WO2018136389A1 - Système de filtration à sable sur plaque amortisseuse et système de dessalement d'eau à énergie houlomotrice et procédés d'utilisation d'eau potable produite par dessalement à l'aide d'énergie houlomotrice - Google Patents
Système de filtration à sable sur plaque amortisseuse et système de dessalement d'eau à énergie houlomotrice et procédés d'utilisation d'eau potable produite par dessalement à l'aide d'énergie houlomotrice Download PDFInfo
- Publication number
- WO2018136389A1 WO2018136389A1 PCT/US2018/013781 US2018013781W WO2018136389A1 WO 2018136389 A1 WO2018136389 A1 WO 2018136389A1 US 2018013781 W US2018013781 W US 2018013781W WO 2018136389 A1 WO2018136389 A1 WO 2018136389A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- waves
- pump
- filter
- filtered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D24/00—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
- B01D24/02—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
- B01D24/04—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being clamped between pervious fixed walls
- B01D24/042—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being clamped between pervious fixed walls the filtering material being held in a flexible porous bag
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/10—Accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
- C02F1/004—Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
- F03B13/16—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
- F03B13/20—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2201/00—Details relating to filtering apparatus
- B01D2201/64—Filters having floating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/24—Specific pressurizing or depressurizing means
- B01D2313/243—Pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/36—Energy sources
- B01D2313/367—Renewable energy sources, e.g. wind or solar sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/02—Forward flushing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/02—Extraction using liquids, e.g. washing, leaching, flotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B2035/4433—Floating structures carrying electric power plants
- B63B2035/4466—Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B2035/4473—Floating structures supporting industrial plants, such as factories, refineries, or the like
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/10—Energy recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/62—Application for desalination
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/406—Transmission of power through hydraulic systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/138—Water desalination using renewable energy
- Y02A20/144—Wave energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
Definitions
- the present invention is generally directed to the generation of potable water. More particularly, the present invention is directed to articulated wave energy conversion system (AWECS) with reverse osmosis (RO) membranes to generate potable water for various applications.
- AECS articulated wave energy conversion system
- RO reverse osmosis
- Desalinization plants are located around the world, and are operated using electricity to pressurize the incoming source water. Depending on the location, there may be pretreatment requirements to optimize the influent for processing through the RO membranes.
- the U.S. Department of Interior (DOI) funded the Subfloor Water Intake Structure System (SWISS), currently utilized in desalination plants in California and Japan.
- SWISS Subfloor Water Intake Structure System
- the SWISS approach is to install a permanent subfloor well/intake system for the source-water for the traditional shore structures.
- the in-situ sand provides the filtration media. See, for example, Lovo, Robert, "Initial Evaluation of the Subfloor Water Intake Structure System (SWISS) vs. Conventional Multimedia Pretreatment Techniques," Assistance Agreement No. 98-FC-81-0044, Desalination Research and Development Program Report No. 66, U.S. Dept. of Interior, May 2001.
- Ocean wave-energy conversion is directed to the exploitation of ocean wave energy to produce energy in one or more of four forms, those being hydraulic, pneumatic, mechanical or electrical. See McCormick, "Ocean Wave Energy Conversion,” published by Wiley- Interscience, New York (1981, reprinted by Dover Publication, Long Island, New York in 2007).
- the articulated-barge wave-energy conversion system dates back to the 1970's when both Sir Christopher in the United Kingdom and Glen Hagen of the United States suggested the system.
- the system was studied in the late 1970's by P. Haren (1978) at MIT. He found that the optimum articulated-barge configuration was a three-barge system. In the 1980's, Dr.
- Dr. McCabe showed that the efficiency of the three-barge system could be substantially improved by suspending an inertial-damping plate below the center barge.
- Dr. McCabe then, produced a prototype of the system, coined the McCabe Wave Pump (MWP), which was deployed and studied in the Shannon Estuary for approximately nine years. See, U.S. Patent No. 5,132,550 (McCabe).
- the MWP was primarily designed as a producer of potable water.
- U.S. Patent Publication No.2009/0084296 (McCormick), which is incorporated by reference herein, describes a system directed to a wave-powered device having enhanced motion.
- an articulated barge wave energy converter system which shall hereinafter be referred to as the AWECS.
- the AWECS basically comprises a forward barge, a rear barge and an intermediate or center barge, all of which arranged to float on a body of water having waves.
- the barges are hingedly coupled together so that they can articulate with respect to each other in response to wave motion.
- the AWECS also includes high-pressure pumps which straddle and pivotably connect the barge-pairs, e.g., at least one pump connects the forward barge and the intermediate barge, and at least another pump connects the rear barge and the intermediate barge.
- the pumps are designed to draw in the water through a pre- filter, pressurize the water, and deliver the water to an on-board reverse osmosis (RO) desalination system. That system includes an RO membrane.
- RO reverse osmosis
- the invention of the '575 Application entails a floating device having a first portion (e.g., a first barge) movably coupled (e.g., hinged) to a second portion (e.g., a second barge); at least one hydraulic or pneumatic pump (e.g., a linear pump) coupled between the first portion the said second portion, the hydraulic pump driving a hydraulic fluid therein when the first portion moves with respect to the second portion due to wave energy.
- a fluid rectifier is provided in the AWECS and is in fluid communication with the at least one hydraulic or pneumatic pump, that generates a unidirectional hydraulic or pneumatic fluid flow.
- a rotary vane pump is coupled to the fluid rectifier.
- the rotary vane pump uses the unidirectional flow to generate a rotational motion via a drive member.
- a rotating electrical generator e.g., a DC generator
- the drive member causes the rotating electrical generator to generate electricity when the drive member is rotating.
- a system for producing a pressurized water source from a body of water having waves comprises: an articulated barge system for floating on the body of water having waves, wherein the barge system comprises at least two barges that articulate with respect to each other and which are hinged together, and wherein one of the at least two barges comprises a damping plate positioned thereunder; a filter (e.g., porous bag filled with sand) positioned on the damping plate for filtering water drawn from the body of water having waves into the filter; at least one pump (e.g., a bi-directional linear pump) in fluid communication with the filter and wherein the at least one pump straddles the at least two barges such that articulation of the at least two barges in response to the action of the waves converts energy of the waves into driving the at least one pump to cause the at least one pump to draw in water from the body of water through the filter and to form the pressurized water source from the filtered water; and at least
- a system for producing a pressurized water source from a body of water having waves comprises: an articulated barge system for floating on the body of water having waves, wherein the barge system comprises at least two barges that articulate with respect to each other and which are hinged together; a filter (e.g., porous bag filled with sand) positioned on a bed in the body of water for filtering water drawn from the body of water having waves into the filter; at least one pump (e.g., a bi-directional linear pump) in fluid communication with the filter and wherein the at least one pump straddles the at least two barges such that articulation of the at least two barges in response to the action of the waves converts energy of the waves into driving the at least one pump to cause the at least one pump to draw in water from the body of water through the filter and to form the pressurized water source from the filtered water; and at least one anchor for placement on a bed of the body of water to anchor the articulated
- a method for producing a pressurized water source from a body of water (e.g., salt water, fresh water) having waves comprises: providing an articulated barge system adapted for flotation on the body of water having waves, the barge system including at least two barges that articulate with respect to each other and which are hinged together wherein one of the at least two barges comprises a damping plate positioned thereunder and submerged in the body of water; anchoring the articulated barge system in the body of water; positioning a filter (e.g., porous bag filled with sand) on the damping plate for filtering water drawn from the body of water into the filter; positioning at least one pump (e.g., a bi-directional linear pump) to straddle the at least two barges and coupling the at least one pump to be in fluid communication with the filter; and allowing the at least two barges to articulate in response to the action of the waves which converts energy of the waves into driving the at least one pump to cause the at least one pump to draw in water from the body
- a method for producing a pressurized water source from a body of water having waves comprises: providing an articulated barge system adapted for flotation on the body of water having waves, the barge system includes at least two barges that articulate with respect to each other and which are hinged together; anchoring the articulated barge system in the body of water; positioning a filter (e.g., porous bag filled with sand) on a bed in the body of water for filtering water drawn from the body of water into the filter; positioning at least one pump (e.g., a bi-directional linear pump) to straddle the at least two barges and coupling the at least one pump to be in fluid communication with the filter; and allowing the at least two barges to articulate in response to the action of the waves which converts energy of the waves into driving the at least one pump to cause the at least one pump to draw in water from the body of water through the filter and to form the pressurized water source from the filtered water.
- a filter e.g., porous bag filled with sand
- FIG. 1 is a simplified schematic diagram of an articulated wave energy conversion system and a sand filtration system in accordance with an exemplary embodiment of the present invention
- Fig. 2A is a transverse view of the center barge showing the sand filtration system on the damping plate;
- Fig. 2B is a transverse view of the sand filtration system taken along 2B-2B of Fig. 2A;
- Fig. 3 is an isometric view of an alternative sand filtration system that rests on the sea bed;
- Fig. 4 is a functional diagram of an AWECS pump depicting how a high pressure flow of filtered sea water is generated by wave motion of the barges for provision to RO membranes in the barges to produce potable water thereat;
- Fig. 5 is a block diagram showing one exemplary method of utilizing potable water produced by the systems of this invention for one desired application, e.g., introducing potable water into a public or private water distribution system;
- Fig. 6 is a block diagram showing another exemplary method of utilizing potable water produced by the systems of this invention for another desired application, e.g., producing bottled drinking water;
- Fig. 7 is a block diagram showing another exemplary method of utilizing potable water produced by the systems of this invention for another desired application, e.g., replenishing an aquifer by introducing the potable water into the aquifer;
- Fig. 8 is a block diagram showing another exemplary method of utilizing potable water produced by the systems of this invention for another desired application, e.g., remediating a contaminated aquifer by introducing the potable water into the aquifer;
- Fig. 9 is a block diagram showing another exemplary method of utilizing potable water produced by the systems of this invention for another desired application, e.g., remediating contaminated soil by introducing the potable water into the soil;
- Fig. 10 is a block diagram showing another exemplary method of utilizing potable water produced by the systems of this invention for another desired application, e.g., drought relief by providing the potable water for irrigating crops;
- Fig. 11 is a block diagram showing another exemplary method of utilizing potable water produced by the systems of this invention for another desired application, e.g., material manufacturing by providing the potable water for manufacturing a product;
- Fig. 12 is a block diagram showing another exemplary method of utilizing potable water produced by the systems of this invention for another desired application, e.g., food processing by providing the potable water for processing a food;
- Fig. 13 is a block diagram showing another exemplary method of utilizing water pumped from a body of water utilizing wave action for a desired application, e.g., air conditioning by introducing pumped water into a cooling system; and
- Fig. 14 is a block diagram showing another exemplary method of utilizing water pumped from a body of water utilizing wave action for a desired application, e.g., aquaculture by pumping the water from one location in an aquaculture farm to another location therein to circulate nutrients.
- a desired application e.g., aquaculture by pumping the water from one location in an aquaculture farm to another location therein to circulate nutrients.
- the system 300 basically comprises an AWECS and a portable filtration system.
- the AWECS is a system in the form of articulated barge and includes a desalination system.
- the desalination system is constructed similarly to the AWECS described above, e.g., it includes a forward barge 12A, a rear barge 12B and an intermediate or center barge 12C.
- the barges are hinged to each other and include at least one pump 13A straddling the forward barge 12A and center barge 12C and at least one pump 13B straddling the rear barge 12B and center barge 12C.
- the center barge 12C comprises a damping plate 302 located beneath the center barge 12 via two struts 302A and 302B.
- the damping plate 302 lowers the center of gravity of the AWECS which increases the stability of the vessel (e.g., similar to the keel of a sailboat). It is on this damping plate 302 that a sand filtration system 304 is releasably secured. As will be discussed in detail later, the sea water is passed through this sand filtration unit 304 and the filtered sea water output of the system 304 is then pumped up into the desalination system on the AWECS.
- the onboard desalination system comprises reverse osmosis membranes (not shown) which are positioned in a plurality of canisters (also not shown) located in each of a plurality of modules 15 (e.g., four modules by way of example only).
- the reverse osmosis membranes are arranged to process filtered salt water provided from the sand filtration system 304 to produce potable water.
- the sand filtration system 304 is arranged for positioning on the damping plate 302 of the center barge 12C, thereby avoiding sand filters being placed on the seafloor.
- Power for drawing the salt water from the body of water into the sand filtration system 304, where it is filtered into filtered salt water, and for providing the filtered salt water to the desalination system on the articulated barge system is accomplished by the action of the waves of the body of water on the barge system.
- the AWECS includes pumps which are powered by the energy extracted from the action of the waves on the barge system.
- FIG. 1 one exemplary embodiment of an AWECS 300 constructed in accordance with an exemplary embodiment of the present invention is shown in Fig. 1 and includes the three previously identified articulated barges 12A, 12B and 12C.
- the barges 12A-12C are anchored using anchors 14, 16 and 18 along with associated mooring buoys 14A, 16A, 18A.
- the mooring buoys 14A, 16A and 18A are attached to their respective anchors 14, 16 and 18 via cables/lines 54, 56 and 58, respectively.
- the mooring buoys 14A- 18 A provide "slack" to permit the anchors to be positioned without interfering or otherwise reducing the articulation of the barges.
- the sand filtration system 304 comprises a large porous bladder 306 filled with sand.
- the bladder 306 comprises a porous fabric such as a woven geotextile bag (e.g., a Geotube® brand permeable fabric, e.g., polyethylene, woven fabric ) filled with sand S. Seam strength may be, for example, approximately 450 pounds per inch pull.
- the permeability of the geotextile is in gallons per square feet. It is not the restricting permeability of the system 300.
- a porous cover, formed of the same material as the bag 306, may be provided over the body of sand.
- the bag 306 (or a porous cover formed of the same material as the bag) serves to keep the sand S from washing from the sand filtration system 304.
- the bladder 306 filled with sand S is releasably secured on the damping plate 302 via any number of means, e.g., using tie- down straps 308.
- Output conduits 310A and 310B convey the filtered sea water from the bladder 306 up to the desalination system modules 15 for eventual input to the RO membranes via the pump action to be described later.
- Bladder fill ports 312A and 312B are provided for filling sand into the bladder 306.
- the output conduits 31 OA and 31 OB may be constructed of, for example, high density polyethylene, and may be encased in filter fabric and stone sleeve to prevent sand S from being pulled into the conduits.
- the output conduits 310A/310B serve to transport filtered salt water, e.g., sea water, and may comprise, by way of example only, a diameter of six inches.
- the operation of the AWECS pumps 13A and 13B pulls the filtered sea water from the bladder 306 and up into the RO membranes in the modules 15 of the desalination system in the AWECS.
- the power for operating the pumps is provided by the wave energy captured by the articulating barges 12A - 12C.
- the sand S to be used in the bladder 106 is preferably coarse washed sand placed into the geotextile bag 306.
- the estimated coefficient of permeability (K) of the sand is expected to be between 0.003 and 0.00003 ft/s. Any combination of engineered sand and gravel may be used to obtain best filtering results.
- the AWECS 300 is designed to be deployed (e.g., floated) in a body of salt water, e.g., sea having, for example, a 1.5-meter significant wave height and seven-second period.
- a body of salt water e.g., sea having, for example, a 1.5-meter significant wave height and seven-second period.
- the AWECS 300 will operate in greater and lesser seas or bodies of salt water, and the potable- water production will vary with the sea/salt water conditions.
- the exemplary potable water producing system of this invention shown in Fig. 1 and described further below can produce an average of 100,000 gallons per day (gpd) of potable water. This value is based on 200,000 gpd of source water taken in through the sand filtration system. However, it is intended that the AWECS 300 operates in greater and lesser seas, wherein the potable- water production will vary with the sea conditions.
- the AWECS is floated and towed to a desired body of salt water (or fresh water) with the filter disposed on the damping plate and both of which are submerged within said desired body of salt water.
- the anchors 14-16/mooring buoys 14A-18A are deployed once the AWECS 300 has arrived at the desired location in the body of salt water (or fresh water).
- the articulation of the barges 12A-12C causes the at least one pump (13A/13B) to operate to generate a pressurized water source.
- a localized suction action is created around the surface of the bladder 306 which draws raw sea water into the bladder 306.
- This drawn- in sea water passes through the sand content of the bladder 306, thereby filtering out particulates from the sea water.
- the rate at which the raw sea water is drawn into the bladder 306 complies with U.S. regulations such that the surface intake velocity is less than 0.5 ft/sec; this restricts the incursion of fish larva and macro or micro vertebrae.
- the output of the at least one pump 13A or 13B is a pressurized source of filtered sea water.
- This pressurized water source is then processed through an onboard reverse osmosis system.
- the onboard reverse osmosis system can be of any suitable construction and includes a conventional reverse osmosis (RO) membranes.
- the reverse osmosis system operates in a conventional manner to produce potable water from salt water exposed to the RO membrane.
- the fact that the RO membrane is located in the articulated barge system renders it self-cleaning.
- the barge system is floating on the body of salt water where it is exposed to the rocking action of the waves (an exemplary direction of the wave flow is shown by the arrow in Fig. 1), this rocking action effectively shakes or otherwise disturbs the RO membrane to effectively clean it.
- the RO membrane is effectively self-cleaning.
- the pressurized source of filtered sea water may be diverted to irrigating crops that thrive on sea water, such as but not limited to, glasswort species, Palmer's grass, sea blite, saltbush, etc. (see Irrigating Crops with Seawater, by Glenn, et al., Scientific American, August 1998, pp. 76-81, and which is incorporated by reference herein).
- the present invention 300 may provide an efficient way to support the growing of crops in a desert from the offshore location of the articulating barges 12A-12C.
- Another alternative is the placement of the AWECS in a fresh water setting where wave motion in the fresh water environment can generate a pressurized fresh water source also using the operating steps described above for the sea water operation but omitting the desalination processing.
- one of the advantages of using the sand filtration system 304 on the damping plate 302 is that this reduces the "footprint" of the AWECS on the sea bed. This ability to have a small footprint or impact on a sea bed is very important because positioning the AWECS is site-specific. In certain locations, the available sea bed for anchoring the AWECS 300 may be very limited. On the other hand, the available sea bed may allow for the placement of a sand filter thereon, in addition to the anchors 14-18. In those sites, where such availability on the sea bed is present, another alternative 400 is shown in Fig. 3. Rather than using the sand filtration system 304 on the damping plate 302, another type of sand filtering system 400 can be positioned on the sea bed.
- the sand filtration system 400 comprises a housing 408 (e.g., a box-shaped style, etc.) comprising a material similar to the bladder 306, e.g., a porous fabric or a porous cover such as a woven geotextile bag (e.g., a Geotube® brand permeable fabric, e.g., polyethylene, woven fabric) filled with sand S. Seam strength may be, for example, approximately 450 pounds per inch pull.
- the housing/bag serves to keep the sand S from washing from the sand filtration system 400.
- Filtered salt water is then conveyed to the AWECS via a vent port 404, through the action of the pumps 13A and 13B, and through an output conduit 410 to the pumps 13A/13B, as discussed previously with regard to the sand filtration system 304.
- the pressurized salt water can then be fed to the onboard desalination system modules 15 or to another destination (e.g., irrigating salt water crops, etc.).
- the housing 408 On respective corners of the housing 408 are straps 406A-406D (shown partially) which are used for submerging and placing the filter 400 or for raising the filter 400.
- the housing 408 may comprise dimensions of 8ft x 8ft x 6.5ft.
- the filter 400 is sized to comply with the surface intake velocity requirement to restrict the incursion of fish larva and macro or micro vertebrae.
- an AWECS pump (13A or 13B) comprises a bi-directional linear pump 300 that is powered by the relative motions of the barges 12A/12C or 12B/12C via movable couplings (e.g., hinges).
- movable couplings e.g., hinges
- Rectifier valve pairs 206A and 206B correspond to the pressure tap pairs 204.
- the valves 206A/206B are received in valve seats 208 when the valves are closed.
- Pressure relief taps 209 are provided and wherein seat pressure relief taps 210 are coupled via pressure relief lines 212.
- Flow ports 214 act as the input ports for the sea water and are in fluid communication with a sand filtration system 304.
- Arrows 112 indicate the corresponding piston motion direction while arrows 114 indicate the pressure- force direction.
- Arrows 216 indicate the sea water flow direction.
- the high-pressure sea water feed flow line is indicated by 218 while the low-pressure intake flow line is indicated by 220.
- a high pressure manifold 222 takes the high-pressure sea water flow via path 224 to the reverse osmosis membranes in the onboard desalination system 15 (or to alternative destinations, e.g., irrigating salt water fostering crops, etc,, that can use a pressurized salt water source).
- the high pressure manifold 222 forms a high-pressure fresh water flow via path 224.
- the piston rod assembly 102A/102C is excited by an alternating energy source, namely, the water waves.
- the piston rod assembly 102A/102C travels in alternating directions over the period associated with the water wave in the piston housing 102B.
- the motions create alternating pressures in the taps 104/204 due to the alternating piston-rod assembly motions 112.
- the alternating pressures are transmitted through the control pressure lines 106, producing alternating pressure forces with directions shown as 114.
- the piston-rod assembly motions 112 cause the sea water in the pump 100 to be alternatively expelled at high pressure and refilled at low pressure through the intake/exhaust taps 108.
- the alternating flows through the taps 108 are transmitted through the intake/exhaust lines 110.
- the pressure forces 114 in the control pressure lines 106 alternately cause the cone-head valves 206A and 206B to open and close.
- the cone-head of the valves mate with the conical valve seats 208 when the valve is closed.
- sea water is passed into the seat 208 through the seat pressure relief tap 210 which is partially supplied by the pressure relief tap 209.
- the taps 209 and 210 are interconnected by the pressure relief lines 212.
- the resulting flows in the sea water flow ports 214 are in the directions indicated by 220.
- the high pressure flow in the high pressure feed flow lines 218 travel in the direction 216.
- the low pressure flow in the low pressure intake flow lines 220 in the direction 221 come from the onboard desalination system 15.
- the high pressure flow components through flow lines 218 are combined in a manifold 224 and this combined flow 226 is supplied to the reverse osmosis membranes in the onboard desalination system 15.
- the potable or pure water produced by the systems of this invention can be utilized in various ways in accordance with various methods of this invention.
- the potable water produced by the systems of this invention can be supplied either directly or indirectly to public or privately owned water distribution systems, such as shown in Fig. 5. That can be accomplished by use of a distribution system including conduits, valves, meters, etc. which couple the AWECS to an inlet of the public or privately owned water distribution system.
- the potable water produced by the systems of this invention can be supplied to water bottlers for the production of bottled drinking water, such as shown in Fig. 6.
- the potable water can be used to supply bottled water for disaster relief applications.
- the systems of this can be deployed to areas that recently experienced natural or man-made disasters that have rendered the localized water supply inoperable or unsafe, such as Haiti, Fukishima, and other disaster regions that require outside sources of potable water.
- the systems can then be operated to produce potable water which can be bottled for distribution to the persons affected by the disaster.
- the systems of this invention can also be used in accordance with another method of this invention to serve as a fresh water source for material manufacturing, such as shown in Fig. 11 , and food processing, such as shown in Fig. 12, since the water produced by the reverse osmosis system of the AWECS is very pure.
- the systems of this invention can be deployed to provide drought relief in accordance with another method of this invention, such as shown in Fig. 10.
- Another method of this invention such as shown in Fig. 10.
- the AWECS can provide either pressurized water source, with salt water pumping into irrigation distribution networks, being a viable capability of the AWECS.
- the systems of this invention can be deployed for aquifer recharging applications in accordance with still another method of this invention, such as shown in Fig. 7.
- aquifer recharging applications in accordance with still another method of this invention, such as shown in Fig. 7.
- Fig. 7 it is well known that existing water aquifers are being drained at a significant, and perhaps alarming, rate.
- One of the more publicized examples is in the State of Florida, where the freshwater levels have dropped significantly, creating dangerous sinkholes.
- the potable water produced by the AWECS can be used to recharge the aquifer and thereby stabilize the sinkhole situation.
- the systems of this invention can be used in accordance with methods of this invention to recharge or replenish aquifers for any reason, such as shown in Fig. 7.
- Such recharging or replenishing could provide a natural and far-reaching water distribution mechanism for regions where the aquifers are in danger.
- the systems of this invention can be deployed for remediation of aquifer contamination, such as shown in Fig. 8 and/or ground or soil contamination, such as shown in Fig. 9, in accordance with yet other methods of this invention.
- aquifer contamination such as shown in Fig. 8
- ground or soil contamination such as shown in Fig. 9, in accordance with yet other methods of this invention.
- Existing techniques for remediation include pumping and treating of the contaminated water, and the infusion of air into the geological substrate to flush out the easily volatilized contaminate.
- the infusion of potable water back into the ground can assist in the flushing of the contaminants from the ground, thereby providing a viable and low cost remediation technique.
- the AWECS can be used to merely pump seawater without treating that water with reverse osmosis in accordance with another method of this invention.
- the AWECS can be used, as shown in Fig. 13, for effecting air conditioning by introducing water (salt or fresh) pumped by wave action from a body of water into a cooling system.
- it can be used, as shown in Fig. 14, in aquaculture farms to pump salt or fresh water from one location to another to circulate nutrients where the temperature gradients create stagnant or oxygen deficient conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- Combustion & Propulsion (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Water Treatments (AREA)
Abstract
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP18742284.5A EP3571164A1 (fr) | 2017-01-18 | 2018-01-16 | Système de filtration à sable sur plaque amortisseuse et système de dessalement d'eau à énergie houlomotrice et procédés d'utilisation d'eau potable produite par dessalement à l'aide d'énergie houlomotrice |
| AU2018210292A AU2018210292B2 (en) | 2017-01-18 | 2018-01-16 | Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination |
| AU2023201836A AU2023201836A1 (en) | 2017-01-18 | 2023-03-24 | Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/409,075 US10155678B2 (en) | 2012-07-05 | 2017-01-18 | Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination |
| US15/409,075 | 2017-01-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018136389A1 true WO2018136389A1 (fr) | 2018-07-26 |
Family
ID=62908604
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2018/013781 Ceased WO2018136389A1 (fr) | 2017-01-18 | 2018-01-16 | Système de filtration à sable sur plaque amortisseuse et système de dessalement d'eau à énergie houlomotrice et procédés d'utilisation d'eau potable produite par dessalement à l'aide d'énergie houlomotrice |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP3571164A1 (fr) |
| AU (2) | AU2018210292B2 (fr) |
| WO (1) | WO2018136389A1 (fr) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060283802A1 (en) * | 2005-06-21 | 2006-12-21 | Water Standard Company, Llc | Methods and systems for producing electricity and desalinated water |
| US20090084296A1 (en) * | 2005-11-30 | 2009-04-02 | Ocean Energy Systems Llc | Wave-Powered Energy Conversion System |
| KR20110020077A (ko) * | 2009-08-21 | 2011-03-02 | 주식회사 고려산업 | 해수 표면 취수장치 |
| US8650869B1 (en) * | 2009-06-08 | 2014-02-18 | The United States Of America, As Represented By The Secretary Of The Navy | Automatic hydraulic/pneumatic flow rectifier for bi-directional pumps |
| US20140158624A1 (en) * | 2012-07-05 | 2014-06-12 | Murtech, Inc. | Modular sand filtration - anchor system and wave energy water desalination system incorporating the same |
| US8784653B2 (en) | 2012-07-05 | 2014-07-22 | Murtech, Inc. | Modular sand filtration-anchor system and wave energy water desalinization system incorporating the same |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IE883159L (en) * | 1988-10-19 | 1990-04-19 | Hydam Ltd | Wave powered prime mover |
-
2018
- 2018-01-16 WO PCT/US2018/013781 patent/WO2018136389A1/fr not_active Ceased
- 2018-01-16 AU AU2018210292A patent/AU2018210292B2/en not_active Ceased
- 2018-01-16 EP EP18742284.5A patent/EP3571164A1/fr not_active Withdrawn
-
2023
- 2023-03-24 AU AU2023201836A patent/AU2023201836A1/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060283802A1 (en) * | 2005-06-21 | 2006-12-21 | Water Standard Company, Llc | Methods and systems for producing electricity and desalinated water |
| US20090084296A1 (en) * | 2005-11-30 | 2009-04-02 | Ocean Energy Systems Llc | Wave-Powered Energy Conversion System |
| US8650869B1 (en) * | 2009-06-08 | 2014-02-18 | The United States Of America, As Represented By The Secretary Of The Navy | Automatic hydraulic/pneumatic flow rectifier for bi-directional pumps |
| KR20110020077A (ko) * | 2009-08-21 | 2011-03-02 | 주식회사 고려산업 | 해수 표면 취수장치 |
| US20140158624A1 (en) * | 2012-07-05 | 2014-06-12 | Murtech, Inc. | Modular sand filtration - anchor system and wave energy water desalination system incorporating the same |
| US8778176B2 (en) | 2012-07-05 | 2014-07-15 | Murtech, Inc. | Modular sand filtration—anchor system and wave energy water desalination system incorporating the same |
| US8784653B2 (en) | 2012-07-05 | 2014-07-22 | Murtech, Inc. | Modular sand filtration-anchor system and wave energy water desalinization system incorporating the same |
Non-Patent Citations (2)
| Title |
|---|
| GLENN ET AL., SCIENTIFIC AMERICAN, August 1998 (1998-08-01), pages 76 - 81 |
| See also references of EP3571164A4 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2018210292A1 (en) | 2019-08-29 |
| EP3571164A4 (fr) | 2019-11-27 |
| AU2018210292B2 (en) | 2023-04-20 |
| AU2023201836A1 (en) | 2023-04-27 |
| EP3571164A1 (fr) | 2019-11-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10029927B2 (en) | Modular sand filtration-anchor system and wave energy water desalination system and methods of using potable water produced by wave energy desalination | |
| US10766793B2 (en) | Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination | |
| US8784653B2 (en) | Modular sand filtration-anchor system and wave energy water desalinization system incorporating the same | |
| CN109562961B (zh) | 用于通过反渗透对水进行脱盐的系统和方法 | |
| US20220267176A1 (en) | Apparatus, method and system for desalinating water using energy recovery | |
| US6656352B2 (en) | Seawater pressure-driven desalinization apparatus and method with gravity-driven brine return | |
| JP5567269B2 (ja) | 波のエネルギーの変換 | |
| US7731847B2 (en) | Submersible reverse osmosis desalination apparatus and method | |
| JP2006346666A (ja) | 災害用緊急移動式逆浸透膜浄水装置 | |
| TW201919752A (zh) | 淡化系統及方法 | |
| AU2018210292B2 (en) | Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination | |
| CN116648298A (zh) | 波浪致动系统、波浪能转换器子系统和用于操作反渗透脱盐子系统的方法 | |
| KR20100102258A (ko) | 파력을 이용한 해수담수화 장치 | |
| AU2014327210B2 (en) | Modular sand filtration-anchor system and wave energy water desalination system and methods of using potable water produced by wave energy desalination | |
| JP3122175U (ja) | 災害用緊急移動式浄水装置 | |
| AU2007335234A1 (en) | Desalination system | |
| GB2401405A (en) | A tidal powered device for pumping fluid | |
| CN113503251A (zh) | 漂浮式潜水泵微过滤一体机 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18742284 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2018210292 Country of ref document: AU Date of ref document: 20180116 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2018742284 Country of ref document: EP Effective date: 20190819 |