WO2018132014A1 - Récupérateur - Google Patents
Récupérateur Download PDFInfo
- Publication number
- WO2018132014A1 WO2018132014A1 PCT/NL2018/050032 NL2018050032W WO2018132014A1 WO 2018132014 A1 WO2018132014 A1 WO 2018132014A1 NL 2018050032 W NL2018050032 W NL 2018050032W WO 2018132014 A1 WO2018132014 A1 WO 2018132014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheets
- neighbouring
- connecting bodies
- recuperator
- recuperator according
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 38
- 239000004033 plastic Substances 0.000 claims description 13
- 229920003023 plastic Polymers 0.000 claims description 13
- 238000001746 injection moulding Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000007789 sealing Methods 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000003466 welding Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000004026 adhesive bonding Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- -1 for example Polymers 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/08—Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
- F28F3/10—Arrangements for sealing the margins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0014—Recuperative heat exchangers the heat being recuperated from waste air or from vapors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0015—Heat and mass exchangers, e.g. with permeable walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0025—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0037—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2240/00—Spacing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/14—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
- F28F2255/143—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded injection molded
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/14—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
- F28F2255/146—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded overmolded
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/02—Fastening; Joining by using bonding materials; by embedding elements in particular materials
- F28F2275/025—Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/08—Fastening; Joining by clamping or clipping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/08—Fastening; Joining by clamping or clipping
- F28F2275/085—Fastening; Joining by clamping or clipping with snap connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/10—Fastening; Joining by force joining
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/14—Fastening; Joining by using form fitting connection, e.g. with tongue and groove
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/14—Fastening; Joining by using form fitting connection, e.g. with tongue and groove
- F28F2275/143—Fastening; Joining by using form fitting connection, e.g. with tongue and groove with pin and hole connections
Definitions
- the invention relates to a recuperator comprising a number of neighbouring hexagonal sheets which extend parallel to each other and which are connected to each other at at least a part of their periphery and wherein flow passages are formed between neighbouring sheets.
- Dutch publication N L 1030270 describes a method for producing a heat exchanger having hexagonal sheets which extend parallel to each other. I n this case, sheets are stacked on top of each other and then neighbouring sheets are connected to each other at their periphery by means of chemical welding, wherein a solvent is used to partially dissolve the material of the sheets at their periphery.
- a housing is subsequently applied in order to the thus obtained stack of sheets welded to each other, which housing is connected to the stack by means of adhesive bonding.
- the housing ensures that the dimensions of the thus produced heat exchangers are relatively constant and that the heat exchangers are, for example, interchangeable as a result.
- the housing provides mechanical protection to the stack and the possibility of attaching the heat exchanger to air supply and discharge lines which communicate with the flow passages between the sheets.
- each of the sheets, at its periphery, is at least partially surrounded by and connected to an associated connecting body and neighbouring connecting bodies are connected to each other at at least a part of the periphery of the associated sheets and together the connecting bodies form the wall of a housing, wherein passage openings are provided in the wall which are connected to the flow passages for allowing air into the flow passages via the passage openings, wherein neighbouring connecting bodies are provided with protruding parts and with recesses respectively on sides facing each other, wherein the forms of the protruding parts and of the recesses adjoin each other in order to connect the connecting bodies to each other by a press fit.
- connecting body makes it superfluous to connect sheets to each other directly, for example by adhesive bonding or welding, such as in particular chemical welding or ultrasonic welding. Chemical welding and adhesive bonding have the significant drawback that they (may) require solvents which are dangerous and for this reason extra safety provisions are required.
- Neighbouring sheets of the recuperator according to the invention are connected to each other via the connecting bodies associated with the respective sheets during production of the recuperator.
- the connecting bodies which are connected to each other further function as a housing in the sense that they protect the sheets.
- the connecting bodies can further be formed in order to make attachment to supply and discharge lines possible in a simple manner. It is thus not necessary to use separate housings which are tailor made in advance. This also has the advantage that it is more likely to be cost-effective to produce recuperators in smaller numbers, for example specifically for a certain application or to customer specifications.
- a correct positioning of the connecting bodies with respect to one another and thus of the sheets can readily be achieved by providing the neighbouring connecting bodies with protruding parts and with recesses respectively on sides facing each other, wherein the forms of the protruding parts and of the recesses adjoin each other in order to connect the connecting bodies to each other.
- the protruding parts and the recesses may also advantageously be used to produce an airtight or at least substantially airtight connection between the neighbouring connecting bodies.
- the connection between two neighbouring connecting bodies can be airtight with a high degree of reliability due to the press fit by means of which neighbouring connecting bodies are connected to each other.
- connection by means of a press fit makes the application of welding or bonding neighbouring connecting bodies to each other superfluous, although it is also possible to combine the clamping connection with a welded or adhesive connection to increase the reliability of the connection.
- the additional welded or adhesive connection can then, for example, have an extra securing effect.
- the application, in the event of such a combination, of ultrasonic welding has the advantage that it is then not necessary to use any solvents in any case.
- a band may also be arranged around the housing, which is optionally connected to each or at least a portion of the connecting bodies.
- the passage openings are formed between neighbouring connecting bodies.
- the passage openings are formed by connecting the neighbouring connecting bodies to each other, which enables a relatively simple embodiment of the connecting bodies.
- the passage openings it is also possible for the passage openings to be formed in, instead of between, connecting bodies.
- the assembly of the connecting bodies with associated sheets can be facilitated if the protruding parts and/or the recesses have a tapered form or at least partially a tapered form, as a result of which it is possible to realize a self-aligning positioning.
- a practical embodiment at least during assembly and optional disassembly, can be obtained if neighbouring connecting bodies are connected to each other by means of a click-fit connection.
- recuperator is provided with a sealing body between neighbouring connecting bodies at the location where they are connected to each other, wherein it may be further preferred, with a view in particular to achieving a simple assembly, for the sealing body to be connected to one of the two neighbouring connecting bodies.
- the invention is suitable, inter alia, for recuperators of the membrane type.
- the sheets of such recuperators are suitable for exchanging moisture.
- the material of such sheets is not suited or is poorly suited to being welded.
- the use of adhesive for connecting membrane sheets to each other has the drawback that this is a step which is difficult to control and, partly as a result thereof, expensive, particularly if recuperators are produced in relatively large numbers, and that, depending on the type of adhesive that is used, it also involves the use of harmful solvents. Therefore, at least a portion of the sheets of a recuperator according to the invention may advantageously be permeable to moisture.
- the recuperator may be configured to have sheets which are all provided with a profile.
- the connecting bodies can contribute to a correct positioning of the sheets, more specifically the profiles thereof, with respect to each other, since the sheets can behave in a relatively stiff way owing to the connection with the connecting bodies.
- the invention is also suitable for a more traditional way in which sheets can be provided in a recuperator, namely wherein the neighbouring sheets are flat and are provided with a profile in an alternating fashion.
- the recuperator according to the invention may also advantageously be used if sheets are made of different materials, for example if neighbouring sheets are made of different materials in an alternating fashion.
- An advantageous application of the invention may be in recuperators wherein a portion of the number of sheets is made of a moisture-permeable material and the other portion of the number of sheets is made of a material which is not permeable to moisture. In traditional recuperators, such materials are difficult to combine.
- connecting bodies In order to produce a good connection between a connecting body and an associated sheet, it may be preferred, in the event that sheets made of different materials are used, for the connecting bodies to be made of different materials. In this case, a fixed combination is formed of the material of the connecting body and the material of the associated sheet.
- each of the sheets is at least substantially, including also completely, surrounded by an associated connecting body.
- connecting bodies may be injection moulded, particularly in the case of relatively large production numbers.
- the periphery of the housing is bar-shaped.
- the bar shape of the housing facilitates the attachment of other parts, such as in particular air ducts, to the recuperator.
- the invention provides the possibility of providing the housing with a bar-shaped periphery in a simple manner, namely by adapting the design of the connecting bodies hereto.
- Bar-shaped is understood to mean all forms in which six main surfaces are connected to each other at right angles. The definition of bar-shaped therefore also includes the form of a cube.
- the connection between the sheet and the connecting body can be produced directly during the injection moulding.
- the sheets are over-moulded with the material of the connecting bodies along the first part of the periphery of the connecting bodies during the injection moulding of the connecting bodies at the periphery of the sheets.
- the invention therefore also relates to a method for producing a connecting body for use in a recuperator according to the invention, the method comprising the following steps closing a mould, wherein a mould cavity is formed and a sheet is positioned in the mould cavity at at least a part of the periphery of the sheet,
- the invention further provides a method for producing a recuperator according to the invention, the method comprising the following steps
- encircling connecting bodies each having a sheet that is connected to the associated connecting body and extends on the inside of the encircling connecting body
- connecting connecting bodies to each other by a press fit in such a way that flow passages are formed between neighbouring sheets associated with neighbouring connecting bodies.
- Figure 1 shows a partially exploded perspective view of a recuperator according to the invention
- Figures 2a and 2b show a perspective top view and a perspective bottom view of a layer of the recuperator according to Figure 1 ;
- Figures 3a to 3f diagrammatically show a vertical cross section of part of the layer as illustrated in Figures 2a and 2b during successive steps of the production process thereof;
- Figures 4a to 4e show optional subsequent steps after the step according to Figure 3d;
- Figure 5 shows a perspective view of an alternative embodiment of a recuperator according to the invention.
- Figures 6a and 6b show a perspective top view of two layers of the recuperator according to Figure 5;
- Figure 7 shows a partially exploded perspective view of the recuperator according to Figure 5 including attachment parts as may be used in practice.
- FIG 1 shows a recuperator according to the invention which is configured as a heat exchanger 1 .
- Twelve layers 2 of heat exchanger 1 are shown.
- Each of the layers 2 comprises an encircling hexagonal connecting body 3.
- the free passage on the inside of the encircling form of each connecting body 3 is sealed by a sheet 4, as illustrated in Figures 2a and 2b.
- the connecting bodies 3 are alternately provided in two different geometries 3a, 3b.
- Connecting body 3b corresponds to a version of connecting body 3a which is mirrored in vertical plane of symmetry 8.
- the connecting bodies 3a, 3b are alternately connected to each other in a manner which will be explained in more detail below.
- the connecting bodies 3a, 3b that are connected to each other together form the wall of a housing with six upright wall parts at the respective hexagonal sides 10a to 10f of heat exchanger 1 .
- upright or “vertical” are used above, this refers to the situation in the position of use of the relevant heat exchanger.
- the sheets 4 associated with the different connecting bodies 3, that is with the different layers 2 are made of the same material, namely of polystyrene (PS) that is not permeable to moisture.
- PS polystyrene
- all of the sheets 4 may be made of another material, typically of a plastic such as, for example, high-density polyethylene (HDPE), but also, for example, of a metal such as aluminium.
- the material used for the sheets 4 may further be permeable to moisture.
- the sheets 4 within a heat exchanger, in that case preferably in an alternating fashion to be made from different materials, for example selected from the materials as mentioned above.
- the geometries of the sheets 4 differ from one another in an alternating fashion between profiled sheets 4a and flat sheets 4b.
- this document uses reference numeral 4 for sheets 4a and 4b, thus irrespective of whether these are flat sheets or profiled sheets.
- reference numerals 2a and 2b are used for layers with a profiled sheet 4a and a flat sheet 4b respectively.
- the profiling of sheets 4a is not illustrated for the sake of clarity.
- the thickness of the sheets 4 may typically vary between 0.05 mm and 2 mm.
- the width of the passage ducts may correspond to the period of a profile or half of it but also to a number of periods of a profile and even to the dimensions of the sheet seen at right angles to the flow direction.
- the heat exchanger has a sealing cover body 41 on the top side of the stack of layers 2 and a sealing base body 42 on the underside of the stack of layers 2.
- the height of the layers 2 in the figures is shown to be higher than it actually is. It is mentioned by way of indication that the distance between two diametrically opposed points of the hexagonal form, which points are incidentally truncated, of the connecting bodies 3 is in reality typically between 5 cm and 100 cm, while the height of the layers 2 is typically between 2 mm and 20 mm.
- Flow passages for air are formed between neighbouring sheets 4.
- energy is exchanged between air that flows in opposite directions through adjoining flow passages.
- inflow openings 1 1 a are formed between two neighbouring connecting bodies 3a, 3b, more specifically at the location of hexagonal side 10a of heat exchanger 1 .
- Outflow openings 12a are formed on the opposite side at the location of hexagonal side 10d.
- Each of the inflow openings 1 1 a is connected to an associated outflow opening 12a via the flow passages between two neighbouring sheets 4.
- inflow openings 1 1 b are formed between two neighbouring connecting bodies 3b, 3a, more specifically at the location of hexagonal side 10e.
- Outflow openings 12b are formed on the hexagonal side 10b between neighbouring connecting bodies 3b, 3a.
- Each of the inflow openings 1 1 b is connected to an associated outflow opening 12b via flow passages between two neighbouring sheets 4.
- the flow passages are formed in the rectangular area between the two opposite hexagonal sides 10c and 10f.
- the triangular areas between said rectangular area and the hexagonal sides 10a, 10b, on one side, or the hexagonal sides 10d, 10e, on the other side, are collection areas in which either the air which flows into the heat exchanger 1 via an inflow opening 1 1 a, 1 1 b is distributed across the flow passages between two sheets 4 before the air flows into these flow passages, or the air which flows out of the flow passages between two sheets 4 is fed to an outflow opening 12a, 12b.
- the layers 2 are connected to each other via the connecting bodies 3 by means of a clamping connection.
- the connecting bodies 3 are each provided with a hexagonal part 14 with an encircling rib 15 on its upper side and in which hexagonal part 14 an encircling groove 16 is provided on the underside.
- the encircling rib 15 is interrupted at the location of the hexagonal sides 10a and 10d in order to form an inflow opening 1 1 a and an outflow opening 12a, respectively.
- the encircling rib 15 is interrupted at the location of the hexagonal sides 10b and 10e in order to form an outflow opening 12b and an inflow opening 1 1 b, respectively.
- the hexagonal part 14 of connecting bodies 3a is provided on the underside with recesses 18b, 18a, respectively, as a result of which the groove 16 is interrupted in these areas and in order to form inflow opening 1 1 b and outflow opening 12b.
- the hexagonal part 14 of connecting bodies 3b is provided on the underside with recesses 19a, 19b (not illustrated), as a result of which groove 16 is interrupted in these areas and in order to form inflow opening 1 1 a and outflow opening 12a.
- the encircling form and the cross sections of the ribs 15 and the grooves 16 are dimensioned with respect to each other in such a way that they can engage with each other by a press fit in a clamping, airtight or at least substantially airtight manner.
- the ribs 15 are provided with aligning edges 17a, 17b in order to facilitate engaging with each other during assembly.
- the connecting bodies 3 are pressed onto each other, wherein the flanks of the ribs 15 of one connecting body 3 slide along the flanks of the grooves 16 with friction.
- the ribs 15 and the grooves 16 fit into each other without play and the respective flanks of the ribs 15 and the grooves 16 adjoin one another in a clamping manner, which clamping force provides the connection between the connecting bodies 3.
- the ribs 15 and the grooves 16 may also have a slightly tapered form, without departing from the principle of a press fit as explained above.
- the above-mentioned cover body 41 of heat exchanger 1 has a hexagonal plate-shaped part 43, the periphery of which is the same as that of hexagonal part 14.
- the plate-shaped part is provided on the underside with an encircling (interrupted) groove similar to groove 16 for adjoining to the rib 15 of the top layer 2.
- the above-mentioned base body 42 of heat exchanger 1 has a hexagonal plate-shaped part 45, the periphery of which is also similar to that of hexagonal part 14.
- the base body 42 is provided with an encircling (interrupted) rib 46 similar to rib 15 for adjoining to groove 16 of the bottom layer 2.
- the cover body and the base body could alternatively also have a differently shaped periphery, for example for the purpose of attachments to air supply and air discharge facilities.
- two air supply ducts (not shown in more detail) are attached to hexagonal sides 10a and 10e of heat exchanger 1 in an airtight manner, via which two air flows are supplied to the flow passages on one side which adjoin the inflow openings 1 1 a and 1 1 b.
- two air discharge ducts (not shown in more detail) are attached to the hexagonal sides 10b and 10d of heat exchanger in an airtight manner so that the outflow openings 12b, 12a open into such an air discharge duct and the air flows leave the heat exchanger 1 again after they have passed through the flow passages.
- the various attachments and connections between the connecting bodies 3 with respect to each other and between the connecting bodies 3 on the one hand and the sheets 4 on the other hand are such that at least 97% of the air which flows into the heat exchanger 1 via inflow openings 1 1 a, 1 1 b flows out of the heat exchanger 1 again via outflow openings 12a, 12b.
- energy will be exchanged between, on the one hand, the air which flows through the flow passages that adjoin inflow openings 1 1 a and, on the other hand, the air which flows through the flow passages that adjoin inflow openings 1 1 b.
- the hexagonal sides of the recuperator could also differ from each other in terms of their length. More specifically, for example, the hexagonal sides 10c and 10f may be longer than the remaining hexagonal sides 10a, 10b, 10d and 10e. I n that case, the hexagonal form of the recuperator is thus not rotationally symmetrical, as is illustrated in the figures.
- the inflow openings and outflow openings are now surrounded by two neighbouring connecting bodies 3, it is also possible to provide the inflow openings and/or the outflow openings in a single connecting body. Each of the inflow openings and/or the outflow openings are then fully surrounded by material of an associated connecting body. It is furthermore possible that the connecting bodies are not fully encircling or in fact consist of two or even more parts which are each provided on just a part of the periphery of a sheet, wherein use is possibly made of separate seals to prevent leakage of air.
- Figures 3a to 3d show successive steps during the production of a layer 2a with a profiled sheet 4a.
- the profiling of sheet 4a is such that the profiling does not extend up to the outer periphery of sheet 4a.
- the flat area 21 is accommodated in a clamping manner between two mould parts 22, 23.
- Mould parts 22, 23 define between them a mould cavity 24, the form of which corresponds to that of the connecting part 3a.
- the flat area 21 of sheet 4a extends into the mould cavity 24.
- Liquid thermoplastic such as polystyrene or polyethylene
- injection-moulding channels 25 which each open into the mould cavity 24 and a number of which are distributed over the periphery of the mould cavity 24, by means of injection moulding so that it completely fills said mould cavity 24 ( Figures 3c and 3d).
- the liquid plastic solidifies, during which solidification the plastic adheres to (the flat area 21 of) sheet 4a insofar as sheet 4a extends into the mould cavity 24.
- the selection of the material of the connecting parts 3 may be adapted to that of sheet 4 in order to promote sufficient adhesion.
- a layer 2b with a completely flat sheet 4b can also be produced in a similar way.
- the layers 2a and 2b can be alternately clamped on top of one another (Figure 3f), with the peaks 9 of the profiling of sheet 4a adjoining an adjacent flat sheet 4b, as a result of which flow passages are formed between neighbouring sheets 4a and 4b.
- Clamping layers 2a and 2b on top of one another may be done manually but optionally also in an automated manner, for which purpose a relatively simple assembly machine may be sufficient. This machine may be suitable for heat exchangers of different dimensions, with no or only limited re-setting being required.
- Figures 4a to 4c show successive steps of an alternative method for producing a layer 2, wherein, after solidification of the plastic material as explained with reference to Figures 3a to 3e, an extra mould cavity 26 is formed at the underside of the connecting body 3 by moving injection duct body 27, which extends over the entire length of groove 16, downwards with respect to the bottom mould body 23'. Subsequently, liquid plastic material is supplied to the extra mould cavity 26 via injection duct 28 in injection duct body 27.
- the material of this plastic differs from the plastic material in mould cavity 24 in the sense that it behaves resiliently in solidified form, like a rubber. After solidification of the plastic material in the extra mould cavity 26, it is adhered to the plastic material in mould cavity 24 and forms a seal 29.
- layer 2a' The product thus produced is denoted as layer 2a'. It is of course also possible to provide layer 2b with a seal in a similar way as seal 29. This layer is denoted by reference numeral 2b'.
- the seal 29 serves to promote an airtight attachment of neighbouring layers 2a', 2b' ( Figure 4e).
- FIGS 5 to 7 relate to a heat exchanger 51 which can be considered as a variant to heat exchanger 1.
- the wall parts 61 c and 61 f on the opposite hexagonal sides 60c and 60f of heat exchanger 51 are (viewed from above) extended at both ends with respect to the corresponding wall parts of heat exchanger 1 .
- heat exchanger 51 or at least the outside thereof, has the form of a bar with a rectangular, more specifically square, top view.
- the sheets in the heat exchanger 51 are hexagonal, analogously to sheets 4 in heat exchanger 1 .
- the ends 64a, 64b of the parts of the connecting bodies 62a, 62b of layers 52a, 52b which form the wall parts 61 c and 61 f, which wall parts 64a, 64b in Figure 5 are situated at the front of heat exchanger 51 , are aligned with each other and are situated with the truncated points 64c between the parts of the connecting bodies 62a, 62b of layers 52a, 52b which are situated on the hexagonal sides 60a and 60b.
- These ends 64a, 64b, points 64c together with cover body 71 and base body 72 thus form a contact surface which has the form of a lying, block-shaped figure eight.
- Figure 7 shows how funnel-shaped flow bodies 81 , 82 adjoin the two opposite contact surfaces of heat exchanger 51 in a clamping manner.
- Gaskets 83, 84 are provided between the flow bodies 81 , 82 and the two associated contact surfaces.
- both the gaskets 83, 84 and the flow bodies 81 , 82 are also provided with identical openings.
- the flow bodies 81 , 82 comprise a partition 85 between the openings.
- the flow bodies 81 , 82 clamp heat exchanger 51 between them with the aid of draw bars 86 which, for example, may be threaded and which extend through holes in the flow bodies 81 , 82.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LTEPPCT/NL2018/050032T LT3568655T (lt) | 2017-01-16 | 2018-01-16 | Rekuperatorius |
DK18702355.1T DK3568655T3 (da) | 2017-01-16 | 2018-01-16 | Rekuperator |
CN201880018211.4A CN110418934A (zh) | 2017-01-16 | 2018-01-16 | 换热器 |
PL18702355.1T PL3568655T3 (pl) | 2017-01-16 | 2018-01-16 | Rekuperator |
ES18702355T ES2942434T3 (es) | 2017-01-16 | 2018-01-16 | Recuperador |
EP18702355.1A EP3568655B1 (fr) | 2017-01-16 | 2018-01-16 | Récupérateur |
JP2019538404A JP2020514659A (ja) | 2017-01-16 | 2018-01-16 | 復熱装置 |
US16/477,996 US20200124359A1 (en) | 2017-01-16 | 2018-01-16 | Recuperator |
FIEP18702355.1T FI3568655T3 (fi) | 2017-01-16 | 2018-01-16 | Rekuperaattori |
CA3049951A CA3049951A1 (fr) | 2017-01-16 | 2018-01-16 | Recuperateur |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL2018175A NL2018175B1 (nl) | 2017-01-16 | 2017-01-16 | Recuperator |
NL2018175 | 2017-01-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018132014A1 true WO2018132014A1 (fr) | 2018-07-19 |
Family
ID=57906960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NL2018/050032 WO2018132014A1 (fr) | 2017-01-16 | 2018-01-16 | Récupérateur |
Country Status (12)
Country | Link |
---|---|
US (1) | US20200124359A1 (fr) |
EP (1) | EP3568655B1 (fr) |
JP (1) | JP2020514659A (fr) |
CN (1) | CN110418934A (fr) |
CA (1) | CA3049951A1 (fr) |
DK (1) | DK3568655T3 (fr) |
ES (1) | ES2942434T3 (fr) |
FI (1) | FI3568655T3 (fr) |
LT (1) | LT3568655T (fr) |
NL (1) | NL2018175B1 (fr) |
PL (1) | PL3568655T3 (fr) |
WO (1) | WO2018132014A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020203556A1 (fr) * | 2019-04-05 | 2020-10-08 | ダイキン工業株式会社 | Échangeur de chaleur |
JP2020169781A (ja) * | 2019-04-05 | 2020-10-15 | ダイキン工業株式会社 | 熱交換器 |
JP2020169780A (ja) * | 2019-04-05 | 2020-10-15 | ダイキン工業株式会社 | 熱交換器 |
JP2021042902A (ja) * | 2019-09-11 | 2021-03-18 | ダイキン工業株式会社 | 熱交換器 |
JP2022511300A (ja) * | 2018-11-05 | 2022-01-31 | ツェンダー グループ インターナショナル アーゲー | 筐体を熱交換器ブロックに備え付ける方法、およびそのような筐体を有する熱交換器ブロック |
WO2022180151A1 (fr) | 2021-02-25 | 2022-09-01 | Dutch Innovation In Air Treatment Bv | Procédé de fabrication d'un empilement interrelié de cadres thermoplastiques |
WO2022180149A1 (fr) * | 2021-02-25 | 2022-09-01 | Dutch Innovation In Air Treatment B.v. | Échangeur de chaleur à plaques d'évaporation |
EP4019879B1 (fr) | 2020-12-28 | 2024-08-28 | Zhongshan Fortune Way Environmental Technology Co., Ltd. | Échangeur de chaleur |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023286110A1 (fr) | 2021-07-12 | 2023-01-19 | 三菱電機株式会社 | Élément d'échange de chaleur |
WO2023105552A1 (fr) * | 2021-12-06 | 2023-06-15 | 三菱電機株式会社 | Feuille de résine perméable à l'humidité, plaque d'écoulement pour élément d'échange thermique total, élément d'échange thermique total et dispositif de ventilation à échange thermique total |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB740380A (en) * | 1953-02-20 | 1955-11-09 | Parsons C A & Co Ltd | Improvements in and relating to heat exchangers |
EP0048559A2 (fr) * | 1980-09-24 | 1982-03-31 | General Electric Company | Structure en forme de paquet et son procédé de fabrication |
JPH03279793A (ja) * | 1990-03-28 | 1991-12-10 | Matsushita Electric Ind Co Ltd | 全熱交換素子 |
JP2002286391A (ja) * | 2001-03-26 | 2002-10-03 | Matsushita Seiko Co Ltd | 熱交換器 |
EP1361406A2 (fr) * | 2002-05-08 | 2003-11-12 | Smiths Group plc | Echangeur de chaleur |
JP2006250372A (ja) * | 2005-03-08 | 2006-09-21 | Yamato Kobo:Kk | 全熱交換器 |
NL1030270C2 (nl) | 2005-10-26 | 2007-04-27 | Level Holding Bv | Werkwijze en inrichting voor het vervaardigen van een warmtewisselaar. |
EP2131133A1 (fr) * | 2007-03-30 | 2009-12-09 | Panasonic Corporation | Elément d'échange thermique |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2691528B1 (fr) * | 1992-05-22 | 1997-05-23 | Packinox Sa | Faisceau de plaques pour echangeur thermique et procede d'assemblage d'un tel faisceau de plaques. |
CN1162107A (zh) * | 1995-12-13 | 1997-10-15 | 瓦莱奥热机公司 | 用于热交换器的体积缩小的集流板 |
JP3306591B2 (ja) * | 1999-12-21 | 2002-07-24 | 株式会社西部技研 | 直交流型全熱交換器 |
GB2361991A (en) * | 2000-03-10 | 2001-11-07 | Smiths Group Plc | A Heat Recovery Unit |
JP3969064B2 (ja) * | 2001-11-16 | 2007-08-29 | 三菱電機株式会社 | 熱交換器及び熱交換換気装置 |
WO2005078371A2 (fr) * | 2004-02-10 | 2005-08-25 | The Texas A & M University System | Systeme et procede d'evaporation par compression de vapeur |
CN2755547Y (zh) * | 2004-12-07 | 2006-02-01 | 周登利 | 一种热回收交换器 |
JP5817652B2 (ja) * | 2012-06-14 | 2015-11-18 | 三菱電機株式会社 | 全熱交換素子 |
EP2947412A4 (fr) * | 2013-01-18 | 2017-05-24 | Taisei Plas Co., Ltd. | Échangeur thermique et procédé pour sa fabrication |
CN105241296B (zh) * | 2015-09-25 | 2018-09-14 | 森德(中国)暖通设备有限公司 | 热交换器 |
-
2017
- 2017-01-16 NL NL2018175A patent/NL2018175B1/nl active
-
2018
- 2018-01-16 LT LTEPPCT/NL2018/050032T patent/LT3568655T/lt unknown
- 2018-01-16 EP EP18702355.1A patent/EP3568655B1/fr active Active
- 2018-01-16 US US16/477,996 patent/US20200124359A1/en not_active Abandoned
- 2018-01-16 PL PL18702355.1T patent/PL3568655T3/pl unknown
- 2018-01-16 CA CA3049951A patent/CA3049951A1/fr active Pending
- 2018-01-16 JP JP2019538404A patent/JP2020514659A/ja active Pending
- 2018-01-16 DK DK18702355.1T patent/DK3568655T3/da active
- 2018-01-16 CN CN201880018211.4A patent/CN110418934A/zh active Pending
- 2018-01-16 WO PCT/NL2018/050032 patent/WO2018132014A1/fr active Application Filing
- 2018-01-16 ES ES18702355T patent/ES2942434T3/es active Active
- 2018-01-16 FI FIEP18702355.1T patent/FI3568655T3/fi active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB740380A (en) * | 1953-02-20 | 1955-11-09 | Parsons C A & Co Ltd | Improvements in and relating to heat exchangers |
EP0048559A2 (fr) * | 1980-09-24 | 1982-03-31 | General Electric Company | Structure en forme de paquet et son procédé de fabrication |
JPH03279793A (ja) * | 1990-03-28 | 1991-12-10 | Matsushita Electric Ind Co Ltd | 全熱交換素子 |
JP2002286391A (ja) * | 2001-03-26 | 2002-10-03 | Matsushita Seiko Co Ltd | 熱交換器 |
EP1361406A2 (fr) * | 2002-05-08 | 2003-11-12 | Smiths Group plc | Echangeur de chaleur |
JP2006250372A (ja) * | 2005-03-08 | 2006-09-21 | Yamato Kobo:Kk | 全熱交換器 |
NL1030270C2 (nl) | 2005-10-26 | 2007-04-27 | Level Holding Bv | Werkwijze en inrichting voor het vervaardigen van een warmtewisselaar. |
EP2131133A1 (fr) * | 2007-03-30 | 2009-12-09 | Panasonic Corporation | Elément d'échange thermique |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022511300A (ja) * | 2018-11-05 | 2022-01-31 | ツェンダー グループ インターナショナル アーゲー | 筐体を熱交換器ブロックに備え付ける方法、およびそのような筐体を有する熱交換器ブロック |
JP7308930B2 (ja) | 2018-11-05 | 2023-07-14 | ツェンダー グループ インターナショナル アーゲー | 筐体を熱交換器ブロックに備え付ける方法、およびそのような筐体を有する熱交換器ブロック |
WO2020203556A1 (fr) * | 2019-04-05 | 2020-10-08 | ダイキン工業株式会社 | Échangeur de chaleur |
JP2020169781A (ja) * | 2019-04-05 | 2020-10-15 | ダイキン工業株式会社 | 熱交換器 |
JP2020169780A (ja) * | 2019-04-05 | 2020-10-15 | ダイキン工業株式会社 | 熱交換器 |
JP2021042902A (ja) * | 2019-09-11 | 2021-03-18 | ダイキン工業株式会社 | 熱交換器 |
EP4019879B1 (fr) | 2020-12-28 | 2024-08-28 | Zhongshan Fortune Way Environmental Technology Co., Ltd. | Échangeur de chaleur |
WO2022180151A1 (fr) | 2021-02-25 | 2022-09-01 | Dutch Innovation In Air Treatment Bv | Procédé de fabrication d'un empilement interrelié de cadres thermoplastiques |
WO2022180149A1 (fr) * | 2021-02-25 | 2022-09-01 | Dutch Innovation In Air Treatment B.v. | Échangeur de chaleur à plaques d'évaporation |
NL2027648A (en) * | 2021-02-25 | 2022-09-20 | Dutch Innovation In Air Treat B V | An evaporator plate heat exchanger |
NL2027649A (en) | 2021-02-25 | 2022-09-20 | Dutch Innovation In Air Treat B V | Process to manufacture an interconnected stack of thermoplastic frames |
Also Published As
Publication number | Publication date |
---|---|
CA3049951A1 (fr) | 2018-07-19 |
EP3568655A1 (fr) | 2019-11-20 |
DK3568655T3 (da) | 2023-04-17 |
FI3568655T3 (fi) | 2023-04-25 |
ES2942434T3 (es) | 2023-06-01 |
CN110418934A (zh) | 2019-11-05 |
LT3568655T (lt) | 2023-05-25 |
PL3568655T3 (pl) | 2023-05-08 |
EP3568655B1 (fr) | 2023-03-01 |
US20200124359A1 (en) | 2020-04-23 |
JP2020514659A (ja) | 2020-05-21 |
NL2018175B1 (nl) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3568655B1 (fr) | Récupérateur | |
CN105121989B (zh) | 膜结合能量交换组件 | |
US6364007B1 (en) | Plastic counterflow heat exchanger | |
JP6585590B2 (ja) | 熱/エンタルピー交換機要素及びその製造方法 | |
ES2628252T3 (es) | Procedimiento y dispositivo para soldar elementos perfilados hechos de material plástico, en particular PVC | |
KR20020021653A (ko) | 연속 스트립 프레임을 갖는 필터 | |
JP2008070046A (ja) | 熱交換素子 | |
US8939195B2 (en) | Heat exchanger | |
KR20220157408A (ko) | 3차원 필름 밀봉 | |
US20170350126A1 (en) | Segmental duct coupler devices, systems, and methods | |
US6117395A (en) | Distributor device, in particular for a chemical analysis arrangement | |
US20140093406A1 (en) | Housing with two housing parts made of plastic | |
JP3911499B2 (ja) | カセットフィルター | |
US6660198B1 (en) | Process for making a plastic counterflow heat exchanger | |
JPS62134249A (ja) | 熱可塑性プラスチックからなる中空成形体をそれと溶接可能な熱可塑性プラスチックからなる薄壁成形体と端面側で密に結合する方法 | |
US4227571A (en) | Plate heat exchanger | |
JP2010285212A (ja) | 水密プラスチック段ボール箱及びその製法 | |
JP6940143B2 (ja) | 角部結合部材及び樹脂製角ダクト | |
EP3423773B1 (fr) | Récupérateur, dont certaines parties sont fabriquées par moulage par injection | |
JP6288500B2 (ja) | 熱可塑性樹脂製プレートの積層方法 | |
KR101980359B1 (ko) | 적층식 판형 열교환기 | |
US20130206253A1 (en) | Microfluidic device and method for producing same | |
US20170261266A1 (en) | Heat exchanger and method for producing a heat exchanger | |
JP5521556B2 (ja) | 温調マット用基板、その製造方法及び温調マット | |
JP2009178650A (ja) | フィルタエレメント、エアクリーナ及びフィルタエレメントの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18702355 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3049951 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019538404 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018702355 Country of ref document: EP |