WO2018127970A1 - ファン、送風機、及び電動機 - Google Patents
ファン、送風機、及び電動機 Download PDFInfo
- Publication number
- WO2018127970A1 WO2018127970A1 PCT/JP2017/000271 JP2017000271W WO2018127970A1 WO 2018127970 A1 WO2018127970 A1 WO 2018127970A1 JP 2017000271 W JP2017000271 W JP 2017000271W WO 2018127970 A1 WO2018127970 A1 WO 2018127970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pitch angle
- pitch
- blades
- fan
- angles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/666—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
Definitions
- the present invention relates to a fan, a blower, and an electric motor.
- a fan that generates an airflow includes a plurality of blades arranged at an equal pitch in the circumferential direction of the rotation shaft, and the airflow is generated by rotating the plurality of blades around the rotation shaft.
- a fan in which a plurality of blades are arranged at an equal pitch is a so-called blade cutting sound or pure noise that is a noise whose fundamental frequency is a value obtained by the product of the number of rotations and the number of blades when the plurality of blades are rotated. Tone, which causes discomfort to the user.
- Patent Document 1 In order to reduce noise, a fan is known in which a plurality of blades arranged in the circumferential direction of a rotating shaft are arranged at unequal pitches (Patent Document 1).
- the pitch angle of the blades is different for each adjacent blade, and each pitch angle is aperiodically changed.
- Patent Document 2 a method using a fan in which blades are arranged using a periodic pseudo-random array pattern is known.
- a fan as a cooling fan for an electric motor that drives a vehicle
- the cooling fan is connected to the axle, as the axle is rotated forward or reverse, the cooling fan is also rotated forward or reverse.
- the cooling fan needs to have an equivalent noise reduction effect in both forward and reverse rotations.
- Fans with blades arranged at unequal pitches and fans with blades arranged in a periodic pseudo-random arrangement are mixed with blades with different pitches. These patterns are different and an equivalent noise reduction effect cannot be achieved.
- the present invention has been made in view of the above reasons, has a simple structure, is inexpensive, can greatly reduce noise, and exhibits a similar noise reduction effect during forward rotation and reverse rotation of the fan,
- An object is to provide a blower and an electric motor.
- a fan according to the present invention provides: A support member that rotates about a rotation axis; and n (n is an integer of 2 or more) blades that are attached to the support member and are arranged radially around the rotation axis.
- the n blades are arranged around the rotation axis at n pitch angles, Any one of the n blades is used as a reference blade, and a first pitch angle is formed between the reference blade and a blade adjacent to the first direction of the circumference of the rotation shaft,
- the first pitch angles are arranged in the m direction (m is an integer of 1 or more, n> m) in the first direction,
- a second pitch angle different from the first pitch angle is formed by the reference blade and a blade adjacent to the second direction that is opposite to the first direction, and the second pitch angle is , N ⁇ m arranged in the second direction,
- a first summed pitch angle obtained by summing m of the first pitch angles is different from a second summed pitch angle obtained by summing nm of the second pitch angles.
- a fan, a blower, and an electric motor that have a simple structure, are inexpensive, can greatly reduce noise, and have the same noise reduction effect during forward rotation and reverse rotation of the fan. it can.
- FIG. 1 is a schematic front view of a blower including a centrifugal fan according to Embodiment 1 of the present invention. Schematic sectional view taken along line AA in FIG. 1A The figure which shows the arrangement
- FIG. 1A The figure which shows the arrangement
- FIG. which shows the pitch angle of the blade
- wing of a comparative example The figure which shows the arrangement
- FIG. The figure which shows the arrangement
- Schematic diagram of an electric motor provided with a centrifugal fan according to Embodiment 4 The figure which shows the arrangement
- FIG. 1A and FIG. 1B show a blower 1 including a centrifugal fan according to the present embodiment.
- the blower 1 includes a centrifugal fan 10, a housing 20 that houses the centrifugal fan 10, a rotating shaft 30 that rotates the centrifugal fan 10, a motor 40 that drives the rotating shaft 30, Is provided.
- the centrifugal fan 10 includes a main plate 11 that is a support member and a plurality of blades 12.
- the main plate 11 is a member that supports the plurality of blades 12, and is a member formed in a disk shape.
- the main plate 11 is attached to the rotary shaft 30 when the rotary shaft 30 of the motor 40 is fixed through the center of the main plate 11.
- the plurality of blades 12 are attached to one surface of the main plate 11 radially in the circumferential direction around the rotation shaft 30.
- the plurality of blades 12 are radial blades in which each blade faces the radial direction.
- the centrifugal fan 10 provided with such blades can be applied to a plate blower.
- the attachment angle between the main plate 11 and the blades 12 is set to 90 °.
- the housing 20 is a flat box-shaped member and accommodates the centrifugal fan 10 therein.
- the housing 20 includes main walls 20a and 20b facing each other, and a side wall 20c surrounding a region between the main walls 20a and 20b.
- Centrifugal fan 10 is housed inside housing 20 with rotating shaft 30 along the thickness direction of housing 20.
- a suction port 21 is provided in the main wall 20 b of the housing 20 at a position facing the centrifugal fan 10.
- a discharge port 22 is provided in a part of the side wall 20 c of the housing 20.
- the blower 1 sucks air from the suction port 21 located on the extension line of the rotary shaft 30 of the centrifugal fan 10 as indicated by an arrow AR1 in FIG. 1B.
- the sucked air is compressed in the housing 20 and discharged from a discharge port 22 provided in a direction orthogonal to the rotation shaft 30 of the housing 20 as indicated by an arrow AR2 in FIG. 1A.
- the blower 1 is applied to various devices such as a ventilation fan and an air curtain. Moreover, the air blower 1 is applied to an air conditioner by disposing a heat exchanger in the vicinity of the discharge port 22 of the air blower 1.
- the blades 12 and the main plate 11 of the centrifugal fan 10 are made of, for example, stainless steel, aluminum, titanium, or synthetic resin depending on the size or type of the device to be applied.
- the arrangement of the blades 12 of the centrifugal fan 10 is as follows: (1) the total number n of blades is an odd number; (2) the pitch angle types are the first pitch angle ⁇ 1 and the second pitch. There are two types of angles ⁇ 2, the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are different, and (3) m first pitch angles ⁇ 1 are arranged side by side in the first direction. Pm pitch angles ⁇ 2 are arranged side by side in the second direction, and (4) there is one difference between the number of first pitch angles ⁇ 1 and the number of second pitch angles ⁇ 2. (5) The first summed pitch angle obtained by adding m first pitch angles ⁇ 1 is different from the second summed pitch angle obtained by adding nm second pitch angles ⁇ 2.
- the number of blades of the centrifugal fan 10 is set to 11, and the blades W1 to W11 are arranged around the rotating shaft 30.
- the blades W1 to W11 are arranged around the rotation axis 30, eleven pitch angles are formed.
- the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are defined with any one of 11 blades as a reference blade.
- the blade W1 is set as a reference blade
- the blade W1 and the clockwise direction of the circumference of the blade W1 and the rotating shaft 30 (the X direction in the figure: hereinafter “first The pitch angle formed by the blades W2 adjacent to each other in the “direction X”) is defined as a first pitch angle ⁇ 1.
- the pitch angle formed by the blade W1 and the blade W11 adjacent to the blade W1 and the counterclockwise direction of the circumference of the rotating shaft 30 (the Y direction in the drawing: hereinafter referred to as “second direction Y”). Is defined as a second pitch angle ⁇ 2.
- the definition of the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 is also defined in the following second to fourth embodiments.
- the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are uniquely determined by the following expression by determining the total number of blades and the ratio of the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2.
- n is set to 11 and ⁇ is set to 1.3. Then, these values are applied to Equation 2 under the condition that the number of small pitch angles is increased by one. Then, since ⁇ can be derived as 28.8 °, a small pitch angle is determined to be 28.8 ° and a large pitch angle is determined to be 37.44 °. Assuming that the large pitch angle is the first pitch angle ⁇ 1 and the small pitch angle is the second pitch angle ⁇ 2, as shown in FIG. 2, the first pitch angle ⁇ 1 is the first pitch angle between the blades W1 and W6. Are arranged side by side in the direction X, and six second pitch angles ⁇ 2 are arranged in the second direction Y between the blades W1 and W6.
- the pitch angles are 37.44 °, 37.44 °, 37.44 °, 37.44 °, 37.44 °, 28.8 °, 28.8 °, 28.8 °, 28.8 ° and 28.8 °.
- the position of the pitch angle is specified by attaching numbers 1 to 11 along the first direction X.
- the first total pitch angle is formed by arranging five first pitch angles ⁇ 1, and the second total pitch angle is formed by arranging six second pitch angles ⁇ 2.
- the first summed pitch angle is different from the second summed pitch angle, and the first summed pitch angle and the second summed pitch angle are around the rotation axis 30 as shown in FIG. Are arranged with the boundary line D1 as a boundary.
- the blade characteristics of the centrifugal fan 10 having such a blade arrangement will be described in comparison with a comparative example.
- blades of the centrifugal fan of the comparative example blades in which 11 blades are arranged at an equal pitch around the rotation axis (hereinafter referred to as “equal pitch blades”), and 11 blades are periodically simulated around the rotation axis.
- Blades arranged according to a random arrangement hereinafter referred to as “periodic pseudo-random arrangement blades”.
- FIG. 3 is a table showing the pitch angles of the equi-pitch blades, the periodic pseudo-random array blades, and the blades of the present embodiment in association with the pitch angle position numbers.
- the numbers shown in the column of the pitch angle positions are numbers corresponding to the numbers of the pitch angle positions in FIG.
- the pitch angle of the equal pitch blades is the same for all pitch angles. Specifically, eleven blades are arranged with a pitch angle of 32.73 °.
- an M-type array is used as the periodic pseudo-random array of the periodic pseudo-random array blades.
- the M system array is a binary number sequence of 0 and 1 having a period of 2 n ⁇ 1, the number of number sequences in one period is an odd number, and the difference between the numbers of “0” and “1” Is defined as 1.
- “0” is associated with a large pitch angle
- “1” is associated with a small pitch angle
- the period is set to 11.
- the numerical sequence indicated by the M-sequence is 110111100010. As shown in FIG.
- the pitch angle based on this number sequence corresponds to the position of the pitch angle, 28.8 °, 28.8 °, 37.44 °, 28.8 °, 28.8 °, 28 8 °, 37.44 °, 37.44 °, 37.44 °, 28.8 ° and 37.44 °.
- FIGS. 4A, 4B, and 4C show changes in sound pressure Pn (t) with the passage of time at arbitrary observation points of the equi-pitch blades, the periodic pseudo-random array blades, and the blades of the present embodiment, respectively.
- FIG. 4A is a graph in which sound pressure P1 (t) of equal pitch blades is measured along time lapse t
- FIG. 4B is a graph in which sound pressure P2 (t) of periodically pseudorandom array blades is measured along time lapse t
- FIG. 4C is a graph obtained by measuring the sound pressure P3 (t) of the blade according to the present embodiment over time.
- the vertical axis represents the value of the sound pressure P with the maximum value of the sound pressure set to 1 and the minimum value set to 0, and the horizontal axis represents the time t.
- P1 (t) sin ( ⁇ t)
- the maximum value of the sound pressure P1 is periodically generated when the blade passes through the observation point. Therefore, the maximum sound pressure is generated when each of the blades W1 to W11 passes through the observation point. Since the pitch angles of all the blades are equal, the maximum sound pressure is generated at equal time intervals.
- the maximum sound pressure is generated at the timing when each of the blades W1 to W11 arrayed according to the M-system array passes the observation point. Since the blades are arranged in a periodic pseudo-random arrangement, the maximum sound pressure is generated according to the arrangement interval.
- the blades W1 to W6 arranged at the first pitch angle ⁇ 1 and the blades W6 to W11 arranged at the second pitch angle ⁇ 2 The maximum sound pressure is generated at the timing of passing through.
- the maximum sound pressure is generated according to the arrangement interval of the blades arranged at the first pitch angle ⁇ 1 and the arrangement interval of the blades arranged at the second pitch angle ⁇ 2.
- FIG. 5 is a graph showing the relationship between amplitude and frequency obtained by FFT analysis.
- the vertical axis represents amplitude
- the horizontal axis represents frequency.
- the equi-pitch blades showed a peak spectrum of 0.5 at a frequency of 550 Hz, which is a fundamental frequency obtained from a frequency of 50 Hz ⁇ total number of blades of 11.
- the periodically pseudorandom array of vanes showed a peak spectrum of 0.3741005 at a frequency of 550 Hz.
- the blade used in the present embodiment showed two peak spectra on the low frequency side and the high frequency side with a frequency of 550 Hz, and the higher peak spectrum was 0.28127575.
- the peak spectrum value can be kept low and the peak value can be dispersed and the noise of the centrifugal fan 10 can be reduced as compared with the blades of the equal pitch blade and the periodic pseudo-random arrangement. It can be greatly reduced.
- the centrifugal fan 10 is arranged such that the first summed pitch angle and the second summed pitch angle are biased around the rotation shaft 30. Noise can be greatly reduced. Further, since the centrifugal fan 10 is manufactured by applying only two types of pitch angles, the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2, the design of the centrifugal fan 10 is simplified and the manufacturing cost is reduced. Can be reduced.
- the centrifugal fan 10 according to the present embodiment can be applied to various products that use the blower 1, for example, a ventilation fan or an air conditioner, by being incorporated in the blower 1, so that when these products are operated, Noise can be greatly reduced.
- the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are set under the condition that the number of small pitch angles is increased by one.
- the same effect can be obtained in another example (not shown) in which the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are set.
- n is set to 11 and ⁇ is set to 1.3. These values are applied to the above equation 1. Then, since ⁇ can be derived as 28.12 °, a small pitch angle is calculated as 28.12 ° and a large pitch angle is determined as 36.56 °. If the large pitch angle is the first pitch angle ⁇ 1 and the small pitch angle is the second pitch angle ⁇ 2, six first pitch angles ⁇ 1 are arranged in the first direction X between the blades W1 and W7. In addition, five second pitch angles ⁇ 2 are arranged in the second direction Y between the blades W7 and W1.
- the pitch angle is 36.56 °, 36.56 °, 36.56 °, 36.56 °, 36.56 °, 36.56 °, 28.12 °, 28.12 °, 28.12 °, 28.12 °, and 28.12 °.
- the first total pitch angle is formed by arranging six first pitch angles ⁇ 1, and the second total pitch angle is formed by arranging five second pitch angles ⁇ 2.
- the first summed pitch angle and the second summed pitch angle are different from each other, and the first summed pitch angle and the second summed pitch angle are arranged around the rotating shaft 30 in a biased manner.
- the pitch angle is set under the condition that the number of large pitch angles is increased by one, the first combined pitch angle and the second combined pitch angle are biased around the rotating shaft 30, so that the centrifugal fan 10 noise can be greatly reduced.
- centrifugal fan 10 of the present embodiment has an equivalent noise reduction effect in both cases where the rotating shaft 30 of the centrifugal fan 10 rotates forward and reverse.
- the blade characteristics in the case of normal rotation and reverse rotation will be described below in comparison with a periodic pseudo-random array blade.
- the pitch angle arrangement of the periodically pseudo-random array blades can be represented by an array of 110101100010, with a large pitch angle corresponding to “0” and a small pitch angle corresponding to “1”.
- the centrifugal fan When the centrifugal fan is rotated forward once, the blades pass through the observation points in this order of arrangement, and the pattern of the sound pressure P2 (t) shown in FIG. 4B is shown.
- the centrifugal fan is reversed once, the blades pass through the observation points in an arrangement order different from normal rotation of 01000111011. Therefore, the pattern of sound pressure generated differs between forward rotation and reverse rotation, and the noise reduction effect is also different.
- the noise reduction effect may be reduced when the centrifugal fan is reversed.
- the centrifugal fan 10 can be rotated in both the first direction X that is the forward rotation direction and the second direction Y that is the reverse rotation direction.
- the direction of rotation is determined according to the application of the centrifugal fan 10 and the user's request.
- the pitch angle of the blades of the present embodiment is set to “0” as in the case of the pitch angle of the periodic pseudo-random array blades.
- the small pitch angle is made to correspond to “1”.
- the pitch angles of the blades of the present embodiment shown in FIG. 3 can be represented by an arrangement of 00000111111 from the pitch angle positions “1” to “11”.
- the blade pattern when the centrifugal fan 10 continuously rotates forward or backward can be explained as follows.
- the area around the rotation axis 30 is indicated by a first summed pitch angle area (hereinafter referred to as “A area”) obtained by adding five first pitch angles ⁇ 1 indicated by an array of 00000 and an array of 111111.
- a area a first summed pitch angle area
- B region a second summed pitch angle region obtained by summing six second pitch angles ⁇ 2.
- the total number of blades is an odd number
- the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are set to different angles
- the difference from the number of ⁇ 2 was 1.
- the present invention is not limited to the number of blades and the number of pitch angles, and the total number of blades is an even number, and the number of first pitch angles ⁇ 1 is equal to the number of second pitch angles ⁇ 2. Also applies.
- the arrangement of the blades of the centrifugal fan according to the present embodiment is as follows: (1) The total number n of blades is an even number; (2) The pitch angle types are the first pitch angle ⁇ 1 and the second pitch angle. There are two types, the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are different, and (3) m first pitch angles ⁇ 1 are arranged side by side in the first direction, and the second pitch angle ⁇ 2 Are arranged side by side in the second direction, (4) the number of first pitch angles ⁇ 1 is the same as the number of second pitch angles ⁇ 2, and (5) first The first total pitch angle obtained by adding m pitch angles ⁇ 1 and the second total pitch angle obtained by adding nm second pitch angles ⁇ 2 are different from each other.
- the centrifugal fan of the present embodiment has the same basic configuration as the centrifugal fan 10 of the first embodiment.
- the centrifugal fan 10 of the present embodiment can be rotated in both the first direction X that is the forward rotation direction and the second direction Y that is the reverse rotation direction.
- the direction of rotation is determined according to the application of the centrifugal fan 10 and the user's request.
- the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are uniquely determined by the following expression by determining the total number of blades and the ratio of the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2.
- n / 2 ⁇ ⁇ + n / 2 ⁇ ⁇ ⁇ ⁇ 360 ° (Formula 3)
- n is the total number of blades
- ⁇ is the angle of the small pitch angle
- ⁇ is the ratio of the large pitch angle to the small pitch angle.
- n is set to 10 and ⁇ is set to 1.3, and these values are applied to Equation 3. Then, since ⁇ can be derived as 31.3 °, a small pitch angle is determined to be 31.3 ° and a large pitch angle is determined to be 40.69 °. If the large pitch angle is the first pitch angle ⁇ 1 and the small pitch angle is the second pitch angle ⁇ 2, as shown in FIG. 6, the first pitch angle ⁇ 1 is the first pitch angle between the blades W1 and W6. The second pitch angle ⁇ 2 is arranged side by side in the second direction Y between the blades W1 and W6.
- the pitch angle is 40.69 °, 40.69 °, 40.69 °, 40.69 °, 40.69 °, 40.69 °, 31.3 °, It is defined as 31.3 °, 31.3 °, 31.3 °, 31.3 °.
- the first total pitch angle is formed by arranging five first pitch angles ⁇ 1, and the second total pitch angle is formed by arranging five second pitch angles ⁇ 2.
- the first summed pitch angle and the second summed pitch angle are different, and the first summed pitch angle and the second summed pitch angle are around the rotation axis 30 as shown in FIG. , They are arranged biased with respect to the boundary line D2.
- the noise of the centrifugal fan 10 can be greatly reduced.
- first total pitch angle in which five first pitch angles ⁇ 1 are arranged and the second total pitch angle in which five second pitch angles ⁇ 2 are arranged are arranged around the rotation axis 30, In both cases where the centrifugal fan 10 rotates forward and reversely, the same sound pressure pattern is generated, and an equivalent noise reduction effect is achieved.
- the blade arrangement of the centrifugal fan according to the present embodiment is as follows: (1) The total number n of the blades is odd or even; (2) The pitch angle types are the first pitch angle ⁇ 1 and the second pitch. The first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are different, and (3) m first pitch angles ⁇ 1 are arranged in the first direction, and the second pitch angle The angle ⁇ 2 is arranged in a number of nm in the second direction, and (4) the difference between the number of the first pitch angles ⁇ 1 and the number of the second pitch angles ⁇ 2 is 2 or more, (5) The first summed pitch angle obtained by summing m first pitch angles ⁇ 1 is different from the angle of the second summed pitch angle obtained by summing nm second pitch angles ⁇ 2. It is characterized by.
- the centrifugal fan of the present embodiment has the same basic configuration as the centrifugal fan 10 of the first embodiment.
- the centrifugal fan 10 of the present embodiment can be rotated in both the first direction X that is the forward direction and the second direction Y that is the reverse direction.
- the direction of rotation is determined according to the application of the centrifugal fan 10 and the user's request.
- the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are uniquely determined by the following expression by determining the total number of blades and the ratio of the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2.
- n is set to 11
- ⁇ is set to 1.3
- a is set to 3 (the number of large pitch angles is three more than the number of small pitch angles).
- ⁇ can be derived as 27.5 °, so that a small pitch angle is 27.5 ° and a large pitch angle is 35.7 °.
- the first pitch angle ⁇ 1 is the first pitch angle between the blades W1 and W5.
- the second pitch angle ⁇ 2 is arranged in the second direction Y between the blades W1 and W5.
- the pitch angle is 27.5 °, 27.5 °, 27.5 °, 27.5 °, 35.7 °, 35.7 °, It is defined as 35.7 °, 35.7 °, 35.7 °, 35.7 °, and 35.7 °.
- a first summed pitch angle is formed by adding four first pitch angles ⁇ 1
- a second total pitch angle is formed by adding seven pitch angles ⁇ 2.
- the first summed pitch angle is different from the second summed pitch angle
- the first summed pitch angle and the second summed pitch angle are around the rotation axis 30 as shown in FIG. Are arranged with the boundary line D3 as a boundary.
- the centrifugal fan 10 is arranged so that the first summed pitch angle and the second summed pitch angle are biased around the rotation shaft 30.
- the generated noise can be greatly reduced.
- first total pitch angle in which four first pitch angles ⁇ 1 are arranged and the second total pitch angle in which seven second pitch angles ⁇ 2 are arranged are arranged around the rotation axis 30, In both cases where the centrifugal fan 10 rotates forward and reversely, the same sound pressure pattern is generated, and an equivalent noise reduction effect is achieved.
- the first combined pitch angle and the second combined pitch angle are arranged so as to surround the entire circumference of the rotating shaft 30, and the first combined pitch angle and the second combined pitch angle are arranged. It was explained that the combined pitch angle is different.
- the present invention is not limited to surrounding the entire circumference of the rotating shaft with only the first summing angle and the second summing angle, and the third summing of the first summing pitch angle and the second summing pitch angle is the third. May be formed, and two or more of the third total angles may be arranged around the rotation axis.
- the centrifugal fan according to the present embodiment is mainly used as a cooling fan for electric motors for railway vehicles.
- An electric motor for a railway vehicle including a centrifugal fan will be described with reference to FIG.
- the electric motor 100 includes a frame 200, a stator 300, a rotor 400, a rotating shaft 500 that rotates integrally with the rotor 400, and a centrifugal fan 600 attached to the rotating shaft 500.
- the frame 200 is disposed so as to surround the stator 300 and the rotor 400, and is formed with a suction port 201 through which air is sucked and a discharge port 202 through which the sucked air is discharged.
- the stator 300 includes a stator core 301 and a stator coil 302 wound around the stator core 301, and the rotor 400 is disposed to face the stator 300.
- a rotation shaft 500 is fixed through the central portion of the rotor 400.
- One end of the rotating shaft 500 is connected to an axle (not shown) of the vehicle, and the rotating shaft 500 is rotated to rotate the axle. Both ends of the rotating shaft 500 are supported by bearings 501 provided on the frame 200.
- the centrifugal fan 600 includes a plurality of blades 601, and the plurality of blades 601 are arranged radially around the rotation shaft 500.
- centrifugal fan 600 attached to the rotating shaft 500 also rotates. While the rotating shaft 500 is rotating, the temperature of the components of the electric motor 100 rises due to the copper loss generated in the stator coil 302 and the iron loss due to the induced current generated in the rotor 400. Centrifugal fan 600 is rotated in accordance with rotation of rotating shaft 500, and air is introduced from suction port 201 by rotating centrifugal fan 600. As the introduced air passes through the electric motor 100 and is discharged from the discharge port 202, the inside of the electric motor 100 is cooled.
- the electric motor 100 rotates the rotary shaft 500 according to the driving direction.
- the rotary shaft 500 is rotated in the P direction as shown in FIG. 8 in the case of driving in the forward direction, and is rotated in the Q direction that is opposite to the P direction in the case of driving in the backward direction.
- the arrangement of the blades of the centrifugal fan 600 is an unequal pitch arrangement or a periodic pseudo-random arrangement, when the rotary shaft 500 is viewed in a certain direction of the rotor 400 and from the opposite direction, The arrangement of the pitch angles of the blades is different.
- Centrifugal fan 600 in the present embodiment can be suitably applied to a centrifugal fan that needs to rotate in the P direction and Q direction, specifically, to rotate forward and backward.
- the P direction corresponds to the first direction shown in FIG. 9, and the Q direction corresponds to the second direction Y.
- the blade arrangement of the centrifugal fan 600 is as follows: (1) the total number n of blades is an even number; (2) pitch angle types are the first pitch angle ⁇ 1 and the second pitch angle. There are two types of ⁇ 2, and the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are different, and (3) the first pitch angle ⁇ 1 is arranged side by side in the first direction, and the second pitch angle The angle ⁇ 2 is arranged side by side in the second direction, and (4) the first summed pitch angle obtained by adding the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 summed by q. (4) The first summed pitch angle and the second summed pitch angle are summed to form a third pitch angle, and the third pitch angle is set to the rotational axis. It is characterized by arranging two or more around.
- the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 are uniquely determined by the above formula 4 or formula 5 by determining the total number of blades and the ratio of the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2. Determined.
- the number of first pitch angles ⁇ 1 and the number of second pitch angles ⁇ 2 are the same, and n is set to 12 and ⁇ is set to 1.3.
- ⁇ can be derived as 26.1 °, so that the small pitch angle is 26.1 ° and the large pitch angle is 33.9 °.
- the first pitch angle ⁇ 1 is between the blades W1 and W4 as shown in FIG. Are arranged side by side in the direction X, and the second pitch angle ⁇ 2 is arranged side by side in the second direction Y between the blades W1 and W11.
- a first total pitch angle is formed by arranging three first pitch angles ⁇ 1, and a second total pitch angle is formed by arranging three second pitch angles ⁇ 2.
- the first combined pitch angle is And the second total pitch angle are formed differently.
- first summed pitch angle and the second summed pitch angle are summed to form a third summed pitch angle.
- the third combined pitch angle is formed between W10 and W4 in the first direction X in FIG. Then, by forming this third combined pitch angle in the second direction Y of W10 and W4, two third combined pitch angles are formed around the rotation axis 500.
- a region where the first summed pitch angle is formed is an A region
- a region where the second summed pitch angle is formed is a B region
- the method of arranging the A region and the B region is a method in which the periphery of the rotation axis 500 is first divided into four or more even regions, and then A and B are alternately arranged in the divided regions.
- wing of FIG. 9 is demonstrated below using the said method.
- FIG. 10A the region around the rotation axis 500 is divided into four regions. Then, the A area and the B area are alternately arranged in the four divided areas.
- FIG. 10B shows an arrangement of areas when the area to be divided is 8 which is an even number of 4 or more. As shown in FIG. 10B, the region around the rotation axis 500 is divided into eight. In the area divided into eight, the A area and the B area are alternately arranged.
- the noise of the centrifugal fan 600 is reduced. It can be greatly reduced.
- the centrifugal fan 600 when the centrifugal fan 600 is continuously rotated, the A area and the B area appear alternately. That is, since the A region and the B region appear in the same pattern during forward rotation and reverse rotation of the centrifugal fan 600, the same noise reduction effect can be achieved in both the forward driving and the returning driving of the railway vehicle. .
- Embodiments 1 to 4 the present invention has been described using a centrifugal fan, but the present invention can also be applied to fans other than the centrifugal fan.
- the fan of the present invention can be applied to an axial fan, a diagonal fan, and a cross fan.
- the attachment angle between the main plate 11 and the blade 12 is set to 90 °, but the present invention is not limited to such an attachment angle. It can be set as appropriate according to the type of fan.
- the blades 12 are radial blades facing in the radial direction, but the present invention is not limited to such blades.
- the present invention can also be applied to forward blades facing in the direction of rotation, and the forward blades can be applied to a multiblade fan.
- the present invention can also be applied to a backward blade in which the blade is directed in the direction opposite to the rotation direction, and the backward blade can be applied to a turbofan.
- the disk-shaped main plate 11 has been described as a support member, but the present invention is not limited to such a support member.
- a cylindrical rotating shaft may be used as a support member, and a plurality of blades may be attached around the rotating shaft.
- the value of a is set as a value where the number of large pitch angles is larger than the number of small pitch angles, but the number of small pitch angles may be set larger than the number of large pitch angles. .
- the electric motor for the railway vehicle has been described as an example, but the vehicle driven by the electric motor is not limited to the railway vehicle.
- the present invention may be any vehicle that uses an electric motor that rotates the axle forward and backward, and can be applied to, for example, an automobile.
- the number of first pitch angles ⁇ 1 and the number of second pitch angles ⁇ 2 have been described as being the same number, but the number is not limited to the same number.
- the difference in the number of the first pitch angle ⁇ 1 and the second pitch angle ⁇ 2 may be 1 or more.
- the fan is described using the electric motor applied to the railway vehicle, but the fan described in the first to third embodiments may be used as the fan of the railway vehicle.
- the present invention can be suitably used for a fan mounted on a blower or an electric motor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
遠心ファン(10)は、11枚の羽根のうち何れか1枚の羽根を基準羽根(W1)とし、基準羽根(W1)と、回転軸(30)の周の第1の方向(X)に隣り合う羽根と、で第1のピッチ角(θ1)を形成し、第1のピッチ角(θ1)は、第1の方向(X)に5個並んで配置される。基準羽根(W1)と、第1の方向(X)と反対方向である第2の方向(Y)に隣り合う羽根と、で第1のピッチ角(θ1)と異なる第2のピッチ角(θ2)を形成し、第2のピッチ角(θ2)は、第2の方向(Y)に6個並んで配置される。第1のピッチ角(θ1)を5個合算した第1の合算ピッチ角と、第2のピッチ角(θ2)を6個合算した第2の合算ピッチ角と、は異なるので、遠心ファン(10)の騒音が低減される。
Description
本発明は、ファン、送風機、及び電動機に関する。
気流を発生するファンは、回転軸の周方向に等ピッチで配置された複数の羽根を備え、当該複数の羽根を回転軸の周りに回転させることで、気流を発生する。複数の羽根が等ピッチで配置されたファンは、複数の羽根が回転されることにより、回転数と羽根枚数との積で求められる値を基本周波数とする騒音である、いわゆる羽根切り音又はピュアトーン、を発生し、使用者に不快感を与える。
騒音を低減するために、回転軸の周方向に配置された複数の羽根を、不等ピッチで配置するファンが知られている(特許文献1)。特許文献1に開示されたファンは、羽根のピッチ角が隣接する羽根毎に異なり、各ピッチ角は非周期的に変化して配置される。
また、ファンの騒音を低減する他の方法として、特許文献2に示すように、周期的疑似ランダム配列の配列パターンを用いて、羽根が並べられたファンを用いる方法が知られている。
不等ピッチで羽根が配置されたファン、及び周期的疑似ランダム配列で羽根が配置されたファンでは、ピッチが相違する羽根が混在して配置されるため、構造が複雑となり、コストもかかる。また、ファンの騒音も大きく低減されるまでには至っていない。
また、車両を駆動させる電動機の冷却用ファンとして、ファンを用いる場合は、ファンの回転方向に応じた騒音対策が必要である。例えば、鉄道車両のように車両が往復運転される場合、車軸は、往路運転では正転され、復路運転では逆転される。冷却用ファンは、車軸に連結されているので、車軸が正転又は逆転されるにともない、冷却用ファンも正転又は逆転される。冷却用ファンは、正転と逆転の双方の回転において、同等な騒音低減効果を奏する必要がある。不等ピッチで羽根が配列されたファン、及び周期的疑似ランダム配列で羽根が配列されたファンは、ピッチが相違する羽根が混在して配置されているので、正転と逆転とでは、音圧のパターンが相違し、同等な騒音低減効果を奏することはできない。
本発明は、上記事由に鑑みてなされたものであり、構造が簡単で安価であり、騒音を大きく低減することができ、ファンの正転時と逆転時で同等の騒音低減効果を奏するファン、送風機、及び電動機を提供することを目的とする。
上記目的を達成するために、本発明に係るファンは、
回転軸を中心に回転する支持部材と、前記支持部材に取り付けられ、前記回転軸の周りに放射状に配置されたn枚(nは2以上の整数)の羽根と、を備え、前記回転軸を中心に前記支持部材が回転することで、前記n枚の羽根が回転されて気流を生成するファンであって、
前記n枚の羽根は、n個のピッチ角を隔てて前記回転軸の周りに配置され、
前記n枚の羽根のうち何れか1枚の羽根を基準羽根とし、当該基準羽根と、前記回転軸の周の第1の方向に隣り合う羽根と、で第1のピッチ角を形成し、当該第1のピッチ角は、前記第1の方向にm個(mは1以上の整数、n>m)並んで配置され、
前記基準羽根と、前記第1の方向と反対方向である第2の方向に隣り合う羽根と、で前記第1のピッチ角と異なる第2のピッチ角を形成し、当該第2のピッチ角は、前記第2の方向にn-m個並んで配置され、
前記第1のピッチ角をm個合算した第1の合算ピッチ角と、前記第2のピッチ角をn-m個合算した第2の合算ピッチ角と、は異なる。
回転軸を中心に回転する支持部材と、前記支持部材に取り付けられ、前記回転軸の周りに放射状に配置されたn枚(nは2以上の整数)の羽根と、を備え、前記回転軸を中心に前記支持部材が回転することで、前記n枚の羽根が回転されて気流を生成するファンであって、
前記n枚の羽根は、n個のピッチ角を隔てて前記回転軸の周りに配置され、
前記n枚の羽根のうち何れか1枚の羽根を基準羽根とし、当該基準羽根と、前記回転軸の周の第1の方向に隣り合う羽根と、で第1のピッチ角を形成し、当該第1のピッチ角は、前記第1の方向にm個(mは1以上の整数、n>m)並んで配置され、
前記基準羽根と、前記第1の方向と反対方向である第2の方向に隣り合う羽根と、で前記第1のピッチ角と異なる第2のピッチ角を形成し、当該第2のピッチ角は、前記第2の方向にn-m個並んで配置され、
前記第1のピッチ角をm個合算した第1の合算ピッチ角と、前記第2のピッチ角をn-m個合算した第2の合算ピッチ角と、は異なる。
本発明によれば、構造が簡単で安価であり、騒音を大きく低減することができ、ファンの正転時と逆転時で同等の騒音低減効果を奏するファン、送風機、及び電動機を提供することができる。
以下、本発明に係るファンの実施の形態を、遠心ファンを備える送風機を一例として図面を参照しながら詳細に説明する。
(実施の形態1)
本実施の形態に係る遠心ファンを備える送風機1を、図1A、図1Bに示す。図1Aおよび図1Bに示すように、送風機1は、遠心ファン10と、遠心ファン10を収納するハウジング20と、遠心ファン10を回転させる回転軸30と、回転軸30を駆動するモータ40と、を備える。
本実施の形態に係る遠心ファンを備える送風機1を、図1A、図1Bに示す。図1Aおよび図1Bに示すように、送風機1は、遠心ファン10と、遠心ファン10を収納するハウジング20と、遠心ファン10を回転させる回転軸30と、回転軸30を駆動するモータ40と、を備える。
遠心ファン10は、支持部材である主板11と、複数の羽根12と、からなる。主板11は、複数の羽根12を支持する部材であり、円板状に形成された部材である。主板11は、主板11の中心にモータ40の回転軸30が貫通して固定されることで、回転軸30に取り付けられる。複数の羽根12は、主板11の一方の面に、回転軸30を中心としてその周方向に放射状に取り付けられる。複数の羽根12は、各羽根が半径方向を向いた径向き羽根である。このような羽根を備える遠心ファン10は、プレート送風機に適用できる。また、主板11と羽根12との取付角度は、90°に設定される。
ハウジング20は、扁平な箱状の部材であり、内部に遠心ファン10を収容する。ハウジング20は、互いに対向する主壁20a、20bと、主壁20a、20bの間の領域を囲む側壁20cとを含む。遠心ファン10は、回転軸30がハウジング20の厚さ方向に沿った状態で、ハウジング20の内部に収容される。ハウジング20の主壁20bには、遠心ファン10と対向する位置に、吸込口21が設けられる。また、ハウジング20の側壁20cの一部には、吐出口22が設けられる。
送風機1は、遠心ファン10がモータ40により回転されることにより、図1Bの矢印AR1に示すように、遠心ファン10の回転軸30の延長線上に位置する吸込口21から空気を吸い込む。吸い込まれた空気は、ハウジング20内で圧縮されて、図1Aの矢印AR2に示すように、ハウジング20の回転軸30に直交する方向に設けられた吐出口22から吐出される。
送風機1は、様々な装置、例えば、換気扇、エアーカーテンに適用される。また、送風機1は、送風機1の吐出口22の近傍に、熱交換器を配置することで、空気調和装置に適用される。
遠心ファン10の羽根12と主板11は、適用される装置の大小又は種類に応じて、例えば、ステンレス、アルミニウム、チタン、合成樹脂により製造される。
次に、本実施の形態に係る遠心ファン10の羽根の配列について、図2を参照して説明する。
本実施の形態に係る遠心ファン10の羽根12の配列は、(1)羽根の総枚数nが奇数であること、(2)ピッチ角の種類は、第1のピッチ角θ1と第2のピッチ角θ2の2種類であり、第1のピッチ角θ1と第2のピッチ角θ2は相違すること、(3)第1のピッチ角θ1は第1の方向にm個並べて配置され、第2のピッチ角θ2は第2の方向にn-m個並べて配置されること、(4)第1のピッチ角θ1の数と、第2のピッチ角θ2の数と、の差が1個であること、(5)第1のピッチ角θ1をm個合算した第1の合算ピッチ角と、第2のピッチ角θ2をn-m個合算した第2の合算ピッチ角と、が相違すること、を特徴とする。
本実施の形態における遠心ファン10の羽根枚数を11枚と設定し、W1~W11の羽根を、回転軸30の周りに配置する。W1~W11の羽根が回転軸30周りに配置されることで、11個のピッチ角が形成される。
本実施の形態における第1のピッチ角θ1と第2のピッチ角θ2は、11枚の羽根のうちの任意の1枚を基準羽根として定義される。図2に示すように、11枚の羽根のうち羽根W1を基準羽根として設定し、羽根W1と、羽根W1と回転軸30の周の時計回りの方向(図示のX方向:以下「第1の方向X」という。)に隣り合う羽根W2と、で形成されるピッチ角を、第1のピッチ角θ1と定義する。また、羽根W1と、羽根W1と回転軸30の周の反時計回りの方向(図示のY方向:以下「第2の方向Y」という。)に隣り合う羽根W11と、で形成されるピッチ角を、第2のピッチ角θ2と定義する。第1のピッチ角θ1と、第2のピッチ角θ2の定義は、以下の実施の形態2~4においても同様に定義するものとする。
第1のピッチ角θ1と第2のピッチ角θ2は、羽根の総枚数と、第1のピッチ角θ1と第2のピッチ角θ2の比を定めることにより、次の式により一意に定まる。
大きいピッチ角の個数を1つ多くする場合には、
(n-1)/2×θ+(n+1)/2×Δ×θ=360°(式1)
小さいピッチ角の個数を1つ多くする場合には、
(n+1)/2×θ+(n+1)/2×Δ×θ=360°(式2)
と示すことができる。
ここで、nは羽根の総枚数、θは小さいピッチ角の角度、Δは大きいピッチ角と小さいピッチ角の比率を示す。
(n-1)/2×θ+(n+1)/2×Δ×θ=360°(式1)
小さいピッチ角の個数を1つ多くする場合には、
(n+1)/2×θ+(n+1)/2×Δ×θ=360°(式2)
と示すことができる。
ここで、nは羽根の総枚数、θは小さいピッチ角の角度、Δは大きいピッチ角と小さいピッチ角の比率を示す。
本実施の形態では、nを11と、Δを1.3と設定する。そして、小さいピッチ角の個数を1つ多くする条件で、これらの値を、式2に当てはめる。すると、θは28.8°と導き出せるので、小さいピッチ角が28.8°、大きいピッチ角が37.44°と求められる。大きいピッチ角を第1のピッチ角θ1とし、小さいピッチ角を第2のピッチ角θ2とすると、図2に示すように、第1のピッチ角θ1は、羽根W1とW6との間に第1の方向Xに5個並んで配置され、第2のピッチ角θ2は、羽根W1とW6との間に第2の方向Yに6個並んで配置される。具体的には、羽根W1から回転軸30の第1の方向Xに沿って、ピッチ角は、37.44°、37.44°、37.44°、37.44°、37.44°、28.8°、28.8°、28.8°、28.8°、28.8°、28.8°と定められる。各ピッチ角の位置を示すため、図2において、ピッチ角の位置を第1の方向Xに沿って1~11の数字を付して位置を特定する。
第1のピッチ角θ1を5個並べることで、第1の合算ピッチ角を形成し、第2のピッチ角θ2を6個並べることで、第2の合算ピッチ角を形成する。第1の合算ピッチ角は、37.44×°5=187.2°であり、第2の合算ピッチ角は、28.8°×6=172.8°である。このように、第1の合算ピッチ角と第2の合算ピッチ角とは相違し、第1の合算ピッチ角と第2の合算ピッチ角とは、図2に示すように、回転軸30の周りに境界線D1を境に偏って配置される。
このような羽根の配列を備える遠心ファン10の羽根特性を、比較例と対比して説明する。
比較例の遠心ファンの羽根として、11枚の羽根を回転軸の周りに等ピッチで配置した羽根(以下、「等ピッチ羽根」という。)と、11枚の羽根を回転軸周りに周期的疑似ランダム配列に従って配置した羽根(以下、「周期的疑似ランダム配列羽根」という。)と、を用いる。
図3は、等ピッチ羽根と、周期的疑似ランダム配列羽根と、本実施の形態の羽根との、それぞれのピッチ角を、ピッチ角の位置の番号に対応付けて示した表である。図3において、ピッチ角の位置の欄に示された番号は、図2におけるピッチ角の位置の番号に対応する番号である。
等ピッチ羽根のピッチ角は、図3に示すように、全てのピッチ角が同一である。具体的には、32.73°のピッチ角をもって11枚の羽根が配置される。
周期的疑似ランダム配列羽根の周期的疑似ランダム配列として、本比較例では、M系配列を用いる。M系配列は、2n-1の周期をもつ0と1との2値の数列であり、1つの周期の中の数列の数は奇数であり、「0」と「1」の数の差が1と定められる。比較例において、「0」と大きいピッチ角とを対応させ、「1」と小さいピッチ角とを対応させ、周期を11と設定する。すると、M系配列で示される数列は、11011100010となる。この数列に基づくピッチ角は、図3に示すように、ピッチ角の位置に対応して、28.8°、28.8°、37.44°、28.8°、28.8°、28.8°、37.44°、37.44°、37.44°、28.8°、37.44°と定められる。
等ピッチ羽根、周期的疑似ランダム配列羽根、及び本実施の形態の羽根の、任意の観測点での時間経過に伴う音圧Pn(t)の変化を、それぞれ図4A、4B、4Cに示す。図4Aは、等ピッチ羽根の音圧P1(t)を時間経過tに沿って測定したグラフ、図4Bは、周期的疑似ランダム配列羽根の音圧P2(t)を時間経過tに沿って測定したグラフ、図4Cは、本実施の形態の羽根の音圧P3(t)を時間経過tに沿って測定したグラフである。図4A~4Cの縦軸は、音圧の最大値を1、最低値を0と設定した音圧Pの値を示し、横軸は時間tを示す。
等ピッチ羽根の場合、図4Aに示すように、音圧P1(t)の変化は、P1(t)=sin(ωt)で示す正弦波で表される。音圧P1の最大値は、羽根が観測点を通過するときに周期的に発生する。したがって、最大の音圧は、羽根W1~W11の各々の羽根が観測点を通過するときに発生する。全ての羽根のピッチ角は等しいので、等しい時間間隔で、最大の音圧が発生する。
周期的疑似ランダム配列羽根の場合、図4Bに示すように、M系配列に従って配列された羽根W1~W11の各々が観測点を通過するタイミングで、最大の音圧が発生する。羽根は周期的疑似ランダム配列で配置されているので、その配置間隔に応じて、最大の音圧が発生する。
本実施の形態の羽根の場合、図4Cに示すように、第1のピッチ角θ1で並べられた羽根W1~W6と、第2のピッチ角θ2で並べられた羽根W6~W11が、観測点を通過するタイミングで、最大の音圧が発生する。第1のピッチ角θ1で配置された羽根の配置間隔と、第2のピッチ角θ2で配置された羽根の配置間隔に応じて、最大の音圧が発生する。
このようにして求められた音圧のグラフを、回転数を50Hz、羽根数を11枚の条件のもと、FFT(Fast Fourier Transform)解析をして、等ピッチ羽根、周期的疑似ランダム配列羽根、及び本実施の形態の各々の羽根について、周波数に対応する振幅値を求める。図5は、FFT解析により求められた振幅と周波数の関係を示すグラフである。図5に示すグラフの縦軸は振幅、横軸は周波数である。グラフからわかるように、等ピッチ羽根は、周波数50Hz×羽根総枚数11枚で求められる基本周波数である周波数550Hzで、ピークスペクトル0.5を示した。周期的疑似ランダム配列の羽根は、周波数550Hzで、ピークスペクトル0.3741005を示した。本実施の形態で使用した羽根は、周波数550Hzを挟んで、低周波側と高周波側で、2つのピークスペクトルを示し、高い方のピークスペクトルは、0.2812575であった。
本実施の形態の羽根の配列を使用すれば、等ピッチ羽根、周期的疑似ランダム配列の羽根と比較して、ピークスペクトルの値を低く抑えるとともに、ピーク値を分散でき、遠心ファン10の騒音を大きく低減できる。
以上説明したように、本実施の形態に係る遠心ファン10は、第1の合算ピッチ角と第2の合算ピッチ角とが、回転軸30の周りに偏って配置されるため、遠心ファン10の騒音を大きく低減できる。また、ピッチ角の種類として、第1のピッチ角θ1と第2のピッチ角θ2の2種類のみを適用して、遠心ファン10を製造するので、遠心ファン10の設計も簡単となり、製造コストを低減できる。
本実施の形態に係る遠心ファン10は、送風機1に組み込むことで、送風機1を使用する各種の製品、例えば、換気扇、空気調和装置に適用することができるので、これらの製品を運転するときにも騒音を大きく低減できる。
上記の例は、小さいピッチ角の個数を1つ多くする条件で、第1のピッチ角θ1と第2のピッチ角θ2を設定したが、大きいピッチ角の個数を1つ多くする条件で、第1のピッチ角θ1と第2のピッチ角θ2を設定する他の例(図示はせず)でも、同様な効果を奏する。
この例において、nを11と、Δを1.3と設定する。そして、これらの値を、上記式1に当てはめる。すると、θは、28.12°と導き出せるので、小さいピッチ角が28.12°、大きいピッチ角が36.56°と求められる。大きいピッチ角を第1のピッチ角θ1、小さいピッチ角を第2のピッチ角θ2とすると、第1のピッチ角θ1は、羽根W1とW7の間に第1の方向Xに6個並んで配置され、第2のピッチ角θ2は、羽根W7とW1との間に第2の方向Yに5個並んで配置される。具体的には、回転軸30の第1の方向Xに、ピッチ角は、36.56°、36.56°、36.56°、36.56°、36.56°、36.56°、28.12°、28.12°、28.12°、28.12°、28.12°と定められる。
第1のピッチ角θ1を6個並べることで、第1の合算ピッチ角を形成し、第2のピッチ角θ2を5個並べることで、第2の合算ピッチ角を形成する。第1の合算ピッチ角は、36.56°×6=219.37°であり、第2の合算ピッチ角は、28.12°×5=140.6°である。このように、第1の合算ピッチ角と第2の合算ピッチ角とは相違し、第1の合算ピッチ角と第2の合算ピッチ角とは、回転軸30の周りに偏って配置される。
大きいピッチ角の個数を1つ多くする条件でピッチ角を設定した場合でも、第1の合算ピッチ角と第2の合算ピッチ角が、回転軸30の周りに偏って配置されるため、遠心ファン10の騒音を大きく低減できる。
また、本実施の形態の遠心ファン10は、遠心ファン10の回転軸30が正転する場合と逆転する場合の双方の場合で、同等な騒音低減効果を奏する。正転と逆転の場合の羽根特性について、周期的疑似ランダム配列羽根と比較して、以下に説明する。
周期的疑似ランダム配列羽根のピッチ角の並びは、上述したように、大きいピッチ角を「0」と、小さいピッチ角を「1」と対応させて、11011100010という配列で示すことができる。遠心ファンを1回正転させると、この配列の順序で羽根が観測点を通過して、図4Bに示す音圧P2(t)のパターンを示す。この遠心ファンを1回逆転させると、01000111011という正転とは異なる配列の順序で、羽根が観測点を通過する。したがって、正転の場合と逆転の場合では、発生する音圧のパターンが相違し、騒音低減効果も異なる。一般的には、正転する場合を前提として羽根の配列を設計するので、遠心ファンが逆転した場合には、騒音低減効果が減少するおそれがある。
本実施の形態の遠心ファン10は、図2に示すように、正転方向である第1の方向Xと、反転方向である第2の方向Yとの、どちらにも回転させることができる。遠心ファン10の用途及び使用者の要望に応じて、回転方向を決定する。
本実施の形態の羽根と周期的疑似ランダム配列羽根とを対比するため、本実施の形態の羽根のピッチ角を、周期的疑似ランダム配列羽根のピッチ角と同様に、大きいピッチ角を「0」と、小さいピッチ角を「1」と対応させる。図3に示す本実施の形態の羽根のピッチ角は、ピッチ角の位置「1」から「11」まで、00000111111という配列で示すことができる。遠心ファン10が1回正転すると、この順序で羽根が観測点を通過して、図4Cに示す音圧P3(t)のパターンを示す。この遠心ファン10を1回逆転させると、11111100000という配列の順序で、各羽根が観測点を通過する。遠心ファン10が連続して正転又は逆転されることで、各々の配列パターンが繰り返し観測点を通過する。
遠心ファン10が連続して正転又は逆転する場合の羽根のパターンは、次のようにも説明できる。回転軸30の周りは、00000の配列で示される、第1のピッチ角θ1を5つ合算した第1の合算ピッチ角の領域(以下、「A領域」という。)と、111111の配列で示される、第2のピッチ角θ2を6つ合算した第2の合算ピッチ角の領域(以下、「B領域」という。)と、に分割される。遠心ファン10が連続回転すると、正転又は逆転の何れの場合でも、A領域とB領域は、交互に観測点を通過する。したがって、遠心ファン10が正転でも逆転でも、発生する音圧のパターンは同一であり、騒音低減効果も同等となる。
(実施の形態2)
実施の形態1では、羽根の総枚数が奇数であり、第1のピッチ角θ1と第2のピッチ角θ2とが異なる角度に設定され、第1のピッチ角θ1の数と第2のピッチ角θ2の数との差異は、1であった。本発明は、このような羽根の枚数、ピッチ角の数には限定されず、羽根の総枚数が偶数であり、第1のピッチ角θ1の数と第2のピッチ角θ2の数が等しい場合にも適用される。
実施の形態1では、羽根の総枚数が奇数であり、第1のピッチ角θ1と第2のピッチ角θ2とが異なる角度に設定され、第1のピッチ角θ1の数と第2のピッチ角θ2の数との差異は、1であった。本発明は、このような羽根の枚数、ピッチ角の数には限定されず、羽根の総枚数が偶数であり、第1のピッチ角θ1の数と第2のピッチ角θ2の数が等しい場合にも適用される。
本実施の形態に係る遠心ファンの羽根の配列は、(1)羽根の総枚数nが偶数であること、(2)ピッチ角の種類は、第1のピッチ角θ1と第2のピッチ角の2種類であり、第1のピッチ角θ1と第2のピッチ角θ2は相違すること、(3)第1のピッチ角θ1は第1の方向にm個並べて配置され、第2のピッチ角θ2は第2の方向にn-m個並べて配置されること、(4)第1のピッチ角θ1の数と、第2のピッチ角θ2の数と、が同一であること、(5)第1のピッチ角θ1をm個合算した第1の合算ピッチ角と、第2のピッチ角θ2をn-m個合算した第2の合算ピッチ角と、が相違すること、を特徴とする。なお、本実施の形態の遠心ファンは、実施の形態1の遠心ファン10と基本的構成は同一である。
本実施の形態の遠心ファン10は、図6に示すように、正転方向である第1の方向Xと、反転方向である第2の方向Yとの、どちらにも回転させることができる。遠心ファン10の用途及び使用者の要望に応じて、回転方向を決定する。
本実施の形態に係る遠心ファン10の羽根の配列について、図6を参照して説明する。
第1のピッチ角θ1と第2のピッチ角θ2は、羽根の総枚数と、第1のピッチ角θ1と第2のピッチ角θ2の比を定めることにより、次の式により一意に定まる。
n/2×θ+n/2×Δ×θ=360°(式3)
ここで、nは羽根の総枚数、θは小さいピッチ角の角度、Δは大きいピッチ角と小さいピッチ角の比率を示す。
ここで、nは羽根の総枚数、θは小さいピッチ角の角度、Δは大きいピッチ角と小さいピッチ角の比率を示す。
本実施の形態では、nを10と、Δを1.3と設定し、これらの値を、式3に当てはめる。すると、θは、31.3°と導き出せるので、小さいピッチ角が31.3°、大きいピッチ角が40.69°と求められる。大きいピッチ角を第1のピッチ角θ1とし、小さいピッチ角を第2のピッチ角θ2とすると、図6に示すように、第1のピッチ角θ1は、羽根W1とW6との間に第1の方向Xに5個並んで配置され、第2のピッチ角θ2は、羽根W1とW6との間に第2の方向Yに5個並んで配置される。具体的には、回転軸30の第1の方向Xに、ピッチ角は、40.69°、40.69°、40.69°、40.69°、40.69°、31.3°、31.3°、31.3°、31.3°、31.3°と定められる。
第1のピッチ角θ1を5個並べることで、第1の合算ピッチ角を形成し、第2のピッチ角θ2を5個並べることで、第2の合算ピッチ角を形成する。第1の合算ピッチ角は、40.69°×5=203.45°であり、第2の合算ピッチ角は、31.3°×5=156.5°である。このように、第1の合算ピッチ角と第2の合算ピッチ角とは相違し、第1の合算ピッチ角と第2の合算ピッチ角とは、図6に示すように回転軸30の周りに、境界線D2を境として偏って配置される。
以上説明したように、羽根の総枚数が偶数枚であり、第1のピッチ角θ1の個数と第2のピッチ角θ2の個数とが同一であっても、第1の合算ピッチ角と第2の合算ピッチ角は偏って配置されるので、遠心ファン10の騒音を大きく低減できる。
また、第1のピッチ角θ1を5個並べた第1の合算ピッチ角と、第2のピッチ角θ2を5個並べた第2の合算ピッチ角が、回転軸30周りに配置されるので、遠心ファン10が正転する場合と逆転する場合の双方の場合で、同じ音圧パターンを生成し、同等な騒音低減効果を奏する。
(実施の形態3)
実施の形態1、2では、第1のピッチ角θ1と第2のピッチ角θ2の数が等しい場合、第1のピッチ角θ1と第2のピッチ角θ2の数の差が1である場合について説明した。しかしながら、本発明は、このようなピッチ角の数に限定されず、第1のピッチ角θ1と第2のピッチ角θ2の数の差が、2以上であってもよい。
実施の形態1、2では、第1のピッチ角θ1と第2のピッチ角θ2の数が等しい場合、第1のピッチ角θ1と第2のピッチ角θ2の数の差が1である場合について説明した。しかしながら、本発明は、このようなピッチ角の数に限定されず、第1のピッチ角θ1と第2のピッチ角θ2の数の差が、2以上であってもよい。
本実施の形態に係る遠心ファンの羽根の配列は、(1)羽根の総枚数nが奇数又は偶数であること、(2)ピッチ角の種類は、第1のピッチ角θ1と第2のピッチ角の2種類であり、第1のピッチ角θ1と第2のピッチ角θ2は相違すること、(3)第1のピッチ角θ1は第1の方向にm個並べて配置され、第2のピッチ角θ2は第2の方向にn-m個並べて配置されること、(4)第1のピッチ角θ1の数と、第2のピッチ角θ2の数と、の差が2以上であること、(5)第1のピッチ角θ1をm個合算した第1の合算ピッチ角と、第2のピッチ角θ2をn-m個合算した第2の合算ピッチ角の角度と、が相違すること、を特徴とする。なお、本実施の形態の遠心ファンは、実施の形態1の遠心ファン10と基本的構成は同一である。
本実施の形態の遠心ファン10は、図7に示すように、正転方向である第1の方向Xと、反転方向である第2の方向Yとの、どちらにも回転させることができる。遠心ファン10の用途及び使用者の要望に応じて、回転方向を決定する。
本実施の形態に係る遠心ファン10の羽根の配列について、図7を参照して説明する。
第1のピッチ角θ1と第2のピッチ角θ2は、羽根の総枚数と、第1のピッチ角θ1と第2のピッチ角θ2の比を定めることにより、次の式により一意に定まる。
大きいピッチ角の個数をa個多くする場合には、(aは、2以上)
(n-a)/2×θ+(n+a)/2×Δ×θ=360°(式4)
小さいピッチ角の個数をa個多くする場合には、(aは、2以上)
(n+a)/2×θ+(n+a)/2×Δ×θ=360°(式5)
と示すことができる。
ここで、nは羽根の総枚数、θは小さいピッチ角の角度、Δは大きいピッチ角と小さいピッチ角の比率を示す。
(n-a)/2×θ+(n+a)/2×Δ×θ=360°(式4)
小さいピッチ角の個数をa個多くする場合には、(aは、2以上)
(n+a)/2×θ+(n+a)/2×Δ×θ=360°(式5)
と示すことができる。
ここで、nは羽根の総枚数、θは小さいピッチ角の角度、Δは大きいピッチ角と小さいピッチ角の比率を示す。
本実施の形態では、nを11と、Δを1.3と、aを3(大きいピッチ角の数が、小さいピッチ角の数より3個多い。)と、設定する。これらの値を、式4に当てはめることで、θは、27.5°と導き出せるので、小さいピッチ角が27.5°、大きいピッチ角が35.7°と求められる。小さいピッチ角を第1のピッチ角θ1とし、大きいピッチ角を第2のピッチ角θ2とすると、図7に示すように、第1のピッチ角θ1は、羽根W1とW5との間に第1の方向Xに4個並んで配置され、第2のピッチ角θ2は、羽根W1とW5との間に第2の方向Yに7個並んで配置される。具体的には、回転軸30の第1の方向Xに、ピッチ角は、27.5°、27.5°、27.5°、27.5°、35.7°、35.7°、35.7°、35.7°、35.7°、35.7°、35.7°と定められる。
第1のピッチ角θ1を4個並べることで、第1のピッチ角θ1を4個合算した第1の合算ピッチ角を形成し、第2のピッチ角θ2を7個並べることで、第2のピッチ角θ2を7個合算した第2の合算ピッチ角を形成する。第1の合算ピッチ角は、27.5°×4=110°であり、第2の合算ピッチ角は、35.7°×7=249.9°である。このように、第1の合算ピッチ角と第2の合算ピッチ角とは相違し、第1の合算ピッチ角と第2の合算ピッチ角とは、図7に示すように、回転軸30の周りに、境界線D3を境に偏って配置される。
以上説明したように、本実施の形態に係る遠心ファン10は、第1の合算ピッチ角と第2の合算ピッチ角とが、回転軸30の周りに偏って配置されるため、遠心ファン10から発生する騒音を大きく低減できる。
また、第1のピッチ角θ1を4個並べた第1の合算ピッチ角と、第2のピッチ角θ2を7個並べた第2の合算ピッチ角が、回転軸30周りに配置されるので、遠心ファン10が正転する場合と逆転する場合の双方の場合で、同じ音圧パターンを生成し、同等な騒音低減効果を奏する。
(実施の形態4)
実施の形態1~3で説明した遠心ファンにおいて、第1の合算ピッチ角と第2の合算ピッチ角とが回転軸30の全周を囲んで配置され、第1の合算ピッチ角と第2の合算ピッチ角は異なると説明した。本発明は、回転軸の全周を第1の合算角度と第2の合算角度のみで囲むことに限定されず、第1の合算ピッチ角と第2の合算ピッチ角とを合算して第3の合算角度を形成し、この第3の合算角度を回転軸の周りに2以上配置してもよい。
実施の形態1~3で説明した遠心ファンにおいて、第1の合算ピッチ角と第2の合算ピッチ角とが回転軸30の全周を囲んで配置され、第1の合算ピッチ角と第2の合算ピッチ角は異なると説明した。本発明は、回転軸の全周を第1の合算角度と第2の合算角度のみで囲むことに限定されず、第1の合算ピッチ角と第2の合算ピッチ角とを合算して第3の合算角度を形成し、この第3の合算角度を回転軸の周りに2以上配置してもよい。
本実施の形態に係る遠心ファンは、主に鉄道車両用の電動機の冷却ファンとして用いられる。遠心ファンを備える鉄道車両用の電動機について、図8を参照して説明する。
電動機100は、フレーム200と、固定子300と、回転子400と、回転子400と一体に回転する回転軸500と、回転軸500に取り付けられた遠心ファン600と、を備える。
フレーム200は、固定子300と回転子400を取り囲んで配置され、空気が吸込される吸込口201と、吸込された空気を吐出する吐出口202が形成されている。固定子300は、固定子鉄心301と、固定子鉄心301に巻回された固定子コイル302とを含み、回転子400は、固定子300に対向して配置される。回転子400の中心部には、回転軸500が貫通して固定される。
回転軸500のいずれか一方の端部は、車両の車軸(図示せず)に連結され、回転軸500が回転されることで車軸が回転する。回転軸500の両端部は、フレーム200に設けられた軸受501により支持される。
遠心ファン600は、複数の羽根601を備え、複数の羽根601は、回転軸500の周りに放射状に配置される。
このような電動機100において、固定子コイル302に電源(図示せず)から交流電流が入力されると、固定子鉄心301に回転磁界が発生し、この回転磁界により回転子400に誘導電流が誘起される。回転子400の周りに回転磁界が形成され、かつ回転子400に誘導電流が発生することにより、回転子400を回転軸500周りに回転される電磁力が発生し、回転子400が回転する。そして、回転子400の回転により回転軸500が回転し、車軸を回転させる。
回転軸500が回転すると同時に、回転軸500に取り付けられた遠心ファン600も回転する。回転軸500の回転中は、固定子コイル302で発生する銅損と、回転子400で生じる誘導電流による鉄損により、電動機100の部品の温度が上昇する。遠心ファン600は、回転軸500の回転に伴い回転され、遠心ファン600が回転されることで吸込口201から空気が導入される。導入された空気が電動機100内を通過して吐出口202から吐出されることにより、電動機100の内部は冷却される。
鉄道車両は、往路方向と、その反対の方向の復路方向に運転されるので、電動機100は、運転の方向に応じて回転軸500を回転駆動させる。回転軸500は、往路方向の運転の場合には、図8に示すようにP方向に回転され、復路方向の運転の場合には、P方向と逆方向であるQ方向に回転される。遠心ファン600の羽根の配列が、不等ピッチ配列又は周期的疑似ランダム配列である場合には、回転軸500を回転子400のある方向に見た場合とその逆の方向から見た場合では、羽根のピッチ角の配列が異なる。したがって、回転軸500をP方向に回転させたときに騒音を減少させる羽根の配列が、回転軸500をQ方向に回転させたときも同様に騒音を減少させるとは限らない。本実施の形態における遠心ファン600は、P方向とQ方向に回転、具体的には正転・逆転をする必要がある遠心ファンに好適に適用できる。P方向は、図9に示す第1の方向に対応し、Q方向は、第2の方向Yに対応する。
本実施の形態に係る遠心ファン600の羽根の配列は、(1)羽根の総枚数nが偶数であること、(2)ピッチ角の種類は、第1のピッチ角θ1と第2のピッチ角θ2の2種類であり、第1のピッチ角θ1と第2のピッチ角θ2は相違すること、(3)第1のピッチ角θ1は第1の方向にp個並べて配置され、第2のピッチ角θ2は第2の方向にq個並べて配置されること、(4)第1のピッチ角θ1をp個合算した第1の合算ピッチ角と、第2のピッチ角θ2をq個合算した第2の合算ピッチ角と、が相違すること、(4)第1の合算ピッチ角と第2の合算ピッチ角を合算して第3のピッチ角を形成し、第3のピッチ角を回転軸の周りに2個以上並べて配置したこと、を特徴とする。
本実施の形態に係る遠心ファン600の羽根の配列について、図9を参照して説明する。
第1のピッチ角θ1と第2のピッチ角θ2は、羽根の総枚数と、第1のピッチ角θ1と第2のピッチ角θ2の比を定めることにより、上記の式4または式5により一意に定まる。本実施の形態では、第1のピッチ角θ1の個数と第2のピッチ角θ2の個数は同一とし、nを12と、Δを1.3と、設定する。これらの値を、式4又は式5に当てはめることで、θは、26.1°と導き出せるので、小さいピッチ角が26.1°、大きいピッチ角が33.9°と定められる。
小さいピッチ角を第1のピッチ角θ1とし、大きいピッチ角を第2のピッチ角θ2とすると、第1のピッチ角θ1は、図9に示すように、羽根W1とW4との間に第1の方向Xに3個並べて配置され、第2のピッチ角θ2は、羽根W1とW11との間に第2の方向Yに並べて配置される。第1のピッチ角θ1を3個並べることで第1の合算ピッチ角を形成し、第2のピッチ角θ2を3個並べることで第2の合算ピッチ角を形成する。第1の合算ピッチ角は、26.1°×3=78.3°であり、第2の合算ピッチ角は、33.9°×3=101.7°であり、第1の合算ピッチ角と第2の合算ピッチ角は異なって形成される。さらに、第1の合算ピッチ角と第2の合算ピッチ角を合算して第3の合算ピッチ角を形成する。第3の合算ピッチ角は、図9において、第1の方向Xに、W10とW4との間に形成される。そして、この第3の合算ピッチ角をW10とW4の第2の方向Yに形成することで、第3の合算ピッチ角が、回転軸500の周りに2つ形成される。
本実施の形態の羽根の配列は、第1の合算ピッチ角が形成される領域をA領域とし、第2の合算ピッチ角が形成される領域をB領域とし、回転軸500の周りをいくつかの領域に分割して、A領域とB領域を交互に配置する配置方法によっても説明できる。
A領域とB領域を配置する方法は、まず、回転軸500の周りを4以上の偶数の領域に分割し、続いて、分割された領域にAとBを交互に並べる方法である。図9の羽根の配置について、当該方法を用いて、以下に説明する。
図9で説明した第1の合算ピッチ角の領域をA領域とし、第2の合算ピッチ角の領域をB領域とすると、図9は、図10Aで示す図に置き換えられる。図10Aに示すように、回転軸500の周りの領域を4つの領域に分割する。そして、4つに分割された領域に、A領域とB領域を、交互に並べて配置する。
分割する領域を4以上の偶数である8とした場合の領域の配列を、図10Bに示す。図10Bに示すように、回転軸500の周りの領域を8つに分割する。8つに分割された領域に、A領域とB領域を、交互に並べて配置する。
A領域とB領域を交互に配置することにより、遠心ファン600が連続して正転又は逆転しても、A領域とB領域が交互に現れるように回転するので、どちらに回転しても同等の音圧パターンを示す。
以上説明したように、本実施の形態によれば、第1の合算ピッチ角と第2の合算ピッチ角とは、その角度が回転軸周りに異なって形成されるので、遠心ファン600の騒音を大きく低減できる。
また、遠心ファン600が連続して回転することにより、A領域とB領域が交互に現れる。すなわち、遠心ファン600の正転時も逆転時も同一のパターンでA領域とB領域が出現するので、鉄道車両の往路運転または復路運転のどちらの場合でも、同等な騒音の低減効果を達成する。
(変形例)
以上、本発明の各実施の形態について説明したが、本発明は前述の各実施の形態によって限定されるものではない。
以上、本発明の各実施の形態について説明したが、本発明は前述の各実施の形態によって限定されるものではない。
実施の形態1~4において、遠心ファンを用いて本発明を説明したが、本発明は、遠心ファン以外のファンにも適用できる。例えば、軸流ファン、斜流ファン、横流ファンにも、本発明のファンを適用できる。
実施の形態1において、主板11と羽根12との取付角度は、90°に設定されると説明したが、本発明は、このような取付角度に限定されない。ファンの種類に応じて適宜設定できる。
実施の形態1において、羽根12は、半径方向を向いた径向き羽根であると説明したが、本発明は、このような羽根に限定されない。本発明は、回転方向を向いた前向き羽根も適用でき、前向き羽根は多翼送風機に適用できる。また、本発明は、羽根が回転方向と反対方向を向いた後向き羽根にも適用でき、後向き羽根はターボファンに適用できる。
実施の形態1において、支持部材として円板状の主板11を用いて説明したが、本発明は、このような支持部材に限定されない。ファンとして軸流ファンや斜流ファンを用いた場合には、円柱状の回転軸を支持部材として用い、この回転軸の周りに複数の羽根を取り付けてもよい。
実施の形態3において、aの値を、大きいピッチ角の数が小さいピッチ角の数より大きい値として設定したが、小さいピッチ角の数が大きいピッチ角の数より大きい値として設定してもよい。
実施の形態4において、鉄道車両用の電動機を例に説明したが、電動機が駆動させる車両は、鉄道車両用には限定されない。本発明は、車軸を正転・逆転させる電動機を使用する車両であればよく、例えば、自動車にも適用できる。
実施の形態4において、第1のピッチ角θ1の数と、第2のピッチ角θ2の数は同数であると説明したが、個数は同数に限定されない。第1のピッチ角θ1と第2のピッチ角θ2の個数の差が1以上であってもよい。
実施の形態4において、鉄道用車両に適用する電動機を用いてファンを説明したが、鉄道用車両のファンとして、実施の形態1~3に記載したファンを用いてもよい。
以上、本発明の各実施の形態および変形例について説明したが、本発明はこれらに限定されるものではない。本発明は、実施の形態及び変形例が適宜組み合わされたもの、それに適宜変更が加えられたものを含む。
本発明は、送風機又は電動機に搭載されるファンに好適に利用できる。
1 送風機、10 遠心ファン、11 主板、12 羽根、20 ハウジング、20a,20b 主壁、20c 側壁、21 吸込口、22 吐出口、30 回転軸、40 モータ、100 電動機、200 フレーム、201 吸込口、202 吐出口、300 固定子、301 固定子鉄心、302 固定子コイル、400 回転子、500 回転軸、501 軸受、600 遠心ファン、601 羽根、W1 基準羽根
Claims (8)
- 回転軸を中心に回転する支持部材と、前記支持部材に取り付けられ、前記回転軸の周りに放射状に配置されたn枚(nは2以上の整数)の羽根と、を備え、前記回転軸を中心に前記支持部材が回転することで、前記n枚の羽根が回転されて気流を生成するファンであって、
前記n枚の羽根は、n個のピッチ角を隔てて前記回転軸の周りに配置され、
前記n枚の羽根のうち何れか1枚の羽根を基準羽根とし、当該基準羽根と、前記回転軸の周の第1の方向に隣り合う羽根と、で第1のピッチ角を形成し、当該第1のピッチ角は、前記第1の方向にm個(mは1以上の整数、n>m)並んで配置され、
前記基準羽根と、前記第1の方向と反対方向である第2の方向に隣り合う羽根と、で前記第1のピッチ角と異なる第2のピッチ角を形成し、当該第2のピッチ角は、前記第2の方向にn-m個並んで配置され、
前記第1のピッチ角をm個合算した第1の合算ピッチ角と、前記第2のピッチ角をn-m個合算した第2の合算ピッチ角と、は異なる、ファン。 - 前記第1のピッチ角をもって配置されるm個のピッチ角の数と、前記第2のピッチ角をもって配置されるn-m個のピッチ角の数と、は異なる、
請求項1に記載のファン。 - 前記第1のピッチ角をもって配置されるm個のピッチ角の数と、前記第2のピッチ角をもって配置されるn-m個のピッチ角の数と、は等しい、
請求項1に記載のファン。 - 回転軸を中心に回転する支持部材と、前記支持部材に取り付けられ、前記回転軸の周りに放射状に配置されたn枚(nは2以上の整数)の羽根と、を備え、前記回転軸を中心に前記支持部材が回転することで、前記n枚の羽根が回転されて気流を生成するファンであって、
前記n枚の羽根は、n個のピッチ角を隔てて前記回転軸の周りに配置され、
前記n枚の羽根のうち何れか1枚の羽根を基準羽根とし、当該基準羽根と、前記回転軸の周の第1の方向に隣り合う羽根と、で第1のピッチ角を形成し、当該第1のピッチ角は、前記第1の方向にp個(pは1以上の整数、n>p)並んで配置され、
前記基準羽根と、前記第1の方向と反対方向である第2の方向に隣り合う羽根と、で前記第1のピッチ角と異なる第2のピッチ角を形成し、当該第2のピッチ角は、前記第2の方向にq個(qは1以上の整数、n>q)並んで配置され、
前記第1のピッチ角をp個合算した第1の合算ピッチ角と、前記第2のピッチ角をq個合算した第2の合算ピッチ角と、は異なり、
前記第1の合算ピッチ角と前記第2の合算ピッチ角とを合算した第3のピッチ角を回転軸の周りに2以上並べて前記n個のピッチ角を形成する、ファン。 - 前記ファンは、遠心ファンである、
請求項1~4の何れか1項に記載のファン。 - 前記回転軸は、前記第1の方向と前記第2の方向との双方向に回転する、
請求項1~5の何れか1項に記載のファン。 - 請求項1~6の何れか1項に記載されたファンと、
前記回転軸を中心に前記支持部材を回転させるモータと、
を備える送風機。 - フレームの内面に固定され、電源が供給されることで回転磁界を発生させる固定子と、
回転軸が貫通して固定され、前記回転磁界により回転される回転子と、
前記回転軸の一端に取り付けられた請求項1~6の何れか1項に記載のファンと、
を備える電動機。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/000271 WO2018127970A1 (ja) | 2017-01-06 | 2017-01-06 | ファン、送風機、及び電動機 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/000271 WO2018127970A1 (ja) | 2017-01-06 | 2017-01-06 | ファン、送風機、及び電動機 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018127970A1 true WO2018127970A1 (ja) | 2018-07-12 |
Family
ID=62789233
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/000271 Ceased WO2018127970A1 (ja) | 2017-01-06 | 2017-01-06 | ファン、送風機、及び電動機 |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018127970A1 (ja) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3623637A1 (en) * | 2018-09-14 | 2020-03-18 | Yen Sun Technology Corp. | Centrifugal fan |
| CN114223111A (zh) * | 2019-08-22 | 2022-03-22 | 日本电产株式会社 | 外转子型马达 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1893184A (en) * | 1929-01-24 | 1933-01-03 | Hoover Co | Fan |
| GB2046360A (en) * | 1979-03-31 | 1980-11-12 | Aes Plastics Ltd | Fluid impeller |
| JPS5716297A (en) * | 1980-07-02 | 1982-01-27 | Toshiba Corp | Multiblade fan |
| JPH05195996A (ja) * | 1992-01-16 | 1993-08-06 | Hitachi Ltd | 空気圧縮機 |
| JP2003269363A (ja) * | 2002-03-15 | 2003-09-25 | Mitsubishi Heavy Ind Ltd | タンゼンシャルファン羽根車及び空気調和機 |
| JP2005282500A (ja) * | 2004-03-30 | 2005-10-13 | Toshiba Corp | 流体ポンプ、冷却装置及電気機器 |
| JP2011231775A (ja) * | 2001-05-11 | 2011-11-17 | Snecma | ロータと固定擾乱源とを備えた構造物、および該構造物の振動を低減する方法 |
| JP2015228768A (ja) * | 2014-06-02 | 2015-12-17 | 株式会社東芝 | 回転機械 |
-
2017
- 2017-01-06 WO PCT/JP2017/000271 patent/WO2018127970A1/ja not_active Ceased
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1893184A (en) * | 1929-01-24 | 1933-01-03 | Hoover Co | Fan |
| GB2046360A (en) * | 1979-03-31 | 1980-11-12 | Aes Plastics Ltd | Fluid impeller |
| JPS5716297A (en) * | 1980-07-02 | 1982-01-27 | Toshiba Corp | Multiblade fan |
| JPH05195996A (ja) * | 1992-01-16 | 1993-08-06 | Hitachi Ltd | 空気圧縮機 |
| JP2011231775A (ja) * | 2001-05-11 | 2011-11-17 | Snecma | ロータと固定擾乱源とを備えた構造物、および該構造物の振動を低減する方法 |
| JP2003269363A (ja) * | 2002-03-15 | 2003-09-25 | Mitsubishi Heavy Ind Ltd | タンゼンシャルファン羽根車及び空気調和機 |
| JP2005282500A (ja) * | 2004-03-30 | 2005-10-13 | Toshiba Corp | 流体ポンプ、冷却装置及電気機器 |
| JP2015228768A (ja) * | 2014-06-02 | 2015-12-17 | 株式会社東芝 | 回転機械 |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3623637A1 (en) * | 2018-09-14 | 2020-03-18 | Yen Sun Technology Corp. | Centrifugal fan |
| CN114223111A (zh) * | 2019-08-22 | 2022-03-22 | 日本电产株式会社 | 外转子型马达 |
| CN114223111B (zh) * | 2019-08-22 | 2024-05-31 | 日本电产株式会社 | 外转子型马达 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5342167A (en) | Low noise fan | |
| WO2016174790A1 (ja) | 遠心送風機および掃除機 | |
| JP4187606B2 (ja) | 電動機 | |
| KR20150026882A (ko) | 액시얼 갭형 발전기 | |
| JPH05161286A (ja) | 自動車用三相交流発電機 | |
| JP2000045992A (ja) | 送風羽根及び回転電機 | |
| KR102318229B1 (ko) | 로터 조립체 및 이를 포함하는 모터 | |
| JP2010213569A (ja) | モータ及びウインドウリフト | |
| JP2008303778A (ja) | ファン装置 | |
| JP7210326B2 (ja) | 回転電機 | |
| JP2016220375A (ja) | アキシャルギャップ型電動発電機 | |
| JP2016220373A (ja) | アキシャルギャップ型電動発電機 | |
| WO2018127970A1 (ja) | ファン、送風機、及び電動機 | |
| KR20000032976A (ko) | 공기조화기용 크로스 플로우 팬 | |
| US6617717B2 (en) | Alternator | |
| KR20170092882A (ko) | 코깅토크를 저감한 전동기 | |
| US20050084378A1 (en) | Radial fan wheel for transporting cooling air for an electric machine | |
| US11505218B2 (en) | Cooling of an electric motor | |
| JP2002266795A5 (ja) | ||
| JPH01142348A (ja) | 複数の多翼ファンを有するエアコンの室外ユニット | |
| JP2016205336A (ja) | 遠心送風機および掃除機 | |
| JP4916304B2 (ja) | ポンプ装置 | |
| KR20180034816A (ko) | 비엘디씨 모터의 냉각장치 | |
| CN209150814U (zh) | 一种直流风机及燃气热水器 | |
| JP2017180262A (ja) | 回転装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17890775 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17890775 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |