[go: up one dir, main page]

WO2018127946A1 - 無停電電源システムおよび無停電電源装置 - Google Patents

無停電電源システムおよび無停電電源装置 Download PDF

Info

Publication number
WO2018127946A1
WO2018127946A1 PCT/JP2017/000036 JP2017000036W WO2018127946A1 WO 2018127946 A1 WO2018127946 A1 WO 2018127946A1 JP 2017000036 W JP2017000036 W JP 2017000036W WO 2018127946 A1 WO2018127946 A1 WO 2018127946A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
current
power supply
solar cell
Prior art date
Application number
PCT/JP2017/000036
Other languages
English (en)
French (fr)
Inventor
翔一 阿部
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2017/000036 priority Critical patent/WO2018127946A1/ja
Priority to KR1020197022550A priority patent/KR102293959B1/ko
Priority to JP2018560276A priority patent/JP6706349B2/ja
Priority to US16/475,243 priority patent/US10811900B2/en
Priority to CN201780082084.XA priority patent/CN110121825B/zh
Publication of WO2018127946A1 publication Critical patent/WO2018127946A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • This invention relates to an uninterruptible power supply system and an uninterruptible power supply.
  • An uninterruptible power supply is a converter that converts AC power to DC power and converts DC power to AC power, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2014-7929 (Patent Document 1).
  • a configuration having an inverter is provided.
  • the uninterruptible power supply is connected to a storage battery and a solar battery, and DC power is supplied to the uninterruptible power supply from at least one of the storage battery and the solar battery.
  • the converter converts AC power from a commercial AC power source into DC power.
  • the inverter converts DC power from the converter or DC power from the storage battery and the solar battery into AC power having a constant frequency and voltage, and supplies the converted AC power to an AC (Alternating Current) load. .
  • the AC power generated by the inverter is adjusted to the DC load by an AC adapter provided outside the apparatus.
  • a configuration is adopted in which the power is converted to DC power and the converted DC power is supplied to a DC load.
  • the efficiency may be lowered.
  • the storage battery may be damaged.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an uninterruptible power supply system capable of supplying power to a DC load with high efficiency and high reliability. is there.
  • the uninterruptible power supply is connected between a commercial AC power supply and a DC load. Solar cells convert sunlight energy into DC power.
  • the power storage device stores DC power.
  • the uninterruptible power supply includes an output terminal connected to a DC load, first and second DC / DC converters, a converter, and first to third control units.
  • the first DC / DC converter is configured to perform DC voltage conversion between the solar cell and the output terminal.
  • the second DC / DC converter is configured to perform DC voltage conversion between the power storage device and the output terminal.
  • the converter is connected between the commercial AC power source and the output terminal, and is configured to convert AC power supplied from the commercial AC power source into DC power.
  • the first control unit is configured to control the first DC / DC converter so that a current according to the first current command value flows from the solar cell to the output terminal.
  • the second control unit is configured to control the second DC / DC converter so that a current according to the second current command value flows between the power storage device and the output terminal.
  • the third control unit is configured to control the converter so that the voltage at the output terminal becomes the reference voltage during normal times when AC power is supplied from the commercial AC power supply.
  • the first control unit outputs the output current when the output voltage of the solar cell becomes the optimum operating voltage in the maximum power point tracking control, the consumption current of the DC load, and the charging current of the power storage device from the solar cell.
  • the first current command value is generated on the basis of the minimum value of the output currents.
  • the second control unit is configured to generate the second current command value so that the voltage at the output terminal becomes the reference voltage.
  • FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply system 100 according to an embodiment of the present invention.
  • uninterruptible power supply system 100 according to the present embodiment is configured to supply DC power to DC load 4.
  • the uninterruptible power supply system 100 includes a solar battery 2, a storage battery 3, and an uninterruptible power supply device 5.
  • Uninterruptible power supply 5 is connected between commercial AC power supply 1 and DC load 4.
  • the storage battery 3 is a battery capable of charging and discharging DC power.
  • the storage battery 3 corresponds to an example of a “power storage device” that stores DC power.
  • the DC load 4 is an electric device or the like driven by direct current power.
  • the uninterruptible power supply 5 converts the AC power supplied from the commercial AC power source 1 into DC power and supplies the DC power to the DC load 4 during normal times when AC power is supplied from the commercial AC power source 1. Further, the uninterruptible power supply 5 performs maximum power point tracking control based on the output voltage VPV and output current IPV of the solar cell 2, so that the output voltage VPV of the solar cell 2 is optimized from the solar cell 2. A current is passed through the DC load 4.
  • the uninterruptible power supply 5 further supplies DC power from the solar battery 2 to the storage battery 3 when the output voltage VDC is higher than a predetermined reference voltage VDCR (for example, 400 V).
  • VDCR predetermined reference voltage
  • the output voltage VDC is lower than the reference voltage VDCR, DC power generated by AC power from the commercial AC power supply 1 or DC power from the storage battery 3 is supplied to the DC load 4.
  • the uninterruptible power supply 5 restricts the output voltage VDC to the upper limit voltage VDCH (for example, 500 V) or lower and limits the inter-terminal voltage VB of the storage battery 3 to the upper limit voltage VBH (for example, 300 V) or lower.
  • the uninterruptible power supply 5 includes terminals T1 to T4, current sensors 6 to 8, a converter 10, choppers 30, 50, control units 20, 40, 60, and a smoothing capacitor C0.
  • Terminals T1 to T4 are connected to commercial AC power source 1, solar cell 2, storage battery 3, and DC load 4, respectively.
  • Smoothing capacitor C0 is connected between a terminal T4 (output terminal) and a reference voltage (for example, ground voltage) line.
  • Converter 10 is connected between terminals T1 and T4. Converter 10 is controlled by control unit 20 (third control unit). Converter 10 normally converts AC power supplied from commercial AC power supply 1 into DC power, and supplies the DC power to smoothing capacitor C0. The current sensor 6 detects an AC current IC flowing from the commercial AC power source 1 to the converter 10 and gives a signal indicating the detected value to the control unit 20.
  • Control unit 20 detects AC voltage VC supplied from commercial AC power supply 1 and inter-terminal voltage VDC of smoothing capacitor C0, and controls converter 10 based on the detected value and the detected value of current sensor 6. To do. Control unit 20 controls converter 10 so that voltage VDC between terminals of smoothing capacitor C0 becomes reference voltage VDCR at the normal time. Control unit 20 stops the operation of converter 10 at the time of a power failure in which the supply of AC power from commercial AC power supply 1 is stopped.
  • the chopper 30 is connected between the terminals T2 and T4.
  • the chopper 30 is controlled by the control unit 40 (first control unit).
  • the chopper 30 supplies the DC power generated by the solar cell 2 to the smoothing capacitor C0.
  • the current sensor 7 detects a direct current IPV flowing from the solar cell 2 to the chopper 30 and gives a signal indicating the detected value to the control unit 40.
  • the chopper 30 corresponds to an example of a “first DC / DC converter”.
  • the control unit 40 detects the inter-terminal voltage VPV of the solar cell 2 and the inter-terminal voltage VDC of the smoothing capacitor C0, and controls the chopper 30 based on the detected value and the detected value of the current sensor 7.
  • the control unit 40 controls the chopper 30 so that the inter-terminal voltage VPV of the solar cell 2 becomes the optimum operating voltage VDCR.
  • the control unit 40 controls the chopper 30 so that a direct current corresponding to the sum of the consumption current of the DC load 4 and the charging current of the storage battery 3 is output from the solar cell 2.
  • the control unit 40 further controls the chopper 30 so that the inter-terminal voltage VDC of the smoothing capacitor C0 is equal to or lower than the upper limit voltage VDCH.
  • the chopper 50 is connected between the terminals T3 and T4.
  • the chopper 50 is controlled by the control unit 60 (second control unit).
  • the chopper 50 supplies DC power to the storage battery 3 from the smoothing capacitor C0. Further, the chopper 50 supplies the DC power of the storage battery 3 to the smoothing capacitor C0.
  • Current sensor 8 detects DC current IB flowing between storage battery 3 and chopper 50, and provides a signal indicating the detected value to control unit 60.
  • the chopper 50 corresponds to an example of a “second DC / DC converter”.
  • the controller 60 detects the inter-terminal voltage VB of the storage battery 3 and the inter-terminal voltage VDC of the smoothing capacitor C0, and controls the chopper 50 based on those detection values and the detection value of the current sensor 8.
  • the control unit 60 controls the chopper 50 so that the inter-terminal voltage VDC of the smoothing capacitor C0 becomes the reference voltage VDCR ( ⁇ VDCH), and the inter-terminal voltage VB of the storage battery 3 is less than or equal to the upper limit voltage VBH (for example, 300 V).
  • the chopper 50 is controlled so that it becomes.
  • Control unit 60 further controls chopper 50 such that voltage VDC between terminals of smoothing capacitor C0 is equal to or lower than upper limit voltage VDCH.
  • FIG. 2 is a circuit block diagram showing the configuration of the converter 10 and the choppers 30 and 50.
  • converter 10 includes switching elements Q1-Q6, diodes D1-D6, inductor L1, and capacitor C1.
  • the switching elements Q1 to Q6 are, for example, IGBTs (Insulated Gate Bipolar Transistors), but are not limited to this as long as they are self-extinguishing type switching elements.
  • Switching elements Q1, Q2 are connected in series between terminal T4 and a reference voltage line.
  • Switching elements Q3, Q4 are connected in series between terminal T4 and a reference voltage line.
  • Switching elements Q5 and Q6 are connected in series between terminal T4 and a reference voltage line.
  • Diodes D1 to D6 are connected in antiparallel to switching elements Q1 to Q6, respectively.
  • Each of the three reactors L1 is connected between a connection point of two switching elements connected in series and a terminal T1.
  • One electrode of the three capacitors C1 is connected to the terminal T1, and the other electrode thereof is connected to each other.
  • the switching elements Q1 to Q6 are PWM (pulse width modulation) controlled by the control unit 20.
  • the chopper 30 includes a capacitor C2, an inductor L2, a switching element Q7, and diodes D7 and D10.
  • Switching element Q7 is, for example, an IGBT.
  • the capacitor C2 is connected between the terminal T2 and the reference voltage line.
  • the inductor L2 and the switching element Q7 are connected in series between the terminal T2 and the reference voltage line.
  • the diode D7 is connected in antiparallel to the switching element Q7.
  • the anode of diode D10 is connected to the collector of switching element Q7, and its cathode is connected to terminal T4.
  • the switching element Q7 is PWM-controlled by the control unit 40 and turned on and off at a predetermined cycle.
  • a current flows from the solar cell 2 to the reference voltage line via the inductor L2 and the switching element Q7, and electromagnetic energy is stored in the inductor L2.
  • the switching element Q7 is turned off, the electromagnetic energy stored in the inductor L2 is released, and a current flows from the inductor L2 to the smoothing capacitor C0 via the diode D10.
  • the anode voltage of the diode D10 is a voltage obtained by adding the voltage between terminals of the inductor L2 to the voltage VPV between terminals of the solar cell 2.
  • the chopper 50 includes a capacitor C3, an inductor L3, switching elements Q8 and Q9, and diodes D8 and D9.
  • Switching elements Q8 and Q9 are, for example, IGBTs.
  • the capacitor C3 is connected between the terminal T3 and the reference voltage line.
  • Switching elements Q8 and Q9 are connected in series between terminal T4 and a reference voltage line.
  • Diodes D8 and D9 are connected in antiparallel to switching elements Q8 and Q9, respectively.
  • Inductor L3 is connected between terminal T3 and the connection point of switching elements Q8 and Q9.
  • the switching elements Q8 and Q9 are PWM-controlled by the control unit 60.
  • the chopper 50 boosts the inter-terminal voltage VB of the storage battery 3 and supplies it to the smoothing capacitor C0.
  • the chopper 50 steps down the voltage VDC between the terminals of the smoothing capacitor C0 and supplies it to the storage battery 3.
  • FIG. 3 is a circuit block diagram showing the configuration of the control unit 40.
  • the control unit 40 includes an MPPT (Maximum Power Point Tracking) controller 31, subtractors 32 and 34, a voltage controller 33, a current controller 48, a PWM controller 49, a power generation suppressing unit 40A, and An overvoltage suppression unit 40B is included.
  • MPPT Maximum Power Point Tracking
  • the MPPT controller 31 performs maximum power point tracking control of the solar cell 2 and obtains an optimum operating voltage that maximizes the output of the solar cell 2 based on the output voltage VPV and output current IPV of the solar cell 2.
  • the MPPT controller 31 sets the reference voltage VPVR to the optimum operating voltage.
  • the solar cell 2 has a characteristic that the inter-terminal voltage VPV decreases as the output current IPV increases.
  • the output of the solar cell 2 changes along a gentle mountain-shaped curve according to the inter-terminal voltage VPV.
  • the point at which the output of the solar cell 2 is maximized is called the maximum power point, and the inter-terminal voltage VPV of the solar cell 2 at that time is called the optimum operating voltage.
  • the MPPT controller 31 adjusts the reference voltage VPVR so as to match the optimum operating voltage based on the output voltage VPV and the output current IPV of the solar cell 2.
  • the subtracter 32 subtracts the reference voltage VPVR generated by the MPPT controller 31 from the detected value of the output voltage VPV of the solar cell 2 and gives a signal indicating the subtraction result VPV-VPVR to the voltage controller 33.
  • the voltage controller 33 generates a current command value IPVR2 for setting VPV-VPVR to 0, and gives the current command value IPVR2 to the power generation suppressing unit 40A.
  • the power generation suppressing unit 40A includes an adder 35 and a selector 36.
  • a current command value IPVR0 and a current command value IBC are given to the power generation suppressing unit 40A from a host control unit that controls the uninterruptible power supply system 100 in an integrated manner.
  • the current command value IPVR0 is a command value for causing the current required by the DC load 4 to flow from the solar cell 2 to the DC load 4.
  • the current command value IPVR0 is set based on the power consumption of the DC load 4 and the output voltage VPV of the solar battery 2.
  • the power consumption of the DC load 4 is the inter-terminal voltage VDC of the smoothing capacitor C0 and the consumption current IL.
  • Product VDC ⁇ IL the power PPV that one solar cell 2 should generate to supply power to the DC load 4 is VDC ⁇ IL / n.
  • the current command value IBC is a command value of the charging current IB for setting the storage battery 3 to a predetermined fully charged state, and is set based on the inter-terminal voltage VB of the storage battery 3. Specifically, by subtracting the detected value of the inter-terminal voltage VB of the storage battery 3 from the inter-terminal voltage VBR corresponding to a predetermined full charge state, and dividing the subtraction result VBR-VB by the internal resistance value of the storage battery 3, The current command value IBC can be obtained.
  • the adder 35 adds the current command value IPVR0 and the current command value IBC to generate a current command value IPVR1.
  • the selector 36 Upon receipt of the current command value IPVR1 from the adder 35 and the current command value IPVR2 from the voltage controller 33, the selector 36 selects the minimum value of these two current command values IPVR1 and IPVR2. The selector 36 sets the selected current command value to the reference current value IPVR.
  • the power generation suppressing unit 40A includes a current command value IPVR2 generated by the maximum power point tracking control of the solar battery 2, and a current command value IPVR1 generated based on the consumption current of the DC load 4 and the charging current of the storage battery 3. The smaller one is set to the reference current value IPVR.
  • the power generation suppressing unit 40A sets the current command value IPVR2 to the reference current value IPVR.
  • the output of the solar cell 2 is the power of the total value of the power consumption of the DC load 4 and the charging power of the storage battery 3. Is equal to Thereby, it can suppress that the solar cell 2 produces
  • the overvoltage suppressing unit 40B is configured to limit the inter-terminal voltage VDC of the smoothing capacitor C0 to a voltage equal to or lower than the upper limit voltage VDCH.
  • the overvoltage suppressing unit 40B includes a subtractor 47, a voltage controller 41, a limiter 39, and a multiplier 38.
  • the subtractor 47 subtracts the voltage VDC across the terminals of the smoothing capacitor C0 from the upper limit voltage VDCH, and gives a signal ⁇ VDC indicating the subtraction result VDCH ⁇ VDC to the voltage controller 41.
  • the voltage controller 41 generates a coefficient k1 for correcting the reference current value IPVR in order to set VDCH-VDC to 0, and supplies the coefficient k1 to the limiter 39.
  • the voltage controller 41 includes a limiter 46, a divider 45, a subtractor 43, and a filter 42.
  • the divider 45 divides the signal ⁇ VDC from the limiter 46 by the upper limit value ⁇ VDCH, and gives a signal indicating the division result ⁇ VDC / ⁇ VDCH to the subtractor 43.
  • the signal ⁇ VDC from the limiter 46 is limited to 0 or more and ⁇ VDCH or less. Therefore, the subtraction result ⁇ VDC / ⁇ VDCH output from the divider 45 takes a value between 0 and 1 (0 ⁇ ⁇ VDC / ⁇ VDCH ⁇ 1).
  • the subtracter 43 subtracts the signal ⁇ VDC / ⁇ VDCH from the divider 45 from the value “1”, and gives a signal indicating the subtraction result 1 ⁇ VDC / ⁇ VDCH to the filter 42 as the coefficient k1.
  • ⁇ VDC / ⁇ VDCH 1
  • the value of the coefficient 1 output from the subtractor 43 is 0.
  • ⁇ VDC / ⁇ VDCH 0, the value of the coefficient k1 output from the subtractor 43 is 1. That is, the coefficient k1 output from the subtracter 43 is a value between 0 and 1.
  • the filter 42 is, for example, an RC filter composed of a resistor and a capacitor.
  • the filter 42 is for passing a low frequency component equal to or lower than the cutoff frequency and removing a high frequency component.
  • the filter 42 is configured to switch the cutoff frequency fc between rising and falling of the coefficient k1.
  • the falling cutoff frequency fc is set to a value higher than the rising cutoff frequency fc.
  • the falling cutoff frequency fc is 2 kHz
  • the rising cutoff frequency fc is 1 kHz.
  • the falling time constant of the coefficient k1 is smaller than the rising time constant of the coefficient k1, so that the falling time is shorter than the rising time.
  • the coefficient k1 that has passed through the filter 42 is given to the limiter 39.
  • the limiter 39 passes the coefficient k1 when the coefficient k1 from the voltage controller 41 is 0 or more and 1 or less, and sets the coefficient k1 to 0 when the coefficient k1 from the voltage controller 41 is less than 0. To do.
  • the multiplier 38 corrects the reference current value IPVR by multiplying the reference current value IPVR from the power generation suppressing unit 40A by the coefficient k1.
  • the multiplier 38 supplies the corrected reference current value k1 ⁇ IPVR to the subtractor 34.
  • the subtracter 34 subtracts the detected value of the output current IPV of the solar cell 2 from the reference current value k1 ⁇ IPVR, and gives a signal indicating the subtraction result k1 ⁇ IPVR ⁇ IPV to the current controller 48.
  • the current controller 48 generates a current command value for causing the current k1 ⁇ IPVR ⁇ IPV obtained by the subtractor 34 to flow.
  • the PWM controller 49 controls the chopper 30 so that a current having a value corresponding to the current command value from the current controller 48 flows from the solar cell 2 to the DC load 4.
  • FIG. 4 is a waveform diagram for explaining the relationship between the terminal voltage VDC of the smoothing capacitor C0 and the coefficient k1 generated by the voltage controller 41.
  • the value of the coefficient k1 decreases from 1 according to the falling time constant of the filter 42.
  • the reference current value IPVR is corrected using the coefficient k1, and the chopper 30 is controlled based on the corrected reference current value k1 ⁇ IPVR, whereby the output voltage VDC of the chopper 30 starts to decrease.
  • the output voltage VDC becomes equal to or lower than the upper limit voltage VDCH at time t2 after time t1, the value of the coefficient k1 starts to decrease and increases. Since the rising time constant of the filter 42 is larger than the falling time constant, the coefficient k1 rises gently. As a result, the output voltage VDC begins to increase at time t3 after time t2. When the value of the coefficient k1 returns to 1, the output voltage VDC converges to the reference voltage VDCR after that.
  • the inter-terminal voltage VDC of the smoothing capacitor C0 exceeds the upper limit voltage VDCH, in order to prevent the voltage applied to the DC load 4 from becoming excessive, the inter-terminal voltage VDC is quickly limited to a voltage equal to or lower than the upper limit voltage VDCH. There is a need to.
  • the output of the solar cell 2 depends on the solar radiation intensity and the like, it is unstable and has low control response.
  • the inter-terminal voltage VDC larger than the upper limit voltage VDCH can be quickly reduced, and the reduced inter-terminal voltage VDC can be stabilized. To the reference voltage VDCR.
  • FIG. 5 is a circuit block diagram showing the configuration of the control unit 60.
  • control unit 60 includes a voltage control unit 60A, an overcharge suppression unit 60B, an overvoltage suppression unit 60C, a subtractor 54, an adder 55, a current controller 68, and a PWM controller 69.
  • the voltage control unit 60A is configured to control the inter-terminal voltage VDC of the smoothing capacitor C0 to a constant voltage VDCR.
  • voltage control unit 60A includes a subtractor 65, a voltage controller 66, and a limiter 67.
  • Subtractor 65 subtracts reference voltage VDCR (for example, 400 V) from inter-terminal voltage VDC of smoothing capacitor C0, and provides a signal indicating the subtraction result VDCR-VDC to voltage controller 66.
  • Reference voltage VDC is set to a voltage lower than upper limit voltage VDCH.
  • Voltage controller 66 generates a current command value for setting VDCR-VDC to 0, and provides the current command value to limiter 67.
  • the limiter 67 passes the current command value when the current command value from the voltage controller 66 is a value between the positive upper limit value and the negative upper limit value. In addition, when the current command value from the voltage controller 66 is on the positive side with respect to the positive upper limit value, the limiter 67 sets the current command value to the positive upper limit value. Further, when the current command value from the voltage controller 66 is on the negative side with respect to the negative lower limit value, the limiter 67 sets the current command value to the negative lower limit value.
  • the overcharge suppression unit 60B is configured to limit the inter-terminal voltage VB of the storage battery 3 to a voltage equal to or lower than the upper limit voltage VBH (for example, 300V).
  • the overcharge suppression unit 60B includes a subtractor 51, a voltage controller 52, and a limiter 53.
  • the subtractor 51 subtracts the inter-terminal voltage VB of the storage battery 3 from the upper limit voltage VBH, and gives a signal indicating the subtraction result VBH ⁇ VB to the voltage controller 52.
  • Voltage controller 52 generates a current command value for setting VBH ⁇ VB to 0, and provides the current command value to limiter 53.
  • the limiter 53 passes the current command value when the current command value from the voltage controller 52 is negative, and sets the current command value to 0 when the current command value from the voltage controller 52 is positive.
  • the current command value output from the overcharge suppression unit 60B is 0.
  • the current command value output from overcharge suppression unit 60B is a value corresponding to VBH ⁇ VB.
  • the adder 55 adds the current command value from the voltage control unit 60A and the current command value from the overcharge suppression unit 60B to generate the reference current value IBR.
  • the subtractor 54 subtracts the detected value of the charging current IB of the storage battery 3 from the reference current value IBR, and gives a signal indicating the subtraction result IBR-IB to the overvoltage suppressing unit 60C.
  • the overvoltage suppressing unit 60C is configured to limit the inter-terminal voltage VDC of the smoothing capacitor C0 to a voltage equal to or lower than the upper limit voltage VDCH.
  • the overvoltage suppression unit 60C has the same basic configuration as the overvoltage suppression unit 40B shown in FIG.
  • the overvoltage suppressing unit 60C includes a subtractor 64, a voltage controller 58, a limiter 57, and a multiplier 56.
  • the subtracter 64 subtracts the voltage VDC across the terminals of the smoothing capacitor C0 from the upper limit voltage VDCH, and gives a signal ⁇ VDC indicating the subtraction result VDCH ⁇ VDC to the voltage controller 58.
  • the voltage controller 58 generates a coefficient k2 for correcting the signal IBR-IB from the subtractor 54 and supplies the coefficient k2 to the limiter 57.
  • the voltage controller 58 includes a limiter 63, a divider 62, a subtractor 61, and a filter 59.
  • the divider 62 divides the signal ⁇ VDC from the limiter 63 by the upper limit value ⁇ VDCH and gives a signal indicating the division result ⁇ VDC / ⁇ VDCH to the subtractor 61.
  • the subtractor 61 subtracts the signal ⁇ VDC / ⁇ VDCH from the divider 62 from the value “1”, and gives a signal indicating the subtraction result 1 ⁇ VDC / ⁇ VDCH to the filter 59 as the coefficient k2.
  • the coefficient k2 output from the subtractor 61 is a value between 0 and 1.
  • the filter 59 is the same as the filter 42 in FIG. 3, and is, for example, an RC filter.
  • the falling time constant is smaller than the rising time constant. Therefore, the fall time of the coefficient k2 that has passed through the filter 59 is shorter than the rise time of the coefficient k2.
  • the limiter 57 passes the coefficient k2 when the coefficient k2 from the voltage controller 58 is 0 or more and 1 or less, and sets the coefficient k2 to 0 when the coefficient k2 from the voltage controller 58 is less than 0. To do.
  • the multiplier 56 multiplies the signal IBR-IB from the subtractor 54 by the coefficient k2, and gives a signal indicating the multiplication result k2 ⁇ (IBR-IB) to the current controller 66.
  • the current controller 66 generates a current command value for causing the current k2 ⁇ (IBR ⁇ IB) obtained by the multiplier 56 to flow.
  • the PWM controller 67 controls the chopper 50 so that a current having a value corresponding to the current command value from the current controller 66 flows from the storage battery 3 to the DC load 4.
  • the uninterruptible power supply system 100 includes a commercial AC power supply 1, a solar battery 2, and a storage battery 3 as power supply sources to the DC load 4.
  • a commercial AC power supply 1 a commercial AC power supply 1
  • a solar battery 2 a solar battery 2
  • a storage battery 3 as power supply sources to the DC load 4.
  • the power that can be supplied fluctuates due to various factors (abnormality in the commercial system, fluctuations in sunshine conditions, remaining capacity of the storage battery, etc.).
  • the priority of power supply is determined in advance among the above three power supply sources, and it is difficult for the power supply source with a high priority to supply power for some reason. In such a case, power is supplied using a power supply source having a low priority.
  • the priority of power supply is the order of the solar cell 2, the commercial AC power source 1, and the storage battery 3 from the highest. That is, the DC power generated by the solar cell 2 is mainly supplied to the DC load 4 by the chopper 30.
  • the DC power generated by the solar cell 2 becomes smaller than the power consumption in the DC load 4
  • AC power from the commercial AC power supply 1 is converted into DC power by the converter 10 and supplied to the DC load 4.
  • the storage battery 3 is used as a backup power source when both the solar cell 2 and the commercial AC power source 1 become difficult to supply power.
  • the uninterruptible power supply system 100 has three modes A1 to A3.
  • the uninterruptible power supply system 100 operates in any one of the three modes A1 to A3 according to the amount of power generated by the solar cell 2, the state of the commercial AC power supply 1, and the like.
  • the output current IPV of the solar cell 2 is generated based on the current command value IPVR2 for the output voltage VPV of the solar cell 2 to be the optimum operating voltage, the total value of the consumption current of the DC load 4 and the charging current of the storage battery 3.
  • the current command value IPVR1 is adjusted so as to coincide with the smaller one.
  • a current is passed from the output terminal T3 to the storage battery 3 via the chopper 50 so that the output voltage VDC of the uninterruptible power supply 5 becomes the reference voltage VDCR.
  • VDC the output voltage of the uninterruptible power supply 5 becomes the reference voltage VDCR.
  • Converter 10 is controlled so that output voltage VDC of uninterruptible power supply 5 becomes reference voltage VDCR during normal times when AC power is supplied from commercial AC power supply 1. In this way, for example, when the amount of power generated by the solar cell 2 decreases and becomes smaller than the amount of power required by the DC load 4, the uninterruptible power supply 5 AC power from the power source 1 can be converted to DC power and supplied to the DC load 4.
  • Mode A2 For example, at night, when the power generation amount of the solar cell 2 becomes 0, the uninterruptible power supply system operates in mode A2, as shown in FIG. In mode A2, the operation of the chopper 30 is stopped. The uninterruptible power supply 5 converts the AC power from the commercial AC power supply 1 into DC power and supplies it to the DC load 4 as indicated by an arrow 204.
  • the output current IPV of the solar cell 2 is based on the current command value IPVR2 for the output voltage VPV of the solar cell 2 to be the optimum operating voltage, the total value of the consumption current of the DC load 4 and the charging current of the storage battery 3.
  • the current command value IPVR1 generated in this way is adjusted to match the smaller one.
  • a current is passed from the storage battery 3 to the output terminal T3 via the chopper 50 so that the output voltage VDC of the uninterruptible power supply 5 becomes the reference voltage VDCR.
  • VBL lower limit voltage
  • the second pattern described below is different in power supply priority from the first pattern.
  • the priority order of power supply is the order of the solar battery 2, the storage battery 3, and the commercial AC power supply 1 from the highest. That is, direct-current power generated by the solar cell 2 is supplied to the DC load 4.
  • the DC power generated by the solar battery 2 is smaller than the power consumption in the DC load 4
  • the DC power of the storage battery 3 is supplied to the DC load 4 by the chopper 50.
  • the commercial AC power supply 1 is used to control the output voltage VDC of the uninterruptible power supply 5 to a constant voltage VDCR when it is difficult to supply power to both the solar battery 2 and the storage battery 3.
  • the uninterruptible power supply system 100 has three modes B1 to B3.
  • the uninterruptible power supply system 100 operates in any one of the three modes B1 to B3 according to the amount of power generated by the solar cell 2, the state of the commercial AC power supply 1, and the like.
  • the output current IPV of the solar cell 2 is generated based on the current command value IPVR2 for the output voltage VPV of the solar cell 2 to be the optimum operating voltage, the total value of the consumption current of the DC load 4 and the charging current of the storage battery 3.
  • the current command value IPVR1 is adjusted so as to coincide with the smaller one.
  • a current is passed from the storage battery 3 to the output terminal T3 via the chopper 50 so that the output voltage VDC of the uninterruptible power supply 5 becomes the reference voltage VDCR.
  • the DC power generated by the solar cell 2 is supplied to the DC load 4 by the chopper 30 and is indicated by an arrow 208.
  • the DC power of the storage battery 3 is supplied to the DC load 4 by the chopper 50.
  • the inter-terminal voltage VB of the storage battery 3 becomes the lower limit voltage VBL, the discharge of the storage battery 3 is stopped in order to prevent the overdischarge of the storage battery 3.
  • Converter 10 is controlled so that output voltage VDC of uninterruptible power supply 5 becomes reference voltage VDCR during normal times when AC power is supplied from commercial AC power supply 1. In this way, for example, when the discharge of the storage battery 3 is stopped in a situation where the power generation amount of the solar cell 2 is reduced and the amount of power required by the DC load 4 is smaller, as indicated by an arrow 209, there is no effect.
  • the power failure power supply device 5 can convert AC power from the commercial AC power source 1 into DC power and supply it to the DC load 4.
  • Mode B2 For example, at night, when the power generation amount of solar cell 2 becomes 0, uninterruptible power supply system 100 operates in mode B2, as shown in FIG. In mode B2, the operation of the chopper 30 is stopped.
  • the uninterruptible power supply 5 supplies the DC power of the storage battery 3 to the DC load 4 via the chopper 50 as indicated by an arrow 210. At this time, the chopper 50 is controlled so that the output voltage VDC of the uninterruptible power supply 5 becomes the reference voltage VDCR.
  • the discharge of the storage battery 3 is stopped in order to prevent the storage battery 3 from being overdischarged.
  • the AC power from the commercial AC power source 1 is converted into DC power by the converter 10 and supplied to the DC load 4 as indicated by an arrow 211.
  • a current is supplied from the commercial AC power supply 1 to the DC load 4 via the converter 10 so that the output voltage VDC of the uninterruptible power supply 5 becomes the reference voltage VDCR.
  • Mode B3 When the commercial AC power supply 1 fails, the uninterruptible power supply system 100 operates in mode B3 as shown in FIG. Mode B3 is the same as mode A3 shown in FIG. That is, the operation of the converter 10 is stopped, and the direct-current power generated by the solar cell 2 is supplied to the DC load 4 by the chopper 30 as indicated by an arrow 213.
  • the DC power generated by the solar cell 2 is supplied to the DC load 4 by the chopper 30 and as indicated by an arrow 214.
  • the DC power of the storage battery 3 is supplied to the DC load 4 by the chopper 50.
  • the discharge of the storage battery 3 is stopped in order to prevent the overdischarge of the storage battery 3.
  • AC power from the commercial AC power supply 1 is converted into DC power and supplied to the DC load 4 and is generated by the solar cell 2.
  • the DC power and the DC power of the storage battery 3 are configured to be supplied to the DC load 4.
  • the inverter for converting DC power into AC power, and the AC power generated by the inverter are further converted into DC power matched to the DC load 4 Installation of an AC adapter becomes unnecessary. Therefore, since the power loss generated in the inverter and the AC adapter becomes 0, the power loss of the entire uninterruptible power supply system can be reduced. Thereby, the operating efficiency of the uninterruptible power supply system can be improved.
  • the uninterruptible power supply system 100 In the uninterruptible power supply system 100, during power generation of the solar battery 2, a current having a value larger than the value corresponding to the consumption current in the DC load 4 and the charging current of the storage battery 3 flows from the solar battery 2 to the DC load 4.
  • the chopper 30 is controlled so that there is not. In this way, when the power consumption in the DC load 4 is reduced, the current flowing through the chopper 30 is reduced, so that the voltage VDC at the output terminal T4 is prevented from being excessive due to the surplus power of the solar cell 2. Can do.
  • the inter-terminal voltage VB of the storage battery 3 exceeds the upper limit voltage VBH, the current flowing from the output terminal T4 to the storage battery 3 via the chopper 50 is reduced. Therefore, even when the surplus power of the solar battery 2 becomes excessive, it is possible to prevent the inter-terminal voltage VB of the storage battery 3 from becoming excessive, and thus it is possible to prevent the storage battery 3 from being damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Rectifiers (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

DC負荷(4)に直流電力を供給するための無停電電源システム(100)において、第1の制御部(40)は、第1の電流指令値に従った電流を太陽電池(2)から出力端子(T4)に流すように第1のDC/DCコンバータ(30)を制御する。第2の制御部(60)は、第2の電流指令値に従った電流を電力貯蔵装置(3)および出力端子(T4)の間に流すように第2のDC/DCコンバータ(50)を制御する。第1の制御部(40)は、最大電力点追従制御にて太陽電池(2)の出力電圧が最適動作電圧になるときの出力電流と、太陽電池(2)から直流負荷(4)の消費電流および電力貯蔵装置(3)の充電電流を出力するための出力電流とのうちの最小値に基づいて第1の電流指令値を生成するように構成される。第2の制御部(60)は、出力端子(T4)の電圧が参照電圧になるように第2の電流指令値を生成するように構成される。

Description

無停電電源システムおよび無停電電源装置
 この発明は、無停電電源システムおよび無停電電源装置に関する。
 無停電電源装置(Uninterruptible Power Supply:UPS)は、たとえば特開2014-7929号公報(特許文献1)に示されるように、交流電力を直流電力に変換するコンバータと、直流電力を交流電力に変換するインバータとを有する構成が一般的である。また、上記無停電電源装置には蓄電池および太陽電池が接続され、当該蓄電池および太陽電池の少なくとも一方から無停電電源装置に直流電力が供給される。
 上記無停電電源装置では、コンバータは、商用交流電源からの交流電力が直流電力に変換する。インバータは、コンバータからの直流電力または蓄電池および太陽電池からの直流電力を、一定周波数および一定電圧の交流電力に変換し、変換後の交流電力をAC(Alternating Current:交流)負荷に供給している。
 また、商用交流電源の異常(停電、瞬低など)発生時には、蓄電池または太陽電池からインバータに直流電力が供給される。これにより、商用交流電源の異常発生時、無停電電源装置は無停電でAC負荷に交流電力を供給する。
特開2014-7929号公報
 上記無停電電源装置を用いてDC(Direct Current:直流)負荷に供給する場合には、一般的に、インバータによって生成された交流電力を、装置外部に設けられたACアダプタによってDC負荷に合せた直流電力に変換し、変換後の直流電力をDC負荷に供給する構成が採用されている。しかしながら、上記構成では、インバータおよびACアダプタの各々において電力損失が発生するため、効率が低くなる可能性がある。
 また、太陽電池はその特性上、日射強度などによって発電量が変動するため、DC負荷が必要とする電力量が低下した場合、高い応答性で太陽電池の発電量を低下させることが難しいという課題がある。その結果、太陽電池の余剰電力が過大になると、DC負荷に印加する電圧が増大するため、DC負荷が破損する可能性がある。
 また、太陽電池の余剰電力を蓄電池に蓄え、太陽電池および蓄電池からの直流電力をDC負荷に供給する構成においては、太陽電池の余剰電力が過大になった場合、蓄電池の端子間電圧が過大になり、蓄電池が破損する可能性がある。
 この発明は、上記のような課題を解決するためになされたものであり、その目的は、高い効率かつ高い信頼性で直流負荷に電力を供給することができる無停電電源システムを提供することである。
 この発明のある局面によれば、直流負荷に直流電力を供給するための無停電電源システムは、無停電電源装置と、太陽電池と、電力貯蔵装置とを備える。無停電電源装置は、商用交流電源と直流負荷との間に接続される。太陽電池は太陽光のエネルギーを直流電力に変換する。電力貯蔵装置は直流電力を蓄える。無停電電源装置は、直流負荷に接続される出力端子と、第1および第2のDC/DCコンバータと、コンバータと、第1~第3の制御部とを備える。第1のDC/DCコンバータは、太陽電池および出力端子の間で直流電圧変換を実行するように構成される。第2のDC/DCコンバータは、電力貯蔵装置および出力端子の間で直流電圧変換を実行するように構成される。コンバータは、商用交流電源および出力端子の間に接続され、商用交流電源より供給される交流電力を直流電力に変換するように構成される。第1の制御部は、第1の電流指令値に従った電流を太陽電池から出力端子に流すように第1のDC/DCコンバータを制御するように構成される。第2の制御部は、第2の電流指令値に従った電流を電力貯蔵装置および出力端子の間に流すように第2のDC/DCコンバータを制御するように構成される。第3の制御部は、商用交流電源から交流電力が供給されている通常時、出力端子の電圧が参照電圧になるようにコンバータを制御するように構成される。第1の制御部は、最大電力点追従制御にて太陽電池の出力電圧が最適動作電圧になるときの出力電流と、太陽電池から直流負荷の消費電流および電力貯蔵装置の充電電流を出力するための出力電流とのうちの最小値に基づいて第1の電流指令値を生成するように構成される。第2の制御部は、出力端子の電圧が参照電圧になるように第2の電流指令値を生成するように構成される。
 この発明によれば、高い効率かつ高い信頼性で直流負荷に電力を供給することができる無停電電源システムを提供することができる。
この発明の実施の形態による無停電電源システムの構成を示す回路ブロック図である。 コンバータおよびチョッパの構成を示す回路ブロック図である。 制御部の構成を示す回路ブロック図である。 平滑コンデンサの端子間電圧と電圧制御器によって生成される係数との関係を説明するため波形図である。 制御部の構成を示す回路ブロック図である。 モードA1における無停電電源システムの動作を説明するための図である。 モードA2における無停電電源システムの動作を説明するための図である。 モードA3における無停電電源システムの動作を説明するための図である。 モードB1における無停電電源システムの動作を説明するための図である。 モードB2における無停電電源システムの動作を説明するための図である。 モードB3における無停電電源システムの動作を説明するための図である。
 以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。
 [実施の形態1]
 図1は、この発明の実施の形態による無停電電源システム100の構成を示す回路ブロック図である。図1を参照して、本実施の形態による無停電電源システム100は、DC負荷4に直流電力を供給するように構成される。無停電電源システム100は、太陽電池2と、蓄電池3と、無停電電源装置5とを備える。無停電電源装置5は、商用交流電源1およびDC負荷4の間に接続される。
 商用交流電源1は、商用周波数の交流電力を無停電電源装置5に供給する。太陽電池2は、太陽光のエネルギーを直流電力に変換する。太陽電池2の発電量は、日射強度に応じて増大する。蓄電池3は、直流電力の充電および放電が可能な電池である。蓄電池3は、直流電力を蓄える「電力貯蔵装置」の一実施例に対応する。DC負荷4は、直流電力によって駆動される電気機器などである。
 無停電電源装置5は、商用交流電源1から交流電力が供給されている通常時、商用交流電源1から供給される交流電力を直流電力に変換し、その直流電力をDC負荷4に供給する。また、無停電電源装置5は、太陽電池2の出力電圧VPVおよび出力電流IPVに基づいて最大電力点追従制御を行ない、太陽電池2の出力電圧VPVが最適動作電圧になるように太陽電池2からDC負荷4に電流を流す。
 無停電電源装置5は、さらに、出力電圧VDCが所定の参照電圧VDCR(たとえば、400V)よりも高い場合は太陽電池2からの直流電力を蓄電池3に供給する。一方、出力電圧VDCが参照電圧VDCRよりも低い場合は、商用交流電源1からの交流電力によって生成された直流電力または蓄電池3からの直流電力をDC負荷4に供給する。
 また、無停電電源装置5は、出力電圧VDCを上限電圧VDCH(たとえば、500V)以下に制限するとともに、蓄電池3の端子間電圧VBを上限電圧VBH(たとえば、300V)以下に制限する。
 詳細には、無停電電源装置5は、端子T1~T4、電流センサ6~8、コンバータ10、チョッパ30,50、制御部20,40,60、および平滑コンデンサC0を備える。端子T1~T4は、それぞれ、商用交流電源1、太陽電池2、蓄電池3、およびDC負荷4に接続される。平滑コンデンサC0は、端子T4(出力端子)と基準電圧(たとえば、接地電圧)のラインとの間に接続される。
 コンバータ10は、端子T1,T4間に接続される。コンバータ10は、制御部20(第3の制御部)によって制御される。コンバータ10は、通常時、商用交流電源1から供給される交流電力を直流電力に変換し、その直流電力を平滑コンデンサC0に供給する。電流センサ6は、商用交流電源1からコンバータ10に流れる交流電流ICを検出し、検出値を示す信号を制御部20に与える。
 制御部20は、商用交流電源1から供給される交流電圧VCと平滑コンデンサC0の端子間電圧VDCとを検出し、それらの検出値と電流センサ6の検出値とに基づいて、コンバータ10を制御する。制御部20は、通常時、平滑コンデンサC0の端子間電圧VDCが参照電圧VDCRになるようにコンバータ10を制御する。制御部20は、商用交流電源1からの交流電力の供給が停止される停電時、コンバータ10の運転を停止させる。
 チョッパ30は、端子T2,T4間に接続される。チョッパ30は、制御部40(第1の制御部)によって制御される。チョッパ30は、太陽電池2によって生成された直流電力を平滑コンデンサC0に供給する。電流センサ7は、太陽電池2からチョッパ30に流れる直流電流IPVを検出し、検出値を示す信号を制御部40に与える。チョッパ30は「第1のDC/DCコンバータ」の一実施例に対応する。
 制御部40は、太陽電池2の端子間電圧VPVと平滑コンデンサC0の端子間電圧VDCとを検出し、それらの検出値と電流センサ7の検出値とに基づいて、チョッパ30を制御する。制御部40は、太陽電池2の端子間電圧VPVが最適動作電圧VDCRになるようにチョッパ30を制御する。あるいは、制御部40は、DC負荷4の消費電流および蓄電池3の充電電流の合計に相当する直流電流が太陽電池2から出力されるようにチョッパ30を制御する。制御部40は、さらに、平滑コンデンサC0の端子間電圧VDCが上限電圧VDCH以下になるようにチョッパ30を制御する。
 チョッパ50は、端子T3,T4間に接続される。チョッパ50は、制御部60(第2の制御部)によって制御される。チョッパ50は、平滑コンデンサC0から蓄電池3に直流電力を供給する。また、チョッパ50は、蓄電池3の直流電力を平滑コンデンサC0に供給する。電流センサ8は、蓄電池3およびチョッパ50の間に流れる直流電流IBを検出し、検出値を示す信号を制御部60に与える。チョッパ50は「第2のDC/DCコンバータ」の一実施例に対応する。
 制御部60は、蓄電池3の端子間電圧VBと平滑コンデンサC0の端子間電圧VDCを検出し、それらの検出値と電流センサ8の検出値とに基づいてチョッパ50を制御する。制御部60は、平滑コンデンサC0の端子間電圧VDCが参照電圧VDCR(<VDCH)になるようにチョッパ50を制御するとともに、蓄電池3の端子間電圧VBが上限電圧VBH(たとえば、300V)以下になるようにチョッパ50を制御する。制御部60は、さらに、平滑コンデンサC0の端子間電圧VDCが上限電圧VDCH以下になるようにチョッパ50を制御する。
 図2は、コンバータ10およびチョッパ30,50の構成を示す回路ブロック図である。図2を参照して、コンバータ10は、スイッチング素子Q1~Q6、ダイオードD1~D6、インダクタL1、およびコンデンサC1を含む。スイッチング素子Q1~Q6は、たとえばIGBT(Insulated Gate Bipolar Transistor)であるが、自己消弧型のスイッチング素子であればこれに限定されるものではない。
 スイッチング素子Q1,Q2は、端子T4と基準電圧のラインとの間に直列に接続される。スイッチング素子Q3,Q4は、端子T4と基準電圧のラインとの間に直列に接続される。スイッチング素子Q5,Q6は、端子T4と基準電圧のラインとの間に直列に接続される。ダイオードD1~D6はそれぞれ、スイッチング素子Q1~Q6に逆並列に接続される。3つのリアクトルL1の各々は、直列接続される2つのスイッチング素子の接続点と端子T1との間に接続される。3つのコンデンサC1の一方電極は端子T1に接続され、それらの他方電極は互いに接続される。スイッチング素子Q1~Q6は、制御部20によってPWM(pulse width modulation)制御される。
 チョッパ30は、コンデンサC2、インダクタL2、スイッチング素子Q7、およびダイオードD7,D10を含む。スイッチング素子Q7は、たとえばIGBTである。コンデンサC2は、端子T2と基準電圧のラインとの間に接続される。インダクタL2およびスイッチング素子Q7は、端子T2と基準電圧のラインとの間に直列に接続される。ダイオードD7は、スイッチング素子Q7に逆並列に接続される。ダイオードD10のアノードはスイッチング素子Q7のコレクタに接続され、そのカソードは端子T4に接続される。
 スイッチング素子Q7は、制御部40によってPWM制御され、所定の周期でオンおよびオフされる。スイッチング素子Q7をオンさせると、太陽電池2からインダクタL2およびスイッチング素子Q7を介して基準電圧のラインに電流が流れ、インダクタL2に電磁エネルギーが蓄えられる。スイッチング素子Q7をオフさせると、インダクタL2に蓄えられた電磁エネルギーが放出され、インダクタL2からダイオードD10を介して平滑コンデンサC0に電流が流れる。このとき、ダイオードD10のアノードの電圧は、太陽電池2の端子間電圧VPVにインダクタL2の端子間電圧を加算した電圧となる。
 チョッパ50は、コンデンサC3、インダクタL3、スイッチング素子Q8,Q9、およびダイオードD8,D9を含む。スイッチング素子Q8,Q9は、たとえばIGBTである。コンデンサC3は端子T3と基準電圧のラインとの間に接続される。スイッチング素子Q8,Q9は、端子T4と基準電圧のラインとの間に直列接続される。ダイオードD8,D9はそれぞれ、スイッチング素子Q8,Q9に逆並列に接続される。インダクタL3は、端子T3とスイッチング素子Q8,Q9の接続点との間に接続される。
 スイッチング素子Q8,Q9は、制御部60によってPWM制御される。チョッパ50は、蓄電池3の端子間電圧VBを昇圧して平滑コンデンサC0に供給する。また、チョッパ50は、平滑コンデンサC0の端子間電圧VDCを降圧して蓄電池3に供給する。
 図3は、制御部40の構成を示す回路ブロック図である。図3を参照して、制御部40は、MPPT(Maximum Power Point Tracking)制御器31、減算器32,34、電圧制御器33、電流制御器48、PWM制御器49、発電抑制部40A、および過電圧抑制部40Bを含む。
 MPPT制御器31は、太陽電池2の最大電力点追従制御を行ない、太陽電池2の出力電圧VPVおよび出力電流IPVに基づいて、太陽電池2の出力が最大になる最適動作電圧を求める。MPPT制御器31は、参照電圧VPVRをその最適動作電圧に設定する。
 太陽電池2においては、出力電流IPVが増加すると端子間電圧VPVが低下するという特性がある。太陽電池2の出力は端子間電圧VPVに応じてなだらかな山状の曲線に沿って変化する。太陽電池2の出力が最大になる点は最大電力点と呼ばれ、そのときの太陽電池2の端子間電圧VPVは最適動作電圧と呼ばれる。
 すなわち、太陽電池2の端子間電圧VPVが最適動作電圧に一致するように電流IPVを取り出すと、太陽電池2から最大電力を取り出すことができる。日射強度が変化すると、最大電力点および最適動作電圧も変化する。このため、MPPT制御器31は、太陽電池2の出力電圧VPVおよび出力電流IPVに基づいて、最適動作電圧に一致するように参照電圧VPVRを調整する。
 減算器32は、太陽電池2の出力電圧VPVの検出値からMPPT制御器31で生成された参照電圧VPVRを減算し、減算結果VPV-VPVRを示す信号を電圧制御器33に与える。電圧制御器33は、VPV-VPVRを0にするための電流指令値IPVR2を生成し、その電流指令値IPVR2を発電抑制部40Aに与える。
 発電抑制部40Aは、加算器35および選択器36を含む。発電抑制部40Aには、無停電電源システム100を統括的に制御する上位制御部から、電流指令値IPVR0および電流指令値IBCが与えられる。
 電流指令値IPVR0は、DC負荷4が必要とする電流を太陽電池2からDC負荷4に流すための指令値である。電流指令値IPVR0は、DC負荷4の消費電力と太陽電池2の出力電圧VPVとに基づいて設定される。
 具体的に説明すると、太陽電池2からDC負荷4に流す電流(以下、消費電流とも称する)をILとすると、DC負荷4の消費電力は、平滑コンデンサC0の端子間電圧VDCと消費電流ILとの積VDC×ILで表わされる。太陽電池2の台数がn(nは正の整数)である場合、DC負荷4に電力を供給するために1台の太陽電池2が発電すべき電力PPVはVDC×IL/nとなる。この電力PPVを太陽電池2が発電するための電流指令値IPVR0は、電力PPVを太陽電池2の端子間電圧VPVで割ることで求めることができる(IPVR0=PPV/VPV)。
 電流指令値IBCは、蓄電池3を所定の満充電状態にするための充電電流IBの指令値であり、蓄電池3の端子間電圧VBに基づいて設定される。具体的には、所定の満充電状態に相当する端子間電圧VBRから蓄電池3の端子間電圧VBの検出値を減算し、減算結果VBR-VBを蓄電池3の内部抵抗値で除算することで、電流指令値IBCを求めることができる。
 加算器35は、電流指令値IPVR0と電流指令値IBCとを加算して電流指令値IPVR1を生成する。
 選択器36は、加算器35からの電流指令値IPVR1と電圧制御器33からの電流指令値IPVR2とを受けると、これら2つの電流指令値IPVR1,IPVR2のうちの最小値を選択する。選択器36は、その選択した電流指令値を参照電流値IPVRに設定する。
 すなわち、発電抑制部40Aは、太陽電池2の最大電力点追従制御によって生成された電流指令値IPVR2と、DC負荷4の消費電流および蓄電池3の充電電流に基づいて生成された電流指令値IPVR1とのうちの小さい方を参照電流値IPVRに設定する。
 太陽電池2から取り出すことができる最大電力が、DC負荷4の消費電力および蓄電池3の充電電力の合計値よりも大きい場合には、IPVR1>IPVR2となることがある。この場合、発電抑制部40Aは、電流指令値IPVR2を参照電流値IPVRに設定する。設定された参照電流値IPVRに一致するように太陽電池2の出力電流IPVが制御されることで、太陽電池2の出力は、DC負荷4の消費電力および蓄電池3の充電電力の合計値の電力に等しくなる。これにより、DC負荷4および蓄電池3が必要とする電力を超える電力を太陽電池2が発電することを抑制することができる。したがって、DC負荷4および蓄電池3が必要とする電力が減少した場合でも、太陽電池2の余剰電力が過大になることを防止できる。これにより、出力端子T4の電圧VDCおよび蓄電池3の端子間電圧VBが過大になることを抑制できる。
 過電圧抑制部40Bは、平滑コンデンサC0の端子間電圧VDCを上限電圧VDCH以下の電圧に制限するように構成される。具体的には、過電圧抑制部40Bは、減算器47、電圧制御器41、リミッタ39、および乗算器38を含む。減算器47は、上限電圧VDCHから平滑コンデンサC0の端子間電圧VDCを減算し、その減算結果VDCH-VDCを示す信号ΔVDCを電圧制御器41に与える。
 電圧制御器41は、VDCH-VDCを0にするために参照電流値IPVRを補正するための係数k1を生成し、その係数k1をリミッタ39に与える。具体的には、電圧制御器41は、リミッタ46、除算器45、減算器43、およびフィルタ42を含む。
 リミッタ46は、減算器47で求められた信号ΔVDC(=VDCH-VDC)が上限値ΔVDCH(>0)と下限値である0との間の値である場合はその信号ΔVDCを通過させる。また、リミッタ46は減算器47からの信号ΔVDCが上限値ΔVDCHよりも正側にある場合は、その信号ΔVDCを上限値ΔVDCHに設定する。また、リミッタ46は、減算器47からの信号ΔVDCが下限値0よりも負側にある場合は、その信号ΔVDCを下限値0に設定する。すなわち、リミッタ46は、減算器47からの信号ΔVDCを0以上かつ上限値ΔVDCH以下の値に制限する。
 除算器45は、リミッタ46からの信号ΔVDCを上限値ΔVDCHで除算し、その除算結果ΔVDC/ΔVDCHを示す信号を減算器43に与える。上述したように、リミッタ46からの信号ΔVDCは、0以上ΔVDCH以下に制限されている。したがって、除算器45から出力される減算結果ΔVDC/ΔVDCHは、0以上1以下の値をとることになる(0≦ΔVDC/ΔVDCH≦1)。
 減算器43は、値“1”から除算器45からの信号ΔVDC/ΔVDCHを減算し、その減算結果1-ΔVDC/ΔVDCHを示す信号を、係数k1としてフィルタ42に与える。ΔVDC/ΔVDCH=1である場合、減算器43から出力される係数1の値は0になる。また、ΔVDC/ΔVDCH=0である場合、減算器43から出力される係数k1の値は1になる。すなわち、減算器43から出力される係数k1は0以上1以下の値となる。
 フィルタ42は、たとえば、抵抗とコンデンサとで構成されるRCフィルタである。係数k1がフィルタ42に入力されると、係数k1は緩やかに変化する。フィルタ42は、遮断周波数以下の低周波成分を通し、高周波成分を除去するためのものである。遮断周波数fc[Hz]とフィルタ42の時定数τ[sec]とには、1=2πfc×τの関係がある。フィルタ42は、係数k1の立上りと立下りとで遮断周波数fcを切替えるように構成されている。
 詳細には、フィルタ42において、立下りの遮断周波数fcは、立上りの遮断周波数fcより高い値に設定されている。たとえば、立下りの遮断周波数fcは2kHzであり、立上りの遮断周波数fcは1kHzである。このようにすると、係数k1の立下りの時定数は係数k1の立上りの時定数よりも小さい値になるため、立下り時間は立上り時間よりも短くなる。フィルタ42を通過した係数k1はリミッタ39に与えられる。
 リミッタ39は、電圧制御器41からの係数k1が0以上1以下である場合はその係数k1を通過させ、電圧制御器41からの係数k1が0未満である場合はその係数k1を0に設定する。
 乗算器38は、発電抑制部40Aからの参照電流値IPVRに係数k1を乗算することで、参照電流値IPVRを補正する。乗算器38は、補正された参照電流値k1×IPVRを減算器34に与える。
 減算器34は、参照電流値k1×IPVRから太陽電池2の出力電流IPVの検出値を減算し、その減算結果k1×IPVR-IPVを示す信号を電流制御器48に与える。電流制御器48は、減算器34で求められた電流k1×IPVR-IPVを流すための電流指令値を生成する。PWM制御器49は、電流制御器48からの電流指令値に応じた値の電流が太陽電池2からDC負荷4に流れるようにチョッパ30を制御する。
 図4は、平滑コンデンサC0の端子間電圧VDCと電圧制御器41によって生成される係数k1との関係を説明するため波形図である。
 図4に示されるように、VDC≦VDCHであるとき(時刻t0~t1の間)、係数k1の値は1となる(k1=1)。時刻t1にてVDC>VDCHになると、係数k1の値は1未満に低下する(k1<1)。このときの係数k1は、ΔVDC(=VDCH-VDC)に応じた値となる。
 時刻t1以降、係数k1の値はフィルタ42の立下りの時定数に従って1から低下する。係数k1を用いて参照電流値IPVRが補正され、その補正された参照電流値k1×IPVRに基づいてチョッパ30が制御されることにより、チョッパ30の出力電圧VDCが低下し始める。時刻t1よりも後の時刻t2にて出力電圧VDCが上限電圧VDCH以下になると、係数k1の値は低下から増加に転じる。フィルタ42の立上りの時定数は立下りの時定数よりも大きいため、係数k1は緩やかに立上る。これにより、時刻t2より後の時刻t3にて出力電圧VDCが増加し始める。係数k1の値が1に戻ると、これに遅れて出力電圧VDCも参照電圧VDCRに収束する。
 平滑コンデンサC0の端子間電圧VDCが上限電圧VDCHを超えた場合、DC負荷4に印加される電圧が過大となることを防ぐためには、端子間電圧VDCを速やかに上限電圧VDCH以下の電圧に制限する必要がある。一方、太陽電池2の出力は日射強度などに左右されるため、不安定であり、かつ、制御応答性も低い。過電圧抑制部40Bにおいて係数k1の立下り時間を立上り時間よりも短くしたことにより、上限電圧VDCHよりも大きい端子間電圧VDCを速やかに低下させることができるとともに、低下した端子間電圧VDCを安定的に参照電圧VDCRに戻すことができる。
 図5は、制御部60の構成を示す回路ブロック図である。図5を参照して、制御部60は、電圧制御部60A、過充電抑制部60B、過電圧抑制部60C、減算器54、加算器55、電流制御器68、およびPWM制御器69を含む。
 電圧制御部60Aは、平滑コンデンサC0の端子間電圧VDCを一定電圧VDCRに制御するように構成される。具体的には、電圧制御部60Aは、減算器65、電圧制御器66、およびリミッタ67を含む。減算器65は、平滑コンデンサC0の端子間電圧VDCから参照電圧VDCR(たとえば、400V)を減算し、その減算結果VDCR-VDCを示す信号を電圧制御器66に与える。参照電圧VDCは、上限電圧VDCHよりも低い電圧に設定される。電圧制御器66は、VDCR-VDCを0にするための電流指令値を生成し、その電流指令値をリミッタ67に与える。
 リミッタ67は、電圧制御器66からの電流指令値が正の上限値と負の上限値との間の値である場合はその電流指令値を通過させる。また、リミッタ67は、電圧制御器66からの電流指令値が正の上限値よりも正側にある場合は、その電流指令値を正の上限値に設定する。また、リミッタ67は、電圧制御器66からの電流指令値が負の下限値よりも負側にある場合は、その電流指令値を負の下限値に設定する。
 過充電抑制部60Bは、蓄電池3の端子間電圧VBを上限電圧VBH(たとえば、300V)以下の電圧に制限するように構成される。具体的には、過充電抑制部60Bは、減算器51、電圧制御器52、およびリミッタ53を含む。減算器51は、上限電圧VBHから蓄電池3の端子間電圧VBを減算し、その減算結果VBH-VBを示す信号を電圧制御器52に与える。電圧制御器52は、VBH-VBを0にするための電流指令値を生成し、その電流指令値をリミッタ53に与える。リミッタ53は、電圧制御器52からの電流指令値が負の場合はその電流指令値を通過させ、電圧制御器52からの電流指令値が正の場合はその電流指令値を0に設定する。
 すなわち、VB<VBHである場合、過充電抑制部60Bから出力される電流指令値の値は0になる。一方、VB>VBHである場合は、過充電抑制部60Bから出力される電流指令値はVBH-VBに応じた値となる。
 加算器55は、電圧制御部60Aからの電流指令値と過充電抑制部60Bからの電流指令値とを加算して参照電流値IBRを生成する。減算器54は、参照電流値IBRから蓄電池3の充電電流IBの検出値を減算し、その減算結果IBR-IBを示す信号を過電圧抑制部60Cに与える。
 過電圧抑制部60Cは、平滑コンデンサC0の端子間電圧VDCを上限電圧VDCH以下の電圧に制限するように構成される。過電圧抑制部60Cは、図3に示した過電圧抑制部40Bと基本的構成が同じである。
 具体的には、過電圧抑制部60Cは、減算器64、電圧制御器58、リミッタ57、および乗算器56を含む。減算器64は、上限電圧VDCHから平滑コンデンサC0の端子間電圧VDCを減算し、その減算結果VDCH-VDCを示す信号ΔVDCを電圧制御器58に与える。電圧制御器58は、減算器54からの信号IBR-IBを補正するための係数k2を生成し、その係数k2をリミッタ57に与える。
 より詳細には、電圧制御器58は、リミッタ63、除算器62、減算器61、およびフィルタ59を含む。リミッタ63は、減算器64で求められた信号ΔVDC(=VDCH-VDC)を0以上かつ上限値ΔVDCH以下の値に制限する。
 除算器62は、リミッタ63からの信号ΔVDCを上限値ΔVDCHで除算し、その除算結果ΔVDC/ΔVDCHを示す信号を減算器61に与える。減算器61は、値“1”から除算器62からの信号ΔVDC/ΔVDCHを減算し、その減算結果1-ΔVDC/ΔVDCHを示す信号を、係数k2としてフィルタ59に与える。減算器61から出力される係数k2は0以上1以下の値となる。
 フィルタ59は、図3のフィルタ42と同じであり、たとえばRCフィルタである。フィルタ59において、立下りの時定数は立上りの時定数よりも小さい値となっている。そのため、フィルタ59を通過した係数k2の立下り時間は、係数k2の立上り時間よりも短くなる。
 リミッタ57は、電圧制御器58からの係数k2が0以上1以下である場合はその係数k2を通過させ、電圧制御器58からの係数k2が0未満である場合はその係数k2を0に設定する。
 乗算器56は、減算器54からの信号IBR-IBに係数k2を乗算し、その乗算結果k2×(IBR-IB)を示す信号を電流制御器66に与える。電流制御器66は、乗算器56で求められた電流k2×(IBR-IB)を流すための電流指令値を生成する。PWM制御器67は、電流制御器66からの電流指令値に応じた値の電流が蓄電池3からDC負荷4に流れるようにチョッパ50を制御する。
 (無停電電源システムの第1の動作例)
 次に、図6~図8を参照して、本実施の形態による無停電電源システム100の動作の一例について説明する。
 本実施の形態による無停電電源システム100は、DC負荷4への電力供給源として、商用交流電源1、太陽電池2、および蓄電池3を有している。これら3つの電力供給源はいずれも、様々な要因(商用系統の異常、日照条件の変動、蓄電池の残容量など)によって、供給可能な電力が変動する。
 そこで、本実施の形態による無停電電源システム100では、上記3つの電力供給源の間で電力供給の優先順位を予め定めておくとともに、優先順位の高い電力供給源が何らかの要因によって電力供給が困難となった場合には、優先順位の低い電力供給源を用いて電力供給を行なう。
 以下に説明する第1のパターンでは、電力供給の優先順位を、高い方から、太陽電池2、商用交流電源1、蓄電池3の順番とする。すなわち、主に、太陽電池2で生成された直流電力がチョッパ30によってDC負荷4に供給される。そして、太陽電池2で生成される直流電力がDC負荷4における消費電力よりも小さくなると、商用交流電源1からの交流電力がコンバータ10によって直流電力に変換されてDC負荷4に供給される。蓄電池3は、太陽電池2および商用交流電源1がともに電力供給が困難となったときのバックアップ電源として用いられる。
 第1のパターンにおいて、無停電電源システム100は、3つのモードA1~A3を有している。無停電電源システム100は、太陽電池2の発電量および商用交流電源1の状態などに応じて、3つのモードA1~A3のうちのいずれかのモードで動作する。
(1)モードA1:
 太陽電池2が発電中である場合、図6に示すように、無停電電源システムはモードA1で動作する。モードA1では、矢印201で示すように、太陽電池2で生成された直流電力がチョッパ30によってDC負荷4に供給される。なお、太陽電池2の発電量がDC負荷4が必要とする電力量よりも大きい場合、矢印203で示すように、余剰電力がチョッパ50によって蓄電池3に供給される。
 このとき、太陽電池2からチョッパ30を介してDC負荷4に電流が流される。太陽電池2の出力電流IPVは、太陽電池2の出力電圧VPVが最適動作電圧になるための電流指令値IPVR2と、DC負荷4の消費電流および蓄電池3の充電電流の合計値に基づいて生成された電流指令値IPVR1とのうちの小さい方に一致するように調整される。
 また、無停電電源装置5の出力電圧VDCが参照電圧VDCRになるように、出力端子T3からチョッパ50を介して蓄電池3に電流が流される。たとえば、晴天が続いて、蓄電池3の端子間電圧VBが上限電圧VBHに到達した場合は、チョッパ50の運転が停止され、蓄電池3の充電が停止される。
 さらに、たとえば、DC負荷4における消費電力が低下して余剰電力が増大し、無停電電源装置5の出力電圧VDCが上限電圧VDCHに到達した場合は、チョッパ30に流れる電流が低減される。
 商用交流電源1から交流電力が供給されている通常時、無停電電源装置5の出力電圧VDCが参照電圧VDCRになるようにコンバータ10が制御される。このようにすると、たとえば太陽電池2の発電量が低下してDC負荷4が必要とする電力量よりも小さくなった場合には、矢印202で示すように、無停電電源装置5は、商用交流電源1からの交流電力を直流電力に変換してDC負荷4に供給することができる。
(2)モードA2:
 たとえば夜になって、太陽電池2の発電量が0になった場合、図7に示すように、無停電電源システムはモードA2で動作する。モードA2では、チョッパ30の運転は停止さる。無停電電源装置5は、矢印204で示すように、商用交流電源1からの交流電力を直流電力に変換してDC負荷4に供給する。
 このとき、無停電電源装置5の出力電圧VDCが参照電圧VDCRになるように、商用交流電源1からコンバータ10を介してDC負荷4に電流が流される。蓄電池3の端子間電圧VBが所定の満充電状態に相当する端子間電圧VBRよりも低い場合は、コンバータ10で生成された直流電力がDC負荷4に供給されるとともに、チョッパ50によって蓄電池3に供給される。これにより、蓄電池3は、所定の満充電状態に充電された後、待機状態となる。
(3)モードA3:
 商用交流電源1が停電した場合、図8に示すように、無停電電源システムはモードA3で動作する。モードA3では、コンバータ10の運転は停止される。矢印205で示すように、太陽電池2で生成された直流電力がチョッパ30によってDC負荷4に供給される。
 このとき、太陽電池2の出力電流IPVは、太陽電池2の出力電圧VPVが最適動作電圧になるための電流指令値IPVR2と、DC負荷4の消費電流および蓄電池3の充電電流の合計値に基づいて生成された電流指令値IPVR1とのうちの小さい方に一致するように調整される。
 また、無停電電源装置5の出力電圧VDCが参照電圧VDCRになるように、蓄電池3からチョッパ50を介して出力端子T3に電流が流される。これにより、太陽電池2の発電量がDC負荷4が必要とする電力量よりも小さい場合には、太陽電池2で生成された直流電力がチョッパ30によってDC負荷4に供給されるとともに、矢印206で示すように、蓄電池3の直流電力がチョッパ50によってDC負荷4に供給される。なお、蓄電池3の端子間電圧VBが下限電圧VBL(たとえば、200V)になった場合は、蓄電池3の過放電を防止するために蓄電池3の放電が停止される。
 さらに、たとえば、DC負荷4における消費電力が低下して余剰電力が増大し、無停電電源装置5の出力電圧VDCが上限電圧VDCHに到達した場合は、チョッパ30,50に流れる電流が低減される。これにより、DC負荷4に印加される電圧および蓄電池3の端子間電圧VBが過大になることを防止することができる。
 (無停電電源システムの第2の動作例)
 以下に説明する第2のパターンは、上記第1のパターンとは、電力供給の優先順位が異なる。第2のパターンでは、電力供給の優先順位を、高い方から、太陽電池2、蓄電池3、商用交流電源1の順番とする。すなわち、太陽電池2で生成された直流電力がDC負荷4に供給される。そして、太陽電池2で生成される直流電力がDC負荷4における消費電力よりも小さいときには、蓄電池3の直流電力がチョッパ50によってDC負荷4に供給される。商用交流電源1は、太陽電池2および蓄電池3がともに電力供給が困難となったときに、無停電電源装置5の出力電圧VDCを一定電圧VDCRに制御するために用いられる。
 第2のパターンにおいて、無停電電源システム100は、3つのモードB1~B3を有している。無停電電源システム100は、太陽電池2の発電量および商用交流電源1の状態などに応じて、3つのモードB1~B3のうちのいずれかのモードで動作する。
(4)モードB1:
 太陽電池2が発電中である場合、図9に示すように、無停電電源システム100はモードB1で動作する。モードB1では、矢印207で示すように、太陽電池2で生成された直流電力がチョッパ30によってDC負荷4に供給される。図示は省略するが、太陽電池2の発電量がDC負荷4が必要とする電力量よりも大きい場合、余剰電力がチョッパ50によって蓄電池3に供給される。
 このとき、太陽電池2からチョッパ30を介してDC負荷4に電流が流される。太陽電池2の出力電流IPVは、太陽電池2の出力電圧VPVが最適動作電圧になるための電流指令値IPVR2と、DC負荷4の消費電流および蓄電池3の充電電流の合計値に基づいて生成された電流指令値IPVR1とのうちの小さい方に一致するように調整される。
 また、無停電電源装置5の出力電圧VDCが参照電圧VDCRになるように、蓄電池3からチョッパ50を介して出力端子T3に電流が流される。これにより、太陽電池2の発電量がDC負荷4が必要とする電力量よりも小さい場合、太陽電池2で生成された直流電力がチョッパ30によってDC負荷4に供給されるとともに、矢印208で示すように、蓄電池3の直流電力がチョッパ50によってDC負荷4に供給される。なお、蓄電池3の端子間電圧VBが下限電圧VBLになった場合は、蓄電池3の過放電を防止するために蓄電池3の放電が停止される。
 さらに、たとえば、DC負荷4における消費電力が低下して余剰電力が増大し、無停電電源装置5の出力電圧VDCが上限電圧VDCHに到達した場合は、チョッパ30,50に流れる電流が低減される。
 商用交流電源1から交流電力が供給されている通常時、無停電電源装置5の出力電圧VDCが参照電圧VDCRになるようにコンバータ10が制御される。このようにすると、たとえば太陽電池2の発電量が低下してDC負荷4が必要とする電力量よりも小さい状況で、蓄電池3の放電が停止された場合は、矢印209で示すように、無停電電源装置5は、商用交流電源1からの交流電力を直流電力に変換してDC負荷4に供給することができる。
(5)モードB2:
 たとえば夜になって、太陽電池2の発電量が0になった場合、図10に示すように、無停電電源システム100はモードB2で動作する。モードB2では、チョッパ30の運転は停止される。無停電電源装置5は、矢印210で示すように、蓄電池3の直流電力をチョッパ50を介してDC負荷4に供給する。このとき、無停電電源装置5の出力電圧VDCが参照電圧VDCRになるようにチョッパ50が制御される。
 蓄電池3の端子間電圧VBが下限電圧VBLになった場合は、蓄電池3の過放電を防止するために蓄電池3の放電が停止される。蓄電池3の放電が停止されると、矢印211で示すように、商用交流電源1からの交流電力がコンバータ10によって直流電力に変換されてDC負荷4に供給される。このとき、無停電電源装置5の出力電圧VDCが参照電圧VDCRになるように、商用交流電源1からコンバータ10を介してDC負荷4に電流が流される。さらに、蓄電池3の端子間電圧VBが所定の満充電状態に相当する端子間電圧VBRよりも低いため、矢印212で示すように、コンバータ10で生成された直流電力がDC負荷4に供給されるとともに、チョッパ50によって蓄電池3に供給される。これにより、蓄電池3は、所定の満充電状態に充電された後、待機状態となる。
(6)モードB3:
 商用交流電源1が停電した場合、図11に示すように、無停電電源システム100はモードB3で動作する。モードB3は、図8で示したモードA3と同じである。すなわち、コンバータ10の運転が停止され、矢印213で示すように、太陽電池2で生成された直流電力がチョッパ30によってDC負荷4に供給される。
 また、太陽電池2の発電量がDC負荷4が必要とする電力量よりも小さい場合、太陽電池2で生成された直流電力がチョッパ30によってDC負荷4に供給されるとともに、矢印214で示すように、蓄電池3の直流電力がチョッパ50によってDC負荷4に供給される。なお、蓄電池3の端子間電圧VBが下限電圧VBLになった場合は、蓄電池3の過放電を防止するために蓄電池3の放電が停止される。
 さらに、たとえば、DC負荷4における消費電力が低下して余剰電力が増大し、無停電電源装置5の出力電圧VDCが上限電圧VDCHに到達した場合は、チョッパ30,50に流れる電流が低減される。
 以上説明したように、この発明の実施の形態による無停電電源システム100では、商用交流電源1からの交流電力を直流電力に変換してDC負荷4に供給するとともに、太陽電池2で生成された直流電力および蓄電池3の直流電力をDC負荷4に供給するように構成されている。このようにすると、従来の無停電電源システムのように、直流電力を交流電力に変換するためのインバータ、およびインバータによって生成された交流電力をさらにDC負荷4に合せた直流電力に変換するためのACアダプタの設置が不要となる。したがって、インバータおよびACアダプタにおいて発生していた電力損失が0となるため、無停電電源システム全体の電力損失を低減することができる。これにより、無停電電源システムの運転効率を向上させることができる。
 また、無停電電源システム100においては、太陽電池2の発電中、DC負荷4における消費電流および蓄電池3の充電電流に応じた値よりも大きな値の電流が太陽電池2からDC負荷4に流れることがないようにチョッパ30が制御される。このようにすると、DC負荷4における消費電力が低下した場合は、チョッパ30に流れる電流が低減されるため、太陽電池2の余剰電力によって出力端子T4の電圧VDCが過大になるのを防止することができる。
 また、太陽電池2の発電中、無停電電源装置5の出力電圧VDCが上昇して上限電圧VDCHを超えた場合には、太陽電池2からチョッパ30を介して出力端子T4に流れる電流を減少させる。さらに、蓄電池3の直流電力をDC負荷4に供給している場合において、無停電電源装置5の出力電圧VDCが上昇して上限電圧VDCHを超えたときには、蓄電池3からチョッパ50を介して出力端子T4に流れる電流を減少させる。したがって、DC負荷4の消費電力が低下した場合でも、出力端子T4の電圧VDCが過大になることを抑制することができるため、DC負荷4が破損するのを防止することができる。
 さらに、蓄電池3の端子間電圧VBが上限電圧VBHを超えた場合は、出力端子T4からチョッパ50を介して蓄電池3に流れる電流を減少させる。したがって、太陽電池2の余剰電力が過大になった場合でも、蓄電池3の端子間電圧VBが過大になることを抑制できるため、蓄電池3が破損するのを防止することができる。
 今回開示された実施の形態は例示であって、上記内容のみに限定されるものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
 1 商用交流電源、2 太陽電池、3 蓄電池、4 DC負荷、5 無停電電源装置、6~8 電流センサ、10 コンバータ、30,50 チョッパ、20,40,60 制御部、31 MPPT制御器、32,34,43,47,51,54,61,64 減算器、33,41,52 電圧制御器、35,55 加算器、36 選択器、38,56 乗算器、39,46,53,57,63 リミッタ、40A 発電抑制部、40B,60C 過電圧抑制部、42,59 フィルタ、45,62 除算器、48,68 電流制御器、49,69 PWM制御器、60A 電圧制御部、60B 過充電抑制部、100 無停電電源システム、CO~C3 コンデンサ、L1~L3 リアクトル、Q1~Q9 スイッチング素子、D1~D10 ダイオード、T1~T4 端子。

Claims (6)

  1.  直流負荷に直流電力を供給するための無停電電源システムであって、
     商用交流電源と前記直流負荷との間に接続される無停電電源装置と、
     太陽光のエネルギーを直流電力に変換する太陽電池と、
     直流電力を蓄える電力貯蔵装置とを備え、
     前記無停電電源装置は、
     前記直流負荷に接続される出力端子と、
     前記太陽電池および前記出力端子の間で直流電圧変換を実行するように構成された第1のDC/DCコンバータと、
     前記電力貯蔵装置および前記出力端子の間で直流電圧変換を実行するように構成された第2のDC/DCコンバータと、
     前記商用交流電源および前記出力端子の間に接続され、前記商用交流電源より供給される交流電力を直流電力に変換するように構成されたコンバータと、
     第1の電流指令値に従った電流を前記太陽電池から前記出力端子に流すように前記第1のDC/DCコンバータを制御するように構成された第1の制御部と、
     第2の電流指令値に従った電流を前記電力貯蔵装置および前記出力端子の間に流すように前記第2のDC/DCコンバータを制御するように構成された第2の制御部と、
     前記商用交流電源から交流電力が供給されている通常時、前記出力端子の電圧が参照電圧になるように前記コンバータを制御するように構成された第3の制御部とを含み、
     前記第1の制御部は、最大電力点追従制御にて前記太陽電池の出力電圧が最適動作電圧になるときの出力電流と、前記太陽電池から前記直流負荷の消費電流および前記電力貯蔵装置の充電電流を出力するための出力電流とのうちの最小値に基づいて前記第1の電流指令値を生成するように構成され、
     前記第2の制御部は、前記出力端子の電圧が前記参照電圧になるように前記第2の電流指令値を生成するように構成される、無停電電源システム。
  2.  前記第1の制御部は、前記出力端子の電圧が前記参照電圧よりも高い第1の上限電圧を超えた場合に前記第1の電流指令値を減少させるように構成される、請求項1に記載の無停電電源システム。
  3.  前記第2の制御部は、前記出力端子の電圧が前記参照電圧よりも高い第1の上限電圧を超えた場合に前記第2の電流指令値を減少させるように構成される、請求項1に記載の無停電電源システム。
  4.  前記第2のDC/DCコンバータは、前記太陽電池で生成された直流電力の余剰電力を前記電力貯蔵装置に充電するように構成され、
     前記第2の制御部は、前記電力貯蔵装置の充電中において、前記電力貯蔵装置の端子間電圧が前記参照電圧よりも低い第2の上限電圧を超えた場合に前記第2の電流指令値を減少させるように構成される、請求項1から3のいずれか1項に記載の無停電電源システム。
  5.  前記第2の制御部は、前記太陽電池の発電停止時、前記出力端子の電圧が前記参照電圧になるように前記第2の電流指令値を生成し、かつ、前記電力貯蔵装置の残容量が下限容量以下となった場合に前記電力貯蔵装置の放電を停止するように構成され、
     前記第3の制御部は、前記太陽電池の発電停止時、前記電力貯蔵装置の放電が停止された後、前記出力端子の電圧が前記参照電圧になるように前記コンバータを制御するように構成される、請求項1から4のいずれか1項に記載の無停電電源システム。
  6.  直流負荷に直流電力を供給するための無停電電源装置であって、
     前記無停電電源装置は、
     前記直流負荷に接続される出力端子と、
     太陽光のエネルギーを直流電力に変換する太陽電池および前記出力端子の間で直流電圧変換を実行するように構成された第1のDC/DCコンバータと、
     直流電力を蓄える電力貯蔵装置および前記出力端子の間で直流電圧変換を実行するように構成された第2のDC/DCコンバータと、
     商用交流電源および前記出力端子の間に接続され、前記商用交流電源より供給される交流電力を直流電力に変換するように構成されたコンバータと、
     第1の電流指令値に従った電流を前記太陽電池から前記出力端子に流すように前記第1のDC/DCコンバータを制御するように構成された第1の制御部と、
     第2の電流指令値に従った電流を前記電力貯蔵装置および前記出力端子の間に流すように前記第2のDC/DCコンバータを制御するように構成された第2の制御部と、
     前記商用交流電源から交流電力が供給されている通常時、前記出力端子の電圧が参照電圧になるように前記コンバータを制御するように構成された第3の制御部とを備え、
     前記第1の制御部は、最大電力点追従制御にて前記太陽電池の出力電圧が最適動作電圧になるときの出力電流と、前記太陽電池から前記直流負荷の消費電流および前記電力貯蔵装置の充電電流を出力するための出力電流とのうちの最小値に基づいて前記第1の電流指令値を生成するように構成され、
     前記第2の制御部は、前記出力端子の電圧が前記参照電圧になるように前記第2の電流指令値を生成するように構成される、無停電電源装置。
PCT/JP2017/000036 2017-01-04 2017-01-04 無停電電源システムおよび無停電電源装置 WO2018127946A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/000036 WO2018127946A1 (ja) 2017-01-04 2017-01-04 無停電電源システムおよび無停電電源装置
KR1020197022550A KR102293959B1 (ko) 2017-01-04 2017-01-04 무정전 전원 시스템 및 무정전 전원 장치
JP2018560276A JP6706349B2 (ja) 2017-01-04 2017-01-04 無停電電源システムおよび無停電電源装置
US16/475,243 US10811900B2 (en) 2017-01-04 2017-01-04 Uninterruptible power supply system and uninterruptible power supply apparatus
CN201780082084.XA CN110121825B (zh) 2017-01-04 2017-01-04 不间断电源系统及不间断电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000036 WO2018127946A1 (ja) 2017-01-04 2017-01-04 無停電電源システムおよび無停電電源装置

Publications (1)

Publication Number Publication Date
WO2018127946A1 true WO2018127946A1 (ja) 2018-07-12

Family

ID=62791124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000036 WO2018127946A1 (ja) 2017-01-04 2017-01-04 無停電電源システムおよび無停電電源装置

Country Status (5)

Country Link
US (1) US10811900B2 (ja)
JP (1) JP6706349B2 (ja)
KR (1) KR102293959B1 (ja)
CN (1) CN110121825B (ja)
WO (1) WO2018127946A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3739721A1 (fr) * 2019-05-13 2020-11-18 ALSTOM Transport Technologies Dispositif d'alimentation en énergie électrique, chaîne de traction et véhicule électrique associés
JP2022517001A (ja) * 2019-01-09 2022-03-03 テキサス インスツルメンツ インコーポレイテッド 光起電サブモジュールのためのコントローラ回路
JP2022053237A (ja) * 2020-09-24 2022-04-05 オムロン株式会社 発電システム、制御方法およびプログラム
JP2022053258A (ja) * 2020-09-24 2022-04-05 オムロン株式会社 発電システム、制御方法およびプログラム
JPWO2022264485A1 (ja) * 2021-06-15 2022-12-22
JP2023000318A (ja) * 2021-06-17 2023-01-04 株式会社村田製作所 パワーコンディショナ
WO2024075212A1 (ja) * 2022-10-05 2024-04-11 東芝三菱電機産業システム株式会社 制御装置及び電力変換装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873206B2 (en) * 2017-05-30 2020-12-22 Schneider Electric It Corporation System and method for power storage and distribution
JP6969391B2 (ja) * 2018-01-09 2021-11-24 オムロン株式会社 蓄電制御装置
WO2019145997A1 (ja) * 2018-01-23 2019-08-01 Tdk株式会社 直流給電システム
US10931116B2 (en) * 2018-03-29 2021-02-23 Astec International Limited Priority load sharing for electrical power systems having multiple power sources
AU2019462417B2 (en) 2019-08-22 2023-05-18 Nissin Electric Co., Ltd. Power supply apparatus and control method of power supply apparatus
ES2988815T3 (es) * 2019-09-12 2024-11-21 Abb Schweiz Ag Sistema de alimentación ininterrumpida, SAI, para conectar una carga polifásica a una fuente de CA y a una fuente de CC
KR102245969B1 (ko) * 2019-11-21 2021-04-29 연세대학교 산학협력단 태양광 발전 시스템의 일정 출력 제어를 위한 장치 및 방법
EP4024140A1 (en) * 2020-12-29 2022-07-06 The Swatch Group Research and Development Ltd Power management method for a solar watch
JP7473898B2 (ja) * 2021-05-27 2024-04-24 株式会社Tmeic 給電装置およびそれを備える給電システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097818A (ja) * 2009-10-02 2011-05-12 Panasonic Electric Works Co Ltd 配電システム
JP2013183577A (ja) * 2012-03-02 2013-09-12 Kyocera Corp 電力制御システム、電力制御装置、及び電力制御方法
JP2014007929A (ja) * 2012-06-27 2014-01-16 Toshiba Mitsubishi-Electric Industrial System Corp 直流変換器およびそれを用いた電力貯蔵型太陽光発電システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947038B1 (ko) * 2007-10-10 2010-03-23 주식회사 씨엠파트너 최대수요전력 제한 기능을 갖는 하이브리드 유피에스시스템
WO2011033820A1 (ja) * 2009-09-16 2011-03-24 東芝三菱電機産業システム株式会社 電力変換システムおよび無停電電源システム
JP2012016149A (ja) * 2010-06-30 2012-01-19 Tokyo Electric Power Co Inc:The 太陽光発電装置
JP5028517B2 (ja) * 2010-10-26 2012-09-19 シャープ株式会社 直流給電システム
US8970176B2 (en) * 2010-11-15 2015-03-03 Bloom Energy Corporation DC micro-grid
KR101135284B1 (ko) * 2010-11-15 2012-04-12 (주)인텍에프에이 충전장치를 채용하고 무효전력 제어기능을 갖는 다중기능 전력변환 장치 및 방법
US9013061B2 (en) * 2011-10-11 2015-04-21 The Aerospace Corporation Multisource power system
CN102638195B (zh) * 2012-03-31 2014-10-01 东北大学 一种太阳能发电系统控制方法
JP6286901B2 (ja) * 2013-03-05 2018-03-07 シンフォニアテクノロジー株式会社 発電システム
US10454277B2 (en) * 2016-06-08 2019-10-22 Faith Technologies, Inc. Method and apparatus for controlling power flow in a hybrid power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097818A (ja) * 2009-10-02 2011-05-12 Panasonic Electric Works Co Ltd 配電システム
JP2013183577A (ja) * 2012-03-02 2013-09-12 Kyocera Corp 電力制御システム、電力制御装置、及び電力制御方法
JP2014007929A (ja) * 2012-06-27 2014-01-16 Toshiba Mitsubishi-Electric Industrial System Corp 直流変換器およびそれを用いた電力貯蔵型太陽光発電システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7355831B2 (ja) 2019-01-09 2023-10-03 テキサス インスツルメンツ インコーポレイテッド 光起電サブモジュールのためのコントローラ回路
JP2022517001A (ja) * 2019-01-09 2022-03-03 テキサス インスツルメンツ インコーポレイテッド 光起電サブモジュールのためのコントローラ回路
FR3096191A1 (fr) * 2019-05-13 2020-11-20 Alstom Transport Technologies Dispositif d’alimentation en énergie électrique, chaîne de traction et véhicule électrique associés
EP3739721A1 (fr) * 2019-05-13 2020-11-18 ALSTOM Transport Technologies Dispositif d'alimentation en énergie électrique, chaîne de traction et véhicule électrique associés
JP2022053237A (ja) * 2020-09-24 2022-04-05 オムロン株式会社 発電システム、制御方法およびプログラム
JP2022053258A (ja) * 2020-09-24 2022-04-05 オムロン株式会社 発電システム、制御方法およびプログラム
JP7556250B2 (ja) 2020-09-24 2024-09-26 オムロン株式会社 発電システム、制御方法およびプログラム
JP7556249B2 (ja) 2020-09-24 2024-09-26 オムロン株式会社 発電システム、制御方法およびプログラム
WO2022264485A1 (ja) * 2021-06-15 2022-12-22 Fdk株式会社 電源システム及び蓄電装置
JPWO2022264485A1 (ja) * 2021-06-15 2022-12-22
US12322962B2 (en) 2021-06-15 2025-06-03 Fdk Corporation Power supply system and electricity storage device
JP7424351B2 (ja) 2021-06-17 2024-01-30 株式会社村田製作所 パワーコンディショナ
JP2023000318A (ja) * 2021-06-17 2023-01-04 株式会社村田製作所 パワーコンディショナ
WO2024075212A1 (ja) * 2022-10-05 2024-04-11 東芝三菱電機産業システム株式会社 制御装置及び電力変換装置
JP7468806B1 (ja) * 2022-10-05 2024-04-19 株式会社Tmeic 制御装置及び電力変換装置

Also Published As

Publication number Publication date
US20190334377A1 (en) 2019-10-31
US10811900B2 (en) 2020-10-20
CN110121825B (zh) 2022-08-09
JP6706349B2 (ja) 2020-06-03
CN110121825A (zh) 2019-08-13
KR20190100373A (ko) 2019-08-28
KR102293959B1 (ko) 2021-08-25
JPWO2018127946A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6706349B2 (ja) 無停電電源システムおよび無停電電源装置
JP5641144B2 (ja) 電力変換装置
US8547716B2 (en) Power converting apparatus, grid interconnection apparatus and grid interconnection system
JP5882845B2 (ja) 電力貯蔵型太陽光発電システム
EP2362517A2 (en) Power storage system
US20130175867A1 (en) Grid-connected power storage system and method for controlling grid-connected power storage system
JP5541982B2 (ja) 直流配電システム
EP2365606A1 (en) A battery system
WO2006090672A1 (ja) 電力変換装置
JP7228949B2 (ja) 電力変換装置
JP2017175888A (ja) 電力変換システム、電力変換装置
KR20210003815A (ko) 무정전 전원 장치
JP3656694B2 (ja) 電力変換装置
JP2014099986A (ja) 複合蓄電システム
JP2020137275A (ja) 電源システム、電力変換装置、及び電力変換装置の制御方法
Wu et al. Solar power generation system with power smoothing function
EP3869682B1 (en) A method and a control device for controlling a power converter
JP7272897B2 (ja) 充放電制御装置およびそれを備えたバッテリ並びに直流給電システム
JP5810254B2 (ja) 蓄電装置
JP2009247185A (ja) 系統連系インバータ装置およびその自立運転方法
JP5528730B2 (ja) 電力変換装置
Shen et al. Hybrid photovoltaic generation system with novel islanding detection method
JP5294908B2 (ja) 電力変換装置
WO2011118771A1 (ja) 充放電システム
US20240195178A1 (en) Power conversion device and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018560276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197022550

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17890697

Country of ref document: EP

Kind code of ref document: A1