[go: up one dir, main page]

WO2018135633A1 - 細胞培養装置及び細胞培養方法 - Google Patents

細胞培養装置及び細胞培養方法 Download PDF

Info

Publication number
WO2018135633A1
WO2018135633A1 PCT/JP2018/001631 JP2018001631W WO2018135633A1 WO 2018135633 A1 WO2018135633 A1 WO 2018135633A1 JP 2018001631 W JP2018001631 W JP 2018001631W WO 2018135633 A1 WO2018135633 A1 WO 2018135633A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
additive
cell
cells
mixture
Prior art date
Application number
PCT/JP2018/001631
Other languages
English (en)
French (fr)
Inventor
英俊 高山
俊 後藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP22165428.8A priority Critical patent/EP4039792A1/en
Priority to JP2018562460A priority patent/JP6968104B2/ja
Priority to EP18741731.6A priority patent/EP3556842A4/en
Priority to KR1020197020556A priority patent/KR102318710B1/ko
Priority to CN201880006408.6A priority patent/CN110168067A/zh
Publication of WO2018135633A1 publication Critical patent/WO2018135633A1/ja
Priority to US16/503,473 priority patent/US11180726B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/44Multiple separable units; Modules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/14Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • C12M37/02Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the disclosed technology relates to a cell culture apparatus and a cell culture method.
  • the following techniques are known as techniques related to a cell culture apparatus that performs processing related to cell culture.
  • JP-A-2015-100309 discloses an automatic culture system having an automatic culture apparatus for automatically culturing cells, a cell management unit for managing information on the state of the cultured cells, and an automatic culture apparatus.
  • a cell management system is described that includes a storage unit that stores the state of cultured cells, and an external computer that is installed at the place of the orderer.
  • International Publication No. 2013/187359 includes a cylindrical culture tank, a support column that stands upright from the center of the inner surface of the bottom of the culture tank, and an upper part that is fixed to a mounting portion that is rotatably attached to the upper part of the support column. And a stirring blade that rotates about the rotation center.
  • JP-T-2016-529897 describes an automated method for culturing stem cells using a robotic liquid processing system including a translatable bed and a movable multichannel pipette.
  • pluripotent stem cells such as embryonic stem cells (Embryonic Stem cell; ES cells), induced pluripotent stem cells (induced PS cells) are used for regenerative medicine or drug discovery support, they are pluripotent It is necessary to induce differentiation to produce desired cells from stem cells.
  • As a technique for inducing differentiation there is a technique for giving chemical or physical stimulation to pluripotent stem cells.
  • differentiated cells are generated from one of three germ layers called ectoderm, mesoderm, and endoderm. Following this, when obtaining differentiated cells from pluripotent stem cells, differentiation induction into germ layers is performed as the first step.
  • the disclosed technique has been made in view of the above points, and aims to enable a series of treatments required for inducing differentiation of pluripotent stem cells to be continuously performed in a closed system.
  • the cell culture device includes a cell supply unit that supplies cells, a medium supply unit that supplies culture media, an additive supply unit that supplies additives for inducing differentiation of undifferentiated cells, and a processing target
  • An agitation unit for agitating an object, a separation unit for separating components contained in the processing object, and a culture vessel for culturing cells, and the cell supply unit, the agitation unit, the separation unit, and the culture vessel A first flow path that forms a circulation route passing through, a second flow path that connects the culture medium supply section and the first flow path, the additive supply section, and the first flow path.
  • a control unit that controls liquid feeding through the first channel, the second channel, and the third channel.
  • the separation unit includes a first filter membrane that separates the undifferentiated cells from dead cells, and a second filter that separates the undifferentiated cells from an intermediate before the undifferentiated cells are differentiated into differentiated cells. And at least one of a third filter membrane that separates the intermediate and the differentiated cells from each other.
  • the separation unit may include a plurality of filter films including at least two of the first filter film, the second filter film, and the third filter film.
  • the control unit may perform control to selectively pass the cell suspension containing the cells through any of the plurality of filter membranes.
  • the sizes of the openings provided in the film surfaces of the first filter film, the second filter film, and the third filter film may be different from each other.
  • the control unit performs liquid feeding for applying a shear stress to the mixture of the additive and the medium, and then merges the cell suspension containing the cells with the mixture and transfers the mixture to the stirring unit. It is preferable to perform control.
  • the cell culture device may further include a storage container provided between the cell supply unit and the stirring unit in the middle of the first flow path.
  • the control unit applies shear stress to the mixture by circulating the mixture between the storage container and the agitation unit, and then transfers the cell suspension and the mixture into the storage container. It is also possible to perform control of merging and transferring to the stirring unit. In addition, the control unit applies shear stress to the mixture by flowing the mixture through a pipe, and then merges the cell suspension and the mixture in the storage container and transfers them to the stirring unit. Control may be performed.
  • the control unit may continuously perform liquid feeding for applying a shear stress to the mixture until the viscosity of the mixture reaches a predetermined viscosity.
  • the additive supply unit includes a first additive supply unit that supplies a first additive that includes a Wnt signal activator, and a second additive that supplies a second additive that includes a Wnt signal inhibitor. And a supply unit.
  • the cell culture device accommodates the culture vessel and relieves the temperature gradient generated along the first flow path due to the temperature difference between the inside and outside of the incubator that keeps the ambient temperature of the culture vessel constant And a temperature gradient relaxation mechanism.
  • a cell culturing method is a cell culturing method for culturing cells using the above cell culturing apparatus, wherein the control unit supplies the cells supplied from the medium supply unit, and the additive supply unit.
  • the mixture containing the additive supplied from the medium and the medium supplied from the medium supply unit is controlled to be transferred to the culture vessel via the stirring unit and the separation unit.
  • a series of treatments required for inducing differentiation of pluripotent stem cells can be continuously performed in a closed system.
  • FIG. 10 is a flowchart illustrating an example of a flow of processing for inducing differentiation of pluripotent stem cells, which is performed in the cell culture device according to an embodiment of the disclosed technology. It is a figure which shows operation
  • FIG. 1 is a block diagram illustrating an example of a configuration of a cell culture device 100 according to an embodiment of the disclosed technology.
  • the cell culture device 100 is a cell culture device that automatically performs a plurality of processes required for inducing differentiation of pluripotent stem cells into differentiated cells to produce desired differentiated cells.
  • a pluripotent stem cell is a cell having self-renewal ability and pluripotency capable of differentiating into any of ectoderm, mesoderm and endoderm.
  • pluripotent stem cells embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ cells (Embryonic Germ cell; EG cells), embryonic cancer cells (Embryonal Carcinoma cell; EC cells)
  • Pluripotent adult progenitor cells MAP cells
  • adult pluripotent stem cells adult Pluripotent stem cells; APS cells
  • Muse cells multi-lineage differentiating stress enduring cells
  • a differentiated cell is a cell in which a pluripotent stem cell differentiates and has a specific form and function. Although it does not specifically limit as a differentiated cell produced using the cell culture apparatus 100 concerning this embodiment, For example, a myocardial cell, a nerve cell, etc. are mentioned.
  • the cell culture apparatus 100 includes a cell supply unit 11, a first additive supply unit 12, a second additive supply unit 13, and a medium supply unit 14.
  • the cell culture device 100 includes a storage container 20, a stirring unit 30, viscosity measurement units 41 and 42, a separation unit 50, a culture vessel 70, and a control unit 80.
  • the cell supply unit 11 supplies a cell suspension containing cells cultured in the cell culture device 100 into the flow path of the cell culture device 100.
  • An opening / closing valve V1 is provided in the vicinity of the outlet of the cell supply unit 11.
  • the on-off valve V1 is controlled to be open when supplying the cell suspension from the cell supply unit 11, and is controlled to be closed otherwise.
  • 1st additive supply part 12 supplies the 1st additive containing a Wnt signal activator required for the differentiation induction of a pluripotent stem cell in the flow path of the cell culture apparatus 100.
  • FIG. An opening / closing valve V ⁇ b> 2 is provided in the vicinity of the outlet of the first additive supply unit 12. The on-off valve V2 is controlled to be open when the first additive is supplied from the first additive supply unit 12, and is controlled to be closed otherwise.
  • the second additive supply unit 13 supplies a second additive containing a Wnt signal inhibitor necessary for inducing differentiation of pluripotent stem cells into the flow path of the cell culture device 100.
  • An open / close valve V3 is provided in the vicinity of the outlet of the second additive supply unit 13. The on-off valve V3 is controlled to be open when the second additive is supplied from the second additive supply unit 13, and is controlled to be closed otherwise.
  • the medium supply unit 14 supplies a fresh medium (culture solution) used for cell culture into the flow path of the cell culture apparatus 100.
  • An open / close valve V4 is provided in the vicinity of the outlet of the medium supply unit 14. The on-off valve V4 is controlled to be open when the culture medium is supplied from the culture medium supply unit 14, and is controlled to be closed otherwise.
  • the storage container 20 includes a cell suspension supplied from the cell supply unit 11, a first additive supplied from the first additive supply unit 12, and a second supply supplied from the second additive supply unit 13. This is a container for temporarily storing the additive and the medium supplied from the medium supply unit 14.
  • the form of the storage container 20 is not particularly limited, and for example, a glass or stainless steel container or a container having a plastic bag form can be used.
  • the stirring unit 30 is a processing unit that performs processing of stirring and mixing the processing object flowing in through the flow path F2.
  • the stirring unit 30 preferably has a configuration as a static mixer that does not have a driving unit.
  • the stirring unit 30 is fixedly installed inside the tubular body, and a spiral flow path is formed inside the tubular body. And a stirring element to be formed.
  • the stirring part 30 may perform stirring and mixing by rotationally driving a stirring blade.
  • the separation unit 50 is a processing unit that performs a process of separating components contained in the processing object (cell suspension) that flows through the flow path F3.
  • the separation unit 50 includes a first filter unit 51, a second filter unit 52, and a third filter unit 53.
  • the first filter unit 51, the second filter unit 52, and the third filter unit 53 each include filter membranes having different sizes of openings formed on the membrane surface through which the cell suspension passes. That is, the opening size of the filter film provided in the first filter unit 51 is the smallest, and the opening size of the filter film provided in the third filter unit 53 is the largest.
  • the opening size of the filter film included in the second filter unit 52 is larger than the opening size of the filter film included in the first filter unit 51 and smaller than the opening size of the filter film included in the third filter unit 53.
  • the first filter unit 51, the second filter unit 52, and the third filter unit 53 are each configured to perform membrane separation using a filter membrane with respect to an object to be processed (cell suspension) that flows through the flow path F ⁇ b> 3. Process.
  • the first filter unit 51 is used in the initial stage of culture before pluripotent stem cells start to differentiate.
  • the first filter unit 51 has a filter membrane having an opening size suitable for membrane separation of living undifferentiated cells and dead cells.
  • the living undifferentiated cells form a cell mass that is an aggregate of a plurality of cells, and the dead cells are detached from the cell mass to become a single cell. Therefore, it is possible to separate undifferentiated cells and dead cells that are alive by membrane separation treatment.
  • the first filter unit 51 is used for the purpose of removing dead cells from a cell suspension containing living undifferentiated cells (cell mass) and dead cells, and leaving undifferentiated cells.
  • the second filter unit 52 is used when the pluripotent stem cells have differentiated into intermediates (ectodermal, mesoderm, endoderm) before differentiation into differentiated cells such as cardiomyocytes.
  • the second filter unit 52 has a filter membrane having an opening size suitable for membrane separation of undifferentiated cells that do not differentiate into intermediates and intermediates. Since the size of the intermediate is larger than the size of the undifferentiated cell, it is possible to separate the undifferentiated cell and the intermediate by membrane separation treatment.
  • the second filter unit 52 is used for the purpose of removing undifferentiated cells from the cell suspension containing undifferentiated cells and intermediates and leaving the intermediates.
  • the third filter unit 53 is used when the pluripotent stem cells are differentiated into differentiated cells such as cardiomyocytes.
  • the third filter unit 53 has a filter membrane having an opening size suitable for membrane separation of an intermediate that does not migrate to differentiated cells and differentiated cells. Since the size of differentiated cells such as cardiomyocytes is larger than the size of intermediates such as ectoderm, mesoderm, and endoderm, it is possible to separate differentiated cells and intermediates by membrane separation treatment.
  • the third filter unit 53 is used for the purpose of removing the intermediate from the cell suspension containing the differentiated cell and the intermediate and leaving the differentiated cell.
  • the first filter unit 51, the second filter unit 52, and the third filter unit 53 are each configured of a tangential flow filter in which a processing object (cell suspension) flows along the membrane surface of the filter membrane. You may have.
  • the first filter unit 51, the second filter unit 52, and the third filter unit 53 each have a flow direction of the processing object (cell suspension) intersecting the film surface of the filter membrane. You may have the structure of the dead end flow filter used as a direction.
  • Recovery containers 61, 62, and 63 are connected to the first filter unit 51, the second filter unit 52, and the third filter unit 53, respectively.
  • the filtrates that have passed through the filter membrane are collected in collection containers 61, 62, and 63, respectively.
  • the first filter unit 51, the second filter unit 52, and the third filter unit 53 are selectively used at a predetermined timing during the culture period. That is, the processing object (cell suspension) flowing into the separation unit 50 via the flow path F3 is one of the first filter unit 51, the second filter unit 52, and the third filter unit 53. Passes through the filter membrane.
  • Open / close valves V8, V9, and V10 are provided in the vicinity of the inlets of the first filter unit 51, the second filter unit 52, and the third filter unit 53, respectively.
  • the on-off valve V8 is controlled to be in an open state when performing a membrane separation process by the first filter unit 51, and is controlled to be in a closed state in other cases.
  • the on-off valve V9 is controlled to be in an open state when performing the membrane separation process by the second filter unit 52, and is controlled to be in a closed state in other cases.
  • the on-off valve V10 is controlled to be in an open state when performing the membrane separation process by the third filter unit 53, and is controlled to be in a closed state in other cases.
  • dead cells single cell
  • iPS cell aggregates 50 to 150 ⁇ m
  • mesoderm which is an example of intermediates
  • cardiomyocyte aggregates 200 to 300 ⁇ m
  • the preferable opening size of the filter membrane of each filter part and the transfer destination after membrane separation in the case of separation are exemplified in Table 1 below.
  • the more preferable opening size of the filter film of the first filter unit 51 is 30 ⁇ m
  • the more preferable opening size of the filter film of the second filter unit 52 is 170 ⁇ m
  • the filter film of the third filter unit 53 is A more preferable opening size is 400 ⁇ m.
  • the culture container 70 is a container for culturing cells.
  • the form of the culture container 70 is not particularly limited, and for example, a glass or stainless steel container or a container having a plastic bag form can be used.
  • the culture vessel 70 is, for example, controlled in a temperature of 30 ° C. to 40 ° C. (preferably 37 ° C.) and a CO 2 concentration of 2% to 10% (preferably 5%) and housed in a sealed incubator 71.
  • the viscosity measuring unit 41 measures the viscosity of the cell suspension accommodated in the cell supply unit 11 and notifies the control unit 80 of the measurement result.
  • the viscosity measuring unit 42 measures the viscosity of the liquid stored in the storage container 20 and notifies the control unit 80 of the measurement result.
  • the cell culture device 100 includes a circulation channel F0 that forms a circulation route that passes through the cell supply unit 11, the storage container 20, the stirring unit 30, the separation unit 50, and the culture container 70 in this order.
  • the circulation flow path F0 includes flow paths F1, F2, F3, F4, and F5.
  • the flow path F ⁇ b> 1 is a flow path that connects the outlet of the cell supply unit 11 and the inlet of the storage container 20.
  • the flow path F ⁇ b> 2 is a flow path that connects the outlet of the storage container 20 and the inlet of the stirring unit 30.
  • the flow path F3 is a flow path that connects the outlet of the stirring unit 30 and the inlet of the separation unit 50.
  • the flow path F ⁇ b> 4 is a flow path that connects the outlet of the separation unit 50 and the inlet of the culture vessel 70.
  • the channel F5 is a channel that connects the outlet of the culture vessel 70 and the inlet of the cell supply unit 11.
  • the circulation channel F0 is an example of a first channel in the disclosed technology.
  • the first additive supply section 12 is connected to the circulation flow path F0 (flow path F1) via the flow path F11, and the second additive supply section 13 is connected to the circulation flow path F0 (flow path F12). It is connected to the flow path F1).
  • the culture medium supply part 14 is connected to the circulation flow path F0 (flow path F1) via the flow path F13.
  • the channel F13 is an example of a second channel in the disclosed technology.
  • the flow paths F11 and F12 are an example of a third flow path in the disclosed technology.
  • Open / close valves V5 and V6 are provided in the flow path F2 provided between the storage container 20 and the stirring unit 30.
  • the on-off valves V5 and V6 are controlled to be in an open state when liquid is fed from the storage container 20 toward the stirring unit 30, and are controlled to be closed in other cases.
  • an open / close valve V7 is provided in the flow path F3 provided between the stirring unit 30 and the separation unit 50.
  • the on-off valve V7 is controlled to be in an open state when liquid is fed from the stirring unit 30 toward the separation unit 50, and is controlled to be in a closed state in other cases.
  • the cell culture device 100 has a flow path F20 that directly connects the outlet of the stirring unit 30 and the inlet of the storage container 20. That is, one end of the flow path F20 is connected to the flow path F1, and the other end of the flow path F20 is connected to the flow path F3.
  • open / close valves V13 and V14 are provided in the flow path F20.
  • the on-off valves V13 and V14 are controlled to be opened when liquid is fed from the stirring unit 30 toward the storage container 20, and are controlled to be closed in other cases.
  • the cell culture device 100 includes a plurality of pumps (not shown) that perform liquid feeding through the flow paths F1 to F5, F11 to F12, and F20.
  • the cell supply unit 11, the first additive supply unit 12, the second additive supply unit 13, the culture medium supply unit 14, the storage container 20, the agitation unit 30, the separation unit 50, and the culture container 70 are provided inside each. You may perform liquid feeding between each of these elements by adjusting a pressure.
  • the control unit 80 controls liquid supply through the flow paths F1 to F5, F11 to F12, and F20 by performing opening / closing control of the opening / closing valves V1 to V14 and driving control of a pump (not shown).
  • the treatment for differentiation induction of pluripotent stem cells performed in the cell culture device 100 includes a first step of culturing the pluripotent stem cells in a medium containing a Wnt signal activator, A second step of culturing the cells obtained in the step in a medium containing a Wnt signal inhibitor.
  • the details of the differentiation induction method including the first step and the second step are described in, for example, International Publication No. 2013/111875.
  • FIG. 2 is a flowchart showing an example of a flow of processing for inducing differentiation of pluripotent stem cells, which is performed in the cell culture device 100.
  • step S1 cells are cultured in a medium supplemented with a first additive containing a Wnt signal activator.
  • the medium is exchanged in step S2.
  • the medium replacement process that is performed first after the start of culture is referred to as medium replacement [1].
  • the period from the start of culture to the completion of medium exchange [1] is, for example, about 0.5 to 2 days.
  • step S3 the first additive containing the Wnt signal activator is added again to the medium.
  • step S4 After a predetermined time has elapsed since the first additive was added again, the medium is changed in step S4.
  • the medium exchange process performed after re-adding the first additive is defined as medium exchange [2].
  • step S5 it is determined whether or not the number of processing cycles in which a series of processing including re-addition of the first additive and medium exchange [2] is one unit has reached a predetermined number of cycles.
  • a series of processes including re-addition of the first additive and medium exchange [2] is repeated until the number of treatment cycles reaches a predetermined number of cycles.
  • One cycle period of a series of treatments including re-addition of the first additive and medium exchange [2] is, for example, about 1 to 5 days.
  • step S6 the cells are cultured in a medium supplemented with a second additive containing a Wnt signal inhibitor.
  • the medium is changed in step S7.
  • the culture medium exchange process performed first after adding a 2nd additive be culture medium exchange [3].
  • the period from the addition of the second additive to the completion of the medium exchange [2] is, for example, about 0.5 to 2 days.
  • step S8 the second additive containing the Wnt signal inhibitor is added again to the medium.
  • step S9 After a predetermined time has elapsed since the second additive was added again, the medium is changed in step S9.
  • the medium exchange process performed after re-adding the second additive is referred to as medium exchange [4].
  • step S10 it is determined whether or not the number of processing cycles in which a series of processing including re-addition of the second additive and medium exchange [4] is one unit has reached a predetermined number of cycles.
  • a series of processes including re-addition of the second additive and medium exchange [4] is repeated until the number of treatment cycles reaches a predetermined number of cycles.
  • One cycle period of a series of treatments including re-addition of the second additive and medium change [4] is, for example, about 1 to 5 days.
  • the following description relates to the opening / closing control of the opening / closing valves V1 to V14, and refers only to the case where these opening / closing valves V1 to V14 are controlled to the open state.
  • the open / close valves V1 to V14 are controlled to be in an open state and then appropriately closed.
  • FIG. 3 is a diagram showing the operation of the cell culture device 100 when performing the process performed in step S1 shown in FIG. 2, that is, the process of adding the first additive.
  • the supply order to each process part of a process target object a cell suspension, a culture medium, an additive, and these mixtures
  • the cell supply part 11 shall contain the cell suspension containing the pluripotent stem cell which induces differentiation using the cell culture apparatus 100.
  • the viscosity of the cell suspension stored in the cell supply unit 11 is measured by the viscosity measurement unit 41 and the measurement result is notified to the control unit 80.
  • step A1 the control unit 80 controls the on-off valves V2 and V4 to be in an open state and drives a predetermined pump.
  • the first additive containing the Wnt signal activator is supplied from the first additive supply unit 12 to the storage container 20 and the fresh culture medium is supplied from the culture medium supply unit 14 to the storage container 20. Is done.
  • the mixture containing the first additive and the fresh medium is accommodated in the storage container 20.
  • the viscosity of the mixture containing the first additive and fresh medium stored in the storage container 20 is measured by the viscosity measuring unit 42 and the measurement result is notified to the control unit 80.
  • the viscosity of the mixture containing the first additive and the fresh medium stored in the storage container 20 is higher than the viscosity of the cell suspension stored in the cell supply unit 11. .
  • the mixture and cell suspension containing the first additive and fresh medium will be mixed later, but there is a difference in viscosity between the mixture containing the first additive and fresh medium and the cell suspension. If it is large, a good mixed state may not be obtained. Therefore, after making the viscosity of the mixture containing the first additive and the fresh medium equal to the viscosity of the cell suspension, it is preferable to mix both.
  • the mixture containing the first additive and the fresh medium has thixotropy, and the viscosity can be lowered by applying a shear stress.
  • control unit 80 performs liquid feeding for applying a shear stress to the mixture containing the first additive and the fresh medium, and then the cell suspension and the mixture are combined and transferred to the stirring unit 30. Control. Specifically, the control unit 80 applies a shear stress to the above mixture by circulating a mixture containing the first additive and the fresh medium between the storage container 20 and the stirring unit 30.
  • Step A2 the control unit 80 controls the open / close valves V5 and V6 to be in an open state and drives a predetermined pump.
  • the mixture containing the 1st additive and the fresh culture medium which are accommodated in the storage container 20 is transferred to the stirring part 30 via the flow path F2.
  • the mixture containing the first additive and the fresh medium is agitated in the agitation unit 30, so that shear stress is applied and the viscosity is lowered.
  • step A3 the control unit 80 controls the open / close valves V13 and V14 to be in an open state and drives a predetermined pump.
  • the mixture containing the first additive and the fresh medium that has passed through the stirring unit 30 is returned to the storage container 20 via the flow path F20.
  • the viscosity of the mixture containing the first additive and fresh medium stored in the storage container 20 is measured by the viscosity measuring unit 42 and the measurement result is notified to the control unit 80.
  • the control unit 80 is configured so that the difference between the viscosity of the mixture notified from the viscosity measuring unit 42 and the viscosity of the cell suspension notified from the viscosity measuring unit 41 is equal to or less than a predetermined value, and the storage container 20 and the stirring unit 30 to continuously circulate the above mixture.
  • the control unit 80 is connected to the storage container 20 until the viscosity value of the mixture notified from the viscosity measuring unit 42 is equal to or less than a predetermined value regardless of the viscosity of the cell suspension notified from the viscosity measuring unit 41.
  • FIG. Moreover, you may perform continuously the liquid feeding which circulates said mixture between the storage container 20 and the stirring part 30 until it reaches the predetermined cycle number.
  • step A4 the control unit 80 controls the open / close valve V1 to open and drives a predetermined pump. .
  • the cell suspension accommodated in the cell supply part 11 is transferred to the storage container 20 via the flow path F1, and the mixture containing the first additive and the fresh medium whose viscosity is adjusted, and Join.
  • step A5 the control unit 80 controls the on-off valves V5 and V6 to be in an open state and drives a predetermined pump.
  • the mixture containing a cell suspension, a 1st additive, and a fresh culture medium is transferred to the stirring part 30 via the flow path F2 from the storage container 20.
  • FIG. The mixture containing the cell suspension, the first additive, and the fresh medium is stirred and mixed in the stirring unit 30.
  • the mixture containing the first additive and the fresh medium is subjected to viscosity adjustment by applying shear stress, so that the mixture containing the cell suspension, the first additive and the fresh medium is well mixed. Can be obtained.
  • step A6 the control unit 80 controls the on-off valves V7 and V8 to be in an open state and drives a predetermined pump.
  • the mixture containing the cell suspension, the first additive, and the fresh medium is supplied from the stirring unit 30 to the first filter unit 51 of the separation unit 50 via the flow path F3.
  • the mixture containing the cell suspension, the first additive, and the fresh medium is subjected to a membrane separation process in the first filter unit 51, and the living cells and the dead cells are separated.
  • the filtrate containing dead cells that have passed through the filter membrane of the first filter unit 51 is collected in the collection container 61.
  • step A7 the control unit 80 controls the open / close valve V11 to be in an open state and drives a predetermined pump.
  • the mixture containing the cell suspension from which dead cells have been removed, the first additive, and the fresh medium is supplied from the first filter unit 51 to the culture vessel 70 via the flow path F4.
  • the pluripotent stem cells are accommodated in the culture vessel 70 together with the medium to which the first additive containing the Wnt signal activator is added, so that the culture for differentiation induction is started.
  • FIG. 4 is a diagram illustrating the operation of the cell culture device 100 when performing the process performed in step S2 illustrated in FIG. 2, that is, the medium exchange [1].
  • the supply order to each process part of a process target object (a cell suspension, a culture medium, an additive, and these mixtures) is shown.
  • step B1 the control unit 80 controls the open / close valve V12 to be in an open state and drives a predetermined pump. As a result, the cell suspension containing the used medium is transferred from the culture vessel 70 to the cell supply unit 11 via the flow path F5.
  • step B2 the control unit 80 controls the open / close valves V1 and V4 to open and drives a predetermined pump.
  • the cell suspension containing the used medium is transferred from the cell supply unit 11 to the storage container 20 via the flow path F1, and the fresh medium is supplied from the medium supply unit 14 to the storage container 20. Is done.
  • step B3 the control unit 80 controls the on-off valves V5 and V6 to be in an open state and drives a predetermined pump. Thereby, the cell suspension with the fresh medium added is transferred from the storage container 20 to the stirring unit 30 via the flow path F2. The cell suspension added with the fresh medium is stirred and mixed in the stirring unit 30.
  • step B4 the control unit 80 controls the open / close valves V7 and V8 to open and drives a predetermined pump.
  • the cell suspension to which the fresh medium is added is supplied from the stirring unit 30 to the first filter unit 51 of the separation unit 50 via the flow path F3.
  • the cell suspension to which the fresh medium is added is subjected to membrane separation processing in the first filter unit 51, and a part of the mixture containing the used medium and the fresh medium is removed together with dead cells.
  • the filtrate containing dead cells that have passed through the filter membrane of the first filter unit 51 is collected in the collection container 61.
  • step B5 the control unit 80 controls the open / close valve V11 to be in an open state and drives a predetermined pump. Thereby, the cell suspension that has been subjected to the membrane separation process is supplied from the first filter unit 51 to the culture vessel 70 via the flow path F4, and the medium exchange process is completed.
  • FIG. 5 is a diagram showing the process performed in step S3 shown in FIG. 2, that is, the operation of the cell culture device 100 in the case where the first additive is added again.
  • a process target object a cell suspension, a culture medium, an additive, and these mixtures.
  • step C1 the control unit 80 controls the open / close valves V2 and V4 to open and drives a predetermined pump.
  • the first additive containing the Wnt signal activator is supplied from the first additive supply unit 12 to the storage container 20 and the fresh culture medium is supplied from the culture medium supply unit 14 to the storage container 20. Is done.
  • the mixture containing the first additive and the fresh medium is accommodated in the storage container 20.
  • the viscosity of the mixture containing the first additive and fresh medium stored in the storage container 20 is measured by the viscosity measuring unit 42 and the measurement result is notified to the control unit 80.
  • the viscosity of the mixture containing the first additive and fresh medium stored in the storage container 20 is higher than the viscosity of the cell suspension stored in the culture container 70.
  • the mixture and cell suspension containing the first additive and fresh medium will be mixed later, but there is a difference in viscosity between the mixture containing the first additive and fresh medium and the cell suspension. If it is large, a good mixed state may not be obtained. Therefore, after making the viscosity of the mixture containing the first additive and the fresh medium equal to the viscosity of the cell suspension, it is preferable to mix both.
  • the mixture containing the first additive and the fresh medium has thixotropy, and the viscosity can be reduced by applying shear stress.
  • control unit 80 performs liquid feeding for applying a shear stress to the mixture containing the first additive and the fresh medium, and then the cell suspension and the mixture are combined and transferred to the stirring unit 30. Control. Specifically, the control unit 80 applies a shear stress to the above mixture by circulating a mixture containing the first additive and the fresh medium between the storage container 20 and the stirring unit 30.
  • step C2 the control unit 80 controls the open / close valves V5 and V6 to be in an open state and drives a predetermined pump.
  • the mixture containing the 1st additive and the fresh culture medium which are accommodated in the storage container 20 is transferred to the stirring part 30 via the flow path F2.
  • the mixture containing the first additive and the fresh medium is agitated in the agitation unit 30, so that shear stress is applied and the viscosity is lowered.
  • Step C3 the control unit 80 controls the open / close valves V13 and V14 to be in an open state and drives a predetermined pump.
  • the mixture containing the first additive and the fresh medium that has passed through the stirring unit 30 is returned to the storage container 20 via the flow path F20.
  • the viscosity of the mixture containing the first additive and fresh medium stored in the storage container 20 is measured by the viscosity measuring unit 42 and the measurement result is notified to the control unit 80.
  • the control unit 80 continuously performs liquid feeding to circulate the mixture between the storage container 20 and the stirring unit 30 until the viscosity value of the mixture notified from the viscosity measuring unit 42 is equal to or lower than a predetermined value.
  • the control unit 80 may continuously perform liquid feeding for circulating the above mixture between the storage container 20 and the stirring unit 30 until a predetermined number of cycles is reached.
  • step C4 the control unit 80 controls the open / close valve V12 to open and drives a predetermined pump. .
  • the cell suspension is transferred from the culture vessel 70 to the cell supply unit 11 via the flow path F5.
  • step C5 the control unit 80 controls the open / close valve V1 to be in an open state and drives a predetermined pump. Thereby, the cell suspension accommodated in the cell supply part 11 is transferred to the storage container 20 via the flow path F1, and the mixture containing the first additive and the fresh medium whose viscosity is adjusted, and Join.
  • step C6 the control unit 80 controls the open / close valves V5 and V6 to be in an open state and drives a predetermined pump.
  • the mixture containing a cell suspension, a 1st additive, and a fresh culture medium is transferred to the stirring part 30 via the flow path F2 from the storage container 20.
  • FIG. The mixture containing the cell suspension, the first additive, and the fresh medium is stirred and mixed in the stirring unit 30.
  • the mixture containing the first additive and the fresh medium is subjected to viscosity adjustment by applying shear stress, so that the mixture containing the cell suspension, the first additive and the fresh medium is well mixed. Can be obtained.
  • step C7 the control unit 80 controls the open / close valves V7 and V9 to open and drives a predetermined pump.
  • the mixture containing the cell suspension, the first additive, and the fresh medium is supplied from the stirring unit 30 to the second filter unit 52 of the separation unit 50 via the flow path F3.
  • the mixture containing the cell suspension, the first additive and the fresh medium is subjected to membrane separation processing in the second filter unit 52, and is not differentiated into an intermediate (ectodermal, mesoderm, endoderm). Cells and dead cells are separated from intermediates.
  • the filtrate containing undifferentiated cells and dead cells that have passed through the filter membrane of the second filter section 52 is collected in the collection container 62.
  • step C8 the control unit 80 controls the open / close valve V11 to open and drives a predetermined pump. Thereby, the mixture containing the cell suspension from which the undifferentiated cells and dead cells are removed and the intermediate is left, the first additive, and the fresh medium passes from the second filter unit 52 via the flow path F4. And supplied to the culture vessel 70.
  • FIG. 6 is a diagram illustrating the operation of the cell culture device 100 when performing the process performed in step S4 illustrated in FIG.
  • the supply order to each process part of the process target object (a cell suspension, a culture medium, an additive, and these mixtures) is shown.
  • step D1 the control unit 80 controls the open / close valve V12 to be in an open state and drives a predetermined pump. As a result, the cell suspension containing the used medium is transferred from the culture vessel 70 to the cell supply unit 11 via the flow path F5.
  • step D2 the control unit 80 controls the open / close valves V1 and V4 to open and drives a predetermined pump.
  • the cell suspension containing the used medium is transferred from the cell supply unit 11 to the storage container 20 via the flow path F1, and the fresh medium is supplied from the medium supply unit 14 to the storage container 20. Is done.
  • step D3 the control unit 80 controls the open / close valves V5 and V6 to open and drives a predetermined pump.
  • the cell suspension with the fresh medium added is transferred from the storage container 20 to the stirring unit 30 via the flow path F2.
  • the cell suspension added with the fresh medium is stirred and mixed in the stirring unit 30.
  • Step D4 the control unit 80 controls the open / close valves V7 and V9 to be in an open state and drives a predetermined pump.
  • the cell suspension to which the fresh medium is added is supplied from the stirring unit 30 to the second filter unit 52 of the separation unit 50 via the flow path F3.
  • the cell suspension to which the fresh medium is added is subjected to membrane separation processing in the second filter unit 52, and a part of the mixture containing the used medium and the fresh medium is removed together with dead cells and undifferentiated cells. Is done.
  • the filtrate containing dead cells and undifferentiated cells that have passed through the filter membrane of the second filter unit 52 is collected in the collection container 62.
  • step D5 the control unit 80 controls the open / close valve V11 to be in an open state and drives a predetermined pump. Thereby, the cell suspension that has been subjected to the membrane separation process is supplied from the second filter unit 52 to the culture vessel 70 via the flow path F4, and the medium exchange process is completed.
  • FIG. 7 is a diagram showing the process performed in step S6 shown in FIG. 2, that is, the operation of the cell culture device 100 in the case where the second additive is added.
  • a process target object a cell suspension, a culture medium, an additive, and these mixtures.
  • step E1 the control unit 80 controls the on-off valves V3 and V4 to be in an open state and drives a predetermined pump.
  • the second additive containing the Wnt signal inhibitor is supplied from the second additive supply unit 13 to the storage container 20, and the fresh medium is supplied from the culture medium supply unit 14 to the storage container 20.
  • the viscosity of the mixture containing the second additive and the fresh medium stored in the storage container 20 is measured by the viscosity measuring unit 42 and the measurement result is notified to the control unit 80.
  • the viscosity of the mixture containing the second additive and fresh medium stored in the storage container 20 is higher than the viscosity of the cell suspension stored in the culture container 70.
  • the mixture and cell suspension containing the second additive and fresh medium will be mixed later, but there is a difference in viscosity between the mixture containing the second additive and fresh medium and the cell suspension. If it is large, a good mixed state may not be obtained. Therefore, after making the viscosity of the mixture containing the second additive and the fresh medium equal to the viscosity of the cell suspension, it is preferable to mix both.
  • the mixture containing the second additive and the fresh medium has thixotropy, and the viscosity can be lowered by applying a shear stress.
  • control unit 80 performs liquid feeding for applying a shear stress to the mixture containing the second additive and the fresh medium, and then merges the cell suspension and the mixture and transfers them to the stirring unit 30. Control. Specifically, the control unit 80 applies a shear stress to the above mixture by circulating a mixture containing the second additive and the fresh medium between the storage container 20 and the stirring unit 30.
  • step E2 the control unit 80 controls the open / close valves V5 and V6 to open and drives a predetermined pump.
  • the mixture containing the second additive and the fresh medium stored in the storage container 20 is transferred to the stirring unit 30 via the flow path F2.
  • the mixture containing the second additive and the fresh medium is stirred in the stirring unit 30, so that shear stress is applied and the viscosity is lowered.
  • step E3 the control unit 80 controls the open / close valves V13 and V14 to be in an open state and drives a predetermined pump.
  • the mixture containing the second additive and the fresh medium that has passed through the stirring unit 30 is returned to the storage container 20 via the flow path F20.
  • the viscosity of the mixture containing the second additive and the fresh medium stored in the storage container 20 is measured by the viscosity measuring unit 42 and the measurement result is notified to the control unit 80.
  • the control unit 80 continuously performs liquid feeding to circulate the mixture between the storage container 20 and the stirring unit 30 until the viscosity value of the mixture notified from the viscosity measuring unit 42 is equal to or lower than a predetermined value.
  • the control unit 80 may continuously perform liquid feeding for circulating the above mixture between the storage container 20 and the stirring unit 30 until a predetermined number of cycles is reached.
  • step E4 the control unit 80 controls the open / close valve V12 to open and drives a predetermined pump. .
  • the cell suspension is transferred from the culture vessel 70 to the cell supply unit 11 via the flow path F5.
  • step E5 the control unit 80 controls the open / close valve V1 to be in an open state and drives a predetermined pump. Thereby, the cell suspension accommodated in the cell supply part 11 is transferred to the storage container 20 via the flow path F1, and the mixture containing the second additive and the fresh medium whose viscosity is adjusted, and Join.
  • step E6 the control unit 80 controls the open / close valves V5 and V6 to be in an open state and drives a predetermined pump.
  • the mixture containing the cell suspension, the second additive, and the fresh medium is transferred from the storage container 20 to the stirring unit 30 via the flow path F2.
  • the mixture containing the cell suspension, the second additive, and the fresh medium is stirred and mixed in the stirring unit 30.
  • shear stress to the mixture containing the second additive and the fresh medium and adjusting the viscosity, the mixture containing the cell suspension, the second additive and the fresh medium is well mixed. Can be obtained.
  • step E7 the control unit 80 controls the on-off valves V7 and V9 to be in an open state and drives a predetermined pump.
  • the mixture containing the cell suspension, the second additive, and the fresh medium is supplied from the stirring unit 30 to the second filter unit 52 of the separation unit 50 via the flow path F3.
  • the mixture containing the cell suspension, the second additive and the fresh medium is subjected to membrane separation processing in the second filter unit 52, and is not differentiated into an intermediate (ectodermal, mesoderm, endoderm). Cells and dead cells are separated from intermediates.
  • the filtrate containing undifferentiated cells and dead cells that have passed through the filter membrane of the second filter section 52 is collected in the collection container 62.
  • step E8 the control unit 80 controls the open / close valve V11 to be in an open state and drives a predetermined pump.
  • the mixture containing the cell suspension from which undifferentiated cells and dead cells are removed and the intermediate is left, the second additive, and the fresh medium passes from the second filter unit 52 via the flow path F4. And supplied to the culture vessel 70.
  • FIG. 8 is a diagram illustrating the operation of the cell culture device 100 in the case where the process performed in step S7 shown in FIG. 2, that is, the medium exchange [3] is performed.
  • the supply order to each process part of a process target object (a cell suspension, a culture medium, an additive, and these mixtures) is shown.
  • step G1 the control unit 80 controls the open / close valve V12 to be in an open state and drives a predetermined pump. As a result, the cell suspension containing the used medium is transferred from the culture vessel 70 to the cell supply unit 11 via the flow path F5.
  • Step G2 the control unit 80 controls the open / close valves V1 and V4 to be in an open state and drives a predetermined pump.
  • the cell suspension containing the used medium is transferred from the cell supply unit 11 to the storage container 20 via the flow path F1, and the fresh medium is supplied from the medium supply unit 14 to the storage container 20. Is done.
  • step G3 the control unit 80 controls the open / close valves V5 and V6 to open and drives a predetermined pump.
  • the cell suspension with the fresh medium added is transferred from the storage container 20 to the stirring unit 30 via the flow path F2.
  • the cell suspension added with the fresh medium is stirred and mixed in the stirring unit 30.
  • step G4 the control unit 80 controls the open / close valves V7 and V9 to open and drives a predetermined pump.
  • the cell suspension to which the fresh medium is added is supplied from the stirring unit 30 to the second filter unit 52 of the separation unit 50 via the flow path F3.
  • the cell suspension to which the fresh medium is added is subjected to membrane separation processing in the second filter unit 52, and a part of the mixture containing the used medium and the fresh medium is removed together with dead cells and undifferentiated cells. Is done.
  • the filtrate containing dead cells and undifferentiated cells that have passed through the filter membrane of the second filter unit 52 is collected in the collection container 62.
  • step G5 the control unit 80 controls the open / close valve V11 to open and drives a predetermined pump. Thereby, the cell suspension that has been subjected to the membrane separation process is supplied from the second filter unit 52 to the culture vessel 70 via the flow path F4, and the medium exchange process is completed.
  • FIG. 9 is a diagram showing the process performed in step S8 shown in FIG. 2, that is, the operation of the cell culture device 100 in the case where the second additive is added again.
  • a process target object a cell suspension, a culture medium, an additive, and these mixtures.
  • step H1 the control unit 80 controls the open / close valves V3 and V4 to open and drives a predetermined pump.
  • the second additive containing the Wnt signal inhibitor is supplied from the second additive supply unit 13 to the storage container 20, and the fresh medium is supplied from the culture medium supply unit 14 to the storage container 20.
  • the viscosity of the mixture containing the second additive and the fresh medium stored in the storage container 20 is measured by the viscosity measuring unit 42 and the measurement result is notified to the control unit 80.
  • the viscosity of the mixture containing the second additive and fresh medium stored in the storage container 20 is higher than the viscosity of the cell suspension stored in the culture container 70.
  • the mixture and cell suspension containing the second additive and fresh medium will be mixed later, but there is a difference in viscosity between the mixture containing the second additive and fresh medium and the cell suspension. If it is large, a good mixed state may not be obtained. Therefore, after making the viscosity of the mixture containing the second additive and the fresh medium equal to the viscosity of the cell suspension, it is preferable to mix both.
  • the mixture containing the second additive and the fresh medium has thixotropy, and the viscosity can be lowered by applying a shear stress.
  • control unit 80 performs liquid feeding for applying a shear stress to the mixture containing the second additive and the fresh medium, and then merges the cell suspension and the mixture and transfers them to the stirring unit 30. Control. Specifically, the control unit 80 applies a shear stress to the above mixture by circulating a mixture containing the second additive and the fresh medium between the storage container 20 and the stirring unit 30.
  • step H2 the control unit 80 controls the open / close valves V5 and V6 to be in an open state and drives a predetermined pump.
  • the mixture containing the second additive and the fresh medium stored in the storage container 20 is transferred to the stirring unit 30 via the flow path F2.
  • the mixture containing the second additive and the fresh medium is stirred in the stirring unit 30, so that shear stress is applied and the viscosity is lowered.
  • Step H3 the control unit 80 controls the open / close valves V13 and V14 to be in an open state and drives a predetermined pump.
  • the mixture containing the second additive and the fresh medium that has passed through the stirring unit 30 is returned to the storage container 20 via the flow path F20.
  • the viscosity of the mixture containing the second additive and the fresh medium stored in the storage container 20 is measured by the viscosity measuring unit 42 and the measurement result is notified to the control unit 80.
  • the control unit 80 continuously performs liquid feeding to circulate the mixture between the storage container 20 and the stirring unit 30 until the viscosity value of the mixture notified from the viscosity measuring unit 42 is equal to or lower than a predetermined value.
  • the control unit 80 may continuously perform liquid feeding for circulating the above mixture between the storage container 20 and the stirring unit 30 until a predetermined number of cycles is reached.
  • Step H4 the control unit 80 controls the open / close valve V12 to open and drives a predetermined pump. .
  • the cell suspension is transferred from the culture vessel 70 to the cell supply unit 11 via the flow path F5.
  • step H5 the control unit 80 controls the open / close valve V1 to be in an open state and drives a predetermined pump. Thereby, the cell suspension accommodated in the cell supply part 11 is transferred to the storage container 20 via the flow path F1, and the mixture containing the second additive and the fresh medium whose viscosity is adjusted, and Join.
  • Step H6 the control unit 80 controls the open / close valves V5 and V6 to be in an open state and drives a predetermined pump.
  • the mixture containing the cell suspension, the second additive, and the fresh medium is transferred from the storage container 20 to the stirring unit 30 via the flow path F2.
  • the mixture containing the cell suspension, the second additive, and the fresh medium is stirred and mixed in the stirring unit 30.
  • shear stress to the mixture containing the second additive and the fresh medium and adjusting the viscosity, the mixture containing the cell suspension, the second additive and the fresh medium is well mixed. Can be obtained.
  • Step H7 the control unit 80 controls the open / close valves V7 and V10 to be in an open state and drives a predetermined pump.
  • the mixture containing the cell suspension, the second additive, and the fresh medium is supplied from the stirring unit 30 to the third filter unit 53 of the separation unit 50 via the flow path F3.
  • the mixture containing the cell suspension, the second additive, and the fresh medium is subjected to membrane separation in the third filter unit 53, and is an intermediate that does not migrate to differentiated cells (ectodermal, mesoderm, endoderm).
  • differentiated cells ectodermal, mesoderm, endoderm
  • undifferentiated cells and dead cells that do not differentiate into intermediates and differentiated cells are separated.
  • the filtrate containing the intermediate, undifferentiated cells, and dead cells that have passed through the filter membrane of the third filter unit 53 is collected in the collection container 63.
  • Step H8 the control unit 80 controls the open / close valve V11 to be in an open state and drives a predetermined pump. Thereby, the mixture containing the cell suspension from which the intermediates, undifferentiated cells and dead cells are removed and the differentiated cells are left, the second additive, and the fresh medium is flowed from the third filter unit 53 to the flow path. It is supplied to the culture vessel 70 via F4.
  • FIG. 10 is a diagram illustrating the operation of the cell culture device 100 in the case of performing the process performed in step S9 shown in FIG. 2, that is, medium replacement [4].
  • a process target object a cell suspension, a culture medium, an additive, and these mixtures.
  • step I1 the control unit 80 controls the open / close valve V12 to be in an open state and drives a predetermined pump. As a result, the cell suspension containing the used medium is transferred from the culture vessel 70 to the cell supply unit 11 via the flow path F5.
  • step I2 the control unit 80 controls the open / close valves V1 and V4 to open and drives a predetermined pump.
  • the cell suspension containing the used medium is transferred from the cell supply unit 11 to the storage container 20 via the flow path F1, and the fresh medium is supplied from the medium supply unit 14 to the storage container 20. Is done.
  • step I3 the control unit 80 controls the open / close valves V5 and V6 to open and drives a predetermined pump. Thereby, the cell suspension with the fresh medium added is transferred from the storage container 20 to the stirring unit 30 via the flow path F2. The cell suspension added with the fresh medium is stirred and mixed in the stirring unit 30.
  • step I4 the control unit 80 controls the open / close valves V7 and V10 to open and drives a predetermined pump.
  • the cell suspension to which the fresh medium is added is supplied from the stirring unit 30 to the third filter unit 53 of the separation unit 50 via the flow path F3.
  • the cell suspension to which the fresh medium has been added is subjected to membrane separation processing in the third filter unit 53, and a part of the mixture containing the used medium and the fresh medium becomes an intermediate (ectodermal, mesoderm) , Endoderm), undifferentiated cells and dead cells. Intermediates, undifferentiated cells, and dead cells that have passed through the filter membrane of the third filter unit 53 are collected in the collection container 62.
  • step I5 the control unit 80 controls the open / close valve V11 to be in an open state and drives a predetermined pump. Thereby, the cell suspension that has been subjected to the membrane separation process is supplied from the third filter unit 53 to the culture vessel 70 via the flow path F4, and the medium exchange process is completed.
  • the cell culture device 100 includes the processing unit (stirring unit 30 and separation unit 50), the culture vessel 70, and the cell supply unit 11 provided in the middle of the annular flow path F0 that forms the circulation route.
  • a first additive supply unit 12 and a second additive supply unit 13 that supply additives necessary for differentiation induction and a medium supply that supplies a fresh medium are supplied to the circular flow path F0 that forms a circulation route.
  • Part 14 is connected.
  • the cell culture device 100 includes a control unit 80 that controls liquid feeding through each flow path provided in the cell culture device 100. According to the cell culture device 100 having the above-described configuration, a series of processes required for inducing differentiation of pluripotent stem cells can be continuously performed in a closed system.
  • the separation unit 50 includes the first filter unit 51, the second filter unit 52, and the third filter unit 53, and these filter units.
  • Each include filter membranes having different aperture sizes.
  • the first filter unit 51, the second filter unit 52, and the third filter unit 53 are selectively used at a predetermined timing during the culture period. Thereby, it is possible to appropriately separate dead cells, undifferentiated cells, intermediates and differentiated cells generated during the culture period.
  • the control unit 80 performs liquid feeding for applying a shear stress to the mixture of the additive and a fresh medium. After that, the cell suspension and the mixture are combined and transferred to the stirring unit 30. That is, after the viscosity of the mixture containing the additive and the fresh medium is brought close to the viscosity of the cell suspension, the above mixture and the cell suspension are mixed. Thereby, when mixing the mixture containing a cell suspension, an additive, and a fresh culture medium, a favorable mixing state can be obtained.
  • the separation unit 50 includes three types of filter units, the first filter unit 51, the second filter unit 52, and the third filter unit 53, is illustrated.
  • the present invention is limited to this mode. Is not to be done.
  • the separation unit 50 only needs to include at least one of the first filter unit 51, the second filter unit 52, and the third filter unit 53.
  • the filter unit that performs the membrane separation process is exemplified as the separation unit by the separation unit 50, but is not limited to this mode.
  • the separation means by the separation unit 50 it is possible to use a centrifugal separation means, an excitation separation means, an electrolytic separation means, and a magnetic separation means in place of or in combination with the membrane separation means.
  • the storage container 20 can also be abbreviate
  • the piping that forms the flow path may have a function as a storage container.
  • FIG. 11 is a block diagram illustrating a configuration of a cell culture device 100A according to the second embodiment of the disclosed technology.
  • the mixture is circulated between the storage container 20 and the stirring unit 30 in order to apply a shear stress to the mixture containing the additive and the fresh medium. The case was illustrated.
  • a liquid feeding path for applying shear stress to the mixture of the additive and the fresh medium is different from that of the cell culture device 100 according to the first embodiment.
  • the cell culture apparatus 100A has a flow path F21 that connects the outlet and the inlet of the storage container 20 as a liquid feeding path for applying a shear stress to the mixture of the additive and the fresh medium.
  • control unit 80 controls the open / close valves V5, V13, and V14 to be in an open state and drives a predetermined pump in a state where the mixture containing the additive and the fresh medium is accommodated in the storage container 20.
  • the control unit 80 controls the open / close valves V5, V13, and V14 to be in an open state and drives a predetermined pump in a state where the mixture containing the additive and the fresh medium is accommodated in the storage container 20.
  • the control unit 80 controls the open / close valves V5, V13, and V14 to be in an open state and drives a predetermined pump in a state where the mixture containing the additive and the fresh medium is accommodated in the storage container 20.
  • the mixture containing the additive and the fresh medium contained in the storage container 20 flows out of the storage container 20, and returns to the storage container 20 via the flow path F21.
  • shear stress is applied to the above mixture due to friction with the wall surface in the pipe constituting the flow path F21, and the viscosity of the above mixture decreases
  • the viscosity of the mixture containing the additive and fresh medium contained in the storage container 20 is measured by the viscosity measuring unit 42 and the measurement result is notified to the control unit 80.
  • the control unit 80 flows the mixture until the difference value between the viscosity of the mixture notified from the viscosity measuring unit 42 and the viscosity of the cell suspension notified from the viscosity measuring unit 41 becomes a predetermined value or less.
  • the liquid feeding circulated through F21 is continuously performed. Note that the control unit 80 may continuously perform liquid feeding for circulating the mixture through the flow path F21 until the viscosity value of the mixture notified from the viscosity measuring unit 42 is equal to or lower than a predetermined value. . Further, the liquid feeding for circulating the above mixture through the flow path F21 may be continuously performed until a predetermined number of cycles is reached.
  • the control unit 80 controls the open / close valves V5, V13, and V14 to be closed and controls the open / close valve V1 to be open.
  • a predetermined pump is driven.
  • the cell suspension accommodated in the cell supply part 11 is transferred to the storage container 20 via the flow path F1, and merges with the mixture containing the additive and the fresh medium whose viscosity has been adjusted.
  • control unit 80 controls the open / close valves V5 and V6 to be in an open state and drives a predetermined pump.
  • the mixture containing the cell suspension, the additive, and the fresh medium is transferred from the storage container 20 to the stirring unit 30 via the flow path F2.
  • the mixture containing the cell suspension, the additive, and the fresh medium is stirred and mixed in the stirring unit 30.
  • the storage container 20 is made of a flexible material such as a plastic film and contains the mixture containing the additive and the fresh medium. It is also possible to use a method of applying force to 20 from the outside.
  • the temperature T1 inside the incubator 71 is kept constant at, for example, 37 ° C., and the temperature T2 outside the incubator 71 is room temperature (eg, 25 ° C.). Therefore, when the cell suspension is caused to flow into the culture vessel 70 accommodated inside the incubator 71 and when the cell suspension is caused to flow outside the incubator 71, the cells are subjected to thermal shock due to a temperature difference of 12 ° C. Receive. The cell may be damaged by this thermal shock.
  • FIG. 12 is a diagram illustrating a partial configuration of a cell culture device according to a third embodiment of the disclosed technology.
  • the cell culture device according to the third embodiment includes temperature gradient relaxation mechanisms 91 and 92 for relaxing the temperature gradient between the inside and the outside of the incubator 71 that accommodates the culture vessel 70.
  • the temperature gradient relaxation mechanism 91 includes a plurality of heating units 91a, 91b, 91c, and 91d.
  • the heating units 91a, 91b, 91c and 91d are provided in the flow path F4 through which the cell suspension flowing into the culture vessel 70 accommodated in the incubator 71 passes.
  • Each of the heating units 91a, 91b, 91c, and 91d can set the heating temperature independently, and heats the cell suspension that flows through the flow path F4 at different temperatures.
  • the set temperatures of the heating units 91a, 91b, 91c and 91d are T1a, T1b, T1c and T1d, respectively, T2 (25 ° C.) ⁇ T1d ⁇ T1c ⁇ T1b ⁇ T1a ⁇ T1 (37 ° C.)
  • the temperature of the heating unit is set.
  • the temperature of the cell suspension flowing through the flow path F4 gradually increases toward the temperature T1 (37 ° C.) inside the incubator 71. That is, the temperature gradient that is a temperature change per time of the cell suspension due to the temperature difference between the inside and outside of the incubator 71 is relaxed by the temperature gradient relaxation mechanism 91.
  • the temperature gradient is preferably 0.1 (° C./s) or less, for example.
  • the case where the temperature gradient relaxation mechanism 91 is configured by the four heating units 91a, 91b, 91c, and 91d is illustrated, but the number of heating units is appropriately increased or decreased so that a desired temperature gradient can be realized. Is possible.
  • the temperature gradient relaxation mechanism 92 includes a plurality of cooling units 92a, 92b, 92c, and 92d.
  • the cooling units 92a, 92b, 92c, and 92d are provided in the flow path F5 through which the cell suspension flowing out from the culture vessel 70 accommodated in the incubator 71 passes.
  • the cooling units 92a, 92b, 92c and 92d can set the cooling temperature independently of each other, and cool the cell suspension flowing through the flow path F5 at different temperatures.
  • the set temperatures of the cooling units 92a, 92b, 92c and 92d are T2a, T2b, T2c and T2d, respectively, T2 (25 ° C.) ⁇ T2d ⁇ T2c ⁇ T2b ⁇ T2a ⁇ T1 (37 ° C.)
  • the temperature of the cooling unit is set.
  • the temperature of the cell suspension flowing through the flow path F5 gradually falls toward the temperature T2 (25 ° C.) outside the incubator 71. That is, the temperature gradient which is a temperature change per time of the cell suspension due to the temperature difference inside and outside the incubator 71 is relaxed by the temperature gradient relaxation mechanism 92.
  • the temperature gradient is preferably 0.1 (° C./s) or less, for example.
  • the temperature gradient relaxation mechanism 92 is configured by the four cooling units 92a, 92b, 92c, and 92d is illustrated, but the number of cooling units is appropriately increased or decreased so that a desired temperature gradient can be realized. Is possible.
  • the temperature gradient of the temperature change of the cell suspension due to the temperature difference between the inside and outside of the incubator 71 is caused by the temperature gradient relaxation mechanisms 91 and 92. Alleviated. As a result, it is possible to reduce or eliminate the damage to the cells due to the temperature difference between the inside and outside of the incubator 71.
  • FIG. 13 is a diagram illustrating a configuration of a cell culture device 100B according to the fourth embodiment of the disclosed technology.
  • the cell culture device 100B according to the fourth embodiment further includes a cell state measurement unit 90.
  • the cell state measurement unit 90 includes a camera that images the cells accommodated in the culture container 70 and supplies an image obtained by the imaging to the control unit 80.
  • the control unit 80 detects the state of the cells accommodated in the culture vessel 70 from the image supplied from the cell state measurement unit 90. The control unit 80 determines whether or not to shift to each processing step shown in FIG. 2 based on the state of the cells detected from the image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cardiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Rheumatology (AREA)
  • Computer Hardware Design (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

細胞培養装置は、細胞を供給する細胞供給部と、培地を供給する培地供給部と、未分化細胞を分化誘導するための添加剤を供給する添加剤供給部と、処理対象物を撹拌する撹拌部と、処理対象物に含まれる成分を分離する分離部と、細胞を培養する培養容器と、を有するとともに、細胞供給部、撹拌部、分離部及び培養容器を経由する循環ルートを形成する第1の流路と、培地供給部と第1の流路とを接続する第2の流路と、添加剤供給部と第1の流路とを接続する第3の流路と、第1の流路、第2の流路及び第3の流路を介した送液を制御する制御部と、を含む。

Description

細胞培養装置及び細胞培養方法
 開示の技術は、細胞培養装置及び細胞培養方法に関する。
 細胞培養に関する処理を実施する細胞培養装置に関する技術として、例えば以下の技術が知られている。
 例えば、特開2015-100309号公報には、細胞を自動で培養する自動培養装置と、培養された細胞の状態に関する情報を管理する細胞管理部と、を有する自動培養システムと、自動培養装置で培養された細胞の状態を記憶する記憶部と、発注者の元に設置された外部コンピュータと、を備える細胞管理システムが記載されている。
 国際公開第2013/187359号には、円筒形状の培養槽と、培養槽の底部の内面の中央から直立する支柱と、支柱の上部分に回転可能に取り付けられる取付部にその上部が固着され支柱を回転中心として回転する撹拌翼と、を備える細胞培養装置が記載されている。
 特表2016-529897号公報には、並進可能なベッド及び可動マルチチャネルピペットを含むロボット液体処理システムを用いて幹細胞を培養するためのオートメーション化された方法が記載されている。
 胚性幹細胞(Embryonic Stem cell;ES細胞)、人工多能性幹細胞(induced Pluripotent Stem cell;iPS細胞)等の多能性幹細胞を、再生医療用途または創薬支援用途に適用する場合、多能性幹細胞から所望の細胞を作製する分化誘導を行う必要がある。分化誘導の手法として多能性幹細胞に化学的刺激または物理的刺激を与える手法が挙げられる。また、生体内において分化細胞は、外胚葉、中胚葉、内胚葉と呼ばれる三つの胚葉のいずれかから発生する。これに倣い、多能性幹細胞から分化細胞を得る場合、第一段階として、胚葉への分化誘導を行う。
 上記のような分化誘導に必要とされる一連の処理を、閉鎖系において連続的に実施することにより大量の分化細胞を生産することを可能とした細胞培養装置についてこれまで提案された例はなく、分化細胞の培養スケールを大きくすることは困難とされていた。また、人手が介在する培養手法においては、生物学的な汚染のリスクが高まるとともに、培養によって得られる細胞の均質性が低下するおそれがある。
 開示の技術は、上記した点に鑑みてなされたものであり、多能性幹細胞の分化誘導に必要とされる一連の処理を、閉鎖系において連続的に実施可能とすることを目的とする。
 開示の技術に係る細胞培養装置は、細胞を供給する細胞供給部と、培地を供給する培地供給部と、未分化細胞を分化誘導するための添加剤を供給する添加剤供給部と、処理対象物を撹拌する撹拌部と、処理対象物に含まれる成分を分離する分離部と、細胞を培養する培養容器と、を有するとともに、上記細胞供給部、上記撹拌部、上記分離部及び上記培養容器を経由する循環ルートを形成する第1の流路と、上記培地供給部と上記第1の流路とを接続する第2の流路と、上記添加剤供給部と上記第1の流路とを接続する第3の流路と、上記第1の流路、上記第2の流路及び上記第3の流路を介した送液を制御する制御部と、を含む。
 上記分離部は、上記未分化細胞と死細胞とを膜分離する第1のフィルタ膜、上記未分化細胞が分化細胞に分化される前の中間体と上記未分化細胞とを膜分離する第2のフィルタ膜、及び上記中間体と上記分化細胞とを膜分離する第3のフィルタ膜のうちの少なくとも1つを有していてもよい。
 上記分離部は、上記第1のフィルタ膜、上記第2のフィルタ膜、及び上記第3のフィルタ膜のうちの少なくとも2つを含む複数のフィルタ膜を有していてもよく、この場合、上記制御部は、上記複数のフィルタ膜のいずれかに上記細胞を含む細胞懸濁液を選択的に通過させる制御を行ってもよい。
 上記第1のフィルタ膜、上記第2のフィルタ膜及び上記第3のフィルタ膜の各々の膜面に設けられた開口のサイズは、互いに異なっていてもよい。
 上記制御部は、上記添加剤と上記培地との混合物にせん断応力を加えるための送液を行った後に、上記細胞を含む細胞懸濁液と上記混合物とを合流させて上記撹拌部に移送する制御を行うことが好ましい。
 細胞培養装置は、上記第1の流路の途中の、上記細胞供給部と上記撹拌部との間に設けられた貯留容器を更に含んでいてもよい。この場合、上記制御部は、上記貯留容器と上記撹拌部との間で上記混合物を循環させることにより上記混合物にせん断応力を加えた後に、上記細胞懸濁液と上記混合物とを上記貯留容器内において合流させて上記撹拌部に移送する制御を行ってもよい。また、上記制御部は、配管中に上記混合物を流すことにより上記混合物にせん断応力を加えた後に、上記細胞懸濁液と上記混合物とを上記貯留容器内において合流させて上記撹拌部に移送する制御を行ってもよい。
 上記制御部は、上記混合物の粘度が所定の粘度になるまで上記混合物にせん断応力を加えるための送液を連続的に行ってもよい。
 上記添加剤供給部は、Wntシグナル活性化剤を含む第1の添加剤を供給する第1の添加剤供給部と、Wntシグナル阻害剤を含む第2の添加剤を供給する第2の添加剤供給部と、を含んでいてもよい。
 細胞培養装置は、上記培養容器を収容し、上記培養容器の周囲温度を一定に保つインキュベータと、上記インキュベータの内部と外部との温度差によって上記第1の流路に沿って生じる温度勾配を緩和する温度勾配緩和機構と、を更に含んでいてもよい。
 開示の技術に係る細胞培養方法は、上記の細胞培養装置を用いて細胞を培養する細胞培養方法であって、上記制御部が、上記培地供給部から供給される上記細胞、上記添加剤供給部から供給される上記添加剤及び上記培地供給部から供給される上記培地を含む混合物を、上記撹拌部及び上記分離部を経由して上記培養容器に移送する制御を行う、というものである。
 開示の技術によれば、多能性幹細胞の分化誘導に必要とされる一連の処理を、閉鎖系において連続的に実施することが可能となる。
開示の技術の実施形態に係る細胞培養装置の構成を示すブロック図である。 開示の技術の実施形態に係る細胞培養装置において実施される、多能性幹細胞の分化誘導のための処理の流れの一例を示すフローチャートである。 開示の技術の実施形態に係る第1の添加剤を添加する処理を行う場合における細胞培養装置の動作を示す図である。 開示の技術の実施形態に係る培地交換処理を行う場合における細胞培養装置の動作を示す図である。 開示の技術の実施形態に係る第1の添加剤を再添加する場合における細胞培養装置の動作を示す図である。 開示の技術の実施形態に係る培地交換処理を行う場合における細胞培養装置の動作を示す図である。 開示の技術の実施形態に係る第2の添加剤を添加する場合における細胞培養装置の動作を示す図である。 開示の技術の実施形態に係る培地交換処理を行う場合における細胞培養装置の動作を示す図である。 開示の技術の実施形態に係る第2の添加剤を再添加する場合における細胞培養装置の動作を示す図である。 開示の技術の実施形態に係る培地交換処理を行う場合における細胞培養装置の動作を示す図である。 開示の技術の他の実施形態に係る細胞培養装置の構成を示すブロック図である。 開示の技術の他の実施形態に係る細胞培養装置の部分的な構成を示す図である。 開示の技術の他の実施形態に係る細胞培養装置の構成を示すブロック図である。
 以下、開示の技術の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一または等価な構成要素および部分には同一の参照符号を付与している。
[第1の実施形態]
 図1は、開示の技術の実施形態に係る細胞培養装置100の構成の一例を示すブロック図である。細胞培養装置100は、多能性幹細胞を分化細胞に分化誘導するために必要とされる複数の処理を自動で行い、所望の分化細胞を生産する細胞培養装置である。
 多能性幹細胞は、自己複製能と、外胚葉、中胚葉および内胚葉のいずれにも分化し得る多分化能とを有する細胞である。多能性幹細胞としては、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、胚性生殖細胞(Embryonic Germ cell;EG細胞)、胚性癌細胞(Embryonal Carcinoma cell;EC細胞)、多能性成体前駆細胞(Multipotent Adult Progenitor cell;MAP細胞)、成体多能性幹細胞(Adult Pluripotent Stem cell;APS細胞)、Muse細胞(Multi-lineage differentiating Stress Enduring cell)などが挙げられる。分化細胞は、多能性幹細胞が分化し、特定の形態及び機能を有する細胞である。本実施形態に係る細胞培養装置100を用いて生産される分化細胞としては、特に限定されないが、例えば、心筋細胞、神経細胞などが挙げられる。
 細胞培養装置100は、細胞供給部11、第1の添加剤供給部12、第2の添加剤供給部13及び培地供給部14を備える。また、細胞培養装置100は、貯留容器20、撹拌部30、粘度測定部41、42、分離部50、培養容器70及び制御部80を備える。
 細胞供給部11は、細胞培養装置100において培養される細胞を含む細胞懸濁液を、細胞培養装置100の流路内に供給する。細胞供給部11の流出口の近傍には、開閉バルブV1が設けられている。開閉バルブV1は、細胞供給部11から細胞懸濁液を供給する場合に開状態に制御され、それ以外の場合は閉状態に制御される。
 第1の添加剤供給部12は、多能性幹細胞の分化誘導に必要な、Wntシグナル活性化剤を含む第1の添加剤を細胞培養装置100の流路内に供給する。第1の添加剤供給部12の流出口の近傍には、開閉バルブV2が設けられている。開閉バルブV2は、第1の添加剤供給部12から第1の添加剤を供給する場合に開状態に制御され、それ以外の場合は閉状態に制御される。
 第2の添加剤供給部13は、多能性幹細胞の分化誘導に必要な、Wntシグナル阻害剤を含む第2の添加剤を細胞培養装置100の流路内に供給する。第2の添加剤供給部13の流出口の近傍には、開閉バルブV3が設けられている。開閉バルブV3は、第2の添加剤供給部13から第2の添加剤を供給する場合に開状態に制御され、それ以外の場合は閉状態に制御される。
 培地供給部14は、細胞の培養に使用する新鮮な培地(培養液)を細胞培養装置100の流路内に供給する。培地供給部14の流出口の近傍には、開閉バルブV4が設けられている。開閉バルブV4は、培地供給部14から培地を供給する場合に開状態に制御され、それ以外の場合は閉状態に制御される。
 貯留容器20は、細胞供給部11から供給される細胞懸濁液、第1の添加剤供給部12から供給される第1の添加剤、第2の添加剤供給部13から供給される第2の添加剤及び培地供給部14から供給される培地を一次的に貯留しておくための容器である。貯留容器20の形態は、特に限定されず、例えば、ガラス製またはステンレス製の容器、プラスチック製のバッグの形態を有する容器を使用することが可能である。
 撹拌部30は、流路F2を介して流入する処理対象物を撹拌及び混合する処理を行う処理部である。撹拌部30は、駆動部を有しないスタティックミキサとしての構成を有していることが好ましく、例えば、管状体と、管状体の内部に固定設置され、管状体の内部にらせん状の流路を形成する撹拌エレメントと、を含んで構成され得る。なお、撹拌部30は、撹拌翼を回転駆動することにより撹拌及び混合を行うものであってもよい。
 分離部50は、流路F3を介して流入する処理対象物(細胞懸濁液)に含まれる成分を分離する処理を行う処理部である。分離部50は、第1のフィルタ部51、第2のフィルタ部52、第3のフィルタ部53を含んで構成されている。第1のフィルタ部51、第2のフィルタ部52、第3のフィルタ部53は、それぞれ、細胞懸濁液が通過する膜面に形成された開口のサイズが互いに異なるフィルタ膜を備えている。すなわち、第1のフィルタ部51が備えるフィルタ膜の開口サイズが最も小さく、第3のフィルタ部53が備えるフィルタ膜の開口サイズが最も大きい。第2のフィルタ部52が備えるフィルタ膜の開口サイズは、第1のフィルタ部51が備えるフィルタ膜の開口サイズよりも大きく且つ第3のフィルタ部53が備えるフィルタ膜の開口サイズよりも小さい。第1のフィルタ部51、第2のフィルタ部52、及び第3のフィルタ部53は、それぞれ、流路F3を介して流入する処理対象物(細胞懸濁液)に対してフィルタ膜による膜分離処理を行う。
 第1のフィルタ部51は、多能性幹細胞が分化を開始する前の培養の初期段階において使用される。第1のフィルタ部51は、生存している未分化細胞と死細胞とを膜分離するのに好適な開口サイズのフィルタ膜を有する。多能性幹細胞において、生存している未分化細胞は、複数の細胞の凝集体である細胞塊を形成し、死細胞は細胞塊から離脱して単一細胞となる。従って、膜分離処理によって生存している未分化細胞と死細胞とを分離することが可能である。第1のフィルタ部51は、生存している未分化細胞(細胞塊)と死細胞とを含む細胞懸濁液の中から死細胞を除去し、未分化細胞を残す目的で使用される。
 第2のフィルタ部52は、多能性幹細胞が心筋細胞等の分化細胞に分化する前の中間体(外胚葉、中胚葉、内胚葉)に分化した段階で使用される。第2のフィルタ部52は、中間体に分化しない未分化細胞と中間体とを膜分離するのに好適な開口サイズのフィルタ膜を有する。中間体のサイズは、未分化細胞のサイズよりも大きいので、膜分離処理によって未分化細胞と中間体とを分離することが可能である。第2のフィルタ部52は、未分化細胞と中間体とを含む細胞懸濁液の中から未分化細胞を除去し、中間体を残す目的で使用される。
 第3のフィルタ部53は、多能性幹細胞が心筋細胞等の分化細胞に分化した段階で使用される。第3のフィルタ部53は、分化細胞に移行しない中間体と、分化細胞とを膜分離するのに好適な開口サイズのフィルタ膜を有する。心筋細胞等の分化細胞のサイズは、外胚葉、中胚葉、内胚葉等の中間体のサイズよりも大きいので、膜分離処理によって分化細胞と中間体とを分離することが可能である。第3のフィルタ部53は、分化細胞と中間体とを含む細胞懸濁液の中から中間体を除去し、分化細胞を残す目的で使用される。
 第1のフィルタ部51、第2のフィルタ部52、及び第3のフィルタ部53は、それぞれ、処理対象物(細胞懸濁液)がフィルタ膜の膜面に沿って流れるタンジェンシャルフローフィルタの構成を有していてもよい。また、第1のフィルタ部51、第2のフィルタ部52、及び第3のフィルタ部53は、それぞれ、処理対象物(細胞懸濁液)の流れ方向が、フィルタ膜の膜面に対して交差する方向となるデッドエンドフローフィルタの構成を有していてもよい。
 第1のフィルタ部51、第2のフィルタ部52、及び第3のフィルタ部53には、それぞれ回収容器61、62及び63が接続されている。第1のフィルタ部51、第2のフィルタ部52、及び第3のフィルタ部53において、フィルタ膜を透過した濾液は、それぞれ、回収容器61、62及び63に回収される。
 本実施形態に係る細胞培養装置100において、第1のフィルタ部51、第2のフィルタ部52、及び第3のフィルタ部53は、培養期間中における所定のタイミングで選択的に使用される。すなわち、流路F3を介して分離部50に流入する処理対象物(細胞懸濁液)は、第1のフィルタ部51、第2のフィルタ部52、及び第3のフィルタ部53のいずれかのフィルタ膜を通過する。
 第1のフィルタ部51、第2のフィルタ部52、及び第3のフィルタ部53の流入口の近傍には、それぞれ、開閉バルブV8、V9及びV10が設けられている。開閉バルブV8は、第1のフィルタ部51による膜分離処理を行う場合に開状態に制御され、それ以外の場合は、閉状態に制御される。開閉バルブV9は、第2のフィルタ部52による膜分離処理を行う場合に開状態に制御され、それ以外の場合は、閉状態に制御される。開閉バルブV10は、第3のフィルタ部53による膜分離処理を行う場合に開状態に制御され、それ以外の場合は、閉状態に制御される。
 ここで、分化誘導のための細胞培養において生じる、死細胞(シングルセル)(~20μm)、未分化細胞の一例であるiPS細胞の凝集体(50~150μm)、中間体の一例である中胚葉の凝集体(500~600μm)及び分化細胞の一例である心筋細胞の凝集体(200~300μm)を、第1のフィルタ部51、第2のフィルタ部52、及び第3のフィルタ部53において膜分離する場合における、各フィルタ部のフィルタ膜の好ましい開口サイズ及び膜分離後の移送先を、下記の表1に例示する。
Figure JPOXMLDOC01-appb-T000001

 なお、第1のフィルタ部51のフィルタ膜のより好ましい開口サイズは30μmであり、第2のフィルタ部52のフィルタ膜のより好ましい開口サイズは170μmであり、第3のフィルタ部53のフィルタ膜のより好ましい開口サイズは400μmである。
 培養容器70は、細胞を培養するための容器である。培養容器70の形態は、特に限定されず、例えば、ガラス製またはステンレス製の容器やプラスチック製のバッグの形態を有する容器を使用することが可能である。培養容器70は、例えば、温度30℃~40℃(好ましくは37℃)且つCO濃度2%~10%(好ましくは5%)に制御され且つ密閉されたインキュベータ71内に収容されている。
 粘度測定部41は、細胞供給部11に収容される細胞懸濁液の粘度を測定し、測定結果を制御部80に通知する。同様に、粘度測定部42は、貯留容器20に収容される液体の粘度を測定し、測定結果を制御部80に通知する。
 本実施形態に係る細胞培養装置100は、細胞供給部11、貯留容器20、撹拌部30、分離部50及び培養容器70をこの順序で経由する循環ルートを形成する循環流路F0を有する。循環流路F0は、流路F1、F2、F3、F4及びF5を含んで構成されている。流路F1は、細胞供給部11の流出口と貯留容器20の流入口とを接続する流路である。流路F2は、貯留容器20の流出口と撹拌部30の流入口とを接続する流路である。流路F3は、撹拌部30の流出口と分離部50の流入口とを接続する流路である。流路F4は、分離部50の流出口と培養容器70の流入口とを接続する流路である。流路F5は、培養容器70の流出口と細胞供給部11の流入口とを接続する流路である。なお、循環流路F0は、開示の技術における第1の流路の一例である。
 第1の添加剤供給部12は、流路F11を介して循環流路F0(流路F1)に接続され、第2の添加剤供給部13は、流路F12を介して循環流路F0(流路F1)に接続されている。培地供給部14は、流路F13を介して循環流路F0(流路F1)に接続されている。なお、流路F13は、開示の技術における第2の流路の一例である。流路F11及びF12は、開示の技術における第3の流路の一例である。
 貯留容器20と撹拌部30との間に設けられた流路F2には開閉バルブV5及びV6が設けられている。開閉バルブV5及びV6は、それぞれ、貯留容器20から撹拌部30に向けて送液を行う場合に開状態に制御され、それ以外の場合に閉状態に制御される。
 また、撹拌部30と分離部50との間に設けられた流路F3には開閉バルブV7が設けられている。開閉バルブV7は、撹拌部30から分離部50に向けて送液を行う場合に開状態に制御され、それ以外の場合に閉状態に制御される。
 細胞培養装置100は、撹拌部30の流出口と貯留容器20の流入口とを直結する流路F20を有する。すなわち、流路F20の一端は、流路F1に接続され、流路F20の他端は、流路F3に接続されている。流路F20には、開閉バルブV13及びV14が設けられている。開閉バルブV13及びV14は、撹拌部30から貯留容器20に向けて送液を行う場合に開状態に制御され、それ以外の場合に閉状態に制御される。
 細胞培養装置100は、流路F1~F5、F11~F12及びF20を介した送液を行う複数のポンプ(図示せず)を備えている。なお、細胞供給部11、第1の添加剤供給部12、第2の添加剤供給部13、培地供給部14、貯留容器20、撹拌部30、分離部50、培養容器70の各々の内部の圧力を調整することによって、これらの各要素間における送液を行ってもよい。
 制御部80は、開閉バルブV1~V14の開閉制御及びポンプ(図示せず)の駆動制御を行うことにより、流路F1~F5、F11~F12及びF20を介した送液の制御を行う。
 本実施形態に係る細胞培養装置100において実施される多能性幹細胞の分化誘導のための処理は、多能性幹細胞をWntシグナル活性剤を含む培地中で培養する第1の工程と、第1の工程で得られた細胞をWntシグナル阻害剤を含む培地中で培養する第2の工程と、を含む。なお、上記の第1の工程及び第2の工程を含む分化誘導の方法の詳細は、例えば、国際公開第2013/111875号に記載されている。
 図2は、細胞培養装置100において実施される、多能性幹細胞の分化誘導のための処理の流れの一例を示すフローチャートである。
 ステップS1において、Wntシグナル活性剤を含む第1の添加剤を添加した培地中で細胞を培養する。
 第1の添加剤を添加した培地中での培養の開始から所定時間が経過した後、ステップS2において培地交換を行う。なお、培養を開始してから最初に行われる培地交換処理を培地交換[1]とする。培養開始から培地交換[1]が完了するまでの期間は、例えば0.5日~2日程度である。
 ステップS3において、Wntシグナル活性剤を含む第1の添加剤を培地中に再添加する。
 第1の添加剤を再添加してから所定時間が経過した後、ステップS4において培地交換を行う。なお、第1の添加剤を再添加した後に行われる培地交換処理を培地交換[2]とする。
 ステップS5において、第1の添加剤の再添加及び培地交換[2]を含む一連の処理を1単位とする処理サイクルのサイクル数が、所定のサイクル数に達したか否かを判定する。処理サイクル数が、所定のサイクル数に達するまで、第1の添加剤の再添加及び培地交換[2]を含む一連の処理が繰り返し行われる。第1の添加剤の再添加及び培地交換[2]を含む一連の処理の1サイクル期間は、例えば1日~5日程度である。
 ステップS6において、Wntシグナル阻害剤を含む第2の添加剤を添加した培地中で細胞を培養する。
 第2の添加剤を添加してから所定時間が経過した後、ステップS7において培地交換を行う。なお、第2の添加剤を添加してから最初に行われる培地交換処理を培地交換[3]とする。第2の添加剤を添加してから培地交換[2]が完了するまでの期間は、例えば0.5日~2日程度である。
 ステップS8において、Wntシグナル阻害剤を含む第2の添加剤を培地中に再添加する。
 第2の添加剤を再添加してから所定時間が経過した後、ステップS9において培地交換を行う。なお、第2の添加剤を再添加した後に行われる培地交換処理を培地交換[4]とする。
 ステップS10において、第2の添加剤の再添加及び培地交換[4]を含む一連の処理を1単位とする処理サイクルのサイクル数が、所定のサイクル数に達したか否かを判定する。処理サイクル数が、所定のサイクル数に達するまで、第2の添加剤の再添加及び培地交換[4]を含む一連の処理が繰り返し行われる。第2の添加剤の再添加及び培地交換[4]を含む一連の処理の1サイクル期間は、例えば1日~5日程度である。
 以下に、上記の各ステップに対応する細胞培養装置100の動作について説明する。なお、説明の煩雑さを回避する観点から、以下の説明では、開閉バルブV1~V14の開閉制御に関し、これらの開閉バルブV1~V14を開状態に制御する場合のみについて言及する。開閉バルブV1~V14を開状態に制御された後、適宜閉状態に制御されるものとする。
<第1の添加剤の添加>
 図3は、図2に示すステップS1において実施される処理、すなわち、第1の添加剤を添加する処理を行う場合における細胞培養装置100の動作を示す図である。図3において、処理対象物(細胞懸濁液、培地、添加剤及びこれらの混合物)の各処理部への供給順序が示されている。なお、細胞供給部11には、細胞培養装置100を用いて分化誘導を行う多能性幹細胞を含む細胞懸濁液が収容されているものとする。また、細胞供給部11に収容された細胞懸濁液の粘度が粘度測定部41によって測定され、測定結果が制御部80に通知されているものとする。
 ステップA1において、制御部80は、開閉バルブV2及びV4を開状態に制御するとともに所定のポンプを駆動する。これにより、Wntシグナル活性化剤を含む第1の添加剤が、第1の添加剤供給部12から貯留容器20に供給されるとともに、新鮮な培地が、培地供給部14から貯留容器20に供給される。これにより、第1の添加剤及び新鮮な培地を含む混合物が、貯留容器20に収容される。貯留容器20に収容された第1の添加剤及び新鮮な培地を含む混合物の粘度は、粘度測定部42によって測定され、測定結果が制御部80に通知される。
 ここで、貯留容器20に収容されている第1の添加剤及び新鮮な培地を含む混合物の粘度は、細胞供給部11に収容されている細胞懸濁液の粘度よりも高いことが想定される。第1の添加剤及び新鮮な培地を含む混合物及び細胞懸濁液は、後に混合されることになるが、第1の添加剤及び新鮮な培地を含む混合物と細胞懸濁液との粘度差が大きいと良好な混合状態が得られない場合がある。従って、第1の添加剤及び新鮮な培地を含む混合物の粘度を、細胞懸濁液の粘度と同等にした後、両者を混合することが好ましい。第1の添加剤及び新鮮な培地を含む混合物は、チキソ性を有しており、せん断応力を加えることで粘度を低下させることが可能である。そこで、制御部80は、第1の添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための送液を行った後に、細胞懸濁液と上記混合物とを合流させて撹拌部30に移送する制御を行う。具体的には、制御部80は、貯留容器20と撹拌部30との間で第1の添加剤及び新鮮な培地を含む混合物を循環させることにより上記の混合物にせん断応力を加える。
 すなわち、ステップA2において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、貯留容器20に収容されている第1の添加剤及び新鮮な培地を含む混合物が流路F2を経由して撹拌部30に移送される。第1の添加剤及び新鮮な培地を含む混合物は、撹拌部30において撹拌されることで、せん断応力が加えられ、粘度が低下する。
 続いて、ステップA3において、制御部80は、開閉バルブV13及びV14を開状態に制御するとともに所定のポンプを駆動する。これにより、撹拌部30を通過した第1の添加剤及び新鮮な培地を含む混合物は、流路F20を経由して貯留容器20に戻される。貯留容器20に収容された第1の添加剤及び新鮮な培地を含む混合物の粘度は、粘度測定部42によって測定され、測定結果が制御部80に通知される。制御部80は、粘度測定部42から通知される混合物の粘度と、粘度測定部41から通知される細胞懸濁液の粘度との差分値が所定値以下になるまで、貯留容器20と撹拌部30との間で上記の混合物を循環させる送液を連続して行う。なお、制御部80は、粘度測定部41から通知される細胞懸濁液の粘度とは無関係に粘度測定部42から通知される混合物の粘度の値が所定値以下になるまで、貯留容器20と撹拌部30との間で上記の混合物を循環させる送液を連続して行ってもよい。また、貯留容器20と撹拌部30との間で上記の混合物を循環させる送液を、予め定められたサイクル数に達するまで連続して行ってもよい。
 第1の添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための送液が完了すると、ステップA4において、制御部80は、開閉バルブV1を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞供給部11に収容されている細胞懸濁液が、流路F1を経由して貯留容器20に移送され、粘度調整がなされた第1の添加剤及び新鮮な培地を含む混合物と合流する。
 ステップA5において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物が、貯留容器20から流路F2を経由して撹拌部30に移送される。細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物は、撹拌部30において撹拌、混合される。第1の添加剤及び新鮮な培地を含む混合物にせん断応力を加えて粘度調整を実施しておくことで、細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物において良好な混合状態を得ることができる。
 ステップA6において、制御部80は、開閉バルブV7及びV8を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物が、撹拌部30から流路F3を経由して分離部50の第1のフィルタ部51に供給される。細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物は、第1のフィルタ部51において膜分離処理が施され、生存している細胞と死細胞とが分離される。第1のフィルタ部51のフィルタ膜を透過した死細胞を含む濾液は回収容器61に回収される。
 ステップA7において、制御部80は、開閉バルブV11を開状態に制御するとともに所定のポンプを駆動する。これにより、死細胞が除去された細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物が、第1のフィルタ部51から流路F4を経由して培養容器70に供給される。多能性幹細胞がWntシグナル活性化剤を含む第1の添加剤が添加された培地とともに培養容器70に収容されることで、分化誘導のための培養が開始される。
<培地交換[1]>
 図4は、図2に示すステップS2において実施される処理、すなわち、培地交換[1]を行う場合における細胞培養装置100の動作を示す図である。図4において、処理対象物(細胞懸濁液、培地、添加剤及びこれらの混合物)の各処理部への供給順序が示されている
 ステップB1において、制御部80は、開閉バルブV12を開状態に制御するとともに所定のポンプを駆動する。これにより使用済み培地を含む細胞懸濁液が、培養容器70から流路F5を経由して細胞供給部11に移送される。
 ステップB2において、制御部80は、開閉バルブV1及びV4を開状態に制御するとともに所定のポンプを駆動する。これにより、使用済み培地を含む細胞懸濁液が、細胞供給部11から流路F1を経由して貯留容器20に移送されるとともに、新鮮な培地が、培地供給部14から貯留容器20に供給される。
 ステップB3において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、新鮮な培地が追加された細胞懸濁液が、貯留容器20から流路F2を経由して撹拌部30に移送される。新鮮な培地が追加された細胞懸濁液は、撹拌部30において撹拌、混合される。
 ステップB4において、制御部80は、開閉バルブV7及びV8を開状態に制御するとともに所定のポンプを駆動する。これにより、新鮮な培地が追加された細胞懸濁液が、撹拌部30から流路F3を経由して分離部50の第1のフィルタ部51に供給される。新鮮な培地が追加された細胞懸濁液は、第1のフィルタ部51において膜分離処理が施され、使用済み培地及び新鮮な培地を含む混合物の一部が、死細胞とともに除去される。第1のフィルタ部51のフィルタ膜を透過した死細胞を含む濾液は回収容器61に回収される。
 ステップB5において、制御部80は、開閉バルブV11を開状態に制御するとともに所定のポンプを駆動する。これにより、膜分離処理済みの細胞懸濁液が、第1のフィルタ部51から流路F4を経由して培養容器70に供給され、培地交換処理が完了する。
<第1の添加剤の再添加>
 図5は、図2に示すステップS3において実施される処理、すなわち、第1の添加剤を再添加する場合における細胞培養装置100の動作を示す図である。図5において、処理対象物(細胞懸濁液、培地、添加剤及びこれらの混合物)の各処理部への供給順序が示されている。
 ステップC1において、制御部80は、開閉バルブV2及びV4を開状態に制御するとともに所定のポンプを駆動する。これにより、Wntシグナル活性化剤を含む第1の添加剤が、第1の添加剤供給部12から貯留容器20に供給されるとともに、新鮮な培地が、培地供給部14から貯留容器20に供給される。これにより、第1の添加剤及び新鮮な培地を含む混合物が、貯留容器20に収容される。貯留容器20に収容された第1の添加剤及び新鮮な培地を含む混合物の粘度は、粘度測定部42によって測定され、測定結果が制御部80に通知される。
 ここで、貯留容器20に収容されている第1の添加剤及び新鮮な培地を含む混合物の粘度は、培養容器70に収容されている細胞懸濁液の粘度よりも高いことが想定される。第1の添加剤及び新鮮な培地を含む混合物及び細胞懸濁液は、後に混合されることになるが、第1の添加剤及び新鮮な培地を含む混合物と細胞懸濁液との粘度差が大きいと良好な混合状態が得られない場合がある。従って、第1の添加剤及び新鮮な培地を含む混合物の粘度を、細胞懸濁液の粘度と同等にした後、両者を混合することが好ましい。第1の添加剤及び新鮮な培地を含む混合物は、チキソ性を有しており、せん断応力を加えることで粘度が低下させることが可能である。そこで、制御部80は、第1の添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための送液を行った後に、細胞懸濁液と上記混合物とを合流させて撹拌部30に移送する制御を行う。具体的には、制御部80は、貯留容器20と撹拌部30との間で第1の添加剤及び新鮮な培地を含む混合物を循環させることにより上記の混合物にせん断応力を加える。
 すなわち、ステップC2において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、貯留容器20に収容されている第1の添加剤及び新鮮な培地を含む混合物が流路F2を経由して撹拌部30に移送される。第1の添加剤及び新鮮な培地を含む混合物は、撹拌部30において撹拌されることで、せん断応力が加えられ、粘度が低下する。
 続いて、ステップC3において、制御部80は、開閉バルブV13及びV14を開状態に制御するとともに所定のポンプを駆動する。これにより、撹拌部30を通過した第1の添加剤及び新鮮な培地を含む混合物は、流路F20を経由して貯留容器20に戻される。貯留容器20に収容された第1の添加剤及び新鮮な培地を含む混合物の粘度は、粘度測定部42によって測定され、測定結果が制御部80に通知される。制御部80は、粘度測定部42から通知される混合物の粘度の値が所定値以下になるまで、貯留容器20と撹拌部30との間で上記の混合物を循環させる送液を連続して行う。なお、制御部80は、貯留容器20と撹拌部30との間で上記の混合物を循環させる送液を、予め定められたサイクル数に達するまで連続して行ってもよい。
 第1の添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための送液が完了すると、ステップC4において、制御部80は、開閉バルブV12を開状態に制御するとともに所定のポンプを駆動する。これにより細胞懸濁液が、培養容器70から流路F5を経由して細胞供給部11に移送される。
 ステップC5において、制御部80は、開閉バルブV1を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞供給部11に収容されている細胞懸濁液が、流路F1を経由して貯留容器20に移送され、粘度調整がなされた第1の添加剤及び新鮮な培地を含む混合物と合流する。
 ステップC6において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物が、貯留容器20から流路F2を経由して撹拌部30に移送される。細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物は、撹拌部30において撹拌、混合される。第1の添加剤及び新鮮な培地を含む混合物にせん断応力を加えて粘度調整を実施しておくことで、細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物において良好な混合状態を得ることができる。
 ステップC7において、制御部80は、開閉バルブV7及びV9を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物が、撹拌部30から流路F3を経由して分離部50の第2のフィルタ部52に供給される。細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物は、第2のフィルタ部52において膜分離処理が施され、中間体(外胚葉、中胚葉、内胚葉)に分化しない未分化細胞及び死細胞と、中間体とが分離される。第2のフィルタ部52のフィルタ膜を透過した未分化細胞及び死細胞を含む濾液は回収容器62に回収される。
 ステップC8において、制御部80は、開閉バルブV11を開状態に制御するとともに所定のポンプを駆動する。これにより、未分化細胞及び死細胞が除去され、中間体が残された細胞懸濁液、第1の添加剤及び新鮮な培地を含む混合物が、第2のフィルタ部52から流路F4を経由して培養容器70に供給される。
<培地交換[2]>
 図6は、図2に示すステップS4において実施される処理、すなわち、培地交換[2]を行う場合における細胞培養装置100の動作を示す図である。図6において、処理対象物(細胞懸濁液、培地、添加剤及びこれらの混合物)の各処理部への供給順序が示されている。
 ステップD1において、制御部80は、開閉バルブV12を開状態に制御するとともに所定のポンプを駆動する。これにより使用済み培地を含む細胞懸濁液が、培養容器70から流路F5を経由して細胞供給部11に移送される。
 ステップD2において、制御部80は、開閉バルブV1及びV4を開状態に制御するとともに所定のポンプを駆動する。これにより、使用済み培地を含む細胞懸濁液が、細胞供給部11から流路F1を経由して貯留容器20に移送されるとともに、新鮮な培地が、培地供給部14から貯留容器20に供給される。
 ステップD3において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、新鮮な培地が追加された細胞懸濁液が、貯留容器20から流路F2を経由して撹拌部30に移送される。新鮮な培地が追加された細胞懸濁液は、撹拌部30において撹拌、混合される。
 ステップD4において、制御部80は、開閉バルブV7及びV9を開状態に制御するとともに所定のポンプを駆動する。これにより、新鮮な培地が追加された細胞懸濁液が、撹拌部30から流路F3を経由して分離部50の第2のフィルタ部52に供給される。新鮮な培地が追加された細胞懸濁液は、第2のフィルタ部52において膜分離処理が施され、使用済み培地及び新鮮な培地を含む混合物の一部が、死細胞及び未分化細胞とともに除去される。第2のフィルタ部52のフィルタ膜を透過した死細胞及び未分化細胞を含む濾液は回収容器62に回収される。
 ステップD5において、制御部80は、開閉バルブV11を開状態に制御するとともに所定のポンプを駆動する。これにより、膜分離処理済みの細胞懸濁液が、第2のフィルタ部52から流路F4を経由して培養容器70に供給され、培地交換処理が完了する。
<第2の添加剤の添加>
 図7は、図2に示すステップS6において実施される処理、すなわち、第2の添加剤を添加する場合における細胞培養装置100の動作を示す図である。図7において、処理対象物(細胞懸濁液、培地、添加剤及びこれらの混合物)の各処理部への供給順序が示されている。
 ステップE1において、制御部80は、開閉バルブV3及びV4を開状態に制御するとともに所定のポンプを駆動する。これにより、Wntシグナル阻害剤を含む第2の添加剤が、第2の添加剤供給部13から貯留容器20に供給されるとともに、新鮮な培地が、培地供給部14から貯留容器20に供給される。これにより、第2の添加剤及び新鮮な培地を含む混合物が、貯留容器20に収容される。貯留容器20に収容された第2の添加剤及び新鮮な培地を含む混合物の粘度は、粘度測定部42によって測定され、測定結果が制御部80に通知される。
 ここで、貯留容器20に収容されている第2の添加剤及び新鮮な培地を含む混合物の粘度は、培養容器70に収容されている細胞懸濁液の粘度よりも高いことが想定される。第2の添加剤及び新鮮な培地を含む混合物及び細胞懸濁液は、後に混合されることになるが、第2の添加剤及び新鮮な培地を含む混合物と細胞懸濁液との粘度差が大きいと良好な混合状態が得られない場合がある。従って、第2の添加剤及び新鮮な培地を含む混合物の粘度を、細胞懸濁液の粘度と同等にした後、両者を混合することが好ましい。第2の添加剤及び新鮮な培地を含む混合物は、チキソ性を有しており、せん断応力を加えることで粘度を低下させることが可能である。そこで、制御部80は、第2の添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための送液を行った後に、細胞懸濁液と上記混合物とを合流させて撹拌部30に移送する制御を行う。具体的には、制御部80は、貯留容器20と撹拌部30との間で第2の添加剤及び新鮮な培地を含む混合物を循環させることにより上記の混合物にせん断応力を加える。
 すなわち、ステップE2において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、貯留容器20に収容されている第2の添加剤及び新鮮な培地を含む混合物が流路F2を経由して撹拌部30に移送される。第2の添加剤及び新鮮な培地を含む混合物は、撹拌部30において撹拌されることで、せん断応力が加えられ、粘度が低下する。
 続いて、ステップE3において、制御部80は、開閉バルブV13及びV14を開状態に制御するとともに所定のポンプを駆動する。これにより、撹拌部30を通過した第2の添加剤及び新鮮な培地を含む混合物は、流路F20を経由して貯留容器20に戻される。貯留容器20に収容された第2の添加剤及び新鮮な培地を含む混合物の粘度は、粘度測定部42によって測定され、測定結果が制御部80に通知される。制御部80は、粘度測定部42から通知される混合物の粘度の値が所定値以下になるまで、貯留容器20と撹拌部30との間で上記の混合物を循環させる送液を連続して行う。なお、制御部80は、貯留容器20と撹拌部30との間で上記の混合物を循環させる送液を、予め定められたサイクル数に達するまで連続して行ってもよい。
 第2の添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための送液が完了すると、ステップE4において、制御部80は、開閉バルブV12を開状態に制御するとともに所定のポンプを駆動する。これにより細胞懸濁液が、培養容器70から流路F5を経由して細胞供給部11に移送される。
 ステップE5において、制御部80は、開閉バルブV1を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞供給部11に収容されている細胞懸濁液が、流路F1を経由して貯留容器20に移送され、粘度調整がなされた第2の添加剤及び新鮮な培地を含む混合物と合流する。
 ステップE6において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物が、貯留容器20から流路F2を経由して撹拌部30に移送される。細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物は、撹拌部30において撹拌、混合される。第2の添加剤及び新鮮な培地を含む混合物にせん断応力を加えて粘度調整を実施しておくことで、細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物において良好な混合状態を得ることができる。
 ステップE7において、制御部80は、開閉バルブV7及びV9を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物が、撹拌部30から流路F3を経由して分離部50の第2のフィルタ部52に供給される。細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物は、第2のフィルタ部52において膜分離処理が施され、中間体(外胚葉、中胚葉、内胚葉)に分化しない未分化細胞及び死細胞と、中間体とが分離される。第2のフィルタ部52のフィルタ膜を透過した未分化細胞及び死細胞を含む濾液は回収容器62に回収される。
 ステップE8において、制御部80は、開閉バルブV11を開状態に制御するとともに所定のポンプを駆動する。これにより、未分化細胞及び死細胞が除去され、中間体が残された細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物が、第2のフィルタ部52から流路F4を経由して培養容器70に供給される。
<培地交換[3]>
 図8は、図2に示すステップS7において実施される処理、すなわち、培地交換[3]を行う場合における細胞培養装置100の動作を示す図である。図8において、処理対象物(細胞懸濁液、培地、添加剤及びこれらの混合物)の各処理部への供給順序が示されている。
 ステップG1において、制御部80は、開閉バルブV12を開状態に制御するとともに所定のポンプを駆動する。これにより使用済み培地を含む細胞懸濁液が、培養容器70から流路F5を経由して細胞供給部11に移送される。
 ステップG2において、制御部80は、開閉バルブV1及びV4を開状態に制御するとともに所定のポンプを駆動する。これにより、使用済み培地を含む細胞懸濁液が、細胞供給部11から流路F1を経由して貯留容器20に移送されるとともに、新鮮な培地が、培地供給部14から貯留容器20に供給される。
 ステップG3において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、新鮮な培地が追加された細胞懸濁液が、貯留容器20から流路F2を経由して撹拌部30に移送される。新鮮な培地が追加された細胞懸濁液は、撹拌部30において撹拌、混合される。
 ステップG4において、制御部80は、開閉バルブV7及びV9を開状態に制御するとともに所定のポンプを駆動する。これにより、新鮮な培地が追加された細胞懸濁液が、撹拌部30から流路F3を経由して分離部50の第2のフィルタ部52に供給される。新鮮な培地が追加された細胞懸濁液は、第2のフィルタ部52において膜分離処理が施され、使用済み培地及び新鮮な培地を含む混合物の一部が、死細胞及び未分化細胞とともに除去される。第2のフィルタ部52のフィルタ膜を透過した死細胞及び未分化細胞を含む濾液は回収容器62に回収される。
 ステップG5において、制御部80は、開閉バルブV11を開状態に制御するとともに所定のポンプを駆動する。これにより、膜分離処理済みの細胞懸濁液が、第2のフィルタ部52から流路F4を経由して培養容器70に供給され、培地交換処理が完了する。
<第2の添加剤の再添加>
 図9は、図2に示すステップS8において実施される処理、すなわち、第2の添加剤を再添加する場合における細胞培養装置100の動作を示す図である。図9において、処理対象物(細胞懸濁液、培地、添加剤及びこれらの混合物)の各処理部への供給順序が示されている。
 ステップH1において、制御部80は、開閉バルブV3及びV4を開状態に制御するとともに所定のポンプを駆動する。これにより、Wntシグナル阻害剤を含む第2の添加剤が、第2の添加剤供給部13から貯留容器20に供給されるとともに、新鮮な培地が、培地供給部14から貯留容器20に供給される。これにより、第2の添加剤及び新鮮な培地を含む混合物が、貯留容器20に収容される。貯留容器20に収容された第2の添加剤及び新鮮な培地を含む混合物の粘度は、粘度測定部42によって測定され、測定結果が制御部80に通知される。
 ここで、貯留容器20に収容されている第2の添加剤及び新鮮な培地を含む混合物の粘度は、培養容器70に収容されている細胞懸濁液の粘度よりも高いことが想定される。第2の添加剤及び新鮮な培地を含む混合物及び細胞懸濁液は、後に混合されることになるが、第2の添加剤及び新鮮な培地を含む混合物と細胞懸濁液との粘度差が大きいと良好な混合状態が得られない場合がある。従って、第2の添加剤及び新鮮な培地を含む混合物の粘度を、細胞懸濁液の粘度と同等にした後、両者を混合することが好ましい。第2の添加剤及び新鮮な培地を含む混合物は、チキソ性を有しており、せん断応力を加えることで粘度を低下させることが可能である。そこで、制御部80は、第2の添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための送液を行った後に、細胞懸濁液と上記混合物とを合流させて撹拌部30に移送する制御を行う。具体的には、制御部80は、貯留容器20と撹拌部30との間で第2の添加剤及び新鮮な培地を含む混合物を循環させることにより上記の混合物にせん断応力を加える。
 すなわち、ステップH2において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、貯留容器20に収容されている第2の添加剤及び新鮮な培地を含む混合物が流路F2を経由して撹拌部30に移送される。第2の添加剤及び新鮮な培地を含む混合物は、撹拌部30において撹拌されることで、せん断応力が加えられ、粘度が低下する。
 続いて、ステップH3において、制御部80は、開閉バルブV13及びV14を開状態に制御するとともに所定のポンプを駆動する。これにより、撹拌部30を通過した第2の添加剤及び新鮮な培地を含む混合物は、流路F20を経由して貯留容器20に戻される。貯留容器20に収容された第2の添加剤及び新鮮な培地を含む混合物の粘度は、粘度測定部42によって測定され、測定結果が制御部80に通知される。制御部80は、粘度測定部42から通知される混合物の粘度の値が所定値以下になるまで、貯留容器20と撹拌部30との間で上記の混合物を循環させる送液を連続して行う。なお、制御部80は、貯留容器20と撹拌部30との間で上記の混合物を循環させる送液を、予め定められたサイクル数に達するまで連続して行ってもよい。
 第2の添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための送液が完了すると、ステップH4において、制御部80は、開閉バルブV12を開状態に制御するとともに所定のポンプを駆動する。これにより細胞懸濁液が、培養容器70から流路F5を経由して細胞供給部11に移送される。
 ステップH5において、制御部80は、開閉バルブV1を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞供給部11に収容されている細胞懸濁液が、流路F1を経由して貯留容器20に移送され、粘度調整がなされた第2の添加剤及び新鮮な培地を含む混合物と合流する。
 ステップH6において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物が、貯留容器20から流路F2を経由して撹拌部30に移送される。細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物は、撹拌部30において撹拌、混合される。第2の添加剤及び新鮮な培地を含む混合物にせん断応力を加えて粘度調整を実施しておくことで、細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物において良好な混合状態を得ることができる。
 ステップH7において、制御部80は、開閉バルブV7及びV10を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物が、撹拌部30から流路F3を経由して分離部50の第3のフィルタ部53に供給される。細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物は、第3のフィルタ部53において膜分離処理が施され、分化細胞に移行しない中間体(外胚葉、中胚葉、内胚葉)、中間体に分化しない未分化細胞及び死細胞と、分化細胞とが分離される。第3のフィルタ部53のフィルタ膜を透過した中間体、未分化細胞及び死細胞を含む濾液は回収容器63に回収される。
 ステップH8において、制御部80は、開閉バルブV11を開状態に制御するとともに所定のポンプを駆動する。これにより、中間体、未分化細胞及び死細胞が除去され、分化細胞が残された細胞懸濁液、第2の添加剤及び新鮮な培地を含む混合物が、第3のフィルタ部53から流路F4を経由して培養容器70に供給される。
<培地交換[4]>
 図10は、図2に示すステップS9において実施される処理、すなわち、培地交換[4]を行う場合における細胞培養装置100の動作を示す図である。図10において、処理対象物(細胞懸濁液、培地、添加剤及びこれらの混合物)の各処理部への供給順序が示されている。
 ステップI1において、制御部80は、開閉バルブV12を開状態に制御するとともに所定のポンプを駆動する。これにより使用済み培地を含む細胞懸濁液が、培養容器70から流路F5を経由して細胞供給部11に移送される。
 ステップI2において、制御部80は、開閉バルブV1及びV4を開状態に制御するとともに所定のポンプを駆動する。これにより、使用済み培地を含む細胞懸濁液が、細胞供給部11から流路F1を経由して貯留容器20に移送されるとともに、新鮮な培地が、培地供給部14から貯留容器20に供給される。
 ステップI3において、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、新鮮な培地が追加された細胞懸濁液が、貯留容器20から流路F2を経由して撹拌部30に移送される。新鮮な培地が追加された細胞懸濁液は、撹拌部30において撹拌、混合される。
 ステップI4において、制御部80は、開閉バルブV7及びV10を開状態に制御するとともに所定のポンプを駆動する。これにより、新鮮な培地が追加された細胞懸濁液が、撹拌部30から流路F3を経由して分離部50の第3のフィルタ部53に供給される。新鮮な培地が追加された細胞懸濁液は、第3のフィルタ部53において膜分離処理が施され、使用済み培地及び新鮮な培地を含む混合物の一部が、中間体(外胚葉、中胚葉、内胚葉)、未分化細胞及び死細胞とともに除去される。第3のフィルタ部53のフィルタ膜を透過した中間体、未分化細胞、死細胞は回収容器62に回収される。
 ステップI5において、制御部80は、開閉バルブV11を開状態に制御するとともに所定のポンプを駆動する。これにより、膜分離処理済みの細胞懸濁液が、第3のフィルタ部53から流路F4を経由して培養容器70に供給され、培地交換処理が完了する。
 以上のように、細胞培養装置100は、循環ルートを形成する環状流路F0の途中に設けられた処理部(撹拌部30及び分離部50)、培養容器70、細胞供給部11を有する。また、循環ルートを形成する環状流路F0には、分化誘導に必要な添加剤を供給する第1の添加剤供給部12及び第2の添加剤供給部13並びに新鮮な培地を供給する培地供給部14が接続されている。また、細胞培養装置100は、細胞培養装置100に設けられた各流路を介した送液を制御する制御部80を有する。上記の構成を有する細胞培養装置100によれば、多能性幹細胞の分化誘導に必要とされる一連の処理を、閉鎖系において連続的に実施することが可能となる。
 また、本実施形態に係る細胞培養装置100によれば、分離部50が、第1のフィルタ部51、第2のフィルタ部52及び第3のフィルタ部53を含んで構成され、これらのフィルタ部は、それぞれ、開口のサイズが互いに異なるフィルタ膜を備える。第1のフィルタ部51、第2のフィルタ部52及び第3のフィルタ部53は、培養期間中における所定のタイミングで選択的に使用される。これにより、培養期間中に生じる、死細胞、未分化細胞、中間体及び分化細胞を、適切に分離することが可能となる。
 また、本実施形態に係る細胞培養装置100によれば、添加剤を添加または再添加する場合、制御部80は、添加剤と新鮮な培地との混合物にせん断応力を加えるための送液を行った後に、細胞懸濁液と上記の混合物とを合流させて撹拌部30に移送する制御を行う。すなわち、添加剤及び新鮮な培地を含む混合物の粘度を、細胞懸濁液の粘度に近づけた後に、上記の混合物と細胞懸濁液との混合を行う。これにより、細胞懸濁液、添加剤及び新鮮な培地を含む混合物を混合する場合に、良好な混合状態を得ることができる。
 なお、本実施形態では、分離部50が、第1のフィルタ部51、第2のフィルタ部52及び第3のフィルタ部53の3種類のフィルタ部を有する場合を例示したが、この態様に限定されるものではない。分離部50は、第1のフィルタ部51、第2のフィルタ部52及び第3のフィルタ部53のうちの少なくとも1つを含んでいればよい。
 また、本実施形態では、分離部50による分離手段として、膜分離処理を行うフィルタ部を例示したが、この態様に限定されるものではない。分離部50による分離手段として、膜分離手段に代えて、または膜分離手段と併用して、遠心分離手段、加振分離手段、電解分離手段及び磁気分離手段を用いることも可能である。
 また、本実施形態では、細胞培養装置100が貯留容器20を備える場合を例示したが、貯留容器20を省略することも可能である。貯留容器20を省略する場合、流路を形成する配管に貯留容器としての機能を担わせるようにしてもよい。
[第2の実施形態]
 図11は、開示の技術の第2の実施形態に係る細胞培養装置100Aの構成を示すブロック図である。上記の第1の実施形態に係る細胞培養装置100においては、添加剤及び新鮮な培地を含む混合物にせん断応力を加えるために、上記の混合物を貯留容器20と撹拌部30との間で循環させる場合を例示した。第2の実施形態に係る細胞培養装置100Aにおいては、添加剤と新鮮な培地との混合物にせん断応力を加えるための送液経路が、第1の実施形態に係る細胞培養装置100と異なる。
 第2の実施形態に係る細胞培養装置100Aは、添加剤と新鮮な培地との混合物にせん断応力を加えるための送液経路として、貯留容器20の流出口と流入口とを接続する流路F21を有する。制御部80は、流路F21を構成する配管中に添加剤及び新鮮な培地を含む混合物を流すことにより上記の混合物にせん断応力を加えた後に、細胞懸濁液と上記の混合物とを貯留容器20内において合流させて撹拌部30に移送する。
 具体的には、制御部80は、添加剤及び新鮮な培地を含む混合物が貯留容器20に収容されている状態において、開閉バルブV5、V13及びV14を開状態に制御するとともに所定のポンプを駆動する。これにより、貯留容器20に収容されている添加剤及び新鮮な培地を含む混合物が貯留容器20から流出し、流路F21を経由して貯留容器20に戻る。添加剤及び新鮮な培地を含む混合物は、流路F21に流れる間、流路F21を構成する配管内の壁面との摩擦によって、上記の混合物にせん断応力が加えられ、上記の混合物の粘度が低下する。
 貯留容器20に収容された添加剤及び新鮮な培地を含む混合物の粘度は、粘度測定部42によって測定され、測定結果が制御部80に通知される。制御部80は、粘度測定部42から通知される混合物の粘度と、粘度測定部41から通知される細胞懸濁液の粘度との差分値が所定値以下になるまで、上記の混合物を流路F21を介して循環させる送液を連続して行う。なお、制御部80は、粘度測定部42から通知される混合物の粘度の値が所定値以下になるまで、上記の混合物を流路F21を介して循環させる送液を連続して行ってもよい。また、上記の混合物を流路F21を介して循環させる送液を、予め定められたサイクル数に達するまで連続して行ってもよい。
 添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための送液が完了すると、制御部80は、開閉バルブV5、V13及びV14を閉状態に制御し、開閉バルブV1を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞供給部11に収容されている細胞懸濁液が、流路F1を経由して貯留容器20に移送され、粘度調整がなされた添加剤及び新鮮な培地を含む混合物と合流する。
 その後、制御部80は、開閉バルブV5及びV6を開状態に制御するとともに所定のポンプを駆動する。これにより、細胞懸濁液、添加剤及び新鮮な培地を含む混合物が、貯留容器20から流路F2を経由して撹拌部30に移送される。細胞懸濁液、添加剤及び新鮮な培地を含む混合物は、撹拌部30において撹拌、混合される。添加剤及び新鮮な培地を含む混合物にせん断応力を加えて粘度調整を実施しておくことで、細胞懸濁液、添加剤及び新鮮な培地を含む混合物において良好な混合状態を得ることができる。
 なお、添加剤及び新鮮な培地を含む混合物にせん断応力を加えるための手法として、貯留容器20をプラスチックフィルム等の柔軟な材料で構成し、添加剤及び新鮮な培地を含む混合物を収容した貯留容器20に外部から力を加える方法を用いることも可能である。
[第3の実施形態]
 開示の技術の実施形態に係る細胞培養装置において、インキュベータ71の内部の温度T1は、例えば37℃一定に保たれており、インキュベータ71の外部の温度T2は、室温(例えば25℃)である。従って、インキュベータ71の内部に収容された培養容器70に細胞懸濁液を流入させる場合、及びインキュベータ71の外部に細胞懸濁液を流出させる場合に、細胞は、12℃の温度差による熱衝撃を受ける。この熱衝撃により、細胞はダメージを受けるおそれがある。
 図12は、開示の技術の第3の実施形態に係る細胞培養装置の部分的な構成を示す図である。第3の実施形態に係る細胞培養装置は、培養容器70を収容するインキュベータ71の内部と外部との温度勾配を緩和する温度勾配緩和機構91及び92を備えている。
 温度勾配緩和機構91は、複数の加熱ユニット91a、91b、91c及び91dを含んで構成されている。加熱ユニット91a、91b、91c及び91dは、インキュベータ71内に収容された培養容器70に流入する細胞懸濁液が通過する流路F4に設けられている。加熱ユニット91a、91b、91c及び91dは、それぞれ、独立に加熱温度の設定を行うことが可能であり、互いに異なる温度で流路F4を流れる細胞懸濁液を加熱する。加熱ユニット91a、91b、91c及び91dの設定温度をそれぞれ、T1a、T1b、T1c及びT1dとすると、T2(25℃)<T1d<T1c<T1b<T1a<T1(37℃)となるように、各加熱ユニットの温度設定がなされる。これにより、流路F4を流れる細胞懸濁液の温度は、緩やかにインキュベータ71の内部の温度T1(37℃)に向けて上昇する。すなわち、温度勾配緩和機構91によってインキュベータ71の内外の温度差による細胞懸濁液の時間あたりの温度変化である温度勾配が緩和される。温度勾配は例えば0.1(℃/s)以下であることが好ましい。なお、本実施形態では、4つの加熱ユニット91a、91b、91c及び91dによって温度勾配緩和機構91を構成する場合を例示したが、所望の温度勾配を実現できるように、加熱ユニットの数は適宜増減することが可能である。
 一方、温度勾配緩和機構92は、複数の冷却ユニット92a、92b、92c及び92dを含んで構成されている。冷却ユニット92a、92b、92c及び92dは、インキュベータ71内に収容された培養容器70から流出する細胞懸濁液が通過する流路F5に設けられている。冷却ユニット92a、92b、92c及び92dは、互いに独立に冷却温度の設定を行うことが可能であり、互いに異なる温度で流路F5を流れる細胞懸濁液を冷却する。冷却ユニット92a、92b、92c及び92dの設定温度をそれぞれ、T2a、T2b、T2c及びT2dとすると、T2(25℃)<T2d<T2c<T2b<T2a<T1(37℃)となるように、各冷却ユニットの温度設定がなされる。これにより、流路F5を流れる細胞懸濁液の温度は、緩やかにインキュベータ71の外部の温度T2(25℃)に向けて下降する。すなわち、温度勾配緩和機構92によってインキュベータ71の内外の温度差による細胞懸濁液の時間あたりの温度変化である温度勾配が緩和される。温度勾配は、例えば0.1(℃/s)以下であることが好ましい。なお、本実施形態では、4つの冷却ユニット92a、92b、92c及び92dによって温度勾配緩和機構92を構成する場合を例示したが、所望の温度勾配を実現できるように、冷却ユニットの数は適宜増減することが可能である。
 以上のように、開示の技術の第3の実施形態に係る細胞培養装置によれば、温度勾配緩和機構91及び92によってインキュベータ71の内外の温度差による細胞懸濁液の温度変化の温度勾配が緩和される。これにより、インキュベータ71の内外の温度差によって細胞が受けるダメージを軽減または解消することが可能となる。
[第4の実施形態]
 図13は、開示の技術の第4の実施形態に係る細胞培養装置100Bの構成を示す図である。第4の実施形態に係る細胞培養装置100Bは、細胞状態測定部90を更に有する。細胞状態測定部90は、培養容器70内に収容されている細胞を撮像するカメラを備え、撮像によって得られる画像を制御部80に供給する。
 制御部80は、細胞状態測定部90から供給される画像から培養容器70内に収容されている細胞の状態を検出する。制御部80は、画像から検出した細胞の状態に基づいて、図2に示す各処理ステップへの移行可否を判定する。
 このように、培養容器70内に収容されている細胞の画像に基づいて各処理ステップへの移行可否を判定することで、分化誘導に必要とされる各処理を適切なタイミングで実施することができ、分化細胞の生産性を高めることができる。
 なお、2017年1月20日に出願された日本国特許出願2017-008911の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  細胞を供給する細胞供給部と、
     培地を供給する培地供給部と、
     未分化細胞を分化誘導するための添加剤を供給する添加剤供給部と、
     処理対象物を撹拌する撹拌部と、
     処理対象物に含まれる成分を分離する分離部と、
     前記細胞を培養する培養容器と、を有するとともに、
     前記細胞供給部、前記撹拌部、前記分離部及び前記培養容器を経由する循環ルートを形成する第1の流路と、
     前記培地供給部と前記第1の流路とを接続する第2の流路と、
     前記添加剤供給部と前記第1の流路とを接続する第3の流路と、
     前記第1の流路、前記第2の流路及び前記第3の流路を介した送液を制御する制御部と、
     を含む細胞培養装置。
  2.  前記分離部は、
     前記未分化細胞と死細胞とを膜分離する第1のフィルタ膜、前記未分化細胞が分化細胞に分化される前の中間体と前記未分化細胞とを膜分離する第2のフィルタ膜、及び前記中間体と前記分化細胞とを膜分離する第3のフィルタ膜のうちの少なくとも1つを有する
     請求項1に記載の細胞培養装置。
  3.  前記分離部は、前記第1のフィルタ膜、前記第2のフィルタ膜、及び前記第3のフィルタ膜のうちの少なくとも2つを含む複数のフィルタ膜を有し、
     前記制御部は、前記複数のフィルタ膜のいずれかに前記細胞を含む細胞懸濁液を選択的に通過させる制御を行う
     請求項2に記載の細胞培養装置。
  4.  前記第1のフィルタ膜、前記第2のフィルタ膜及び前記第3のフィルタ膜の各々の膜面に設けられた開口のサイズが互いに異なる、
     請求項2または請求項3に記載の細胞培養装置。
  5.  前記制御部は、前記添加剤と前記培地との混合物にせん断応力を加えるための送液を行った後に、前記細胞を含む細胞懸濁液と前記混合物とを合流させて前記撹拌部に移送する制御を行う
     請求項1から請求項4のいずれか1項に記載の細胞培養装置。
  6.  前記第1の流路の途中の、前記細胞供給部と前記撹拌部との間に設けられた貯留容器を更に含み、
     前記制御部は、前記貯留容器と前記撹拌部との間で前記混合物を循環させることにより前記混合物にせん断応力を加えた後に、前記細胞懸濁液と前記混合物とを前記貯留容器内において合流させて前記撹拌部に移送する制御を行う
     請求項5に記載の細胞培養装置。
  7.  前記第1の流路の途中の、前記細胞供給部と前記撹拌部との間に設けられた貯留容器を更に含み、
     前記制御部は、配管中に前記混合物を流すことにより前記混合物にせん断応力を加えた後に、前記細胞懸濁液と前記混合物とを前記貯留容器内において合流させて前記撹拌部に移送する制御を行う
     請求項5に記載の細胞培養装置。
  8.  前記制御部は、前記混合物の粘度が所定の粘度になるまで前記混合物にせん断応力を加えるための送液を連続的に行う
     請求項5から請求項7のいずれか1項に記載の細胞培養装置。
  9.  前記添加剤供給部は、
     Wntシグナル活性化剤を含む第1の添加剤を供給する第1の添加剤供給部と、
     Wntシグナル阻害剤を含む第2の添加剤を供給する第2の添加剤供給部と、
     を含む
     請求項1から請求項8のいずれか1項に記載の細胞培養装置。
  10.  前記培養容器を収容し、前記培養容器の周囲温度を一定に保つインキュベータと、
     前記インキュベータの内部と外部との温度差によって前記第1の流路に沿って生じる温度勾配を緩和する温度勾配緩和機構と、
     を更に含む請求項1から請求項9のいずれか1項に記載の細胞培養装置。
  11.  請求項1から請求項10のいずれか1項に記載の細胞培養装置を用いて前記細胞を培養する細胞培養方法であって、
     前記制御部が、前記培地供給部から供給される前記細胞、前記添加剤供給部から供給される前記添加剤及び前記培地供給部から供給される前記培地を含む混合物を、前記撹拌部及び前記分離部を経由して前記培養容器に移送する制御を行う
     細胞培養方法。
PCT/JP2018/001631 2017-01-20 2018-01-19 細胞培養装置及び細胞培養方法 WO2018135633A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22165428.8A EP4039792A1 (en) 2017-01-20 2018-01-19 Cell culture apparatus and cell culture method
JP2018562460A JP6968104B2 (ja) 2017-01-20 2018-01-19 細胞培養装置及び細胞培養方法
EP18741731.6A EP3556842A4 (en) 2017-01-20 2018-01-19 CELL CULTURE APPARATUS AND METHOD
KR1020197020556A KR102318710B1 (ko) 2017-01-20 2018-01-19 세포 배양 장치 및 세포 배양 방법
CN201880006408.6A CN110168067A (zh) 2017-01-20 2018-01-19 细胞培养装置及细胞培养方法
US16/503,473 US11180726B2 (en) 2017-01-20 2019-07-04 Cell culture apparatus and cell culture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-008911 2017-01-20
JP2017008911 2017-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/503,473 Continuation US11180726B2 (en) 2017-01-20 2019-07-04 Cell culture apparatus and cell culture method

Publications (1)

Publication Number Publication Date
WO2018135633A1 true WO2018135633A1 (ja) 2018-07-26

Family

ID=62909017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001631 WO2018135633A1 (ja) 2017-01-20 2018-01-19 細胞培養装置及び細胞培養方法

Country Status (6)

Country Link
US (1) US11180726B2 (ja)
EP (2) EP3556842A4 (ja)
JP (1) JP6968104B2 (ja)
KR (1) KR102318710B1 (ja)
CN (1) CN110168067A (ja)
WO (1) WO2018135633A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138796A1 (ja) * 2018-01-15 2019-07-18 富士フイルム株式会社 細胞培養装置及び細胞培養方法
WO2023145922A1 (ja) * 2022-01-31 2023-08-03 株式会社ヘリオス ナチュラルキラー細胞の製造方法
WO2025028596A1 (ja) * 2023-08-02 2025-02-06 株式会社ヘリオス ナチュラルキラー細胞の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117925A1 (ja) * 2005-04-26 2006-11-09 Hitachi Medical Corporation 膵臓β細胞再生方法および装置
JP2007312668A (ja) * 2006-05-25 2007-12-06 Hitachi Medical Corp 自動培養装置
JP2013517771A (ja) * 2010-01-22 2013-05-20 ロンザ ウォーカーズヴィル,インコーポレーテッド タンジェンシャルフローフィルトレーションを用いた治療用細胞の容量減少および洗浄のための高収率法および装置
WO2013111875A1 (ja) 2012-01-27 2013-08-01 国立大学法人京都大学 多能性幹細胞の心筋分化誘導法
WO2013187359A1 (ja) 2012-06-11 2013-12-19 エイブル株式会社 細胞培養装置及びそれを用いる細胞培養方法
JP2015502747A (ja) * 2011-12-01 2015-01-29 ザ ニューヨーク ステム セル ファウンデーション 人工多能性幹細胞または分化細胞を作製するための自動化されたシステム
JP2015100309A (ja) 2013-11-25 2015-06-04 東京エレクトロン株式会社 自動培養システム及び細胞管理システム
WO2016117615A1 (ja) * 2015-01-20 2016-07-28 富士フイルム株式会社 細胞培養装置および細胞培養方法
JP2016529897A (ja) 2013-08-12 2016-09-29 インビボサイエンシーズ インコーポレイテッド オートメーション化された細胞培養システム及び方法
JP2017008911A (ja) 2015-06-26 2017-01-12 カルソニックカンセイ株式会社 熱交換器
WO2017038887A1 (ja) * 2015-08-31 2017-03-09 アイ・ピース株式会社 多能性幹細胞製造システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815696C2 (de) * 1998-04-08 2000-06-29 Gsf Forschungszentrum Umwelt Temperaturgeregelte Überströmapparatur für biologische Proben
US8026096B1 (en) * 1998-10-08 2011-09-27 Protein Sciences Corporation In vivo active erythropoietin produced in insect cells
CN100376665C (zh) * 2005-12-15 2008-03-26 中国人民解放军军事医学科学院野战输血研究所 一种细胞培养装置
FR2902799B1 (fr) * 2006-06-27 2012-10-26 Millipore Corp Procede et unite de preparation d'un echantillon pour l'analyse microbiologique d'un liquide
FR2952070B1 (fr) * 2009-11-03 2011-12-09 Maco Pharma Sa Procede pour l'expansion et/ou la conservation de cellules par enrichissement en gaz du milieu de culture
EP2566950B1 (en) * 2010-05-04 2017-09-06 Terumo BCT, Inc. Method and apparatus for controlling a cell expansion apparatus
JP2013540267A (ja) * 2010-09-28 2013-10-31 レイトラム,エル.エル.シー. コンベアの汚染を検出するシステムおよび方法
JP5714316B2 (ja) * 2010-12-22 2015-05-07 株式会社日立製作所 細胞培養装置
US10428309B2 (en) 2011-12-01 2019-10-01 New York Stem Cell Foundation, Inc. Systems and methods for producing stem cells and differentiated cells
EP2831221A1 (en) * 2012-03-29 2015-02-04 The Arizona Board Of Regents On Behalf Of The University of Arizona Cell culture apparatus and culture methods using same
CN103614339B (zh) * 2013-11-22 2016-08-17 武汉友芝友医疗科技股份有限公司 一种细胞分离方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117925A1 (ja) * 2005-04-26 2006-11-09 Hitachi Medical Corporation 膵臓β細胞再生方法および装置
JP2007312668A (ja) * 2006-05-25 2007-12-06 Hitachi Medical Corp 自動培養装置
JP2013517771A (ja) * 2010-01-22 2013-05-20 ロンザ ウォーカーズヴィル,インコーポレーテッド タンジェンシャルフローフィルトレーションを用いた治療用細胞の容量減少および洗浄のための高収率法および装置
JP2015502747A (ja) * 2011-12-01 2015-01-29 ザ ニューヨーク ステム セル ファウンデーション 人工多能性幹細胞または分化細胞を作製するための自動化されたシステム
WO2013111875A1 (ja) 2012-01-27 2013-08-01 国立大学法人京都大学 多能性幹細胞の心筋分化誘導法
WO2013187359A1 (ja) 2012-06-11 2013-12-19 エイブル株式会社 細胞培養装置及びそれを用いる細胞培養方法
JP2016529897A (ja) 2013-08-12 2016-09-29 インビボサイエンシーズ インコーポレイテッド オートメーション化された細胞培養システム及び方法
JP2015100309A (ja) 2013-11-25 2015-06-04 東京エレクトロン株式会社 自動培養システム及び細胞管理システム
WO2016117615A1 (ja) * 2015-01-20 2016-07-28 富士フイルム株式会社 細胞培養装置および細胞培養方法
JP2017008911A (ja) 2015-06-26 2017-01-12 カルソニックカンセイ株式会社 熱交換器
WO2017038887A1 (ja) * 2015-08-31 2017-03-09 アイ・ピース株式会社 多能性幹細胞製造システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3556842A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138796A1 (ja) * 2018-01-15 2019-07-18 富士フイルム株式会社 細胞培養装置及び細胞培養方法
WO2023145922A1 (ja) * 2022-01-31 2023-08-03 株式会社ヘリオス ナチュラルキラー細胞の製造方法
WO2025028596A1 (ja) * 2023-08-02 2025-02-06 株式会社ヘリオス ナチュラルキラー細胞の製造方法

Also Published As

Publication number Publication date
KR102318710B1 (ko) 2021-10-27
JP6968104B2 (ja) 2021-11-17
US20190322977A1 (en) 2019-10-24
CN110168067A (zh) 2019-08-23
EP3556842A4 (en) 2020-01-15
US11180726B2 (en) 2021-11-23
EP3556842A1 (en) 2019-10-23
EP4039792A1 (en) 2022-08-10
KR20190094233A (ko) 2019-08-12
JPWO2018135633A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018135633A1 (ja) 細胞培養装置及び細胞培養方法
Hild et al. Production of 3‐D airway organoids from primary human airway basal cells and their use in high‐throughput screening
US10131868B2 (en) Devices, systems and methods for automated cell culturing
Eaker et al. Bioreactors for cell therapies: current status and future advances
WO2007052718A1 (ja) 細胞培養用振盪装置及び細胞培養方法の振盪培養方法
Garcia-Aponte et al. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy
EP3312268A1 (en) Cell culture method, jig for cell culture, and cell culture device
US20190358633A1 (en) Fluidic devices for closed cell culture applications under current Good Manufacturing Practice
JP2021505161A (ja) バイオプロセシングシステム
CN120569464A (zh) 用于细胞处理的系统、设备和方法
Schirmer et al. Development, engineering and biological characterization of stirred tank bioreactors
Gadelorge et al. Clinical‐scale expansion of adipose‐derived stromal cells starting from stromal vascular fraction in a single‐use bioreactor: proof of concept for autologous applications
Tregidgo et al. Design and characterization of a novel perfusion reactor for biopharmaceuticals production
JP7030849B2 (ja) 細胞培養装置及び細胞培養方法
Good Encapsulation of Xenopus egg and embryo extract spindle assembly reactions in synthetic cell-like compartments with tunable size
Gribova et al. A miniaturized genotoxicity evaluation system for fast biomaterial-related risk assessment
US20240002782A1 (en) Density-adjusted liquids and methods using same
WO2018021022A1 (ja) 細胞処理装置
Ujas et al. Co-culturing immune cells and mouse-derived mixed cortical cultures with oxygen-glucose deprivation to in vitro simulate Neuroinflammatory interactions after stroke
JP7299437B1 (ja) 培養システム
JP2004024179A (ja) 温水循環式顕微培養チャンバー
CN220246117U (zh) 一种菌株高效筛选及最适培养条件快速确定的装置
Rajalekshmi et al. Synergistic potential of stem cells and microfluidics in regenerative medicine
Papantoniou et al. Product and process design: toward industrial TE manufacturing
Kim et al. A Unified Protocol to Streamline Molecular and Cellular Analysis for Three-Dimensional Cell Cultures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562460

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197020556

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018741731

Country of ref document: EP

Effective date: 20190716

NENP Non-entry into the national phase

Ref country code: DE