[go: up one dir, main page]

WO2018138989A1 - 金属箔の製造方法および金属箔製造用陰極 - Google Patents

金属箔の製造方法および金属箔製造用陰極 Download PDF

Info

Publication number
WO2018138989A1
WO2018138989A1 PCT/JP2017/039050 JP2017039050W WO2018138989A1 WO 2018138989 A1 WO2018138989 A1 WO 2018138989A1 JP 2017039050 W JP2017039050 W JP 2017039050W WO 2018138989 A1 WO2018138989 A1 WO 2018138989A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
cathode
metal foil
anodizing
electrodeposition
Prior art date
Application number
PCT/JP2017/039050
Other languages
English (en)
French (fr)
Inventor
松田 純一
篤志 岡本
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US16/328,509 priority Critical patent/US10900138B2/en
Priority to JP2017564511A priority patent/JP6355006B1/ja
Priority to EP17894555.6A priority patent/EP3575445B1/en
Priority to CN201780057856.4A priority patent/CN109715863B/zh
Priority to KR1020197007994A priority patent/KR102048806B1/ko
Publication of WO2018138989A1 publication Critical patent/WO2018138989A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a metal foil manufacturing method and a metal foil manufacturing cathode.
  • a method for producing a metal foil by peeling a metal film such as aluminum or copper electrodeposited on the surface of the electrodeposition surface of the cathode for producing metal foil by an electrolytic method and a metal foil preferred for use in the method
  • the present invention relates to a manufacturing cathode.
  • a positive electrode current collector of such an electricity storage device generally includes an active material layer containing a positive electrode active material such as metal oxide-based particles for storing electric energy, and a positive electrode current collector carrying the active material layer on the surface. It is comprised with the aluminum foil used as a main body. On the other hand, the negative electrode current collector is configured with a copper foil as a main body.
  • Patent Document 1 discloses that a part of the surface of a cathode drum and an anode member disposed so as to face the surface are immersed in an electrolytic solution (plating solution) under predetermined conditions. By applying an electric current between the two electrodes, aluminum is electrodeposited on a specific surface of the cathode drum (hereinafter referred to as “electrodeposition surface”), and further grown to a predetermined thickness to form an aluminum film.
  • a method for producing an aluminum foil by electrolysis, in which an aluminum film is obtained by peeling an aluminum film, is disclosed.
  • the copper foil is not limited to the negative electrode current collector, and the above-described manufacturing method using an electrolysis method using a cathode drum is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-217787 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2005-150265.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-342589
  • Patent Document 5 Japanese Patent Application Laid-Open No. 7-228996
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2002-194585
  • Patent Documents 2 to 6 In order to adjust the surface morphology of the electrodeposition surface that has become uneven due to the generation of fine dents, for example, maintenance such as mechanical polishing such as buff polishing, electrolytic polishing, or chemical treatment such as anodization is performed periodically. There are reports of necessity (Patent Documents 2 to 6).
  • the surface roughness when the surface roughness is too large, the electrodeposited surface affects the crystal growth of the metal, and when the surface roughness is too small, there is a report that the growing metal (metal film) peels off (Patent Document 4). .
  • the surface roughness R ZJIS is preferably 2.0 ⁇ m or less (patent) Reference 5).
  • the surface peeled from the electrodeposition surface is a surface with metallic luster, and the surface in contact with the electrolyte (free) Surface) becomes a non-glossy surface, and there is a clear difference in surface form between the peeled surface and the free surface. This is due to the difference in the formation process on both sides.
  • the peeled surface of the metal foil has a smooth surface shape substantially equal to the electrodeposited surface because the surface shape of the electrodeposited surface that has been polished smoothly so that the metal film can be easily peeled off is transferred.
  • the metal particles are roughly polished and deposited by plating. Attempts have been made to apply electrodeposited surfaces dotted with, electrodeposited surfaces in which dents are scattered by etching, or blasted electrodeposited surfaces. However, cracks and breaks occurred while the metal was electrodeposited and grown into a metal film having a predetermined thickness. Or the metal film formed in the predetermined
  • the object of the present invention is to easily remove the metal (metal film) deposited on the electrode electrodeposition surface of the cathode, but to reduce the surface roughness between the peeled surface and the free surface of the metal foil obtained by peeling the metal film. It is to provide a metal foil manufacturing method and a metal foil manufacturing cathode in which the difference is reduced.
  • the method for producing a metal foil of the present invention is a method for producing a metal foil by peeling a metal film deposited on the surface of the cathode electrodeposition surface by an electrolytic method to form a metal foil.
  • the roughened surface is subjected to an oxidation treatment of thermal oxidation treatment, anodization treatment, or a combination oxidation treatment of thermal oxidation treatment and anodization treatment.
  • the electrodeposited surface is used, which has an oxide layer with a thickness of 30 nm to 250 nm as the outermost layer and has a surface roughness RZJIS of 4 ⁇ m to 10 ⁇ m.
  • the oxidation treatment is an anodizing treatment, and the anodizing treatment is preferably performed while moving an anodizing treatment liquid in contact with the roughening treatment surface.
  • the anodizing treatment is performed by any one of a means for applying a liquid flow, a means for applying an ultrasonic wave, or a means for combining a means for applying a liquid flow and a means for applying an ultrasonic wave. It is preferable to carry out while moving the anodizing solution in contact with the roughened surface.
  • any of a treatment of immersing in an alkaline solution, a treatment of immersing in a strong acid solution, or a treatment in which immersion in an alkaline solution and immersion in a strong acid solution are combined Can be processed.
  • the roughening treatment is preferably a blast treatment.
  • the central portion has a surface roughness R ZJIS of 4 [mu] m ⁇ 10 [mu] m, comprising adjacent portions on both sides of said central portion has a surface roughness of less than R ZJIS 2.5 ⁇ m, the conductive It is preferable to use an analysis surface. It is preferable to use the electrodeposition surface in which the ratio of the width of each adjacent portion to the width of the central portion is 0.1% to 10%.
  • the surface roughness R ZJIS in the present invention is a ten-point average roughness, and refer to JIS-B0601: 2013 (Table C2 etc.).
  • a cathode for producing a metal foil that is preferable for use in the above-described method for producing a metal foil of the present invention is used to form a metal foil by peeling off a metal film deposited on the surface of the cathode electrodeposition surface by an electrolytic method.
  • a cathode made of titanium or a titanium alloy, wherein the electrodeposited surface has an oxide layer having a thickness of 30 nm to 250 nm on the outermost layer and a surface roughness RZJIS of 4 ⁇ m to 10 ⁇ m.
  • the electrodeposition ⁇ Adjacent in the width direction of the cathode, the electrodeposition ⁇ includes having a central portion having a surface roughness R ZJIS of 4 [mu] m ⁇ 10 [mu] m, adjacent to both sides of said central portion, a surface roughness of less than R ZJIS 2.5 ⁇ m It is preferable to provide a part.
  • the ratio of the width of each adjacent portion to the width of the central portion is preferably 0.1 to 10%.
  • this invention is a technique useful for manufacture of metal foils, such as an aluminum foil suitable for the main body of a positive electrode collector, for example.
  • the manufacturing method of the metal foil of the present invention belongs to the technical field of the electrolysis method disclosed in Patent Documents 1 to 6 described above, and includes basics such as electrodeposition of a metal to be manufactured, peeling of a metal film, and composition of an electrolytic solution.
  • Known techniques can be applied to typical manufacturing equipment and electrolysis conditions.
  • the metal foil is an aluminum foil, unintended fine pores (recessed on the surface) are dispersed due to the water content (eg, 100 ppm or more) of the non-aqueous aluminum electrolyte.
  • an aluminum foil having such a shape is obtained.
  • a metal foil such as an aluminum foil having a lot of pores is not preferable because the mechanical strength is likely to be lowered and there is a risk of breakage due to this. Therefore, a manufacturing method in which fine holes are not easily formed inside the metal foil is desirable.
  • FIG. 1 is a configuration example using a drum-type cathode (cathode drum), and is a schematic view showing a cross section of the apparatus 100 in a direction perpendicular to the rotating shaft 1 a of the cathode drum 1.
  • an electrolytic solution 5 whose composition is adjusted so as to be suitable for the metal to be electrodeposited is prepared.
  • the produced electrolytic solution 5 is stored in an electrolytic bath 4 whose atmosphere is adjusted so as to be suitable for the electrolytic solution 5.
  • a part of the outer periphery 2 of the cathode drum 1 and the anode member 3 disposed so as to face the outer periphery 2 are immersed in the electrolytic solution 5.
  • a lead material 8 for peeling and pulling out the first metal film 9 that has been electrodeposited and grown to a predetermined thickness is adhered and fixed.
  • the other end of the lead material 8 is guided outward from the drawing port 6 of the electrolytic bath 4 and fixed to the take-up reel 7.
  • the lead material 8 can also be used as the lead metal foil by separating the other end side of the lead metal film previously deposited on the outer periphery 2 of the cathode drum 1 leaving one end.
  • the outer periphery 2 of the cathode drum 1 is made of, for example, titanium, if the lead material 8 (lead metal film and lead metal foil) is formed by a copper electrolysis method described later, sufficient adhesion to the outer periphery 2 of the cathode drum 1 is achieved. Since it is obtained, it is preferable.
  • the electrolytic solution is formed so that the metal film 9 that grows after the metal is electrodeposited and peeled is formed to a thickness equivalent to the metal foil to be produced.
  • the manufacturing conditions such as the temperature of 5, the magnitude of the current (electrolytic current) applied between the cathode drum 1 and the anode member 3, and the peripheral speed when the cathode drum 1 rotates are adjusted. Thereafter, a predetermined electrolytic current is applied between the electrodeposition surface of the cathode drum 1 and the anode member 3, the cathode drum 1 is rotated in one direction, and a metal is deposited on the surface of the electrodeposition surface of the cathode drum 1. Analyze and grow.
  • the lead material 8 is pulled out by the rotation of the take-up reel 7 synchronized with the rotation of the cathode drum 1, and the lead material is drawn. 8 and the metal film 9 are peeled off from the electrodeposited surface of the cathode drum 1.
  • a long metal foil having a predetermined thickness (for example, about 1 ⁇ m to about 50 ⁇ m) can be continuously manufactured.
  • the metal foil having a thickness of about 3 ⁇ m to about 20 ⁇ m thus manufactured is suitable for various applications.
  • an aluminum foil is suitable for the main body of the positive electrode current collector.
  • FIG. 2 is a configuration example using a belt-type cathode (cathode belt), and is a schematic view showing a cross section of the apparatus 200 in a direction perpendicular to the rotation shaft 28 of each roller described later.
  • an electrolytic solution 22 for electrodepositing a metal for example, aluminum
  • an electrolytic bath 21 whose atmosphere is adjusted so as to be suitable for the electrolytic solution 22.
  • a part (lower side) of the cathode belt 24 and the anode member 23 arranged so as to face the cathode belt 24 are immersed in the electrolytic solution 22.
  • the cathode belt 24 is a belt-like electrode configured in a ring shape.
  • the cathode belt 24 is stretched around a plurality of rollers (a driving roller 25 and a driven roller 26) including a driving roller 25, and is configured to be able to move (run) in the electrolytic solution 22 by the rotation of the driving roller 25.
  • the anode member 23 and the cathode belt 24 are connected to a power source (not shown) outside the electrolytic bath 21.
  • a power source not shown outside the electrolytic bath 21.
  • the metal film grown to a predetermined thickness is continuously peeled from the cathode belt 24 at the position of the arrow indicated by a broken line in the drawing to form a metal foil.
  • a long metal foil having a predetermined thickness can be continuously formed.
  • the cathode belt 24 is made of, for example, a titanium material
  • the lead material lead metal film and lead metal foil
  • sufficient adhesion to the cathode belt 24 is achieved. Is preferable.
  • the portion of the cathode belt 24 that faces the anode member 23 is parallel to the horizontal direction (x direction).
  • a plurality of rollers spanning the cathode belt 24 are arranged in the horizontal direction (x direction).
  • the driving roller 25 and the driven roller 26 are arranged so that the rotating shaft 28 is above the liquid surface of the electrolytic solution 22.
  • a lower plane portion between the driving roller 25 and the driven roller 26 (planar portion) and a part of the portion (curved surface portion) in contact with the driving roller 25 and the driven roller 26 are included. It is immersed in the electrolytic solution 22.
  • the anode member 23 is made of a metal plate material (for example, aluminum plate material) to be electrodeposited, and is opposed to the lower flat portion of the cathode belt 24.
  • a metal plate material for example, aluminum plate material
  • the portion of the cathode belt 24 facing the anode member 23 is not in the horizontal direction (x direction). It is preferable that they are parallel. Therefore, it is possible to incline the lower flat portion of the cathode belt 24 by shifting the positions of the driving roller 25 and the driven roller 26 in the vertical direction (y direction).
  • a configuration in which the flat portion of the cathode belt 24 is perpendicular (y direction) to the horizontal direction (x direction) is more preferable.
  • FIG. 1 showing a configuration example using a drum-type cathode (cathode drum 1).
  • the cathode made of titanium or titanium alloy in the present invention is not limited to the drum-type cathode (cathode drum) as shown in FIG. 1, but for example, a belt-type cathode (cathode belt) as shown in FIG. 24) etc. can also be used.
  • the cathode material such as a belt-shaped material (plate material) that becomes such a belt-type cathode (cathode belt 24) can be similarly subjected to treatment such as roughening treatment and oxidation treatment in the present invention.
  • An important feature of the metal foil manufacturing method of the present invention is that it is formed on a cathode using a titanium or titanium alloy cathode (such as a drum-type cathode) having an electrodeposited surface formed by performing a specific treatment.
  • the metal is electrodeposited on the surface of the electrodeposition surface having the specific surface properties.
  • the specific treatment for forming the electrodeposited surface is to consider the width of the metal foil to be manufactured, and prepare a titanium or titanium alloy material with excellent corrosion resistance.
  • a series of processes in which the processes (1) to (3) described below are performed in this order after the processing is performed.
  • the following processes (1) to (3) are performed. Intended for a sequential process.
  • the surface corresponding to the electrodeposition surface of the cathode (such as a drum-type cathode) is formed so as to have a specific property, that is, the surface roughness R ZJIS is formed in an appropriate uneven surface form with a thickness of 4 ⁇ m to 10 ⁇ m.
  • an appropriate oxide layer having a thickness of 30 nm to 250 nm is formed on the outermost layer.
  • FIG. 3 shows a process for forming an electrodeposition surface formed on the outer periphery of a drum-type cathode (cathode drum) applicable to the present invention, and referring to this, the above-mentioned (1) to (3) Each process will be described.
  • the surface of the base used as the electrodeposition surface of a cathode is formed.
  • a smoothing process is performed on the outer periphery of the titanium material processed into a cylindrical shape corresponding to the cathode drum to form an evenly smooth outer periphery (smooth processed surface).
  • the smoothing treatment may be, for example, a mechanical processing method such as cutting, grinding, or polishing, and forms a surface having a surface form with an even smoothness, for example, a surface roughness RZJIS of less than 2 ⁇ m (preferably less than 1 ⁇ m). I can do it. Even if the trace of the smoothing process remains on the outer periphery after the smoothing process is performed, it can be permitted as long as it can be eliminated by the next roughening process.
  • the above-mentioned smooth processed surface is roughened to form a cylindrical outer periphery (roughening treatment surface) having a uniformly rough surface shape corresponding to the cathode drum.
  • the free surface of the metal foil tends to have a rough surface form, if the surface roughness of the electrodeposited surface of the cathode is large, the metal foil obtained by peeling the metal (metal film) deposited on the electrodeposited surface It is considered that the surface morphology (surface roughness) of the release surface and the free surface is homogenized, and the difference between the surface morphology (surface roughness) of both surfaces is reduced.
  • the roughening process for changing the smoothed surface to the uneven surface form can change the smoothed surface corresponding to the electrodeposited surface of the cathode to a roughened surface having a predetermined range of surface roughness. It is effective because it is possible.
  • Roughening treatment includes, for example, blast treatment using a projectile, chemical polishing treatment using an alkaline or acidic etching solution, or plating on a surface form such that metal particles are intentionally dispersed, for example, in an island shape.
  • a metal plating process there are various options such as dry blasting, wet blasting, steel blasting, or sand blasting from the viewpoint that processing that can easily process a large area more uniformly into a rough surface form and that can be expected to be repeatable is desirable.
  • a possible blasting process is preferred.
  • the surface of the surface to be roughened depends on the selection of the type and size of the projection material such as metal, ceramic, glass, or hard resin, and the setting of the speed, angle, amount, or time of projection.
  • the roughness can be easily adjusted. For example, dry blasting or wet blasting, in which polygonal alumina particles are jetted, removes traces of processing remaining on the smooth processed surface (surface to be roughened) of titanium material to provide an uneven surface with a predetermined surface roughness. It is preferable because it can be easily formed into a shape and repeatability can be expected.
  • a surface roughness R ZJIS of 4 ⁇ m to 10 ⁇ m is obtained as an outer periphery having a uniformly rough surface shape of a cylindrical shape corresponding to the cathode drum.
  • the outer periphery (roughening surface) to have can be formed.
  • the outer periphery (roughened surface) having an evenly rough surface shape of a cylindrical shape corresponding to the cathode drum is oxidized, and the outer periphery having an oxide layer as the outermost layer. (Oxidized surface) is formed.
  • the roughened surface is positively oxidized, and an oxide layer having a thickness of 30 nm to 250 nm is formed on the outermost layer, not a thin surface oxide layer (natural oxide layer) by natural oxidation.
  • an oxide layer is uniformly formed on the outermost surface layer of the rough surface of the roughened surface, so that a uniform oxidized surface having a rough surface shape can be obtained. it can.
  • the active oxidation treatment in the present invention, any one of thermal oxidation treatment, anodization treatment, or combined oxidation treatment of thermal oxidation treatment and anodization treatment is performed.
  • the anodization process is performed after the thermal oxidation process, or the thermal oxidation process is performed after the anodization process.
  • the outer periphery of the cylindrical shape corresponding to the cathode drum having an evenly rough uneven surface form, and having an oxide layer with a thickness of 30 nm to 250 nm as the outermost layer An outer periphery (oxidized surface) having a surface roughness R ZJIS of 4 ⁇ m to 10 ⁇ m can be formed.
  • the oxide layer formed by the above oxidation treatment is an oxide layer containing titanium (element) and the like by oxidation of titanium (element) existing on the roughened surface of the titanium or titanium alloy cathode. It is conceivable that. For example, it is generally considered that an oxide layer made of titanium oxide (TiO 2 ) is formed on the roughened surface made of pure titanium.
  • titanium alloy such as Ti-6Al-4V alloy or Ti-3Al-2.5V alloy
  • oxides of contained elements other than titanium aluminum oxide and oxide
  • an oxide layer made of a plurality of types of oxides may be formed, including vanadium and the like, and composite oxides made of titanium and containing elements other than titanium.
  • the aggressive oxidation treatment that forms an oxide layer sufficiently thicker than the natural oxide layer on the outermost surface of the roughened surface can facilitate the peeling of the metal film from the electrodeposited surface of the cathode. This is because the oxide layer separates the metal film from the electrodeposition surface, the force that attracts the metal film and the electrodeposition surface, which are considered to act at the atomic level, is reduced, and the load generated when peeling the metal film ( This is considered to be due to a reduction in peeling resistance. In the case of a natural oxide layer, it has been confirmed that damage to the metal film or metal foil due to peeling may not be suppressed.
  • the thickness of the natural oxide layer is small (the thickness of the natural oxide layer of pure titanium is about 10 nm or less), and therefore the separation (separation distance) between the metal film and the electrodeposition surface is small. This is probably because the degree of reduction of the peeling resistance is insufficient.
  • the thermal oxidation treatment may be in-furnace heating (atmospheric heating) or the like in the air atmosphere, and depending on the setting of the heating temperature and the heating time, etc. It is easy to form the oxide layer evenly.
  • an oxide layer having a thickness of about 30 nm can be formed by holding at about 500 ° C. for about 60 minutes to about 120 minutes or holding at about 600 ° C. for about 10 minutes.
  • the thickness is about 50 nm when held at about 600 ° C. for about 20 minutes, about 100 nm when held at about 600 ° C. for about 120 minutes, and about 130 nm when held at about 700 ° C.
  • the holding temperature is preferably selected in the range of about 500 ° C to about 600 ° C.
  • the thermal oxidation treatment has a gentle temperature change (heating state change) in the heat treatment space with respect to changes in the heating conditions such as the indicated temperature and time, the sensitivity of the temperature change (substance temperature change) of the surface to be oxidized is compared. Low. In such a case, it is preferable to suppress the temperature difference in the heat treatment space to be small so that the uniformity of oxidation on the surface to be oxidized is not affected.
  • the oxidation ability (the ability to form an oxide layer) by atmospheric heating is sufficiently higher than that of natural oxidation, the anodization treatment that can grow the oxide layer in a short time is superior. Therefore, from the viewpoint of oxidation ability, an anodic oxidation treatment is preferable as the aggressive oxidation treatment.
  • the anodizing treatment a sufficiently thick oxide layer can be formed in a short time (for example, several seconds) on the surface to be oxidized by setting the applied current or applied voltage and energizing time.
  • the anodizing treatment is easy to control the concentration and temperature of the anodizing treatment solution, and the sensitivity of the oxidation change of the oxidation target surface to the change of the applied current or applied voltage is high. The degree can be easily determined.
  • the oxide layer can be formed thicker than when each oxidation treatment is performed alone.
  • an electrolytic solution for anodization suitable for a member made of titanium or titanium alloy for example, phosphoric acid having a concentration of 0.5% or more and 20% or less
  • An object to be oxidized is immersed in a bath in which an anodizing solution made of an aqueous solution) is kept warm (for example, 20 ° C. or more and 50 ° C. or less), and a cutoff voltage of more than 5V and less than 200V is 0.5 seconds to 5 seconds.
  • An anodizing treatment in which current is applied (applied voltage) is preferable.
  • anodizing treatment in which the roughening treatment surface, which is an oxidation treatment surface, is immersed in an anodizing treatment liquid is preferable.
  • the treatment liquid in contact with the surface to be oxidized is decomposed during the treatment to generate bubbles (gas).
  • bubbles (gas) generated on the surface stay in the dents on the surface to be oxidized (the roughened surface that has been roughened by the roughening process). If air bubbles (gas) frequently remain in the recesses on the surface to be oxidized, the progress of anodization in the recesses is hindered and an appropriate oxide layer cannot be generated, which may adversely affect the peeling of the metal film.
  • the anodizing treatment while moving the anodizing solution in contact with the roughened surface (surface to be oxidized) after the roughening treatment.
  • By moving the anodizing solution in contact with the surface to be oxidized bubbles (gas) generated during the anodizing process can be easily separated from the recesses on the surface to be oxidized, and bubbles (gas) remain in the recesses on the surface to be oxidized. Can be sufficiently suppressed.
  • the anodizing treatment performed while moving the anodizing solution was not particularly observed in the conventional anodizing method applied to a member made of titanium or a titanium alloy, but suitable for the outermost layer of the roughened surface. It is extremely effective as a means for forming an oxide layer.
  • the anodizing treatment performed while moving the anodizing solution in contact with the roughened surface (surface to be oxidized) after the roughening treatment is a means for applying a liquid flow, a means for applying ultrasonic waves, or a liquid flow. Any of the means in which the means for applying and the means for applying ultrasonic waves are combined is preferable.
  • the means for applying the liquid flow constitutes, for example, a liquid circulation system for feeding and discharging the anodizing liquid into the anodizing tank using a liquid feeding device equipped with a pump. Or means for stirring the anodizing solution in the anodizing bath using a stirring device equipped with a stirring tool such as a stirring blade.
  • a stirring device equipped with a stirring tool such as a stirring blade.
  • the anodizing solution in contact with the surface to be oxidized can be moved, and the anodizing treatment can be performed while moving the anodizing solution in contact with the surface to be oxidized.
  • the means using the liquid feeding device, the stirring device, and the like are generally simpler and less expensive and easier to apply to a large-sized metal foil manufacturing apparatus than means for applying ultrasonic waves described later. .
  • the means for applying ultrasonic waves applies, for example, a frequency and oscillation output (or sound intensity) that allow bubbles (gas) generated during anodizing to be detached from the recesses of the surface to be oxidized (roughening surface).
  • An ultrasonic transmission device that can be used is selected, and this may be used to apply predetermined ultrasonic waves to the anodizing solution in the anodizing bath.
  • the means for applying the ultrasonic wave the anodizing liquid in contact with the surface to be oxidized can be moved more efficiently than the means for stirring the anodizing liquid in the anodizing tank described above. It is done.
  • the anodizing solution when an ultrasonic wave having a frequency exceeding 20 kHz propagates in the anodizing solution, a microscopic high pressure region and a low pressure region are generated in the anodizing solution, and the anodizing solution is microscopically contracted. Since the expansion is repeated, the anodizing solution can be continuously moved at a high speed. It should be noted that the degree of movement of the anodizing solution due to the application of ultrasonic waves is controlled so that the substantial liquid quality of the anodizing solution that is the medium does not change, and the ultrasonic frequency and oscillation output (sound intensity). In other words, the amplitude of the ultrasonic wave can be easily adjusted by appropriately selecting the amplitude.
  • the anodizing solution in contact with the surface to be oxidized is moved more efficiently, and the bubbles (gas) generated during the anodizing treatment are oxidized.
  • Anodization can be performed while reliably suppressing the remaining of the surface (roughened surface) in the dent.
  • the agitation method using ultrasonic waves is preferably applied to a small metal foil manufacturing apparatus because the anodizing solution is not easily moved.
  • the ultrasonic stirring method to a large metal foil manufacturing apparatus, etc., it is considered that the range in which ultrasonic waves are effectively propagated is limited. It is preferable to arrange them at appropriate positions.
  • the means for applying the liquid flow and the means for applying the ultrasonic wave are combined.
  • the means for applying the liquid flow forcibly generates a flow in the anodizing treatment liquid in the anodizing treatment tank, and the means for applying ultrasonic waves makes the anodizing treatment liquid in contact with the surface to be oxidized more efficient. It can be moved with. As a result, the anodic oxidation treatment of the oxidation target surface (roughening treatment surface) can be performed while reliably suppressing bubbles (gas) generated during the anodization treatment from remaining in the recesses of the oxidation target surface (roughening treatment surface). It can be carried out.
  • a treatment of immersing in an alkaline solution As the pretreatment of the above-described oxidation treatment, a treatment of immersing in an alkaline solution, a treatment of immersing in a strong acid solution, or a treatment in which immersion in an alkaline solution and immersion in a strong acid solution are combined Either process can be performed.
  • the treatment immersed in the alkaline solution can remove dirt such as oil on the surface by using an alkaline solution such as an aqueous sodium hydroxide solution of about 20 ° C. to about 80 ° C. (degreasing effect).
  • the treatment immersed in the strongly acidic solution can remove the natural oxidation layer formed on the outermost surface (pickling effect).
  • the treatment immersed in the strongly acidic solution is preferably stopped to such an extent that the roughened surface form of the roughened surface is not damaged.
  • the treatment for immersing in the alkaline solution or the treatment for immersing in the strongly acidic solution is preferably selected as necessary, and each treatment can be carried out alone or both treatments can be carried out in combination.
  • Such a pretreatment can be applied to both the pretreatment for the thermal oxidation treatment and the pretreatment for the anodization treatment.
  • the outermost layer formed by performing the above-mentioned treatments (1) to (3), that is, the smoothing treatment, the roughening treatment, and the oxidation treatment in this order, is 30 nm.
  • An oxidation-treated surface having an uneven surface morphology having an oxide layer with a thickness of ⁇ 250 nm and a surface roughness R ZJIS of 4 ⁇ m to 10 ⁇ m is used as the electrodeposition surface.
  • a cathode made of titanium or titanium alloy having such an electrodeposited surface has an oxide layer with a thickness of 30 nm to 250 nm as the outermost layer, and has a surface roughness R ZJIS of 4 ⁇ m to 10 ⁇ m. This is a cathode for producing a metal foil of the present invention having the electrodeposition surface.
  • the outermost layer of the electrodeposited surface has an oxide layer with a thickness of 30 nm or more, the metal (metal film) deposited on the electrodeposited surface is easily peeled off, and a metal film that is likely to be generated during peeling.
  • corrugation are suppressed.
  • the thickness of the oxide layer is preferably large.
  • the outermost layer of the cathode electrodeposition surface has an oxide layer with a thickness of 250 nm or less, the degree of electrical insulation due to the oxide layer becoming too thick does not become excessive. There is no loss of electrodeposition or growth of the deposited metal.
  • the electrodeposited surface has a surface roughness RZJIS of 4 ⁇ m to 10 ⁇ m
  • the peeled surface of the metal foil formed by peeling the metal film on which the deposited metal has grown is deposited on the electrodeposited surface.
  • a surface having a surface roughness R ZJIS of substantially 4 ⁇ m to 10 ⁇ m is obtained.
  • the influence of the electrodeposited surface having a surface roughness RZJIS of 4 ⁇ m to 10 ⁇ m is not limited to the free surface side of the metal foil, and the peeled surface and the free surface of the metal foil have substantially the same surface roughness. It will have.
  • the substantial difference between the surface form of the peeling surface and the free surface of the metal foil is suppressed to be small.
  • a difference of surface roughness RZJIS it is suppressed to 2 micrometers or less, for example.
  • the cathode has an oxide layer having a thickness of 30 nm to 250 nm on the outermost layer and an electrodeposition surface having a surface roughness RZJIS of 4 ⁇ m to 10 ⁇ m. While the peeled metal (metal film) is easy to peel, the difference in surface roughness between the peeled surface and the free surface of the metal foil obtained by the peeling can be reduced.
  • a drum-like or belt-like shape is formed at intervals corresponding to the width of the metal foil. It is common to coat both sides of the electrodeposition surface in the width direction with an insulation band, and deposit metal (metal film) on the surface of the central part sandwiched between both sides of the electrodeposition surface with the insulation band. .
  • metal metal film
  • the surface roughness R ZJIS may be uniformly 4 ⁇ m to 10 ⁇ m in the width direction of the cathode.
  • the surface roughness R ZJIS the central portion corresponding to the product portion of the metal foil and 4 [mu] m ⁇ 10 [mu] m, using both sides of the adjacent portions of the surface roughness ⁇ collector in which the R ZJIS and 2.5 ⁇ m or less in the center portion that the Is preferred.
  • both ends including the edge portion of the peeling surface of the metal foil formed by the transfer of the surface form Since the surface roughness on the side is also substantially the same, the surface forms of the front and back surfaces on the edge portion side of the metal foil are different. Even when removing the edge part side of the metal foil corresponding to the adjacent part without allowing the difference in the surface form limited to the edge part side of the metal foil, the adjacent part and the central part having different surface forms are easy. Can be distinguished.
  • the adjacent portion may have a surface roughness RZJIS of 2 ⁇ m or less.
  • the adjacent portion can be formed by a simple method such as masking a region corresponding to the adjacent portion of the smooth processed surface having a surface roughness R ZJIS of less than 2 ⁇ m and performing roughening treatment and oxidation treatment in that state. .
  • FIG. 4 is a configuration example of a drum-type cathode (cathode drum) having the above-described preferred electrodeposition surface.
  • the cathode drum 1 has a cylindrical outer periphery 2 corresponding to the electrodeposition surface divided into five regions in the width direction, and a central portion 2c and adjacent portions 2a on both sides of the central portion 2c. And an insulating portion 2i outside the adjacent portion 2a.
  • the central portion 2c is formed by the formation process shown in FIG. 3 as described above, has a rough surface form with a surface roughness RZJIS of 4 ⁇ m to 10 ⁇ m, and an oxide layer with a thickness of 30 nm to 250 nm as the outermost layer.
  • the insulating part 2i is provided to determine the width dimension of the metal foil, and is resistant to the electrolytic solution in which the cathode drum 1 is immersed, and the insulating property that the metal is not easily electrodeposited under the electrolytic solution and general electrolysis conditions. Can be formed by a method of attaching the insulating material to the outer periphery 2.
  • the adjacent portion 2a is formed in the same manner as the central portion 2c, has a surface form with a slightly smoother surface roughness RZJIS of 2.5 ⁇ m or less than that of the central portion 2c, and has the same surface layer as the central portion 2c.
  • An oxidation surface comprising a layer.
  • a method of mechanically or chemically polishing a region corresponding to the adjacent portion 2a after the roughening treatment a method of mechanically polishing a region corresponding to the adjacent portion 2a after the oxidation treatment, or the like. be able to.
  • the thickness of the oxide layer of the adjacent part 2a is slightly thinner than the central part 2c, but this is considered to be acceptable.
  • a metal metal film
  • the metal film is a lead. It can be easily and soundly peeled off using a material.
  • This has an oxide layer with a thickness of 30 nm to 250 nm on the outermost layer of the central portion 2c and the adjacent portion 2a of the cathode drum 1, and an electric surface roughness R ZJIS that forms the central portion of the metal film is 4 ⁇ m to 10 ⁇ m.
  • an electrodepositing surface (adjacent portion 2a) having a surface roughness RZJIS of 2.5 ⁇ m or less is provided adjacent to the electrodepositing surface (center portion 2c). That is, the above-described abnormal electrodeposition that occurs in the gap between the outer periphery 2 (the surface of the electrodeposition surface) of the cathode drum 1 and the insulating portion 1i is suppressed.
  • the electrodeposition surface having the adjacent portion 2a it is preferable to set the ratio of the width of each adjacent portion 2a to about 0.1% to about 10% of the width of the central portion 2c.
  • the ratio of the widths of the adjacent portions 2a is about 0.1% to about 10% of the width of the central portion 2c, it is possible to suppress the yield reduction due to the removal of the metal foil at the edge portion side. it can.
  • the ratio of the widths of the adjacent portions 2a is about 0.1% or more of the width of the central portion 2c, the concentration of the electrolytic current caused by the central portion 2c having the uneven surface form and the insulating portion 1i described above can be reduced. It is easy to suppress and it is easy to ensure the peelability of the metal film. Moreover, when the ratio of the width of each adjacent portion 2a is about 10% or less of the width of the central portion 2c, the width on the edge portion side to be removed from the metal foil becomes relatively small, and the yield reduction of the metal foil is suppressed. Cheap.
  • the removal of the edge part side of metal foil is performed so that the uneven
  • an aluminum foil (metal foil) having a thickness of 12 ⁇ m and a width of 600 mm is produced by an electrolytic method using a cathode drum 1 having a copper lead material 8 formed on the outer periphery 2 formed by an electrolytic method.
  • the outer periphery 2 of the cathode drum 1 was made of titanium, and its body length direction (width direction) was divided into five regions (center portion 2c, two adjacent portions 2a, and two insulating portions 2i).
  • the lead material 8 was a copper foil (electrolytic copper foil) formed by peeling a copper film formed by electrolysis on the outer periphery 2 of the same cathode drum 1 halfway.
  • the anode member 3 was made of aluminum.
  • the electrolytic solution for electrodepositing aluminum has a molar ratio of 10 for the solvent dimethylsulfone (DMSO 2 ) and 3.8 for the electrolyte aluminum chloride (AlCl 3 ), and the additive trimethylamine hydrochloride (TMA- It was decided to use a non-aqueous solution formulated with HCl) of 0.05.
  • the electrolyte was melted by mixing AlCl 3 and TMA-HCl in DMSO 2 melted at 110 ° C. and sufficiently stirred to obtain a homogeneous solution.
  • nitrogen gas having a dew point of ⁇ 60 ° C. or less was introduced to suppress mixing of moisture into the electrolytic solution.
  • the cathode drum 1 having the outer periphery 2 to be the electrodeposition surface was produced by the formation process shown in FIG. Specifically, a titanium material was formed into a cylindrical shape having an outer diameter of 300 mm and a trunk length of 700 mm, and a drum member having a shape corresponding to the cathode drum 1 was produced using the cylindrical material. Subsequently, the outer periphery of the drum member was smoothed by mechanical polishing, and the surface roughness R ZJIS of the outer periphery (smooth processed surface) was formed to about 2.1 ⁇ m. Next, the outer periphery (smooth processed surface) of the drum member was roughened by a blasting process that was considered more preferable.
  • the surface roughness RZJIS of the roughened outer periphery is formed to about 4.5 ⁇ m when the average particle size of the alumina particles is reduced, and is formed to about 8.5 ⁇ m when the average particle size is increased. I did it.
  • the region corresponding to the adjacent portion 2a on the outer periphery (roughened surface) is polished with abrasive paper, and the surface roughness RZJIS is smoother than the roughened surface and is formed to be about 2.3 ⁇ m, which is closer to the smooth processed surface. did.
  • the aluminum as a product is newly electrodeposited on the outer periphery 2 (electrodeposition surface) after the copper film is peeled off to form a copper foil (lead material 8).
  • the aluminum film newly deposited and grown has an electrodeposited surface that can be peeled off in a healthy state.
  • copper remains on the outer periphery 2 (electrodeposited surface) after the copper film is peeled off, it may affect the peeling of a new aluminum film deposited on the electrodeposited surface. Even if it can peel, there exists a possibility that a healthy aluminum foil may not be obtained.
  • the copper remaining on the electrodeposited surface is considered to have been separated from the copper film when the copper film is deposited inside the recesses on the surface of the oxide layer and peeled off from the copper film. From such a point of view, when the copper film is formed by electrodepositing copper by an electrolytic method on the oxidized surface obtained by oxidizing the outer periphery (roughened surface) of the drum member described above, the copper film is peeled off. In addition, it is necessary to confirm the ease of this, and the degree of copper remaining on the oxidized surface after the copper film is peeled off.
  • a test piece having a length of 20 mm and a width of 20 mm is cut out from a plate material having a smooth processed surface made of pure titanium having a thickness of 5 mm, and the above-described roughening treatment (dry blasting) is performed on a predetermined area of the test piece.
  • the above-mentioned various oxidation treatments are performed, and copper is electrodeposited on the oxidation-treated surface of each test piece by a general electrolytic method to form a copper film, and the copper film is peeled off from the test piece. Tried to do.
  • the surface roughness R ZJIS of the roughened surface of the test piece after the roughening treatment was set to be about 4.5 ⁇ m to about 8.5 ⁇ m similar to the roughened surface in the case of the cathode drum 1 described above. .
  • the judgment of the quality of the peeling is “excellent” when the copper film can be peeled from the test piece with sufficient quality as a lead material, and the copper film is at least the lead material from the test piece. If the copper film can be peeled off at a quality that can be used as a "good”, and if the copper film can be peeled substantially from the test piece, it is judged as "good”. In the case where the quality was not usable as the case and when the copper film could not be peeled off from the test piece, it was determined as “impossible”.
  • the determination of the surface morphology difference between the front and back surfaces of the copper foil was determined to be “large” when the difference in surface morphology between the front and back surfaces was large, “small” when small, and could not be peeled.
  • the copper foil was marked as “not appreciable”.
  • the determination of the quality of the oxidized surface of the test piece after the copper film was peeled was recognized by the coloration derived from the copper remaining on the oxidized surface. Based on the degree of shading, the presence or absence of remaining copper, the distribution state of remaining copper, and the quantitative degree thereof were taken into consideration. Specifically, if no coloration is observed on the oxidized surface of the test piece after the copper film is peeled off, “excellent” is indicated. If dissipative and extremely thin coloration is observed on the entire surface or locally, “good” is indicated.
  • the surface is suitable for the electrodeposition surface because the risk of occurrence of breakage at the time of peeling and surface defects of the metal foil is small.
  • relatively dark coloring is intensively observed even locally, or if deep coloring is observed entirely, it is set as “impossible”, and there is a large risk of occurrence of damage during peeling or surface defects on the metal foil. Therefore, the surface was judged to be unsuitable for the electrodeposition surface.
  • Table 1 summarizes the trends obtained through repeated trials described above. In addition, “-” described in Table 1 means that it is not an evaluation target.
  • “Blasting” in Table 1 means the dry blasting process described above.
  • “Thermal oxidation” described in Table 1 means a thermal oxidation treatment in which the above-described heating in the furnace in the air atmosphere is held at a temperature of about 500 ° C. for about 60 minutes.
  • “Anodic oxidation” shown in Table 1 is selected from the above-mentioned preferable anodizing conditions, and a 100 V cut-off is performed by maintaining a phosphoric acid aqueous solution having a concentration exceeding 0.5% at 20 ° C. to 30 ° C. It means an anodizing treatment in which energization (applied voltage) is performed for a voltage exceeding 0.5 seconds.
  • “Applying a liquid flow” described in Table 1 means means for applying a liquid flow by vortex stirring using a hot stirrer REXIM (model number: RSH-1DN, rotation speed: 1200 rpm) manufactured by AS ONE Corporation.
  • “Application of ultrasonic waves” described in Table 1 means means for applying a predetermined frequency using an ultrasonic cleaner (model number: AUS-3D, output: 80 W, frequency: 23 kHz or 43 kHz) manufactured by AS ONE Corporation. To do.
  • the tendency of the copper foil peeling in the case of performing the roughening treatment and the anodizing treatment, and further the anodizing treatment in the anodizing treatment The tendency of whether the copper foil peeled off when the liquid was moved could be confirmed. Specifically, in any of the trials 4 to 15 in which the roughening treatment and the anodizing treatment were performed, there was confirmed a tendency that the copper film could be peeled from the test piece with at least a quality that can be used as a lead material. .
  • the copper film was sufficiently utilized as a lead material from the test piece. A tendency to peel with possible quality was confirmed. Thereby, it turned out that peeling of copper foil is attained by performing an anodizing process after a roughening process. It has been found that the copper foil can be easily peeled by using a means for applying a liquid flow for moving the anodizing treatment liquid or a means for applying ultrasonic waves during the anodizing treatment. In order to facilitate the peeling of the copper foil, it is considered preferable to move the anodizing solution more positively by combining a means for applying a liquid flow and a means for applying ultrasonic waves.
  • the processing order of the thermal oxidation treatment and the anodization treatment is changed. It was found that the difference did not affect the peelability of the copper foil.
  • the copper foil can be peeled by any of thermal oxidation treatment, anodization treatment, or combined oxidation treatment of thermal oxidation treatment and anodization treatment. Comparison between trial 3 and trials 4, 8 and 12 revealed that anodizing treatment was more effective than thermal oxidation treatment for facilitating peeling of the copper foil.
  • trials 5 to 7 in which the anodizing treatment was performed using a means for moving the anodizing solution after the roughening treatment a tendency was observed that dissipative and extremely thin coloring was observed on the entire surface or locally.
  • Comparison between trial 4 and trials 5 to 7 shows that the oxidized surface subjected to the anodizing treatment using the means for moving the anodizing solution was oxidized using the anodizing treatment without using the means for moving the anodizing solution. It was found that there was an effect of suppressing coloring than the treated surface. The effect of suppressing the coloring can be similarly understood from the comparison between trial 4 and trials 8 to 11 or the comparison between trial 4 and trials 12 to 15. Note that trial 1 in which the oxidation treatment is not performed is not an evaluation target of the quality of the oxidation treatment surface.
  • an oxidation layer by thermal oxidation treatment was confirmed on the outermost layer of the oxidation treatment surface, and in the cases of trials 4 to 11, an oxidation layer by anodization treatment was confirmed.
  • the oxide layer formed by the thermal oxidation treatment is thicker than the extremely dense oxide layer (natural oxide layer) that is naturally formed in contact with the air and is relatively dense.
  • the oxide layer formed by the anodic oxidation treatment was formed to be sufficiently thick compared with the relatively dense oxide layer formed by the thermal oxidation treatment, though it was not dense.
  • the difference in thickness and density of the oxide layer formed on the outermost layer of the oxidation treatment surface depends on whether the copper foil is peeled off (degree of difficulty of peeling) or the oxidation treatment surface. This is considered to affect the quality of the product (the degree of coloring).
  • the oxidation treatment for that purpose, it has been found that any one of thermal oxidation treatment, anodization treatment, or combination oxidation treatment of thermal oxidation treatment and anodization treatment can be applied. Further, it has been found that the anodizing treatment is preferably carried out while moving the anodizing treatment liquid in contact with the roughening treatment surface using means for applying a liquid flow or means for applying ultrasonic waves.
  • an oxidation treatment was performed on the outer periphery (roughening surface) of the drum member corresponding to the cathode drum 1 after the roughening treatment.
  • the means for applying the liquid flow can be a simple and inexpensive apparatus configuration as compared with the means for applying ultrasonic waves, and the anodizing treatment liquid is poured into the anodizing treatment tank and from within the anodizing treatment layer.
  • the liquid circulation system for discharging was constructed.
  • the outer periphery (roughened surface) of the drum member serving as the anode is completely immersed in a bath in which an aqueous phosphoric acid solution having a concentration of 0.5% is kept at about 20 ° C. to about 30 ° C.
  • an aqueous phosphoric acid solution having a concentration of 0.5% is kept at about 20 ° C. to about 30 ° C.
  • cutoff voltage is selected in the range of about 5 V to about 200 V
  • a treatment time of about 2 seconds while generating a liquid flow with the above means. It was.
  • only the degreasing process using 50 degreeC sodium hydroxide aqueous solution was performed as a pre-processing, and the pickling using a strong acid was not performed.
  • an oxide layer having an average thickness of about 30 nm can be formed on the outermost surface of the roughening treatment surface when the cutoff voltage is set to 10 V in the anodizing treatment, for example. It was.
  • the thickness of the formed oxide layer is controlled by using the increase in applied voltage, the increase in processing time, or both, and the average thickness is determined by TEM (Transmission Electron Microscope). The cross section of the oxide layer was observed, and the width of the band-like contrast image recognized as the oxide layer in the observation region was measured at several arbitrarily selected positions, and the measured values were averaged.
  • the outer periphery (oxidation-treated surface) of the drum member corresponding to the anodized cathode drum 1 has the central region in the body length direction (width direction) as the central portion 2c and is adjacent to the central portion 2c.
  • the region to be used is the adjacent portion 2a.
  • the surface roughness RZJIS of the central portion 2c is substantially the same as the roughened surface, and is finely formed to be about 4.5 ⁇ m and coarsely about 8.5 ⁇ m.
  • the adjacent portion 2a having a surface roughness R ZJIS equivalent to that of the roughened surface was further polished to a surface roughness R ZJIS of 2.5 ⁇ m or less.
  • an insulating portion 2i was formed using an insulating tape on the outside of the adjacent portion 2a on the outer periphery (oxidized surface) of the drum member corresponding to the cathode drum 1.
  • drum length direction of the insulation part 2i was made to respond
  • An electrodeposition surface for electrodepositing 600 mm of aluminum can be formed.
  • the average of the oxide layer on the surface corresponding to the central portion 2c of the group subjected to the above-described smoothing treatment, roughening treatment, and oxidation treatment processes is formed.
  • Table 2 shows the typical thickness and the surface roughness RZJIS .
  • the average surface in the range of about 30 nm to about 250 nm is formed on the outermost layer by performing smoothing treatment, roughening treatment, and anodizing treatment in this order. A thick oxide layer was provided.
  • trial B and trials C1 to C3 shown in Table 2 as a comparative example because either the roughening treatment or the oxidation treatment is not performed, a sample arbitrarily selected from the group in which trial A was performed is used. A predetermined roughening treatment or oxidation treatment was performed. Since the thickness (average thickness) of the oxide layer is out of the scope of the present invention, in the case of trials D4 and D5 shown in Table 2 as a comparative example, a sample arbitrarily selected from the group that performed trial C2 is used. Predetermined roughening treatment and oxidation treatment were performed.
  • An aluminum foil having a thickness of 12 ⁇ m and a width of 600 mm was produced by the metal foil production apparatus shown in FIG. 1 using the respective cathode drums 1 produced by trials A, B, C1 to C3 and D1 to D5 shown in Table 2. Tried to manufacture.
  • a lead material 8 was formed on the outer periphery 2 of the cathode drum 1 for the initial peeling of the aluminum foil and the subsequent winding onto the take-up reel 7.
  • the lead material 8 includes a front end portion where copper (copper film) electrodeposited on the outer periphery 2 by copper electrolysis is continuously peeled off before the cathode drum 1 is installed in the electrolytic bath 4, and the cathode drum 1.
  • the cathode drum 1 with the lead material 8 was sufficiently washed and dried, and then installed in the electrolytic bath 4.
  • the cathode drum 1 with the rear end portion of the lead material 8 is immersed in the electrolyte solution 5
  • the cathode drum 1 is opposed so that the distance from the anode member 3 immersed in the electrolyte solution 5 is substantially constant. Arranged. Further, the leading end portion of the lead material 8 was drawn out from the drawing port 6 of the electrolytic bath 4 and fixed to the take-up reel 7 with tape.
  • the current density is set to 100 mA / cm 2 while keeping the electrolyte 5 at about 110 ° C. and stirring.
  • Energization was performed.
  • rotation of the cathode drum 1 and rotation of the take-up reel 7 are started while electrodepositing aluminum on at least a part of the surface of the lead material 8 that is in close contact with the outer periphery 2 of the cathode drum 1.
  • the aluminum film 9 thus grown was peeled off together with the lead material 8 by the tensile force of the take-up reel 7.
  • the electrodeposition of aluminum can be continuously continued without stopping the energization by such a foil making process, after all the lead material 8 is peeled off from the cathode drum 1, the aluminum film 9 itself is removed from the electrodeposition surface. After peeling, an aluminum foil having an average thickness of about 12 ⁇ m and a width of about 600 mm can be wound on the take-up reel 7.
  • Table 3 shows the peelability of the aluminum film (whether it can be peeled, stability when it can be peeled, etc.) when the continuous production of aluminum foil is attempted by the above-described foil making process, and occurs in the obtained aluminum foil
  • the average surface roughness RZJIS of the peeling surface of the obtained aluminum foil and a free surface is shown.
  • trials C1 to C3 shown in Table 3 as comparative examples the aluminum film was frequently cracked or broken in the middle of peeling and could not be peeled off continuously, but it could be partially peeled off. The resulting aluminum flakes could be obtained.
  • the surface roughness of the obtained aluminum foil or aluminum foil piece was measured randomly in the area corresponding to the central portion 2c of the outer periphery 2 of the cathode drum 1 on the peeling surface, and almost on the back side of the measurement location of the peeling surface on the free surface. Randomly measured in the area.
  • the surface roughness was measured using a Keyence Corporation shape analysis laser microscope (model number: VK-X160, 50 ⁇ lens), and the laser beam was almost perpendicular to five areas of 100 ⁇ m ⁇ 100 ⁇ m in plan view. Was carried out in a state of being irradiated. For the surface roughness, the average value in each region was defined as the surface roughness value in that region.
  • FIGS. 5 to 8 show examples of observation images of the external structure of the aluminum foil produced using the cathode drum described above.
  • 5 and 6 show the case of trial A
  • FIGS. 7 and 8 show the case of trial D1.
  • 5 and 7 show the peeled surface of the aluminum foil
  • FIGS. 6 and 8 show the free surface of the aluminum foil.
  • SEM scanning Electron Microscope
  • the metal foil (aluminum foil or the like) obtained by peeling off the metal film while the metal film (aluminum film or the like) deposited by electrodeposition on the cathode electrode electrode is easily peeled off by applying the present invention.
  • the peeled surface and the free surface are not clearly different, such as streaks, in the appearance structure, and the surface roughness RZJIS of the peeled surface and the free surface is roughly equivalent (4 ⁇ m to 10 ⁇ m), and the peeled surface It was confirmed that the difference in surface roughness RZJIS between the surface and the free surface was small (2 ⁇ m or less).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

電解法により陰極の電析面に電析した金属膜の剥離が容易でありながら、その金属膜の剥離によって得られる金属箔の剥離面と自由面との表面粗さの差が小さくなる、金属箔の製造方法および金属箔製造用陰極を提供する。 電解法により陰極の電析面の表面上に電析した金属膜を剥離して金属箔を形成する金属箔の製造方法であって、チタン製またはチタン合金製の平滑加工面がブラスト処理などで粗化処理された後の粗化処理面に、熱酸化処理、陽極酸化処理(好ましくは陽極酸化処理液を動かしながら行う陽極酸化処理)、あるいは熱酸化処理と陽極酸化処理との組み合わせ酸化処理のうちのいずれかの酸化処理が行われ、最表層に30nm~250nmの厚さの酸化層を有し、4μm~10μmの表面粗さRZJISを有して成る、電析面を用いる金属箔の製造方法とする。

Description

金属箔の製造方法および金属箔製造用陰極
 本発明は、金属箔の製造方法および金属箔製造用陰極に関する。例えば、電解法により金属箔製造用陰極の電析面の表面上に電析したアルミニウムや銅などの金属膜を剥離して金属箔を形成する金属箔の製造方法、およびそれに用いると好ましい金属箔製造用陰極に関する。
 近年、充電と放電の繰り返しが可能で、高容量で、エネルギー密度が高い、リチウムイオン二次電池やスーパーキャパシター(電気二重層キャパシター、レドックスキャパシター、リチウムイオンキャパシターなど)などに代表される蓄電デバイスの利用が増えており、その容量やエネルギー密度の増大に関する研究開発が盛んに進められ、今後の需要の伸びが大いに期待されている。こうした蓄電デバイスの正極集電体は、一般的に、電気エネルギーを蓄える金属酸化物系粒子などの正極活物質を含む活物質層と、その活物質層を表面上で担持する正極集電体の本体となるアルミニウム箔により構成されている。一方、負極集電体は、銅箔を本体として構成されている。
 アルミニウム箔の製造は、専ら圧延法による。これは、アルミニウムの標準電極電位が水よりも卑であり、薄肉化に好適な電解法の適用が難しいためであったが、最近はアルミニウム箔を電解法で製造する研究開発が進んでいる。例えば、特開2015-124423号公報(特許文献1)には、陰極ドラムの表面の一部およびその表面に対向配置した陽極部材を電解液(めっき液)中に浸漬し、所定の条件下で両極間に電流を印加することにより陰極ドラムの特定の表面(以下、「電析面」という。)上にアルミニウムを電析させ、さらに所定の厚さに成長させてアルミニウム膜を形成し、そのアルミニウム膜を剥離してアルミニウム箔を得るという、電解法によるアルミニウム箔の製造方法が開示されている。また、銅箔では、負極集電体用に限らず、上述した陰極ドラムを用いた電解法による製造方法が、例えば、特開2007-217787号公報(特許文献2)、特開2005-150265号公報(特許文献3)、特開2001-342589号公報(特許文献4)、特開平7-228996号公報(特許文献5)、あるいは特開2002-194585号公報(特許文献6)など、多くの文献で開示されている。
 上述した金属を電析させる陰極ドラムの電析面には、耐食性に優れるチタンなどの金属材料を用いることが一般的である。ところが、チタン材質の電析面であっても、連続使用する間に腐食や酸化によって微細な凹みが発生し、電析した銅(銅膜)の剥離性を悪化させ、銅箔の品質に悪影響を及ぼすことが確認された(特許文献2~6)。微細な凹みの発生によって凸凹になった電析面の表面形態を整えるために、例えば、バフ研磨、電解研磨などの機械的研磨、または陽極酸化などの化学的な処理を定期的に行うメンテナンスが必要との報告がある(特許文献2~6)。また、電析面は、表面粗さが大き過ぎると金属の結晶成長に影響を及ぼし、表面粗さが小さ過ぎると成長途中の金属(金属膜)が剥離するとの報告がある(特許文献4)。また、電析面の剥離性の改善のため、例えば陽極酸化処理によって酸化層を形成する際には、その表面粗さRZJISを2.0μm以下にすることが好ましいとの報告がある(特許文献5)。
特開2015-124423号公報 特開2007-217787号公報 特開2005-150265号公報 特開2001-342589号公報 特開平7-228996号公報 特開2002-194585号公報 特開平8-236120号公報
 上述した陰極ドラムを使用する電解法によって製造された金属箔(電解箔)は、電析面から剥離された面(剥離面)が金属光沢のある面となり、電解液に接していた面(自由面)が光沢のない面となり、剥離面と自由面とは表面形態に明確な差異が生じる。これは両面の形成過程の違いによる。金属箔の剥離面は、金属膜を容易に剥離できるように平滑に研磨された電析面の表面形態が転写されるため、その電析面とほぼ同等な平滑な表面形態になる。また、金属箔の自由面は、電析した金属が結晶面ごとに異なる速度で自由に成長するため、電解液に接する表面が凹凸の表面形態になりやすい。上述した正極集電体の本体に適用するアルミニウム箔では、活物質層を安定に担持できるので、上記の自由面のように凹凸の表面形態であると好ましい。ところが、剥離面が平滑であるため、アルミニウム箔の表裏の表面形態に差異があり過ぎることとなり、蓄電デバイスの電気的特性に悪影響を及ぼす虞がある。なお、金属箔の表面形態の差異を小さくする場合、自由面に比べて平滑な金属箔の剥離面を適度に粗面化する方法が知られているが、その問題点も指摘されている(例えば特許文献7)。
 そこで、金属箔に対して粗化処理を行う方法ではなく、金属箔の剥離面を自由面と同等程度の凹凸の表面形態に形成するために、粗く研磨した電析面、めっき処理により金属粒子を点在させた電析面、エッチング処理により凹みを点在させた電析面、あるいはブラスト処理した電析面などの適用を試みた。しかし、金属が電析して所定の厚さの金属膜に成長する間に亀裂や破断が発生した。あるいは、所定の厚さに形成された金属膜が粗化された電析面から健全に剥離できない問題が発生した。なお、健全に剥離されなかった金属箔片の剥離面には、自由面には観られない研磨痕などの痕跡が確認された。
 本発明の目的は、陰極の電析面に電析した金属(金属膜)の剥離が容易でありながら、その金属膜の剥離によって得られる金属箔の剥離面と自由面との表面粗さの差が小さくなる、金属箔の製造方法および金属箔製造用陰極を提供することである。
 上述した陰極の粗化処理された電析面からの金属膜の剥離性の問題を検討し、電析面となるチタン材質の平滑加工面を粗化処理した後に積極的に酸化処理する手段を採用することにより、電析面からの金属膜の剥離が容易でありながら、その剥離によって得られる金属箔の剥離面と自由面との表面粗さの差が小さくなることを見出し、本発明に想到した。
 すなわち本発明の金属箔の製造方法は、電解法により陰極の電析面の表面上に電析した金属膜を剥離して金属箔を形成する金属箔の製造方法であって、チタン製またはチタン合金製の平滑加工面が粗化処理された後の粗化処理面に、熱酸化処理、陽極酸化処理、あるいは熱酸化処理と陽極酸化処理との組み合わせ酸化処理のうちのいずれかの酸化処理が行われ、最表層に30nm~250nmの厚さの酸化層を有し、4μm~10μmの表面粗さRZJISを有して成る、前記電析面を用いるものである。
 前記酸化処理は陽極酸化処理であり、該陽極酸化処理は前記粗化処理面に接する陽極酸化処理液を動かしながら行うことが好ましい。
 前記陽極酸化処理は、液流を付与する手段、超音波を印加する手段、あるいは液流を付与する手段と超音波を印加する手段とが組み合わされた手段のうちのいずれかの手段により、前記粗化処理面に接する陽極酸化処理液を動かしながら行うことが好ましい。
 前記酸化処理の前処理として、アルカリ性溶液中へ浸漬する処理、強酸性溶液中へ浸漬する処理、あるいはアルカリ溶液中への浸漬と強酸性溶液中への浸漬とが組み合わされた処理のうちのいずれかの処理を行うことができる。
 前記粗化処理は、ブラスト処理であることが好ましい。
 前記陰極の幅方向において、中央部が4μm~10μmの表面粗さRZJISを有し、前記中央部の両側の隣接部が2.5μm以下の表面粗さRZJISを有して成る、前記電析面を用いることが好ましい。
 前記中央部の幅に対する前記隣接部それぞれの幅の比率が0.1%~10%で成る、前記電析面を用いることが好ましい。なお、本発明における表面粗さRZJISは十点平均粗さであり、JIS-B0601:2013(表C2等)を参照する。
 上述した本発明の金属箔の製造方法に用いると好ましい金属箔製造用陰極は、電解法により陰極の電析面の表面上に電析した金属膜を剥離して金属箔を形成するために用いられるチタン製またはチタン合金製の陰極であって、前記電析面は、最表層に30nm~250nmの厚さの酸化層を有し、4μm~10μmの表面粗さRZJISを有する。
 前記陰極の幅方向において、前記電析面は、4μm~10μmの表面粗さRZJISを有する中央部と、前記中央部の両側に隣接し、2.5μm以下の表面粗さRZJISを有する隣接部と、を備えることが好ましい。
 前記中央部の幅に対する前記隣接部それぞれの幅の比率が0.1~10%であることが好ましい。
 本発明の適用により、陰極の電析面に電析した金属(金属膜)の剥離が容易でありながら、その金属膜の剥離によって得られる金属箔の剥離面と自由面との表面粗さの差が小さくなる。よって、本発明は、例えば正極集電体の本体に好適なアルミニウム箔などの金属箔の製造に有用な技術である。
本発明に適用可能な金属箔の製造装置の構成例を示す図である。 本発明に適用可能なベルト型の陰極(陰極ベルト)の構成例を示す図である。 本発明に適用可能なドラム型の陰極(陰極ドラム)の電析面の形成プロセスを示す図である。 本発明に適用可能なドラム型の陰極(陰極ドラム)の構成例を示す図である。 試行Aの場合のアルミニウム箔の剥離面のSEMによる観察像である。 試行Aの場合のアルミニウム箔の自由面のSEMによる観察像である。 試行D1の場合のアルミニウム箔の剥離面のSEMによる観察像である。 試行D1の場合のアルミニウム箔の自由面のSEMによる観察像である。
 本発明の金属箔の製造方法は、上述した特許文献1~6に開示される電解法の技術分野に属し、製造対象となる金属の電析、金属膜の剥離、電解液の組成などの基本的な製造装置および電解条件については、公知の技術を適用することができる。一般的に、厚さが薄い金属箔(例えば厚さが20μm以下の金属箔)の機械的強さを確保するためには、金属箔の内部に空孔などが存在しないことが望ましい。しかし、例えば金属箔がアルミニウム箔である場合は、非水性のアルミニウム電解液の含水量(例えば100ppm以上)に起因し、意図しなかった微細な空孔(表面では窪みになる)が分散しているような形態のアルミニウム箔が得られることがある。空孔が多く内在するアルミニウム箔などの金属箔は、機械的強さが低下しやすく、これに起因して破損する虞があるので好ましくない。そのため、金属箔の内部に微細な空孔が形成され難い製造方法が望ましい。
 本発明に適用可能な金属箔の製造装置の構成例について説明する。
 図1は、ドラム型の陰極(陰極ドラム)を用いた構成例であり、陰極ドラム1の回転軸1aに垂直な方向における装置100の断面を示す概略図である。図1に示す構成例では、金属箔の製造を行う前の準備段階として、電析させる金属に適するように組成などを調整した電解液5を作製する。作製した電解液5は、その電解液5に適するように雰囲気などを調整した電解浴槽4に貯留する。その電解液5中に、陰極ドラム1の外周2の一部と、その外周2に対向するように配置した陽極部材3を浸漬する。電解液5に浸漬されない陰極ドラム1の外周2に、電析して所定の厚さに成長した最初の金属膜9を剥離して引き出すためのリード材8の一端を密着させて固定する。リード材8の他端は、電解浴槽4の引出し口6から外側へ導いて巻取りリール7へ固定する。リード材8は、事前に陰極ドラム1の外周2に電析させたリード用金属膜の一端を残して剥離した他端側をリード用金属箔として用いることもできる。陰極ドラム1の外周2が例えばチタン材質の場合、後述する銅の電解法によってリード材8(リード用金属膜およびリード用金属箔)を形成すると、陰極ドラム1の外周2への十分な密着が得られるので好ましい。
 こうした準備段階を経た後に、金属箔の製造に際して、金属が電析してから剥離されるまでに成長する金属膜9が製造すべき金属箔と同等の厚さに形成されるように、電解液5の温度や、陰極ドラム1と陽極部材3の間に印加する電流(電解電流)の大きさや、陰極ドラム1の回転時の周速などの製造条件を調整する。その後に、陰極ドラム1の電析面と陽極部材3との間に所定の電解電流を印加し、陰極ドラム1を一方向に回転し、陰極ドラム1の電析面の表面上に金属を電析させ成長させる。所定の厚さまで成長した金属膜9が陰極ドラム1の回転によって電解液5中から引き出された後は、陰極ドラム1の回転に同期する巻取りリール7の回転によってリード材8を引き出し、リード材8とともに金属膜9を陰極ドラム1の電析面から剥離する。そのまま陰極ドラム1および巻取りリール7の同期回転を継続することにより、リード材8とともに剥離された金属膜9に続いて、新たに電析して成長した金属膜そのものが連続的に剥離されて巻取りリール7に回収される。こうした一連の製造プロセスにより、所定の厚さ(例えば約1μm~約50μm)の長尺の金属箔を連続的に製造することができる。こうして製造された厚さが約3μm~約20μmの金属箔は各種の用途に好適なものとなる。例えばアルミニウム箔は正極集電体の本体などに好適なものとなる。
 本発明に適用可能な金属箔の別の製造装置について説明する。
 図2は、ベルト型の陰極(陰極ベルト)を用いた構成例であり、後述する各ローラの回転軸28に垂直な方向における装置200の断面を示す概略図である。図2に示す構成例では、金属(例えばアルミニウム)を電析させるための電解液22は、その電解液22に適するように雰囲気などを調整した電解浴槽21に貯留する。その電解液22中に、陰極ベルト24の一部(下方側)と、その陰極ベルト24に対向するように配置した陽極部材23を浸漬する。陰極ベルト24は、輪状に構成された帯状電極である。陰極ベルト24は、駆動ローラ25を含む複数のローラ(駆動ローラ25、従動ローラ26)に架け渡され、駆動ローラ25の回転によって電解液22中を移動(走行)可能に構成されている。陽極部材23および陰極ベルト24は、電解浴槽21の外部の電源(図示せず)に接続される。陽極部材23と陰極ベルト24との間で通電した状態で陰極ベルト24が移動(走行)することにより、電解液22に浸漬された陰極24ベルトの表面(接液面)に金属が析出して成長する。所定の厚さに成長した金属膜は、図中に破線で示す矢印の位置で陰極ベルト24から連続的に剥離されて金属箔となる。剥離された金属箔を連続的に巻き取ることにより、所定の厚さの長尺の金属箔を連続的に形成することができる。陰極ベルト24が例えばチタン材質の場合、上述した陰極ドラム1の場合と同様に銅の電解法によってリード材(リード用金属膜およびリード用金属箔)を形成すると、陰極ベルト24への十分な密着が得られるので好ましい。
 陰極ベルト24のうち陽極部材23に対向する部分は、水平方向(x方向)に対して平行である。具体的には、陰極ベルト24を架け渡す複数のローラ(駆動ローラ25、従動ローラ26)が水平方向(x方向)に配置されている。また、駆動ローラ25と従動ローラ26は、回転軸28が電解液22の液面よりも上になるように配置されている。また、陰極24ベルトのうち、駆動ローラ25と従動ローラ26との間の部分(平面部)の下側の平面部と、駆動ローラ25と従動ローラ26に接する部分(曲面部)の一部が、電解液22に浸漬されている。一方、陽極部材23は、電析させる金属の板材(例えばアルミニウム板材)で構成され、陰極ベルト24の下側の平面部と対向している。駆動ローラ25と従動ローラ26との間隔を大きくし、電解液22中に浸漬される帯状電極の長さを大きくすることで、金属膜の成膜効率(金属箔の製造効率)を高めることができる。
 電解液22中に発生した気泡や浮遊物の滞留あるいは金属膜への付着などを防止する観点からは、陰極ベルト24の陽極部材23に対向する部分が、水平方向(x方向)に対して非平行であることが好ましい。そのため、駆動ローラ25と従動ローラ26の上下方向(y方向)の位置をずらして陰極ベルト24の下側の平面部を傾斜させることも可能である。ただし、電解液22中に発生した気泡の滞留などを防止する観点からは、陰極ベルト24の平面部が、水平方向(x方向)に対して垂直(y方向)である構成がより好ましい。
 本発明の金属箔の製造方法について、ドラム型の陰極(陰極ドラム1)を用いる構成例を示す図1を参照して説明する。なお、本発明におけるチタン製またはチタン合金製の陰極は、図1に示すようなドラム型の陰極(陰極ドラム)に限られるものではなく、例えば図2に示すようなベルト型の陰極(陰極ベルト24)なども用いることができる。こうしたベルト型の陰極(陰極ベルト24)となる帯状素材(板材)などの陰極用素材対しても同様に、本発明における粗化処理や酸化処理などの処理を施すことができる。
 本発明の金属箔の製造方法における重要な特徴は、特定の処理を行って形成された電析面を有するチタン製またはチタン合金製の陰極(ドラム型の陰極など)を用いて、陰極に形成した特定の表面性状を備える電析面の表面上に金属を電析させることである。電析面を形成するための特定の処理とは、製造する金属箔の幅寸法を考慮し、耐食性に優れたチタン製またはチタン合金製の素材を準備し、そのチタン材質の素材を所定の形状に加工した後に、次に説明する(1)~(3)の各処理をこの順で行う一連のプロセスを意図する。ドラム型の陰極を用いる場合、チタン材質の素材を例えば直径が100mm~3000mmで胴長が100mm~2000mmの円筒形状に加工した後に、次に説明する(1)~(3)の各処理をこの順で行う一連のプロセスを意図する。これにより、陰極(ドラム型の陰極など)の電析面に対応する面が特定性状を備えるように形成する、すなわち、表面粗さRZJISが4μm~10μmの適切な凹凸の表面形態に形成するとともに、その最表層に厚さが30nm~250nmの適切な酸化層を形成する。
 次に、本発明に適用可能なドラム型の陰極(陰極ドラム)の外周に形成する電析面の形成プロセスを図3に示し、これを参照して、上記の(1)~(3)の各処理について説明する。
(1)平滑化処理
 本発明における平滑化処理では、陰極の電析面となる素地の面を形成する。具体的には、陰極ドラムに対応する円筒形状に加工されたチタン材質の外周に対して平滑化処理を行い、均等的に平滑な外周(平滑加工面)を形成する。平滑化処理は、例えば切削、研削、研磨などの機械的加工法であってよく、均等的に平滑な例えば表面粗さRZJISが2μm未満(好ましくは1μm未満)の表面形態を有する面を形成することができればよい。なお、平滑化処理を行った後の外周に平滑化処理の痕跡が残っていても、次の粗化処理によって解消できる程度であれば許容することができる。
(2)粗化処理
 本発明における粗化処理では、上記の平滑加工面を粗化し、陰極ドラムに対応する円筒形状の均等的に粗い凹凸の表面形態を有する外周(粗化処理面)を形成する。金属箔の自由面は凹凸の表面形態になりやすいことから、陰極の電析面の表面粗さが大きいと、その電析面に電析した金属(金属膜)の剥離によって得られる金属箔の剥離面と自由面の表面形態(表面粗さ)が均質化し、両面の表面形態(表面粗さ)の差が小さくなると考えられる。この観点から、平滑加工面を凹凸の表面形態に変化させる粗化処理は、陰極の電析面に対応する平滑加工面を所定の範囲の表面粗さを有する粗化処理面に変化させることができるので有効である。
 粗化処理は、例えば、投射材を用いるブラスト処理や、アルカリ性や酸性のエッチング液を用いた化学的研磨処理や、金属粒子を意図的に疎な例えば島状に分散したような表面形態にめっきする金属めっき処理など、幾つかの処理が考えられる。その中でも、広い面積をより均等的に粗い表面形態に容易に加工でき、繰り返し再現性が期待できる処理が望ましいとの観点から、乾式ブラスト、湿式ブラスト、スチールブラスト、またはサンドブラストなど、多様な選択が可能なブラスト処理が好ましい。ブラスト処理は、金属系、セラミック系、ガラス系、硬質樹脂系などの投射材の種類や大きさの選択や、投射の速度、角度、量、あるいは時間の設定などにより、粗化対象面の表面粗さを容易に調整することができる。例えば、多角形のアルミナ粒子を噴射する乾式ブラスト処理または湿式ブラスト処理は、チタン材質の平滑加工面(粗化対象面)に残存する加工の痕跡を除去して所定の表面粗さの凹凸の表面形態に形成することが容易であるし、繰り返しの再現性が期待できるので好ましい。こうした乾式ブラスト処理または湿式のブラスト処理などの粗化処理を行うことにより、陰極ドラムに対応する円筒形状の均等的に粗い凹凸の表面形態を有する外周として、4μm~10μmの表面粗さRZJISを有する外周(粗化処理面)を形成することができる。
(3)酸化処理
 本発明における酸化処理では、陰極ドラムに対応する円筒形状の均等的に粗い凹凸の表面形態を有する外周(粗化処理面)を酸化させ、その最表層に酸化層を有する外周(酸化処理面)を形成する。酸化処理では、粗化処理面を積極的に酸化させ、その最表層に、自然酸化による薄い表面酸化層(自然酸化層)ではなく、30nm~250nmの厚さの酸化層を形成する。積極的な酸化処理によれば、粗化処理面の凹凸の表面形態の最表層に偏りなく均等的に酸化層が形成されるため、凹凸の表面形態を有する均質的な酸化表面を得ることができる。積極的な酸化処理として、本発明では、熱酸化処理、陽極酸化処理、あるいは熱酸化処理と陽極酸化処理との組み合わせ酸化処理のうちのいずれかの酸化処理を行う。組み合わせ酸化処理は、熱酸化処理の後に陽極酸化処理を行うか、陽極酸化処理の後に熱酸化処理を行う。こうした積極的な酸化処理を行うことにより、均等的に粗い凹凸の表面形態を有する陰極ドラムに対応する円筒形状の外周であって、最表層に30nm~250nmの厚さの酸化層を有するとともに、4μm~10μmの表面粗さRZJISを有する外周(酸化処理面)を形成することができる。
 上記の酸化処理により形成された酸化層は、チタン製またはチタン合金製の陰極の粗化処理面に存在するチタン(元素)などが酸化され、チタン(元素)などを含む酸化物の層であると考えられる。例えば、純チタンからなる粗化処理面では、一般的には酸化チタン(TiO)からなる酸化層が形成されると考えられる。また、Ti-6Al-4V合金やTi-3Al-2.5V合金などのチタン合金からなる粗化処理面では、主となる酸化チタンの他、チタン以外の含有元素の酸化物(酸化アルミニウムや酸化バナジウムなど)や、チタンおよびチタン以外の含有元素からなる複合酸化物などを含む、複数種の酸化物からなる酸化層が形成される可能性がある。
 粗化処理面の最表層に自然酸化層よりも十分に厚い酸化層を形成する積極的な酸化処理は、陰極の電析面からの金属膜の剥離を容易化することができる。これは、酸化層が金属膜と電析面とを隔てることとなり、原子レベルで作用すると考えられる金属膜と電析面とが引き合う力が低減し、金属膜を剥離するときに発生する負荷(剥離抵抗)が軽減するためと考えられる。なお、自然酸化層の場合、剥離による金属膜あるいは金属箔の損傷が抑制できない場合があることを確認している。これは、自然酸化層の厚さが薄い(純チタンの自然酸化層の厚さは約10nm以下程度である)ことから、金属膜と電析面との隔たり(離間距離)が小さく、金属膜の剥離抵抗の軽減度合いが不十分であるためと考えられる。
 上述した本発明における酸化処理において、熱酸化処理は、大気雰囲気での炉内加熱(大気加熱)などであってよく、加熱温度と加熱時間の設定などにより、酸化対象面全体の最表層に対して均等的に酸化層を形成することが容易である。例えば、純チタンの大気加熱では、約500℃で約60分~約120分の保持あるいは約600℃で約10分の保持で約30nmの厚さの酸化層を形成することができる。同様に、約600℃で約20分の保持で約50nm程度、約600℃で約120分の保持で100nm程度、約700℃で約30分~約120分の保持で130nm程度の厚さの酸化層を形成することができる。なお、熱処理の保持温度が高いと水素の放出量が増えることがあり、結晶化の速度差が大きくなることに起因して粗化処理面の最表層が不均等的に粗くなるリスクが高まる。こうした場合は、保持温度を約500℃~約600℃の範囲で選定することが好ましい。また、熱酸化処理は、指示した温度や時間などの加熱条件の変化に対する熱処理空間の温度変化(加熱状態変化)が緩やかであるため、酸化対象面の温度変化(実体温度変化)の感度が比較的低い。こうした場合は、酸化対象面の酸化の均等性に影響が及ぶことがないように、熱処理空間内の温度差を小さく抑制することが好ましい。
 大気加熱による酸化能(酸化層の形成能)は自然酸化よりも十分に高いものの、酸化層を短時間で成長させることができる陽極酸化処理が優る。したがって、酸化能の観点からすれば、積極的な酸化処理としては陽極酸化処理が好ましい。陽極酸化処理によれば、印加電流または印加電圧および通電時間の設定などにより、酸化対象面に対して十分に厚い酸化層を短時間(例えば数秒間)で形成することができる。また、陽極酸化処理は、陽極酸化処理液の濃度や温度の管理が容易であるし、印加電流または印加電圧の変化に対する酸化対象面の酸化の変化の感度が高いため、酸化対象面の酸化の度合いを容易に判別することができる。なお、熱酸化処理と陽極酸化処理との組み合わせ酸化処理によれば、それぞれの酸化処理を単独で行う場合に比べて、酸化層をより厚く形成することができる。
 陽極酸化処理を行う場合は、必要に応じて前処理を行った後、チタン製やチタン合金製の部材に適する陽極酸化用の電解液(例えば0.5%以上20%以下の濃度のリン酸水溶液からなる陽極酸化処理液)が保温(例えば20℃以上50℃以下)された浴槽中に酸化対象物を浸漬し、5Vを超えて200V未満のカットオフ電圧で0.5秒以上5秒以下の通電(印加電圧)を行う陽極酸化処理が好ましい。従来、酸化対象物が陽極酸化処理液中に全く浸漬されない状態で、陽極酸化処理液を掛け流しながら酸化対象物(酸化対象面)の陽極酸化を行う方法が知られている(特許文献5、7)。しかし、酸化対象面が粗化処理面である場合、掛け流した陽極酸化処理液が粗化処理面の凹みに残留し、陽極酸化処理中に発生した気泡(ガス)が粗化処理面の凹みに停留しやすい。また、陽極酸化処理液を掛け流すときに気泡(大気などの雰囲気ガス)が巻込まれやすく、巻込まれた気泡が粗化処理面の凹みに停留しやすい。陽極酸化処理に際して気泡が粗化処理面の凹みに頻繁に停留すると、その気泡に起因する欠陥が酸化処理面に発生し、酸化処理面(電析面)からの金属膜の剥離を阻害する虞がある。したがって、酸化処理面である粗化処理面を陽極酸化処理液中に浸漬して行う陽極酸化処理が好ましい。
 また、従来のチタン製またはチタン合金製の部材に適用される陽極酸化処理では、その処理中に酸化対象面に接した処理液が分解されて気泡(ガス)が発生するため、陽極酸化処理中に発生した気泡(ガス)が酸化対象面(粗化処理によって凹凸の表面形態になっている粗化処理面)の凹みに停留することがある。酸化対象面の凹みに気泡(ガス)が頻繁に停留すると、その凹み部分の陽極酸化の進行が阻害されて適切な酸化層が生成されなくなり、金属膜の剥離に悪影響が及ぶ虞がある。このような場合には、粗化処理された後の粗化処理面(酸化対象面)に接する陽極酸化処理液を動かしながら陽極酸化処理を行うことが好ましい。酸化対象面に接する陽極酸化処理液が動くことにより、陽極酸化処理中に発生した気泡(ガス)が酸化対象面の凹みから容易に離脱し、気泡(ガス)の酸化対象面の凹みへの残留を十分に抑制することができる。陽極酸化処理液を動かしながら行う陽極酸化処理は、チタン製またはチタン合金製の部材に適用される従来の陽極酸化法では特段に注視されていなかったが、粗化処理面の最表層に適切な酸化層を形成する手段としては極めて有効である。
 粗化処理された後の粗化処理面(酸化対象面)に接する陽極酸化処理液を動かしながら行う陽極酸化処理は、液流を付与する手段、超音波を印加する手段、あるいは液流を付与する手段と超音波を印加する手段とが組み合わされた手段のうちのいずれかの手段が好ましい。
 液流を付与する手段は、例えば、ポンプを備える液送装置などを用いて、陽極酸化処理液の陽極酸化処理槽内への注送および陽極酸化処理槽内からの排出の液循環系を構成する手段、あるいは、撹拌翼などの撹拌具を備える撹拌装置などを用いて、陽極酸化処理槽内の陽極酸化処理液を撹拌する手段であってよい。こうした手段を適用し、陽極酸化処理槽内の陽極酸化処理液に強制的に流れを発生させることにより、酸化対象面に接する陽極酸化処理液に対して、陽極酸化処理中に発生した気泡(ガス)が酸化対象面(粗化処理面)の凹みから離脱可能な程度に流動する液流を付与することができる。液流による陽極酸化処理液の動きを利用することにより、酸化対象面に接する陽極酸化処理液を動かすことができるし、酸化対象面に接する陽極酸化処理液を動かしながら陽極酸化処理を行うことができる。なお、上記の液送装置や撹拌装置などを用いる手段は、後述する超音波を印加する手段と比べて、一般的に装置構成が簡易かつ安価であり、大型の金属箔製造装置に適用しやすい。
 超音波を印加する手段は、例えば、陽極酸化処理中に発生した気泡(ガス)が酸化対象面(粗化処理面)の凹みから離脱可能な程度の周波数および発振出力(もしくは音強度)を印加することができる超音波発信装置を選定し、これを用いて陽極酸化処理槽内の陽極酸化処理液に対して所定の超音波を印加する手段であってよい。超音波を印加する手段によれば、上述した陽極酸化処理槽内の陽極酸化処理液を撹拌する手段と比べて、より高効率で酸化対象面に接する陽極酸化処理液を動かすことができると考えられる。一般に20kHzを超える周波数をもつ超音波が陽極酸化処理液中を伝播するとき、陽極酸化処理液中に微視的な高圧域と低圧域が発生し、陽極酸化処理液が微視的な収縮と膨張を繰り返すため、陽極酸化処理液を高速で連続的に動かすことができる。なお、超音波の印加による陽極酸化処理液の動きの度合いは、媒質である陽極酸化処理液の実質的な液質が変化しないような管理下において、超音波の周波数および発振出力(音強度)を、言い換えれば超音波の振幅を、適切に選定することにより、容易に調整することができる。
 こうした超音波を印加する手段による陽極酸化処理液の微動を利用することにより、酸化対象面に接する陽極酸化処理液をより高効率で動かし、陽極酸化処理中に発生した気泡(ガス)の酸化対象面(粗化処理面)の凹みへの残留を確実に抑制しながら陽極酸化処理を行うことができる。なお、超音波による撹拌方法は、陽極酸化処理液が大きく動き難いので、小型の金属箔製造装置に適用することが好ましい。また、超音波による撹拌方法を大型の金属箔製造装置に適用する場合などにおいて、超音波が効果的に伝播する範囲が限られると考えられるときは、複数の超音波振動子を陽極酸化処理槽内の適所に配置することが好ましい。
 上記の液流を付与する手段と、上記の超音波を印加する手段とが組み合わされた手段を採用することも好ましい。この場合、液流を付与する手段が陽極酸化処理槽内の陽極酸化処理液に強制的に流れを発生させるとともに、超音波を印加する手段が酸化対象面に接する陽極酸化処理液をより高効率で動かすことができる。これにより、陽極酸化処理中に発生した気泡(ガス)の酸化対象面(粗化処理面)の凹みへの残留を確実に抑制しながら、酸化対象面(粗化処理面)の陽極酸化処理を行うことができる。
 上述した酸化処理の前処理として、アルカリ性溶液中へ浸漬する処理、強酸性溶液中へ浸漬する処理、あるいはアルカリ溶液中への浸漬と強酸性溶液中への浸漬とが組み合わされた処理のうちのいずれかの処理を行うことができる。アルカリ性溶液中へ浸漬する処理は、例えば、約20℃~約80℃程度の水酸化ナトリウム水溶液などのアルカリ性溶液を用いて表面の油分などの汚れを除去する(脱脂効果)ことができる。強酸性溶液中へ浸漬する処理は、最表面に形成されている自然酸化層を除去する(酸洗効果)ことができる。強酸性溶液中へ浸漬する処理は、粗化処理面の凹凸の表面形態が毀損されない程度に止めることが好ましい。アルカリ性溶液中へ浸漬する処理または強酸性溶液中へ浸漬する処理は必要に応じて選択することが好ましく、それぞれの処理を単独で行うこともできるし、両方の処理を組み合わせて行うこともできる。こうした前処理は、熱酸化処理の前処理にも、陽極酸化処理の前処理にも、適用することができる。
 本発明の金属箔の製造方法では、上記の(1)~(3)の各処理、すなわち、平滑化処理、粗化処理、酸化処理をこの順で行うことによって形成された、最表層に30nm~250nmの厚さの酸化層を有し、4μm~10μmの表面粗さRZJISを有して成る、凹凸の表面形態を有する酸化処理面を、電析面に用いる。こうした電析面を有して成るチタン製またはチタン合金製の陰極は、最表層に30nm~250nmの厚さの酸化層を有し、4μm~10μmの表面粗さRZJISを有して成る、上記の電析面を有して成る本発明の金属箔製造用陰極である。
 電析面の最表層に30nm以上の厚さの酸化層を有していると、その電析面に電析した金属(金属膜)が剥離しやすくなり、剥離の際に発生しやすい金属膜(金属箔)のエッジ部の亀裂や、凹凸の表面形態に起因する金属膜の破断が抑制される。金属膜の電析面からの剥離の容易化の観点からは、酸化層の厚さは大きいことが好ましい。また、陰極の電析面の最表層に250nm以下の厚さの酸化層を有していると、酸化層が厚くなり過ぎることによる電気的絶縁の度合いが過度にならないため、金属の電析面への電析あるいは電析した金属の成長を損なうことがない。
 また、電析面が4μm~10μmの表面粗さRZJISを有していると、その電析面に電析した金属が成長した金属膜が剥離されて成る金属箔の剥離面は、その電析面の表面形態が転写されることによって、実質的に4μm~10μmの表面粗さRZJISを有する面となる。このとき、4μm~10μmの表面粗さRZJISを有する電析面の影響が金属箔の自由面側にも少なからず及び、金属箔の剥離面と自由面とが実質的に同等の表面粗さを有するものとなる。したがって、金属箔の剥離面と自由面の表面形態の実質的な差異が小さく抑制される。なお、表面粗さRZJISの差としては例えば2μm以下に抑制される。これにより、表裏の表面形態が実質的に同等な金属箔の製造が可能となり、例えば正極集電体の本体などに好適な金属箔であるアルミニウム箔の製造が可能となる。
 上述したように、陰極が、最表層に30nm~250nmの厚さの酸化層を有し、4μm~10μmの表面粗さRZJISを有する電析面を備えることにより、その電析面に電析した金属(金属膜)の剥離が容易でありながら、その剥離によって得られる金属箔の剥離面と自由面との表面粗さの差を小さくすることができる。
 電解法によって例えばドラム型の陰極(陰極ドラム1)やベルト型の陰極(陰極ベルト24)を用いて金属箔を製造する場合は、金属箔の幅寸法に対応する間隔でドラム状やベルト状の電析面の幅方向の両側を絶縁帯によって帯状に被覆し、電析面の両側を絶縁帯で挟まれた中央部の表面上に金属(金属膜)を電析させることが一般的である。しかし、凹凸の表面形態を有する電析面を用いると、絶縁帯を構成する絶縁材と電析面の隙間にも金属が電析する異常な電析が発生する虞がある。こうした状態の金属膜は、その異常な電析部分が剥離の際の抵抗となるため、金属膜のエッジ部に亀裂を発生させることや、その亀裂が過度であるときは金属膜が破断することがある。したがって、凹凸の表面形態を有する電析面を用いる本発明の金属箔の製造方法では、陰極の幅方向において、一様に表面粗さRZJISが4μm~10μmであってもよいが、実質的に金属箔の製品部分に対応する中央部の表面粗さRZJISを4μm~10μmとし、その中央部の両側の隣接部の表面粗さRZJISを2.5μm以下とした電析面を用いることが好ましい。その隣接部の外側に上述した絶縁帯を設けることにより、陰極の電析面から金属膜を剥離する際に、金属膜のエッジ部の亀裂や、その亀裂に起因する金属膜の破断などの不具合の発生がより一層低減される。
 金属膜のエッジ部を含む両端側を形成する隣接部の表面粗さRZJISが2.5μm以下である場合は、その表面形態の転写によって形成される金属箔の剥離面のエッジ部を含む両端側の表面粗さも実質的に同等になるため、金属箔のエッジ部側の表裏の表面形態は異なるものとなる。こうした金属箔のエッジ部側に限定される表面形態の差異が許容できずに隣接部に対応する金属箔のエッジ部側を除去する場合にも、表面形態が異なる隣接部と中央部とは容易に区別することができる。隣接部は、その表面粗さRZJISが2μm以下であってもよい。隣接部は、例えば表面粗さRZJISが2μm未満の平滑加工面の隣接部に対応する領域をマスキングし、その状態で粗化処理および酸化処理を行うなどの簡易な方法によって形成することができる。
 図4は、上述した好ましい電析面を有するドラム型の陰極(陰極ドラム)の構成例である。図4に示す構成例では、陰極ドラム1は、電析面に対応する円柱形状の外周2が幅方向に5つの領域に区分され、中央部2cと、その中央部2cの両側の隣接部2aと、その隣接部2aの外側の絶縁部2iとによって構成されている。中央部2cは、上述したように図3に示す形成プロセスによって形成され、表面粗さRZJISが4μm~10μmの凹凸の表面形態を有し、最表層に30nm~250nmの厚さの酸化層を有して成る、酸化処理面である。絶縁部2iは、金属箔の幅寸法を決定するために設けられ、陰極ドラム1を浸漬する電解液への耐性と、その電解液や一般的な電解条件では金属が容易に電析しない絶縁性を有する絶縁材を、外周2に貼り付ける方法などによって形成することができる。
 隣接部2aは、中央部2cと同様に形成され、中央部2cよりもやや平滑な表面粗さRZJISが2.5μm以下の表面形態を有し、最表層に中央部2cとほぼ同様な酸化層を有して成る、酸化処理面である。中央部2cよりもやや平滑な表面形態を有して成る酸化処理面(隣接部2a)は、例えば、粗化処理の途中で隣接部2aに対応する領域をマスキングして粗化の進行を抑制する方法や、粗化処理の後に隣接部2aに対応する領域を機械的または化学的に研磨する方法や、酸化処理の後に隣接部2aに対応する領域を機械的に研磨する方法などによって形成することができる。なお、隣接部2aを酸化処理の後に研磨してやや平滑な面に形成した場合、隣接部2aの酸化層の厚さが中央部2cよりもやや薄くなるが、これは許容できる程度と考えられる。
 このような構成を備える陰極ドラム1を用いて金属箔を製造すると、陰極ドラム1の中央部2cおよび隣接部2aの表面上に金属(金属膜)が健全に電析し、その金属膜はリード材を用いて容易かつ健全に剥離することができる。これは、陰極ドラム1の中央部2cおよび隣接部2aの最表層に30nm~250nmの厚さの酸化層を有するとともに、金属膜の中央部を形成する表面粗さRZJISが4μm~10μmの電析面(中央部2c)に隣接して、金属膜のエッジ部を形成する表面粗さRZJISが2.5μm以下の電析面(隣接部2a)を設けているからである。つまり、陰極ドラム1の外周2(電析面の表面)と絶縁部1iとの隙間に発生する上述した異常な電析が抑制されるからである。
 上述した隣接部2aを有する電析面を用いる場合は、隣接部2aそれぞれの幅の比率を中央部2cの幅の約0.1%~約10%程度に設定することが好ましい。上述したように、隣接部2aが中央部2cよりもやや平滑な面に形成されていると、金属箔のエッジ部側の表裏に表面形態の差異が発生する。こうした差異が許容できないなどの場合は、その隣接部2aに対応する金属箔のエッジ部側を除去することがある。こうした場合に、隣接部2aそれぞれの幅の比率が中央部2cの幅の約0.1%~約10%程度であると、金属箔のエッジ部側の除去による歩留低下を抑制することができる。
 また、隣接部2aそれぞれの幅の比率が中央部2cの幅の約0.1%以上であると、上述した凹凸の表面形態を有する中央部2cと絶縁部1iに起因する電解電流の集中を抑制しやすく、金属膜の剥離性を確保しやすい。また、隣接部2aそれぞれの幅の比率が中央部2cの幅の約10%以下であると、金属箔から除去するエッジ部側の幅が比較的小さくなり、金属箔の歩留低下を抑制しやすい。なお、金属箔のエッジ部側の除去は、陰極ドラム1の中央部2cの凹凸の表面形態が転写された部分のみとなるように行うことにより、表裏面が同程度に粗化された表面形態を有する金属箔を得ることができる。
 本発明を、好ましいと考える本発明例および比較例を挙げて、詳細に説明する。また、説明に際し、簡便のため図1~図4に示す記載を援用する。なお、本発明は以下の記載に限定する意図はない。
 本発明例および比較例では、電解法で形成した銅製のリード材8を外周2に備える陰極ドラム1を用いて、厚さが12μmで幅が600mmのアルミニウム箔(金属箔)を電解法により製造した。陰極ドラム1の外周2はチタン製とし、その胴長方向(幅方向)を5つの領域(中央部2c、2つの隣接部2a、2つの絶縁部2i)に区分した。リード材8は、同じ陰極ドラム1の外周2に対して電解法で形成した銅膜を途中まで剥離して形成した銅箔(電解銅箔)とした。したがって、電解法によりアルミニウム箔の製造を開始したとき、上記の銅膜の表面上にアルミニウムが電析し、そのアルミニウムが電析した銅膜が剥離されて銅箔(リード材8)となった後の電析面に対して新たにアルミニウムが電析し、その新たに電析して成長したアルミニウム膜が剥離されることになる。陽極部材3は、アルミニウム製とした。
 アルミニウムを電析させるための電解液は、モル比で、溶媒のジメチルスルホン(DMSO)を10とし、電解質の塩化アルミニウム(AlCl)を3.8とし、添加剤のトリメチルアミン塩酸塩(TMA-HCl)を0.05として配合した、非水系溶液を用いることにした。電解液は、DMSOを110℃で溶融させた中にAlClとTMA-HClを混合して溶融させ、十分に撹拌して均質的な溶液とした。また、電解液を貯留してアルミニウムの電析を行う電解浴槽4は、露点が-60℃以下の窒素ガスを導入し、電解液中への水分の混入を抑制した。
 電析面となる外周2を有する陰極ドラム1は、図3に示す形成プロセスによって作製した。具体的には、チタン製の素材を、外径が300mmで、胴長が700mmの円筒形状に形成し、それを用いて陰極ドラム1に対応する形状のドラム部材を作製した。続いて、そのドラム部材の外周を機械的研磨によって平滑化処理し、外周(平滑加工面)の表面粗さRZJISを2.1μm程度に形成した。次いで、ドラム部材の外周(平滑加工面)を、より好ましいと考えるブラスト処理により粗化処理した。具体的には多角形のアルミナ粒子を噴射する乾式ブラスト処理によって粗化処理した。粗化処理した外周(粗化処理面)の表面粗さRZJISは、アルミナ粒子の平均粒径を小さくした場合は4.5μm程度に形成され、大きくした場合は8.5μm程度に形成されるようにした。ここで、外周(粗化処理面)の隣接部2aに対応する領域を研磨紙で研磨し、表面粗さRZJISが粗化処理面よりも平滑で平滑加工面に近い2.3μm程度に形成した。
 ここで、製品となるアルミニウムは、銅膜が剥離されて銅箔(リード材8)となった後の外周2(電析面)に新たに電析することになる。そのため、新たに電析して成長したアルミニウム膜が健全な状態で剥離される電析面であることが必要である。例えば、銅膜を剥離した後の外周2(電析面)に銅が残存していると、その電析面に電析して成長した新たなアルミニウム膜の剥離に影響を及ぼす虞や、たとえ剥離ができたとしても健全なアルミニウム箔が得られない虞がある。なお、電析面に残存している銅は、酸化層の表面の凹部の内部に銅が電析し、銅膜の剥離時に銅膜から離断されて残存したものと考えられる。こうした観点から、上述したドラム部材の外周(粗化処理面)を酸化処理して得られる酸化処理面について、電解法により銅を電析させて銅膜を形成し、その銅膜を剥離するときの容易性や、さらに銅膜を剥離した後の酸化処理面への銅の残存の程度などを確かめておくことが必要である。そこで、5mmの厚さの純チタン製の平滑加工面を有する板材から80mmの長さで20mmの幅の試験片を切り出し、その試験片の所定の面積に対して上述した粗化処理(乾式ブラスト処理)を行った後に上述した各種の酸化処理を行い、それぞれの試験片の酸化処理面に一般的な電解法により銅を電析させて銅膜を形成し、その銅膜を試験片から剥離する試行を実施した。粗化処理した後の試験片の粗化処理面の表面粗さRZJISは、上述した陰極ドラム1の場合の粗化処理面と同様な4.5μm程度から8.5μm程度となるようにした。
 上記の試行において、剥離の良否の判定は、銅膜を試験片からリード材として十分に利用可能な品質で剥離することができた場合は「優」とし、銅膜を試験片から少なくともリード材として利用可能な程度の品質で剥離することができた場合は「良」とし、銅膜を試験片から実質的に剥離することができた場合は「可」とし、剥離した銅膜がリード材として利用可能な品質でなかった場合および銅膜が試験片から剥離できなかった場合は「不可」とした。
 上記の試行において、銅箔表裏の表面形態差の判定は、剥離できた銅箔については表裏面の表面形態の差が大きい場合は「大」とし、小さい場合は「小」とし、剥離できなかった銅箔については「評価不可」とした。
 上記の試行において、銅膜を剥離した後の試験片についての酸化処理面の良否の判定は、その酸化処理面に残存する銅に由来する着色が認められたことから、その着色の有無やその濃淡の程度に基づいて、銅の残存の有無、残存する銅の分布状態およびその量的程度などを勘案して行った。具体的には、銅膜を剥離した後の試験片の酸化処理面において、着色が全く認められない場合は「優」とし、散逸的な極めて薄い着色が全面もしくは局所に認められる場合は「良」とし、あるいは比較的濃い着色であっても散逸的に認められる場合は「可」とし、剥離時の破損や金属箔の表面欠陥の発生リスクが小さく、電析面に適する面とした。また、局所であっても比較的濃い着色が集中的に認められる場合、あるいは濃い着色が全面的に認められる場合は「不可」とし、剥離時の破損や金属箔の表面欠陥の発生リスクが大きく、電析面に適さない面と判断した。
 上述した試行を繰り返し行って得られた傾向をまとめて、表1に示す。なお、表1に記載の「-」は評価対象ではないことを意味する。
Figure JPOXMLDOC01-appb-T000001
 表1に記載の「ブラスト」は上述した乾式ブラスト処理を意味する。表1に記載の「熱酸化」は上述した大気雰囲気での炉内加熱で約500℃の温度で約60分程度の保持を行う熱酸化処理を意味する。表1に記載の「陽極酸化」は、上述した好ましい陽極酸化処理の条件から選択し、0.5%を超える程度の濃度のリン酸水溶液を20℃~30℃に保持して100Vのカットオフ電圧で0.5秒を超える程度の通電(印加電圧)を行う陽極酸化処理を意味する。表1に記載の「液流の付与」は、アズワン株式会社のホットスターラーREXIM(型番:RSH-1DN、回転数:1200rpm)を用いて渦撹拌による液流を付与する手段を意味する。表1に記載の「超音波の印加」は、アズワン株式会社の超音波洗浄器(型番:AUS-3D、出力:80W、周波数:23kHzまたは43kHz)を用いて所定の周波数を印加する手段を意味する。
(剥離の良否)
 表1に示す試行1~3を繰り返し行って得られた傾向に基づいて、粗化処理の有無による銅箔の剥離の可否の傾向と、粗化処理および熱酸化処理を行った場合の銅箔の剥離の良否の傾向を確認することができた。具体的には、試行1(粗化処理あり、酸化処理なし)の場合は、銅箔が実質的に剥離できない傾向が確認された。試行2(粗化処理なし、熱酸化処理あり)の場合は、銅箔がリード材として十分に利用可能な品質で剥離できる傾向が確認された。試行3(粗化処理あり、熱酸化処理あり)の場合は、銅箔が実質的に剥離できる傾向が確認された。これにより、粗化処理の後に熱酸化処理を行うことにより、銅箔の剥離が可能になることが分かった。また、試行2、3の比較により、粗化処理によって表面形態が凸凹になっていた分だけ銅箔の剥離抵抗が大きくなることが分かった。
 表1に示す試行4~15を繰り返し行って得られた傾向に基づいて、粗化処理および陽極酸化処理を行った場合の銅箔の剥離の良否の傾向と、さらに陽極酸化処理において陽極酸化処理液を動かして行った場合の銅箔の剥離の良否の傾向を確認することができた。具体的には、粗化処理および陽極酸化処理を行った試行4~15のいずれの場合においても、銅膜を試験片から少なくともリード材として利用可能な程度の品質で剥離できる傾向が確認された。特に、粗化処理および陽極酸化処理液を動かす手段を用いた陽極酸化処理を行った試行5~7、9~11および13~15の場合は、銅膜を試験片からリード材として十分に利用可能な品質で剥離できる傾向が確認された。これにより、粗化処理の後に陽極酸化処理を行うことにより、銅箔の剥離が可能になることが分かった。陽極酸化処理に際して、陽極酸化処理液を動かす液流を付与する手段や超音波を印加する手段を用いることにより、銅箔の剥離が容易になることが分かった。銅箔の剥離の容易化には、液流を付与する手段と超音波を印加する手段とを組み合わせることにより、陽極酸化処理液をより積極的に動かすことが好ましいと考えられる。
 粗化処理の後に行う酸化処理において、試行8~11と試行12~15の比較により、熱酸化処理と陽極酸化処理との組み合わせ酸化処理を行う場合、熱酸化処理と陽極酸化処理の処理順の違いが銅箔の剥離性に影響を及ぼさないことが分かった。粗化処理の後に行う酸化処理において、熱酸化処理、陽極酸化処理、あるいは熱酸化処理と陽極酸化処理との組み合わせ酸化処理のいずれによっても銅箔が剥離できることが分かった。試行3と試行4、8および12の比較により、銅箔の剥離の容易化には、熱酸化処理よりも陽極酸化処理が効果的であることが分かった。
(銅箔表裏の表面形態差)
 表1に示す試行1(粗化処理あり、酸化処理なし)の場合は、銅箔が実質的に剥離できない傾向が確認されたので、銅箔表裏の表面形態差の評価を行わなかった。試行2(粗化処理なし、熱酸化処理あり)の場合は、銅箔表裏の表面形態差が大きくなる傾向が確認され、これは粗化処理を行っていないためであるといえる。その他の試行3~15のいずれの場合においても銅箔表裏の表面形態差が小さくなる傾向が確認され、これは粗化処理を行っているためであるといえる。
(酸化処理面の良否)
 表1に示す熱酸化処理を行った試行2(粗化処理なし)および3(粗化処理あり)の場合は、銅膜を剥離した後の試験片の酸化処理面に着色が全く発生しない傾向が確認された。粗化処理の後に陽極酸化処理液を動かす手段を用いずに陽極酸化処理を行った試行4の場合は、銅膜を剥離した後の試験片の酸化処理面に散逸的に認められる比較的濃い着色が発生する傾向が確認された。試行3と試行4の比較により、陽極酸化処理による酸化処理面は、熱酸化処理による酸化処理面よりも着色が発生しやすいことが分かった。粗化処理の後に陽極酸化処理液を動かす手段を用いて陽極酸化処理を行った試行5~7の場合は、散逸的な極めて薄い着色が全面もしくは局所に認められる傾向が確認された。試行4と試行5~7の比較により、陽極酸化処理液を動かす手段を用いて陽極酸化処理を行った酸化処理面は、陽極酸化処理液を動かす手段を用いずに陽極酸化処理を行った酸化処理面よりも着色の抑制効果があることが分かった。この着色の抑制効果は、試行4と試行8~11の比較あるいは試行4と試行12~15の比較からも同様に分かる。なお、酸化処理を行っていない試行1は酸化処理面の良否の評価対象ではない。
 また、酸化処理面の最表層には、試行2、3の場合においては熱酸化処理による酸化層が確認され、試行4~11の場合においては陽極酸化処理による酸化層が確認された。熱酸化処理による酸化層は、大気に接して自然に形成される極めて緻密な酸化層(自然酸化層)よりも厚く、比較的緻密に形成されていた。陽極酸化処理による酸化層は、熱酸化処理による比較的緻密な酸化層に比べて、緻密さでは及ばないものの十分に厚く形成されていた。粗化処理した後に酸化処理を行った場合は、酸化処理面の最表層に形成された酸化層の厚さや緻密さの違いが、銅箔の剥離の良否(剥離の難易度合い)や酸化処理面の良否(着色の度合い)に影響を及ぼすと考えられる。
 上述した試行を繰り返し行って得られた傾向に基づいて、銅箔の剥離を可能にするとともに銅箔の表面形態の差を小さくするためには、粗化処理面の酸化処理が重要であることが分った。そのための酸化処理としては、熱酸化処理、陽極酸化処理、あるいは熱酸化処理と陽極酸化処理との組み合わせ酸化処理のうちのいずれかの酸化処理を適用することができることが分った。また、陽極酸化処理に際しては、液流を付与する手段や超音波を印加する手段などを用いて、粗化処理面に接する陽極酸化処理液を動かしながら行うことが好ましいことが分かった。
 次に、粗化処理した後の陰極ドラム1に対応するドラム部材の外周(粗化処理面)に対して酸化処理を行った。酸化処理としては、上述した試験片を用いた表1に示す各種の試行によって得られた傾向に基づいて、好ましいと考えられる液流を付与する手段を用いて陽極酸化処理液を動かしながら行う陽極酸化処理を選択した。液流を付与する手段は、超音波を印加する手段に比べて簡易かつ安価な装置構成にすることができ、陽極酸化処理液の陽極酸化処理槽内への注送および陽極酸化処理層内からの排出の液循環系を構成するものとした。陽極酸化処理は、濃度を0.5%としたリン酸水溶液が約20℃~約30℃で保温された浴槽中に陽極となるドラム部材の外周(粗化処理面)を完全に浸漬し、約100mA/cm程度の電流密度の定電流条件下(カットオフ電圧を約5V~約200Vの範囲で選択)で、上記の手段で液流を発生させながら約2秒程度の処理時間で行った。なお、陽極酸化処理を行う前に、前処理として、50℃の水酸化ナトリウム水溶液を用いた脱脂処理のみを行い、強酸を用いた酸洗は行わなかった。上述した前処理および陽極酸化処理により、陽極酸化処理で例えばカットオフ電圧を10Vとした場合において、平均的な厚さが約30nmの酸化層を粗化処理面の最表層に形成することができた。
 なお、形成された酸化層の厚さは、印加電圧の増大、処理時間の増長、またはその両方によって厚くなることを利用して制御し、その平均的な厚さはTEM(Transmission Electron Microscope)によって酸化層断面を観察し、その観察領域内で酸化層と認められる帯状のコントラスト像の幅を、任意に選択した数か所の位置で測定し、その測定値を平均して求めた。
 また、陽極酸化処理した陰極ドラム1に対応するドラム部材の外周(酸化処理面)は、上述したように胴長方向(幅方向)の中央の領域を中央部2cとし、その中央部2cに隣接する領域を隣接部2aとした。中央部2cの表面粗さRZJISは、粗化処理面と実質的に同等であり、細かくは4.5μm程度に、粗くは8.5μm程度に形成された。表面粗さRZJISは粗化処理面と同等であった隣接部2aは、さらに研磨によって2.5μm以下の表面粗さRZJISになるようにした。
 次に、陰極ドラム1に対応するドラム部材の外周(酸化処理面)の隣接部2aの外側に、絶縁テープを用いて絶縁部2iを形成した。絶縁部2iの胴長方向の間隔は、製造するアルミニウム箔の幅(600mm)に対応させた。これにより、陰極ドラム1の外周2、すなわち、中央部2cの幅が580mmで、その両側に隣接する隣接部2aの1つの幅が10mmで、全幅(絶縁部2iの胴長方向の間隔)が600mmのアルミニウムを電析させる電析面を形成することができる。なお、この場合、隣接部2aの幅は中央部2cの幅の約1.7%(=10mm/580mm×100)になる。
 上述した陰極ドラム1の電析面(外周2)の形成に際して、上述した平滑化処理、粗化処理、および酸化処理の各プロセスを行ったグループの中央部2cに対応する面の酸化層の平均的な厚さと、その表面粗さRZJISを、表2に示す。本発明例として表2に示す試行D1~D3の場合は、平滑化処理、粗化処理、および陽極酸化処理をこの順で行うことにより、最表層に約30nm~約250nmの範囲の平均的な厚さの酸化層を有するようにした。粗化処理と酸化処理のいずれか一方の処理を行っていないため比較例として表2に示す試行Bおよび試行C1~C3の場合は、試行Aを行ったグループから任意に選んだものを用いて所定の粗化処理もしくは酸化処理を行った。酸化層の厚さ(平均厚さ)が本発明の範囲から外れているため比較例として表2に示す試行D4、D5の場合は、試行C2を行ったグループから任意に選んだものを用いて所定の粗化処理および酸化処理を行った。
Figure JPOXMLDOC01-appb-T000002
 表2に示す試行A、B、C1~C3およびD1~D5によって作製したそれぞれの陰極ドラム1を用いた図1に示す金属箔の製造装置により、厚さが12μmで幅が600mmのアルミニウム箔の製造を試みた。最初に、アルミニウム箔の初期の剥離およびそれ以後の巻取りリール7への巻取りのために、陰極ドラム1の外周2にリード材8を形成した。リード材8は、陰極ドラム1を電解浴槽4内に設置する前に、その外周2に銅の電解法によって電析させた銅(銅膜)を連続的に剥離した先端部分と、陰極ドラム1の外周2に密着させた状態の後端部分を有するように形成した。その後に、リード材8を伴った陰極ドラム1を、十分に洗浄して乾燥させてから電解浴槽4内に設置した。なお、リード材8の後端部分を伴った陰極ドラム1を電解液5中に浸漬させる際には、電解液5中に浸漬させた陽極部材3との間隔がほぼ一定になるように対向させて配置した。また、リード材8の先端部分を、電解浴槽4の引出し口6から外部へ引出し、巻取りリール7にテープを用いて固定した。
 上述した段取り後、試行A、B、C1~C3およびD1~D5のいずれの場合においても、電解液5を約110℃に保温するとともに撹拌しながら、電流密度を100mA/cmに設定して通電を行なった。続いて、陰極ドラム1の外周2に密着したリード材8の表面の少なくとも一部にアルミニウムを電析させながら陰極ドラム1の回転および巻取りリール7の回転を開始し、電解液5中で電析して成長したアルミニウム膜9が巻取りリール7の引張力でリード材8と一緒に剥離されるようにした。こうした製箔プロセスにより、その後も通電を止めることなくアルミニウムの電析を連続的に継続することができれば、リード材8が全て陰極ドラム1から剥離された後はアルミニウム膜9そのものが電析面から剥離し、平均的な厚さが約12μmで幅が約600mmのアルミニウム箔を巻取りリール7に巻取ることができる。
 表3に、上述した製箔プロセスによりアルミニウム箔の連続的な作製を試みたときのアルミニウム膜の剥離性(剥離の可否、剥離可の場合の安定性など)と、得られたアルミニウム箔に発生しやすかった不具合などと、得られたアルミニウム箔の剥離面および自由面の平均的な表面粗さRZJISを示す。なお、表3に比較例として示す試行C1~C3の場合は、剥離の途中でアルミニウム膜に亀裂や破断がたびたび発生したため連続的に剥離することができなかったが、部分的に剥離することができたアルミニウム薄片を得ることができた。得られたアルミニウム箔やアルミニウム箔片の表面粗さは、剥離面では陰極ドラム1の外周2の中央部2cに対応する領域で無作為に測定し、自由面では剥離面の測定箇所の概ね裏側の領域で無作為に測定した。表面粗さの測定は、株式会社キーエンスの形状解析レーザ顕微鏡(型番:VK-X160、50倍レンズ)を用いて、平面視で100μm×100μmの大きさの5箇所の領域にレーザ光がほぼ垂直に照射される状態で行った。表面粗さは、それぞれの領域における平均値をその領域における表面粗さ値とした。
Figure JPOXMLDOC01-appb-T000003
 表3に示すそれぞれの試行において、試行C1~C3を除き、試行A、BおよびD1~D5のいずれの場合も、陰極ドラム1の電析面の表面上に電析させて成長させたアルミニウム膜の連続的な剥離は可能であった。また、粗化処理(ブラスト処理)した後に酸化処理(陽極酸化処理)を行って形成した酸化処理面を電析面に用いた試行D1~D5では、アルミニウム箔の自由面と剥離面との表面粗さRZJISの差が2μm以下であり、表面形態の差が小さくなることが確認された。しかし、粗化処理を行わなかった試行A、Bでは、アルミニウム箔の自由面と剥離面との表面粗さRZJISの差が2μmを超えており、表面形態の差が大きくなることが確認された。なお、試行D4では、剥離が不安定になる場合があり、剥離することができたアルミニウム箔のエッジ部に亀裂が発生しているものがあり、電析面の剥離性が不十分であった可能性がある。また、試行D5では、容易かつ安定に剥離することができたが、剥離することができたアルミニウム箔に電析不良と考えられるピンホールが発生しているものがあり、陽極酸化処理による厚い酸化層を有する電析面に形成された深い凹みによってアルミニウムの電析が阻害された可能性がある。
 図5~図8に、上述した陰極ドラムを用いて作製したアルミニウム箔の外観的組織の観察像の一例を示す。図5および図6は試行Aの場合を、図7および図8は試行D1の場合を示す。図5および図7にはアルミニム箔の剥離面を、図6および図8にはアルミニム箔の自由面を示す。それぞれの観察像は、走査型電子顕微鏡(SEM:Scanning Electron Microscope)によるものである。図5および図6に示す試行Aの場合のアルミニウム箔は、自由面にはランダムな細かい網目状の組織が観察され、剥離面には平滑化処理による筋模様の研磨痕が明確に観察された。一方、図7および図8に示す試行D1の場合のアルミニウム箔は、自由面と剥離面には同様なランダムな細かい網目状が観察され、表面粗さRZJISの差(1.6μm)分だけ剥離面がやや粗くなっていたものの、この程度の差異は実質的な影響を及ぼさないと考えられる。また、観察像の記載は略すが、試行D1よりも表面粗さRZJISの差が小さい試行D2(0.1μm未満)や試行D3(0.3μm)では、図7および図8に示す試行D1に比べて、アルミニウム箔の剥離面と自由面の表面形態の差異が十分に小さくなっていることが確認された。
 以上より、本発明の適用により、陰極の電析面に電析して成長した金属膜(アルミニウム膜など)の剥離が容易でありながら、その金属膜の剥離によって得られる金属箔(アルミニウム箔など)の剥離面と自由面には、外観的組織に筋模様などの明確な差異が認められず、剥離面と自由面の表面粗さRZJISが同等程度に粗く(4μm~10μm)なり、剥離面と自由面との表面粗さRZJISの差が小さくなる(2μm以下)ことが確認できた。
1.陰極ドラム
2.外周、2a.隣接部、2c.中央部、2i.絶縁帯
3.陽極部材
4.電解浴槽
5.電解液
6.引出し口
7.巻取りリール
8.リード材
9.金属膜
22.電解液
23.陽極部材
24.陰極ベルト
25.駆動ローラ
26.従動ローラ
27.金属箔
28.回転軸
100.装置
200.装置

Claims (10)

  1.  電解法により陰極の電析面の表面上に電析した金属膜を剥離して金属箔を形成する金属箔の製造方法であって、
     チタン製またはチタン合金製の平滑加工面が粗化処理された後の粗化処理面に、熱酸化処理、陽極酸化処理、あるいは熱酸化処理と陽極酸化処理との組み合わせ酸化処理のうちのいずれかの酸化処理が行われ、
     最表層に30nm~250nmの厚さの酸化層を有し、4μm~10μmの表面粗さRZJISを有して成る、前記電析面を用いる、金属箔の製造方法。
  2.  前記酸化処理は陽極酸化処理であり、該陽極酸化処理は前記粗化処理面に接する陽極酸化処理液を動かしながら行う、請求項1に記載の金属箔の製造方法。
  3.  前記陽極酸化処理は、液流を付与する手段、超音波を印加する手段、あるいは液流を付与する手段と超音波を印加する手段とが組み合わされた手段のうちのいずれかの手段により、前記粗化処理面に接する陽極酸化処理液を動かしながら行う、請求項2に記載の金属箔の製造方法。
  4.  前記酸化処理の前処理として、アルカリ性溶液中へ浸漬する処理、強酸性溶液中へ浸漬する処理、あるいはアルカリ溶液中へ浸漬する処理と強酸性溶液中へ浸漬する処理とが組み合わされた処理のうちのいずれかの処理を行う、請求項1乃至3のいずれか1項に記載の金属箔の製造方法。
  5.  前記粗化処理は、ブラスト処理である、請求項1乃至4のいずれか1項に記載の金属箔の製造方法。
  6.  前記陰極の幅方向において、中央部が4μm~10μmの表面粗さRZJISを有し、前記中央部の両側の隣接部が2.5μm以下の表面粗さRZJISを有して成る、前記電析面を用いる、請求項1乃至5のいずれか1項に記載の金属箔の製造方法。
  7.  前記中央部の幅に対する前記隣接部それぞれの幅の比率が0.1%~10%で成る、前記電析面を用いる、請求項6に記載の金属箔の製造方法。
  8.  電解法により陰極の電析面の表面上に電析した金属膜を剥離して金属箔を形成するために用いられるチタン製またはチタン合金製の陰極であって、
     前記電析面は、最表層に30nm~250nmの厚さの酸化層を有し、4μm~10μmの表面粗さRZJISを有する、金属箔製造用陰極。
  9.  前記陰極の幅方向において、前記電析面は、4μm~10μmの表面粗さRZJISを有する中央部と、前記中央部の両側に隣接し、2.5μm以下の表面粗さRZJISを有する隣接部と、を備える、請求項8に記載の金属箔製造用陰極。
  10.  前記中央部の幅に対する前記隣接部それぞれの幅の比率が0.1%~10%である、請求項9に記載の金属箔製造用陰極。

     
PCT/JP2017/039050 2017-01-25 2017-10-30 金属箔の製造方法および金属箔製造用陰極 WO2018138989A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/328,509 US10900138B2 (en) 2017-01-25 2017-10-30 Metallic foil manufacturing method and cathode for manufacturing metallic foil
JP2017564511A JP6355006B1 (ja) 2017-01-25 2017-10-30 金属箔の製造方法および金属箔製造用陰極
EP17894555.6A EP3575445B1 (en) 2017-01-25 2017-10-30 Metallic foil manufacturing method and cathode for manufacturing metallic foil
CN201780057856.4A CN109715863B (zh) 2017-01-25 2017-10-30 金属箔的制造方法以及金属箔制造用阴极
KR1020197007994A KR102048806B1 (ko) 2017-01-25 2017-10-30 금속박의 제조 방법 및 금속박 제조용 음극

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-010982 2017-01-25
JP2017010982 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018138989A1 true WO2018138989A1 (ja) 2018-08-02

Family

ID=62979191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039050 WO2018138989A1 (ja) 2017-01-25 2017-10-30 金属箔の製造方法および金属箔製造用陰極

Country Status (5)

Country Link
US (1) US10900138B2 (ja)
EP (1) EP3575445B1 (ja)
KR (1) KR102048806B1 (ja)
CN (1) CN109715863B (ja)
WO (1) WO2018138989A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134398A (ja) * 2020-02-27 2021-09-13 東邦チタニウム株式会社 剥離性のモニタリング方法、および金属チタン箔の製造方法
JP2021183344A (ja) * 2020-05-21 2021-12-02 株式会社高桑製作所 へら絞りによるチタン製金属容器を製造する方法、ならびに、へら絞りによるチタン製金属容器を製造する方法で得られたチタン製金属容器
JP2021183707A (ja) * 2020-05-21 2021-12-02 株式会社高桑製作所 チタン製金属部材の表面処理方法、ならびに、チタン製金属部材の表面処理方法で得られたチタン製金属部材
TWI769850B (zh) * 2021-06-08 2022-07-01 遠東科技大學 根據氣泡判斷含鋁氧化物陶瓷披覆導線缺陷之方法
JP7601467B1 (ja) 2024-02-07 2024-12-17 チームラボ株式会社 着色された金属製品の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125596B (zh) * 2021-03-24 2024-06-14 中国科学院苏州纳米技术与纳米仿生研究所 表面处理方法及应用
CN116321701A (zh) * 2023-03-30 2023-06-23 广州方邦电子股份有限公司 金属箔、线路板、覆铜层叠板、半导体、负极材料和电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228996A (ja) * 1993-12-24 1995-08-29 Furukawa Electric Co Ltd:The 金属箔の製造方法
JPH08236120A (ja) * 1995-03-01 1996-09-13 Furukawa Electric Co Ltd:The 多孔質電解金属箔の製造方法、その電解金属箔を用いた二次電池用電極
WO2000015875A1 (en) * 1998-09-14 2000-03-23 Mitsui Mining & Smelting Co., Ltd. Porous copper foil, use thereof and method for preparation thereof
JP2007154237A (ja) * 2005-12-02 2007-06-21 Permelec Electrode Ltd 電解用電極及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881818B2 (ja) 1989-06-13 1999-04-12 ミノルタ株式会社 継ぎ目なし電鋳スリーブの製法
JP3124847B2 (ja) * 1992-11-06 2001-01-15 ペルメレック電極株式会社 金属箔の電解による製造方法
JP2659910B2 (ja) 1993-06-02 1997-09-30 古河電気工業株式会社 カソード体表面への陽極酸化皮膜形成装置
TW237487B (en) 1993-06-02 1995-01-01 Furukawa Electric Co Ltd A metal foil manufacturing method and an anodized film forming apparatus used therefor
WO1998009003A1 (en) * 1995-03-01 1998-03-05 Circuit Foil Japan Co., Ltd. Process for preparing porous electrolytic metal foil
JP3422884B2 (ja) 1995-11-01 2003-06-30 ペルメレック電極株式会社 電解用電極
JP4465084B2 (ja) 2000-05-31 2010-05-19 日本電解株式会社 銅箔の製造方法及び製造装置
JP4441642B2 (ja) 2000-12-27 2010-03-31 三井金属鉱業株式会社 電解銅箔製造用のチタン製カソード電極、そのチタン製カソード電極を用いた回転陰極ドラム、チタン製カソード電極に用いるチタン材の製造方法及びチタン製カソード電極用チタン材の矯正加工方法
JP4330979B2 (ja) 2003-11-13 2009-09-16 福田金属箔粉工業株式会社 表面処理電解銅箔
JP3910623B1 (ja) 2005-03-31 2007-04-25 三井金属鉱業株式会社 電解銅箔の製造方法及びその製造方法で得られた電解銅箔、その電解銅箔を用いて得られた表面処理電解銅箔、その表面処理電解銅箔を用いた銅張積層板及びプリント配線板
EP1876266B1 (en) 2005-03-31 2020-06-03 Mitsui Mining & Smelting Co., Ltd. Electrodeposited copper foil and process for producing electrodeposited copper foil
JP5466664B2 (ja) 2011-04-08 2014-04-09 三井金属鉱業株式会社 多孔質金属箔およびその製造方法
DE102012206800B3 (de) * 2012-04-25 2013-09-05 Atotech Deutschland Gmbh Verfahren und Vorrichtung zum elektrolytischen Abscheiden eines Abscheidemetalls auf einem Werkstück
JP6260860B2 (ja) 2013-12-27 2018-01-17 日立金属株式会社 電解アルミニウム箔、それを用いた電池用電極、及び蓄電デバイス、並びに電解アルミニウム箔の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228996A (ja) * 1993-12-24 1995-08-29 Furukawa Electric Co Ltd:The 金属箔の製造方法
JPH08236120A (ja) * 1995-03-01 1996-09-13 Furukawa Electric Co Ltd:The 多孔質電解金属箔の製造方法、その電解金属箔を用いた二次電池用電極
WO2000015875A1 (en) * 1998-09-14 2000-03-23 Mitsui Mining & Smelting Co., Ltd. Porous copper foil, use thereof and method for preparation thereof
JP2007154237A (ja) * 2005-12-02 2007-06-21 Permelec Electrode Ltd 電解用電極及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3575445A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134398A (ja) * 2020-02-27 2021-09-13 東邦チタニウム株式会社 剥離性のモニタリング方法、および金属チタン箔の製造方法
JP7388948B2 (ja) 2020-02-27 2023-11-29 東邦チタニウム株式会社 剥離性のモニタリング方法、および金属チタン箔の製造方法
JP2021183344A (ja) * 2020-05-21 2021-12-02 株式会社高桑製作所 へら絞りによるチタン製金属容器を製造する方法、ならびに、へら絞りによるチタン製金属容器を製造する方法で得られたチタン製金属容器
JP2021183707A (ja) * 2020-05-21 2021-12-02 株式会社高桑製作所 チタン製金属部材の表面処理方法、ならびに、チタン製金属部材の表面処理方法で得られたチタン製金属部材
JP7078240B2 (ja) 2020-05-21 2022-05-31 株式会社高桑製作所 へら絞りによるチタン製金属容器を製造する方法、ならびに、へら絞りによるチタン製金属容器を製造する方法で得られたチタン製金属容器
TWI769850B (zh) * 2021-06-08 2022-07-01 遠東科技大學 根據氣泡判斷含鋁氧化物陶瓷披覆導線缺陷之方法
JP7601467B1 (ja) 2024-02-07 2024-12-17 チームラボ株式会社 着色された金属製品の製造方法
JP2025121479A (ja) * 2024-02-07 2025-08-20 チームラボ株式会社 着色された金属製品の製造方法

Also Published As

Publication number Publication date
KR102048806B1 (ko) 2019-11-26
EP3575445B1 (en) 2022-10-19
CN109715863B (zh) 2020-02-11
US20200370190A1 (en) 2020-11-26
EP3575445A1 (en) 2019-12-04
US10900138B2 (en) 2021-01-26
EP3575445A4 (en) 2020-12-09
CN109715863A (zh) 2019-05-03
KR20190033649A (ko) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2018138989A1 (ja) 金属箔の製造方法および金属箔製造用陰極
JP6355006B1 (ja) 金属箔の製造方法および金属箔製造用陰極
TWI539033B (zh) Electrolytic copper foil and its preparation method
CN1184359C (zh) 多孔铜箔及其用途和制造方法
JP2018111882A (ja) しわが実質的にない電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法
CN108127540A (zh) 一种电解铜箔生产用阴极辊的抛光工艺
US10590555B2 (en) Method for producing electrolytic aluminum foil
JP5770575B2 (ja) 酸化皮膜の形成方法
US20140360882A1 (en) High speed horizontal electroforming apparatus for manufacturing metal foil and method for manufacturing metal foil
CN118685827A (zh) 一种一体式载体铜箔生产设备及制备方法
JP6999042B2 (ja) 後続工程においてハンドリング特性に優れる電解銅箔及びその製造方法
KR20230066034A (ko) 전해 동박, 리튬 이온 2차 전지용 부극 및, 리튬 이온 2차 전지
JP4333947B2 (ja) 粗面化された表面を備えたアルミニウム合金シート
RU2424381C1 (ru) Способ получения износостойкого покрытия на алюминии и его сплавах
KR20220134545A (ko) 금속박, 그 제조 방법, 및 그것에 사용하는 전착 드럼의 가공 방법
JP6936955B2 (ja) 金属箔製造用陰極ドラムおよび金属箔の製造方法
JP6709498B2 (ja) アルミニウム箔の製造方法およびアルミニウム箔製造用陰極ドラム
JP5014782B2 (ja) 表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置
JP5073287B2 (ja) 表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置
CN117702216A (zh) 一种贯通、超长纳米孔道的多孔氧化铝模板及其制备方法和应用
CN105492664A (zh) 铝材的阳极氧化处理方法
JP3655039B2 (ja) アルミニウム帯状物の電解表面処理装置
JP5014781B2 (ja) 表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置
CN117127229A (zh) 一种镁锂合金超疏水复合涂层及其制备方法
CN116334718A (zh) 一种掺杂氟化石墨烯的微弧氧化复合涂层及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017564511

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007994

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017894555

Country of ref document: EP

Effective date: 20190826