WO2018130973A1 - Récepteur de réception d'un ofdm étalé à transformée de fourier discrète avec précodage de domaine de fréquence - Google Patents
Récepteur de réception d'un ofdm étalé à transformée de fourier discrète avec précodage de domaine de fréquence Download PDFInfo
- Publication number
- WO2018130973A1 WO2018130973A1 PCT/IB2018/050191 IB2018050191W WO2018130973A1 WO 2018130973 A1 WO2018130973 A1 WO 2018130973A1 IB 2018050191 W IB2018050191 W IB 2018050191W WO 2018130973 A1 WO2018130973 A1 WO 2018130973A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- rotated
- received signal
- receiver
- estimated
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 28
- 238000004891 communication Methods 0.000 claims abstract description 22
- 238000012545 processing Methods 0.000 claims abstract description 7
- 230000001131 transforming effect Effects 0.000 claims abstract description 3
- 238000001914 filtration Methods 0.000 claims description 6
- 230000010363 phase shift Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 238000013507 mapping Methods 0.000 description 14
- 238000007493 shaping process Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/10—Code generation
- H04J13/12—Generation of orthogonal codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03159—Arrangements for removing intersymbol interference operating in the frequency domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03433—Arrangements for removing intersymbol interference characterised by equaliser structure
- H04L2025/03535—Variable structures
- H04L2025/03541—Switching between domains, e.g. between time and frequency
Definitions
- Embodiments of the present disclosure are related, in general to communication, but exclusively relate to receiver for Discrete Fourier Transform-spread-Orthogonal frequency- division multiplexing (DFT-s-OFDM) to mitigate inter-symbol-interference (ISI).
- DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal frequency- division multiplexing
- ISI inter-symbol-interference
- 5G new radio supports enhanced mobile broadband (eMBB), ultra-reliable-low- latency-communication (URLLC) and massive-machine-type-communication (mMTC) for frequency bands below 6GHz and as well as above 6 GHz, including millimeter wave bands (e.g. 20-40 GHz and 60-80GHz).
- eMBB enhanced mobile broadband
- URLLC ultra-reliable-low- latency-communication
- mMTC massive-machine-type-communication
- the pi/2 BPSK DFT Spread OFDM with precoding is adopted for 5G New Radio (NR) phase- 1 as a low PAPR uplink waveform that is expected to increase the link coverage.
- the waveform behaves like a constant envelope signal and allows power amplifier (PA) operation near the saturation region.
- the precoder or filter can be implemented in time domain before DFT or after DFT in frequency domain.
- RS reference signal
- the receivers use minimum mean square estimation (MMSE) equalizer which does not know exact filter applied at the transmitter end. Having a filter specified in the standard allows an improved receiver that mitigates the inter-symbol- interference (ISI) introduced by the precoder more effectively.
- the precoder is applied to the data but not for the RS.
- the channel estimator can estimate the propagation channel and reconstruct the overall effective channel impulse response by taking into account the exact precoder knowledge.
- a method of detecting data in a communication network comprises transforming by a receiver, a received signal in to frequency domain using a Discrete Fourier Transform (DFT) to generate transformed signal. Also, the method comprises equalizing the transformed signal to obtain estimated precoded signal and performing inverse Fourier transform operation on the estimated precoded signal to obtain time domain signal. Further, the method comprises de -rotating the time domain signal to produce de -rotated data and processing the de -rotated signal by separating real part and imaginary part associated with the de-rotated signal.
- DFT Discrete Fourier Transform
- the real part is filtered using a first filter and the imaginary parts is filtered using a second filter and the filter outputs are combined to produce a signal that is used for demodulation.
- the precoder is a two- tap filter and the first filter are in absent
- the second filter takes the form of a circular shift followed by a scaling factor.
- the receiver comprises a processor and a memory, communicatively coupled to the processor, wherein the memory stores processor-executable instructions, which, on execution, causes the processor to transform received signal in to frequency domain using a Discrete Fourier Transform (DFT) to generate transformed signal.
- DFT Discrete Fourier Transform
- the processor equalizes the transformed signal to obtain estimated precoded signal and perform inverse Fourier transform operation on the estimated precoded signal to obtain time domain signal.
- the processor de -rotates the time domain signal to produce de-rotated data and processes the de-rotated signal by separating real part and imaginary part associated with the de-rotated signal.
- the real part is filtered using a first filter and the imaginary parts is filtered using a second filter and the filter outputs are combined to produce a signal that is used for demodulation.
- the precoder is a two-tap filter and the first filter are absent, then the second filter takes the form of a circular shift followed by a scaling factor.
- Fig. 1 shows a block diagram of a transmitter for transmitting a pi/2 Binary Phase Shift
- FIG. 2A shows an exemplary block diagram of a receiver for receiving a waveform using
- FIG. 2B shows another block diagram of a receiver for receiving a waveform using Pi/2
- Embodiments of the present disclosure relate to a communication receiver for pi/2BPSK Discrete Fourier Transform-spread-Orthogonal frequency-division multiplexing (DFT-s- OFDM) with pre-coding.
- the precoder is 1+D or 1-D precoding.
- the receiver uses a 2-tap filter with unequal values 1 -qD precoding.
- Fig. 1 shows a block diagram of a transmitter for transmitting a pi/2 Binary Phase Shift Keying (BPSK) sequence, in accordance with an embodiment of the present disclosure.
- BPSK Binary Phase Shift Keying
- the transmitter 100 also referred as a communication system or transmitting system includes a processor 102, memory 104, and modules 106.
- the memory 104 may be communicatively coupled to the processor 102.
- the processor 102 may be configured to perform one or more functions of the transmitter 100 for transmitting data.
- the transmitter 100 may comprise modules 106 for performing various operations in accordance with the embodiments of the present disclosure.
- the transmitter 100 is a baseband portion of a pi/2 BPSK transmitter comprising a 1+D or 1-D precoder or shaping.
- 1+D precoder case uses one-sided DFT and 1-D precoder uses two- sided DFT.
- the operation performed by 1+D or 1-D precoder/ shaping is equivalent to frequency domain pulse shaping without excess bandwidth (BW).
- the precoder uses a two-tap filter, with equal gain in an embodiment of the present disclosure.
- the precoder may be one of sD _1 +l+sD and -sD _1 +l-sD.
- another precoder equal to O ⁇ D- ! +l+O ⁇ D or -O ⁇ D ⁇ +l-O ⁇ D may be used.
- the modules 106 includes a rotation module 108, precoder 110, a discrete Fourier transform (DFT) module 112, a subcarrier mapping module 114, an inverse fast Fourier transform (IFFT) module 116 and an output module 118.
- DFT discrete Fourier transform
- IFFT inverse fast Fourier transform
- the rotation module 108 receives and performs a constellation rotation operation on an input data 120.
- the rotation module 108 performs 90-degree rotation between successive data symbols or alternatively j k rotation where j is defined as square root of -1 and k is a discrete- time index on the input data 120, which is Binary Phase-shift keying (BPSK) data to generate a rotated data.
- BPSK Binary Phase-shift keying
- the rotation module 108 performs 90-degree constellation rotation which may be clock-wise or anti-clock wise.
- the rotation module 108 performs a pi/2 constellation rotation and 1+D or 1-D shaping is implemented using a look table by observing two consecutive input bits and mapping it to a QPSK constellation.
- the rotated data is fed to the precoder 110 for pre-coding the rotated data.
- the rotation module 108 having pi/2 constellation rotation and precoder 110 with 1+qD shaping may be implemented using a look table by observing two consecutive input bits and mapping it to a QPSK constellation with possibly unequal real/imaginary parts.
- the precoder 110 is configured with 1+qD precoder/shaping where 'q' is a real or complex- valued parameter, for precoding the rotated data to generate a precoded data.
- 'q' is a real or complex- valued parameter, for precoding the rotated data to generate a precoded data.
- PAPR power amplifier
- ACLR adjacent channel leakage ratio
- 'q' values may be one of [+1, -1, +0.9, -0.9, +0.8, -0.8, +0.2, -0.2], less than +1 and the like.
- the precoding operation is equivalent to frequency domain pulse shaping without excess bandwidth (BW).
- the precoder 110 uses a two-tap filter, which may have equal or unequal gain. In another embodiment, other types of precoders that reduce the peak-to- average -ratio (PAPR) may also be used by the transmitter 100.
- the precoder 110 may be configured with a 3-tap filter: sD _1 +l+sD, where s takes a range of values [0.26, 0.23, 0.3] and the like.
- the DFT module 112 is configured to receive and transform the precoded data to generate DFT data.
- the subcarrier mapping block 114 performs subcarrier mapping on the DFT data.
- the IFFT module 116 also referred as inverse DFT module, performs the inverse transform of the mapped DFT data with a subcarrier mapping to generate a time domain signal.
- the output module 118 performs at least one of addition of cyclic prefix, cyclic suffix, windowing, windowing with overlap and adding operation (WO LA) and filtering of the time domain signal to generate output data 122, also referred as output sequence or waveform.
- the output data 122 may be fed to a digital to analog converter (DAC) to generate an analog waveform.
- DAC digital to analog converter
- a frequency shift may be added to the output data 122 or converted analog signal before transmission by the transmitter 100.
- the transmitter 100 in case of long term evolution (LTE) uses a single slot, which comprises twelve subcarriers and seven OFDM symbols.
- LTE long term evolution
- the pilots may be at least one of Zadoff-Chu (ZC) sequences and pi/2 BPSK modulated sequences.
- ZC Zadoff-Chu
- the transmitter's Peak-to-Average Power Ratio (PAPR) results show that pi/2 BPSK with 1+D or 1-D precoder/ shaping has nearly 2.0 dB PAPR (at 99% cdf point) and QPSK (as in LTE) has 7.5 dB PAPR.
- PAPR Peak-to-Average Power Ratio
- long term evolution uses a single slot, which comprises twelve subcarriers and seven OFDM symbols.
- LTE uses a single slot, which comprises twelve subcarriers and seven OFDM symbols.
- For data channels one out of seven OFDM symbols is reserved for reference symbols/pilots that are used for channel estimation.
- For control channels one RB uses multiple OFDM symbols for reference symbols (RS).
- the pilots may be at least one of Zadoff-Chu (ZC) sequences and BPSK modulated sequences.
- ZC Zadoff-Chu
- a receiver uses ZC reference signal for estimating the propagation channel and applies precoding of at least one of 1+D and other precoder used by the transmitter.
- the receiver comprises a precoder to perform precoding/shaping on the estimated channel to reconstruct the effective channel experienced by the pi/2 BPSK data symbols. This can be accomplished in time or frequency domain.
- Fig. 2A shows an exemplary block diagram of a receiver for receiving a waveform using Pi/2 BPSK with 1+qD or 1-qD precoding where the value of q may be less than or equal to 1, in accordance with an embodiment of the present disclosure.
- the receiver 200 also referred as a communication system or receiver system, includes the processor 202, and the memory 204.
- the memory 204 may be communicatively coupled to the processor 202.
- the processor 202 may be configured to perform one or more functions of the communication system 200 for receiving data.
- the communication system 200 may comprise modules 206 for performing various operations in accordance with the embodiments of the present disclosure.
- the receiver receives the communication data i.e.
- the modules such as, but not limited to, carrier down conversion, analog to digital conversion are not shown.
- the receiver carries standard operations like cyclic prefix removal, FFT, subcarrier de-mapping, which is not shown in Fig. 2A. After subcarrier de-mapping, the receiver collects M-samples and taken a DFT for further equalization.
- the modules 206 includes a a discrete Fourier Transform (DFT) module 208, an equalizer module 210, an estimation module 212, an inverse DFT (IDFT) module 214, a de-rotation module 216, a real value collection module 218, an imaginary value collection module 220, a scaling module 222 that scales the imaginary value by either q or -q, a circular shift module 224, and an addition module 226.
- the receiver 200 receives the communication data or waveform i.e. an input data 230 from at least one transmitter. In the baseband portion, for the receiver, the modules such as, but not limited to, carrier down conversion, analog to digital conversion are not shown.
- the receiver carries standard operations like cyclic prefix removal, FFT, subcarrier de-mapping. After subcarrier de-mapping, the receiver collects M-samples and taken a DFT for further equalization.
- the DFT module 208 transforms the input data 230 from the time domain in to frequency domain, to generate transformed data.
- the equalizer module 210 is a Nr branch equalizer, which performs equalization of transformed data to generate equalized data.
- the equalizer module 210 comprises Nr-receiver antennas, the receiver has 2Nr copies of the signal.
- the equalizer module 210 receives an input from the estimation module 212, which is also referred as a channel estimation module.
- the estimation module 212 performs estimation of channel through which the receiver 200 receives the input data 230. After performing the channel estimation, the equalizer module 210 performs equalization of transformed data using the channel estimated data.
- MMSE 2Nr branch linear minimum mean square estimation
- the channel estimation module 212 uses reference signal such as ZC sequence or pi/2 BPSK sequence for estimating the propagation channel and applies precoding of at least one of 1+D and other precoder used by the transmitter.
- the DFT outputs of ZC/ binary reference signal is used to remove the modulation on the subcarriers i.e. conjugate multiplication of ZC sequence/division by pilot modulation, to obtain modulation free pilots that are used for estimating the propagation channel.
- a frequency domain channel estimation which involves frequency domain interpolation of modulation free pilots is used, the method used is to average the modulation free pilots over a certain frequency window to obtain a single channel estimate for all subcarriers contained in that window.
- the frequency window operation reduces the noise/interference contained in the pilots/reference symbols.
- Fig. 2B shows a block diagram of a receiver for receiving a waveform using Pi/2 BPSK with precoder that takes more 2 or more taps (for example, a 3-tap filter: sD _1 +l+sD, where s takes a range of values [0.26, 0.23, 0.3]), in accordance with another embodiment of the present disclosure.
- the first stage of the receiver applies an equalizer to generate an estimate of the precoded data and second stage applies a first filter on the real of part of the de- rotated data and second filter on the imaginary part of the de-rotated data before the filter out puts are combined for demodulation.
- the first and second filter are determined using MMSE- type approach to equalizer the ISI caused by the precoder.
- the receiver 260 also referred as a communication system or receiver system, includes the processor 202, and the memory 204.
- the memory 204 may be communicatively coupled to the processor 202.
- the processor 202 may be configured to perform one or more functions of the communication system 200 for receiving data.
- the communication system 200 may comprise modules 206 for performing various operations in accordance with the embodiments of the present disclosure.
- the receiver receives the communication data i.e. input data 230 from at least one transmitter.
- the modules such as, but not limited to, carrier down conversion, analog to digital conversion are not shown.
- the receiver carries standard operations like cyclic prefix removal, FFT, subcarrier de-mapping, which is not shown in Fig. 2B. After subcarrier de-mapping, the receiver collects M-samples and taken a DFT for further equalization.
- the modules 206 includes a a discrete Fourier Transform (DFT) module 208, an equalizer module 210, an estimation module 212, an inverse DFT (IDFT) module 214, a de-rotation module 216, a real value collection module 218, an imaginary value collection module 220, a first filter 262, a second filter 264 and an addition module 226.
- the receiver 260 receives the communication data or waveform i.e. an input data 230 from at least one transmitter.
- the modules such as, but not limited to, carrier down conversion, analog to digital conversion are not shown.
- the DFT module 208 transforms the input data 230 from the time domain in to frequency domain, to generate transformed data.
- the equalizer module 210 performs equalization of transformed data to generate equalized data.
- the equalizer module 210 receives an input from the estimation module 212, which is also referred as a channel estimation module.
- the estimation module 212 performs estimation of channel through which the receiver 200 receives the input data 230.
- the equalizer module 210 performs equalization of transformed data using the channel estimated data.
- equalization inverse DFT is performed using IDFT module 214.
- the first filter 262 receives the de-rotated real part signal from the real value collection module 218, to estimate the received signal by filtering the real part of the de -rotated signal to reduce the ISI caused by the precoder on the real-branch.
- the filtered de -rotated real part is sent to the addition module 226.
- the second filter 264 receives the de-rotated imaginary part from the imaginary value collection module 220.
- the second filter filters the ISI caused by the precoder on the imaginary branch.
- the addition module 226, also referred as a combiner module, combines the output of the first filter and second filter obtain a soft output.
- the soft output is demodulated and processed to obtain the BPSK data i.e. the received data, in an embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Selon des modes de réalisation, la présente invention concerne en général la communication, mais se rapporte exclusivement à un procédé et à un récepteur pour détecter des données dans un réseau de communication. Le procédé comprend la transformation, par un récepteur, d'un signal reçu dans le domaine fréquentiel pour générer un signal transformé. Le procédé comprend également l'égalisation du signal transformé pour obtenir un signal précodé estimé, qui est transformé à l'aide d'une transformée de Fourier inverse pour obtenir un signal de domaine temporel. Le signal de domaine temporel est détourné pour produire des données détournées, sur lequel un traitement est effectué par séparation d'une partie réelle et d'une partie imaginaire associée au signal détourné. La partie réelle et les parties imaginaires sont filtrées et combinées pour produire un signal, qui est démodulé pour détecter le signal.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201741001483 | 2017-01-13 | ||
IN201741001483 | 2017-01-13 | ||
IN201741041089 | 2017-11-16 | ||
IN201741041089 | 2017-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018130973A1 true WO2018130973A1 (fr) | 2018-07-19 |
Family
ID=62839860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2018/050191 WO2018130973A1 (fr) | 2017-01-13 | 2018-01-12 | Récepteur de réception d'un ofdm étalé à transformée de fourier discrète avec précodage de domaine de fréquence |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018130973A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110022170A (zh) * | 2019-04-11 | 2019-07-16 | 北京邮电大学 | 一种针对π相位MIMO系统的联合时间频率同步方法及装置 |
EP4037275A4 (fr) * | 2019-11-11 | 2022-11-16 | Samsung Electronics Co., Ltd. | Procédé et dispositif pour transmettre des données dans un système de communication sans fil |
WO2023230989A1 (fr) * | 2022-06-02 | 2023-12-07 | Nec Corporation | Procédés et dispositifs pour signal de réveil |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090058728A1 (en) * | 2004-03-25 | 2009-03-05 | Ayman Mostafa | Interference cancellation and receive diversity for single-valued modulation receivers |
WO2010004586A2 (fr) * | 2008-07-10 | 2010-01-14 | Centre Of Excellence In Wireless Technology | Procédé et système de transmission et de réception de signaux |
US20140029952A1 (en) * | 2011-03-15 | 2014-01-30 | Huawei Technologies Co., Ltd. | Data transmission method and related device and system |
-
2018
- 2018-01-12 WO PCT/IB2018/050191 patent/WO2018130973A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090058728A1 (en) * | 2004-03-25 | 2009-03-05 | Ayman Mostafa | Interference cancellation and receive diversity for single-valued modulation receivers |
WO2010004586A2 (fr) * | 2008-07-10 | 2010-01-14 | Centre Of Excellence In Wireless Technology | Procédé et système de transmission et de réception de signaux |
US20140029952A1 (en) * | 2011-03-15 | 2014-01-30 | Huawei Technologies Co., Ltd. | Data transmission method and related device and system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110022170A (zh) * | 2019-04-11 | 2019-07-16 | 北京邮电大学 | 一种针对π相位MIMO系统的联合时间频率同步方法及装置 |
CN110022170B (zh) * | 2019-04-11 | 2020-12-11 | 北京邮电大学 | 一种针对π相位MIMO系统的联合时间频率同步方法及装置 |
EP4037275A4 (fr) * | 2019-11-11 | 2022-11-16 | Samsung Electronics Co., Ltd. | Procédé et dispositif pour transmettre des données dans un système de communication sans fil |
US11770285B2 (en) | 2019-11-11 | 2023-09-26 | Samsung Electronics Co., Ltd. | Method and device for transmitting data in wireless communication system |
WO2023230989A1 (fr) * | 2022-06-02 | 2023-12-07 | Nec Corporation | Procédés et dispositifs pour signal de réveil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240356792A1 (en) | Methods and systems for generating a low peak-to-average power ratio (papr) data and reference signal | |
JP6294484B2 (ja) | マルチキャリア信号の受信機および受信機方法 | |
KR101588994B1 (ko) | Fdma 통신 시스템에서의 파일롯 신호 | |
US8660197B2 (en) | Method of and equipment for compensating carrier frequency offset in an orthogonal frequency division multiplexing wireless radio transmission system | |
JP6300992B2 (ja) | 送信装置 | |
US20190052486A1 (en) | Method and transmitter for generating a waveform with optimized papr | |
JP6668454B2 (ja) | データ通信のための波形を設計する方法及びシステム | |
WO2010004586A2 (fr) | Procédé et système de transmission et de réception de signaux | |
CN108702228B (zh) | 用于i-q解耦ofdm调制和解调的方法和装置 | |
US10848360B1 (en) | Receiver for receiving discrete fourier transform-spread-OFDM with frequency domain precoding | |
WO2018130973A1 (fr) | Récepteur de réception d'un ofdm étalé à transformée de fourier discrète avec précodage de domaine de fréquence | |
US20230327930A1 (en) | Method and apparatus for pre dft rs and data multiplexed dft-s-ofdm with excess bandwidth shaping | |
US20250219787A1 (en) | Method and apparatus for pre-dft rs and data multiplexed dft-s-ofdm with excess-band-width shaping and mimo | |
EP3384650A1 (fr) | Communication de données sans fil basée sur une transformation en cosinus discrète | |
EP3032790B1 (fr) | Transmission radio à multiplexage par répartition en fréquence généralisée à l'aide de domaine de fréquence en quadrature décalé | |
US11902074B2 (en) | System and method to generate a waveform in a communication network | |
WO2024184912A1 (fr) | Procédés de génération et d'égalisation d'une forme d'onde multiplexant dans le temps un signal de référence et des données | |
WO2024231961A1 (fr) | Génération de formes d'onde de multiplexage par répartition en temps fréquence orthogonale (otfdm) avec diversité de retard circulaire dans le domaine fréquentiel | |
WO2024057340A1 (fr) | Procédés et systèmes de génération de formes d'onde otfdm au moyen d'une séquence de bits d'entrée |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18738790 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18738790 Country of ref document: EP Kind code of ref document: A1 |