WO2018134907A1 - Device and method for extracting multiple biomolecules from single cell - Google Patents
Device and method for extracting multiple biomolecules from single cell Download PDFInfo
- Publication number
- WO2018134907A1 WO2018134907A1 PCT/JP2017/001512 JP2017001512W WO2018134907A1 WO 2018134907 A1 WO2018134907 A1 WO 2018134907A1 JP 2017001512 W JP2017001512 W JP 2017001512W WO 2018134907 A1 WO2018134907 A1 WO 2018134907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carrier
- cell
- biomolecule
- sequence
- single cell
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 37
- 238000006243 chemical reaction Methods 0.000 claims abstract description 94
- 238000004458 analytical method Methods 0.000 claims abstract description 89
- 238000000926 separation method Methods 0.000 claims abstract description 30
- 239000011324 bead Substances 0.000 claims description 125
- 108020004999 messenger RNA Proteins 0.000 claims description 61
- 108090000623 proteins and genes Proteins 0.000 claims description 51
- 239000000758 substrate Substances 0.000 claims description 33
- 102000004169 proteins and genes Human genes 0.000 claims description 19
- 230000000704 physical effect Effects 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 18
- 239000012454 non-polar solvent Substances 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 7
- 230000005389 magnetism Effects 0.000 claims description 7
- 239000000969 carrier Substances 0.000 abstract description 17
- 210000004027 cell Anatomy 0.000 description 202
- 239000000523 sample Substances 0.000 description 96
- 239000003298 DNA probe Substances 0.000 description 53
- 108020003215 DNA Probes Proteins 0.000 description 51
- 239000002299 complementary DNA Substances 0.000 description 46
- 239000000243 solution Substances 0.000 description 44
- 230000003321 amplification Effects 0.000 description 28
- 230000014509 gene expression Effects 0.000 description 28
- 238000003199 nucleic acid amplification method Methods 0.000 description 28
- 150000007523 nucleic acids Chemical class 0.000 description 28
- 102000039446 nucleic acids Human genes 0.000 description 27
- 108020004707 nucleic acids Proteins 0.000 description 27
- 239000007787 solid Substances 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 22
- 238000003786 synthesis reaction Methods 0.000 description 22
- 230000005859 cell recognition Effects 0.000 description 21
- 238000005259 measurement Methods 0.000 description 20
- 239000002585 base Substances 0.000 description 19
- 238000010195 expression analysis Methods 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 18
- 238000012408 PCR amplification Methods 0.000 description 17
- 239000012528 membrane Substances 0.000 description 17
- 238000012300 Sequence Analysis Methods 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 15
- 239000003153 chemical reaction reagent Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000000605 extraction Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000006228 supernatant Substances 0.000 description 11
- 229920002684 Sepharose Polymers 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 9
- 238000010804 cDNA synthesis Methods 0.000 description 9
- 239000000839 emulsion Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 239000000872 buffer Substances 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 102100034343 Integrase Human genes 0.000 description 6
- 108700011259 MicroRNAs Proteins 0.000 description 6
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 6
- 239000006285 cell suspension Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 5
- 238000004949 mass spectrometry Methods 0.000 description 5
- 239000002679 microRNA Substances 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000005464 sample preparation method Methods 0.000 description 5
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 102000006382 Ribonucleases Human genes 0.000 description 4
- 108010083644 Ribonucleases Proteins 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 108091027963 non-coding RNA Proteins 0.000 description 4
- 102000042567 non-coding RNA Human genes 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 108091023037 Aptamer Proteins 0.000 description 3
- 101000903027 Homo sapiens ATP synthase subunit beta, mitochondrial Proteins 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 239000007857 degradation product Substances 0.000 description 3
- 239000003398 denaturant Substances 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000003100 immobilizing effect Effects 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 101150098072 20 gene Proteins 0.000 description 2
- 102100039980 40S ribosomal protein S18 Human genes 0.000 description 2
- 102100023415 40S ribosomal protein S20 Human genes 0.000 description 2
- 102100040881 60S acidic ribosomal protein P0 Human genes 0.000 description 2
- 102100033416 60S acidic ribosomal protein P1 Human genes 0.000 description 2
- 102100026112 60S acidic ribosomal protein P2 Human genes 0.000 description 2
- 102100022289 60S ribosomal protein L13a Human genes 0.000 description 2
- 102100026926 60S ribosomal protein L4 Human genes 0.000 description 2
- 102100022890 ATP synthase subunit beta, mitochondrial Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100027314 Beta-2-microglobulin Human genes 0.000 description 2
- 102100026031 Beta-glucuronidase Human genes 0.000 description 2
- 102100023362 Elongation factor 1-gamma Human genes 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102100021699 Eukaryotic translation initiation factor 3 subunit B Human genes 0.000 description 2
- 102100022277 Fructose-bisphosphate aldolase A Human genes 0.000 description 2
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 101000811259 Homo sapiens 40S ribosomal protein S18 Proteins 0.000 description 2
- 101001114932 Homo sapiens 40S ribosomal protein S20 Proteins 0.000 description 2
- 101000673456 Homo sapiens 60S acidic ribosomal protein P0 Proteins 0.000 description 2
- 101000712357 Homo sapiens 60S acidic ribosomal protein P1 Proteins 0.000 description 2
- 101000691878 Homo sapiens 60S acidic ribosomal protein P2 Proteins 0.000 description 2
- 101000681240 Homo sapiens 60S ribosomal protein L13a Proteins 0.000 description 2
- 101000691203 Homo sapiens 60S ribosomal protein L4 Proteins 0.000 description 2
- 101000937544 Homo sapiens Beta-2-microglobulin Proteins 0.000 description 2
- 101000933465 Homo sapiens Beta-glucuronidase Proteins 0.000 description 2
- 101001050451 Homo sapiens Elongation factor 1-gamma Proteins 0.000 description 2
- 101000896557 Homo sapiens Eukaryotic translation initiation factor 3 subunit B Proteins 0.000 description 2
- 101000755879 Homo sapiens Fructose-bisphosphate aldolase A Proteins 0.000 description 2
- 101000988834 Homo sapiens Hypoxanthine-guanine phosphoribosyltransferase Proteins 0.000 description 2
- 101000594698 Homo sapiens Ornithine decarboxylase antizyme 1 Proteins 0.000 description 2
- 101000685323 Homo sapiens Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial Proteins 0.000 description 2
- 101000803403 Homo sapiens Vimentin Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 102100036199 Ornithine decarboxylase antizyme 1 Human genes 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 102100034391 Porphobilinogen deaminase Human genes 0.000 description 2
- 101710189720 Porphobilinogen deaminase Proteins 0.000 description 2
- 101710170827 Porphobilinogen deaminase, chloroplastic Proteins 0.000 description 2
- 101710100896 Probable porphobilinogen deaminase Proteins 0.000 description 2
- 101710156592 Putative TATA-binding protein pB263R Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102100023155 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial Human genes 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 101710137500 T7 RNA polymerase Proteins 0.000 description 2
- 102100040296 TATA-box-binding protein Human genes 0.000 description 2
- 101710145783 TATA-box-binding protein Proteins 0.000 description 2
- 102100035071 Vimentin Human genes 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000008826 genomic mutation Effects 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- PCMORTLOPMLEFB-ONEGZZNKSA-N sinapic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-ONEGZZNKSA-N 0.000 description 2
- PCMORTLOPMLEFB-UHFFFAOYSA-N sinapinic acid Natural products COC1=CC(C=CC(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- CXVGEDCSTKKODG-UHFFFAOYSA-N sulisobenzone Chemical compound C1=C(S(O)(=O)=O)C(OC)=CC(O)=C1C(=O)C1=CC=CC=C1 CXVGEDCSTKKODG-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 101150037140 Aldoa gene Proteins 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 101150076800 B2M gene Proteins 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 229910000737 Duralumin Inorganic materials 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 101150112014 Gapdh gene Proteins 0.000 description 1
- 101150001754 Gusb gene Proteins 0.000 description 1
- 101150034920 Hmbs gene Proteins 0.000 description 1
- 101150003028 Hprt1 gene Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 101150002585 OAZ1 gene Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 101150093573 RPLP1 gene Proteins 0.000 description 1
- 101150005678 RPS18 gene Proteins 0.000 description 1
- 101150014879 RpL13A gene Proteins 0.000 description 1
- 101150032199 Rplp0 gene Proteins 0.000 description 1
- 101150009933 Rps20 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 101150018417 VIM gene Proteins 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 101150031379 eef1g gene Proteins 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 101150009248 rpl4 gene Proteins 0.000 description 1
- 101150038541 rplP2 gene Proteins 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 101150047761 sdhA gene Proteins 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 101150023847 tbp gene Proteins 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M3/00—Tissue, human, animal or plant cell, or virus culture apparatus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
Definitions
- the present invention relates to an apparatus and method for simultaneously performing analysis such as genome analysis, gene expression analysis, gene sequence analysis, and protein analysis in a single cell for each single cell.
- single cell analysis biomolecules in a single cell are individually extracted, and an appropriate sample is prepared to enable analysis, and then the sample is measured.
- This measurement includes genome sequence analysis, gene sequence analysis, gene expression analysis, protein analysis, and the like. That is, the single cell analysis cannot be directly measured because the amount of the sample is very small, and the analysis needs to be executed by combining sample preparation and measurement.
- Patent Document 1 discloses that a cell is isolated by capturing a cell in a hole on a flat chip and a DNA probe fixed on the porous material surface immediately below the cell. By capturing the nucleic acid therein, mRNA that is a biomolecule to be measured is extracted.
- Patent Document 2 discloses that a single cell and a bead with a DNA probe for extracting (capturing) nucleic acid in the cell are confined in an emulsion droplet (a droplet in oil), A method for capturing / extracting the nucleic acid at high efficiency and preparing a sample for sequencing is disclosed.
- a method of first extracting a nucleic acid sample from a cell sample in a container and then re-extracting the nucleic acid to be measured is generally performed in this technical field.
- single cell analysis is generally not performed.
- the amount of nucleic acid sample required for applying this method is 3 ⁇ g (after the genomic DNA is fragmented, it is extracted by the above method. Therefore, the genomic DNA amount can be compared with the mRNA amount. )), And there is a difference of about 6 digits compared to the case of the amount of nucleic acid of about 0.1 to 10 pg which is the amount of nucleic acid in the single cell analysis.
- Such differences include the process of elution of nucleic acid in the solution from the solid surface without sample preparation on the solid surface where the capture and extraction of nucleic acids from the cells were captured in the vicinity of the cells. This is because not only the ratio of the sample loss above becomes high, but also that the loss due to adsorption to the surface of the container becomes large even if it is moved to another container or the like in a solution state.
- sample preparation devices for single-cell analysis so far have a small amount of measurement target, so sample processing is performed at or near the same time as cell capture and cell disruption. Since there is one cell, there is one reaction tank. Therefore, only one type of reaction treatment could be performed. That is, it was not possible to analyze a plurality of types of biomolecules for the same cell. On the other hand, if the sample is separated and the reaction vessel is divided into a plurality of samples, the sample is lost at the time of separation / extraction, so a large amount of sample is required before the separation, and a minute sample of a single cell cannot be handled.
- the present invention Means for separating cells;
- a single cell analysis device comprising a reaction field disposed in the vicinity of or within the separation means,
- the reaction field includes a first carrier that captures a first biomolecule extracted from the captured cells, and a second carrier that captures a second biomolecule different from the first biomolecule.
- the first carrier and the second carrier relate to a single cell analysis device characterized by having different physical properties that can be separated from each other.
- the present invention also provides the single cell analysis device, wherein the cell is captured by the separation means, and the first biomolecule and the second biomolecule extracted from the captured cell are respectively reacted in the reaction field with the first carrier and Including separately processing the first biomolecule and the second biomolecule by capturing on the second carrier and separating the first carrier and the second carrier based on differences in physical properties
- the present invention relates to a single cell analysis method.
- biomolecules with different optimal sample preparation processes or measurement methods existing in a single cell are individually extracted without loss, and information on which single cell is derived is retained.
- sample preparation individually and performing individual measurement it is possible to measure the state of a complex biological tissue composed of a large number of cells.
- the simultaneous analysis of DNA genomic mutation analysis and mRNA gene expression analysis enables analysis of how genomic mutations affect gene expression for each single cell. It becomes possible to analyze.
- the same effect can be expected from simultaneous analysis of epigenome analysis and gene expression analysis, and gene expression analysis and protein analysis.
- the measurement of the above-mentioned plurality of biomolecules is a single analysis of two types of molecules, that is, an mRNA sequence analysis corresponding to a T cell receptor and an antibody and an mRNA expression analysis related to a cell state. What can be done for each cell is expected to lead to highly accurate cancer diagnosis because information on antigens related to cancer can be obtained from sequence analysis, and the activity state of cells can be obtained from gene expression analysis.
- FIG. 6 is a diagram illustrating a sample processing flow corresponding to Example 1.
- FIG. FIG. 3 is a diagram showing the first half of a sample processing flow of second beads (solid support) of Example 1.
- FIG. 4 is a diagram showing the second half of the sample processing flow of the second bead (solid carrier) of Example 1.
- FIG. 3 is a diagram showing a first half of a sample processing flow of first beads (solid support) of Example 1.
- FIG. 4 is a diagram showing the latter half of the sample processing flow of the first beads (solid support) of Example 1.
- Example 3 shows the device structure of Example 3 as another structural example of the device which concerns on this invention.
- 10 is a diagram illustrating a sample processing flow of Example 3.
- FIG. It is a figure which shows one Embodiment of the structure of the device which concerns on this invention.
- the present invention provides a device, apparatus, and method for preparing a plurality of types of biomolecule samples from each single cell in parallel and rapidly for a plurality of cells and analyzing each sample.
- the sample is prepared so as to be able to distinguish between single cell and biomolecule types.
- “preparation of a biomolecule sample” means that a biomolecule contained in a cell is extracted and separated from other cell components. In particular, a plurality of types of biomolecules can be distinguished. It means that the sample is prepared separately.
- “analysis of a sample” is to analyze a biomolecule related to the sample, specifically, to analyze the expression of the biomolecule in the sample (cell, tissue section, etc.) quantitatively, Analyzing the expression distribution of biomolecules in a sample, analyzing the presence or absence of biomolecules (eg, genomic DNA having a specific mutation) in a sample, and correlating data between a specific position in a sample and the amount of biomolecule expression It means getting.
- the biomolecule to be analyzed in the present invention is not particularly limited as long as it is a biomolecule contained in a cell. Nucleic acid (eg, messenger RNA (mRNA), non-coding RNA (ncRNA), microRNA, genome) DNA, and fragments thereof), proteins (eg, enzymes, antibodies, etc.), low molecular compounds, and the like.
- mRNA messenger RNA
- ncRNA non-coding RNA
- microRNA genome DNA
- proteins eg, enzymes, antibodies, etc.
- low molecular compounds e.g., low molecular compounds, and the like.
- a plurality of types for example, two types of biomolecules are analyzed.
- both the first biomolecule and the second biomolecule can be mRNA.
- one of the first biomolecule and the second biomolecule can be mRNA, and the other can be protein.
- one of the first biomolecules can be genomic DNA and the other can be mRNA.
- the types of biomolecules to be analyzed can be set
- an individual reaction field for capturing a biomolecule is set for each individual cell, but the cell is separated / captured in a position near the reaction field (for example, an adjacent position) or in the reaction field.
- the reaction field is filled with a carrier for capturing the first measurement target biomolecule, and in addition, the second measurement target biomolecule can be separated from the support and captured. To be filled with another carrier.
- the present invention provides: Means for separating cells; A single cell analysis device comprising a reaction field disposed in the vicinity of or within the separation means, The reaction field includes a first carrier that captures a first biomolecule extracted from the captured cells, and a second carrier that captures a second biomolecule different from the first biomolecule. Have an area to One or both of the first carrier and the second carrier comprise a tag sequence for identifying captured cells, The first carrier and the second carrier provide a single cell analysis device characterized by having different physical properties that can be separated from each other.
- the substrate is provided with a hole, and the reaction tank is disposed immediately below the hole.
- a reaction tank for allowing the cell extraction solution to pass therethrough is provided immediately below the hole in the substrate provided with a plurality of cell capturing (isolation) holes arranged in a plane, and the first measurement target living body is provided here.
- a first solid support on which a molecule for capturing a molecule and a first capture probe having a cell identification tag sequence are immobilized is filled, and in addition, the physical properties of the first solid support are different.
- a second capture probe for capturing the second biomolecule is fixed to another solid support, and the reaction vessel is filled.
- Patent Document 1 International Patent Application Publication No. WO2014 / It is known in the art as described in US Pat.
- the substrate is not particularly limited as long as it is made of a material generally used in the technical field.
- the material include metals such as gold, chromium, platinum, titanium, and nickel; alloys such as stainless steel and duralumin; silicon; glass, quartz glass, fused silica, synthetic quartz, alumina, sapphire, ceramics, forsterite, and photosensitive.
- Glass materials such as reactive glass; plastics such as polyester resin, polystyrene, polyethylene resin, polypropylene resin, ABS resin (Acrylonitrile Butadiene Styrene resin), dimethylpolysiloxane (PDMS), cyclic polyolefin, nylon, acrylic resin, fluorine resin; agarose Dextran, cellulose, polyvinyl alcohol, nitrocellulose, chitin, and chitosan.
- the material used for the substrate is preferably a hydrophobic material, which can reduce adsorption of cells and reagents.
- the substrate may be surface-coated so that other substances (nucleic acid, protein, reagent, etc.) do not adsorb.
- the reaction tank is formed integrally with the cell trapping hole, or may be formed separately and connected by a flow path.
- the separation means and the reaction field are a flow path through which a nonpolar solvent flows and a droplet including a single cell formed in the nonpolar solvent.
- a reagent for crushing the cell and the first biomolecule to be measured are captured in the droplet.
- a solid support on which a first capture probe having a molecule and a cell identification tag sequence is immobilized, and another solid support having physical properties different from those of the solid support are introduced.
- emulsion droplets A technique for extracting and capturing biological substances (particularly nucleic acids) in cells from droplets in a nonpolar solvent is known as so-called emulsion droplets, and is described in, for example, Patent Document 2.
- nonpolar solvent for example, mineral oil, silicone oil or the like
- emulsion droplets are formed in which single cells, reagents and carriers are sealed. Emulsion formation is well known in the art and can be done by any method.
- Nonpolar solvents and emulsion droplets are preferably thermally stable for biomolecule extraction and sample processing.
- the size of the emulsion droplet varies depending on the type and size of the cell to be analyzed, the type and size of the carrier to be used, and is about 100 ⁇ L or less, 50 ⁇ L or less, 10 ⁇ L or less, 5 ⁇ L or less, 1 ⁇ L or less, It can be set appropriately such as 500 pL or less.
- a plurality of types of carriers having different physical properties that can be separated from each other are used. For example, when two types of biomolecules are captured, a first carrier and a second carrier for capturing each biomolecule are filled or introduced into the reaction field. When capturing three or more types of biomolecules, a carrier for capturing each of these biomolecules is filled or introduced into the reaction field.
- Each carrier is different in at least one physical property selected from the group consisting of size, weight, specific gravity, magnetism and shape.
- the carrier having a different shape include beads, a porous structure, and a reaction vessel wall surface.
- the carrier having a different size and / or weight or specific gravity include beads having different sizes and / or weight or specific gravity.
- the carrier having different magnetism include magnetic beads and a magnetic porous structure.
- the carrier it is preferable to use a material having a large surface area as the carrier. For example, it is preferable to adopt a structure filled with a large number of beads, a porous structure, a mesh structure, or the like. From the viewpoint of simplicity of operation, it is preferable to use beads as at least one of the carriers.
- the beads can be produced from a resin material (such as polystyrene), oxide (such as glass), metal (such as iron), sepharose, and combinations thereof. Further, when magnetic beads are used as at least one of the carriers, the carrier can be separated quickly and easily.
- the probe for capturing the biomolecule to be analyzed is fixed to the carrier.
- a probe can be designed to specifically bind to a biomolecule depending on the type of biomolecule to be analyzed.
- a DNA probe containing a poly T sequence can be used.
- a DNA probe containing a poly T sequence, that is, an oligo (dT) can be synthesized by a conventional method, and the degree of polymerization of the oligo (dT) is hybridized with the poly A sequence of mRNA, and the mRNA is oligo (dT).
- Any degree of polymerization that can be trapped on a fixed carrier For example, it can be about 10 to 30 bases, 10 to 20 bases, 10 to 15 bases.
- a DNA probe comprising a random sequence or a DNA probe having a sequence complementary to a specific target sequence
- a molecule that specifically binds to the biomolecule such as an antibody, a receptor, or an aptamer
- a first binding molecule such as an antibody or an aptamer
- a first DNA probe bound to a binding molecule can be used.
- a second binding molecule that binds to the biomolecule in a sandwich state with the binding molecule preferably a molecule of the same type as the binding molecule, such as an antibody or an aptamer
- the binding molecule preferably a molecule of the same type as the binding molecule, such as an antibody or an aptamer
- a second DNA probe bonded to a sex molecule is added and a target biomolecule exists
- the DNA probe and the second DNA probe are ligated, and a ring probe specific to the biomolecule is It is formed.
- This method is called a proximity ligation method (Proximity ⁇ ⁇ ⁇ Ligation Method) (for example, Malin Jarvius et al. Molecular & Cellular9Proteomics 6500 (9) p.1500, 2007) and is useful for the construction of DNA libraries corresponding to proteins.
- the probe is fixed to the carrier by any method known in the art. For example, covalent bond, ionic bond, physical adsorption, biological bond (for example, binding of biotin and avidin or streptavidin, antigen and antibody, etc.
- the probe can be fixed by using a bond). It is also possible to fix the probe to the carrier via a spacer sequence.
- a protein or a low molecular weight compound is processed as a biomolecule using the proximity ligation, the first binding molecule can be immobilized on another carrier.
- any one of the above carriers for example, one or both of the first carrier and the second carrier is provided with a tag sequence for identifying captured cells.
- a cell identification tag sequence can be introduced into a probe fixed to a carrier.
- a probe fixed to a carrier eg, a bead
- it is derived from any cell or position even after separation from the device using a cell identification tag sequence.
- Such information can be held, which is preferable.
- Those skilled in the art can design cell identification tag sequences so that they can be distinguished according to the number of cells to be captured and the number of reaction fields.
- the reason why the problem of the present invention is solved by the configuration as described above is as follows. That is, cell disruption is performed in the vicinity of the reaction field or in the reaction field, and by providing a carrier that captures all the measurement target biomolecules in the reaction field, the cell extract The biomolecule to be measured contained in is captured by a probe for capturing the biomolecule on the carrier before it touches the reaction vessel. Thereby, a biomolecule is hardly adsorbed on a wall surface such as a container and the sample is hardly lost. Next, by separating the captured biomolecules based on the physical properties of the carrier, that is, size, shape, specific gravity, magnetism, etc., the probability of adsorbing to the container wall surface can be reduced even during the separation. As a result, it is possible to separate an extremely small amount of a biomolecule to be measured in a single cell and perform optimum sample preparation individually for the separated sample.
- the present invention provides a single cell analysis device according to the present invention, in which a cell is captured by a separation means, and a first biomolecule and a second biomolecule extracted from the captured cell are reacted.
- the first biomolecule and the second biomolecule are captured by the first carrier and the second carrier, respectively, in the field, and the first carrier and the second carrier are separated based on the difference in physical properties.
- a single cell analysis method is provided that includes processing samples individually.
- the cell to be analyzed is not particularly limited as long as it is a biological sample containing cells.
- the living body from which the sample is derived is not particularly limited.
- the sample When used in the device or method according to the present invention, the sample needs to be in a form in which the cells are separated from each other. Therefore, when the sample is a solid sample (for example, a tissue section), it is preferable to form a liquid sample by dissolving or suspending the solid sample in a solvent. Further, when the sample is a gas sample (for example, air, exhaled air, etc.), it is preferable to suspend the cells contained in the gas sample in a solvent to obtain a liquid sample. Sample preparation methods are routinely performed in the art and can be easily understood by those skilled in the art.
- the sample cell is introduced into the single cell analysis device according to the present invention.
- a cell is captured by a separation means (for example, a cell capture hole or a nonpolar solvent), and a biomolecule is extracted from the captured cell.
- a separation means for example, a cell capture hole or a nonpolar solvent
- cells can be lysed using a cell lysis reagent known in the art, and nucleic acids contained in the cells can be extracted.
- RNA RNA degrading enzyme
- DNase DNA degrading enzyme
- the carrier is then separated based on the difference in physical properties. For example, when using carriers having different sizes, they can be separated using a filter or the like. In the case of a carrier having a different weight or specific gravity, it can be separated using centrifugation, sedimentation or the like. In the case of a carrier having a different shape, it can be separated using washing, filtering, centrifugation or the like. In the case of a carrier having different magnetism, it can be separated using a magnet. The separation of the carrier can be performed by appropriately combining the above means depending on the difference in physical properties of the carrier used.
- the biomolecules captured on each carrier are individually sampled.
- sample processing it is also possible to analyze which cell or position the processed sample is derived from using a cell identification tag sequence.
- the single cell analysis method In the single cell analysis method according to the present invention, cell disruption is performed in the vicinity of the reaction field or in the reaction field, and all the biomolecules to be measured are captured in the reaction field.
- the carrier By providing the carrier, the biomolecule to be measured contained in the cell extract is captured by the probe for capturing the biomolecule on the carrier before touching the reaction container. Thereby, a biomolecule is hardly adsorbed on a wall surface such as a container and the sample is hardly lost.
- the probability of adsorbing to the container wall surface can be reduced even during the separation. As a result, it is possible to separate a very small amount of a biomolecule to be measured in a single cell and to perform optimum sample preparation for each separated sample.
- Such analysis can provide information on the distribution of various cells from the viewpoint of molecular biology in biological tissues, and the diversity of the cancer progression and associated immune responses at the individual level can also be analyzed by conventional genetic analysis. More detailed and accurate. Therefore, such research is expected to contribute to the development of new disease diagnostic methods and drug discovery, and in particular, to the study of selection of appropriate treatment methods for each individual.
- a planar substrate provided with a plurality of cell trapping holes arranged in a plane and a reaction vessel for allowing a cell extraction solution to pass therethrough are provided as reaction fields, and two kinds of beads are filled therein. This is an example of preparing a sample containing two types of biomolecules to be measured.
- first sequence information of mRNA (first biomolecule) in a region where mutation or recombination occurs in the sequence is measured.
- the devices and methods that can be realized simultaneously for cells are described.
- the sequence analysis target part of the variable region of the immune cell is separated from the 3 ′ end (the degree of separation is separated from the length of the sequencing lead for performing the sequence analysis).
- the second analysis is a quantitative analysis (so-called gene expression analysis) that counts the number of molecules for each gene.
- FIG. 1 shows a configuration diagram of a reaction device which is a basic configuration of the present embodiment.
- 1A and 1B are a top view and a cross-sectional view of the device, respectively.
- the cell trapping holes (3) are arranged in a square lattice pattern at equal intervals on the flat substrate (1), and the reaction vessel (2) is placed immediately below the cell trapping holes.
- the planar substrate is made of PDMS (polydimethylsiloxane), but resin materials such as polycarbonate, polypropylene, (cyclic) cycloolefin, semiconductor materials such as silicon, and inorganic materials such as glass and alumina, A metal material such as stainless steel may be used.
- the cell trapping hole in the narrowest part can be selected to have a diameter of about 0.1 ⁇ m to 100 ⁇ m and suitable for the size of the cell, but usually about 2 to 3 ⁇ m is preferable.
- the interval between the cell trapping holes is preferably about 1 ⁇ m to 1 mm, and particularly about 100 ⁇ m.
- the size (for example, diameter) of the reaction vessel is preferably about 1 ⁇ m to about 500 ⁇ m, particularly about 80 ⁇ m.
- the height of the reaction tank is preferably about 1 ⁇ m to about 1 mm, and particularly preferably about 100 ⁇ m.
- the reaction tank (2) was filled with two types of beads having different diameters and physical properties as two types of solid carriers.
- a first DNA having a gene-specific sequence complementary to a fixed region in the vicinity of a variable region on a Sepharose bead having a diameter of 30 ⁇ m as a first solid carrier.
- Streptavidin-fixed Sepharose beads are commercially available (for example, manufactured by GE Health Care). Fix it.
- a second DNA probe having a poly-T sequence is immobilized in order to capture a gene, which is a second biomolecule, on magnetic beads having a diameter of 1 ⁇ m as a second solid support.
- magnetic beads having streptavidin immobilized on the surface are commercially available (for example, manufactured by Dynal).
- the 5 'end is modified with biotin, and the DNA probe can be immobilized by mixing the beads and the DNA molecule under the conditions according to the instructions. Of course, both may be fixed by different mechanisms.
- FIG. 1 A cell suspension to be measured is dropped on the substrate, a negative pressure (95 kPa) is applied to the back surface of the bead-holding membrane (7), and the cell solution becomes a cell trapping hole (3) and a reaction vessel (2). And flow through the membrane (7).
- the cells in the cell suspension stop in the form of plugging the cell trapping holes, and the holes blocked by the cells stop the flow of the solution, so the cells that have not yet been trapped have priority.
- the cells become trapped.
- This process can be repeated to capture cells at most cell capture holes. In this way, the cells (4) are captured on the substrate (1).
- the cells are crushed to extract the molecules to be measured in the cells.
- a lysis solution is dispensed on the device, and a negative pressure (96 kPa) is applied to the back surface of the device in the same manner as in the case of the cell suspension so that the cell extract passes through the reaction vessel.
- a negative pressure 96 kPa
- the flow of the solution does not occur in the cell trapping hole blocked with cells, when the cells are crushed, the cell extraction solution flows through the reaction trap through the cell trapping hole.
- the mRNA to be measured is captured on different beads by the capture DNA probes on the two types of beads (the first solid support 5 and the second solid support 6).
- cDNA which is a complementary strand of mRNA
- An enzyme reagent for cDNA synthesis is dropped on the substrate (1) in the same manner as the lysis solution to weaken the application of pressure (about 0 to 5 kPa) and slow down the flow of the solution.
- the temperature of the device is raised to a temperature suitable for cDNA synthesis (50 ° C.) and reacted for an appropriate time (about 50 minutes).
- the separation method of the two types of beads utilized both the bead size and magnetic properties. That is, after removing the membrane, the obtained bead solution is dispensed into a separation tube (8) and centrifuged, so that a large sepharose bead (first bead) is formed on the upper part of the separation filter (9). The rest, beads with a small diameter settle at the bottom. Magnets were also used to assist in settling.
- Steps 1 to 5 in FIG. 3 and FIG. 4 show examples of sample preparation methods up to nucleic acid amplification (PCR) after cDNA synthesis possible with this device.
- PCR nucleic acid amplification
- the separation of the beads may be performed after capturing the mRNA before step 1 cDNA synthesis, but here, as shown in step 1, after the cDNA synthesis, the enzyme was thermally inactivated.
- FIG. 3 shows an enlarged view of the surface of the second bead (6) on which the DNA probe (31) is fixed.
- the DNA probe (31 (SEQ ID NO: 1)) immobilized on the beads includes a cell recognition tag sequence (302) for identifying the position of the reaction vessel.
- the 3 'end of the DNA probe (31) has a poly T sequence (301), and captures the mRNA by hybridizing with the poly A sequence at the 3' end of the mRNA.
- the DNA probe for capturing mRNA (31 (SEQ ID NO: 1)) has a slightly more complicated sequence structure in this example, and as shown in FIG. 3 (step 1), it is used for PCR amplification from the 5 ′ end. It consists of a common sequence (303) (Forward direction (SEQ ID NO: 23)), a tag sequence for cell recognition (302) and a nucleic acid capture sequence (301).
- a poly-T sequence was used as the nucleic acid capture sequence.
- the degree of polymerization of the poly T sequence may be any degree of polymerization that can hybridize with the poly A sequence of the mRNA and capture the mRNA on the beads to which the nucleic acid probe containing the poly T sequence is immobilized.
- the common sequence for PCR amplification into the DNA probe (31)
- this sequence can be used as a common primer in the subsequent PCR amplification step.
- a tag sequence for molecular recognition for example, 7 bases
- a poly-T sequence was used as part of the capture DNA probe (31) to analyze mRNA.
- a random nucleic acid capture sequence was used instead of the poly-T sequence.
- a sequence or a sequence complementary to a part of the nucleic acid to be analyzed may be used.
- 1st cDNA strand (33) is synthesized using mRNA (32) captured by DNA probe (31) on the bead as a template.
- the void portion of the beads packed with a solution containing reverse transcriptase and a synthetic substrate is filled, and the temperature is slowly raised to 50 ° C. to carry out a complementary strand synthesis reaction for about 50 minutes.
- the mixture is kept at 85 ° C. for 5 minutes, and the reverse transcriptase is thermally inactivated, and then the beads are separated.
- the membrane (7) was removed, and as shown in FIG. 1 (c), the upper side of the 5 ⁇ m pore filter tube containing PBS (phosphate buffered saline) buffer together with the substrate (1). Then, the beads are released from the substrate by stirring. Unnecessary chips are removed from the tube and centrifuged to collect large sepharose beads along with the solution. Magnetic beads having a diameter of 1 ⁇ m are collected on the lower side of the tube.
- PBS phosphate buffered saline
- the magnetic beads may be recovered using a magnet without using a filter.
- the collection operation may be performed several times.
- the collected Sepharose beads are collected again in a tube, and RNase enzyme is added to decompose and remove mRNA (32).
- a solution containing an alkali denaturant and a washing solution are added, the beads are precipitated at the bottom of the tube by centrifugation, and the supernatant is removed to remove residues and degradation products.
- a cDNA library array as shown in FIG. 5 (step 2) is constructed on the beads packed in the nucleic acid extraction part by the process so far, reflecting the positions of individual cells captured in the cell capture holes. .
- a primer (34) containing a plurality (up to several hundreds) of target gene-specific sequences (311) to which a common sequence for PCR amplification (Reverse (SEQ ID NO: 2)) (309) is added is added to the first cDNA strand (33 ) (FIG. 3 (step 2)), and a 2nd cDNA strand (35) is synthesized by a complementary strand extension reaction (FIG. 3 (step 3)). That is, 2nd cDNA strand synthesis is performed under multiplex conditions.
- a common sequence for amplification (Forward (SEQ ID NO: 23) / Reverse (SEQ ID NO: 2)) is provided at both ends, a cell recognition tag sequence, a molecular recognition tag sequence, and a gene-specific sequence Is synthesized in a double-stranded cDNA.
- 20 types (ATP5B, GAPDH, GUSB, HMBS, HPRT1, RPL4, RPLP1, RPS18, RPL13A, RPS20, ALDOA, B2M, EEF1G, SDHA, TBP, VIM, RPLP0, RPLP2, RPLP27, And 20 ⁇ 5 bases of 109 ⁇ 8 bases upstream from the poly A tail of the target gene of OAZ1) were used as gene-specific sequences (SEQ ID NO: 3-22). This is to unify the product size to about 200 bases.
- Second DNA probe (ATP5B gene, primer for 2nd cDNA strand synthesis for specific analysis) CCTCTCTATGGGCAGTCGGTGATCCCTAACCCAAAAAGCTTCATT (SEQ ID NO: 3) Second DNA probe (GAPDH gene, primer for 2nd cDNA strand synthesis for specific analysis) CCTCTCTATGGGCAGTCGGTGATCACTGAATCTCCCCTCCTCACA (SEQ ID NO: 4) Second DNA probe (GUSB gene, primer for 2nd cDNA strand synthesis for specific analysis) CCTCTCTATGGGCAGTCGGTGATCGTTTCTGGCCTGGGTTTTG (SEQ ID NO: 5) Second DNA probe (HMBS gene, primer for 2nd cDNA strand synthesis for specific analysis) CCTCTCTATGGGCAGTCGGTGATGATGACTGCCTTGCCTCCTC (SEQ ID NO: 6) Second DNA probe (HPRT1 gene, primer for 2nd cDNA strand synthesis for specific analysis) CCTCTCTATGGGCAGTCGGTGATTAG
- PCR amplification was performed using amplification primers (36 and 37) that bind to the amplification common sequence (Forward (SEQ ID NO: 23) / Reverse (SEQ ID NO: 2)), and PCR products derived from multiple types of genes ( 38) is prepared (FIG. 4 (steps 4 and 5)). Even if an amplification bias occurs between genes or molecules in this process, it is possible to correct the amplification bias using the molecular recognition tag sequence after acquiring next-generation sequencer data. Can be obtained.
- the DNA probe (50) fixed to the carrier comprises a T7 promoter sequence (SEQ ID NO: 24) from the 5 ′ end direction, a common sequence for PCR amplification (Forward direction, SEQ ID NO: 23), a cell recognition tag sequence, and a molecule recognition tag. It is composed of an array and a poly-T array.
- T7 promoter sequence SEQ ID NO: 24
- IVT In Vitro Transcription
- the T7 promoter sequence (SEQ ID NO: 24) is recognized by T7 RNA polymerase, and transcription (cRNA (63) amplification) reaction is started from the downstream sequence.
- a common sequence for PCR amplification it can be used as a common primer in the subsequent PCR amplification step.
- a cell recognition tag sequence for example, 5 bases
- 4 5 1024 single cells or regions can be recognized as described above.
- a molecular recognition tag sequence for example, 15 bases
- 4 15 1.1 ⁇ 10 9 molecules can be recognized. As described above, it is possible to recognize whether it is derived from a molecule.
- the amount of mRNA present in the sample can be quantified with high accuracy.
- the poly T sequence located at the most 3 ′ side hybridizes with the poly A tail added to the 3 ′ side of the mRNA and is used to capture the mRNA.
- mRNA (52) is captured by an 18-base poly-T sequence (51) which is a sequence complementary to the poly-A sequence (53) at the 3 'end of mRNA as described above.
- the first cDNA strand (54) is synthesized to construct a cDNA library (FIG. 5 (step 1)).
- a plurality of (up to several hundred genes) target gene-specific sequence primers (60) corresponding to the gene to be analyzed are annealed to the first cDNA strand (54) (FIG. 5 (step 2)), and 2nd by complementary strand extension reaction.
- a cDNA strand (61) is synthesized (FIG. 5 (step 2)).
- 2nd cDNA strand synthesis is performed under multiplex conditions.
- a common sequence for amplification (Forward (SEQ ID NO: 23) / Reverse (SEQ ID NO: 2)) is provided at both ends, a cell recognition tag sequence, a molecular recognition tag sequence, and a gene-specific sequence Is synthesized in a double-stranded cDNA.
- 20 types (ATP5B, GAPDH, GUSB, HMBS, HPRT1, RPL4, RPLP1, RPS18, RPL13A, RPS20, ALDOA, B2M, EEF1G, SDHA, TBP, VIM, RPLP0, RPLP2, RPLP27, And 20 ⁇ 5 bases of 109 ⁇ 8 bases upstream from the poly A tail of the target gene of OAZ1) were used as gene-specific sequences (SEQ ID NO: 3-22). This is to unify the amplification product size to about 200 bases.
- T7 RNA polymerase is introduced into the pore to synthesize cRNA (63) (FIG. 5 (step 4)).
- cRNA cRNA
- a target gene-specific sequence primer (64) is hybridized (FIG. 6 (step 5)) to synthesize cDNA (65) (FIG. 6 (step 6)).
- double-stranded DNA for PCR (66) is synthesized by synthesizing 2nd strand using Forward common primer (SEQ ID NO: 23) (FIG. 6 (step 7)).
- SEQ ID NO: 23 Forward common primer
- This amplification product has the same length and can be directly applied to PCR and next-generation sequencers. Even if an amplification bias occurs between genes or molecules in this process, it is possible to correct the amplification bias using the molecular recognition tag sequence after acquiring next-generation sequencer data. It is the same as the above that can be obtained.
- a cell solution (phosphate buffer pH 7.5) adjusted to a concentration of about 100 cells / ⁇ L is dispensed to each chip, and the cells are captured by applying a negative pressure, and then the cell disruption solution is allowed to flow.
- PCR amplification step was performed (FIG. 3 (step 4)). Thereafter, PCR Purification Kit (QIAGEN) was used to remove residual reagents such as free PCR-amplified common sequence primers (Forward (SEQ ID NO: 23) / Reverse (SEQ ID NO: 2)) and enzymes contained in this solution. Purify using etc. After applying the PCR amplification or the bridge amplification, this solution is applied to a next-generation sequencer of each company (Life Technologies (Solid / Ion Torrent), Illumina (High Seq), Roche 454) and analyzed.
- QIAGEN PCR Purification Kit
- the prepared reagent was dispensed into a tube, the temperature was raised to 37 ° C. and maintained for 180 minutes to complete the transcription reaction, and cRNA amplification was performed.
- the target portions of the 20 target genes are amplified, but the cRNA amplification product size is almost uniform at 200 ⁇ 8 bases. Since the cRNA amplification product is contained in the supernatant of the bead solution, this solution is recovered.
- it is purified using PCR Purification Kit (QIAGEN) and suspended in 50 ⁇ L of sterile water.
- the cell recognition tag is the same by rearranging the obtained data for each cell recognition tag sequence (or for each sequence including those sequences if other tag sequences for identifying the sample are present).
- the sequence data can be analyzed as data indicating gene expression in the same cell (if the additional tag is included, also by the sequence of the tag). That is, since the mRNA corresponding to the same cell has the same cell recognition tag sequence, it can be identified that the mRNA is derived from the same cell even if samples are prepared from different bead types (Fig. 2).
- FIG. 7A shows a top view
- FIG. 7B shows a cross-sectional view
- the flow cell device 701 includes a plurality of reaction chambers (702), and one chip (715) is disposed in the reaction chamber (702).
- a plurality of cell trapping holes are provided on the chip, and two types of beads to which DNA probes having different cell recognition tag sequences are fixed are filled immediately below.
- mRNA for sequence analysis and mRNA for gene expression analysis are simultaneously captured to synthesize cDNA. Nucleic acid capture holes and cell recognition tag sequences are arranged in a one-to-one correspondence.
- the cells (706) flow from the common inlet (707) toward the common outlet (708) in the common flow path (705) on the flow cell device.
- the nucleic acid in the cell is individually captured for each hole in the two types of beads (first Sepharose beads and second magnetic beads) filled immediately below the cell capture holes on the chip 715.
- the solution in the common flow path (705) flows through the reaction area filled with cell trapping holes and beads toward the common suction flow path (709). .
- mRNA in the cell is captured on the beads, and further, a cDNA synthesis reaction occurs on the beads.
- the chip For reaction after cDNA synthesis, the chip is taken out from the flow cell device, and two kinds of beads are collected in a tube (container).
- the flow cell device In order to take out the chip, the flow cell device has a combination of upper and lower parts (upper and lower in FIG. 7B) with the device separation boundary (720) as a boundary, and unscrew the upper and lower parts with this boundary as a boundary.
- the chip is recovered by separating. After taking out the chip, two kinds of beads are separated in a tube as in Example 1, and two kinds of samples are prepared by executing different reaction processes. To implement.
- the data analysis method is the same as in Example 1. However, by inserting a different sequence for each chip into the PCR primer, gene analysis data for each chip and further for each cell trapping hole is obtained from the sequence analysis data. Is possible.
- This example shows an example of simultaneous analysis of gene expression analysis in a single cell and protein analysis by mass spectrometry.
- FIG. 8 shows a configuration diagram of the sample preparation chip in this example.
- the substrate (801) is made of a silicon substrate (other inorganic materials such as glass, silicon nitride, aluminum and copper may be used), and a through-hole (803) for capturing cells is formed on the two-dimensional lattice. It is arranged in a shape.
- a negative pressure to the membrane (807) side as a bead holding filter, the cells (804) are trapped in the cell trapping holes (803).
- a reaction tank (802) is provided immediately below the captured cells, and a plurality of types of biomolecules to be analyzed are captured in this region.
- the antibody (805) that specifically captures the protein that is the first measurement target biomolecule is directly fixed to the reaction vessel inner wall of the substrate (801). Furthermore, the reaction vessel is filled with beads (806) to which a DNA probe for capturing mRNA that is the second measurement target biomolecule is immobilized.
- the second bead is used as the second bead for capturing mRNA that is the second biomolecule.
- the fixed probe on the bead is the same as the description corresponding to FIG.
- the beads are fixed with a poly-T probe to which a cell recognition tag sequence is added using magnetic beads.
- specific sequences for these sequences may be used instead of poly-T sequences.
- a random probe of about 6 bases may be used in place of the poly-T sequence in order to perform all nucleic acid sequence analysis.
- the first biomolecule (protein or the like) is captured by the antibody immobilized on the substrate surface in the reaction vessel (802).
- Example 1 after dropping the cell suspension station on the substrate (801), a negative pressure is applied to the side of the bead-holding porous membrane (807), so that the solution flow penetrating the cell trapping hole is generated. As a result, the cells (804) are trapped in the cell trapping holes (803).
- a cleaning solution with an appropriate salt concentration (about 0.1 to 1M) is dropped onto the chip surface, and negative pressure is applied to cause the cleaning solution to flow into the reaction tank (802). Wash away the molecules. Thereafter, the membrane (807) is removed, and the beads and the substrate are separated (FIGS. 8B and 8C).
- the beads are collected in a tube (808), sample processing is performed in the same manner as the second bead in Example 1, and gene sequence analysis is performed with a next-generation sequencer (NGS). Since the cell recognition tag sequence is different for each reaction tank, gene expression analysis can be performed separately for each cell.
- NGS. 8B and 8C next-generation sequencer
- the first biomolecule captured by the antibody on the substrate (801) is individually ionized by laser for each reaction tank and analyzed by a mass spectrometer. That is, the substrate (801) on which the protein is captured is subjected to mass spectrometry (MALDI-TOF-MS analysis) retaining position information.
- MALDI-TOF-MS analysis mass spectrometry
- the antibody is immobilized on the inner wall of the reaction tank to capture the protein, but it goes without saying that the molecule to be immobilized may be changed depending on the molecule to be measured.
- the selectivity of the molecule to be measured is lowered, it is also possible to simply perform a surface treatment suitable for the object to be measured, such as making the surface hydrophobic or hydrophilic.
- the sample processing flow of this example is summarized in FIG. Next, a specific method of MALDI-TOF-MS analysis at the single cell level will be described. Since the measurement target molecule is a polymer, a 5 mg / mL sinapinic acid ethanol solution was used as a matrix agent. The substrate (801) is placed with the surface where the membrane (807) is in close contact, and the sinapinic acid solution is dropped. The chip with the matrix agent dripped is individually irradiated with a nitrogen laser (343 nm) in the reaction vessel, and the sample suction port of the TOF-MS apparatus is brought close to the chip to perform mass spectrometry. Since an apparatus (mass imaging) that performs different mass spectrometry for each laser excitation position is also commercially available, such an apparatus may be used.
- the gene expression data from the same position is correlated to analyze two types of biomolecules, protein and mRNA from the same cell. Can be executed in parallel.
- FIG. 10 shows a diagram of a form of filling beads into the reaction vessel on the chip corresponding to this example.
- the first beads (5) for capturing a trace amount of mRNA are packed in the reaction tank (2) closer to the through hole (3), and the second beads for capturing a very small amount of mRNA.
- the beads (6) were filled at positions apart from the through holes in the reaction vessel (2). Thereby, the first biomolecule is preferentially captured by the first bead, and a trace amount of mRNA can be efficiently captured.
- beads in which a DNA probe is immobilized on polystyrene beads having a diameter of 1 ⁇ m are used (the sequence of the immobilized DNA probe is the case of Example 1). Is the same). Therefore, since the separation according to the size of the beads cannot be performed, the second beads are collected at the bottom of the tube by the magnet 1001 and separated into a supernatant and a precipitate. At this time, since the second bead is recovered toward the precipitate, by resuspending this solution, a second bead solution is obtained, and the supernatant is allowed to settle the second bead with a magnet.
- the purity of the first beads in the supernatant is gradually increased.
- the precipitated second bead solution is mixed and the volume of the solution is controlled by precipitating the beads using a magnet.
- the first and second beads are separated.
- the steps after this step are the same as those in the first embodiment.
- the first bead captures mRNA for sequence analysis as sepharose beads (diameter 34 ⁇ m)
- the second bead captures mRNA for gene expression analysis as magnetic beads (diameter 1 ⁇ m)
- the third bead is a polystyrene bead having a diameter of 1 ⁇ m (non-magnetic and small in size) and captures microRNA for gene expression analysis (a specific probe for microRNA capture is immobilized on the bead).
- the separation method for example, the same method as in Example 1 can be used.
- FIG. 11 shows a structural diagram of a device for trapping cells and beads as a solid carrier in a droplet in a chip and capturing two or more types of biomolecules derived from cells on the beads.
- the chip (1101) is formed of glass, resin, or the like
- FIG. 11 (a) is a top view
- FIG. 11 (b) is a cross-sectional view.
- the size of the cross section of the flow path (1102) is suitably several ⁇ m to several hundred ⁇ m in both vertical and horizontal directions (this flow path size roughly determines the droplet size), but here the length is 30 ⁇ m and the horizontal is 60 ⁇ m.
- Mineral oil (or oil) is allowed to flow through the flow path (1102) in the direction of the arrow (1103) at an appropriate flow rate (several ⁇ m / second to several cm / second).
- the first beads (the same Sepharose beads as in the example) are suspended in a cell lysate (in this example, 100 mM Tris: HCl, pH 7.5 buffer containing 1% SDS, 500 mM NaCl, and 10 mM EDTA).
- a cell lysate in this example, 100 mM Tris: HCl, pH 7.5 buffer containing 1% SDS, 500 mM NaCl, and 10 mM EDTA.
- the cell lysate in which the second beads are suspended is caused to flow in the direction of arrow 1105 at the same speed as the first beads.
- phosphate buffered saline with suspended cells is introduced in the direction of arrow 1106 at the same rate as the bead suspension.
- the obtained droplets (1107) are generated in the number necessary for the analysis, and the cell recognition tag array is different for each droplet, and is the same array in the same droplet.
- the cell recognition tag sequence uses the same sequence in the same drop so that it differs from drop to drop. Such placement of the tag sequence in the droplet is realized by controlling the order of introduction of beads having different cell recognition tag sequences.
- sequences of the two types of mRNA for each cell are matched by the sequence of the cell recognition tag sequence or its order in gene expression analysis.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Urology & Nephrology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Sustainable Development (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
In order to measure trace amounts of multiple kinds of biomolecules in a single cell, the present invention provides a device and method capable of differentiating biomolecules derived from a single cell and separating and extracting samples with high efficiency. Specifically, the present invention provides a single cell analysis device, which has a cell separating means and a reaction field disposed near or inside said separation means, the single cell analysis device being characterized in that: said reaction field has an area in which there are first carriers for trapping a first biomolecule extracted from a trapped cell and second carriers for trapping a second biomolecule different from the first biomolecule; the first carriers and/or the second carriers are provided with an identification tag sequence of the trapped cell; and the first carriers and the second carriers have different, mutually separable physical characteristics.
Description
本発明は、単一細胞中のゲノム解析、遺伝子発現解析、遺伝子配列解析、タンパク質解析などの解析を同時に単一細胞ごとに実施するための装置および方法に関する。
The present invention relates to an apparatus and method for simultaneously performing analysis such as genome analysis, gene expression analysis, gene sequence analysis, and protein analysis in a single cell for each single cell.
単一細胞解析では、単一細胞中の生体分子を個別に抽出し、解析を可能にするための適切なサンプル調製を行った後に、このサンプルの計測を行う。この計測には、ゲノム配列解析、遺伝子配列解析、遺伝子発現解析、タンパク質解析などが含まれる。すなわち、単一細胞解析は、サンプルが非常に微量であるため、直接計測することはできず、サンプル調製と計測を組み合わせることで解析を実行する必要がある。
In single cell analysis, biomolecules in a single cell are individually extracted, and an appropriate sample is prepared to enable analysis, and then the sample is measured. This measurement includes genome sequence analysis, gene sequence analysis, gene expression analysis, protein analysis, and the like. That is, the single cell analysis cannot be directly measured because the amount of the sample is very small, and the analysis needs to be executed by combining sample preparation and measurement.
単一細胞解析において、計測に必要な量のサンプルを、単一細胞という微量な生体分子(サンプル)から調製する際には、サンプルのロスを極限まで低減するとともに、適切なサンプル増幅方法を適用することが重要である。ここでロスとは、計測したい生体分子の抽出・濃縮過程や増幅過程において、容器の壁面等に吸着して、計測用サンプルとして利用されずに失われてしまうことを指す。このような課題を解決するための従来技術として、例えば特許文献1には、細胞を平面チップ上の孔に捕捉することで単離し、その直下の多孔質材料表面に固定されたDNAプローブで細胞中の核酸を捕捉することで、計測対象の生体分子であるmRNAを抽出する。このように、細胞捕捉位置と生体分子を捕捉する位置を近接させ、計測のためのサンプル調製をその平面チップ上で実行することで、サンプルのロスを低減させている。他の方法として、特許文献2には、単一の細胞とその細胞中の核酸を抽出(捕捉)するためのDNAプローブ付ビーズをエマルジョン液滴(油中の液滴)に閉じ込めて、細胞中の核酸を高効率に捕捉・抽出し、シーケンシングのためのサンプル調製を行う方法が開示されている。この技術でも、解析対象の細胞を単離し、その近傍で核酸を捕捉・抽出し、高スループットDNAシーケンサのためのサンプル調製の一部を実施する方法をとることで、解析対象となる細胞中の核酸のうち、このシーケンサで解析される核酸の効率を高め、サンプルロスを低減している。それゆえ、単一細胞中の0.1~10pgのmRNA(核酸)を抽出し、配列解析や定量を行うことができる。
In single-cell analysis, when preparing the amount of sample required for measurement from a small amount of biomolecule (sample), which is a single cell, the sample loss is reduced to the limit and an appropriate sample amplification method is applied. It is important to. Here, the loss means that it is adsorbed on the wall surface of the container in the extraction / concentration process or amplification process of the biomolecule to be measured and lost without being used as a measurement sample. As a conventional technique for solving such a problem, for example, Patent Document 1 discloses that a cell is isolated by capturing a cell in a hole on a flat chip and a DNA probe fixed on the porous material surface immediately below the cell. By capturing the nucleic acid therein, mRNA that is a biomolecule to be measured is extracted. As described above, the cell capture position and the position for capturing the biomolecule are brought close to each other, and sample preparation for measurement is executed on the planar chip, thereby reducing sample loss. As another method, Patent Document 2 discloses that a single cell and a bead with a DNA probe for extracting (capturing) nucleic acid in the cell are confined in an emulsion droplet (a droplet in oil), A method for capturing / extracting the nucleic acid at high efficiency and preparing a sample for sequencing is disclosed. Even in this technology, by isolating the cells to be analyzed, capturing and extracting nucleic acids in the vicinity, and performing part of sample preparation for high-throughput DNA sequencers, Among nucleic acids, the efficiency of nucleic acids analyzed by this sequencer is increased, and sample loss is reduced. Therefore, 0.1 to 10 pg of mRNA (nucleic acid) in a single cell can be extracted for sequence analysis and quantification.
一方、まず容器中で細胞サンプルから核酸サンプルを抽出した後に、計測対象となる核酸を再抽出する方法も当該技術分野では一般的に行われている。この場合、単一細胞解析は行われないことが一般的である。というのは、このよう方法を適用する場合に必要な核酸サンプルの量は3μg(ゲノムDNAが断片化されたあと、上記方法で抽出される。それゆえゲノムDNA量はmRNA量と比較可能となる。)であり、上記の単一細胞解析での核酸量である0.1~10pg程度の核酸量の場合に比べると約6桁の相違がある。このような相違は、細胞からの核酸の捕捉・抽出が細胞の近傍で捕捉した固体表面上でのサンプル調製が行われず、固体表面から溶液中の核酸を溶出する過程を含むことで、固体表面上でのサンプルロスの割合が高くなるだけでなく、溶液状態で別の容器などに移動されることでも容器表面への吸着によるロスが大きくなってしまうことに起因する。
On the other hand, a method of first extracting a nucleic acid sample from a cell sample in a container and then re-extracting the nucleic acid to be measured is generally performed in this technical field. In this case, single cell analysis is generally not performed. This is because the amount of nucleic acid sample required for applying this method is 3 μg (after the genomic DNA is fragmented, it is extracted by the above method. Therefore, the genomic DNA amount can be compared with the mRNA amount. )), And there is a difference of about 6 digits compared to the case of the amount of nucleic acid of about 0.1 to 10 pg which is the amount of nucleic acid in the single cell analysis. Such differences include the process of elution of nucleic acid in the solution from the solid surface without sample preparation on the solid surface where the capture and extraction of nucleic acids from the cells were captured in the vicinity of the cells. This is because not only the ratio of the sample loss above becomes high, but also that the loss due to adsorption to the surface of the container becomes large even if it is moved to another container or the like in a solution state.
単一細胞解析において、同一細胞中の複数の種類の生体分子の計測や、同じ種類の生体分子であっても、異なるサンプル処理が必要な生体分子の計測は非常に有用である。例えば、ゲノム変異解析やエピゲノム解析と遺伝子発現解析の同時解析では、ゲノムと遺伝子発現の状態の関係が明らかになり、細胞や組織の状態をゲノム情報から高精度に予測するための情報が得られる。これと同様に、遺伝子発現解析とタンパク質解析を同時に行うことによって、ゲノムと遺伝子発現よりも時間的に安定なゲノム情報と細胞の状態の関連についての情報を得ることが期待できる。さらには免疫細胞中の抗体はT細胞レセプタの可変領域の配列解析(レパトア(Repertorie)解析)と遺伝子発現解析によって、有効な細胞グループレパトア解析が可能となり、がんなどの治療選択に有用な情報を与えると期待される。
In single cell analysis, measurement of multiple types of biomolecules in the same cell, and measurement of biomolecules that require different sample processing, even for the same type of biomolecule, are very useful. For example, simultaneous analysis of genome mutation analysis or epigenome analysis and gene expression analysis reveals the relationship between genome and gene expression status and provides information for predicting the state of cells and tissues from genome information with high accuracy. . Similarly, by performing the gene expression analysis and the protein analysis at the same time, it can be expected to obtain information on the relationship between the genome information and the state of the cells that is more stable in time than the genome and the gene expression. Furthermore, antibodies in immune cells enable effective cell group repertoire analysis through sequence analysis of the variable region of the T cell receptor (Repertoire analysis) and gene expression analysis, which is useful information for selecting treatments such as cancer. Expected to give.
以上のように、これまでの単一細胞解析のためのサンプル調製デバイスでは、計測対象が微量なため、細胞捕捉および細胞破砕と同時に、その場またはその近傍でサンプル処理しているが、その場合、細胞が1つであるため、反応槽は1箇所となる。そのため、1種類の反応処理しかできなかった。すなわち、同一の細胞に対する複数種類の生体分子の解析ができなかった。一方、サンプルを分離して反応容器を複数に分けようとすると分離・抽出時にサンプルがロスするため、分離前に大量のサンプルが必要となり、単一細胞という微量サンプルを扱うことができなかった。
As described above, sample preparation devices for single-cell analysis so far have a small amount of measurement target, so sample processing is performed at or near the same time as cell capture and cell disruption. Since there is one cell, there is one reaction tank. Therefore, only one type of reaction treatment could be performed. That is, it was not possible to analyze a plurality of types of biomolecules for the same cell. On the other hand, if the sample is separated and the reaction vessel is divided into a plurality of samples, the sample is lost at the time of separation / extraction, so a large amount of sample is required before the separation, and a minute sample of a single cell cannot be handled.
本発明では、単一細胞という微量サンプルであっても、複数の計測に必要な複数のサンプル調製が実行できるようにするために、高効率のサンプル分離・抽出が可能な手段を提供することを目的とする。
In the present invention, there is provided a means capable of highly efficient sample separation / extraction so that a plurality of sample preparations necessary for a plurality of measurements can be performed even with a minute sample of a single cell. Objective.
前記課題を解決するため鋭意検討を行った結果、本発明者は、以下の構成を有する単一細胞解析デバイスおよび以下の工程を含む単一細胞解析方法により前記課題を解決できるという知見を得るに至った。すなわち、本発明は、
細胞を分離する手段と、
前記分離手段の近傍または前記分離手段内に配置された反応場と
を備えた単一細胞解析デバイスであって、
前記反応場は、捕捉された細胞から抽出される第1の生体分子を捕捉する第1の担体と、第1の生体分子とは異なる第2の生体分子を捕捉する第2の担体とが存在する領域を有し、
第1の担体および第2の担体の一方または両方は、捕捉された細胞の識別用タグ配列を備え、
第1の担体および第2の担体は、互いに分離し得る異なる物理的特性を有している
ことを特徴とする単一細胞解析デバイスに関する。 As a result of intensive studies to solve the above problems, the present inventors have obtained knowledge that the above problems can be solved by a single cell analysis device having the following configuration and a single cell analysis method including the following steps. It came. That is, the present invention
Means for separating cells;
A single cell analysis device comprising a reaction field disposed in the vicinity of or within the separation means,
The reaction field includes a first carrier that captures a first biomolecule extracted from the captured cells, and a second carrier that captures a second biomolecule different from the first biomolecule. Have an area to
One or both of the first carrier and the second carrier comprise a tag sequence for identifying captured cells,
The first carrier and the second carrier relate to a single cell analysis device characterized by having different physical properties that can be separated from each other.
細胞を分離する手段と、
前記分離手段の近傍または前記分離手段内に配置された反応場と
を備えた単一細胞解析デバイスであって、
前記反応場は、捕捉された細胞から抽出される第1の生体分子を捕捉する第1の担体と、第1の生体分子とは異なる第2の生体分子を捕捉する第2の担体とが存在する領域を有し、
第1の担体および第2の担体の一方または両方は、捕捉された細胞の識別用タグ配列を備え、
第1の担体および第2の担体は、互いに分離し得る異なる物理的特性を有している
ことを特徴とする単一細胞解析デバイスに関する。 As a result of intensive studies to solve the above problems, the present inventors have obtained knowledge that the above problems can be solved by a single cell analysis device having the following configuration and a single cell analysis method including the following steps. It came. That is, the present invention
Means for separating cells;
A single cell analysis device comprising a reaction field disposed in the vicinity of or within the separation means,
The reaction field includes a first carrier that captures a first biomolecule extracted from the captured cells, and a second carrier that captures a second biomolecule different from the first biomolecule. Have an area to
One or both of the first carrier and the second carrier comprise a tag sequence for identifying captured cells,
The first carrier and the second carrier relate to a single cell analysis device characterized by having different physical properties that can be separated from each other.
また本発明は、上記単一細胞解析デバイスにおいて、分離手段により細胞を捕捉し、捕捉された細胞から抽出された第1の生体分子および第2の生体分子を反応場においてそれぞれ第1の担体および第2の担体に捕捉し、第1の担体および第2の担体を物理的特性の違いに基づいて分離することにより第1の生体分子および第2の生体分子を個別にサンプル処理することを含む、単一細胞解析方法に関する。
The present invention also provides the single cell analysis device, wherein the cell is captured by the separation means, and the first biomolecule and the second biomolecule extracted from the captured cell are respectively reacted in the reaction field with the first carrier and Including separately processing the first biomolecule and the second biomolecule by capturing on the second carrier and separating the first carrier and the second carrier based on differences in physical properties The present invention relates to a single cell analysis method.
本発明に係るデバイスおよび方法により、単一細胞中に存在する、最適なサンプル調製工程または計測方法が異なる生体分子を個別にロスなく抽出し、どの単一細胞に由来するかの情報を保持したまま個別にサンプル調製を実施して、個別に計測を行うことで、多数の細胞から構成される複雑な生体組織の状態を計測することができるようになる。特に、DNAのゲノム変異解析とmRNAの遺伝子発現解析の同時解析によって、ゲノム変異がどのように遺伝子発現に影響を与えているかを単一細胞ごとに解析できるため、より精度の高いゲノム情報の発現についての解析が可能となる。
With the device and method according to the present invention, biomolecules with different optimal sample preparation processes or measurement methods existing in a single cell are individually extracted without loss, and information on which single cell is derived is retained. By performing sample preparation individually and performing individual measurement, it is possible to measure the state of a complex biological tissue composed of a large number of cells. In particular, the simultaneous analysis of DNA genomic mutation analysis and mRNA gene expression analysis enables analysis of how genomic mutations affect gene expression for each single cell. It becomes possible to analyze.
また、エピゲノム解析と遺伝子発現解析の同時解析や遺伝子発現解析とタンパク質解析も同様な効果が期待できる。さらに医学的な応用として、上記複数の生体分子の計測がT細胞レセプタや抗体に対応するmRNAの配列解析と細胞の状態に関連するmRNA発現解析という2種類の分子に対する2種類の解析が単一細胞ごとにできることで、がんに関連する抗原の情報を配列解析から得て、細胞の活動状態を遺伝子発現解析から得ることができるため、高精度ながんの診断につながると期待される。
Also, the same effect can be expected from simultaneous analysis of epigenome analysis and gene expression analysis, and gene expression analysis and protein analysis. Furthermore, as a medical application, the measurement of the above-mentioned plurality of biomolecules is a single analysis of two types of molecules, that is, an mRNA sequence analysis corresponding to a T cell receptor and an antibody and an mRNA expression analysis related to a cell state. What can be done for each cell is expected to lead to highly accurate cancer diagnosis because information on antigens related to cancer can be obtained from sequence analysis, and the activity state of cells can be obtained from gene expression analysis.
本発明は、複数の細胞について、各単一細胞から複数種の生体分子のサンプルを並行的かつ迅速に調製し、それぞれのサンプルを解析するためのデバイス、装置および方法を提供する。ここでサンプルは、単一細胞および生体分子の種類を区別可能に調製される。
The present invention provides a device, apparatus, and method for preparing a plurality of types of biomolecule samples from each single cell in parallel and rapidly for a plurality of cells and analyzing each sample. Here, the sample is prepared so as to be able to distinguish between single cell and biomolecule types.
本発明において、「生体分子のサンプルの調製」とは、細胞内に含まれる生体分子を抽出して、他の細胞成分と分離することを意味し、特に複数種の生体分子を区別可能なように分離してサンプルを調製することを意味する。また、「サンプルの解析」とは、サンプルに関連する生体分子を解析することであって、具体的には、サンプル(細胞、組織切片など)における生体分子の発現を定量的に分析すること、サンプルにおける生体分子の発現分布を分析すること、サンプルにおける生体分子(例えば特定の変異を有するゲノムDNA)の存在の有無を分析すること、サンプルにおける特定の位置と生体分子発現量との相関データを得ることを意味する。
In the present invention, “preparation of a biomolecule sample” means that a biomolecule contained in a cell is extracted and separated from other cell components. In particular, a plurality of types of biomolecules can be distinguished. It means that the sample is prepared separately. In addition, “analysis of a sample” is to analyze a biomolecule related to the sample, specifically, to analyze the expression of the biomolecule in the sample (cell, tissue section, etc.) quantitatively, Analyzing the expression distribution of biomolecules in a sample, analyzing the presence or absence of biomolecules (eg, genomic DNA having a specific mutation) in a sample, and correlating data between a specific position in a sample and the amount of biomolecule expression It means getting.
本発明において解析する対象となる生体分子は、細胞内に含まれる生体分子であれば特に限定されるものではなく、核酸(例えば、メッセンジャーRNA(mRNA)、非コードRNA(ncRNA)、microRNA、ゲノムDNA、およびそれらの断片など)、タンパク質(例えば、酵素、抗体など)、低分子化合物などが含まれる。本発明では、複数種、例えば2種の生体分子を解析対象とする。例えば、第1の生体分子および第2の生体分子はいずれもmRNAとすることができる。あるいは、第1の生体分子および第2の生体分子の一方をmRNAとし、他方をタンパク質とすることもできる。また、第1の生体分子の一方をゲノムDNAとし、他方をmRNAとすることも可能である。解析する生体分子の種類は、2種以上、例えば2種、3種、4種、5種など、解析目的に応じて設定することができる。
The biomolecule to be analyzed in the present invention is not particularly limited as long as it is a biomolecule contained in a cell. Nucleic acid (eg, messenger RNA (mRNA), non-coding RNA (ncRNA), microRNA, genome) DNA, and fragments thereof), proteins (eg, enzymes, antibodies, etc.), low molecular compounds, and the like. In the present invention, a plurality of types, for example, two types of biomolecules are analyzed. For example, both the first biomolecule and the second biomolecule can be mRNA. Alternatively, one of the first biomolecule and the second biomolecule can be mRNA, and the other can be protein. Also, one of the first biomolecules can be genomic DNA and the other can be mRNA. The types of biomolecules to be analyzed can be set according to the purpose of analysis, such as two or more, for example, two, three, four, and five.
本発明では、個々の細胞に対して生体分子捕捉のための個別の反応場を設定するが、その反応場の近傍の位置(例えば隣接した位置)または反応場の中に、細胞を分離/捕捉する手段を設け、反応場の中には、第1の計測対象生体分子を捕捉するための担体を充填し、これに加えて、この担体とは分離可能で第2の計測対象生体分子を捕捉するための別の担体を充填する。このような構成により、細胞の分離/捕捉と、捕捉された細胞からの生体分子の抽出と、複数種の生体分子の別個のサンプル調製とを迅速かつ効率的に行うことが可能となる。
In the present invention, an individual reaction field for capturing a biomolecule is set for each individual cell, but the cell is separated / captured in a position near the reaction field (for example, an adjacent position) or in the reaction field. The reaction field is filled with a carrier for capturing the first measurement target biomolecule, and in addition, the second measurement target biomolecule can be separated from the support and captured. To be filled with another carrier. With such a configuration, it becomes possible to quickly and efficiently perform separation / capture of cells, extraction of biomolecules from the captured cells, and preparation of separate samples of a plurality of types of biomolecules.
第1の態様では、本発明は、
細胞を分離する手段と、
前記分離手段の近傍または前記分離手段内に配置された反応場と
を備えた単一細胞解析デバイスであって、
前記反応場は、捕捉された細胞から抽出される第1の生体分子を捕捉する第1の担体と、第1の生体分子とは異なる第2の生体分子を捕捉する第2の担体とが存在する領域を有し、
第1の担体および第2の担体の一方または両方は、捕捉された細胞の識別用タグ配列を備え、
第1の担体および第2の担体は、互いに分離し得る異なる物理的特性を有している
ことを特徴とする単一細胞解析デバイスを提供する。 In a first aspect, the present invention provides:
Means for separating cells;
A single cell analysis device comprising a reaction field disposed in the vicinity of or within the separation means,
The reaction field includes a first carrier that captures a first biomolecule extracted from the captured cells, and a second carrier that captures a second biomolecule different from the first biomolecule. Have an area to
One or both of the first carrier and the second carrier comprise a tag sequence for identifying captured cells,
The first carrier and the second carrier provide a single cell analysis device characterized by having different physical properties that can be separated from each other.
細胞を分離する手段と、
前記分離手段の近傍または前記分離手段内に配置された反応場と
を備えた単一細胞解析デバイスであって、
前記反応場は、捕捉された細胞から抽出される第1の生体分子を捕捉する第1の担体と、第1の生体分子とは異なる第2の生体分子を捕捉する第2の担体とが存在する領域を有し、
第1の担体および第2の担体の一方または両方は、捕捉された細胞の識別用タグ配列を備え、
第1の担体および第2の担体は、互いに分離し得る異なる物理的特性を有している
ことを特徴とする単一細胞解析デバイスを提供する。 In a first aspect, the present invention provides:
Means for separating cells;
A single cell analysis device comprising a reaction field disposed in the vicinity of or within the separation means,
The reaction field includes a first carrier that captures a first biomolecule extracted from the captured cells, and a second carrier that captures a second biomolecule different from the first biomolecule. Have an area to
One or both of the first carrier and the second carrier comprise a tag sequence for identifying captured cells,
The first carrier and the second carrier provide a single cell analysis device characterized by having different physical properties that can be separated from each other.
複数種、例えば2種類の生体分子を計測する(=2種類の解析を行う)ための具体的な構成の一例は、前記分離手段および前記反応場が、平面状に配置した複数の細胞捕捉用の孔を設けた基板と、前記孔の直下に配置された反応槽である構成である。具体的には、平面状に配置した複数の細胞捕捉(単離)用の孔を設けた基板中の孔の直下に細胞抽出溶液を通過させる反応槽を設け、ここに第1の計測対象生体分子を捕捉するための分子と細胞識別用タグ配列を有する第1の捕捉プローブが固定された第1の固体担体を充填し、これに加えて、第1の固体担体とは物理的特性が異なる別の固体担体に、第2の生体分子を捕捉するための第2の捕捉プローブを固定して、前記反応槽に充填する。
An example of a specific configuration for measuring a plurality of types, for example, two types of biomolecules (= performing two types of analysis) is to capture a plurality of cells in which the separation means and the reaction field are arranged in a plane. The substrate is provided with a hole, and the reaction tank is disposed immediately below the hole. Specifically, a reaction tank for allowing the cell extraction solution to pass therethrough is provided immediately below the hole in the substrate provided with a plurality of cell capturing (isolation) holes arranged in a plane, and the first measurement target living body is provided here. A first solid support on which a molecule for capturing a molecule and a first capture probe having a cell identification tag sequence are immobilized is filled, and in addition, the physical properties of the first solid support are different. A second capture probe for capturing the second biomolecule is fixed to another solid support, and the reaction vessel is filled.
平面上に配置された複数の細胞捕捉孔が設けられた基板と孔の直下に配置された反応槽を備えるデバイスは、二次元アレイまたはチップとも呼ばれ、特許文献1、国際特許出願公開WO2014/141386号などに記載の通り、当該技術分野において公知である。
A device including a substrate provided with a plurality of cell trapping holes arranged on a plane and a reaction vessel arranged immediately below the holes is also called a two-dimensional array or chip. Patent Document 1, International Patent Application Publication No. WO2014 / It is known in the art as described in US Pat.
例えば基板は、当該技術分野で一般的に使用されている材料で作製されたものであれば特に限定されるものではない。その材料としては、例えば、金、クロム、白金、チタン、ニッケル等の金属;ステンレス、ジュラルミン等の合金;シリコン;ガラス、石英ガラス、溶融石英、合成石英、アルミナ、サファイア、セラミクス、フォルステライトおよび感光性ガラス等のガラス材料;ポリエステル樹脂、ポリスチレン、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂(Acrylonitrile Butadiene Styrene樹脂)、ジメチルポリシロキサン(PDMS)、サイクリックポリオレフィン、ナイロン、アクリル樹脂、フッ素樹脂等のプラスチック;アガロース、デキストラン、セルロース、ポリビニルアルコール、ニトロセルロース、キチン、キトサンが挙げられる。基板に用いる材料は、疎水性材料であることが好ましく、それにより細胞や試薬などの吸着を低減することができる。あるいは、基板には、他の物質(核酸やタンパク質、試薬など)が吸着しないように、表面コーティングを行ってもよい。
For example, the substrate is not particularly limited as long as it is made of a material generally used in the technical field. Examples of the material include metals such as gold, chromium, platinum, titanium, and nickel; alloys such as stainless steel and duralumin; silicon; glass, quartz glass, fused silica, synthetic quartz, alumina, sapphire, ceramics, forsterite, and photosensitive. Glass materials such as reactive glass; plastics such as polyester resin, polystyrene, polyethylene resin, polypropylene resin, ABS resin (Acrylonitrile Butadiene Styrene resin), dimethylpolysiloxane (PDMS), cyclic polyolefin, nylon, acrylic resin, fluorine resin; agarose Dextran, cellulose, polyvinyl alcohol, nitrocellulose, chitin, and chitosan. The material used for the substrate is preferably a hydrophobic material, which can reduce adsorption of cells and reagents. Alternatively, the substrate may be surface-coated so that other substances (nucleic acid, protein, reagent, etc.) do not adsorb.
基板の一面に一細胞捕捉孔を設け、孔の直下に反応槽を設け、反応槽に生体分子を捕捉するための担体を充填する方法も公知である。細胞捕捉孔の大きさは、捕捉しようとする細胞のサイズよりも小さく、かつ反応槽に向かって流れを発生させることができる程度の大きさを備えている必要がある。例えば5~10μm、好ましくは8~10μmとすることができるが、捕捉対象の細胞の種類に応じて適宜変更する。基板上の細胞捕捉孔の配置および間隔もまた捕捉対象の細胞の種類に応じて適宜変更することができる。また、反応槽は、細胞捕捉孔と一体的に形成されていてもよいし、別に形成されて流路で接続されていてもよい。
Also known is a method in which one cell capturing hole is provided on one surface of the substrate, a reaction tank is provided immediately below the hole, and the reaction tank is filled with a carrier for capturing biomolecules. The size of the cell trapping hole needs to be smaller than the size of the cell to be trapped and large enough to generate a flow toward the reaction vessel. For example, the thickness may be 5 to 10 μm, preferably 8 to 10 μm, but may be appropriately changed depending on the type of cells to be captured. The arrangement and interval of the cell trapping holes on the substrate can also be appropriately changed according to the type of cells to be trapped. Moreover, the reaction tank may be formed integrally with the cell trapping hole, or may be formed separately and connected by a flow path.
別の具体的な構成例としては、前記分離手段および前記反応場が、非極性溶媒が流れる流路と、非極性溶媒中に形成された、単一細胞を含む液滴である構成である。具体的には、非極性溶媒中に形成された単一細胞を含む液滴を反応場として、その液滴の中に、細胞を破砕する試薬と第1の計測対象生体分子を捕捉するための分子と細胞識別用タグ配列を有する第1の捕捉プローブが固定された固体担体と、これに加えて、前記固体担体とは物理的特性が異なる別の固体担体とを導入する。
As another specific configuration example, the separation means and the reaction field are a flow path through which a nonpolar solvent flows and a droplet including a single cell formed in the nonpolar solvent. Specifically, using a droplet containing a single cell formed in a nonpolar solvent as a reaction field, a reagent for crushing the cell and the first biomolecule to be measured are captured in the droplet. In addition to this, a solid support on which a first capture probe having a molecule and a cell identification tag sequence is immobilized, and another solid support having physical properties different from those of the solid support are introduced.
非極性溶媒中の液滴において細胞中の生体物質(特に核酸)を抽出・捕捉する技術は、いわゆるエマルジョン液滴として知られており、例えば特許文献2などに記載されている。
A technique for extracting and capturing biological substances (particularly nucleic acids) in cells from droplets in a nonpolar solvent is known as so-called emulsion droplets, and is described in, for example, Patent Document 2.
非極性溶媒として、例えばミネラルオイル、シリコーンオイルなどを使用し、そこへ単一細胞、試薬および担体を封入したエマルジョン液滴を形成する。エマルジョンの形成は当技術分野で周知であり、任意の方法により行うことができる。生体分子の抽出やサンプル処理のため、非極性溶媒およびエマルジョン液滴が熱安定性であることが好ましい。エマルジョン液滴の大きさは、解析対象の細胞の種類および大きさ、使用する担体の種類および大きさなどに応じて異なり、約100μL以下、50μL以下、10μL以下、5μL以下、1μL以下、さらには500pL以下など、適宜設定することができる。
As the nonpolar solvent, for example, mineral oil, silicone oil or the like is used, and emulsion droplets are formed in which single cells, reagents and carriers are sealed. Emulsion formation is well known in the art and can be done by any method. Nonpolar solvents and emulsion droplets are preferably thermally stable for biomolecule extraction and sample processing. The size of the emulsion droplet varies depending on the type and size of the cell to be analyzed, the type and size of the carrier to be used, and is about 100 μL or less, 50 μL or less, 10 μL or less, 5 μL or less, 1 μL or less, It can be set appropriately such as 500 pL or less.
本発明では、複数種の生体分子を捕捉するため、互いに分離し得る異なる物理的特性を有する複数種の担体を使用する。例えば、2種類の生体分子を捕捉する場合には、それぞれの生体分子を捕捉するための第1の担体および第2の担体を反応場に充填または導入する。3種以上の生体分子を捕捉する場合には、それらの生体分子をそれぞれ捕捉するための担体を反応場に充填または導入する。
In the present invention, in order to capture a plurality of types of biomolecules, a plurality of types of carriers having different physical properties that can be separated from each other are used. For example, when two types of biomolecules are captured, a first carrier and a second carrier for capturing each biomolecule are filled or introduced into the reaction field. When capturing three or more types of biomolecules, a carrier for capturing each of these biomolecules is filled or introduced into the reaction field.
それぞれの担体は、大きさ、重量、比重、磁性および形状からなる群より選択される少なくとも1つの物理的特性が異なるものを使用する。形状の異なる担体としては、例えばビーズ、多孔質構造、反応槽の壁面などが挙げられる。また、大きさおよび/または重量もしくは比重の異なる担体としては、異なるサイズおよび/または重量もしくは比重を有するビーズなどが挙げられる。磁性の異なる担体としては、磁性ビーズ、磁性多孔質構造などが挙げられる。これらの物理的特性が少なくとも1つ異なる複数種の担体を組み合わせて使用することで、担体に捕捉される生体分子を容易に分離することが可能となる。
Each carrier is different in at least one physical property selected from the group consisting of size, weight, specific gravity, magnetism and shape. Examples of the carrier having a different shape include beads, a porous structure, and a reaction vessel wall surface. Examples of the carrier having a different size and / or weight or specific gravity include beads having different sizes and / or weight or specific gravity. Examples of the carrier having different magnetism include magnetic beads and a magnetic porous structure. By using a combination of a plurality of types of carriers having at least one different physical property, it is possible to easily separate biomolecules captured by the carriers.
生体分子の捕捉効率を上げる点を考慮すると、担体として、表面積の大きい材料を用いることが好ましく、例えば、多数のビーズが充填された構造、多孔質構造、メッシュ構造などを採用することが好ましい。また、操作の簡便性の点から、担体の少なくとも1つとしてビーズを使用することが好ましい。担体としてビーズを用いる場合には、樹脂材料(ポリスチレンなど)、酸化物(ガラスなど)、金属(鉄など)、セファロース、およびこれらの組み合わせなどからビーズを作製することができる。さらに、担体の少なくとも1つとして磁性ビーズを使用すると、担体の分離を迅速かつ簡便に行うことができる。
Considering the point of increasing the capture efficiency of biomolecules, it is preferable to use a material having a large surface area as the carrier. For example, it is preferable to adopt a structure filled with a large number of beads, a porous structure, a mesh structure, or the like. From the viewpoint of simplicity of operation, it is preferable to use beads as at least one of the carriers. When beads are used as the carrier, the beads can be produced from a resin material (such as polystyrene), oxide (such as glass), metal (such as iron), sepharose, and combinations thereof. Further, when magnetic beads are used as at least one of the carriers, the carrier can be separated quickly and easily.
担体には、解析対象の生体分子を捕捉するためのプローブを固定する。そのようなプローブは、解析対象の生体分子の種類に応じて、生体分子と特異的に結合するように設計することができる。例えば、生体分子がmRNAである場合には、ポリT配列を含むDNAプローブを用いることができる。ポリT配列を含むDNAプローブ、すなわちオリゴ(dT)は、常法により合成することができ、オリゴ(dT)の重合度は、mRNAのポリA配列とハイブリダイズして、mRNAをオリゴ(dT)が固定された担体に捕捉しうる重合度であればよい。例えば、10~30塩基、10~20塩基、10~15塩基程度とすることができる。生体分子がmRNA、非コードRNA(ncRNA)、microRNAまたはゲノムDNAである場合には、ランダム配列からなるDNAプローブ、特定の標的配列に対して相補的な配列を有するDNAプローブを用いることができる。また、生体分子がタンパク質や低分子化合物である場合には、該生体分子と特異的に結合する分子、例えば抗体、受容体、アプタマーなどをプローブとして用いることができる。さらに生体分子がタンパク質や低分子化合物であり、細胞認識用タグ配列を利用する場合には、該生体分子と特異的に結合する第1の結合性分子(抗体、アプタマー等)と、第1の結合性分子に結合した第1のDNAプローブを利用することができる。上記結合性分子とサンドイッチ状態で上記生体分子と結合する第2の結合性分子(上記結合性分子と同じ種類の分子であることが好ましく、例えば抗体、アプタマー等である)と、第2の結合性分子に結合した第2のDNAプローブを添加し、ターゲットとなる生体分子が存在する場合には、上記DNAプローブと第2のDNAプローブとがライゲーションし、その生体分子に特異的なリングプローブが形成される。この方法は近接ライゲーション法(Proximity Ligation Method)と呼ばれ(例えば、Malin Jarvius et al. Molecular & Cellular Proteomics 6 (9) p.1500, 2007)、タンパク質に対応したDNAライブラリの構築に有用である。
The probe for capturing the biomolecule to be analyzed is fixed to the carrier. Such a probe can be designed to specifically bind to a biomolecule depending on the type of biomolecule to be analyzed. For example, when the biomolecule is mRNA, a DNA probe containing a poly T sequence can be used. A DNA probe containing a poly T sequence, that is, an oligo (dT) can be synthesized by a conventional method, and the degree of polymerization of the oligo (dT) is hybridized with the poly A sequence of mRNA, and the mRNA is oligo (dT). Any degree of polymerization that can be trapped on a fixed carrier. For example, it can be about 10 to 30 bases, 10 to 20 bases, 10 to 15 bases. When the biomolecule is mRNA, non-coding RNA (ncRNA), microRNA or genomic DNA, a DNA probe comprising a random sequence or a DNA probe having a sequence complementary to a specific target sequence can be used. Further, when the biomolecule is a protein or a low molecular compound, a molecule that specifically binds to the biomolecule, such as an antibody, a receptor, or an aptamer, can be used as a probe. Furthermore, when the biomolecule is a protein or a low molecular compound and uses a cell recognition tag sequence, a first binding molecule (such as an antibody or an aptamer) that specifically binds to the biomolecule, A first DNA probe bound to a binding molecule can be used. A second binding molecule that binds to the biomolecule in a sandwich state with the binding molecule (preferably a molecule of the same type as the binding molecule, such as an antibody or an aptamer), and a second binding When a second DNA probe bonded to a sex molecule is added and a target biomolecule exists, the DNA probe and the second DNA probe are ligated, and a ring probe specific to the biomolecule is It is formed. This method is called a proximity ligation method (Proximity 例 え ば Ligation Method) (for example, Malin Jarvius et al. Molecular & Cellular9Proteomics 6500 (9) p.1500, 2007) and is useful for the construction of DNA libraries corresponding to proteins.
プローブは、当技術分野で公知の任意の方法により担体に固定する。例えばビーズ表面、多孔質膜の表面または内部、反応槽の壁面などに、共有結合、イオン結合、物理吸着、生物学的結合(例えば、ビオチンとアビジンまたはストレプトアビジンとの結合、抗原と抗体との結合など)を利用してプローブを固定することができる。また、スペーサー配列を介してプローブを担体に固定することも可能である。前記近接ライゲーションを用いた生体分子としてタンパク質や低分子化合物を処理する場合、前記第1の結合性分子を別の担体に固定することも可能である。
The probe is fixed to the carrier by any method known in the art. For example, covalent bond, ionic bond, physical adsorption, biological bond (for example, binding of biotin and avidin or streptavidin, antigen and antibody, etc. The probe can be fixed by using a bond). It is also possible to fix the probe to the carrier via a spacer sequence. When a protein or a low molecular weight compound is processed as a biomolecule using the proximity ligation, the first binding molecule can be immobilized on another carrier.
ここで、上記担体のいずれか1つ、例えば第1の担体および第2の担体の一方または両方は、捕捉された細胞の識別用タグ配列を備える。例えば、担体に固定されたプローブに細胞識別用タグ配列を導入することができる。特に、デバイスから分離される担体(例えばビーズ等)に固定されるプローブの場合には、細胞識別用タグ配列を使用して、デバイスから分離した後であっても、どの細胞または位置に由来するかの情報を保持することができ、好ましい。また、計測対象の生体分子が3種類以上の場合には、少なくとも2種類以上の担体に細胞識別用タグ配列を導入することが好ましい。細胞識別用タグ配列は、当業者であれば、捕捉する細胞の数や反応場の数に応じて、それらを区別可能なように設計することができる。
Here, any one of the above carriers, for example, one or both of the first carrier and the second carrier is provided with a tag sequence for identifying captured cells. For example, a cell identification tag sequence can be introduced into a probe fixed to a carrier. In particular, in the case of a probe fixed to a carrier (eg, a bead) separated from the device, it is derived from any cell or position even after separation from the device using a cell identification tag sequence. Such information can be held, which is preferable. When there are three or more types of biomolecules to be measured, it is preferable to introduce a cell identification tag sequence into at least two types of carriers. Those skilled in the art can design cell identification tag sequences so that they can be distinguished according to the number of cells to be captured and the number of reaction fields.
上述したような構成によって本発明の課題が解決される理由は以下の通りである。すなわち、細胞の破砕が反応場の近傍または反応場の中で行われるとともに、この反応場の中に計測対象とするすべての計測対象とする生体分子を捕捉する担体を設けることで、細胞抽出液に含まれる計測対象生体分子が反応容器に触れる前に担体上の生体分子を捕捉するためのプローブに捕捉される。これにより、生体分子が容器などの壁面に吸着してサンプルがロスすることがほとんどない。次に、捕捉された生体分子を担体の物理的特性、すなわち、大きさや形や比重や磁性などによって分離することで、分離時も容器壁面などに吸着する確率を低減することができる。これによって、単一細胞中の極めて微量な計測対象生体分子を分離して、分離したサンプルに対して個別に最適なサンプル調製を行うことができる。
The reason why the problem of the present invention is solved by the configuration as described above is as follows. That is, cell disruption is performed in the vicinity of the reaction field or in the reaction field, and by providing a carrier that captures all the measurement target biomolecules in the reaction field, the cell extract The biomolecule to be measured contained in is captured by a probe for capturing the biomolecule on the carrier before it touches the reaction vessel. Thereby, a biomolecule is hardly adsorbed on a wall surface such as a container and the sample is hardly lost. Next, by separating the captured biomolecules based on the physical properties of the carrier, that is, size, shape, specific gravity, magnetism, etc., the probability of adsorbing to the container wall surface can be reduced even during the separation. As a result, it is possible to separate an extremely small amount of a biomolecule to be measured in a single cell and perform optimum sample preparation individually for the separated sample.
また別の態様において、本発明は、本発明に係る単一細胞解析デバイスにおいて、分離手段により細胞を捕捉し、捕捉された細胞から抽出された第1の生体分子および第2の生体分子を反応場においてそれぞれ第1の担体および第2の担体に捕捉し、第1の担体および第2の担体を物理的特性の違いに基づいて分離することにより第1の生体分子および第2の生体分子を個別にサンプル処理することを含む、単一細胞解析方法を提供する。
In another aspect, the present invention provides a single cell analysis device according to the present invention, in which a cell is captured by a separation means, and a first biomolecule and a second biomolecule extracted from the captured cell are reacted. The first biomolecule and the second biomolecule are captured by the first carrier and the second carrier, respectively, in the field, and the first carrier and the second carrier are separated based on the difference in physical properties. A single cell analysis method is provided that includes processing samples individually.
解析対象となる細胞は、細胞を含む生体由来サンプルであれば特に限定されるものではない。サンプルの由来となる生体も特に限定されるものではない。サンプルは、本発明に係るデバイスまたは方法において使用する際に、細胞がそれぞれ分離した形態である必要がある。そのため、サンプルが固形サンプル(例えば組織切片など)である場合には、固形サンプルを溶媒に溶解または懸濁させることにより液体サンプルとすることが好ましい。また、サンプルが気体サンプル(例えば空気、呼気など)である場合には、気体サンプルに含まれる細胞を溶媒に懸濁させることにより液体サンプルとすることが好ましい。サンプルの調製方法は、当該技術分野において慣用的に行われており、当業者であれば容易に理解することができる。
The cell to be analyzed is not particularly limited as long as it is a biological sample containing cells. The living body from which the sample is derived is not particularly limited. When used in the device or method according to the present invention, the sample needs to be in a form in which the cells are separated from each other. Therefore, when the sample is a solid sample (for example, a tissue section), it is preferable to form a liquid sample by dissolving or suspending the solid sample in a solvent. Further, when the sample is a gas sample (for example, air, exhaled air, etc.), it is preferable to suspend the cells contained in the gas sample in a solvent to obtain a liquid sample. Sample preparation methods are routinely performed in the art and can be easily understood by those skilled in the art.
本発明に係る単一細胞解析デバイスに、サンプルである細胞を導入する。分離手段(例えば細胞捕捉孔または非極性溶媒)により細胞を捕捉し、捕捉された細胞から生体分子を抽出する。例えば、当技術分野で公知の細胞溶解試薬を用いて細胞を溶解し、細胞に含まれる核酸を抽出することができる。例えば、プロテイナーゼKのようなタンパク質分解酵素、チオシアン酸グアニジン・グアニジン塩酸といったカオトロピック塩、TweenおよびSDSといった界面活性剤、あるいはリシス溶液などの市販の細胞溶解用試薬を用いて、細胞を溶解し、それに含まれる核酸、すなわちDNAおよびRNAを溶出することができる。生体分子としてmRNAを捕捉する場合には、DNAをDNA分解酵素(DNase)により分解してからRNAのみを捕捉するようにしてもよい。
The sample cell is introduced into the single cell analysis device according to the present invention. A cell is captured by a separation means (for example, a cell capture hole or a nonpolar solvent), and a biomolecule is extracted from the captured cell. For example, cells can be lysed using a cell lysis reagent known in the art, and nucleic acids contained in the cells can be extracted. For example, using a proteolytic enzyme such as proteinase K, a chaotropic salt such as guanidine thiocyanate / guanidine hydrochloride, a surfactant such as Tween and SDS, or a commercially available cell lysis reagent such as a lysis solution, The contained nucleic acids, ie DNA and RNA, can be eluted. When capturing mRNA as a biomolecule, only RNA may be captured after degrading DNA with a DNA degrading enzyme (DNase).
抽出された複数種の生体分子を反応場においてそれぞれ物理的特性の異なる担体に捕捉する。その後、その担体を物理的特性の違いに基づいて分離する。例えば、大きさが異なる担体を使用する場合には、フィルターなどを使用して分離することができる。重量または比重が異なる担体の場合には、遠心分離、沈降などを利用して分離することができる。形状が異なる担体の場合には、洗浄、フィルター、遠心分離などを利用して分離することができる。磁性が異なる担体の場合には、磁石を使用して分離することができる。担体の分離は、使用する担体の物理的特性の違いに応じて、上記手段を適宜組み合わせて行うことができる。
∙ Capture multiple types of extracted biomolecules in a carrier with different physical properties in the reaction field. The carrier is then separated based on the difference in physical properties. For example, when using carriers having different sizes, they can be separated using a filter or the like. In the case of a carrier having a different weight or specific gravity, it can be separated using centrifugation, sedimentation or the like. In the case of a carrier having a different shape, it can be separated using washing, filtering, centrifugation or the like. In the case of a carrier having different magnetism, it can be separated using a magnet. The separation of the carrier can be performed by appropriately combining the above means depending on the difference in physical properties of the carrier used.
担体を分離した後、それぞれの担体に捕捉された生体分子を個別にサンプル処理する。サンプル処理では、細胞識別用タグ配列を利用して、処理されたサンプルがどの細胞または位置に由来するかを解析することも可能である。
After separating the carrier, the biomolecules captured on each carrier are individually sampled. In sample processing, it is also possible to analyze which cell or position the processed sample is derived from using a cell identification tag sequence.
本発明に係る単一細胞解析方法では、細胞の破砕が反応場の近傍または反応場の中で行われるとともに、この反応場の中に計測対象とするすべての計測対象とする生体分子を捕捉する担体を設けることで、細胞抽出液に含まれる計測対象生体分子が反応容器に触れる前に担体上の生体分子を捕捉するためのプローブに捕捉される。これにより、生体分子が容器などの壁面に吸着してサンプルがロスすることがほとんどない。次に、捕捉された生体分子を担体の物理的特性、すなわち、大きさや形や比重や磁性などによって分離することで、分離時も容器壁面などに吸着する確率を低減することができる。これによって、単一細胞中の極めて微量な計測対象生体分子を分離して、分離したサンプルを個別に最適なサンプル調製を行うことができる。
In the single cell analysis method according to the present invention, cell disruption is performed in the vicinity of the reaction field or in the reaction field, and all the biomolecules to be measured are captured in the reaction field. By providing the carrier, the biomolecule to be measured contained in the cell extract is captured by the probe for capturing the biomolecule on the carrier before touching the reaction container. Thereby, a biomolecule is hardly adsorbed on a wall surface such as a container and the sample is hardly lost. Next, by separating the captured biomolecules based on the physical properties of the carrier, that is, size, shape, specific gravity, magnetism, etc., the probability of adsorbing to the container wall surface can be reduced even during the separation. As a result, it is possible to separate a very small amount of a biomolecule to be measured in a single cell and to perform optimum sample preparation for each separated sample.
このような解析によって生体組織中の分子生物学的視点からの多様な細胞の分布に関する情報を得ることができ、がんの進行やそれに伴う免疫応答の個人レベルでの多様性も従来の遺伝子解析よりも詳細かつ正確に調べることができる。それゆえ、このような研究が、新しい病気の診断方法の開発や創薬に資するものと期待され、特に、個人別の適切な治療方法の選択の研究に資するものと期待される。
Such analysis can provide information on the distribution of various cells from the viewpoint of molecular biology in biological tissues, and the diversity of the cancer progression and associated immune responses at the individual level can also be analyzed by conventional genetic analysis. More detailed and accurate. Therefore, such research is expected to contribute to the development of new disease diagnostic methods and drug discovery, and in particular, to the study of selection of appropriate treatment methods for each individual.
以下、図面を参照しながら本発明の具体的な実施の形態を説明する。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
本実施例は、平面状に配置した複数の細胞捕捉孔を設けた平面基板と、その孔の直下に細胞抽出溶液を通過させる反応槽を反応場として設け、ここに2種類のビーズを充填して、2種類の計測対象生体分子を含むサンプルを調製する例である。
In this example, a planar substrate provided with a plurality of cell trapping holes arranged in a plane and a reaction vessel for allowing a cell extraction solution to pass therethrough are provided as reaction fields, and two kinds of beads are filled therein. This is an example of preparing a sample containing two types of biomolecules to be measured.
2種類の生体分子の計測対象として、本実施例では、同じmRNAであるが、配列中に変異や組み換えが起きている領域のmRNA(第1の生体分子)の配列情報を計測する第1の解析と、変異等がほとんどなくタンパク質をコードしているmRNA(第2の生体分子)の細胞中の存在量(=発現量)を計測する第2の解析とを、単一細胞毎に複数の細胞について同時に実現するデバイスと方法について記す。第1の解析の具体例として、ここでは免疫細胞の可変領域の配列解析対象部分が3’末端から離れており(離れ方の程度としては、配列解析を実施するシーケンシングのリードの長さより離れている)、また、単一細胞中の発現コピー数が少なく遺伝子の増幅率を大きく取らなければならないが、定量する必要はなく、配列情報のみを取得する解析である。一方、第2の解析は、遺伝子毎の分子数をカウントする定量解析(いわゆる遺伝子発現解析)であり、mRNAの3’末端領域(ポリA配列に近い配列領域)の配列解析と遺伝子配列データベースへのマッピングによって遺伝子毎のmRNA分子数をカウントする。
As a measurement target of two types of biomolecules, in the present embodiment, the same mRNA is used, but first sequence information of mRNA (first biomolecule) in a region where mutation or recombination occurs in the sequence is measured. The analysis and the second analysis for measuring the abundance (= expression level) of mRNA (second biomolecule) encoding a protein with almost no mutation and the like are performed for each single cell. The devices and methods that can be realized simultaneously for cells are described. As a specific example of the first analysis, here, the sequence analysis target part of the variable region of the immune cell is separated from the 3 ′ end (the degree of separation is separated from the length of the sequencing lead for performing the sequence analysis). In addition, the number of expression copies in a single cell is small and the amplification rate of the gene must be large, but it is not necessary to quantify the analysis, and only the sequence information is obtained. On the other hand, the second analysis is a quantitative analysis (so-called gene expression analysis) that counts the number of molecules for each gene. The sequence analysis of the 3 ′ end region of mRNA (sequence region close to the poly A sequence) and the gene sequence database The number of mRNA molecules for each gene is counted by mapping of.
本実施例の基本構成となる反応用のデバイスの構成図を図1に示す。図1の(a)および(b)はそれぞれデバイスの上面図および断面図である。平面基板(1)上に細胞捕捉孔(3)を等間隔で正方格子状に配置し、細胞捕捉孔の直下に反応槽(2)を配置する。本実施例では平面基板はPDMS(ポリジメチルシロキサン)製であるが、ポリカーボネートやポリプロピレン、(サイクリック)シクロオレフィン等の樹脂材料や、シリコンなどの半導体材料、さらにはガラスやアルミナなどの無機材料、ステンレスなどの金属材料を用いてもよい。また、細胞捕捉孔は(一番細い部分で)直径0.1μm~100μm程度で細胞の大きさに適したサイズを選ぶことができるが、通常2~3μm程度が好適である。さらに、細胞捕捉孔の間隔は1μm~1mm程度が望ましいが、特に100μm程度が望ましい。さらに、反応槽の大きさ(例えば直径)は、1μm程度から500μm程度が望ましいが、特に80μm程度が望ましい。反応槽の高さは1μm程度から1mm程度が望ましいが、特に100μm程度が望ましい。
FIG. 1 shows a configuration diagram of a reaction device which is a basic configuration of the present embodiment. 1A and 1B are a top view and a cross-sectional view of the device, respectively. The cell trapping holes (3) are arranged in a square lattice pattern at equal intervals on the flat substrate (1), and the reaction vessel (2) is placed immediately below the cell trapping holes. In this embodiment, the planar substrate is made of PDMS (polydimethylsiloxane), but resin materials such as polycarbonate, polypropylene, (cyclic) cycloolefin, semiconductor materials such as silicon, and inorganic materials such as glass and alumina, A metal material such as stainless steel may be used. In addition, the cell trapping hole (in the narrowest part) can be selected to have a diameter of about 0.1 μm to 100 μm and suitable for the size of the cell, but usually about 2 to 3 μm is preferable. Further, the interval between the cell trapping holes is preferably about 1 μm to 1 mm, and particularly about 100 μm. Further, the size (for example, diameter) of the reaction vessel is preferably about 1 μm to about 500 μm, particularly about 80 μm. The height of the reaction tank is preferably about 1 μm to about 1 mm, and particularly preferably about 100 μm.
本実施例では、反応槽(2)の中に2種類の固体担体として直径と物理的特性の異なる2種類のビーズを充填した。まず、第1の生体分子であるmRNAを捕捉するために、第1の固体担体として直径30μmのセファロースビーズ上に、可変領域近傍の固定領域に相補的な遺伝子特異的配列を有する第1のDNAプローブを固定する。セファロースビーズへのDNAプローブの固定はストレプトアビジン固定のセファロースビーズが市販されており(例えばGE Health Care社製)、5’末端をビオチン修飾したDNAをセファロースビーズのインストラクションに従った条件で混合して固定する。次に、第2の生体分子である遺伝子を、第2の固体担体として直径1μmの磁性ビーズ上に捕捉するために、ポリT配列を有する第2のDNAプローブを固定する。この固定についても、ストレプトアビジンが表面に固定された磁性ビーズが市販(例えばDynal社製)されている。第1のDNAプローブの場合と同様に5’末端をビオチン修飾し、インストラクションに従った条件でビーズとDNA分子を混合することでDNAプローブを固定することができる。もちろん、両者とも異なる機構での固定を選択してもよい。
In this example, the reaction tank (2) was filled with two types of beads having different diameters and physical properties as two types of solid carriers. First, in order to capture mRNA as a first biomolecule, a first DNA having a gene-specific sequence complementary to a fixed region in the vicinity of a variable region on a Sepharose bead having a diameter of 30 μm as a first solid carrier. Fix the probe. For the fixation of the DNA probe to the Sepharose beads, Streptavidin-fixed Sepharose beads are commercially available (for example, manufactured by GE Health Care). Fix it. Next, a second DNA probe having a poly-T sequence is immobilized in order to capture a gene, which is a second biomolecule, on magnetic beads having a diameter of 1 μm as a second solid support. For this immobilization, magnetic beads having streptavidin immobilized on the surface are commercially available (for example, manufactured by Dynal). As in the case of the first DNA probe, the 5 'end is modified with biotin, and the DNA probe can be immobilized by mixing the beads and the DNA molecule under the conditions according to the instructions. Of course, both may be fixed by different mechanisms.
これら2種類のビーズ(固体担体5および6)は反応槽(2)に混合して充填する。さらに、基板(1)の裏面にビーズ保持用のメンブレン(7)を貼り付けることで、基板(1)上に分注された溶液は、細胞捕捉孔から基板裏面に向かって貫通して流れるような構成としている。このメンブレンとしてポアサイズが0.05μmから80μm程度のトラックエッチメンブレンを用いることができるが、親水性の多孔質メンブレンであれば他の材質および構造の他の多孔質膜を用いても良い。本実施例では0.8μmポアのトラックエッチメンブレンを用いた。
These two kinds of beads (solid carriers 5 and 6) are mixed and filled in the reaction tank (2). Further, by attaching a bead-holding membrane (7) to the back surface of the substrate (1), the solution dispensed on the substrate (1) flows through the cell trapping hole toward the back surface of the substrate. It has a simple structure. A track etch membrane having a pore size of about 0.05 μm to 80 μm can be used as this membrane, but other porous membranes of other materials and structures may be used as long as they are hydrophilic porous membranes. In this example, a track etch membrane having a pore size of 0.8 μm was used.
次に、細胞の単離からサンプル調製の方法の概要について記す。サンプル処理の全体的な処理フローは図2に示す。計測対象となる細胞懸濁液を前記基板上に滴下し、ビーズ保持用メンブレン(7)の裏面に負圧(95kPa)を印加し、細胞溶液が細胞捕捉孔(3)および反応槽(2)とメンブレン(7)を通って流れるようにする。この過程で、細胞懸濁液中の細胞は細胞捕捉孔を塞ぐ形で止まり、細胞によって細胞捕捉孔がふさがれた孔は溶液の流れが止まるため、まだ細胞が捕捉されていない孔に優先的に細胞が捕捉されるようになる。この過程を繰り返して、ほとんどの細胞捕捉孔で細胞を捕捉することができる。このようにして細胞(4)が基板(1)上で捕捉される。
Next, an overview of cell isolation and sample preparation methods will be described. The overall processing flow of sample processing is shown in FIG. A cell suspension to be measured is dropped on the substrate, a negative pressure (95 kPa) is applied to the back surface of the bead-holding membrane (7), and the cell solution becomes a cell trapping hole (3) and a reaction vessel (2). And flow through the membrane (7). During this process, the cells in the cell suspension stop in the form of plugging the cell trapping holes, and the holes blocked by the cells stop the flow of the solution, so the cells that have not yet been trapped have priority. The cells become trapped. This process can be repeated to capture cells at most cell capture holes. In this way, the cells (4) are captured on the substrate (1).
細胞懸濁液をすべて吸引することで溶液中の細胞をすべて捕捉した後、細胞中の計測対象分子を抽出するために細胞を破砕する。そのためにリシス溶液をデバイス上に分注して、デバイスの裏面に細胞懸濁液の場合と同様に負圧(96kPa)を印加することで、細胞抽出液が反応槽を通過するようにする。細胞でふさがれた細胞捕捉孔では溶液の流れは起きないが、細胞が破砕されると、細胞抽出溶液は細胞捕捉孔を通って、反応槽を流れる。続いて、2種類のビーズ(第1の固体担体5および第2の固体担体6)上の捕捉DNAプローブによって、計測対象となるmRNAがそれぞれ別のビーズ上に捕捉される。
After all the cells in the solution are captured by aspirating the entire cell suspension, the cells are crushed to extract the molecules to be measured in the cells. For this purpose, a lysis solution is dispensed on the device, and a negative pressure (96 kPa) is applied to the back surface of the device in the same manner as in the case of the cell suspension so that the cell extract passes through the reaction vessel. Although the flow of the solution does not occur in the cell trapping hole blocked with cells, when the cells are crushed, the cell extraction solution flows through the reaction trap through the cell trapping hole. Subsequently, the mRNA to be measured is captured on different beads by the capture DNA probes on the two types of beads (the first solid support 5 and the second solid support 6).
次に、mRNAの相補鎖であるcDNA合成する。これによって、mRNAと同じ配列を持つDNAを増幅する準備をすることができる。cDNA合成用の酵素試薬をリシス溶液と同様に基板(1)上に滴下して、圧力の印加を弱めて(0~5kPa程度)、溶液の流れを遅くする。デバイスの温度をcDNA合成に好適な温度(50℃)に上げて、適切な時間(50分程度)反応させる。
Next, cDNA, which is a complementary strand of mRNA, is synthesized. Thereby, it is possible to prepare to amplify DNA having the same sequence as mRNA. An enzyme reagent for cDNA synthesis is dropped on the substrate (1) in the same manner as the lysis solution to weaken the application of pressure (about 0 to 5 kPa) and slow down the flow of the solution. The temperature of the device is raised to a temperature suitable for cDNA synthesis (50 ° C.) and reacted for an appropriate time (about 50 minutes).
cDNA合成を完了後、メンブレン(7)を取り外し、2種類のビーズを分離した後、2種類の適切なサンプル調製を行う。再び、サンプル溶液を混合し、DNAシーケンシングを実施する。後に説明するタグ配列情報を用いて、遺伝子の種類ごと、反応槽ごとの計測データを分離して、必要なデータを取得する。
After completing cDNA synthesis, remove the membrane (7), separate the two kinds of beads, and prepare two kinds of appropriate samples. Again, the sample solution is mixed and DNA sequencing is performed. Using the tag sequence information described later, the measurement data for each type of gene and each reaction tank is separated to obtain necessary data.
2種類のビーズの分離の方法はビーズのサイズと磁性特性の両方を利用した。すなわち、メンブレンを取り外した後、得られたビーズ溶液を分離用チューブ(8)に分注し、遠心することで、分離フィルタ(9)の上部にサイズの大きいセファロースビーズ(第1のビーズ)が残り、下部に直径の小さいビーズが沈降する。沈降を補助するために磁石も用いた。
The separation method of the two types of beads utilized both the bead size and magnetic properties. That is, after removing the membrane, the obtained bead solution is dispensed into a separation tube (8) and centrifuged, so that a large sepharose bead (first bead) is formed on the upper part of the separation filter (9). The rest, beads with a small diameter settle at the bottom. Magnets were also used to assist in settling.
次に、2種類のビーズ上のサンプル調製過程と分子の反応による変化を説明する。
反応は、ビーズが分離されていない部分から分子の反応による変化が異なるので再度記載する。 Next, the sample preparation process on two kinds of beads and the change due to the reaction of molecules will be described.
The reaction is described again because the change due to the molecular reaction differs from the part where the beads are not separated.
反応は、ビーズが分離されていない部分から分子の反応による変化が異なるので再度記載する。 Next, the sample preparation process on two kinds of beads and the change due to the reaction of molecules will be described.
The reaction is described again because the change due to the molecular reaction differs from the part where the beads are not separated.
まず、第2のビーズ上の遺伝子発現解析用サンプルの調製について記す。図3および図4のstep1~step5に、このデバイスで可能なcDNAの合成後の核酸増幅(PCR)までのサンプル調製方法の例を示した。
First, preparation of a sample for gene expression analysis on the second bead will be described. Steps 1 to 5 in FIG. 3 and FIG. 4 show examples of sample preparation methods up to nucleic acid amplification (PCR) after cDNA synthesis possible with this device.
ビーズの分離はstep1のcDNA合成前のmRNAを捕捉した後で行ってもよいが、ここではstep1に示すようにcDNA合成後、酵素の熱失活を行った後に実施した。
The separation of the beads may be performed after capturing the mRNA before step 1 cDNA synthesis, but here, as shown in step 1, after the cDNA synthesis, the enzyme was thermally inactivated.
図3(step1)には、DNAプローブ(31)が固定された第2のビーズ(6)表面の拡大図を示している。ビーズ上に固定されたDNAプローブ(31(配列番号1))は、反応槽の位置を識別するための細胞認識用タグ配列(302)を含む。このDNAプローブ(31)の3’末端はポリT配列(301)を有しており、mRNAの3’末端のポリA配列とハイブリダイズすることによってmRNAを捕捉する。
FIG. 3 (step 1) shows an enlarged view of the surface of the second bead (6) on which the DNA probe (31) is fixed. The DNA probe (31 (SEQ ID NO: 1)) immobilized on the beads includes a cell recognition tag sequence (302) for identifying the position of the reaction vessel. The 3 'end of the DNA probe (31) has a poly T sequence (301), and captures the mRNA by hybridizing with the poly A sequence at the 3' end of the mRNA.
このmRNA捕捉用DNAプローブ(31(配列番号1))は、本実施例ではもう少し複雑な配列構成となっており、図3(step1)に示されているように、5’末端からPCR増幅用共通配列(303)(Forward方向(配列番号23))、細胞認識用タグ配列(302)および核酸捕捉配列(301)で構成されている。ここでは核酸捕捉配列としてポリT配列を用いた。ポリT配列の重合度として、mRNAのポリA配列とハイブリダイズして、mRNAをポリT配列を含む核酸プローブが固定されたビーズに捕捉しうる重合度であればよい。例えば、10~30塩基、10~20塩基、10~15塩基程度とすることができる。PCR増幅用共通配列をDNAプローブ(31)へ導入することで、後続のPCR増幅工程においてこの配列を共通プライマーとして利用することができる。また、細胞認識用タグ配列については、例えば5塩基のランダム配列を使用した場合、45=1024の位置または領域(例えば45=1024個の単一細胞)を認識することが可能となる。すなわち、1度に1024個の単一細胞からcDNAライブラリーを調製することができ、最終的に得られる次世代シーケンサの配列データにおいて、どの細胞由来であるかを認識することが可能となる。さらに、分子認識用タグ配列(例えば7塩基)をDNAプローブ(31)へ(例えば(301)と(302)の間)に導入してもよい。これにより、47=1.6x105分子を認識することができるため、次世代シーケンサで得られる増幅産物についてのDNA配列データから同じ細胞由来で同じ遺伝子の配列をもった増幅産物が、どの分子由来であるかを認識することが可能となる。これらのタグ配列については、例えばWO2014/141386に詳細が記載されている。
The DNA probe for capturing mRNA (31 (SEQ ID NO: 1)) has a slightly more complicated sequence structure in this example, and as shown in FIG. 3 (step 1), it is used for PCR amplification from the 5 ′ end. It consists of a common sequence (303) (Forward direction (SEQ ID NO: 23)), a tag sequence for cell recognition (302) and a nucleic acid capture sequence (301). Here, a poly-T sequence was used as the nucleic acid capture sequence. The degree of polymerization of the poly T sequence may be any degree of polymerization that can hybridize with the poly A sequence of the mRNA and capture the mRNA on the beads to which the nucleic acid probe containing the poly T sequence is immobilized. For example, it can be about 10 to 30 bases, 10 to 20 bases, 10 to 15 bases. By introducing the common sequence for PCR amplification into the DNA probe (31), this sequence can be used as a common primer in the subsequent PCR amplification step. As for the cell recognition tag sequence, for example, when a random sequence of 5 bases is used, 4 5 = 1024 positions or regions (for example, 4 5 = 1024 single cells) can be recognized. That is, a cDNA library can be prepared from 1024 single cells at a time, and it is possible to recognize which cell is derived from the sequence data of the next-generation sequencer finally obtained. Furthermore, a tag sequence for molecular recognition (for example, 7 bases) may be introduced into the DNA probe (31) (for example, between (301) and (302)). As a result, since 4 7 = 1.6 × 10 5 molecules can be recognized, the amplification product having the same gene sequence derived from the same cell from the DNA sequence data of the amplification product obtained by the next-generation sequencer It becomes possible to recognize whether it originates. Details of these tag sequences are described in, for example, WO2014 / 141386.
本実施例では、mRNAを解析するために捕捉用DNAプローブ(31)の一部にポリT配列を用いたが、microRNAやゲノム解析を行うために、核酸捕捉配列としてポリT配列の代わりにランダム配列や解析対象の核酸の一部に相補的な配列を用いてもよい。
In this example, a poly-T sequence was used as part of the capture DNA probe (31) to analyze mRNA. However, in order to perform microRNA or genome analysis, a random nucleic acid capture sequence was used instead of the poly-T sequence. A sequence or a sequence complementary to a part of the nucleic acid to be analyzed may be used.
次にビーズ上のDNAプローブ(31)により捕捉したmRNA(32)を鋳型にして1st cDNA鎖(33)を合成する。本工程では逆転写酵素および合成基質を含む溶液でパックされたビーズの空隙部分を満たし、50℃にゆっくり昇温して50分ほど相補鎖合成反応を行う。反応終了後、85℃で5分間保持して、逆転写酵素を熱失活後に、ビーズを分離する。
Next, 1st cDNA strand (33) is synthesized using mRNA (32) captured by DNA probe (31) on the bead as a template. In this step, the void portion of the beads packed with a solution containing reverse transcriptase and a synthetic substrate is filled, and the temperature is slowly raised to 50 ° C. to carry out a complementary strand synthesis reaction for about 50 minutes. After completion of the reaction, the mixture is kept at 85 ° C. for 5 minutes, and the reverse transcriptase is thermally inactivated, and then the beads are separated.
ビーズの分離は、メンブレン(7)を取り外し、図1の(c)に示すように、基板(1)ごとPBS(リン酸緩衝生理食塩水)バッファの入った5μmのポアのフィルタ付チューブの上側に導入し、攪拌することでビーズを基板から遊離させる。不要なチップをチューブから取り除き、遠心することで、溶液と共にサイズの大きなセファロースビーズを回収する。チューブの下側には直径1μmの磁性ビーズが回収される。
To separate the beads, the membrane (7) was removed, and as shown in FIG. 1 (c), the upper side of the 5 μm pore filter tube containing PBS (phosphate buffered saline) buffer together with the substrate (1). Then, the beads are released from the substrate by stirring. Unnecessary chips are removed from the tube and centrifuged to collect large sepharose beads along with the solution. Magnetic beads having a diameter of 1 μm are collected on the lower side of the tube.
ただし、フィルターを用いずに磁石を用いて磁性ビーズを回収してもよい。なお、この場合、何度か回収操作を行ってもよい。
However, the magnetic beads may be recovered using a magnet without using a filter. In this case, the collection operation may be performed several times.
回収後のセファロースビーズをチューブ中に再回収し、RNase酵素を加えmRNA(32)を分解除去する。アルカリ変性剤を含む液および洗浄液を加えて、ビーズを遠心によってチューブの底に沈殿させ、上澄みを除去することで、残存物および分解物を除去する。ここまでのプロセスで核酸抽出部分にパックされたビーズ上には、細胞捕捉孔に捕捉された個々の細胞の位置を反映して図5(step2)に示すようなcDNAライブラリーアレイが構築される。
The collected Sepharose beads are collected again in a tube, and RNase enzyme is added to decompose and remove mRNA (32). A solution containing an alkali denaturant and a washing solution are added, the beads are precipitated at the bottom of the tube by centrifugation, and the supernatant is removed to remove residues and degradation products. A cDNA library array as shown in FIG. 5 (step 2) is constructed on the beads packed in the nucleic acid extraction part by the process so far, reflecting the positions of individual cells captured in the cell capture holes. .
次にPCR増幅用共通配列(Reverse(配列番号2))(309)が付加された複数(最大数百種)のターゲット遺伝子特異的配列(311)を含むプライマー(34)を1st cDNA鎖(33)へアニールさせ(図3(step2))、相補鎖伸長反応により2nd cDNA鎖(35)を合成させる(図3(step3))。すなわちマルチプレックス条件で2nd cDNA鎖合成を行う。これにより、複数のターゲット遺伝子について、増幅用共通配列(Forward(配列番号23)/Reverse(配列番号2))を両端に持ち、細胞認識用タグ配列、分子認識用タグ配列、および遺伝子特異的配列がその中に含まれる2本鎖cDNAが合成される。また本実施例では、一例として、20種類(ATP5B,GAPDH,GUSB,HMBS,HPRT1,RPL4,RPLP1,RPS18,RPL13A,RPS20,ALDOA,B2M,EEF1G,SDHA,TBP,VIM,RPLP0,RPLP2,RPLP27,およびOAZ1)のターゲット遺伝子のポリAテールから109±8塩基上流部分の20±5塩基を遺伝子特異的配列として用いたが(配列番号3-22)、これは、後続のPCR増幅工程において、PCR産物サイズを約200塩基に統一するためである。PCR産物サイズを統一することで、煩雑なサイズフラクション精製の工程(電気泳動→ゲルの切り出し→PCR産物の抽出・精製)を除去することができ、一分子からの並列増幅(エマルジョンPCRなど)へ直接利用できる効果を持つ。
Next, a primer (34) containing a plurality (up to several hundreds) of target gene-specific sequences (311) to which a common sequence for PCR amplification (Reverse (SEQ ID NO: 2)) (309) is added is added to the first cDNA strand (33 ) (FIG. 3 (step 2)), and a 2nd cDNA strand (35) is synthesized by a complementary strand extension reaction (FIG. 3 (step 3)). That is, 2nd cDNA strand synthesis is performed under multiplex conditions. Thus, for a plurality of target genes, a common sequence for amplification (Forward (SEQ ID NO: 23) / Reverse (SEQ ID NO: 2)) is provided at both ends, a cell recognition tag sequence, a molecular recognition tag sequence, and a gene-specific sequence Is synthesized in a double-stranded cDNA. In this embodiment, as an example, 20 types (ATP5B, GAPDH, GUSB, HMBS, HPRT1, RPL4, RPLP1, RPS18, RPL13A, RPS20, ALDOA, B2M, EEF1G, SDHA, TBP, VIM, RPLP0, RPLP2, RPLP27, And 20 ± 5 bases of 109 ± 8 bases upstream from the poly A tail of the target gene of OAZ1) were used as gene-specific sequences (SEQ ID NO: 3-22). This is to unify the product size to about 200 bases. By unifying the PCR product size, complicated size fraction purification steps (electrophoresis-> gel excision-> PCR product extraction / purification) can be eliminated, and parallel amplification from a single molecule (emulsion PCR, etc.) Has an effect that can be used directly.
第2のDNAプローブ(ATP5B遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATCCCTAACCCAAAAAGCTTCATT(配列番号3)
第2のDNAプローブ(GAPDH遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATCACTGAATCTCCCCTCCTCACA(配列番号4)
第2のDNAプローブ(GUSB遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATCGTTTCTGGCCTGGGTTTTG(配列番号5)
第2のDNAプローブ(HMBS遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATGATGACTGCCTTGCCTCCTC(配列番号6)
第2のDNAプローブ(HPRT1遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATTAGTAGTGTTTCAGTAATGTTGACT(配列番号7)
第2のDNAプローブ(RPL4遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAAGAAGCCTGCTGCATAAAC(配列番号8)
第2のDNAプローブ(RPLP1遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAAGTGGAAGCAAAGAAAGAAGAATCC(配列番号9)
第2のDNAプローブ(RPS18遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATGTGTCCGAGGCCAGCACA(配列番号10)
第2のDNAプローブ(RPL13A遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATTCTAGAAGCAGAAATAGACTGGGAA(配列番号11)
第2のDNAプローブ(RPS20遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATGAGATTGTTAAGCAGATTACTTCCA(配列番号12)
第2のDNAプローブ(ALDOA遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATTTGCCCGCGCTCTTTCTTC(配列番号13)
第2のDNAプローブ(B2M遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATATTCATATTTACTTCTTATACATTTGA(配列番号14)
第2のDNAプローブ(EEF1G遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAAAGCCTTCAATCAGGGCAA(配列番号15)
第2のDNAプローブ(SDHA遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATCCAGGGAGCGTGGCACTT(配列番号16)
第2のDNAプローブ(TBP遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATCTCCAGTATTGCAGGACAGA(配列番号17)
第2のDNAプローブ(VIM遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAATCTTGTGCTAGAATACTT(配列番号18)
第2のDNAプローブ(RPLP0遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATTCGGACGAGGATATGGGATT(配列番号19)
第2のDNAプローブ(RPLP2遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATATGAGAAGAAGGAGGAGTCTG(配列番号20)
第2のDNAプローブ(RPLP27遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATGGGAGGCCAAGGTCAAGT(配列番号21)
第2のDNAプローブ(OAZ1遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAGAAGTTTCTTATTTGGAGTCT(配列番号22) Second DNA probe (ATP5B gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCCCTAACCCAAAAAGCTTCATT (SEQ ID NO: 3)
Second DNA probe (GAPDH gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCACTGAATCTCCCCTCCTCACA (SEQ ID NO: 4)
Second DNA probe (GUSB gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCGTTTCTGGCCTGGGTTTTG (SEQ ID NO: 5)
Second DNA probe (HMBS gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATGATGACTGCCTTGCCTCCTC (SEQ ID NO: 6)
Second DNA probe (HPRT1 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATTAGTAGTGTTTCAGTAATGTTGACT (SEQ ID NO: 7)
Second DNA probe (RPL4 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAAGAAGCCTGCTGCATAAAC (SEQ ID NO: 8)
Second DNA probe (RPLP1 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAAGTGGAAGCAAAGAAAGAAGAATCC (SEQ ID NO: 9)
Second DNA probe (RPS18 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATGTGTCCGAGGCCAGCACA (SEQ ID NO: 10)
Second DNA probe (RPL13A gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATTCTAGAAGCAGAAATAGACTGGGAA (SEQ ID NO: 11)
Second DNA probe (RPS20 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATGAGATTGTTAAGCAGATTACTTCCA (SEQ ID NO: 12)
Second DNA probe (ALDOA gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATTTGCCCGCGCTCTTTCTTC (SEQ ID NO: 13)
Second DNA probe (B2M gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATATTCATATTTACTTCTTATACATTTGA (SEQ ID NO: 14)
Second DNA probe (EEF1G gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAAAGCCTTCAATCAGGGCAA (SEQ ID NO: 15)
Second DNA probe (SDHA gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCCAGGGAGCGTGGCACTT (SEQ ID NO: 16)
Second DNA probe (TBP gene, 2nd cDNA strand primer for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCTCCAGTATTGCAGGACAGA (SEQ ID NO: 17)
Second DNA probe (VIM gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAATCTTGTGCTAGAATACTT (SEQ ID NO: 18)
Second DNA probe (RPLP0 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATTCGGACGAGGATATGGGATT (SEQ ID NO: 19)
Second DNA probe (RPLP2 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATATGAGAAGAAGGAGGAGTCTG (SEQ ID NO: 20)
Second DNA probe (RPLP27 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATGGGAGGCCAAGGTCAAGT (SEQ ID NO: 21)
Second DNA probe (OAZ1 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAGAAGTTTCTTATTTGGAGTCT (SEQ ID NO: 22)
CCTCTCTATGGGCAGTCGGTGATCCCTAACCCAAAAAGCTTCATT(配列番号3)
第2のDNAプローブ(GAPDH遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATCACTGAATCTCCCCTCCTCACA(配列番号4)
第2のDNAプローブ(GUSB遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATCGTTTCTGGCCTGGGTTTTG(配列番号5)
第2のDNAプローブ(HMBS遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATGATGACTGCCTTGCCTCCTC(配列番号6)
第2のDNAプローブ(HPRT1遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATTAGTAGTGTTTCAGTAATGTTGACT(配列番号7)
第2のDNAプローブ(RPL4遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAAGAAGCCTGCTGCATAAAC(配列番号8)
第2のDNAプローブ(RPLP1遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAAGTGGAAGCAAAGAAAGAAGAATCC(配列番号9)
第2のDNAプローブ(RPS18遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATGTGTCCGAGGCCAGCACA(配列番号10)
第2のDNAプローブ(RPL13A遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATTCTAGAAGCAGAAATAGACTGGGAA(配列番号11)
第2のDNAプローブ(RPS20遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATGAGATTGTTAAGCAGATTACTTCCA(配列番号12)
第2のDNAプローブ(ALDOA遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATTTGCCCGCGCTCTTTCTTC(配列番号13)
第2のDNAプローブ(B2M遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATATTCATATTTACTTCTTATACATTTGA(配列番号14)
第2のDNAプローブ(EEF1G遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAAAGCCTTCAATCAGGGCAA(配列番号15)
第2のDNAプローブ(SDHA遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATCCAGGGAGCGTGGCACTT(配列番号16)
第2のDNAプローブ(TBP遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATCTCCAGTATTGCAGGACAGA(配列番号17)
第2のDNAプローブ(VIM遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAATCTTGTGCTAGAATACTT(配列番号18)
第2のDNAプローブ(RPLP0遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATTCGGACGAGGATATGGGATT(配列番号19)
第2のDNAプローブ(RPLP2遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATATGAGAAGAAGGAGGAGTCTG(配列番号20)
第2のDNAプローブ(RPLP27遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATGGGAGGCCAAGGTCAAGT(配列番号21)
第2のDNAプローブ(OAZ1遺伝子、特異解析用2nd cDNA鎖合成用プライマー)
CCTCTCTATGGGCAGTCGGTGATAGAAGTTTCTTATTTGGAGTCT(配列番号22) Second DNA probe (ATP5B gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCCCTAACCCAAAAAGCTTCATT (SEQ ID NO: 3)
Second DNA probe (GAPDH gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCACTGAATCTCCCCTCCTCACA (SEQ ID NO: 4)
Second DNA probe (GUSB gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCGTTTCTGGCCTGGGTTTTG (SEQ ID NO: 5)
Second DNA probe (HMBS gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATGATGACTGCCTTGCCTCCTC (SEQ ID NO: 6)
Second DNA probe (HPRT1 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATTAGTAGTGTTTCAGTAATGTTGACT (SEQ ID NO: 7)
Second DNA probe (RPL4 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAAGAAGCCTGCTGCATAAAC (SEQ ID NO: 8)
Second DNA probe (RPLP1 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAAGTGGAAGCAAAGAAAGAAGAATCC (SEQ ID NO: 9)
Second DNA probe (RPS18 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATGTGTCCGAGGCCAGCACA (SEQ ID NO: 10)
Second DNA probe (RPL13A gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATTCTAGAAGCAGAAATAGACTGGGAA (SEQ ID NO: 11)
Second DNA probe (RPS20 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATGAGATTGTTAAGCAGATTACTTCCA (SEQ ID NO: 12)
Second DNA probe (ALDOA gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATTTGCCCGCGCTCTTTCTTC (SEQ ID NO: 13)
Second DNA probe (B2M gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATATTCATATTTACTTCTTATACATTTGA (SEQ ID NO: 14)
Second DNA probe (EEF1G gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAAAGCCTTCAATCAGGGCAA (SEQ ID NO: 15)
Second DNA probe (SDHA gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCCAGGGAGCGTGGCACTT (SEQ ID NO: 16)
Second DNA probe (TBP gene, 2nd cDNA strand primer for specific analysis)
CCTCTCTATGGGCAGTCGGTGATCTCCAGTATTGCAGGACAGA (SEQ ID NO: 17)
Second DNA probe (VIM gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAATCTTGTGCTAGAATACTT (SEQ ID NO: 18)
Second DNA probe (RPLP0 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATTCGGACGAGGATATGGGATT (SEQ ID NO: 19)
Second DNA probe (RPLP2 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATATGAGAAGAAGGAGGAGTCTG (SEQ ID NO: 20)
Second DNA probe (RPLP27 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATGGGAGGCCAAGGTCAAGT (SEQ ID NO: 21)
Second DNA probe (OAZ1 gene, primer for 2nd cDNA strand synthesis for specific analysis)
CCTCTCTATGGGCAGTCGGTGATAGAAGTTTCTTATTTGGAGTCT (SEQ ID NO: 22)
続いて、増幅用共通配列(Forward(配列番号23)/Reverse(配列番号2))に結合する増幅用プライマー(36および37)を用いてPCR増幅を行い、複数種の遺伝子由来のPCR産物(38)を調製する(図4(step4および5))。この工程において遺伝子間、ないし分子間で増幅バイアスが生じたとしても、次世代シーケンサデータ取得後に、分子認識用タグ配列を利用して増幅バイアスの補正を行うことができるため、高精度な定量データを得ることができる。
Subsequently, PCR amplification was performed using amplification primers (36 and 37) that bind to the amplification common sequence (Forward (SEQ ID NO: 23) / Reverse (SEQ ID NO: 2)), and PCR products derived from multiple types of genes ( 38) is prepared (FIG. 4 (steps 4 and 5)). Even if an amplification bias occurs between genes or molecules in this process, it is possible to correct the amplification bias using the molecular recognition tag sequence after acquiring next-generation sequencer data. Can be obtained.
次に第1のビーズのRNAase処理後の個別処理について記す。
反応過程を図5および6に示す。担体に固定されたDNAプローブ(50)は、5’末端方向からT7プロモーター配列(配列番号24)、PCR増幅用共通配列(Forward方向、配列番号23)、細胞認識用タグ配列、分子認識用タグ配列、およびポリT配列で構成される。T7プロモーター配列(配列番号24)をDNAプローブへ導入することで、後続のIVT(In Vitro Transcription)によるcRNA(63)増幅工程によるターゲット配列の増幅が可能となる。すなわち、T7プロモーター配列(配列番号24)はT7RNAポリメラーゼにより認識され、その下流配列から転写(cRNA(63)増幅)反応が開始される。同様にPCR増幅用共通配列を導入することで、後続のPCR増幅工程において共通プライマーとして利用することができる。また、細胞認識用タグ配列を(例えば5塩基)DNAプローブへ導入することによって、45=1024個の単一細胞または領域を認識することが可能となることは上記と同様である。さらに、分子認識用タグ配列(例えば15塩基)をDNAプローブへ導入することにより、415=1.1x109分子を認識することができるため、次世代シーケンサで得られる膨大な解読データが、どの分子由来であるかを認識することが可能となることも上記と同様である。すわなち、IVT/PCRなどの増幅工程で生じた遺伝子間の増幅バイアスを修正することができるため、始めに試料中に存在していたmRNA量を高い精度で定量することが可能となる。最も3’側に位置するポリT配列は、mRNAの3’側に付加されているポリAテールとハイブリダイズし、mRNAを捕捉するために利用される。 Next, individual processing after RNAase treatment of the first bead will be described.
The reaction process is shown in FIGS. The DNA probe (50) fixed to the carrier comprises a T7 promoter sequence (SEQ ID NO: 24) from the 5 ′ end direction, a common sequence for PCR amplification (Forward direction, SEQ ID NO: 23), a cell recognition tag sequence, and a molecule recognition tag. It is composed of an array and a poly-T array. By introducing the T7 promoter sequence (SEQ ID NO: 24) into the DNA probe, the target sequence can be amplified by the subsequent cRNA (63) amplification step by IVT (In Vitro Transcription). That is, the T7 promoter sequence (SEQ ID NO: 24) is recognized by T7 RNA polymerase, and transcription (cRNA (63) amplification) reaction is started from the downstream sequence. Similarly, by introducing a common sequence for PCR amplification, it can be used as a common primer in the subsequent PCR amplification step. Further, by introducing a cell recognition tag sequence (for example, 5 bases) into a DNA probe, 4 5 = 1024 single cells or regions can be recognized as described above. Furthermore, by introducing a molecular recognition tag sequence (for example, 15 bases) into a DNA probe, 4 15 = 1.1 × 10 9 molecules can be recognized. As described above, it is possible to recognize whether it is derived from a molecule. That is, since the amplification bias between genes generated in an amplification process such as IVT / PCR can be corrected, the amount of mRNA present in the sample can be quantified with high accuracy. The poly T sequence located at the most 3 ′ side hybridizes with the poly A tail added to the 3 ′ side of the mRNA and is used to capture the mRNA.
反応過程を図5および6に示す。担体に固定されたDNAプローブ(50)は、5’末端方向からT7プロモーター配列(配列番号24)、PCR増幅用共通配列(Forward方向、配列番号23)、細胞認識用タグ配列、分子認識用タグ配列、およびポリT配列で構成される。T7プロモーター配列(配列番号24)をDNAプローブへ導入することで、後続のIVT(In Vitro Transcription)によるcRNA(63)増幅工程によるターゲット配列の増幅が可能となる。すなわち、T7プロモーター配列(配列番号24)はT7RNAポリメラーゼにより認識され、その下流配列から転写(cRNA(63)増幅)反応が開始される。同様にPCR増幅用共通配列を導入することで、後続のPCR増幅工程において共通プライマーとして利用することができる。また、細胞認識用タグ配列を(例えば5塩基)DNAプローブへ導入することによって、45=1024個の単一細胞または領域を認識することが可能となることは上記と同様である。さらに、分子認識用タグ配列(例えば15塩基)をDNAプローブへ導入することにより、415=1.1x109分子を認識することができるため、次世代シーケンサで得られる膨大な解読データが、どの分子由来であるかを認識することが可能となることも上記と同様である。すわなち、IVT/PCRなどの増幅工程で生じた遺伝子間の増幅バイアスを修正することができるため、始めに試料中に存在していたmRNA量を高い精度で定量することが可能となる。最も3’側に位置するポリT配列は、mRNAの3’側に付加されているポリAテールとハイブリダイズし、mRNAを捕捉するために利用される。 Next, individual processing after RNAase treatment of the first bead will be described.
The reaction process is shown in FIGS. The DNA probe (50) fixed to the carrier comprises a T7 promoter sequence (SEQ ID NO: 24) from the 5 ′ end direction, a common sequence for PCR amplification (Forward direction, SEQ ID NO: 23), a cell recognition tag sequence, and a molecule recognition tag. It is composed of an array and a poly-T array. By introducing the T7 promoter sequence (SEQ ID NO: 24) into the DNA probe, the target sequence can be amplified by the subsequent cRNA (63) amplification step by IVT (In Vitro Transcription). That is, the T7 promoter sequence (SEQ ID NO: 24) is recognized by T7 RNA polymerase, and transcription (cRNA (63) amplification) reaction is started from the downstream sequence. Similarly, by introducing a common sequence for PCR amplification, it can be used as a common primer in the subsequent PCR amplification step. Further, by introducing a cell recognition tag sequence (for example, 5 bases) into a DNA probe, 4 5 = 1024 single cells or regions can be recognized as described above. Furthermore, by introducing a molecular recognition tag sequence (for example, 15 bases) into a DNA probe, 4 15 = 1.1 × 10 9 molecules can be recognized. As described above, it is possible to recognize whether it is derived from a molecule. That is, since the amplification bias between genes generated in an amplification process such as IVT / PCR can be corrected, the amount of mRNA present in the sample can be quantified with high accuracy. The poly T sequence located at the most 3 ′ side hybridizes with the poly A tail added to the 3 ′ side of the mRNA and is used to capture the mRNA.
次に、反応の各ステップを順に説明する。図5(step1)に示すようにmRNA(52)は上記と同様にmRNA3’末端のポリA配列(53)に相補的な配列である18塩基のポリT配列(51)によって捕捉する。次に1st cDNA鎖(54)を合成し、cDNAライブラリーを構築する(図5(step1))。次に解析対象の遺伝子に対応する複数(最大数百遺伝子)のターゲット遺伝子特異的配列プライマー(60)を1st cDNA鎖(54)へアニールさせ(図5(step2))、相補鎖伸長反応により2nd cDNA鎖(61)を合成させる(図5(step2))。すなわちマルチプレックス条件で2nd cDNA鎖合成を行う。これにより、複数のターゲット遺伝子について、増幅用共通配列(Forward(配列番号23)/Reverse(配列番号2))を両端に持ち、細胞認識用タグ配列、分子認識用タグ配列、および遺伝子特異的配列がその中に含まれる2本鎖cDNAが合成される。また本実施例では、一例として、20種類(ATP5B,GAPDH,GUSB,HMBS,HPRT1,RPL4,RPLP1,RPS18,RPL13A,RPS20,ALDOA,B2M,EEF1G, SDHA,TBP,VIM,RPLP0,RPLP2,RPLP27,およびOAZ1)のターゲット遺伝子のポリAテールから109±8塩基上流部分の20±5塩基を遺伝子特異的配列として用いたが(配列番号3-22)、これは、後続のIVTによる増幅工程において、増幅産物サイズを約200塩基に統一するためである。PCR産物サイズを統一することで、煩雑なサイズフラクション精製の工程(電気泳動→ゲルの切り出し→PCR産物の抽出・精製)を除去することができ、一分子からの並列増幅(エマルジョンPCRなど)へ直接利用できる効果がある。
Next, each step of the reaction will be explained in order. As shown in FIG. 5 (step 1), mRNA (52) is captured by an 18-base poly-T sequence (51) which is a sequence complementary to the poly-A sequence (53) at the 3 'end of mRNA as described above. Next, the first cDNA strand (54) is synthesized to construct a cDNA library (FIG. 5 (step 1)). Next, a plurality of (up to several hundred genes) target gene-specific sequence primers (60) corresponding to the gene to be analyzed are annealed to the first cDNA strand (54) (FIG. 5 (step 2)), and 2nd by complementary strand extension reaction. A cDNA strand (61) is synthesized (FIG. 5 (step 2)). That is, 2nd cDNA strand synthesis is performed under multiplex conditions. Thus, for a plurality of target genes, a common sequence for amplification (Forward (SEQ ID NO: 23) / Reverse (SEQ ID NO: 2)) is provided at both ends, a cell recognition tag sequence, a molecular recognition tag sequence, and a gene-specific sequence Is synthesized in a double-stranded cDNA. In this embodiment, as an example, 20 types (ATP5B, GAPDH, GUSB, HMBS, HPRT1, RPL4, RPLP1, RPS18, RPL13A, RPS20, ALDOA, B2M, EEF1G, SDHA, TBP, VIM, RPLP0, RPLP2, RPLP27, And 20 ± 5 bases of 109 ± 8 bases upstream from the poly A tail of the target gene of OAZ1) were used as gene-specific sequences (SEQ ID NO: 3-22). This is to unify the amplification product size to about 200 bases. By unifying the PCR product size, complicated size fraction purification steps (electrophoresis-> gel excision-> PCR product extraction / purification) can be eliminated, and parallel amplification from a single molecule (emulsion PCR, etc.) There is an effect that can be used directly.
続いて、T7RNAポリメラーゼを細孔中に導入し、cRNA(63)を合成する(図5(step4))。この過程によって、約1000コピー程度のcRNAが合成される。さらに、PCRのための2本鎖DNAを合成するために、増幅されたcRNAを鋳型として、PCR増幅用共通配列(Reverse(配列番号2))が付加された複数(最大数百種程度)のターゲット遺伝子特異的配列プライマー(64)をハイブリさせ(図6(step5))、cDNA(65)を合成する(図6(step6))。さらに、上記と同様に酵素を用いてcRNAを分解してから、Forward共通プライマ(配列番号23)を用いて2nd strandを合成することによってPCR用2本鎖DNA(66)が合成される(図6(step7))。この増幅産物は、長さがそろっており、そのまま、PCR、次世代シーケンサにかけることができる。この工程において遺伝子間、ないし分子間で増幅バイアスが生じたとしても、次世代シーケンサデータ取得後に、分子認識用タグ配列を利用して増幅バイアスの補正を行うことができるため、高精度な定量データを得る事ができることは上記と同様である。
Subsequently, T7 RNA polymerase is introduced into the pore to synthesize cRNA (63) (FIG. 5 (step 4)). Through this process, about 1000 copies of cRNA are synthesized. Furthermore, in order to synthesize double-stranded DNA for PCR, a plurality of (about several hundreds at the maximum) added with a common sequence for PCR amplification (Reverse (SEQ ID NO: 2)) using the amplified cRNA as a template A target gene-specific sequence primer (64) is hybridized (FIG. 6 (step 5)) to synthesize cDNA (65) (FIG. 6 (step 6)). Further, after cRNA is decomposed using an enzyme in the same manner as described above, double-stranded DNA for PCR (66) is synthesized by synthesizing 2nd strand using Forward common primer (SEQ ID NO: 23) (FIG. 6 (step 7)). This amplification product has the same length and can be directly applied to PCR and next-generation sequencers. Even if an amplification bias occurs between genes or molecules in this process, it is possible to correct the amplification bias using the molecular recognition tag sequence after acquiring next-generation sequencer data. It is the same as the above that can be obtained.
共通反応部分について詳細に記す。
100個/μL程度の数濃度に調整された細胞溶液(リン酸バッファpH7.5)を各チップに分注し、負圧を印加することで細胞を捕捉し、その後、細胞破砕溶液を流す。次にcDNA合成のために0.1%Tween20を含む10mM Trisバッファー(pH=8.0)585μLと10mM dNTP 40μLと5xRTバッファー(SuperScript III,Invitrogen社)225μLと0.1M DTT 40μLとRNaseOUT(Invitrogen社)40μLとSuperscript III(逆転写酵素,Invitrogen社)40μLを混和し、シートを満たしている溶液をアウトレットから排出し、直ちに逆転写酵素を含む上記溶液をインレットから注入した。その後、溶液と反応槽を50℃に上げて、50分間保つことによって逆転写反応を完了させ、mRNAと相補的配列を持つ1st cDNAを合成した(図3および5(step1))。 The common reaction part is described in detail.
A cell solution (phosphate buffer pH 7.5) adjusted to a concentration of about 100 cells / μL is dispensed to each chip, and the cells are captured by applying a negative pressure, and then the cell disruption solution is allowed to flow. Next, for cDNA synthesis, 585 μL of 10 mM Tris buffer (pH = 8.0) containing 0.1% Tween 20 and 40 μL of 10 mM dNTP and 5 × RT buffer (SuperScript III, Invitrogen) 225 μL, 0.1 M DTT 40 μL and RNaseOUT (Invitrogen) 40 μL and Superscript III (reverse transcriptase, Invitrogen) 40 μL were mixed, the solution filling the sheet was discharged from the outlet, and the solution containing reverse transcriptase was immediately injected from the inlet. Thereafter, the solution and the reaction vessel were raised to 50 ° C. and kept for 50 minutes to complete the reverse transcription reaction, and 1st cDNA having a sequence complementary to mRNA was synthesized (FIGS. 3 and 5 (step 1)).
100個/μL程度の数濃度に調整された細胞溶液(リン酸バッファpH7.5)を各チップに分注し、負圧を印加することで細胞を捕捉し、その後、細胞破砕溶液を流す。次にcDNA合成のために0.1%Tween20を含む10mM Trisバッファー(pH=8.0)585μLと10mM dNTP 40μLと5xRTバッファー(SuperScript III,Invitrogen社)225μLと0.1M DTT 40μLとRNaseOUT(Invitrogen社)40μLとSuperscript III(逆転写酵素,Invitrogen社)40μLを混和し、シートを満たしている溶液をアウトレットから排出し、直ちに逆転写酵素を含む上記溶液をインレットから注入した。その後、溶液と反応槽を50℃に上げて、50分間保つことによって逆転写反応を完了させ、mRNAと相補的配列を持つ1st cDNAを合成した(図3および5(step1))。 The common reaction part is described in detail.
A cell solution (phosphate buffer pH 7.5) adjusted to a concentration of about 100 cells / μL is dispensed to each chip, and the cells are captured by applying a negative pressure, and then the cell disruption solution is allowed to flow. Next, for cDNA synthesis, 585 μL of 10 mM Tris buffer (pH = 8.0) containing 0.1% Tween 20 and 40 μL of 10 mM dNTP and 5 × RT buffer (SuperScript III, Invitrogen) 225 μL, 0.1 M DTT 40 μL and RNaseOUT (Invitrogen) 40 μL and Superscript III (reverse transcriptase, Invitrogen) 40 μL were mixed, the solution filling the sheet was discharged from the outlet, and the solution containing reverse transcriptase was immediately injected from the inlet. Thereafter, the solution and the reaction vessel were raised to 50 ° C. and kept for 50 minutes to complete the reverse transcription reaction, and 1st cDNA having a sequence complementary to mRNA was synthesized (FIGS. 3 and 5 (step 1)).
次に第2のビーズ用のサンプル調製の詳細について記す。
1st cDNA鎖を合成した後、85℃にて1.5分保ち逆転写酵素を失活させ、4℃に冷却後、RNaseおよび0.1%Tween20を含む10mM Trisバッファー(pH=8.0)10mLをチューブに分注し反応後、ビーズを沈降させ、上澄みを捨てる。この工程で、RNAを分解する。同様に、同量のアルカリ変性剤を分注し、上澄み除去で洗浄した。続いて、滅菌水690μLと10xEx Taqバッファー(TaKaRa Bio社)100μLと2.5mM dNTP Mix 100μLと各10μMのPCR増幅用共通配列(Reverse,配列番号2)が付加された20種の遺伝子特異的配列プライマーMix(配列番号3-22)100μLとEx Taq Hot start version(TaKaRa Bio社)10μLを混和して試薬混合液を調製したのちに、ビーズが混和したチューブを遠心でビーズを沈降させ、上澄みを除去後、調製した試薬をチューブの分注し、ビーズと混和させる。その後、98℃10秒と43℃60秒、68℃3分のサイクルを10回繰り返した後10℃に冷却して反応を完了した。 Next, details of sample preparation for the second bead will be described.
After synthesizing the 1st cDNA strand, the reverse transcriptase was inactivated by maintaining at 85 ° C. for 1.5 minutes, cooled to 4 ° C., and then 10 mM Tris buffer (pH = 8.0) containing RNase and 0.1% Tween 20 After 10 mL is dispensed into a tube and reacted, the beads are allowed to settle, and the supernatant is discarded. In this step, RNA is degraded. Similarly, the same amount of alkali denaturant was dispensed and washed by removing the supernatant. Subsequently, 690 μL of sterilized water, 100 μL of 10 × Ex Taq buffer (TaKaRa Bio), 100 μL of 2.5 mM dNTP Mix, and 10 μM of each common sequence for PCR amplification (Reverse, SEQ ID NO: 2) were added to 20 gene-specific sequences. After preparing a reagent mixture by mixing 100 μL of primer Mix (SEQ ID NO: 3-22) and 10 μL of Ex Taq Hot start version (TaKaRa Bio), precipitate the beads by centrifuging the beads-mixed tube, and removing the supernatant. After removal, dispense the prepared reagent into the tube and mix with the beads. Thereafter, a cycle of 98 ° C. for 10 seconds, 43 ° C. for 60 seconds and 68 ° C. for 3 minutes was repeated 10 times, and then cooled to 10 ° C. to complete the reaction.
1st cDNA鎖を合成した後、85℃にて1.5分保ち逆転写酵素を失活させ、4℃に冷却後、RNaseおよび0.1%Tween20を含む10mM Trisバッファー(pH=8.0)10mLをチューブに分注し反応後、ビーズを沈降させ、上澄みを捨てる。この工程で、RNAを分解する。同様に、同量のアルカリ変性剤を分注し、上澄み除去で洗浄した。続いて、滅菌水690μLと10xEx Taqバッファー(TaKaRa Bio社)100μLと2.5mM dNTP Mix 100μLと各10μMのPCR増幅用共通配列(Reverse,配列番号2)が付加された20種の遺伝子特異的配列プライマーMix(配列番号3-22)100μLとEx Taq Hot start version(TaKaRa Bio社)10μLを混和して試薬混合液を調製したのちに、ビーズが混和したチューブを遠心でビーズを沈降させ、上澄みを除去後、調製した試薬をチューブの分注し、ビーズと混和させる。その後、98℃10秒と43℃60秒、68℃3分のサイクルを10回繰り返した後10℃に冷却して反応を完了した。 Next, details of sample preparation for the second bead will be described.
After synthesizing the 1st cDNA strand, the reverse transcriptase was inactivated by maintaining at 85 ° C. for 1.5 minutes, cooled to 4 ° C., and then 10 mM Tris buffer (pH = 8.0) containing RNase and 0.1% Tween 20 After 10 mL is dispensed into a tube and reacted, the beads are allowed to settle, and the supernatant is discarded. In this step, RNA is degraded. Similarly, the same amount of alkali denaturant was dispensed and washed by removing the supernatant. Subsequently, 690 μL of sterilized water, 100 μL of 10 × Ex Taq buffer (TaKaRa Bio), 100 μL of 2.5 mM dNTP Mix, and 10 μM of each common sequence for PCR amplification (Reverse, SEQ ID NO: 2) were added to 20 gene-specific sequences. After preparing a reagent mixture by mixing 100 μL of primer Mix (SEQ ID NO: 3-22) and 10 μL of Ex Taq Hot start version (TaKaRa Bio), precipitate the beads by centrifuging the beads-mixed tube, and removing the supernatant. After removal, dispense the prepared reagent into the tube and mix with the beads. Thereafter, a cycle of 98 ° C. for 10 seconds, 43 ° C. for 60 seconds and 68 ° C. for 3 minutes was repeated 10 times, and then cooled to 10 ° C. to complete the reaction.
続いて、滅菌水495μLと10x High Fidelity PCRバッファー(Invitrogen)100μLと2.5 mM dNTP mix 100μLと50mM MgSO440μLと10μMのPCR増幅用共通配列プライマー(Forward、配列番号23)100μLと10μMのPCR増幅用共通配列プライマー(Reverse、配列番号2)100μLとPlatinum Taq Polymerase High Fidelity(Invitrogen社)15μLを混和し、チューブに分注した。その後、溶液とシートを30秒間94℃に保ち、94℃30秒間→55℃30秒間→68℃30秒間の3段階工程を40サイクル繰り返し、最後に68℃3分間保った後、4℃に冷却してPCR増幅工程を行った(図3(step4))。この後、この溶液中に含まれるフリーのPCR増幅用共通配列プライマー(Forward(配列番号23)/Reverse(配列番号2))や酵素などの残留試薬を除去する目的で、PCR PurificationKit(QIAGEN社)などを用いて精製する。この溶液をPCR増幅またはブリッジ増幅適用後、各社(Life Technologies(Solid/Ion Torrent)、Illumina(High Seq)、Roche 454)の次世代シーケンサに適用して解析する。
Subsequently, 495 μL of sterilized water, 100 μL of 10 × High Fidelity PCR buffer (Invitrogen), 100 μL of 2.5 mM dNTP mix, 100 μL of 50 mM MgSO 4, 40 μL of 10 μM PCR amplification common sequence primer (Forward, SEQ ID NO: 23) 100 μL and 10 μM PCR 100 μL of amplification common sequence primer (Reverse, SEQ ID NO: 2) and 15 μL of Platinum Taq Polymerase High Fidelity (Invitrogen) were mixed and dispensed into tubes. After that, the solution and the sheet are kept at 94 ° C. for 30 seconds, and the three-stage process of 94 ° C. for 30 seconds → 55 ° C. for 30 seconds → 68 ° C. for 30 seconds is repeated 40 cycles, finally kept at 68 ° C. for 3 minutes and then cooled to 4 ° C. Then, a PCR amplification step was performed (FIG. 3 (step 4)). Thereafter, PCR Purification Kit (QIAGEN) was used to remove residual reagents such as free PCR-amplified common sequence primers (Forward (SEQ ID NO: 23) / Reverse (SEQ ID NO: 2)) and enzymes contained in this solution. Purify using etc. After applying the PCR amplification or the bridge amplification, this solution is applied to a next-generation sequencer of each company (Life Technologies (Solid / Ion Torrent), Illumina (High Seq), Roche 454) and analyzed.
最後に第1のビーズのサンプル調製方法の詳細を示す。
1st cDNA鎖を合成した後、85℃にて1.5分保ち逆転写酵素を失活させ、4℃に冷却後、RNaseおよび0.1% Tween20を含む10mM Trisバッファー(pH=8.0)10mLをチューブに分注して、RNAを分解した。同様に、同量のアルカリ変性剤を分注して、ビーズを沈降させた後、上澄みを除去して残存物および分解物を洗浄した。続いて、滅菌水690μLと10x Ex Taqバッファー(TaKaRa Bio社)100μLと2.5mM dNTP Mix100μLと各10μMのPCR増幅用共通配列(Reverse,配列番号2)が付加された20種の遺伝子特異的配列プライマーMix(配列番号3-22)100μLとEx Taq Hot start version(TaKaRa Bio社)10μLを混和し、チューブに注入した。その後、溶液とシートを95℃3分間→44℃2分間→72℃6分間の反応を行い、1st cDNA鎖を鋳型としてプライマーの遺伝子特異的配列をアニールさせた後(図5(step2))、相補鎖伸長反応を行い、2nd cDNA鎖を合成させた。 Finally, details of the first bead sample preparation method will be described.
After synthesizing the first cDNA strand, the reverse transcriptase was inactivated by keeping at 85 ° C. for 1.5 minutes, cooled to 4 ° C., and then 10 mM Tris buffer containing RNase and 0.1% Tween 20 (pH = 8.0). 10 mL was dispensed into a tube to degrade the RNA. Similarly, the same amount of alkali denaturant was dispensed to settle the beads, and then the supernatant was removed to wash the residue and degradation products. Subsequently, 690 μL of sterilized water, 100 μL of 10 × Ex Taq buffer (TaKaRa Bio), 100 μL of 2.5 mM dNTP Mix, and 10 μM of each common sequence for PCR amplification (Reverse, SEQ ID NO: 2) were added to 20 gene-specific sequences. 100 μL of primer Mix (SEQ ID NO: 3-22) and 10 μL of Ex Taq Hot start version (TaKaRa Bio) were mixed and injected into a tube. Thereafter, the solution and the sheet are reacted at 95 ° C. for 3 minutes → 44 ° C. for 2 minutes → 72 ° C. for 6 minutes to anneal the primer-specific sequence using the 1st cDNA strand as a template (FIG. 5 (step 2)). A complementary strand extension reaction was performed to synthesize a 2nd cDNA strand.
1st cDNA鎖を合成した後、85℃にて1.5分保ち逆転写酵素を失活させ、4℃に冷却後、RNaseおよび0.1% Tween20を含む10mM Trisバッファー(pH=8.0)10mLをチューブに分注して、RNAを分解した。同様に、同量のアルカリ変性剤を分注して、ビーズを沈降させた後、上澄みを除去して残存物および分解物を洗浄した。続いて、滅菌水690μLと10x Ex Taqバッファー(TaKaRa Bio社)100μLと2.5mM dNTP Mix100μLと各10μMのPCR増幅用共通配列(Reverse,配列番号2)が付加された20種の遺伝子特異的配列プライマーMix(配列番号3-22)100μLとEx Taq Hot start version(TaKaRa Bio社)10μLを混和し、チューブに注入した。その後、溶液とシートを95℃3分間→44℃2分間→72℃6分間の反応を行い、1st cDNA鎖を鋳型としてプライマーの遺伝子特異的配列をアニールさせた後(図5(step2))、相補鎖伸長反応を行い、2nd cDNA鎖を合成させた。 Finally, details of the first bead sample preparation method will be described.
After synthesizing the first cDNA strand, the reverse transcriptase was inactivated by keeping at 85 ° C. for 1.5 minutes, cooled to 4 ° C., and then 10 mM Tris buffer containing RNase and 0.1% Tween 20 (pH = 8.0). 10 mL was dispensed into a tube to degrade the RNA. Similarly, the same amount of alkali denaturant was dispensed to settle the beads, and then the supernatant was removed to wash the residue and degradation products. Subsequently, 690 μL of sterilized water, 100 μL of 10 × Ex Taq buffer (TaKaRa Bio), 100 μL of 2.5 mM dNTP Mix, and 10 μM of each common sequence for PCR amplification (Reverse, SEQ ID NO: 2) were added to 20 gene-specific sequences. 100 μL of primer Mix (SEQ ID NO: 3-22) and 10 μL of Ex Taq Hot start version (TaKaRa Bio) were mixed and injected into a tube. Thereafter, the solution and the sheet are reacted at 95 ° C. for 3 minutes → 44 ° C. for 2 minutes → 72 ° C. for 6 minutes to anneal the primer-specific sequence using the 1st cDNA strand as a template (FIG. 5 (step 2)). A complementary strand extension reaction was performed to synthesize a 2nd cDNA strand.
続いて、0.1%Tween20を含む10mM Trisバッファー(pH=8.0)10mLをチューブに分注して、ビーズを沈降させた後、上澄みを除去して、残存物および分解物を洗浄した。さらに、滅菌水340μLとAmpliScribe 10X Reactionバッファー(EPICENTRE社)100μLと100mM dATP 90μLと100mM dCTP 90μLと100mM dGTP 90μLと100mM dUTP 90μLと100mM DTT、およびAmpliScribe T7 Enzyme Solution(EPICENTRE社)100μLを混和し試薬を調製した。次に、上澄みを除去後、チューブに、調製した試薬を分注して、温度を37℃に上げて、180分間保つことによって転写反応を完了させ、cRNA増幅を行った。これにより、20種のターゲット遺伝子の目的部分が増幅されるが、いずれもcRNA増幅産物サイズは200±8塩基とほぼ均一である。ビーズ溶液の上澄みにcRNA増幅産物が含まれるのでこの溶液を回収する。この溶液中に含まれる酵素などの残留試薬を除去する目的で、PCR PurificationKit(QIAGEN社)を用いて精製し、50μLの滅菌水に懸濁する。この溶液に、10mM dNTP mix10μLと50ng/μLのランダムプライマー30μLを混和させ、94℃10秒加熱後0.2℃/秒で温度を30℃まで低下させ、30℃で5分間加熱し、さらに4℃まで低下させる。その後、5xRTバッファー(Invitrogen社)20μLと、0.1M DTT5μLと、RNase OUT5μLと、SuperScript III5μLを混和させ、30℃で5分間加熱し、0.2℃/秒で温度を40℃まで上昇させる。この溶液中に含まれる酵素などの残留試薬を除去する目的で、PCR PurificationKit(QIAGEN社)を用いて精製し、PCR増幅に適用後、各社(Life Technologies、Illumina、Roche)の次世代シーケンサ(NGS)に適用して解析する。
Subsequently, 10 mL of 10 mM Tris buffer (pH = 8.0) containing 0.1% Tween 20 was dispensed into the tube to settle the beads, and then the supernatant was removed to wash the residue and degradation product. . Furthermore, 340 μL of sterilized water and AmpliScribe 10X Reaction buffer (EPICENTRE) 100 μL, 100 mM dATP 90 μL, 100 mM dCTP 90 μL, 100 mM dGTP 90 μL, 100 mM dUTP 90 μL, 100 mM DTT, and AmplTrE Prepared. Next, after removing the supernatant, the prepared reagent was dispensed into a tube, the temperature was raised to 37 ° C. and maintained for 180 minutes to complete the transcription reaction, and cRNA amplification was performed. As a result, the target portions of the 20 target genes are amplified, but the cRNA amplification product size is almost uniform at 200 ± 8 bases. Since the cRNA amplification product is contained in the supernatant of the bead solution, this solution is recovered. For the purpose of removing residual reagents such as enzymes contained in this solution, it is purified using PCR Purification Kit (QIAGEN) and suspended in 50 μL of sterile water. To this solution, 10 μL of 10 mM dNTP mix and 30 μL of 50 ng / μL random primer were mixed, heated at 94 ° C. for 10 seconds, lowered to 30 ° C. at 0.2 ° C./second, heated at 30 ° C. for 5 minutes, and further 4 Reduce to ° C. Thereafter, 20 μL of 5 × RT buffer (Invitrogen), 5 μL of 0.1 M DTT, 5 μL of RNase OUT, and 5 μL of SuperScript III are mixed, heated at 30 ° C. for 5 minutes, and the temperature is increased to 40 ° C. at 0.2 ° C./second. For the purpose of removing residual reagents such as enzymes contained in this solution, it was purified using PCR Purification Kit (QIAGEN), applied to PCR amplification, and then the next generation sequencer (NGS) of each company (Life Technologies, Illumina, Roche). ) To analyze.
配列解析の結果、第1のビーズ上に捕捉したmRNAからと第2のビーズ上に捕捉したmRNAからの共通配列以外の配列を含むデータが多数得られる。得られたデータを細胞認識用タグ配列ごと(サンプルを識別するためのその他のタグ配列が存在する場合はそれらの配列も含めて配列ごと)にデータを並べなおすことによって、細胞認識用タグが同じ配列データは(前記追加タグが含まれる場合はそのタグの配列でも区別して)、同じ細胞中の遺伝子発現を示すデータとしてデータを解析することができる。すなわち、同じ細胞に対応するmRNAについては、同じ細胞認識用タグ配列を有しているため、異なるビーズ種からサンプル調製されても、同じ細胞由来のmRNAであることを識別することができる(図2)。
As a result of sequence analysis, a large number of data including sequences other than the common sequence from the mRNA captured on the first bead and the mRNA captured on the second bead are obtained. The cell recognition tag is the same by rearranging the obtained data for each cell recognition tag sequence (or for each sequence including those sequences if other tag sequences for identifying the sample are present). The sequence data can be analyzed as data indicating gene expression in the same cell (if the additional tag is included, also by the sequence of the tag). That is, since the mRNA corresponding to the same cell has the same cell recognition tag sequence, it can be identified that the mRNA is derived from the same cell even if samples are prepared from different bead types (Fig. 2).
本実施例では、同時に処理する細胞数を増やすために、実施例1に記載したようなチップを複数組み合わせたフローセルデバイスについて記す。図7(a)に上面図を示し、図7(b)に断面図を示した。フローセルデバイス701には複数の反応室(702)を備えており、その反応室(702)には1つのチップ(715)を配置している。このチップ上には、細胞捕捉孔が複数設けられており、その直下には異なる細胞認識用タグ配列を有するDNAプローブが固定された2種類のビーズが充填されている。このビーズ上で、配列解析用のmRNAと遺伝子発現解析用のmRNAを同時に捕捉し、cDNAを合成する。核酸捕捉孔と細胞認識用タグ配列は一対一で対応させて配置している。
In this example, a flow cell device in which a plurality of chips as described in Example 1 are combined to increase the number of cells to be processed simultaneously will be described. FIG. 7A shows a top view and FIG. 7B shows a cross-sectional view. The flow cell device 701 includes a plurality of reaction chambers (702), and one chip (715) is disposed in the reaction chamber (702). A plurality of cell trapping holes are provided on the chip, and two types of beads to which DNA probes having different cell recognition tag sequences are fixed are filled immediately below. On this bead, mRNA for sequence analysis and mRNA for gene expression analysis are simultaneously captured to synthesize cDNA. Nucleic acid capture holes and cell recognition tag sequences are arranged in a one-to-one correspondence.
また、フローセルデバイス上の共通流路(705)中を細胞(706)は共通インレット(707)から共通アウトレット(708)に向かって流す。このときチップ715上の細胞捕捉孔の直下に充填された2種類のビーズ(第1のセファロースビーズと第2の磁性ビーズ)領域で細胞中の核酸を孔ごとに個別に捕捉する。共通吸引アウトレット(710)を通して印加される負圧によって、共通流路(705)中の溶液は、共通吸引流路(709)に向かって細胞捕捉孔およびビーズが充填された反応領域をとおって流れる。この流れによって、細胞中のmRNAはビーズ上に捕捉され、さらに、このビーズ上でcDNA合成反応が起きる。
Also, the cells (706) flow from the common inlet (707) toward the common outlet (708) in the common flow path (705) on the flow cell device. At this time, the nucleic acid in the cell is individually captured for each hole in the two types of beads (first Sepharose beads and second magnetic beads) filled immediately below the cell capture holes on the chip 715. Due to the negative pressure applied through the common suction outlet (710), the solution in the common flow path (705) flows through the reaction area filled with cell trapping holes and beads toward the common suction flow path (709). . By this flow, mRNA in the cell is captured on the beads, and further, a cDNA synthesis reaction occurs on the beads.
cDNA合成以降の反応は、チップをフローセルデバイスから取り出し、2種類のビーズをチューブ(容器)中に回収する。チップを取り出すために、フローセルデバイスはデバイス分離境界(720)を境に上下(図7(b)において上下)の部品が組み合わされており、この境界を境に上下の部品のネジ止めをはずして、分離することで、チップを回収する。チップを取り出した後は、実施例1と同様に2種類のビーズをチューブ中で分離し、それぞれ、異なる反応プロセスを実行することで、2種類のサンプルを調製し、次世代シーケンサにて配列解析を実施する。
For reaction after cDNA synthesis, the chip is taken out from the flow cell device, and two kinds of beads are collected in a tube (container). In order to take out the chip, the flow cell device has a combination of upper and lower parts (upper and lower in FIG. 7B) with the device separation boundary (720) as a boundary, and unscrew the upper and lower parts with this boundary as a boundary. The chip is recovered by separating. After taking out the chip, two kinds of beads are separated in a tube as in Example 1, and two kinds of samples are prepared by executing different reaction processes. To implement.
データの解析方法も実施例1と同様であるが、チップ毎に異なる配列をPCRプライマーに挿入することによって、配列解析のデータからチップ毎、さらには細胞捕捉孔ごとの遺伝子解析データを取得することが可能となる。
The data analysis method is the same as in Example 1. However, by inserting a different sequence for each chip into the PCR primer, gene analysis data for each chip and further for each cell trapping hole is obtained from the sequence analysis data. Is possible.
本実施例では、単一細胞中の遺伝子発現解析と質量分析によるタンパク質解析の同時解析の例を示す。
This example shows an example of simultaneous analysis of gene expression analysis in a single cell and protein analysis by mass spectrometry.
図8に本実施例でのサンプル調製用チップの構成図を示す。基板(801)はシリコン基板で作製されており(ガラスや窒化シリコン、アルミや銅などの他の無機材料を用いても良い)、この上に細胞捕捉用の貫通孔(803)を2次元格子状に配列している。実施例1と同様にビーズ保持フィルタとしてのメンブレン(807)側に負圧を印加することで、細胞(804)が細胞捕捉孔(803)に捕捉される。捕捉された細胞の直下に反応槽(802)を設け、この領域で解析対象となる複数種類の生体分子を捕捉することは実施例1と同様である。本実施例では、第1の計測対象生体分子であるタンパク質を特異的に捕捉する抗体(805)を基板(801)の反応槽内壁に直接固定する。さらに、第2の計測対象生体分子であるmRNAを捕捉するためのDNAプローブが固定されたビーズ(806)を反応槽に充填する。
FIG. 8 shows a configuration diagram of the sample preparation chip in this example. The substrate (801) is made of a silicon substrate (other inorganic materials such as glass, silicon nitride, aluminum and copper may be used), and a through-hole (803) for capturing cells is formed on the two-dimensional lattice. It is arranged in a shape. As in Example 1, by applying a negative pressure to the membrane (807) side as a bead holding filter, the cells (804) are trapped in the cell trapping holes (803). Similar to the first embodiment, a reaction tank (802) is provided immediately below the captured cells, and a plurality of types of biomolecules to be analyzed are captured in this region. In this embodiment, the antibody (805) that specifically captures the protein that is the first measurement target biomolecule is directly fixed to the reaction vessel inner wall of the substrate (801). Furthermore, the reaction vessel is filled with beads (806) to which a DNA probe for capturing mRNA that is the second measurement target biomolecule is immobilized.
第2の生体分子であるmRNAを捕捉するための第2のビーズは、実施例1と同様に第2のビーズを用いている。ビーズ上の固定プローブも実施例1の図3に対応する記載と同じである。ビーズは、磁性ビーズを用いて、細胞認識用タグ配列を付加したポリTプローブを固定している。遺伝子発現解析以外の解析をするために、ゲノム中の特定の領域やマイクロRNAを解析するために、これらの配列に特異的配列をポリT配列の代わりに用いてもよい。また、すべての核酸配列解析を行うために6ベース程度のランダムプローブをポリT配列の代わりに用いても良い。
As in the case of Example 1, the second bead is used as the second bead for capturing mRNA that is the second biomolecule. The fixed probe on the bead is the same as the description corresponding to FIG. The beads are fixed with a poly-T probe to which a cell recognition tag sequence is added using magnetic beads. In order to analyze other than gene expression analysis, in order to analyze specific regions or microRNAs in the genome, specific sequences for these sequences may be used instead of poly-T sequences. Further, a random probe of about 6 bases may be used in place of the poly-T sequence in order to perform all nucleic acid sequence analysis.
一方、第1の生体分子(タンパク質等)は、反応槽(802)内の基板表面に固定された抗体によって捕捉される。
On the other hand, the first biomolecule (protein or the like) is captured by the antibody immobilized on the substrate surface in the reaction vessel (802).
実施例1と同様に、細胞懸濁駅を基板(801)上に滴下後に、ビーズ保持用の多孔質メンブレン(807)側に負圧を印加することで、細胞捕捉孔を貫通する溶液流が生じ、細胞(804)が細胞捕捉孔(803)に捕捉される。
As in Example 1, after dropping the cell suspension station on the substrate (801), a negative pressure is applied to the side of the bead-holding porous membrane (807), so that the solution flow penetrating the cell trapping hole is generated. As a result, the cells (804) are trapped in the cell trapping holes (803).
捕捉後、適切な塩濃度(0.1~1M程度)の洗浄液をチップ表面に滴下して、負圧を印加することで、反応槽(802)に洗浄液を流し、計測対象となる生体分子以外の分子を洗い流す。その後、メンブレン(807)を取り除いて、ビーズと基板を分離する(図8の(b)と(c))。ビーズはチューブ(808)に回収して、実施例1の第2のビーズと同様にサンプル処理を行い、次世代シーケンサ(NGS)にて遺伝子配列解析を実施する。細胞認識用タグ配列が反応槽ごとに異なるため、細胞毎に分離して遺伝子発現解析を実行可能である。
After capture, a cleaning solution with an appropriate salt concentration (about 0.1 to 1M) is dropped onto the chip surface, and negative pressure is applied to cause the cleaning solution to flow into the reaction tank (802). Wash away the molecules. Thereafter, the membrane (807) is removed, and the beads and the substrate are separated (FIGS. 8B and 8C). The beads are collected in a tube (808), sample processing is performed in the same manner as the second bead in Example 1, and gene sequence analysis is performed with a next-generation sequencer (NGS). Since the cell recognition tag sequence is different for each reaction tank, gene expression analysis can be performed separately for each cell.
一方、基板(801)上の抗体によって捕捉した第1の生体分子は、反応槽ごとに個別にレーザによってイオン化を行い、質量分析装置にて分析を行う。すなわち、タンパク質が捕捉された基板(801)は位置情報を保持した質量分析(MALDI-TOF-MS解析)を行う。なお、ここでは、反応槽の内壁には抗体を固定してタンパク質を捕捉したが、計測対象となる分子によって固定する分子を変更しても良いことはいうまでもない。計測対象分子の選択性は低下するが、表面を疎水的にしたり、親水的にするなど、計測対象にあった表面処理を行うだけでも良い。
On the other hand, the first biomolecule captured by the antibody on the substrate (801) is individually ionized by laser for each reaction tank and analyzed by a mass spectrometer. That is, the substrate (801) on which the protein is captured is subjected to mass spectrometry (MALDI-TOF-MS analysis) retaining position information. Here, the antibody is immobilized on the inner wall of the reaction tank to capture the protein, but it goes without saying that the molecule to be immobilized may be changed depending on the molecule to be measured. Although the selectivity of the molecule to be measured is lowered, it is also possible to simply perform a surface treatment suitable for the object to be measured, such as making the surface hydrophobic or hydrophilic.
この中には、内壁にペプチドを固定することや、糖鎖オリゴマーを固定すること、ポリエチレングリコールやリン脂質分子やその類似分子を固定することなども含む。
This includes immobilizing peptides on the inner wall, immobilizing sugar chain oligomers, immobilizing polyethylene glycol, phospholipid molecules, and similar molecules.
本実施例のサンプル処理フローは図9にまとめた。
次に単一細胞レベルでのMALDI-TOF-MS解析の具体的な方法について記す。計測対象分子が高分子であるため、マトリックス剤として5mg/mLのシナピン酸エタノール溶液を用いた。基板(801)をメンブレン(807)が密着していた面を上にして設置し、シナピン酸溶液を滴下する。マトリックス剤滴下済みのチップに反応槽個別的に窒素レーザ(343nm)照射するとともに、TOF-MS装置のサンプル吸引口をチップに近づけて、質量分析を行う。レーザ励起位置ごとに異なる質量分析を行う(マスイメージング)装置も市販されているのでこのような装置を用いても良い。 The sample processing flow of this example is summarized in FIG.
Next, a specific method of MALDI-TOF-MS analysis at the single cell level will be described. Since the measurement target molecule is a polymer, a 5 mg / mL sinapinic acid ethanol solution was used as a matrix agent. The substrate (801) is placed with the surface where the membrane (807) is in close contact, and the sinapinic acid solution is dropped. The chip with the matrix agent dripped is individually irradiated with a nitrogen laser (343 nm) in the reaction vessel, and the sample suction port of the TOF-MS apparatus is brought close to the chip to perform mass spectrometry. Since an apparatus (mass imaging) that performs different mass spectrometry for each laser excitation position is also commercially available, such an apparatus may be used.
次に単一細胞レベルでのMALDI-TOF-MS解析の具体的な方法について記す。計測対象分子が高分子であるため、マトリックス剤として5mg/mLのシナピン酸エタノール溶液を用いた。基板(801)をメンブレン(807)が密着していた面を上にして設置し、シナピン酸溶液を滴下する。マトリックス剤滴下済みのチップに反応槽個別的に窒素レーザ(343nm)照射するとともに、TOF-MS装置のサンプル吸引口をチップに近づけて、質量分析を行う。レーザ励起位置ごとに異なる質量分析を行う(マスイメージング)装置も市販されているのでこのような装置を用いても良い。 The sample processing flow of this example is summarized in FIG.
Next, a specific method of MALDI-TOF-MS analysis at the single cell level will be described. Since the measurement target molecule is a polymer, a 5 mg / mL sinapinic acid ethanol solution was used as a matrix agent. The substrate (801) is placed with the surface where the membrane (807) is in close contact, and the sinapinic acid solution is dropped. The chip with the matrix agent dripped is individually irradiated with a nitrogen laser (343 nm) in the reaction vessel, and the sample suction port of the TOF-MS apparatus is brought close to the chip to perform mass spectrometry. Since an apparatus (mass imaging) that performs different mass spectrometry for each laser excitation position is also commercially available, such an apparatus may be used.
得られたチップ上の位置ごとの質量分析データと細胞認識用タグを利用して、同じ位置からの遺伝子発現データを対応付けることで、同じ細胞からのタンパク質とmRNAの2種類の生体分子の解析を並行して実行することができる。
Using the obtained mass spectrometry data for each position on the chip and the cell recognition tag, the gene expression data from the same position is correlated to analyze two types of biomolecules, protein and mRNA from the same cell. Can be executed in parallel.
本実施例では、本発明のデバイスの一実施形態について説明する。単一細胞からの2種類以上の生体分子の解析において、一方の生体分子が他方より大幅に微量である場合、微量な生体分子を捕捉するための固体担体とは異なる固体担体にその微量な生体分子が捕捉されてしまうことが問題となる。この問題を緩和するために、固体担体(本実施例ではビーズ)の充填形態を変更することが有効である。
In this example, an embodiment of the device of the present invention will be described. In the analysis of two or more kinds of biomolecules from a single cell, when one biomolecule is much smaller than the other, the trace amount of living body is different from the solid support for capturing the trace amount of biomolecule. The problem is that molecules are trapped. In order to alleviate this problem, it is effective to change the packing form of the solid support (beads in this embodiment).
図10に、本実施例に対応するチップ上の反応槽へのビーズ充填形態の図を示す。本実施例では微量のmRNAを捕捉する第1のビーズ(5)が反応槽(2)の中で、貫通孔(3)に近い方に充填されており、それほど微量でないmRNAを捕捉する第2のビーズ(6)は反応槽(2)中の貫通孔から離れた位置に充填するようにした。これによって、第1のビーズに、第1の生体分子が優先的に捕捉され、微量なmRNAを効率的に捕捉することが可能となる。
FIG. 10 shows a diagram of a form of filling beads into the reaction vessel on the chip corresponding to this example. In this example, the first beads (5) for capturing a trace amount of mRNA are packed in the reaction tank (2) closer to the through hole (3), and the second beads for capturing a very small amount of mRNA. The beads (6) were filled at positions apart from the through holes in the reaction vessel (2). Thereby, the first biomolecule is preferentially captured by the first bead, and a trace amount of mRNA can be efficiently captured.
本実施例では、第1のビーズの直径は1μmのポリスチレンビーズ上に(ストレプトアビジンとビオチンを介して)DNAプローブを固定したビーズを用いている(固定したDNAプローブの配列は実施例1の場合と同じである)。そのため、ビーズの大きさによる分離ができないため、第2のビーズを磁石1001によってチューブの底に集め、上澄みと沈殿物に分離する。このとき、沈殿物の方に第2のビーズが回収されるため、この溶液を再懸濁することで、第2のビーズ溶液を得るとともに、上澄みの方は磁石による第2のビーズの沈降を再度実施して、分離することによって、上澄み中の第1のビーズの純度を順次上げていく。沈殿した第2のビーズ溶液は混合し、ビーズを磁石を使って沈殿することで、溶液のボリュームをコントロールする。この工程を繰り返すことで、第1と第2のビーズの分離を実施する。この工程以降の工程は実施例1と全く同様である。
In this example, beads in which a DNA probe is immobilized on polystyrene beads having a diameter of 1 μm (through streptavidin and biotin) are used (the sequence of the immobilized DNA probe is the case of Example 1). Is the same). Therefore, since the separation according to the size of the beads cannot be performed, the second beads are collected at the bottom of the tube by the magnet 1001 and separated into a supernatant and a precipitate. At this time, since the second bead is recovered toward the precipitate, by resuspending this solution, a second bead solution is obtained, and the supernatant is allowed to settle the second bead with a magnet. By carrying out again and separating, the purity of the first beads in the supernatant is gradually increased. The precipitated second bead solution is mixed and the volume of the solution is controlled by precipitating the beads using a magnet. By repeating this process, the first and second beads are separated. The steps after this step are the same as those in the first embodiment.
上記実施例では、同時に2種類の生体分子を捕捉する実施例のみを記載してきたが、磁性の有無と大きさの異なるビーズを用いて3種類の生体分子を単一の細胞から採取し、分離することも可能である。すなわち、第1のビーズはセファロースビーズ(直径が34μm)として、配列解析のためのmRNAを捕捉し、第2のビーズは磁性ビーズ(直径1μm)として、遺伝子発現解析のためのmRNAを捕捉し、第3のビーズは直径1μmのポリスチレンビーズ(非磁性で大きさが小さい)として、遺伝子発現解析のためのマイクロRNAを捕捉する(ビーズにはマイクロRNA捕捉用の特異的プローブを固定する)。分離方法は、例えば実施例1と同様の方法を使用することができる。
In the above embodiment, only an example of capturing two types of biomolecules at the same time has been described. However, three types of biomolecules are collected from a single cell using beads having different presence and absence of magnetism and size, and separated. It is also possible to do. That is, the first bead captures mRNA for sequence analysis as sepharose beads (diameter 34 μm), the second bead captures mRNA for gene expression analysis as magnetic beads (diameter 1 μm), The third bead is a polystyrene bead having a diameter of 1 μm (non-magnetic and small in size) and captures microRNA for gene expression analysis (a specific probe for microRNA capture is immobilized on the bead). As the separation method, for example, the same method as in Example 1 can be used.
本実施例では、基板上の細胞捕捉孔に細胞を捕捉するのではなく、オイル中の液滴に細胞を閉じ込めることによって、同一細胞からの2種類以上の生体分子の解析を行う方法の例を示す。
In this embodiment, an example of a method for analyzing two or more types of biomolecules from the same cell by confining the cell in a droplet in oil, instead of capturing the cell in the cell trapping hole on the substrate. Show.
チップにおいて液滴に細胞と固体担体としてのビーズを閉じ込め、ビーズ上に細胞由来の2種類以上の生体分子を捕捉するためのデバイスの構造図を図11に示す。チップ(1101)はガラスや樹脂等で成型されており、図11の(a)が上面図、(b)が断面図である。流路(1102)の断面のサイズは縦横ともに数μm~数百μmが適当である(この流路サイズが液滴サイズをおおよそ決定する。)が、ここでは縦30μm、横60μmとした。この流路(1102)にミネラルオイル(オイルでもよい)を適当な流速(数μm/秒~数cm/秒)で矢印(1103)の方向に流す。同時に細胞溶解液(本実施例では1%SDSと500mMのNaCl、10mMのEDTAを含む100mMTris:HCl pH7.5バッファを用いた)に第1のビーズ(実施例と同じセファロースビーズ)を懸濁させて、矢印(1104)の方向に、所望の液滴間隔が得られる速度で流路1102の方に向かって導入する。さらに、第2のビーズを懸濁した細胞溶解液を第1のビーズと同じ速度で矢印1105の方向に流す。同時に、細胞を懸濁したリン酸緩衝生理食塩水を前記ビーズ懸濁液と同じ速度で矢印1106の方向に導入する。これによって、細胞溶解液を含む液滴に細胞と第1および第2のビーズがそれぞれ1個含まれる状態の液滴(1107)を生成することができる。得られた液滴(1107)は解析に必要な数だけ生成し、細胞認識用タグ配列は液滴ごとに異なるとともに、同じ液滴の中では同じ配列になるようにする。あるいは、細胞認識用タグ配列は、液滴ごとに異なるように、同じ液滴の中では同じ順序の配列を使用する。液滴へのこのようなタグ配列の配置は、異なる細胞認識用タグ配列を有するビーズの導入順序を制御することによって実現する。
FIG. 11 shows a structural diagram of a device for trapping cells and beads as a solid carrier in a droplet in a chip and capturing two or more types of biomolecules derived from cells on the beads. The chip (1101) is formed of glass, resin, or the like, and FIG. 11 (a) is a top view and FIG. 11 (b) is a cross-sectional view. The size of the cross section of the flow path (1102) is suitably several μm to several hundred μm in both vertical and horizontal directions (this flow path size roughly determines the droplet size), but here the length is 30 μm and the horizontal is 60 μm. Mineral oil (or oil) is allowed to flow through the flow path (1102) in the direction of the arrow (1103) at an appropriate flow rate (several μm / second to several cm / second). At the same time, the first beads (the same Sepharose beads as in the example) are suspended in a cell lysate (in this example, 100 mM Tris: HCl, pH 7.5 buffer containing 1% SDS, 500 mM NaCl, and 10 mM EDTA). Thus, it is introduced toward the flow path 1102 in the direction of the arrow (1104) at a speed at which a desired droplet interval can be obtained. Further, the cell lysate in which the second beads are suspended is caused to flow in the direction of arrow 1105 at the same speed as the first beads. At the same time, phosphate buffered saline with suspended cells is introduced in the direction of arrow 1106 at the same rate as the bead suspension. As a result, it is possible to generate a droplet (1107) in a state where each of the cell and the first and second beads is included in the droplet containing the cell lysate. The obtained droplets (1107) are generated in the number necessary for the analysis, and the cell recognition tag array is different for each droplet, and is the same array in the same droplet. Alternatively, the cell recognition tag sequence uses the same sequence in the same drop so that it differs from drop to drop. Such placement of the tag sequence in the droplet is realized by controlling the order of introduction of beads having different cell recognition tag sequences.
得られた多数の液滴を数分から数十分程度インキュベートしてmRNAのビーズ上への捕捉を確実に行ったあと、エマルジョンを壊して水溶液とオイルを分離するために塩または界面活性剤をエマルジョンに添加する。回収されたビーズ溶液は、実施例1と同様に2種類のビーズごとに分離し、その後の反応工程を実施する。これも実施例1と同じである。
Incubate many of the resulting droplets for several minutes to tens of minutes to ensure that the mRNA is captured on the beads, and then emulsify the salt or surfactant to break up the emulsion and separate the aqueous solution from the oil. Add to. The recovered bead solution is separated into two types of beads in the same manner as in Example 1, and the subsequent reaction step is performed. This is also the same as in the first embodiment.
細胞ごとの2種類のmRNAの配列は、遺伝子発現解析において細胞認識用タグ配列の配列またはその順序によって対応付ける。
The sequences of the two types of mRNA for each cell are matched by the sequence of the cell recognition tag sequence or its order in gene expression analysis.
1 基板
2 反応槽
3 細胞捕捉孔
4 細胞
5 第1の固体担体(ビーズ)
6 第2の固体担体(ビーズ)
7 メンブレン
8 分離用チューブ
9 分離フィルタ
31 DNAプローブ
32 mRNA
33 1st cDNA鎖
34 プライマー
35 2nd cDNA鎖
36および37 増幅用プライマー
38 PCR産物
301 ポリT配列
302 細胞認識用タグ配列
303 PCR増幅用共通配列(Forward)
309 PCR増幅用共通配列(Reverse)
311 ターゲット遺伝子特異的配列
50 DNAプローブ
51 ポリT配列
52 mRNA
53 ポリA配列
54 1st cDNA鎖
60 ターゲット遺伝子特異的配列プライマー
61 2nd cDNA鎖
63 cRNA
64 ターゲット遺伝子特異的配列プライマー
65 cDNA
66 PCR用2本鎖DNA
701 フローセルデバイス
702 反応室
705 共通流路
706 細胞
707 共通インレット
708 共通アウトレット
709 共通吸引流路
710 共通吸引アウトレット
715 チップ
720 デバイス分離境界
801 基板
802 反応槽
803 細胞捕捉孔
804 細胞
805 抗体
806 ビーズ
807 メンブレン
808 チューブ
1001 磁石
1101 チップ
1102 流路
1103 ミネラルオイルが流れる方向
1104 第1のビーズの懸濁液を導入する方向
1105 第2のビーズの懸濁液を導入する方向
1106 細胞懸濁液を導入する方向
1107 液滴 DESCRIPTION OFSYMBOLS 1 Substrate 2 Reaction tank 3 Cell capture hole 4 Cell 5 First solid support (bead)
6 Second solid support (beads)
7Membrane 8 Separation tube 9 Separation filter 31 DNA probe 32 mRNA
331st cDNA strand 34 Primer 35 2nd cDNA strand 36 and 37 Primer for amplification 38 PCR product 301 Poly T sequence 302 Tag sequence for cell recognition 303 Common sequence for PCR amplification (Forward)
309 Common sequence for PCR amplification (Reverse)
311 Target genespecific sequence 50 DNA probe 51 Poly T sequence 52 mRNA
53 Poly Asequence 54 1st cDNA strand 60 Target gene specific sequence primer 61 2nd cDNA strand 63 cRNA
64 Target genespecific sequence primer 65 cDNA
66 Double-stranded DNA for PCR
701Flow cell device 702 Reaction chamber 705 Common channel 706 Cell 707 Common inlet 708 Common outlet 709 Common suction channel 710 Common suction outlet 715 Chip 720 Device separation boundary 801 Substrate 802 Reaction tank 803 Cell capture hole 804 Cell 805 Antibody 806 Bead 807 Membrane 808 Tube 1001 Magnet 1101 Chip 1102 Flow path 1103 Direction in which mineral oil flows 1104 Direction in which the first bead suspension is introduced 1105 Direction in which the second bead suspension is introduced 1106 Direction in which the cell suspension is introduced 1107 droplet
2 反応槽
3 細胞捕捉孔
4 細胞
5 第1の固体担体(ビーズ)
6 第2の固体担体(ビーズ)
7 メンブレン
8 分離用チューブ
9 分離フィルタ
31 DNAプローブ
32 mRNA
33 1st cDNA鎖
34 プライマー
35 2nd cDNA鎖
36および37 増幅用プライマー
38 PCR産物
301 ポリT配列
302 細胞認識用タグ配列
303 PCR増幅用共通配列(Forward)
309 PCR増幅用共通配列(Reverse)
311 ターゲット遺伝子特異的配列
50 DNAプローブ
51 ポリT配列
52 mRNA
53 ポリA配列
54 1st cDNA鎖
60 ターゲット遺伝子特異的配列プライマー
61 2nd cDNA鎖
63 cRNA
64 ターゲット遺伝子特異的配列プライマー
65 cDNA
66 PCR用2本鎖DNA
701 フローセルデバイス
702 反応室
705 共通流路
706 細胞
707 共通インレット
708 共通アウトレット
709 共通吸引流路
710 共通吸引アウトレット
715 チップ
720 デバイス分離境界
801 基板
802 反応槽
803 細胞捕捉孔
804 細胞
805 抗体
806 ビーズ
807 メンブレン
808 チューブ
1001 磁石
1101 チップ
1102 流路
1103 ミネラルオイルが流れる方向
1104 第1のビーズの懸濁液を導入する方向
1105 第2のビーズの懸濁液を導入する方向
1106 細胞懸濁液を導入する方向
1107 液滴 DESCRIPTION OF
6 Second solid support (beads)
7
33
309 Common sequence for PCR amplification (Reverse)
311 Target gene
53 Poly A
64 Target gene
66 Double-stranded DNA for PCR
701
Claims (10)
- 細胞を分離する手段と、
前記分離手段の近傍または前記分離手段内に配置された反応場と
を備えた単一細胞解析デバイスであって、
前記反応場は、捕捉された細胞から抽出される第1の生体分子を捕捉する第1の担体と、第1の生体分子とは異なる第2の生体分子を捕捉する第2の担体とが存在する領域を有し、
第1の担体および第2の担体の一方または両方は、捕捉された細胞の識別用タグ配列を備え、
第1の担体および第2の担体は、互いに分離し得る異なる物理的特性を有している
ことを特徴とする単一細胞解析デバイス。 Means for separating cells;
A single cell analysis device comprising a reaction field disposed in the vicinity of or within the separation means,
The reaction field includes a first carrier that captures a first biomolecule extracted from the captured cells, and a second carrier that captures a second biomolecule different from the first biomolecule. Have an area to
One or both of the first carrier and the second carrier comprise a tag sequence for identifying captured cells,
The single cell analysis device, wherein the first carrier and the second carrier have different physical properties that can be separated from each other. - 前記分離手段および前記反応場が、平面状に配置した複数の細胞捕捉用の孔を設けた基板と、前記孔の直下に配置された反応槽である、請求項1に記載の単一細胞解析デバイス。 2. The single cell analysis according to claim 1, wherein the separation means and the reaction field are a substrate provided with a plurality of cell-capturing holes arranged in a plane and a reaction tank arranged immediately below the holes. device.
- 前記分離手段および前記反応場が、非極性溶媒が流れる流路と、前記非極性溶媒中に形成された、単一細胞を含む液滴である、請求項1に記載の単一細胞解析デバイス。 The single cell analysis device according to claim 1, wherein the separation means and the reaction field are a flow path through which a nonpolar solvent flows and a droplet including a single cell formed in the nonpolar solvent.
- 前記反応場が3種以上の生体分子をそれぞれ捕捉するための担体を含む、請求項1に記載の単一細胞解析デバイス。 The single cell analysis device according to claim 1, wherein the reaction field includes a carrier for capturing three or more kinds of biomolecules.
- 第1の担体および第2の担体は、大きさ、重量、比重、磁性および形状からなる群より選択される少なくとも1つの物理的特性が異なる、請求項1に記載の単一細胞解析デバイス。 The single cell analysis device according to claim 1, wherein the first carrier and the second carrier differ in at least one physical property selected from the group consisting of size, weight, specific gravity, magnetism, and shape.
- 第1の担体および第2の担体の少なくとも一方が磁性ビーズである、請求項1に記載の単一細胞解析デバイス。 The single cell analysis device according to claim 1, wherein at least one of the first carrier and the second carrier is a magnetic bead.
- 第1の生体分子および第2の生体分子がいずれもmRNAである、請求項1に記載の単一細胞解析デバイス。 The single-cell analysis device according to claim 1, wherein both the first biomolecule and the second biomolecule are mRNA.
- 第1の生体分子および第2の生体分子の一方がmRNAであり、他方がタンパク質である、請求項1に記載の単一細胞解析デバイス。 The single-cell analysis device according to claim 1, wherein one of the first biomolecule and the second biomolecule is mRNA and the other is a protein.
- 請求項1~8のいずれか1項に記載の単一細胞解析デバイスにおいて、分離手段により細胞を捕捉し、捕捉された細胞から抽出された第1の生体分子および第2の生体分子を反応場においてそれぞれ第1の担体および第2の担体に捕捉し、第1の担体および第2の担体を物理的特性の違いに基づいて分離することにより第1の生体分子および第2の生体分子を個別にサンプル処理することを含む、単一細胞解析方法。 The single cell analysis device according to any one of claims 1 to 8, wherein the cell is captured by the separating means, and the first biomolecule and the second biomolecule extracted from the captured cell are reacted with each other. In the first carrier and the second carrier, respectively, and the first carrier and the second carrier are separated by separating the first carrier and the second carrier based on the difference in physical properties. A single cell analysis method comprising processing a sample.
- 細胞識別用タグ配列を利用して、処理されたサンプルがどの細胞または位置に由来するかを解析することを含む、請求項9に記載の単一細胞解析方法。 The single-cell analysis method according to claim 9, comprising analyzing which cell or position the processed sample is derived from using a cell identification tag sequence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/001512 WO2018134907A1 (en) | 2017-01-18 | 2017-01-18 | Device and method for extracting multiple biomolecules from single cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/001512 WO2018134907A1 (en) | 2017-01-18 | 2017-01-18 | Device and method for extracting multiple biomolecules from single cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018134907A1 true WO2018134907A1 (en) | 2018-07-26 |
Family
ID=62908023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001512 WO2018134907A1 (en) | 2017-01-18 | 2017-01-18 | Device and method for extracting multiple biomolecules from single cell |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018134907A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021166715A1 (en) * | 2020-02-17 | 2021-08-26 | 株式会社Jvcケンウッド | Method for analyzing biological sample |
JPWO2021181467A1 (en) * | 2020-03-09 | 2021-09-16 | ||
JPWO2022009642A1 (en) * | 2020-07-06 | 2022-01-13 | ||
WO2023243152A1 (en) * | 2022-06-16 | 2023-12-21 | 株式会社日立製作所 | Container for single cell analysis and single cell analysis method using same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000342258A (en) * | 1999-06-09 | 2000-12-12 | Hitachi Ltd | DNA sample preparation method and DNA sample preparation device |
JP2009284834A (en) * | 2008-05-29 | 2009-12-10 | Hitachi Ltd | Large-scale parallel nucleic acid analysis method |
WO2014020657A1 (en) * | 2012-07-30 | 2014-02-06 | 株式会社日立製作所 | Tag-sequence-attached two-dimensional cdna library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same |
WO2014141386A1 (en) * | 2013-03-12 | 2014-09-18 | 株式会社日立製作所 | Two-dimensional cell array device and apparatus for gene quantification and sequence analysis |
US20150376609A1 (en) * | 2014-06-26 | 2015-12-31 | 10X Genomics, Inc. | Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations |
WO2016038670A1 (en) * | 2014-09-09 | 2016-03-17 | 株式会社日立製作所 | Cell analysis system and cell analysis method using same |
WO2016162997A1 (en) * | 2015-04-09 | 2016-10-13 | 株式会社日立製作所 | Gene analysis system |
-
2017
- 2017-01-18 WO PCT/JP2017/001512 patent/WO2018134907A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000342258A (en) * | 1999-06-09 | 2000-12-12 | Hitachi Ltd | DNA sample preparation method and DNA sample preparation device |
JP2009284834A (en) * | 2008-05-29 | 2009-12-10 | Hitachi Ltd | Large-scale parallel nucleic acid analysis method |
WO2014020657A1 (en) * | 2012-07-30 | 2014-02-06 | 株式会社日立製作所 | Tag-sequence-attached two-dimensional cdna library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same |
WO2014141386A1 (en) * | 2013-03-12 | 2014-09-18 | 株式会社日立製作所 | Two-dimensional cell array device and apparatus for gene quantification and sequence analysis |
US20150376609A1 (en) * | 2014-06-26 | 2015-12-31 | 10X Genomics, Inc. | Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations |
WO2016038670A1 (en) * | 2014-09-09 | 2016-03-17 | 株式会社日立製作所 | Cell analysis system and cell analysis method using same |
WO2016162997A1 (en) * | 2015-04-09 | 2016-10-13 | 株式会社日立製作所 | Gene analysis system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021166715A1 (en) * | 2020-02-17 | 2021-08-26 | 株式会社Jvcケンウッド | Method for analyzing biological sample |
JP2021128128A (en) * | 2020-02-17 | 2021-09-02 | 株式会社Jvcケンウッド | Biological sample analysis method |
JPWO2021181467A1 (en) * | 2020-03-09 | 2021-09-16 | ||
JP7312313B2 (en) | 2020-03-09 | 2023-07-20 | 株式会社日立ハイテク | Particle filling method and particle filling apparatus |
JPWO2022009642A1 (en) * | 2020-07-06 | 2022-01-13 | ||
WO2023243152A1 (en) * | 2022-06-16 | 2023-12-21 | 株式会社日立製作所 | Container for single cell analysis and single cell analysis method using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8802367B2 (en) | Methods for quantitative cDNA analysis in single-cell | |
Matuła et al. | Single‐cell analysis using droplet microfluidics | |
JP6395925B2 (en) | Genetic analysis system | |
US20160312276A1 (en) | Methods and compositions for whole transcriptome amplification | |
CN105358712B (en) | Analyte enrichment methods and compositions | |
WO2018134907A1 (en) | Device and method for extracting multiple biomolecules from single cell | |
CN113026111A (en) | Kit for constructing human single cell TCR sequencing library and application thereof | |
US11446662B2 (en) | System for capturing single cell-derived biomolecules | |
WO2023028582A1 (en) | Controlled cell-cell interaction assay | |
JP7049103B2 (en) | Comprehensive 3'end gene expression analysis method for single cells | |
WO2019129133A1 (en) | Method for obtaining single-cell mrna sequence | |
JP2017510278A (en) | Improved concentration method | |
JP2019024453A (en) | Rna concentration quantitative method, rna concentration quantitative device, and rna concentration quantitative apparatus | |
JP5519304B2 (en) | Method for uniformly amplifying nucleic acid and highly sensitive detection method | |
US11299727B2 (en) | System for analyzing single cell | |
EP4347870A1 (en) | Methods and systems for determining cell-cell interaction | |
KR20220164163A (en) | Preparation of aptamer pool using magnetic collection for proteomic profile or protein quantification and automated equipment thereof | |
KR20220163640A (en) | Preparation of Proteome Binding Aptamer Pool using Magnetic Collection for Quantitatively Analyzing Proteome and Automated Equipment thereof | |
WO2025215975A1 (en) | Method for preparing ngs library enabling simultaneous analysis of t cell receptor (tcr) or b cell receptor (bcr) repertoire and gene expression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892913 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892913 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |