
  • These guide plates 510 are formed so as to extend in the direction of the axis Am, and are arranged at a distance from the convex portion 500 on the downstream side in the direction in which the exhaust gas flows.
  • the guide plate 510 is further formed to protrude from the outer peripheral surface 410A of the inner cylinder 410 toward the radially outer side centering on the axis Am.
  • the guide plate 510 exemplified in the fourth embodiment is formed in a flat plate shape extending outward in the radial direction. Further, the guide plate 510 exemplified in the fourth embodiment is formed so that the amount of protrusion gradually increases from one side in the axis Am direction toward the other side.
  • the guide plate 510 may have a maximum protrusion amount equal to the protrusion amount of the convex portion 500.
  • the guide plate 510 exemplified in the fourth embodiment has a position of 50% with respect to the chord length of the first strut 430 with respect to the leading edge 430a of the first strut 430 (in other words, the leading edge in the direction of the axis Am). 430a and the rear edge 430b) to the position of the rear edge 430b of the first strut 430.
  • the position of the trailing edge 430 b is indicated by a symbol “R”
  • the intermediate position between the leading edge 430 a and the trailing edge 430 b is indicated by a symbol “M”.
  • the thickness (dimension) of the guide plate 510 in the circumferential direction around the axis Am is formed to be equal to the dimension of the convex portion 500 in the circumferential direction around the axis Am.
  • the guide plate 510 may extend further downstream than the position of the trailing edge 430b. By doing in this way, it can suppress that the flow-path cross-sectional area of exhaust gas expands rapidly in the downstream rather than the position of the rear edge 430b of the 1st strut 430.
  • the positions of the upstream end and the downstream end in the direction of the axis Am of the guide plate 510 in the fourth embodiment are merely examples, and the positions where the longitudinal vortex V30 formed by the convex portion 500 can be guided. If it is, it is not restricted to said position.
  • the vertical vortex V30 can be formed by the convex portion 500 as in the third embodiment. Furthermore, by providing the guide plate 510, the vertical vortex V30 formed by the convex portion 500 can be maintained further downstream, and the disturbance of the vertical vortex V30 can be adjusted (rectified).
  • the gas turbine 1000 of the fifth embodiment includes the compressor 10, the combustor 30, and the turbine 20C, as in the third embodiment described above. Further, the turbine 20C includes a turbine rotor 210, a turbine casing 220, and a diffuser 40C.
  • FIG. 14 is a diagram corresponding to FIG. 11 in the fifth embodiment of the present invention.
  • the diffuser 40C in the fifth embodiment includes an inner cylinder 410, an outer cylinder 420 (not shown in FIG. 14), a first strut 430, a second strut 440, and a guide projection. 520.
  • One guide protrusion 520 is provided between each of the plurality of first struts 430 arranged side by side in the circumferential direction with the axis Am as the center.
  • the guide convex portion 520 in the fifth embodiment has the center (50%) of the adjacent first struts 430 when the distance between the adjacent first struts 430 is 100% in the circumferential direction around the axis Am. It can be formed within a range of ⁇ 30% from the position of.
  • the guide convex portion 520 may be arranged at a position ⁇ 20% from the center (50%) position in the circumferential direction centering on the axis Am.
  • the convex portion 500 may be arranged at a position ⁇ 10% from the position of the center (50%) in the circumferential direction around the axis Am.
  • the guide protrusions 520 are disposed at the upstream end (end in the axis Am direction) of the guide plate 510 of the fourth embodiment described above at a position near the front edge 430a of the first strut 430 in the axis Am direction.
  • the shape is such that the length in the direction of the axis Am is extended. That is, these guide convex portions 520 are formed so as to extend in the direction of the axis Am.
  • the guide convex portion 520 is located at the position of the rear edge 430b of the first strut 430 from within an area of ⁇ 10% of the total length of the strut 430 in the axis Am direction with reference to the position of the front edge 430a of the first strut 430 in the axis Am direction. It extends towards.
  • the guide convex portion 520 extends from the region of ⁇ 5% of the total length in the axis Am direction of the first strut 430 toward the position of the rear edge 430b of the first strut 430 with reference to the position of the front edge 430a. May be.
  • the guide convex portion 520 is located at the position of the rear edge 430b of the first strut 430 from within a region of ⁇ 3% of the total length of the first strut 430 in the axis Am direction with respect to the position of the front edge 430a of the first strut 430. You may extend toward.
  • the guide convex portion 520 is further formed so as to protrude from the outer peripheral surface 410A of the inner cylinder 410 toward the radially outer side centering on the axis Am.
  • the guide convex portion 520 exemplified in the fifth embodiment is formed in a flat plate shape extending outward in the radial direction. Further, the guide convex portion 520 exemplified in the fifth embodiment is formed so that the protrusion amount gradually increases from one side (upstream side) in the axis Am direction toward the other side (downstream side).
  • the maximum protrusion amount of the guide convex portion 520 can be formed to the same extent as the convex portion 500 of the third embodiment described above.
  • the seal gas interferes and the flow in the boundary layer having the vorticity in the vertical direction is wound around the guide convex portion 520, and the vertical vortex V30 can be formed. Furthermore, since the guide convex portion 520 extends to the position of the rear edge 430b of the first strut 430 in the axis Am direction, the longitudinal vortex V30 formed by the guide convex portion 520 is downstream along the guide convex portion 520. And the disturbance of the vertical vortex V30 can be adjusted.
  • the present invention is not limited to the configuration of each of the embodiments described above, and the design can be changed without departing from the gist thereof.
  • the case where the guide plate 510 and the guide convex portion 520 are plate-shaped has been described.
  • the shape is not limited to a plate shape, and for example, it may have an airfoil shape or may be tapered toward the outside in the radial direction with the axis Am as the center.
  • the guide plate 510 and the guide convex portion 520 have been described as being formed so that the protruding amount gradually increases from one side (upstream side) in the axis Am direction toward the other side (downstream side).
  • the shape is not limited to this.
  • the protruding amount may be uniform from the upstream side toward the downstream side.
  • the convex portion 500, the guide plate 510, and the guide convex portion 520 are formed one by one between the first struts 430 adjacent in the circumferential direction.
  • two or more convex portions 500, guide plates 510, and guide convex portions 520 may be formed between the first struts 430 adjacent in the circumferential direction.
  • the plurality of convex portions 500 provided in one diffuser 40A have the same configuration.
  • the plurality of convex portions 500 may have different configurations (shape, arrangement, etc.).
  • the position, length, height, and width of the convex portion 500 may be different for each of the plurality of convex portions 500.
  • the plurality of guide plates 510 of the fourth embodiment provided in one diffuser and the plurality of guide protrusions 520 of the fifth embodiment may have different configurations (shape, arrangement, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

タービン2は、ディフューザ4Aを備える。このディフューザ4Aは、内筒41と、内筒41との間に排気流路を形成する外筒と、排気流路内で周方向に間隔をあけて設けられ、内筒41と外筒とを接続するとともに、径方向内側から外側に向かうにしたがってタービンロータの回転方向前方に配置される複数のストラット43Aと、周方向で隣り合うストラット43Aの間に配置されて、内筒41の外周面41Aから突出して軸線Am方向に延びる突条50と、を備え、突条50の軸線Am方向一方側の前端部51は、ストラット43Aの軸線Am方向一方側の前縁43aとストラット43Aの軸線Am方向他方側の後縁43bとの間に配置され、突条50の軸線Am方向他方側の後端部52は、後縁43bよりも軸線Am方向他方側に配置されている。

Description

タービン及びガスタービン
 この発明は、タービン及びガスタービンに関する。
 本願は、2016年12月26日に出願された特願2016-252008号及び2016年12月26日に出願された特願2016-252020号に基づき優先権を主張し、その内容をここに援用する。
 一般に、ガスタービンは、圧縮機と、燃焼器と、タービンと、を備えている。圧縮機は、外気を圧縮して高圧空気を生成し、燃焼器は、この圧縮機によって生成された高圧空気と燃料とを混合燃焼させることで高温高圧の燃焼ガスを生成する。タービンは、この燃焼器により生成された燃焼ガスによって駆動される。
 タービンの下流側にはディフューザが設けられている(例えば、特許文献1参照)。このディフューザとしては、内筒と外筒とストラットとを有しているものがある。内筒は、ディフューザの内周側に配置されており、外筒は、この内筒を外周側から覆うことで内筒との間に排気流路を形成している。ストラットは、周方向に間隔をあけて複数設けられ、それぞれ内筒の外周面からタービンの径方向に延びている。これらストラットを介して、内筒及び外筒が接続されている。
 ディフューザの排気流路は、燃焼ガスの流れる方向の上流から下流に向かうにしたがって次第に流路面積が増加するように形成されている。タービンを駆動した燃焼ガス(排気ガス)は、このように形成された排気流路を通過することで静圧回復される。ディフューザの性能が向上すると、実質的なガスタービンの圧力比を増加させるので、ディフューザの性能向上は、ガスタービン全体の効率向上に寄与する。
特許第5693315号公報
 タービンから排出される燃焼ガスの流れには、軸線方向成分と、軸線を中心とした周方向に旋回する旋回流成分(スワール成分)とが含まれている。そのため、排気ガスの流れがストラットの周囲を通過する際に、ストラットによって形状抵抗が生じたり、流れの剥離が生じたりする。これら形状抵抗や流れの剥離は、圧力損失を増加させる要因となる。この圧力損失の増加は、ディフューザの静圧回復量を低下させて、ガスタービン全体の効率を低下させる可能性が有る。特に流れの剥離は、圧力損失を増加させる要因となる。また、タービンが部分負荷時には、旋回流の角度(旋回角度)が大きくなる。そのため、ストラットにおいてより一層流れの剥離が生じ易くなり、圧力損失を増加させる可能性が有る。これら圧力損失の増加は、ディフューザの静圧回復量を低下させて、ガスタービン全体の効率を低下させる。
 この発明は、上記事情に鑑みてなされたものであり、圧力損失を抑制して性能向上を図ることができるタービン及びガスタービンを提供するものである。
 上記の課題を解決するために以下の構成を採用する。
 この発明の第一態様によれば、タービンは、軸線に沿って延びるとともに、前記軸線の周方向一方側に向かって回転可能なタービンロータと、前記タービンロータを外周側から覆うタービンケーシングと、前記タービンロータの外周面上で前記軸線の周方向に配列され、少なくとも軸線方向の他方側の部分が周方向一方側から他方側に向かって湾曲している複数のタービン動翼と、前記タービンケーシングの内周面上で前記タービン動翼に対して前記軸線方向に隣り合うように設けられるとともに、周方向に配列された複数のタービン静翼と、前記タービン動翼の軸線方向他方側に設けられ、軸線方向の一方側から他方側に向かって排気ガスが流れる排気流路を形成するディフューザと、を備え、前記ディフューザは、前記軸線に沿って延びる内筒と、前記内筒を外周側から覆うとともに、前記内筒との間に前記排気流路を形成する外筒と、前記排気流路内で周方向に間隔をあけて設けられ、前記内筒と前記外筒とを接続するとともに、径方向内側から外側に向かうにしたがって前記タービンロータの回転方向前方に配置される複数のストラットと、周方向で隣り合う前記ストラットの間に配置されて、前記内筒の外周面から突出して軸線方向に延びる突条と、を備え、前記突条の軸線方向一方側の前端部は、前記ストラットの軸線方向一方側の前縁と前記ストラットの軸線方向他方側の後縁との間に配置され、前記突条の軸線方向他方側の後端部は、前記後縁よりも軸線方向他方側に配置されている。
 タービン動翼を通過した流体は、タービン動翼及びタービン静翼のフローパターン設計の結果として、旋回流を形成することが多い。また、部分負荷時のように、軸線方向の流速が比較的に小さい場合には、旋回流が定格負荷時に比べて大きくなる。
 一般に、流体の流れの中に構造体が存在する場合、いわゆる馬蹄渦が生成される。この馬蹄渦は、構造体の両側に生じた渦が渦管となり構造体に巻き付くように延びたものである。
 例えば、タービンが部分負荷時のように軸線方向の流速が比較的に小さい場合には、軸線に対する旋回流の角度(旋回角度)が大きくなる。このように旋回流の角度が大きくなると、ストラットの軸線方向他方側の前縁の近傍の領域に流体の剥離が生じてしまう。この剥離によって、軸線を中心とする径方向(以下、単に「径方向」と称する)に延びる渦軸を有した剥離渦(横渦)が生じる。この剥離渦は、周方向で隣り合うストラットの間の内筒の外周面に形成された境界層を径方向外側に向かって巻き上げてしまう。さらに、この剥離渦は、ストラットの回転方向前方側に形成される馬蹄渦も径方向外側に向かって巻き上げてしまう。これらの巻き上げによって、軸線方向におけるストラットの中央からストラットの後縁に渡って、内筒の外周面に形成される境界層が不安定となり、剥離が生じてしまう可能性が有る。
 しかし、内筒の外周面から突出して軸線方向に延びる突条が、周方向で隣り合うストラットの間に配置されていることで、突条が仕切りとなり、周方向で隣り合うストラットのうち、回転方向後方のストラットに生じた剥離渦が、回転方向前方のストラットの回転方向後方に生じた馬蹄渦を巻きあげる等の影響を及ぼすことを抑制できる。そのため、回転方向前方のストラットの回転方向後方に形成された馬蹄渦により、軸線方向におけるストラットの中央からストラットの後縁に渡って、内筒の外周面に形成される境界層が不安定になることを抑制できる。
 また、周方向で隣り合うストラットの間において、回転方向後方のストラットに形成された剥離渦が、回転方向前方のストラットに向かう際に、その一部が突条を乗り越える。これにより軸線方向に延びる突条に沿う渦軸を有した縦渦が生じる。この縦渦は、上述したストラットの回転方向前方に形成される馬蹄渦の回転方向と同方向に回転しストラットの下流側に延びる渦管となる。このように縦渦と馬蹄渦との回転方向が互いに同方向となることで、上記の縦渦と馬蹄渦とには互いに周方向で離間する方向に力が作用する。つまり、縦渦と馬蹄渦との配置が維持され易くなる。そのため、ストラットの下流においても縦渦と馬蹄渦とが維持され易くなり、境界層の発達を抑制できる。
 その結果、旋回流の角度が大きい場合であっても、内筒の外周面から流れが剥離することを抑制でき、排気流路における圧力損失を抑制して、性能向上を図ることが可能となる。
 この発明の第二態様によれば、第一態様に係る突条は、軸線を中心とした径方向外側から見て軸線方向一方側に向かって先細りに形成されるとともに、軸線方向他方側に向かって先細りに形成されていてもよい。
 このように構成することで、軸線方向に流れる排気ガスの主流に対する形状抵抗を低減することができる。
 この発明の第三態様によれば、第一態様に係るタービンにおいて、前記ストラットの負圧面から突出する凸部を備えるようにしてもよい。
 このように構成することで、凸部の両側に上述した馬蹄渦と同様に渦を形成することができる。この凸部によって形成した渦は、旋回流によりストラットの負圧面に形成される剥離渦に干渉する。そのため、剥離渦の発達を抑制することができる。つまり、剥離渦によって、内筒の境界層が巻き上げられることを低減できる。
 この発明の第四態様によれば、第三態様に係る凸部は、軸線を中心とした径方向の中央よりも前記内筒に近い側に配置されていてもよい。
 このように構成することで、特に旋回流によって剥離渦が形成され易い径方向の中央よりも内筒に近い位置に、凸部によって剥離渦に干渉する渦を形成させることができる。そのため、効率よく剥離渦の発生を抑制できる。
 この発明の第五態様によれば、ガスタービンは、空気を圧縮した圧縮空気を生成する圧縮機と、前記圧縮空気に燃料を混合させて燃焼ガスを生成する燃焼器と、前記燃焼ガスにより駆動される第一から第四態様の何れか一つの態様に記載のタービンと、を備える。 このように構成することで、タービンのディフューザにおける圧力回復を効率よく行うことができるため、性能向上を図ることができる。
 この発明の第六態様によれば、ディフューザは、軸線回りに回転するタービンの下流側に設けられるディフューザであって、前記軸線に沿って延びる内筒と、前記内筒を外周側から覆うとともに、前記内筒との間に排気流路を形成する外筒と、前記排気流路内で周方向に間隔をあけて設けられ、前記内筒と前記外筒とを接続するとともに、径方向内側から外側に向かうにしたがって前記タービンの回転方向前方側に延びる複数のストラットと、前記内筒の外周面に形成され、前記周方向で隣り合う一対のストラット間の中央に配置されるとともに、前記ストラットの軸線方向一方側の前縁の位置を基準として前記ストラットの軸線方向の全長の±10%の領域内に配置された凸部と、を備える。
 ディフューザにおいて、軸線を中心とした周方向で隣り合うストラットの間の流れは、一般に、内筒の外周面において境界層を形成する。ディフューザ流れは、逆圧力勾配であるため、境界層流れにおいて運動量が低下し易い。そのため、局所的な運動量欠損による剥離領域が生じると、流れの下流に向けて剥離が進展して大規模化する可能性がある。 一般に、ストラットよりも上流側では、回転体とディフューザとの隙間からのシールガスの流入により、境界層に擾乱が発生し、不安定となる。また、流れ方向に対して垂直方向の渦度が増した状態となる。この境界層内に、上記の凸部を配置することで、境界層内の流体が凸部に巻きつく形となり、凸部の周方向両側に流体の流れ方向に渦軸を有する縦渦が形成される。この縦渦は、凸部よりも下流側に延びて渦管(馬蹄渦)を形成する。これにより、内筒の外周面において、安定した縦渦を生成できるため、縦渦により境界層内の流体に運動量を与えて、境界層の発達による剥離が生じることを抑制できる。その結果、圧力損失を抑制して性能向上を図ることができる。
 この発明の第七態様によれば、第六態様に係るディフューザにおいて、前記凸部の下流側に間隔をあけて軸線方向に延びるガイド板を備えていてもよい。
 このように構成することで、凸部によって形成された縦渦を下流側まで維持させるとともに、縦渦の乱れを整える(整流する)ことができる。
 この発明の第八態様によれば、第六態様に係る凸部は、前記ストラットの軸線方向一方側の前縁の位置を基準として、前記ストラットの軸線方向の全長の±5%の領域内に配置されていてもよい。
 このように構成することで、ストラットの前縁の位置により近い位置に凸部を配置することができる。これにより、境界層が発達する前に、凸部によって縦渦を生じさせて、境界層内の流体に対して運動量を与えることができる。その結果、境界層の発達を安定して抑制できる。
 この発明の第九態様によれば、第六から第八態様の何れか一つの態様に係る凸部は、軸線を中心とする径方向の外側に向かうにしたがって先細りに形成されていてもよい。
 このように構成することで、ディフューザの主流に対して形状抵抗が増加することを抑制できる。その結果、圧力損失を低減できる。
 この発明の第十態様によれば、ディフューザは、軸線回りに回転するタービンの下流側に設けられるディフューザであって、前記軸線に沿って延びる内筒と、前記内筒を外周側から覆うとともに、前記内筒との間に前記排気流路を形成する外筒と、前記排気流路内で周方向に間隔をあけて設けられ、前記内筒と前記外筒とを接続するとともに、径方向内側から外側に向かうにしたがって前記タービンの回転方向前方側に延びる複数のストラットと、前記内筒の外周面に形成され、前記周方向で隣り合う一対のストラット間の中央に配置されるとともに、軸線方向で前記ストラットの前縁位置を基準として前記ストラットの軸線方向の全長の±10%の領域内から前記ストラットの後縁位置に渡って延びるガイド凸部と、を備える。
 このように構成することで、ストラットの前縁に近い側のガイド凸部に対して、境界層内の流体が巻きつく形となり、ガイド凸部の周方向両側に流体の流れ方向に渦軸を有する縦渦が形成される。この縦渦は、ガイド凸部よりも下流側に延びて渦管(馬蹄渦)を形成する。これにより、内筒の外周面において、安定した縦渦を生成できる。さらに、ガイド凸部が連続してストラットの後縁位置まで延びているため、凸部をガイド板として機能させることができる。すなわち、ガイド凸部によって、上記縦渦を下流側まで維持しつつ、縦渦の乱れを整える(整流する)ことができる。その結果、縦渦により境界層内の流体に運動量を与えて、境界層が発達して剥離が生じてしまうことを抑制できる。その結果、圧力損失を抑制して性能向上を図ることができる。
 この発明の第十一態様によれば、タービンは、軸線に沿って延びるとともに、前記軸線の周方向一方側に向かって回転可能なタービンロータと、前記タービンロータを外周側から覆うタービンケーシングと、前記タービンロータの外周面上で前記軸線の周方向に配列された複数のタービン動翼と、前記タービンケーシングの内周面上で前記タービン動翼に対して前記軸線方向に隣り合うように設けられるとともに、周方向に配列された複数のタービン静翼と、第六から第十態様の何れか一つの態様に係るディフューザと、を備える。 このように構成することで、ディフューザにおける流体の剥離を抑制できるため、タービンの圧力損失を抑制できる。その結果、タービンから排出される排気ガスの運動エネルギーを効率よく圧力エネルギーに変換することができる。
 この発明の第十二態様によれば、ガスタービンは、空気を圧縮した圧縮空気を生成する圧縮機と、前記圧縮空気に燃料を混合させて燃焼ガスを生成する燃焼器と、前記燃焼ガスにより駆動される第十一態様に係るタービンと、を備える。
 このように構成することで、タービンの圧力損失を抑制できるため、ガスタービンの性能を向上することができる。
 なお、上述した発明の第一態様は、以下のように説明することもできる。
 この発明の第一態様によれば、タービンは、軸線に沿って延びるとともに、前記軸線の周方向一方側に向かって回転可能なタービンロータと、前記タービンロータを外周側から覆うタービンケーシングと、前記タービンロータの外周面上で前記軸線の周方向に配列され、少なくとも軸線方向の他方側の部分が周方向一方側から他方側に向かって湾曲している複数のタービン動翼と、前記タービンケーシングの内周面上で前記タービン動翼に対して前記軸線方向に隣り合うように設けられるとともに、周方向に配列された複数のタービン静翼と、前記タービン動翼の軸線方向他方側に設けられ、軸線方向の一方側から他方側に向かって排気ガスが流れる排気流路を形成するディフューザと、を備え、前記ディフューザは、前記軸線に沿って延びる内筒と、前記内筒を外周側から覆うとともに、前記内筒との間に前記排気流路を形成する外筒と、前記排気流路内で周方向に間隔をあけて設けられ、前記内筒と前記外筒とを接続するとともに、径方向内側から外側に向かうにしたがって前記タービンロータの回転方向前方に配置される複数のストラットと、周方向で隣り合う前記ストラットの間に配置されて、前記内筒の外周面から突出して軸線方向に延びる突条と、を備え、前記突条の軸線方向一方側の前端部は、前記ストラットの軸線方向一方側の前縁と前記ストラットの軸線方向他方側の後縁との間に配置され、前記突条の軸線方向他方側の後端部は、前記後縁よりも軸線方向他方側に配置されている。
 タービン動翼を通過した流体は、タービン動翼及びタービン静翼のフローパターン設計の結果として、旋回流を形成することが多い。また、部分負荷時のように、軸線方向の流速が比較的に小さい場合には、旋回流が定格負荷時に比べて大きくなる。
 一般に、流体の流れの中に構造体が存在する場合、いわゆる馬蹄渦が生成される。この馬蹄渦とは、壁面近傍の境界層にて速度勾配から供給される渦度が渦管となり構造体の付け根で巻き付き、渦管の渦軸が流れ方向に向かって延びる二次的な流れである。
 例えば、タービンが部分負荷時のように軸線方向の流速が比較的に小さい場合には、軸線に対する旋回流の角度(旋回角度)が大きくなる。このように旋回流の角度が大きくなると、ストラットの軸線方向他方側の前縁の近傍の領域に流体の剥離が生じてしまう。この剥離によって、軸線を中心とする径方向(以下、単に「径方向」と称する)に延びる渦軸を有した剥離渦(横渦)が生じる。この剥離渦は、周方向で隣り合うストラットの間の内筒の外周面に形成された境界層に干渉すると、境界層の低流速領域を径方向外側に向かって巻き上げるように作用する。この剥離渦の作用の結果、ストラット両側に形成される馬蹄渦の回転軸も下流に向かうに従い径方向外側に向かって巻き上がる方向に作用を受ける。このため、馬蹄渦の回転軸が主流流れの方向に対し角度をもつことになる。この結果、馬蹄渦は主流流れを乱す方向に作用し、軸線方向におけるストラットの中央からストラットの後縁に渡って、内筒の外周面に形成される境界層がさらに不安定となり、剥離状態を悪化させる。
 しかし、内筒の外周面から突出して軸線方向に延びる突条が、周方向で隣り合うストラットの間に配置されていることで、突条が仕切りとなり、周方向で隣り合うストラットのうち、ストラット負圧面側の翼先端より発達した剥離渦が、同ストラット負圧面の下流側にある馬蹄渦を巻きあげる等の影響を及ぼすことを抑制できる。そのため、同ストラット背側下流にある馬蹄渦の挙動変化により、軸線方向におけるストラットの中央からストラットの後縁に渡って、内筒の外周面に形成される境界層が不安定になることを抑制できる。
 また、周方向で隣り合うストラットの間において、ストラット負圧面に形成された剥離渦が、向かい合うストラット正圧面側に向かう際に、その一部が突条を乗り越える。この際、剥離渦の渦軸の方向が主流側に倒れ、軸線方向に延びる突条に沿う渦軸を有した縦渦が生じる。この縦渦は、上述した向かい合うストラット正圧側にある馬蹄渦の回転方向と同方向に回転しストラットの下流側に延びる渦管配置となる。一般に同等の渦が隣り合っており、かつ同方向に回転する場合、両者は離れる挙動を示すが、このように縦渦と馬蹄渦との回転方向が互いに同方向となることで、上記の縦渦と馬蹄渦とには互いに周方向で離間する方向に力が作用する。つまり、縦渦と馬蹄渦との配置が維持され、かつ渦軸方向も壁面に沿った形態を維持し易くなる。そのため、ストラットの下流においても縦渦が壁面に沿って流れ方向に配置されることで、主流部の運動量が壁面近傍に供給されることで境界層の発達を抑制できる。
 その結果、旋回流の角度が大きい場合であっても、内筒の外周面から流れが剥離することを抑制でき、その結果、排気流路における圧力損失を抑制して、性能向上を図ることが可能となる。
 上記タービン及びガスタービンによれば、圧力損失を抑制して性能向上を図ることができる。
この発明の第一実施形態におけるガスタービンの概略構成を示す構成図である。 この発明の第一実施形態におけるディフューザの軸線に沿う断面図である。 図2のIII-III線に沿う断面図である。 この発明の第一実施形態における隣り合う第一ストラットの間の内筒の斜視図である。 この発明の第一実施形態における排気流路入口の径方向位置に対する排気ガスの旋回角度を示すグラフである。 この発明の第一実施形態における軸線方向一方側から見た縦渦と馬蹄渦との回転方向を示す図である。 この発明の第二実施形態における図3に相当する断面図である。 この発明の第二実施形態における図4に相当する斜視図である。 この発明の第三実施形態におけるガスタービンの概略構成を示す構成図である。 この発明の第三実施形態におけるディフューザの軸線に沿う断面図である。 この発明の第三実施形態における隣り合う第一ストラットの間の内筒の斜視図である。 この発明の第三実施形態における凸部の周囲の渦を軸線方向の一方側から見た図である。 この発明の第四実施形態における図11に相当する図である。 この発明の第五実施形態における図11に相当する図である。
(第一実施形態)
 次に、この発明の第一実施形態のタービン及びガスタービンを図面に基づき説明する。 図1は、この発明の第一実施形態におけるガスタービンの概略構成を示す構成図である。
 図1に示すように、この第一実施形態に係るガスタービン100Aは、圧縮機1と、燃焼器3と、タービン2と、を備えている。
 圧縮機1は、高圧空気を生成する。圧縮機1は、圧縮機ロータ11と、圧縮機ケーシング12と、を備えている。圧縮機ケーシング12は、圧縮機ロータ11を外周側から覆っており、軸線Amに沿って延びている。
 圧縮機ロータ11の外周面には、軸線Am方向に間隔をあけて配列された複数の圧縮機動翼段13が設けられている。これら圧縮機動翼段13は、複数の圧縮機動翼14をそれぞれ備えている。各圧縮機動翼段13の圧縮機動翼14は、圧縮機ロータ11の外周面上で軸線Amの周方向に間隔をあけて配列されている。
 圧縮機ケーシング12の内周面には、軸線Am方向に間隔をあけて配列された複数の圧縮機静翼段15が設けられている。これら圧縮機静翼段15は、軸線Am方向で上記圧縮機動翼段13と交互に配置されている。これら圧縮機静翼段15は、複数の圧縮機静翼16をそれぞれ備えている。各圧縮機静翼段15の圧縮機静翼16は、圧縮機ケーシング12の内周面上で軸線Amの周方向に間隔をあけて配列されている。
 燃焼器3は、圧縮機1で生成された高圧空気に燃料を混合して燃焼させることで燃焼ガスを生成する。燃焼器3は、圧縮機ケーシング12とタービン2のタービンケーシング22との間に設けられている。この燃焼器3によって生成された燃焼ガスは、タービン2に供給される。
 タービン2は、燃焼器3で生成された燃焼ガスによって駆動する。このタービン2は、タービンロータ21と、タービンケーシング22と、ディフューザ4Aと、を有している。
 タービンロータ21は、軸線Amに沿って延びている。このタービンロータ21の外周面には、軸線Am方向に間隔をあけて配列された複数のタービン動翼段23が設けられている。これらタービン動翼段23は、複数のタービン動翼24をそれぞれ備えている。各タービン動翼段23のタービン動翼24は、タービンロータ21の外周面上で軸線Amの周方向に間隔をあけて配列されている。
 複数のタービン動翼段23のうち、最も下流側に配置された最終段のタービン動翼段23を構成するタービン動翼24は、その軸線Am方向他方側の部分が軸線Amを中心とした周方向の一方側から他方側に向かって湾曲している。言い換えれば、最終段のタービン動翼段23のタービン動翼24は、その下流側のエッジ部分(後縁)が、タービンロータ21の回転方向の後方側を向くように湾曲している。なお、少なくとも最終段のタービン動翼段23のタービン動翼24のみが上述したように湾曲して形成されればよく、上記構成に限られるものではない。例えば、他のタービン動翼段23のタービン動翼24についても、最終段のタービン動翼段23のタービン動翼24と同様に湾曲させても良い。
 タービンケーシング22は、タービンロータ21を外周側から覆っている。このタービンケーシング22の内周面には、軸線Am方向に間隔をあけて配列された複数のタービン静翼段25が設けられている。タービン静翼段25は、軸線Am方向で上記タービン動翼段23と交互に配置されている。これらタービン静翼段25は、複数のタービン静翼26をそれぞれ備えている。各タービン静翼段25のタービン静翼26は、タービンケーシング22の内周面上で軸線Amの周方向に間隔をあけて配列されている。
 圧縮機ロータ11とタービンロータ21とは、軸線Am方向に一体に接続されている。これら圧縮機ロータ11とタービンロータ21とによって、ガスタービンロータ91が構成されている。同様に、圧縮機ケーシング12とタービンケーシング22とは、軸線Amに沿って一体に接続されている。これら圧縮機ケーシング12とタービンケーシング22とによってガスタービンケーシング92が構成されている。
 ガスタービンロータ91は、ガスタービンケーシング92の内部で軸線Am回りに一体に回転可能とされている。
 ガスタービン100Aを運転するに当たっては、まず外部の駆動源によって圧縮機ロータ11(ガスタービンロータ91)を回転駆動する。圧縮機ロータ11の回転に伴って外部の空気が順次圧縮され、高圧空気が生成される。この高圧空気は、圧縮機ケーシング12を通じて燃焼器3内に供給される。燃焼器3内では、燃料がこの高圧空気に混合されて燃焼し、高温高圧の燃焼ガスが生成される。燃焼ガスはタービンケーシング22を通じてタービン2内に供給される。タービン2内では、タービン動翼段23、及びタービン静翼段25に燃焼ガスが順次衝突することで、タービンロータ21(ガスタービンロータ91)に対して回転駆動力が与えられる。この回転エネルギーは、例えば、軸端に連結された発電機G等の駆動に利用される。タービン2を駆動した燃焼ガスは、排気ガスとしてディフューザ4Aを通過する際に圧力(静圧)が高められた後、外部に排出される。
 図2は、この発明の第一実施形態におけるディフューザの軸線に沿う断面図である。 図1、図2に示すように、ディフューザ4Aは、タービンケーシング22(ガスタービンケーシング92)に一体に設けられている。このディフューザ4Aは、内筒41と、外筒42と、第一ストラット43Aと、第二ストラット44と、を備えている。
 内筒41は、軸線Amに沿って延びる筒状に形成されている。内筒41は、その外周面41Aが、軸線Am方向一方側から他方側に向かうにしたがって次第に縮径するように形成されている。この内筒41の内側には、ガスタービンロータ91の軸端部91Aを回転可能に支持する軸受装置(図示省略)等が設けられている。
 外筒42は、内筒41を外周側から覆う筒状に形成されている。外筒42は、内筒41との間に、タービン2から排出された排気ガスが流れる排気流路Cを形成している。外筒42は、その内周面42Aが、軸線Am方向一方側から他方側に向かうにしたがって次第に拡径するように形成されている。すなわち、外筒42と内筒41との間に形成される排気流路Cの断面積(軸線Amに直交する断面積)は、軸線Am方向一方側から他方側に向かうにしたがって、次第に拡径している。このように排気流路Cの断面積が次第に拡径することで、排気流路C内を流れる排気ガスの運動エネルギーが、漸次圧力エネルギーに変換(圧力回復)される。
 第一ストラット43Aと第二ストラット44とは、排気流路Cの中に配置され、内筒41と外筒42とを接続している。これら第一ストラット43A及び第二ストラット44によって内筒41に対して外筒42が固定・支持されている。
 第一ストラット43Aは、複数のタービン動翼段23のうちで軸線Am方向の最も他方側に位置する最終段のタービン動翼段23に対して、軸線Am方向で隣り合うように配置されている。
 図3は、図2のIII-III線に沿う断面図である。
 図3に示すように、第一ストラット43Aは、排気流路C内で軸線Amを中心とした周方向に間隔をあけて複数設けられている。この第一実施形態では、内筒41を中心として外周側に向かって放射状に延びる6つの第一ストラット43Aが設けられている場合を例示している。これら第一ストラット43Aは、軸線Amを中心とした周方向に等間隔で配置されている。
 これら第一ストラット43Aは、内筒41の外周面41Aの法線に対して傾斜したいわゆるタンジェンシャルストラットになっている。より具体的には、第一ストラット43Aは、軸線Amを中心とした径方向内側から外側に向かうにしたがって、タービンロータ21の回転方向(図3中、矢印Aで示す)の前側に配置されるように傾斜している。このようなタンジェンシャルストラットとすることで、熱伸びによる軸心のずれを少なくすることが可能となっている。
 タービンロータ21の回転方向において、回転方向の後側を向く第一ストラット43Aの面は、正圧面S1となり、回転方向の前側を向く第一ストラット43Aの面は、負圧面S2となる。この第一実施形態において、これら正圧面S1、及び負圧面S2は、いずれも内筒41の外周面41Aから外筒42の内周面42Aに至る間で、同一の方向に延びるように形成されている。
 図2に示すように、第二ストラット44は、第一ストラット43Aの荷重負担を分散することを主な目的として設けられる。第二ストラット44は、第一ストラット43Aから軸線Am方向他方側に離間した位置に設けられている。この第一実施形態の第二ストラット44は、二つ設けられて、それぞれ内筒41の外周面41Aから反対方向に延びる場合を例示している。これら第二ストラット44は、軸線Amを中心とした径方向に延びている。
 なお、この第一実施形態における第一ストラット43A及び第二ストラット44は、排気ガスに対する形状抵抗を低減可能な形状となっている。排気ガスに対する形状抵抗を低減可能な形状としては、例えば、排気ガスの流れる方向に長い断面長円形状や、排気ガスの流れる方向に翼弦が延びる翼型を例示できる。
 図4は、この発明の第一実施形態における隣り合う第一ストラットの間の内筒の斜視図である。
 図4に示すように、ディフューザ4Aは、軸線Amを中心とした周方向で隣り合う第一ストラット43Aの間に、突条50を備えている。突条50は、周方向に並んで配置された複数の第一ストラット43Aの間にそれぞれ一つずつ設けられている。突条50は、内筒41の外周面41Aから突出するとともに軸線Am方向に延びている。この第一実施形態における突条50は、外周面41Aから軸線Amを中心とした径方向の外側に向けて突出している。
 この第一実施形態における突条50は、軸線Amを中心とした周方向において、隣り合う第一ストラット43Aの間の距離を100%とすると、隣り合う第一ストラット43Aの中央(50%)の位置から、±30%の範囲に形成することができる。さらに、突条50は、軸線Amを中心とした周方向において、上記中央(50%)の位置から±20%の位置に配置しても良い。さらに、突条50は、軸線Amを中心とした周方向において、上記中央(50%)の位置から±10%の位置に配置しても良い。
 突条50は、その前端部(言い換えれば、軸線Am方向一方側の端部)51が、第一ストラット43Aの前縁(言い換えれば、軸線Am方向一方側の縁部)43aと第一ストラット43Aの後縁(言い換えれば、軸線Am方向他方側の縁部)43bとの間に配置されている。この突条50の前端部51の位置は、例えば、翼型を有する第一ストラット43Aの翼弦長を100%とした場合、第一ストラット43Aの翼弦方向で、翼弦長の50%の位置から±30%の範囲に配置することができる。さらに、突条50の前端部51の位置は、例えば、第一ストラット43Aの翼弦方向で、翼弦長の50%の位置から±20%の範囲に配置してもよい。さらに、突条50の前端部51の位置は、例えば、第一ストラット43Aの翼弦方向で、翼弦長の50%の位置から±10%の範囲に配置してもよい。
 突条50は、その後端部(言い換えれば、軸線Am方向他方側の端部)52が、第一ストラット43Aの後縁43bよりも軸線Am方向他方側に配置されている。この後端部52は、後縁43bよりも軸線Am方向他方側の範囲において可能な限り後縁43bから離れた位置に配置できる。つまり、突条50は、軸線Am方向他方側に向かって可能な限り長く形成してもよい。このようにすることで、第一ストラット43Aの後縁43bから下流側において、第一ストラット43Aが無くなることによる排気流路Cの流路断面積の急拡大を緩和することができる。そのため、後縁43bよりも下流において、境界層が剥離することを抑制できる。なお、図4中、軸線Am方向における前縁43aの位置を符号「F」、中央の位置を符号「M」、後縁43bの位置を符号「R」で示している。
 内筒41の外周面41Aから突出する突条50の高さは、内筒41の外周面41Aで生じる排気ガスの剥離による圧損よりも、突条50の形状抵抗による圧損の方が小さくなるような高さにすることができる。さらに、突条50の高さは、外周面41Aに形成される境界層の厚さに応じた高さにすることができ、例えば、第一ストラット43Aの翼高さに対して例えば、3%から1%程度の高さとしてもよい。なお、外周面41Aに形成される境界層の厚さは、ディフューザ4Aの仕様等に応じて変わるため、突条50の高さは、この境界層の厚さに応じて適宜調整すればよい。また、突条50は、境界層の厚さよりも高くなるように形成しても良い。このように境界層の厚さよりも高く突条50を形成することで、排気ガスの主流を巻き込むことが可能となり、境界層の発達をより抑制することができる。
 突条50は、翼型を有している。より具体的には、突条50は、軸線Amを中心とした径方向外側から見て、軸線Am方向一方側に向かって先細りに形成されるとともに、軸線Am方向他方側に向かって先細りに形成されている。言い換えれば、突条50は、軸線Am方向の両側に向かって、その幅寸法が漸次減少している。なお、この第一実施形態における突条50は、径方向外側に向かって漸次幅寸法が減少して、軸線Am方向に延びる稜線が形成される場合を例示しているが、この形状に限られるものでは無い。
 図5は、この発明の第一実施形態における排気流路入口の径方向位置に対する排気ガスの旋回角度を示すグラフである。図6は、この発明の第一実施形態における軸線方向一方側から見た縦渦と馬蹄渦との回転方向を示す図である。
 この図5において、横軸は、旋回流の旋回角度、縦軸は、排気流路C入口の径方向位置を示している。横軸のプラス(+)側は、旋回流が周方向他方側から一方側に向かって流れている状態を示し、横軸のマイナス(-)側は、旋回流が周方向一方側から他方側に向かって流れている状態を示している。さらに、縦軸は、内筒41の外周面41Aの位置を原点として、軸線Amを中心にした径方向外側における排気流路C内の位置を表している。タービン動翼24が上述したように湾曲している場合、タービン2から排出される排気ガスは、軸線Amの周方向に旋回する旋回流成分を含んでいる。
 上述した構成を備えるガスタービン100Aが定格運転されている場合、第一ストラット43Aの周囲すなわち排気流路C入口における旋回流の旋回角度は、図5のグラフ中の破線で示すような分布となる。具体的には、内筒41の外周面41Aの近傍と、外筒42の内周面42Aの近傍とにおいて、旋回流の旋回角度の向きがマイナスになり、外周面41Aと内周面42Aとの間の径方向の中央付近で旋回流の旋回角度の向きがプラスになる。これは、流体の流れと流路内構造物との干渉による圧力損失が定格運転時に最も小さくなるように設計されているためである。旋回流の旋回角度を図5の破線のように分布させることで、定格運転において旋回流の旋回角度の絶対値を小さくできる。
 その一方で、ガスタービン100Aが定格運転ではなく部分負荷で運転されている状態では、排気流路C入口の径方向全域で旋回流の旋回角度がマイナス側に大きくなる。これは、図5のグラフ中の実線で示すように、ガスタービン100Aが部分負荷で運転されている場合の旋回角度の分布が、定格運転時の旋回角度の分布(図5中、破線で示す)をマイナス側にシフトしたような分布になるからである。このように旋回角度がマイナス側に大きくなることで、排気流路C内の構造物による流れの剥離が大きくなる傾向があり、これに伴ってディフューザ4Aで生じる圧力損失が増加してしまう。
 しかし、図4に示すように、上述した第一実施形態のディフューザ4Aは、軸線Amを中心とする周方向で隣り合う第一ストラット43Aの間に突条50が配置されている。そして、これら突条50が、内筒41の外周面41Aから突出して軸線Am方向に延びている。そのため、突条50が仕切りとなり、軸線Amを中心とした周方向で隣り合う第一ストラット43Aのうち、タービンロータ21の回転方向後方に配置されている第一ストラット43Aの負圧面S2側に生じた剥離渦V2が、回転方向前方に配置されている第一ストラット43Aの正圧面S1側に生じた馬蹄渦V1を巻きあげる等の影響を及ぼすことを抑制できる。
 そのため、回転方向前方の第一ストラット43Aの正圧面S1側(回転方向後方)に形成された馬蹄渦V1により、軸線Am方向における第一ストラット43Aの中央から第一ストラット43Aの後縁43bに渡って、内筒41の外周面41Aに形成される境界層が不安定になることを抑制できる。
 また、軸線Amを中心とした周方向で隣り合う第一ストラット43Aの間において、回転方向後方の第一ストラット43Aに形成された剥離渦V2が、回転方向前方の第一ストラット43Aに向かう際に、その一部が突条50を乗り越える。これにより軸線Am方向に延びる突条50に沿う渦軸を有した縦渦V3が生じる。図6に示すように、この縦渦V3は、上述した第一ストラット43Aの回転方向前方に形成される馬蹄渦V1の回転方向と同方向に回転し第一ストラット43Aの下流側に延びる渦管となる。
 このように縦渦V3と馬蹄渦V1との回転方向が互いに同方向となることで、上記の縦渦V3と馬蹄渦V1とには互いに周方向で離間する方向に力が作用する。つまり、縦渦V3と馬蹄渦V1との配置が維持され易くなる。そのため、第一ストラット43Aの下流においても縦渦V3と馬蹄渦V1とが維持され易くなり、境界層の発達を抑制できる。
 これにより、上述した部分負荷時のように排気ガスの旋回角度が大きい場合であっても、内筒41の外周面41Aから排気ガスの流れが剥離することを抑制できる。そのため、排気流路Cにおける圧力損失を抑制して、ディフューザ4Aによる圧力回復を効率よく行うことができる。
 その結果、タービン2及びガスタービン100Aの性能向上を図ることが可能となる。
 さらに、軸線Amを中心とした径方向外側から見て、突条50が、軸線Am方向一方側に向かって先細りに形成されるとともに、軸線Am方向他方側に向かって先細りに形成されている。このように突条50が形成されることで、軸線Am方向に流れる排気ガスの主流に対して突条50の形状抵抗を低減することができる。
(第二実施形態)
 次に、この発明の第二実施形態を図面に基づき説明する。この第二実施形態のガスタービンは、上述した第一実施形態のガスタービンと、ディフューザの構成のみが異なる。そのため、上述した第一実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
 図7は、この発明の第二実施形態における図3に相当する断面図である。図8は、この発明の第二実施形態における図4に相当する斜視図である。
 図7、図8に示すように、この第二実施形態におけるガスタービン100Bのディフューザ4Bは、上述した第一実施形態のディフューザ4Aと同様に、タービンケーシング22(ガスタービンケーシング92)に一体に設けられている。
 なお、この第二実施形態のガスタービン100Bは、第一実施形態のガスタービン100Aと同様に圧縮機1と、燃焼器3と、タービン2と、をそれぞれ備えている。
 ディフューザ4Bは、内筒41と、外筒42と、第一ストラット43Bと、第二ストラット44と、を備えている。
 第一ストラット43Bは、上述した第一ストラット43Aと同様に、排気流路Cの中に配置され、内筒41と外筒42とを接続している。外筒42は、第一ストラット43B及び第二ストラット44によって内筒41に対して固定・支持されている。第一ストラット43Bは、複数のタービン動翼段23のうちで軸線Am方向の最も他方側に位置する最終段のタービン動翼段23に対して、軸線Am方向で隣り合うように配置されている。
 第一ストラット43Bは、排気流路C内で軸線Amを中心とした周方向に間隔をあけて複数設けられている。この第二実施形態では、第一実施形態と同様に、内筒41を中心として外周側に向かって放射状に延びる6つの第一ストラット43Bが設けられている場合を例示している。これら第一ストラット43Bは、軸線Amを中心とした周方向に等間隔で配置されている。
 これら第一ストラット43Bは、上述した第一ストラット43Aと同様に、内筒41の外周面41Aの法線に対して傾斜したいわゆるタンジェンシャルストラットになっている。より具体的には、第一ストラット43Bは、軸線Amを中心とした径方向内側から外側に向かうにしたがって、タービンロータ21の回転方向(図7中、矢印Aで示す)の前側に配置されるように傾斜している。
 タービンロータ21の回転方向において、回転方向の後側を向く第一ストラット43Bの面は、正圧面S1となり、回転方向の前側を向く第一ストラット43Bの面は、負圧面S2となる。この第一実施形態において、これら正圧面S1、及び負圧面S2は、いずれも内筒41の外周面41Aから外筒42の内周面42Aに至る間で、同一の方向に延びるように形成されている。
 ディフューザ4Bは、凸部53を備えている。凸部53は、複数の第一ストラット43Bの負圧面S2からそれぞれ突出している。凸部53は、第一ストラット43Bの負圧面S2に縦渦V4を発生させる。この縦渦V4は、軸線Amを中心とした径方向で、凸部53の両側に発生する。縦渦V4は、凸部53に巻き付くように排気ガスの下流側(軸線Am方向他方側)に延びる渦管となる。この凸部53によって発生する縦渦V4は、第一ストラット43Bの前縁43aの近傍の領域に発生する剥離渦V2に干渉する。この干渉により、剥離渦V2の発達が阻害される。
 上述した凸部53は、一つの第一ストラット43Bに対して一つだけ設けた場合について説明した。しかし、凸部53は、一つの第一ストラット43Bに対して複数設けたりしても良い。
 凸部53は、例えば、上述した剥離渦V2が生じる部分よりも上流側に設けても良い。このようにすることで、凸部53により形成された縦渦V4によって剥離渦V2が生じること自体を抑制できる。
 さらに、凸部53は、軸線Amを中心とした径方向で、内筒41の外周面41Aから外筒42の内周面42Aまでの距離を100%とした場合、50%の位置よりも内筒41の外周面41Aに近い側に配置しても良い。さらに、凸部53は、上記軸線Amを中心とした径方向で、30%の位置よりも内筒41の外周面41Aに近い側に配置しても良い。このようにすることで、特に排気ガスのマイナスの旋回角度が大きくなる位置に配置できるため、効率よく剥離渦V2の発達を阻害できる。
 また、凸部53は、負圧面S2から突出する寸法は、剥離渦V2に起因する圧力損失よりも、凸部53の形状抵抗による圧力損失が大きくならない程度の寸法としてもよい。このように凸部53の突出寸法を設定することにより、効率よく圧力損失を低減できる。 なお、凸部53の形状は、負圧面S2から突出していればよく、図7、図8に示す形状に限られない。
 ディフューザ4Bは、上述したディフューザ4Aと同様に、軸線Amを中心とした周方向で隣り合う第一ストラット43Bの間に、突条50を備えている。この突条50は、第一実施形態と同一の構成であるため、詳細説明を省略する。
 したがって、上述した第二実施形態によれば、第一実施形態の作用効果に加えて、凸部53を備えていることで、凸部53の両側に上述した馬蹄渦と同様の縦渦V4が形成される。この凸部53によって形成された縦渦V4は、排気ガスの旋回流によって第一ストラット43Bの負圧面S2に形成される剥離渦V2に干渉する。そのため、剥離渦V2の発達が抑制される。つまり、剥離渦V2によって、内筒41の外周面41Aに形成される境界層が径方向外側に向かって巻き上げられることを低減できる。
 さらに、凸部53を径方向の中央の位置(上述した50%の位置)よりも内筒41に近い位置に配置している。そのため、特に旋回流によって剥離渦V2が形成され易い位置に、凸部53によって剥離渦V2に干渉する縦渦V4を形成させることができる。その結果、剥離渦V2の発生を効率よく抑制することができる。
 この発明は上述した各実施形態の構成に限られるものではなく、その要旨を逸脱しない範囲で設計変更可能である。
 例えば、上述した各実施形態では、一つのディフューザ4A又は一つのディフューザ4Bに設けられる複数の突条50が全て同一の構成である場合について説明した。しかし、これら複数の突条50は、それぞれ異なる構成(形状、配置等)であっても良い。例えば、突条50の前端部51及び後端部52の位置、高さ、幅は、それぞれ上記複数の突条50毎に異なっていても良い。
 また、上述した第二実施形態においては、軸線Amを中心とした径方向の中央よりも内筒41に近い側に凸部53が配置される場合を例示したが、軸線Amを中心とした径方向の中央よりも、外筒42に近い側に凸部53を配置するようにしても良い。
 また、第二実施形態において、凸部53が軸線Amを中心とした径方向で、50%の位置又は30%の位置よりも内筒に近い側に配置される場合について説明したが、この範囲に限られない。凸部53は、例えば、50%の位置を基準にして上記径方向で±30%の範囲内に配置するようにしても良い。
 さらに、各実施形態においては、第一ストラット43A,43Bと第二ストラット44とを備える場合について説明したが、第一ストラット43A,43Bのみを備えるようにしても良い。
(第三実施形態)
 次に、この発明の第三実施形態のタービン及びガスタービンを図面に基づき説明する。 図9は、この発明の第三実施形態におけるガスタービンの概略構成を示す構成図である。
 図9に示すように、この第三実施形態に係るガスタービン1000は、圧縮機10と、燃焼器30と、タービン20Aと、を備えている。
 圧縮機10は、高圧空気を生成する。圧縮機10は、圧縮機ロータ110と、圧縮機ケーシング120と、を備えている。圧縮機ケーシング120は、圧縮機ロータ110を外周側から覆っており、軸線Amに沿って延びている。
 圧縮機ロータ110の外周面には、軸線Am方向に間隔をあけて配列された複数の圧縮機動翼段130が設けられている。これら圧縮機動翼段130は、複数の圧縮機動翼140をそれぞれ備えている。各圧縮機動翼段130の圧縮機動翼140は、圧縮機ロータ110の外周面上で軸線Amの周方向に間隔をあけて配列されている。
 圧縮機ケーシング120の内周面には、軸線Am方向に間隔をあけて配列された複数の圧縮機静翼段150が設けられている。これら圧縮機静翼段150は、軸線Am方向で上記圧縮機動翼段130と交互に配置されている。これら圧縮機静翼段150は、複数の圧縮機静翼160をそれぞれ備えている。各圧縮機静翼段150の圧縮機静翼160は、圧縮機ケーシング120の内周面上で軸線Amの周方向に間隔をあけて配列されている。
 燃焼器30は、圧縮機10で生成された高圧空気に燃料を混合して燃焼させることで燃焼ガスを生成する。燃焼器30は、圧縮機ケーシング120とタービン20Aのタービンケーシング220との間に設けられている。この燃焼器30によって生成された燃焼ガスは、タービン20Aに供給される。
 タービン20Aは、燃焼器30で生成された燃焼ガスによって駆動する。このタービン20Aは、タービンロータ210と、タービンケーシング220と、ディフューザ40Aと、を有している。
 タービンロータ210は、軸線Amに沿って延びている。このタービンロータ210の外周面には、軸線Am方向に間隔をあけて配列された複数のタービン動翼段230が設けられている。これらタービン動翼段230は、複数のタービン動翼240をそれぞれ備えている。各タービン動翼段230のタービン動翼240は、タービンロータ210の外周面上で軸線Amの周方向に間隔をあけて配列されている。
 複数のタービン動翼段230のうち、最も下流側に配置された最終段のタービン動翼段230を構成するタービン動翼240は、その軸線Am方向他方側の部分が軸線Amを中心とした周方向の一方側から他方側に向かって湾曲している。言い換えれば、最終段のタービン動翼段230のタービン動翼240は、その下流側のエッジ部分(後縁)が、タービンロータ210の回転方向の後方側を向くように湾曲している。なお、少なくとも最終段のタービン動翼段230のタービン動翼240のみが上述したように湾曲して形成されればよく、上記構成に限られるものではない。例えば、他のタービン動翼段230のタービン動翼240についても、最終段のタービン動翼段230のタービン動翼240と同様に湾曲させても良い。
 タービンケーシング220は、タービンロータ210を外周側から覆っている。このタービンケーシング220の内周面には、軸線Am方向に間隔をあけて配列された複数のタービン静翼段250が設けられている。タービン静翼段250は、軸線Am方向で上記タービン動翼段230と交互に配置されている。これらタービン静翼段250は、複数のタービン静翼260をそれぞれ備えている。各タービン静翼段250のタービン静翼260は、タービンケーシング220の内周面上で軸線Amの周方向に間隔をあけて配列されている。
 圧縮機ロータ110とタービンロータ210とは、軸線Am方向に一体に接続されている。これら圧縮機ロータ110とタービンロータ210とによって、ガスタービンロータ910が構成されている。同様に、圧縮機ケーシング120とタービンケーシング220とは、軸線Amに沿って一体に接続されている。これら圧縮機ケーシング120とタービンケーシング220とによってガスタービンケーシング920が構成されている。
 ガスタービンロータ910は、ガスタービンケーシング920の内部で軸線Am回りに一体に回転可能とされている。
 ガスタービン1000を運転するに当たっては、まず外部の駆動源によって圧縮機ロータ110(ガスタービンロータ910)を回転駆動する。圧縮機ロータ110の回転に伴って外部の空気が順次圧縮され、高圧空気が生成される。この高圧空気は、圧縮機ケーシング120を通じて燃焼器30内に供給される。燃焼器30内では、燃料がこの高圧空気に混合されて燃焼し、高温高圧の燃焼ガスが生成される。燃焼ガスはタービンケーシング220を通じてタービン20A内に供給される。タービン20A内では、タービン動翼段230、及びタービン静翼段250に燃焼ガスが順次衝突することで、タービンロータ210(ガスタービンロータ910)に対して回転駆動力が与えられる。この回転エネルギーは、例えば、軸端に連結された発電機G等の駆動に利用される。タービン20Aを駆動した燃焼ガスは、排気ガスとしてディフューザ40Aを通過する際に圧力(静圧)が高められた後、外部に排出される。
 図10は、この発明の第三実施形態におけるディフューザの軸線に沿う断面図である。 図10に示すように、ディフューザ40Aは、タービンケーシング220(ガスタービンケーシング920)に一体に設けられている。このディフューザ40Aは、内筒410と、外筒420と、第一ストラット430と、第二ストラット440と、凸部500(図11参照)と、を備えている。
 内筒410は、軸線Amに沿って延びる筒状に形成されている。内筒410は、その外周面410Aが、軸線Am方向一方側から他方側に向かうにしたがって次第に縮径するように形成されている。この内筒410の内側には、ガスタービンロータ910の軸端部910Aを回転可能に支持する軸受装置300が設けられている。この軸受装置300は、軸受310と、軸受ハウジング320と、を備えている。軸受ハウジング320は、主に、第一ストラット430によって外筒420に支持されている。
 外筒420は、内筒410を外周側から覆う筒状に形成されている。外筒420は、内筒410との間に、タービン20Aから排出された排気ガスが流れる排気流路Cを形成している。外筒420は、その内周面420Aが、軸線Am方向一方側から他方側に向かうにしたがって次第に拡径するように形成されている。すなわち、外筒420と内筒410との間に形成される排気流路Cの断面積(軸線Amに直交する断面積)は、軸線Am方向一方側から他方側に向かうにしたがって、次第に拡径している。このように排気流路Cの断面積が次第に拡径することで、排気流路C内を流れる排気ガスの運動エネルギーが、漸次圧力エネルギーに変換(圧力回復)される。
 第一ストラット430は、高温の排気ガスにさらされないようにストラットカバー450によって覆われている。この第一ストラット430は、内筒410の外周面410Aの法線に対して傾斜したいわゆるタンジェンシャルストラットを用いることができる。このようなタンジェンシャルストラットを採用することで、熱伸びによる軸心のずれを少なくすることが可能となる。
 第二ストラット440は、第一ストラット430の荷重負担を分散するとともに、例えばガスタービン1000の軸受310への人の進入を可能にする通路として機能する。この第二ストラット440は、軸線Amを中心とした径方向に延びる筒状に形成されている。第二ストラット440は、第一ストラット430から軸線Am方向他方側に離間した位置に設けられている。
 この第三実施形態におけるストラットカバー450及び第二ストラット440は、排気ガスに対する形状抵抗を低減可能な形状となっている。排気ガスに対する形状抵抗を低減可能な形状としては、例えば、排気ガスの流れる方向に長い断面長円形状や、排気ガスの流れる方向に翼弦が延びる翼型を例示できる。
 ガスタービン1000は、シール機構(図示せず)を備えている。このシール機構は、圧縮機10により生成した圧縮空気の一部をシールガスとして上述したディフューザ40Aの内筒410と、タービンロータ210との隙間から、排気流路Cの内側に向かって流入させている。このシール機構によって、上記隙間から排気ガスが流出しないようになっている。
 図11は、この発明の第三実施形態における隣り合う第一ストラットの間の内筒の斜視図である。
 図11に示すように、ディフューザ40Aは、軸線Amを中心とした周方向で隣り合う第一ストラット430(ストラットカバー450)の間に、凸部500を備えている。凸部500は、周方向に並んで配置された複数の第一ストラット430の間にそれぞれ一つずつ設けられている。凸部500は、内筒410の外周面410Aから突出している。この第三実施形態における凸部500は、外周面410Aから軸線Amを中心とした径方向の外側に向けて突出している。
 ここで、凸部500の突出量(言い換えれば、径方向の高さ)は、内筒410の外周面410Aに排気ガスの流れによって形成される境界層(図示せず)の厚さよりも僅かに低くすることができる。より具体的には、凸部500の突出量は、軸線Amを中心とする径方向における第一ストラット430の高さ(翼高さ)に対して5%の突出量にしても良い。さらに、凸部500の突出量は、第一ストラット430の高さに対して3%の突出量にしても良い。また、凸部500の突出量は、第一ストラット430の高さに対して1%としても良い。なお、境界層の厚さは、ディフューザ40Aの仕様に応じて変化するため、凸部500の突出量は、境界層の厚さに応じて適宜調整してもよい。
 この第三実施形態における凸部500は、軸線Amを中心とした周方向において、隣り合う第一ストラット430の間の距離を100%とすると、隣り合う第一ストラット430の中央(50%)の位置から、±30%の範囲に形成することができる。さらに、凸部500は、軸線Amを中心とした周方向において、上記中央(50%)の位置から±20%の位置に配置しても良い。さらに、凸部500は、軸線Amを中心とした周方向において、上記中央(50%)の位置から±10%の位置に配置しても良い。
 さらに、凸部500は、第一ストラット430の軸線Am方向の全長を100%とした場合、軸線Am方向における第一ストラット430の前縁(言い換えれば、軸線Am方向一方側の縁部)430aの位置(以下、単に「前縁の位置」と称する。図11中、二点鎖線Fで示す位置)を基準として上記第一ストラット430の全長の±10%の領域内に配置することができる。さらに、凸部500は、軸線Am方向において上記前縁の位置を基準として±5%の領域内に配置しても良い。さらに、凸部500は、軸線Am方向において上記前縁の位置を基準として±3%の領域内に配置しても良い。さらに、凸部500は、軸線Am方向において上記前縁の位置を基準として±2%の領域内に配置しても良い。
 軸線Am方向における凸部500の長さは、前縁430aの位置を基準とした上記領域内に入る長さであれば、どのような長さであっても良い。例えば、軸線Am方向における上記領域の長さと同等の長さに形成しても良い。
 凸部500は、軸線Amを中心とする径方向の外側に向かうにしたがって先細りに形成されていてもよい。図11においては、先細りの形状として、軸線Am方向の一方側(上流側)から他方側(下流側)に向かうにしたがって、凸部500の突出量が増加するように形成される場合を例示しているが、先細りであれば、この形状に限られるものではない。
 ところで、ガスタービン1000の運転時、ディフューザ40Aの入口において軸線Amを中心とする径方向の内側に向かってシールガスが流入する場合がある。このシールガスは、内筒410の外周面410Aに形成される不安定な境界層内の流れに干渉する。ここで、境界層内の流れは、そもそも第一ストラット430と内筒410の外周面410Aとの接合部に生じる馬蹄渦を代表とした二次流れや、第一ストラット430の周方向傾斜による圧力勾配により、三次元的な流れとなり、擾乱が拡大すると剥離が生じ易い。この境界層内の流れは、上記シールガスの流入により垂直方向の渦度が増すようになる。つまり、境界層内の流れには、主に軸線Amを中心とする周方向の渦軸を有する渦V20(図11参照)が含まれることとなる。この垂直方向の渦度が増した境界層は、シールガスが流入しない場合と比較して、下流側に進むにしたがって大きく発達してしまう。特に、第一ストラット430の後縁430bの位置を境にして、流路断面積が急拡大するため、更に流速が低下して、境界層剥離が生じる可能性が有る。
 上述したように第三実施形態のディフューザ40Aは、軸線Amを中心とする周方向で隣り合う第一ストラット430の間に凸部500が配置されている。これら凸部500は、軸線Am方向において第一ストラット430の前縁430aの位置の近くに配置されている。上述したシールガスが干渉して垂直方向の渦度を有した境界層内の流れは、第一ストラット430の前縁430aの位置の近傍で凸部500に巻きつく形となる。
 これにより、凸部500の周方向両側に排気ガスの流れる方向に渦軸を有する縦渦V30が形成される。この縦渦V30は、凸部500よりも下流側に延びて、渦管を形成する。この縦渦V30は、第一ストラット430の前縁430a付近よりも下流の境界層内の排気ガスに運動量を与える。そのため、上述したようにシールガスが流入する場合であっても、境界層が発達する前に境界層内の流れに運動量を与えて、境界層が発達していわゆる境界層剥離が生じることを抑制できる。その結果、ディフューザ40Aの圧力損失を抑制して性能向上を図ることができる。
 図12は、この発明の第三実施形態における凸部の周囲の渦を軸線方向の一方側から見た図である。
 図12に示すように、縦渦V30は、隣り合う馬蹄渦V10と逆方向に回転する。このように縦渦V30と馬蹄渦V10との回転方向が互いに逆方向となることで、上記の縦渦V30の流れと馬蹄渦V10の流れとが、隣接する場所において同方向に流れるため、互いの回転を阻害せず促進する方向に作用し、縦渦V30と馬蹄渦V10とが安定する。そのため、第一ストラット430の下流においても縦渦V30と馬蹄渦V10とが維持され易くなり、より一層、境界層の発達を抑制できる。
(第四実施形態)
 次に、この発明の第四実施形態を図面に基づき説明する。この第四実施形態は、上述した第三実施形態にガイド板を設けた点でのみ相違する。そのため、上述した第三実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
 この第四実施形態のガスタービン1000は、上述した第三実施形態と同様に、圧縮機10と、燃焼器30と、タービン20Bと、を備えている。さらに、タービン20Bは、タービンロータ210と、タービンケーシング220と、ディフューザ40Bと、を有している。
 図13は、この発明の第四実施形態における図11に相当する図である。
 図13に示すように、この第四実施形態におけるディフューザ40Bは、内筒410と、外筒420(図13に図示せず)と、第一ストラット430と、第二ストラット440と、凸部500と、ガイド板510と、を備えている。
 凸部500は、第三実施形態と同様の構成であり、軸線Amを中心とする周方向に並んで配置された複数の第一ストラット430の間にそれぞれ一つずつ設けられている。これら凸部500は、内筒410の外周面410Aからそれぞれ突出している。
 ガイド板510は、凸部500で生じた縦渦V30を下流側に案内する。ガイド板510は、凸部500と同様に、軸線Amを中心とする周方向に並んで配置された複数の第一ストラット430の間にそれぞれ一つずつ設けられている。これらガイド板510は、軸線Am方向に延びるように形成され、凸部500に対して、排気ガスの流れる方向における下流側に間隔をあけて配置されている。
 ガイド板510は、更に、内筒410の外周面410Aから、軸線Amを中心とする径方向外側に向かって突出するように形成されている。この第四実施形態で例示するガイド板510は、上記径方向外側に向かって延びる平板状に形成されている。また、この第四実施形態で例示するガイド板510は、軸線Am方向の一方側から他方側に向かって徐々に突出量が増加するように形成されている。ガイド板510は、その最大突出量が凸部500の突出量と同等になるようにしてもよい。
 この第四実施形態で例示するガイド板510は、第一ストラット430の前縁430aを基準として第一ストラット430の翼弦長に対して50%の位置(言い換えれば、軸線Am方向で、前縁430aと後縁430bの中間位置)から第一ストラット430の後縁430bの位置まで延びている。図13中、後縁430bの位置を符号「R」、前縁430a及び後縁430bの中間位置を符号「M」で示す。
 軸線Amを中心とする周方向におけるガイド板510の厚さ(寸法)は、軸線Amを中心とする周方向における凸部500の寸法と同等に形成されている。
 なお、図13に破線で示すように、ガイド板510は、後縁430bの位置よりも下流側まで延びていても良い。このようにすることで、第一ストラット430の後縁430bの位置よりも下流側において、排気ガスの流路断面積が急拡大することを抑制できる。また、第四実施形態におけるガイド板510の軸線Am方向における上流側の端部と下流側の端部との各位置は一例であって、凸部500により形成された縦渦V30を案内できる位置であれば上記の位置に限られない。
 上述した第四実施形態によれば、第三実施形態と同様に、凸部500によって縦渦V30を形成することができる。さらに、ガイド板510を備えていることで、凸部500によって形成された縦渦V30をより下流側まで維持させるとともに、この縦渦V30の乱れを整える(整流する)ことができる。
(第五実施形態)
 次に、この発明の第五実施形態を図面に基づき説明する。この第五実施形態は、上述した第四実施形態の凸部とガイド板とを一体に設けた点でのみ相違する。そのため、上述した第四実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
 この第五実施形態のガスタービン1000は、上述した第三実施形態と同様に、圧縮機10と、燃焼器30と、タービン20Cと、を備えている。さらに、タービン20Cは、タービンロータ210と、タービンケーシング220と、ディフューザ40Cと、を有している。
 図14は、この発明の第五実施形態における図11に相当する図である。
 図14に示すように、この第五実施形態におけるディフューザ40Cは、内筒410と、外筒420(図14に図示せず)と、第一ストラット430と、第二ストラット440と、ガイド凸部520と、を備えている。
 ガイド凸部520は、軸線Amを中心とする周方向に並んで配置された複数の第一ストラット430の間にそれぞれ一つずつ設けられている。
 この第五実施形態におけるガイド凸部520は、軸線Amを中心とした周方向において、隣り合う第一ストラット430の間の距離を100%とすると、隣り合う第一ストラット430の中央(50%)の位置から、±30%の範囲に形成することができる。さらに、ガイド凸部520は、軸線Amを中心とした周方向において、上記中央(50%)の位置から±20%の位置に配置しても良い。さらに、凸部500は、軸線Amを中心とした周方向において、上記中央(50%)の位置から±10%の位置に配置しても良い。
 これらガイド凸部520は、上述した第四実施形態のガイド板510の上流端(軸線Am方向の端部)を、軸線Am方向における上述した第一ストラット430の前縁430a付近の位置に配置されるように、軸線Am方向の長さを延長したような形状となっている。すなわち、これらガイド凸部520は、軸線Am方向に延びるように形成されている。
 ガイド凸部520は、軸線Am方向で第一ストラット430の前縁430aの位置を基準としてストラット430の軸線Am方向の全長の±10%の領域内から第一ストラット430の後縁430bの位置に向かって延びている。なお、ガイド凸部520は、の前縁430aの位置を基準として第一ストラット430の軸線Am方向の全長の±5%の領域内から第一ストラット430の後縁430bの位置に向かって延びていても良い。さらに、ガイド凸部520は、第一ストラット430の前縁430aの位置を基準として第一ストラット430の軸線Am方向の全長の±3%の領域内から第一ストラット430の後縁430bの位置に向かって延びていても良い。
 ガイド凸部520は、更に、内筒410の外周面410Aから、軸線Amを中心とする径方向外側に向かって突出するように形成されている。この第五実施形態で例示するガイド凸部520は、上記径方向外側に向かって延びる平板状に形成されている。また、この第五実施形態で例示するガイド凸部520は、軸線Am方向の一方側(上流側)から他方側(下流側)に向かって徐々に突出量が増加するように形成されている。ガイド凸部520の最大突出量は、上述した第三実施形態の凸部500と同程度に形成することができる。
 したがって、第五実施形態によれば、シールガスが干渉して垂直方向の渦度を有した境界層内の流れがガイド凸部520に巻きつく形となり、縦渦V30を形成することができる。更に、ガイド凸部520が、軸線Am方向における第一ストラット430の後縁430bの位置まで延びていることで、ガイド凸部520によって形成された縦渦V30をガイド凸部520に沿って下流側まで維持させるとともに、この縦渦V30の乱れを整えることができる。
 この発明は上述した各実施形態の構成に限られるものではなく、その要旨を逸脱しない範囲で設計変更可能である。
 例えば、上述した第四、第五実施形態では、ガイド板510、ガイド凸部520がそれぞれ板状の場合について説明した。しかし、板状に限られず、例えば、翼型を有していたり、軸線Amを中心とする径方向外側に向かって先細りに形成されていたりしてもよい。
 さらに、ガイド板510、ガイド凸部520が、軸線Am方向の一方側(上流側)から他方側(下流側)に向かって徐々に突出量が増加するように形成されている場合について説明したが、この形状に限られない。例えば、突出量が上流側から下流側に向かって均一であっても良い。
 また、上述した各実施形態では、周方向で隣り合う第一ストラット430の間にそれぞれ一つずつ凸部500、ガイド板510、ガイド凸部520が形成されている場合について説明した。しかし、周方向で隣り合う第一ストラット430の間にそれぞれ2つ以上の凸部500、ガイド板510、ガイド凸部520が形成されるようにしてもよい。
 さらに、第三実施形態では、一つのディフューザ40Aに設けられる複数の凸部500が全て同一の構成である場合について説明した。しかし、これら複数の凸部500は、それぞれ異なる構成(形状、配置等)であっても良い。例えば、凸部500の位置、長さ、高さ、幅は、それぞれ上記複数の凸部500毎に異なっていても良い。同様に、一つのディフューザに設けられる第四実施形態の複数のガイド板510、第五実施形態の複数のガイド凸部520も、それぞれ異なる構成(形状、配置等)であっても良い。
 上記タービン及びガスタービンによれば、圧力損失を抑制して性能向上を図ることができる。
1,10 圧縮機
2,20A,20B,20C タービン
3,30 燃焼器
4A,4B,40A,40B,40C ディフューザ
11,110 圧縮機ロータ
12,120 圧縮機ケーシング
13,130 圧縮機動翼段
14,140 圧縮機動翼
15,150 圧縮機静翼段
16,160 圧縮機静翼
21,210 タービンロータ
22,220 タービンケーシング
23,230 タービン動翼段
24,240 タービン動翼
25,250 タービン静翼段
26,260 タービン静翼
300 軸受装置
310 軸受
320 軸受ハウジング
41,410 内筒
41A,410A 外周面
42,420 外筒
42A,420A 内周面
43A,43B,430 第一ストラット(ストラット)
43a,430a 前縁
43b,430b 後縁
44,440 第二ストラット
450 ストラットカバー50 突条
51 前端部
52 後端部
53,500 凸部
510 ガイド板
520 ガイド凸部
91,910 ガスタービンロータ
91A,910A 軸端部
92,920 ガスタービンケーシング
100A,100B,1000 ガスタービン
Am 軸線
C 排気流路
G 発電機
S1 正圧面
S2 負圧面
V1,V10 馬蹄渦
V2 剥離渦
V3 縦渦
V4,V30 縦渦
V20 渦

Claims (5)

  1.  軸線に沿って延びるとともに、前記軸線の周方向一方側に向かって回転可能なタービンロータと、
     前記タービンロータを外周側から覆うタービンケーシングと、
     前記タービンロータの外周面上で前記軸線の周方向に配列され、少なくとも軸線方向の他方側の部分が周方向一方側から他方側に向かって湾曲している複数のタービン動翼と、 前記タービンケーシングの内周面上で前記タービン動翼に対して前記軸線方向に隣り合うように設けられるとともに、周方向に配列された複数のタービン静翼と、
     前記タービン動翼の軸線方向他方側に設けられ、軸線方向の一方側から他方側に向かって排気ガスが流れる排気流路を形成するディフューザと、
    を備え、
     前記ディフューザは、
     前記軸線に沿って延びる内筒と、
     前記内筒を外周側から覆うとともに、前記内筒との間に前記排気流路を形成する外筒と、
     前記排気流路内で周方向に間隔をあけて設けられ、前記内筒と前記外筒とを接続するとともに、径方向内側から外側に向かうにしたがって前記タービンロータの回転方向前方に配置される複数のストラットと、
     周方向で隣り合う前記ストラットの間に配置されて、前記内筒の外周面から突出して軸線方向に延びる突条と、を備え、
     前記突条の軸線方向一方側の前端部は、前記ストラットの軸線方向一方側の前縁と前記ストラットの軸線方向他方側の後縁との間に配置され、
     前記突条の軸線方向他方側の後端部は、前記後縁よりも軸線方向他方側に配置されているタービン。
  2.  前記突条は、軸線を中心とした径方向外側から見て軸線方向一方側に向かって先細りに形成されるとともに、軸線方向他方側に向かって先細りに形成されている請求項1に記載のタービン。
  3.  前記ストラットの負圧面から突出する凸部を備える請求項1に記載のタービン。
  4.  前記凸部は、軸線を中心とした径方向の中央よりも前記内筒に近い側に配置されている請求項3に記載のタービン。
  5.  空気を圧縮した圧縮空気を生成する圧縮機と、
     前記圧縮空気に燃料を混合させて燃焼ガスを生成する燃焼器と、
     前記燃焼ガスにより駆動される請求項1から4の何れか一項に記載のタービンと、
    を備えるガスタービン。
PCT/JP2017/046634 2016-12-26 2017-12-26 タービン及びガスタービン WO2018124068A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/316,519 US10982544B2 (en) 2016-12-26 2017-12-26 Turbine and gas turbine
DE112017006555.0T DE112017006555T5 (de) 2016-12-26 2017-12-26 Turbine und gasturbine
CN201780042574.7A CN109477430B (zh) 2016-12-26 2017-12-26 涡轮及燃气轮机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016252020A JP6821426B2 (ja) 2016-12-26 2016-12-26 ディフューザ、タービン及びガスタービン
JP2016-252020 2016-12-26
JP2016252008A JP6820735B2 (ja) 2016-12-26 2016-12-26 タービン及びガスタービン
JP2016-252008 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018124068A1 true WO2018124068A1 (ja) 2018-07-05

Family

ID=62709351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046634 WO2018124068A1 (ja) 2016-12-26 2017-12-26 タービン及びガスタービン

Country Status (4)

Country Link
US (1) US10982544B2 (ja)
CN (1) CN109477430B (ja)
DE (1) DE112017006555T5 (ja)
WO (1) WO2018124068A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719440B2 (en) * 2018-12-19 2023-08-08 Doosan Enerbility Co., Ltd. Pre-swirler having dimples
US11242770B2 (en) * 2020-04-02 2022-02-08 General Electric Company Turbine center frame and method
EP3957846A1 (en) * 2020-08-18 2022-02-23 Rohr, Inc. Featured bullnose ramp for a thrust reverser system
US11834952B2 (en) * 2022-03-02 2023-12-05 General Electric Company Exhaust frequency mitigation apparatus
CN114856717B (zh) * 2022-06-02 2023-05-09 西安交通大学 一种能增强气动性能的带分流板的新型排气扩压器结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041821A (ja) * 2010-08-12 2012-03-01 Mitsubishi Heavy Ind Ltd 翼体
JP2013257137A (ja) * 2012-06-08 2013-12-26 General Electric Co <Ge> タービンエンジン及びタービンエンジンの空力エレメント
US20160348537A1 (en) * 2015-05-29 2016-12-01 Siemens Energy, Inc. Gas turbine diffuser outer diameter and inner diameter wall strips for turbine exhaust manifold pressure oscillation reduction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735702A (ja) 1993-07-21 1995-02-07 Yokogawa Electric Corp シート状物体の配向計
JP5693315B2 (ja) 2011-03-24 2015-04-01 三菱重工業株式会社 排気ディフューザ
JP5951187B2 (ja) * 2011-03-29 2016-07-13 三菱重工業株式会社 タービン排気構造及びガスタービン
US9359900B2 (en) * 2012-10-05 2016-06-07 General Electric Company Exhaust diffuser
EP3354904B1 (en) * 2015-04-08 2020-09-16 Horton, Inc. Fan blade surface features

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041821A (ja) * 2010-08-12 2012-03-01 Mitsubishi Heavy Ind Ltd 翼体
JP2013257137A (ja) * 2012-06-08 2013-12-26 General Electric Co <Ge> タービンエンジン及びタービンエンジンの空力エレメント
US20160348537A1 (en) * 2015-05-29 2016-12-01 Siemens Energy, Inc. Gas turbine diffuser outer diameter and inner diameter wall strips for turbine exhaust manifold pressure oscillation reduction

Also Published As

Publication number Publication date
US20190292910A1 (en) 2019-09-26
US10982544B2 (en) 2021-04-20
CN109477430A (zh) 2019-03-15
DE112017006555T5 (de) 2019-09-19
CN109477430B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2018124068A1 (ja) タービン及びガスタービン
US8091365B2 (en) Canted outlet for transition in a gas turbine engine
CA2564242C (en) Turbofan engine
US20120272663A1 (en) Centrifugal compressor assembly with stator vane row
JP2005023935A (ja) ガスタービンエンジンを組立てるための方法及び装置
US8920126B2 (en) Turbine and turbine rotor blade
JP6033154B2 (ja) 軸流回転機械、及びディフューザ
US10267161B2 (en) Gas turbine engine with fillet film holes
JP2015526691A (ja) 短縮された中間部分を有するガスタービンエンジン
ES2905863T3 (es) Superficie aerodinámica de compresor
CN115413308A (zh) 用于涡轮机的压缩机模块
WO2018159681A1 (ja) タービン及びガスタービン
JPWO2018155635A1 (ja) タービン動翼及びガスタービン
JP6821426B2 (ja) ディフューザ、タービン及びガスタービン
US20190003325A1 (en) Inter-turbine ducts with multiple splitter blades
JP2014013037A (ja) タービン排気ディフューザ
CN112943383B (zh) 带有具有曲线形后缘的翼片的涡轮机喷嘴
US10900414B2 (en) Fan assembly having flow recirculation circuit with guide vanes
US20170211407A1 (en) Flow alignment devices to improve diffuser performance
JP6820735B2 (ja) タービン及びガスタービン
JP5404187B2 (ja) 端壁部材及びガスタービン
US11639666B2 (en) Stator with depressions in gaspath wall adjacent leading edges
US20230073422A1 (en) Stator with depressions in gaspath wall adjacent trailing edges
JP7692988B2 (ja) ガスタービン
JP2018141450A (ja) タービン及びガスタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888615

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17888615

Country of ref document: EP

Kind code of ref document: A1