WO2018138951A1 - 撮像装置、内視鏡および内視鏡システム - Google Patents
撮像装置、内視鏡および内視鏡システム Download PDFInfo
- Publication number
- WO2018138951A1 WO2018138951A1 PCT/JP2017/030785 JP2017030785W WO2018138951A1 WO 2018138951 A1 WO2018138951 A1 WO 2018138951A1 JP 2017030785 W JP2017030785 W JP 2017030785W WO 2018138951 A1 WO2018138951 A1 WO 2018138951A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulse signal
- unit
- signal
- transmission cable
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/045—Control thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00009—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00112—Connection or coupling means
- A61B1/00121—Connectors, fasteners and adapters, e.g. on the endoscope handle
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/65—Control of camera operation in relation to power supply
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/555—Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
Definitions
- the present invention relates to an imaging device, an endoscope, and an endoscope system that capture an image of a subject and generate image data of the subject.
- an endoscope acquires an in-vivo image in a subject by inserting a flexible insertion portion having an elongated shape with an imaging device provided at the tip into the subject such as a patient.
- An imaging unit used in such an endoscope includes a semiconductor chip on which an imaging element is formed, and a circuit board disposed adjacent to the back side of the semiconductor chip (see Patent Documents 1 and 2). reference). On this circuit board, a low-pass filter, a high-pass filter, and the like configured by resistors and capacitors are mounted in order to detect a synchronization signal for driving the image sensor output from the processor.
- the present invention has been made in view of the above, and an object thereof is to provide an imaging device, an endoscope, and an endoscope system that can realize further downsizing.
- an imaging apparatus is arranged in a two-dimensional matrix, receives a light from the outside, and generates a plurality of pixels that generate an imaging signal according to the amount of received light.
- a light receiving unit a transmission cable that transmits power to the light receiving unit, a power source that supplies a voltage to the light receiving unit via the transmission cable, a pulse signal generation unit that generates a first pulse signal, A pulse signal superimposing unit that superimposes the first pulse signal generated by the pulse signal generating unit on the voltage, and a direct current from the voltage transmitted from the transmission cable, provided between the light receiving unit and the transmission cable.
- a separation unit that separates a component from an AC component and outputs the DC component to the light receiving unit, a pulse signal detection unit that detects the first pulse signal superimposed on the transmission cable, and the pulse signal A pulse signal conversion unit that converts a frequency of the first pulse signal detected by the detection unit into a frequency of a second pulse signal used to generate a synchronization signal that drives the light receiving unit; and the pulse signal conversion And a timing generation unit that generates the synchronization signal based on the second pulse signal converted by the unit.
- the pulse signal conversion unit converts the frequency of the first pulse signal into the second pulse signal by reducing the frequency of the first pulse signal to an integer greater than one. And a frequency dividing circuit.
- the pulse signal converter converts the first pulse signal into the second pulse signal by expanding the pulse width of the first pulse signal to an integer multiple greater than 1. And a decompression circuit.
- the power source and the pulse signal superimposing unit are located on a proximal end side of the transmission cable, and the separation unit, the pulse signal detection unit, and the pulse signal conversion unit
- the timing generation unit is located on a distal end side of the transmission cable.
- the endoscope according to the present invention includes a connector that is detachable from the imaging apparatus according to the invention, an insertion section that can be inserted into a subject, and an image processing apparatus that performs image processing on the imaging signal.
- the light receiving unit, the separation unit, the pulse signal detection unit, the pulse signal conversion unit, and the timing generation unit are located on a distal end side of the insertion unit, and the connector unit includes the power source and The pulse signal superimposing unit is included.
- an endoscope system includes the endoscope according to the above-described invention and an image processing device that performs image processing on the imaging signal.
- FIG. 1 is a schematic diagram schematically showing an overall configuration of an endoscope system according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing functions of main parts of the endoscope system according to Embodiment 1 of the present invention.
- FIG. 3 is a timing chart showing the timing of each signal in the endoscope according to Embodiment 1 of the present invention.
- FIG. 4 is a diagram showing the relationship between the filter characteristics of the pulse signal detection unit and the frequency component of the first pulse signal according to Embodiment 1 of the present invention.
- FIG. 5 is a block diagram showing functions of main parts of the endoscope system according to Embodiment 2 of the present invention.
- FIG. 6 is a timing chart showing the timing of each signal in the endoscope according to the second embodiment of the present invention.
- an endoscope system including an endoscope provided with an imaging element at a distal end of an insertion portion to be inserted into a subject will be described. To do. Further, the present invention is not limited by this embodiment. Further, in the description of the drawings, the same portions will be described with the same reference numerals. Furthermore, the drawings are schematic, and it should be noted that the relationship between the thickness and width of each member, the ratio of each member, and the like are different from the actual ones. Moreover, the part from which a mutual dimension and ratio differ also in between drawings.
- FIG. 1 is a schematic diagram schematically showing an overall configuration of an endoscope system according to Embodiment 1 of the present invention.
- An endoscope system 1 shown in FIG. 1 includes an endoscope 2, a transmission cable 3, a connector unit 5, a processor 6, a display device 7, and a light source device 8.
- the endoscope 2 images the inside of the subject by inserting the insertion portion 100 that is a part of the transmission cable 3 into the body cavity of the subject, and outputs an imaging signal to the processor 6.
- the endoscope 2 is provided at one end side of the transmission cable 3 and on the distal end 101 side of the insertion unit 100 inserted into the body cavity of the subject, an imaging unit 20 (imaging device) that captures an in-vivo image.
- an operation unit 4 On the proximal end 102 side of the insertion unit 100, an operation unit 4 that receives various operations on the endoscope 2 is provided.
- the imaging signal of the image captured by the imaging unit 20 is output to the connector unit 5 through the transmission cable 3 having a length of several meters, for example.
- the transmission cable 3 connects the endoscope 2 and the connector unit 5, and connects the endoscope 2 and the light source device 8. In addition, the transmission cable 3 propagates the imaging signal generated by the imaging unit 20 to the connector unit 5.
- the transmission cable 3 is configured using a cable, an optical fiber, or the like.
- the connector unit 5 is connected to the endoscope 2, the processor 6, and the light source device 8, performs predetermined signal processing on the imaging signal output from the connected endoscope 2, and converts the analog imaging signal into a digital imaging signal. (A / D conversion) and output to the processor 6.
- the processor 6 performs predetermined image processing on the imaging signal input from the connector unit 5 and outputs the processed image signal to the display device 7. Further, the processor 6 controls the entire endoscope system 1 in an integrated manner. For example, the processor 6 performs control to switch the illumination light emitted from the light source device 8 or switch the imaging mode of the endoscope 2. In the first embodiment, the processor 6 functions as an image processing apparatus.
- the display device 7 displays an image corresponding to the imaging signal that has been subjected to image processing by the processor 6.
- the display device 7 displays various information related to the endoscope system 1.
- the display device 7 is configured using a display panel such as liquid crystal or organic EL (Electro Luminescence).
- the light source device 8 irradiates illumination light from the distal end 101 side of the insertion portion 100 of the endoscope 2 toward the subject via the connector portion 5 and the transmission cable 3.
- the light source device 8 is configured using a white LED (Light Emitting Diode) that emits white light, an LED that emits special light of narrow band light having a wavelength band narrower than the wavelength band of white light, and the like.
- the light source device 8 irradiates the subject with white light or narrow-band light through the endoscope 2 under the control of the processor 6.
- FIG. 2 is a block diagram showing functions of a main part of the endoscope system 1. With reference to FIG. 2, the detail of each structure of the endoscope system 1 and the path
- the endoscope 2 shown in FIG. 2 includes an imaging unit 20, a transmission cable 3, and a connector unit 5.
- the imaging unit 20 includes a first chip 21 (imaging substrate), a second chip 22 (circuit board), a separation unit 26 (AC component removal unit), a pulse signal detection unit 27, a pulse signal conversion unit 28, Is provided.
- a power supply stabilizing capacitor C1 is provided between the power supply voltage VDD supplied to the imaging unit 20 and the ground GND.
- the first chip 21 is arranged in a two-dimensional matrix, and receives a light from the outside, and a light receiving unit 23 in which a plurality of unit pixels 230 that generate and output an imaging signal corresponding to the amount of received light are arranged.
- a readout unit 24 that reads out an imaging signal photoelectrically converted by each of the plurality of unit pixels 230 in the light receiving unit 23, a reference clock signal input from the connector unit 5, and a pulse signal detection unit 27 and a pulse signal conversion unit 28 described later.
- a light receiving unit driving signal for driving the light receiving unit 23 and a synchronization signal including a reading unit driving signal for driving the reading unit 24 are generated and the light receiving unit 23 and a timing generation unit 25 for outputting to the reading unit 24.
- the second chip 22 has a buffer 29 that amplifies an imaging signal output from each of the plurality of unit pixels 230 in the first chip 21 and outputs the amplified image signal to the transmission cable 3.
- the separation unit 26 is connected between the first chip 21 and the transmission cable 3, separates the direct current component and the alternating current component from the negative voltage transmitted from the transmission cable 3, and passes the separated direct current component to the first chip 21. Output.
- the separation unit 26 is connected between a resistor 261 (for example, 100 ⁇ ) connected in series to a transmission cable 3 (signal line) that transmits a negative voltage, which will be described later, and a power supply voltage generation unit 55, which will be described later, and the ground GND. And an RC circuit (low-pass filter circuit). As a result, the pulse signal of the AC component superimposed on the negative voltage input from the connector unit 5 described later is cut, and the DC component is output to the unit pixel 230.
- the pulse signal detection unit 27 is connected by AC coupling between the separation unit 26 and a pulse signal superimposing unit 56 of the connector unit 5 described later, and detects the first pulse signal (AC component) superimposed on the negative voltage.
- the detected first pulse signal is output to the pulse signal converter 28.
- the pulse signal detection unit 27 is connected to the distal end side of the transmission cable 3 and to the proximal end side of the resistor 261 of the separation unit 26.
- the pulse signal detector 27 includes a capacitor 271 connected to the transmission cable 3 (signal line) through which a negative voltage is transmitted, a resistor 272 having one end connected to the capacitor 271 and the other end connected to the ground GND, and a capacitor 271 and an amplifier 273 that amplifies the pulse signal extracted by the resistor 272.
- Capacitor 271 and resistor 272 form an RC circuit (high pass filter).
- the pulse signal conversion unit 28 converts the frequency of the first pulse signal detected by the pulse signal detection unit 27 into the frequency of the second pulse signal used to generate a synchronization signal for driving the light receiving unit 23. Output to the timing generator 25.
- the pulse signal converter 28 includes a frequency dividing circuit 281 that converts (divides) the second pulse signal by reducing the frequency of the first pulse signal to an integer larger than 1. Specifically, the frequency dividing circuit 281 converts the frequency of the first pulse signal into a second pulse signal by lowering the frequency by a factor of 1/2.
- the transmission cable 3 includes at least a signal line for transmitting the power supply voltage generated by the power supply voltage generation unit 55 to the imaging unit 20, a signal line for transmitting the negative voltage generated by the power supply voltage generation unit 55 to the imaging unit 20, and a pulse.
- a signal line for transmitting the reference clock signal generated by the signal generation unit 54 to the imaging unit 20, a signal line for transmitting the imaging signal generated by the imaging unit 20 to the connector unit 5, and the ground GND to the imaging unit 20 It is configured using five signal lines.
- the connector unit 5 includes an analog front end unit 51 (hereinafter referred to as “AFE unit 51”), an A / D conversion unit 52, an imaging signal processing unit 53, a pulse signal generation unit 54, and a power supply voltage generation unit. 55 and a pulse signal superimposing unit 56.
- the AFE unit 51 receives an imaging signal propagated from the imaging unit 20, performs impedance matching using a passive element such as a resistor, extracts an AC component using a capacitor, and determines an operating point using a voltage dividing resistor To do. Thereafter, the AFE unit 51 amplifies the imaging signal (analog signal) and outputs it to the A / D conversion unit 52.
- the A / D conversion unit 52 converts the analog imaging signal input from the AFE unit 51 into a digital imaging signal and outputs the digital imaging signal to the imaging signal processing unit 53.
- the imaging signal processing unit 53 is configured by, for example, an FPGA (Field Programmable Gate Array), and performs processing such as noise removal and format conversion processing on the digital imaging signal input from the A / D conversion unit 52 to perform processing. 6 is output.
- FPGA Field Programmable Gate Array
- the pulse signal generation unit 54 is supplied from the processor 6 and is based on a clock signal (for example, a 27 MHz clock signal) serving as a reference for the operation of each component of the endoscope 2.
- the reference clock signal is generated, and this reference clock signal is output to the timing generation unit 25 of the imaging unit 20 via the transmission cable 3.
- the pulse signal generation unit 54 generates a drive signal (synchronization signal) for the imaging unit 20 based on a clock signal supplied from the processor 6 and serving as a reference for the operation of each component of the endoscope 2.
- a first pulse signal shorter than the pulse width of the pulse signal is generated and output to the pulse signal superimposing unit 56.
- the pulse signal generation unit 54 generates a first pulse signal having a high frequency based on a clock signal supplied from the processor 6 and serving as a reference for the operation of each component of the endoscope 2. Output to the pulse signal superimposing unit 56.
- the power supply voltage generation unit 55 is provided on the base end side of the transmission cable 3 and generates a power supply voltage necessary for driving the first chip 21 and the second chip 22 from the power supplied from the processor 6. The data is output to the first chip 21 and the second chip 22. Further, the power supply voltage generation unit 55 generates a negative voltage necessary for driving the unit pixel 230 of the first chip 21 from the power supplied from the processor 6, and the first negative voltage is transmitted via the transmission cable 3. Output to the chip 21. The power supply voltage generation unit 55 generates a power supply voltage and a negative voltage necessary for driving the first chip 21 and the second chip 22 using a regulator or the like. In the first embodiment, the power supply voltage generation unit 55 functions as a power supply (negative power supply).
- the pulse signal superimposing unit 56 is provided on the proximal end side of the transmission cable 3, amplifies the first pulse signal (for example, 0.5 V on the plus side) supplied from the pulse signal generation unit 54, and this first pulse The signal is superimposed on the transmission cable 3 that transmits a negative voltage via the resistor R10 and is output to the imaging unit 20.
- the pulse signal superimposing unit 56 includes an amplification amplifier 561 that amplifies the first pulse signal supplied from the pulse signal generating unit 54 and a capacitor 562 that superimposes the first pulse signal on a negative voltage.
- the processor 6 is a control device that comprehensively controls the entire endoscope system 1.
- the processor 6 includes a power supply unit 61, an image signal processing unit 62, a clock generation unit 63, a recording unit 64, an input unit 65, and a processor control unit 66.
- the power supply unit 61 generates a power supply voltage, and supplies the generated power supply voltage to the power supply voltage generation unit 55 of the connector unit 5 together with the ground GND.
- the image signal processing unit 62 performs a synchronization process, a white balance (WB) adjustment process, a gain adjustment process, a gamma correction process, a digital analog (for a digital image signal that has been subjected to signal processing by the image signal processing unit 53.
- WB white balance
- D / A Image processing such as conversion processing and format conversion processing is performed to convert it into an image signal, and this image signal is output to the display device 7.
- the clock generation unit 63 generates a clock signal that is a reference for the operation of each component of the endoscope system 1, and outputs this clock signal to the pulse signal generation unit 54.
- the recording unit 64 records various information related to the endoscope system 1, data being processed, and the like.
- the recording unit 64 is configured using a recording medium such as a flash memory or a RAM (Random Access Memory).
- the input unit 65 receives input of various operations related to the endoscope system 1. For example, the input unit 65 receives an input of an instruction signal for switching the type of illumination light emitted from the light source device 8.
- the input unit 65 is configured using, for example, a cross switch or a push button.
- the processor control unit 66 comprehensively controls each unit constituting the endoscope system 1.
- the processor control unit 66 is configured using a CPU (Central Processing Unit) or the like.
- the processor control unit 66 switches the illumination light emitted from the light source device 8 in accordance with the instruction signal input from the input unit 65.
- the negative voltage supplied from the power supply voltage generation unit 55 is used for driving the unit pixel 230 and requires less current.
- the voltage can be supplied from the 26 capacitors 262.
- the separation unit 26 forms an RC circuit (low-pass filter circuit) using the capacitor 262 and the resistor 261, so that the pulse signal is sufficiently reduced and transmitted to the unit pixel 230.
- the pulse signal detector 27 detects a pulse signal superimposed on the negative voltage by AC coupling and outputs the pulse signal to the timing generator 25.
- FIG. 3 is a timing chart showing the timing of each signal in the endoscope 2.
- (a) shows the timing of the reference clock signal generated by the pulse signal generator 54
- (b) shows the first negative voltage superimposed on the negative voltage by the pulse signal superimposing unit 56.
- 1 shows the timing of the first pulse signal
- (c) shows the timing of the detection signal (first pulse signal) detected by the pulse signal detection unit 27, and (d) shows the timing of conversion by the pulse signal conversion unit 28.
- 2 shows the timing of the pulse signal 2
- (e) shows the timing of the horizontal synchronization signal detected by the timing generator 25, and
- (f) shows the timing of the vertical synchronization signal detected by the timing generator 25.
- the pulse signal generation unit 54 determines the frequency of the period when the negative voltage pulse signal rises (high period) and the number of times the negative voltage first pulse signal rises (number of times high).
- the signal is doubled and output to the pulse signal superimposing unit 56. That is, the pulse signal generation unit 54 raises the frequency of the first pulse signal to an integer multiple greater than 1 with respect to the frequency of the synchronization signal of the imaging unit 20, specifically, to double the pulse signal superimposition unit 56. Output to.
- the pulse signal conversion unit 28 converts the frequency of the first pulse signal into a second pulse signal obtained by reducing the frequency of the first pulse signal by an integer greater than 1, specifically, 1/2 times. Thereby, the timing generation unit 25 can generate the horizontal synchronization signal at the timing T1.
- FIG. 4 is a diagram illustrating the relationship between the filter characteristics of the pulse signal detector 27 and the frequency component of the first pulse signal.
- the vertical axis represents the output (attenuation) of the pulse signal detector 27, and the horizontal axis represents the frequency.
- the broken line L1 indicates the relationship between the filter characteristic of only the pulse signal detection unit 27 and the frequency component
- the broken line L2 indicates the filter characteristic of the pulse signal detection unit 27 when the pulse signal conversion unit 28 is provided in the subsequent stage. And the relationship between frequency components.
- the relationship between the filter characteristic of the pulse signal detection unit 27 and the frequency component of the first pulse signal is indicated by a broken line L2 as compared with the filter characteristic of only the pulse signal detection unit 27 indicated by the broken line L1.
- the cutoff frequency of the filter characteristic of the pulse signal detector 27 when the pulse signal converter 28 is provided in the subsequent stage can be increased.
- the filter characteristic of only the pulse signal detection unit 27 indicated by the polygonal line L1 is that the output as the attenuation factor at the frequency F1 is 1.0, while the pulse signal conversion unit 28 indicated by the polygonal line L2 is provided in the subsequent stage.
- the output which is the attenuation factor is 1.0 at the frequency F2 (F1 ⁇ F2).
- the resistance value and the capacitance of the capacitors 262 and 271 can be reduced.
- an increase in the area of the imaging unit 20 can be suppressed.
- the cutoff frequency of the pulse signal detection unit 27 can be set to a higher frequency side, so that the resistors constituting each of the separation unit 26 and the pulse signal detection unit 27 are configured.
- the resistance values of 261 and 272 and the capacitances of the capacitors 262 and 271 can be reduced. As a result, when integrated on the first chip 21 or the second chip 22, an increase in the area of the imaging unit 20 can be suppressed.
- the pulse signal superimposing unit 56 superimposes the pulse signal for generating the synchronization signal for driving the imaging unit 20 on the transmission cable 3 that transmits the negative voltage. Since it outputs to the imaging part 20, the number of the transmission cables 3 which connect the imaging part 20 and the connector part 5 can be reduced.
- the timing generation unit 25 provided in the imaging unit 20 on the tip 101 side is based on the second pulse signal and the reference clock signal converted by the pulse signal conversion unit 28, Since the horizontal synchronization signal and the vertical synchronization signal are generated and transmitted to the first chip 21, signal lines for transmitting the synchronization signal can be reduced.
- the separation unit 26, the pulse signal detection unit 27, and the pulse signal conversion unit 28 may be integrated on the second chip 22. Thereby, the imaging unit 20 can be further reduced in size.
- the endoscope system according to the second embodiment is different in configuration from the endoscope system 1 according to the first embodiment described above.
- the configuration of the endoscope system according to the second embodiment will be described.
- symbol is attached
- FIG. 5 is a block diagram showing functions of main parts of the endoscope system according to Embodiment 2 of the present invention.
- An endoscope system 1a shown in FIG. 5 includes an endoscope 2a instead of the endoscope 2 according to the first embodiment described above.
- the endoscope 2a includes an imaging unit 20a instead of the imaging unit 20 according to the first embodiment described above.
- the imaging unit 20 a includes a pulse signal conversion unit 28 a instead of the pulse signal conversion unit 28.
- the pulse signal conversion unit 28a converts the frequency of the first pulse signal detected by the pulse signal detection unit 27 into the frequency of the second pulse signal used to generate a synchronization signal for driving the light receiving unit 23. Output to the timing generator 25.
- the pulse signal conversion unit 28a expands the pulse width of the first pulse signal (detection signal) detected by the pulse signal detection unit 27 to an integer multiple greater than 1, thereby converting it into a second pulse signal. 281a.
- the expansion circuit 281a converts the first pulse signal into a second pulse signal by expanding the pulse width of the first pulse signal by a factor of two.
- FIG. 6 is a timing chart showing the timing of each signal in the endoscope 2a.
- (a) shows the timing of the reference clock signal generated by the pulse signal generation unit 54 in order from the uppermost stage, and (b) shows the first negative voltage superimposed on the negative voltage by the pulse signal superimposition unit 56.
- 1 shows the timing of the first pulse signal
- (c) shows the timing of the detection signal (first pulse signal) detected by the pulse signal detection unit 27, and
- (d) shows the timing of conversion by the pulse signal conversion unit 28a.
- 2 shows the timing of the pulse signal 2
- (e) shows the timing of the horizontal synchronization signal detected by the timing generator 25, and
- (f) shows the timing of the vertical synchronization signal detected by the timing generator 25.
- the pulse signal generation unit 54 outputs the pulse width of the first pulse signal of the negative voltage first pulse signal to the pulse signal superimposition unit 56 by doubling the pulse width (high period). That is, the pulse signal generation unit 54 reduces the pulse width of the first pulse signal to an integer greater than 1 with respect to the frequency of the synchronization signal of the imaging unit 20, specifically to the first. Are generated and output to the pulse signal superimposing unit 56. For this reason, the pulse signal conversion unit 28a expands the pulse width (see F10 in FIG. 6) of the first pulse signal to an integral multiple larger than 1, more specifically, doubled, and outputs the second pulse signal. Convert pulse signals. Thereby, the timing generation unit 25 can generate the horizontal synchronization signal at the timing T1.
- the same effect as in the first embodiment described above can be obtained, and the cutoff frequency of the pulse signal detection unit 27 can be set to a higher frequency side.
- the resistance values of the resistors 261 and 272 and the capacitances of the capacitors 262 and 271 constituting each of the unit 26 and the pulse signal detection unit 27 can be reduced.
- an increase in the area of the imaging unit 20a can be suppressed.
- the separation unit 26, the pulse signal detection unit 27, and the pulse signal conversion unit 28 a may be integrated on the second chip 22. Thereby, the imaging unit 20a can be further downsized.
- the processor and the light source device are separate from each other.
- the present invention is not limited to this.
- the processor and the light source device may be integrally formed.
- each of the separation unit, the pulse signal detection unit, and the pulse signal conversion unit is provided on the distal end side of the insertion unit.
- the separation unit, the pulse signal detection unit, and the pulse are provided in the second chip.
- Each of the signal conversion units may be stacked.
- the imaging device includes a first chip in which a light receiving unit having a plurality of pixels is stacked, and a second chip stacked in the first chip, A direct current component and an alternating current component are separated from the voltage on which the first pulse signal is superimposed via a transmission cable that transmits power (power supply voltage) for driving one chip, and the direct current component is transferred to the first chip.
- the pulse signal superimposing unit may superimpose the pulse signal on the negative side ( ⁇ side) or the positive side (+ side) with respect to the negative voltage.
- the power supply voltage generation unit transmits a negative voltage via a transmission cable, but the present invention is not limited to this, and a positive voltage may be transmitted.
- each of the separation unit, the pulse signal detection unit, and the pulse signal conversion unit is provided on the distal end side of the insertion unit, but the separation unit, the pulse signal detection is provided in the operation unit of the endoscope. And a pulse signal converter may be provided.
- the simultaneous-type endoscope has been described as an example.
- the present invention can also be applied to a frame-sequential type endoscope.
- an endoscope system such as a rigid endoscope, a sinus endoscope, an electric knife, and an inspection probe is provided. Can also be applied.
- the present invention is not limited to the above-described embodiments as they are, and in the implementation stage, the constituent elements can be modified and embodied without departing from the gist of the invention.
- Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from all the components described in the above-described embodiment. Furthermore, you may combine suitably the component demonstrated by each embodiment and the modification.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Endoscopes (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
Abstract
さらなる小型化を実現することができる撮像装置、内視鏡および内視鏡システムを提供する。撮像部20は、パルス信号生成部54が生成した第1のパルス信号を電圧に重畳するパルス信号重畳部56と、撮像部20と伝送ケーブル3との間に設けられ、伝送ケーブル3から伝送された電圧から直流成分と交流成分とを分離し、この直流成分を撮像部20に出力する分離部26と、伝送ケーブル3に重畳された第1のパルス信号を検出するパルス信号検出部27と、パルス信号検出部27が検出した第1のパルス信号の周波数を、撮像部20を駆動する同期信号を生成するために用いられる第2のパルス信号の周波数に変換するパルス信号変換部28と、パルス信号変換部28が変換した第2のパルス信号に基づいて、同期信号を生成するタイミング生成部25と、を備える。
Description
本発明は、被写体を撮像して該被写体の画像データを生成する撮像装置、内視鏡および内視鏡システムに関する。
従来、内視鏡は、先端に撮像装置が設けられた細長形状をなす可撓性の挿入部を患者等の被検体内に挿入することによって、被検体内の体内画像を取得する。このような内視鏡において使用される撮像ユニットは、撮像素子が形成された半導体チップと、この半導体チップの背面側に隣接して配置された回路基板と、を備える(特許文献1,2を参照)。この回路基板には、プロセッサから出力された撮像素子を駆動するための同期信号を検出するために、抵抗およびコンデンサによって構成されたローパスフィルタおよびハイパスフィルタ等が実装されている。
しかしながら、上述した特許文献1,2では、ローパスフィルタおよびハイパスフィルタの時定数が大きいため、ローパスフィルタおよびハイパスフィルタを構成する抵抗およびコンデンサの値が大きくなることで、回路基板が大きくなってしまい、撮像素子の小型化の妨げとなっていた。
本発明は、上記に鑑みてなされたものであって、さらなる小型化を実現することができる撮像装置、内視鏡および内視鏡システムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る撮像装置は、二次元マトリクス状に配置され、外部から光を受光し、受光量に応じた撮像信号を生成する複数の画素を有する受光部と、前記受光部に電力を伝送する伝送ケーブルと、前記伝送ケーブルを介して前記受光部に電圧を供給する電源と、第1のパルス信号を生成するパルス信号生成部と、前記パルス信号生成部が生成した前記第1のパルス信号を前記電圧に重畳するパルス信号重畳部と、前記受光部と前記伝送ケーブルとの間に設けられ、前記伝送ケーブルから伝送された前記電圧から直流成分と交流成分とを分離し、該直流成分を前記受光部に出力する分離部と、前記伝送ケーブルに重畳された前記第1のパルス信号を検出するパルス信号検出部と、前記パルス信号検出部が検出した前記第1のパルス信号の周波数を、前記受光部を駆動する同期信号を生成するために用いられる第2のパルス信号の周波数に変換するパルス信号変換部と、前記パルス信号変換部が変換した前記第2のパルス信号に基づいて、前記同期信号を生成するタイミング生成部と、を備えたことを特徴とする。
また、本発明に係る撮像装置は、上記発明において、前記パルス信号変換部は、前記第1のパルス信号の周波数を1より大きい整数分の一に下げることによって、前記第2のパルス信号に変換する分周回路を有することを特徴とする。
また、本発明に係る撮像装置は、上記発明において、前記パルス信号変換部は、前記第1のパルス信号のパルス幅を1より大きい整数倍に伸張することによって、前記第2のパルス信号に変換する伸張回路を有することを特徴とする。
また、本発明に係る撮像装置は、上記発明において、前記電源および前記パルス信号重畳部は、前記伝送ケーブルの基端側に位置し、前記分離部、前記パルス信号検出部、前記パルス信号変換部および前記タイミング生成部は、前記伝送ケーブルの先端側に位置することを特徴とする。
また、本発明に係る内視鏡は、上記発明の撮像装置と、被検体内に挿入可能な挿入部と、前記撮像信号に対して画像処理を施す画像処理装置に対して、着脱自在なコネクタ部と、を備え、前記受光部、前記分離部、前記パルス信号検出部、前記パルス信号変換部および前記タイミング生成部は、前記挿入部の先端側に位置し、前記コネクタ部は、前記電源および前記パルス信号重畳部を有することを特徴とする。
また、本発明に係る内視鏡システムは、上記発明の内視鏡と、前記撮像信号に対して画像処理を施す画像処理装置と、を備えたことを特徴とする。
本発明によれば、さらなる小型化を実現することができるという効果を奏する。
以下、本発明を実施するための形態(以下、「実施の形態」という)として、撮像素子を被検体に挿入される挿入部の先端に設けた内視鏡を備えた内視鏡システムについて説明する。また、この実施の形態により、本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付して説明する。さらにまた、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法や比率が異なる部分が含まれている。
(実施の形態1)
〔内視鏡システムの構成〕
図1は、本発明の実施の形態1に係る内視鏡システムの全体構成を模式的に示す概略図である。図1に示す内視鏡システム1は、内視鏡2と、伝送ケーブル3と、コネクタ部5と、プロセッサ6と、表示装置7と、光源装置8と、を備える。
〔内視鏡システムの構成〕
図1は、本発明の実施の形態1に係る内視鏡システムの全体構成を模式的に示す概略図である。図1に示す内視鏡システム1は、内視鏡2と、伝送ケーブル3と、コネクタ部5と、プロセッサ6と、表示装置7と、光源装置8と、を備える。
内視鏡2は、伝送ケーブル3の一部である挿入部100を被検体の体腔内に挿入することによって被検体の体内を撮像して撮像信号をプロセッサ6へ出力する。また、内視鏡2は、伝送ケーブル3の一端側であり、被検体の体腔内に挿入される挿入部100の先端101側に、体内画像の撮像を行う撮像部20(撮像素子)が設けられており、挿入部100の基端102側に、内視鏡2に対する各種操作を受け付ける操作部4が設けられている。撮像部20が撮像した画像の撮像信号は、例えば、数mの長さを有する伝送ケーブル3を通り、コネクタ部5に出力される。
伝送ケーブル3は、内視鏡2とコネクタ部5とを接続するとともに、内視鏡2と光源装置8とを接続する。また、伝送ケーブル3は、撮像部20が生成した撮像信号をコネクタ部5へ伝搬する。伝送ケーブル3は、ケーブルや光ファイバ等を用いて構成される。
コネクタ部5は、内視鏡2、プロセッサ6および光源装置8に接続され、接続された内視鏡2が出力する撮像信号に所定の信号処理を施すとともに、アナログの撮像信号をデジタルの撮像信号に変換(A/D変換)してプロセッサ6へ出力する。
プロセッサ6は、コネクタ部5から入力される撮像信号に所定の画像処理を施して表示装置7へ出力する。また、プロセッサ6は、内視鏡システム1全体を統括的に制御する。例えば、プロセッサ6は、光源装置8が出射する照明光を切り替えたり、内視鏡2の撮像モードを切り替えたりする制御を行う。なお、本実施の形態1では、プロセッサ6が画像処理装置として機能する。
表示装置7は、プロセッサ6が画像処理を施した撮像信号に対応する画像を表示する。また、表示装置7は、内視鏡システム1に関する各種情報を表示する。表示装置7は、液晶や有機EL(Electro Luminescence)等の表示パネル等を用いて構成される。
光源装置8は、コネクタ部5および伝送ケーブル3を経由して内視鏡2の挿入部100の先端101側から被写体へ向けて照明光を照射する。光源装置8は、白色光を発する白色LED(Light Emitting Diode)および白色光の波長帯域より狭い波長帯域を有する狭帯域光の特殊光を発するLED等を用いて構成される。光源装置8は、プロセッサ6の制御のもと、内視鏡2を介して白色光または狭帯域光を被写体に向けて照射する。
図2は、内視鏡システム1の要部の機能を示すブロック図である。図2を参照して、内視鏡システム1の各構成の詳細および内視鏡システム1内の電気信号の経路について説明する。
〔内視鏡の構成〕
まず、内視鏡2の構成について説明する。図2に示す内視鏡2は、撮像部20と、伝送ケーブル3と、コネクタ部5と、を備える。
まず、内視鏡2の構成について説明する。図2に示す内視鏡2は、撮像部20と、伝送ケーブル3と、コネクタ部5と、を備える。
撮像部20は、第1チップ21(撮像基板)と、第2チップ22(回路基板)と、分離部26(AC成分除去部)と、パルス信号検出部27と、パルス信号変換部28と、を備える。撮像部20に供給される電源電圧VDDとグランドGNDとの間には、電源安定用のコンデンサC1が設けられている。
第1チップ21は、二次元マトリクス状に配置されてなり、外部から光を受光し、受光量に応じた撮像信号を生成して出力する複数の単位画素230が配置されてなる受光部23と、受光部23における複数の単位画素230の各々で光電変換された撮像信号を読み出す読み出し部24と、コネクタ部5から入力される基準クロック信号および後述するパルス信号検出部27およびパルス信号変換部28を介して入力される第2のパルス信号に基づいて、受光部23を駆動するための受光部駆動信号および読み出し部24を駆動するための読み出し部駆動信号を含む同期信号を生成して受光部23および読み出し部24へ出力するタイミング生成部25と、を有する。
第2チップ22は、第1チップ21における複数の単位画素230の各々から出力された撮像信号を増幅して伝送ケーブル3へ出力するバッファ29を有する。
分離部26は、第1チップ21と伝送ケーブル3との間に接続され、伝送ケーブル3から伝送された負電圧から直流成分と交流成分とを分離し、分離した直流成分を第1チップ21へ出力する。分離部26は、後述する負電圧が伝送される伝送ケーブル3(信号線)に直列に接続された抵抗261(例えば100Ω)と、後述する電源電圧生成部55とグランドGNDとの間に接続されたコンデンサ262と、を有し、RC回路(ローパスフィルタ回路)を形成する。これにより、後述するコネクタ部5から入力された負電圧に重畳された交流成分のパルス信号がカットされて直流成分が単位画素230に出力される。
パルス信号検出部27は、分離部26と後述するコネクタ部5のパルス信号重畳部56との間にAC結合によって接続され、負電圧に重畳された第1のパルス信号(交流成分)を検出し、検出した第1のパルス信号をパルス信号変換部28へ出力する。具体的には、パルス信号検出部27は、伝送ケーブル3の先端側であり、分離部26の抵抗261の基端側に接続される。パルス信号検出部27は、負電圧が伝送される伝送ケーブル3(信号線)に接続されたコンデンサ271と、一端側がコンデンサ271に接続され、他端側がグランドGNDに接続された抵抗272と、コンデンサ271および抵抗272によって抽出されたパルス信号を増幅する増幅アンプ273と、を有する。コンデンサ271および抵抗272がRC回路(ハイパスフィルタ)を形成する。
パルス信号変換部28は、パルス信号検出部27が検出した第1のパルス信号の周波数を、受光部23を駆動する同期信号を生成するために用いられる第2のパルス信号の周波数に変換してタイミング生成部25へ出力する。パルス信号変換部28は、第1のパルス信号の周波数を1より大きい整数分の一に下げて第2のパルス信号を変換(分周)する分周回路281を有する。具体的には、分周回路281は、第1のパルス信号の周波数を1/2倍に下げることによって、第2のパルス信号に変換する。
伝送ケーブル3は、少なくとも、電源電圧生成部55によって生成された電源電圧を撮像部20に伝送する信号線、電源電圧生成部55によって生成された負電圧を撮像部20に伝送する信号線、パルス信号生成部54によって生成された基準クロック信号を撮像部20に伝送する信号線、撮像部20によって生成された撮像信号をコネクタ部5に伝送する信号線、および撮像部20にグランドGNDを伝送する信号線の5本を用いて構成される。
コネクタ部5は、アナログ・フロント・エンド部51(以下、「AFE部51」という)と、A/D変換部52と、撮像信号処理部53と、パルス信号生成部54と、電源電圧生成部55と、パルス信号重畳部56と、を有する。
AFE部51は、撮像部20から伝搬される撮像信号を受信し、抵抗等の受動素子を用いてインピーダンスマッチングを行った後、コンデンサを用いて交流成分を取り出し、分圧抵抗によって動作点を決定する。その後、AFE部51は、撮像信号(アナログ信号)を増幅してA/D変換部52へ出力する。
A/D変換部52は、AFE部51から入力されたアナログの撮像信号をデジタルの撮像信号に変換して撮像信号処理部53へ出力する。
撮像信号処理部53は、例えばFPGA(Field Programmable Gate Array)により構成され、A/D変換部52から入力されるデジタルの撮像信号に対して、ノイズ除去およびフォーマット変換処理等の処理を行ってプロセッサ6へ出力する。
パルス信号生成部54は、プロセッサ6から供給され、内視鏡2の各構成部の動作の基準となるクロック信号(例えば、27MHzのクロック信号)に基づいて、撮像部20の各構成部の基準となる基準クロック信号を生成し、この基準クロック信号を、伝送ケーブル3を介して撮像部20のタイミング生成部25へ出力する。また、パルス信号生成部54は、プロセッサ6から供給され、内視鏡2の各構成部の動作の基準となるクロック信号に基づいて、撮像部20の駆動信号(同期信号)を生成するためのパルス信号のパルス幅より短い第1のパルス信号を生成してパルス信号重畳部56へ出力する。具体的には、パルス信号生成部54は、プロセッサ6から供給され、内視鏡2の各構成部の動作の基準となるクロック信号に基づいて、周波数が高い第1のパルス信号を生成してパルス信号重畳部56へ出力する。
電源電圧生成部55は、伝送ケーブル3の基端側に設けられ、プロセッサ6から供給される電源から、第1チップ21と第2チップ22を駆動するのに必要な電源電圧を生成して第1チップ21および第2チップ22へ出力する。さらに、電源電圧生成部55は、プロセッサ6から供給される電源から、第1チップ21の単位画素230を駆動するのに必要な負電圧を生成し、伝送ケーブル3を介して負電圧を第1チップ21へ出力する。電源電圧生成部55は、レギュレーターなどを用いて第1チップ21と第2チップ22を駆動するのに必要な電源電圧および負電圧を生成する。なお、本実施の形態1では、電源電圧生成部55が電源(負電源)として機能する。
パルス信号重畳部56は、伝送ケーブル3の基端側に設けられ、パルス信号生成部54から供給される第1のパルス信号(例えばプラス側に0.5V)を増幅し、この第1のパルス信号を、抵抗R10を介して負電圧を伝送する伝送ケーブル3に重畳して撮像部20へ出力する。パルス信号重畳部56は、パルス信号生成部54から供給される第1のパルス信号を増幅する増幅アンプ561と、負電圧に第1のパルス信号を重畳するコンデンサ562と、を有する。
〔プロセッサの構成〕
次に、プロセッサ6の構成について説明する。
プロセッサ6は、内視鏡システム1の全体を統括的に制御する制御装置である。プロセッサ6は、電源部61と、画像信号処理部62と、クロック生成部63と、記録部64と、入力部65と、プロセッサ制御部66と、を備える。
次に、プロセッサ6の構成について説明する。
プロセッサ6は、内視鏡システム1の全体を統括的に制御する制御装置である。プロセッサ6は、電源部61と、画像信号処理部62と、クロック生成部63と、記録部64と、入力部65と、プロセッサ制御部66と、を備える。
電源部61は、電源電圧を生成し、この生成した電源電圧をグランドGNDとともに、コネクタ部5の電源電圧生成部55へ供給する。
画像信号処理部62は、撮像信号処理部53で信号処理が施されたデジタルの撮像信号に対して、同時化処理、ホワイトバランス(WB)調整処理、ゲイン調整処理、ガンマ補正処理、デジタルアナログ(D/A)変換処理、フォーマット変換処理等の画像処理を行って画像信号に変換し、この画像信号を表示装置7へ出力する。
クロック生成部63は、内視鏡システム1の各構成部の動作の基準となるクロック信号を生成し、このクロック信号をパルス信号生成部54へ出力する。
記録部64は、内視鏡システム1に関する各種情報や処理中のデータ等を記録する。記録部64は、FlashメモリやRAM(Random Access Memory)の記録媒体を用いて構成される。
入力部65は、内視鏡システム1に関する各種操作の入力を受け付ける。例えば、入力部65は、光源装置8が出射する照明光の種別を切り替える指示信号の入力を受け付ける。入力部65は、例えば十字スイッチやプッシュボタン等を用いて構成される。
プロセッサ制御部66は、内視鏡システム1を構成する各部を統括的に制御する。プロセッサ制御部66は、CPU(Central Processing Unit)等を用いて構成される。プロセッサ制御部66は、入力部65から入力された指示信号に応じて、光源装置8が出射する照明光を切り替える。
このように撮像部20を構成することで、電源電圧生成部55から供給される負電圧は、単位画素230の駆動に用いられ、必要とされる電流が少ないため、短時間であれば分離部26のコンデンサ262からの電圧供給が可能となる。分離部26は、コンデンサ262と抵抗261とを用いて、RC回路(ローパスフィルタ回路)を形成することによって、パルス信号が単位画素230へ十分に低減されて伝送される。さらに、パルス信号検出部27は、AC結合により負電圧に重畳されたパルス信号を検出してタイミング生成部25へ出力する。
〔内視鏡の動作〕
次に、内視鏡2における各信号のタイミングについて説明する。図3は、内視鏡2における各信号のタイミングを示すタイミングチャートである。図3において、最上段から順に、(a)がパルス信号生成部54によって生成される基準クロック信号のタイミングを示し、(b)がパルス信号重畳部56によって負電圧に重畳される負電圧の第1のパルス信号のタイミングを示し、(c)がパルス信号検出部27によって検出される検出信号(第1のパルス信号)のタイミングを示し、(d)がパルス信号変換部28によって変換される第2のパルス信号のタイミングを示し、(e)がタイミング生成部25によって検出される水平同期信号のタイミングを示し、(f)がタイミング生成部25によって検出される垂直同期信号のタイミングを示す。
次に、内視鏡2における各信号のタイミングについて説明する。図3は、内視鏡2における各信号のタイミングを示すタイミングチャートである。図3において、最上段から順に、(a)がパルス信号生成部54によって生成される基準クロック信号のタイミングを示し、(b)がパルス信号重畳部56によって負電圧に重畳される負電圧の第1のパルス信号のタイミングを示し、(c)がパルス信号検出部27によって検出される検出信号(第1のパルス信号)のタイミングを示し、(d)がパルス信号変換部28によって変換される第2のパルス信号のタイミングを示し、(e)がタイミング生成部25によって検出される水平同期信号のタイミングを示し、(f)がタイミング生成部25によって検出される垂直同期信号のタイミングを示す。
図3に示すように、パルス信号生成部54は、負電圧パルス信号が立ち上がる期間(Highとなる期間)の周波数と、負電圧の第1のパルス信号が立ち上がる回数(Highとなる回数)とを2倍にしてパルス信号重畳部56に出力している。即ち、パルス信号生成部54は、第1のパルス信号の周波数を、撮像部20の同期信号の周波数に対して1よりも大きい整数倍、具体的には2倍に上げてパルス信号重畳部56に出力する。このため、パルス信号変換部28は、第1のパルス信号の周波数を1よりも大きい整数分の一、具体的には1/2倍に下げた第2のパルス信号に変換する。これにより、タイミング生成部25は、タイミングT1において、水平同期信号を生成することができる。
〔パルス信号検出部のフィルタ特性と周波数成分との関係〕
次に、パルス信号検出部27のフィルタ特性と第1のパルス信号の周波数成分との関係について説明する。図4は、パルス信号検出部27のフィルタ特性と第1のパルス信号の周波数成分との関係を示す図である。図4において、縦軸がパルス信号検出部27の出力(減衰)を示し、横軸が周波数を示す。また、図4において、折れ線L1がパルス信号検出部27のみのフィルタ特性と周波数成分との関係を示し、折れ線L2がパルス信号変換部28を後段に設けた際のパルス信号検出部27のフィルタ特性と周波数成分との関係を示す。
次に、パルス信号検出部27のフィルタ特性と第1のパルス信号の周波数成分との関係について説明する。図4は、パルス信号検出部27のフィルタ特性と第1のパルス信号の周波数成分との関係を示す図である。図4において、縦軸がパルス信号検出部27の出力(減衰)を示し、横軸が周波数を示す。また、図4において、折れ線L1がパルス信号検出部27のみのフィルタ特性と周波数成分との関係を示し、折れ線L2がパルス信号変換部28を後段に設けた際のパルス信号検出部27のフィルタ特性と周波数成分との関係を示す。
図4に示すように、パルス信号検出部27のフィルタ特性と第1のパルス信号の周波数成分との関係は、折れ線L1に示すパルス信号検出部27のみのフィルタ特性に比べて、折れ線L2に示すパルス信号変換部28を後段に設けた際のパルス信号検出部27のフィルタ特性のカットオフ周波数を高くすることができる。具体的には、折れ線L1に示すパルス信号検出部27のみのフィルタ特性は、周波数F1で減衰率である出力が1.0となる一方、折れ線L2に示すパルス信号変換部28を後段に設けた際のパルス信号検出部27のフィルタ特性は、周波数F2(F1<F2)で減衰率である出力が1.0となる。これにより、パルス信号検出部27のカットオフ周波数(fc=1/2πRC)をより高周波側へ設定することができるので、分離部26およびパルス信号検出部27の各々を構成する抵抗261,272の抵抗値およびコンデンサ262,271の容量を小さくすることができる。この結果、第1チップ21または第2チップ22に集積した場合、撮像部20の面積の増加を抑制することができる。
以上説明した本発明の実施の形態1によれば、パルス信号検出部27のカットオフ周波数をより高周波側へ設定することができるので、分離部26およびパルス信号検出部27の各々を構成する抵抗261,272の抵抗値およびコンデンサ262,271の容量を小さくすることができる。この結果、第1チップ21または第2チップ22に集積した場合、撮像部20の面積の増加を抑制することができる。
また、本発明の実施の形態1によれば、パルス信号重畳部56が撮像部20を駆動するための同期信号を生成するためのパルス信号を負電圧が伝送される伝送ケーブル3に重畳して撮像部20に出力するので、撮像部20とコネクタ部5とを接続する伝送ケーブル3の数を削減することができる。
また、本発明の実施の形態1によれば、先端101側の撮像部20に設けたタイミング生成部25がパルス信号変換部28によって変換された第2のパルス信号および基準クロック信号に基づいて、水平同期信号および垂直同期信号を生成して第1チップ21へ送信するので、同期信号を伝送する信号線を削減することができる。
また、本発明の実施の形態1では、分離部26、パルス信号検出部27およびパルス信号変換部28を第2チップ22に集積してもよい。これにより、撮像部20をさらに小型化することができる。
(実施の形態2)
次に、本発明の実施の形態2について説明する。本実施の形態2に係る内視鏡システムは、上述した実施の形態1に係る内視鏡システム1と構成が異なる。以下においては、本実施の形態2に係る内視鏡システムの構成を説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
次に、本発明の実施の形態2について説明する。本実施の形態2に係る内視鏡システムは、上述した実施の形態1に係る内視鏡システム1と構成が異なる。以下においては、本実施の形態2に係る内視鏡システムの構成を説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
〔内視鏡システムの構成〕
図5は、本発明の実施の形態2に係る内視鏡システムの要部の機能を示すブロック図である。図5に示す内視鏡システム1aは、上述した実施の形態1に係る内視鏡2に換えて、内視鏡2aを備える。また、内視鏡2aは、上述した実施の形態1に係る撮像部20に換えて、撮像部20aを備える。また、撮像部20aは、パルス信号変換部28に換えて、パルス信号変換部28aを備える。
図5は、本発明の実施の形態2に係る内視鏡システムの要部の機能を示すブロック図である。図5に示す内視鏡システム1aは、上述した実施の形態1に係る内視鏡2に換えて、内視鏡2aを備える。また、内視鏡2aは、上述した実施の形態1に係る撮像部20に換えて、撮像部20aを備える。また、撮像部20aは、パルス信号変換部28に換えて、パルス信号変換部28aを備える。
パルス信号変換部28aは、パルス信号検出部27が検出した第1のパルス信号の周波数を、受光部23を駆動する同期信号を生成するために用いられる第2のパルス信号の周波数に変換してタイミング生成部25へ出力する。パルス信号変換部28aは、パルス信号検出部27が検出した第1のパルス信号(検出信号)のパルス幅を、1より大きい整数倍に伸張することによって、第2のパルス信号に変換する伸張回路281aを有する。具体的には、伸張回路281aは、第1のパルス信号のパルス幅を2倍に伸張することによって第2のパルス信号に変換する。
〔内視鏡の動作〕
次に、内視鏡2aにおける各信号のタイミングについて説明する。図6は、内視鏡2aにおける各信号のタイミングを示すタイミングチャートである。図6において、最上段から順に、(a)がパルス信号生成部54によって生成される基準クロック信号のタイミングを示し、(b)がパルス信号重畳部56によって負電圧に重畳される負電圧の第1のパルス信号のタイミングを示し、(c)がパルス信号検出部27によって検出される検出信号(第1のパルス信号)のタイミングを示し、(d)がパルス信号変換部28aによって変換される第2のパルス信号のタイミングを示し、(e)がタイミング生成部25によって検出される水平同期信号のタイミングを示し、(f)がタイミング生成部25によって検出される垂直同期信号のタイミングを示す。
次に、内視鏡2aにおける各信号のタイミングについて説明する。図6は、内視鏡2aにおける各信号のタイミングを示すタイミングチャートである。図6において、最上段から順に、(a)がパルス信号生成部54によって生成される基準クロック信号のタイミングを示し、(b)がパルス信号重畳部56によって負電圧に重畳される負電圧の第1のパルス信号のタイミングを示し、(c)がパルス信号検出部27によって検出される検出信号(第1のパルス信号)のタイミングを示し、(d)がパルス信号変換部28aによって変換される第2のパルス信号のタイミングを示し、(e)がタイミング生成部25によって検出される水平同期信号のタイミングを示し、(f)がタイミング生成部25によって検出される垂直同期信号のタイミングを示す。
図6に示すように、パルス信号生成部54は、負電圧第1のパルス信号の立ち上がりのパルス幅(Highとなる期間)を1/2倍にしてパルス信号重畳部56に出力している。即ち、パルス信号生成部54は、第1のパルス信号のパルス幅を、撮像部20の同期信号の周波数に対して1より大きい整数分の一、具体的には1/2に下げた第1のパルス信号を生成してパルス信号重畳部56に出力する。このため、パルス信号変換部28aは、第1のパルス信号のパルス幅を1よりも大きい整数倍、具体的には2倍にパルス幅(図6のF10を参照)を伸張して第2のパルス信号を変換する。これにより、タイミング生成部25は、タイミングT1において、水平同期信号を生成することができる。
このように、パルス信号検出部27のカットオフ周波数(fc=1/2πRC)をより高周波側へ設定することができるので、分離部26およびパルス信号検出部27の各々を構成する抵抗261,272の抵抗値およびコンデンサ262,271の容量を小さくすることができる。この結果、第1チップ21または第2チップ22に集積した場合、撮像部20aの面積の増加を抑制することができる。
以上説明した本発明の実施の形態2によれば、上述した実施の形態1と同様の効果を奏するとともに、パルス信号検出部27のカットオフ周波数をより高周波側へ設定することができるので、分離部26およびパルス信号検出部27の各々を構成する抵抗261,272の抵抗値およびコンデンサ262,271の容量を小さくすることができる。この結果、第1チップ21または第2チップ22に集積した場合、撮像部20aの面積の増加を抑制することができる。
また、本発明の実施の形態2では、分離部26、パルス信号検出部27およびパルス信号変換部28aを第2チップ22に集積してもよい。これにより、撮像部20aをさらに小型化することができる。
(その他の実施の形態)
また、本発明の実施の形態では、プロセッサと光源装置とが別体であったがこれに限定されることなく、例えばプロセッサと光源装置とが一体的に形成されてもよい。
また、本発明の実施の形態では、プロセッサと光源装置とが別体であったがこれに限定されることなく、例えばプロセッサと光源装置とが一体的に形成されてもよい。
また、本発明の実施の形態では、分離部、パルス信号検出部およびパルス信号変換部の各々が挿入部の先端側に設けられていたが、第2チップに分離部、パルス信号検出部およびパルス信号変換部の各々を積層してもよい。具体的には、撮像素子(撮像部)は、複数の画素を有する受光部が積層された第1チップと、第1チップに積層された第2チップと、を備え、第2チップは、第1チップを駆動するための電力(電源電圧)を伝送する伝送ケーブルを介して第1のパルス信号が重畳された電圧から直流成分と交流成分とを分離し、該直流成分を前記第1チップに出力する分離部と、伝送ケーブルに重畳された第1のパルス信号を検出するパルス信号検出部と、パルス信号検出部が検出した第1のパルス信号の周波数を、第1チップを駆動する同期信号を生成するために用いられる第2のパルス信号の周波数に変換するパルス信号変換部と、パルス信号変換部が変換した第2のパルス信号に基づいて、同期信号を生成するタイミング生成部と、を有するようにしてもよい。
また、本発明の実施の形態では、パルス信号重畳部が負電圧に対してパルス信号を負側(-側)に重畳してもよいし、正側(+側)に重畳してもよい。
また、本発明の実施の形態では、電源電圧生成部が伝送ケーブルを介して負電圧を伝送していたが、これに限定されることなく、正電圧を伝送してもよい。
また、本発明の実施の形態では、分離部、パルス信号検出部およびパルス信号変換部の各々が挿入部の先端側に設けられていたが、内視鏡の操作部に分離部、パルス信号検出部およびパルス信号変換部を設けてもよい。
また、本発明の実施の形態では、同時方式の内視鏡を例に説明したが、面順次方式の内視鏡であっても適用することができる。
また、本発明の実施の形態では、軟性内視鏡(上下内視鏡スコープ)以外にも、硬性内視鏡、副鼻腔内視鏡および電気メスや検査プローブ等の内視鏡システムであっても適用することができる。
また、本明細書におけるタイミングチャートの説明では、「まず」、「その後」、「続いて」等の表現を用いて各間の処理の前後関係を明示していたが、本発明を実施するために必要な処理の順序は、それらの表現によって一意的に定められるわけではない。即ち、本明細書で記載したタイミングチャートにおける処理の順序は、矛盾のない範囲で変更することができる。
また、本発明は、上述した実施の形態そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上述した実施の形態に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、上述した実施の形態に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、各実施の形態および変形例で説明した構成要素を適宜組み合わせてもよい。
また、明細書または図面において、少なくとも一度、より広義または同義な異なる用語とともに記載された用語は、明細書または図面のいかなる箇所においても、その異なる用語に置き換えることができる。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。
1,1a 内視鏡システム
2,2a 内視鏡
3 伝送ケーブル
4 操作部
5 コネクタ部
6 プロセッサ
7 表示装置
8 光源装置
20,20a 撮像部
21 第1チップ
22 第2チップ
23 受光部
24 読み出し部
25 タイミング生成部
26 分離部
27 パルス信号検出部
28,28a パルス信号変換部
29 バッファ
51 AFE部
52 A/D変換部
53 撮像信号処理部
54 パルス信号生成部
55 電源電圧生成部
56 パルス信号重畳部
61 電源部
62 画像信号処理部
63 クロック生成部
64 記録部
65 入力部
66 プロセッサ制御部
100 挿入部
101 先端
102 基端
230 単位画素
261,272,R10 抵抗
262,271,562,C1 コンデンサ
273,561 増幅アンプ
281 分周回路
281a 伸張回路
2,2a 内視鏡
3 伝送ケーブル
4 操作部
5 コネクタ部
6 プロセッサ
7 表示装置
8 光源装置
20,20a 撮像部
21 第1チップ
22 第2チップ
23 受光部
24 読み出し部
25 タイミング生成部
26 分離部
27 パルス信号検出部
28,28a パルス信号変換部
29 バッファ
51 AFE部
52 A/D変換部
53 撮像信号処理部
54 パルス信号生成部
55 電源電圧生成部
56 パルス信号重畳部
61 電源部
62 画像信号処理部
63 クロック生成部
64 記録部
65 入力部
66 プロセッサ制御部
100 挿入部
101 先端
102 基端
230 単位画素
261,272,R10 抵抗
262,271,562,C1 コンデンサ
273,561 増幅アンプ
281 分周回路
281a 伸張回路
Claims (6)
- 二次元マトリクス状に配置され、外部から光を受光し、受光量に応じた撮像信号を生成する複数の画素を有する受光部と、
前記受光部に電力を伝送する伝送ケーブルと、
前記伝送ケーブルを介して前記受光部に電圧を供給する電源と、
第1のパルス信号を生成するパルス信号生成部と、
前記パルス信号生成部が生成した前記第1のパルス信号を前記電圧に重畳するパルス信号重畳部と、
前記受光部と前記伝送ケーブルとの間に設けられ、前記伝送ケーブルから伝送された前記電圧から直流成分と交流成分とを分離し、該直流成分を前記受光部に出力する分離部と、
前記伝送ケーブルに重畳された前記第1のパルス信号を検出するパルス信号検出部と、
前記パルス信号検出部が検出した前記第1のパルス信号の周波数を、前記受光部を駆動する同期信号を生成するために用いられる第2のパルス信号の周波数に変換するパルス信号変換部と、
前記パルス信号変換部が変換した前記第2のパルス信号に基づいて、前記同期信号を生成するタイミング生成部と、
を備えたことを特徴とする撮像装置。 - 前記パルス信号変換部は、前記第1のパルス信号の周波数を1より大きい整数分の一に下げることによって、前記第2のパルス信号に変換する分周回路を有することを特徴とする請求項1に記載の撮像装置。
- 前記パルス信号変換部は、前記第1のパルス信号のパルス幅を1より大きい整数倍に伸張することによって、前記第2のパルス信号に変換する伸張回路を有することを特徴とする請求項1に記載の撮像装置。
- 前記電源および前記パルス信号重畳部は、前記伝送ケーブルの基端側に位置し、
前記分離部、前記パルス信号検出部、前記パルス信号変換部および前記タイミング生成部は、前記伝送ケーブルの先端側に位置することを特徴とする請求項1に記載の撮像装置。 - 請求項1に記載の撮像装置と、
被検体内に挿入可能な挿入部と、
前記撮像信号に対して画像処理を施す画像処理装置に対して、着脱自在なコネクタ部と、
を備え、
前記受光部、前記分離部、前記パルス信号検出部、前記パルス信号変換部および前記タイミング生成部は、前記挿入部の先端側に位置し、
前記コネクタ部は、前記電源および前記パルス信号重畳部を有することを特徴とする内視鏡。 - 請求項5に記載の内視鏡と、
前記撮像信号に対して画像処理を施す画像処理装置と、
を備えたことを特徴とする内視鏡システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780081820.XA CN110167418A (zh) | 2017-01-24 | 2017-08-28 | 摄像装置、内窥镜以及内窥镜系统 |
JP2018550008A JP6463568B2 (ja) | 2017-01-24 | 2017-08-28 | 撮像装置、内視鏡および内視鏡システム |
US16/456,538 US20190327414A1 (en) | 2017-01-24 | 2019-06-28 | Imaging device, endoscope, and endoscope system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-010117 | 2017-01-24 | ||
JP2017010117 | 2017-01-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/456,538 Continuation US20190327414A1 (en) | 2017-01-24 | 2019-06-28 | Imaging device, endoscope, and endoscope system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018138951A1 true WO2018138951A1 (ja) | 2018-08-02 |
Family
ID=62978572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/030785 Ceased WO2018138951A1 (ja) | 2017-01-24 | 2017-08-28 | 撮像装置、内視鏡および内視鏡システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190327414A1 (ja) |
JP (1) | JP6463568B2 (ja) |
CN (1) | CN110167418A (ja) |
WO (1) | WO2018138951A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113143214A (zh) * | 2021-04-16 | 2021-07-23 | 北京理工大学 | 一种活体漫反射图像获取方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004049249A (ja) * | 2002-07-16 | 2004-02-19 | Fuji Photo Optical Co Ltd | 電子内視鏡装置 |
JP2008301965A (ja) * | 2007-06-06 | 2008-12-18 | Olympus Corp | 電子内視鏡装置 |
JP2009022579A (ja) * | 2007-07-20 | 2009-02-05 | Olympus Corp | 電子内視鏡 |
JP2009045113A (ja) * | 2007-08-14 | 2009-03-05 | Olympus Medical Systems Corp | 電子内視鏡及び内視鏡装置 |
JP2011200482A (ja) * | 2010-03-26 | 2011-10-13 | Fujifilm Corp | リセット機能を備えた電源回路 |
JP2013000452A (ja) * | 2011-06-20 | 2013-01-07 | Olympus Corp | 電子内視鏡装置 |
JP2013000450A (ja) * | 2011-06-20 | 2013-01-07 | Olympus Corp | 電子内視鏡装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7248281B2 (en) * | 2002-07-16 | 2007-07-24 | Fujinon Corporation | Electronic endoscope apparatus which superimposes signals on power supply |
JP2009195602A (ja) * | 2008-02-25 | 2009-09-03 | Fujinon Corp | 電子通信システム及び内視鏡システム |
-
2017
- 2017-08-28 WO PCT/JP2017/030785 patent/WO2018138951A1/ja not_active Ceased
- 2017-08-28 CN CN201780081820.XA patent/CN110167418A/zh active Pending
- 2017-08-28 JP JP2018550008A patent/JP6463568B2/ja active Active
-
2019
- 2019-06-28 US US16/456,538 patent/US20190327414A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004049249A (ja) * | 2002-07-16 | 2004-02-19 | Fuji Photo Optical Co Ltd | 電子内視鏡装置 |
JP2008301965A (ja) * | 2007-06-06 | 2008-12-18 | Olympus Corp | 電子内視鏡装置 |
JP2009022579A (ja) * | 2007-07-20 | 2009-02-05 | Olympus Corp | 電子内視鏡 |
JP2009045113A (ja) * | 2007-08-14 | 2009-03-05 | Olympus Medical Systems Corp | 電子内視鏡及び内視鏡装置 |
JP2011200482A (ja) * | 2010-03-26 | 2011-10-13 | Fujifilm Corp | リセット機能を備えた電源回路 |
JP2013000452A (ja) * | 2011-06-20 | 2013-01-07 | Olympus Corp | 電子内視鏡装置 |
JP2013000450A (ja) * | 2011-06-20 | 2013-01-07 | Olympus Corp | 電子内視鏡装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110167418A (zh) | 2019-08-23 |
JP6463568B2 (ja) | 2019-02-06 |
JPWO2018138951A1 (ja) | 2019-02-07 |
US20190327414A1 (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6138406B1 (ja) | 撮像装置、内視鏡および内視鏡システム | |
CN105075242B (zh) | 摄像元件、摄像装置、内窥镜、内窥镜系统以及摄像元件的驱动方法 | |
US11057559B2 (en) | Endoscope and endoscope system | |
CN104303495A (zh) | 摄像装置、内窥镜系统以及噪声去除方法 | |
WO2016129062A1 (ja) | 画像処理装置、内視鏡システム、撮像装置、画像処理方法およびプログラム | |
JP5932182B1 (ja) | 撮像素子、撮像装置、内視鏡および内視鏡システム | |
WO2016056308A1 (ja) | 撮像装置、駆動信号調整方法および内視鏡装置 | |
JP5861012B1 (ja) | 撮像素子、撮像装置、内視鏡、内視鏡システム | |
US20170208268A1 (en) | Endoscope and endoscope system | |
WO2016203828A1 (ja) | 撮像ユニットおよび内視鏡 | |
JP6419983B2 (ja) | 撮像装置、内視鏡および内視鏡システム | |
JP6463568B2 (ja) | 撮像装置、内視鏡および内視鏡システム | |
JP5974202B1 (ja) | 撮像素子、撮像装置、内視鏡および内視鏡システム | |
US20210145250A1 (en) | Imaging system and endoscopic device | |
US9876997B2 (en) | Endoscope | |
JP6153689B1 (ja) | 撮像素子及び撮像装置 | |
US10729311B2 (en) | Signal processing system and endoscope | |
WO2016117373A1 (ja) | 医療機器 | |
JP2011152225A (ja) | 電子内視鏡 | |
JP4904082B2 (ja) | 電子内視鏡システム | |
US20210132362A1 (en) | Image pickup apparatus, endoscope, endoscope system, and driving method for image pickup apparatus | |
US20230024742A1 (en) | Imaging element, endoscope, endoscope system, and testing method | |
JP2019146064A (ja) | 撮像素子、撮像装置、内視鏡および内視鏡システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018550008 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17894101 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17894101 Country of ref document: EP Kind code of ref document: A1 |