[go: up one dir, main page]

WO2018139202A1 - 車両用灯具 - Google Patents

車両用灯具 Download PDF

Info

Publication number
WO2018139202A1
WO2018139202A1 PCT/JP2018/000415 JP2018000415W WO2018139202A1 WO 2018139202 A1 WO2018139202 A1 WO 2018139202A1 JP 2018000415 W JP2018000415 W JP 2018000415W WO 2018139202 A1 WO2018139202 A1 WO 2018139202A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
lighting
switch
discharge path
light
Prior art date
Application number
PCT/JP2018/000415
Other languages
English (en)
French (fr)
Inventor
原田 知明
志藤 雅也
徹 伊東
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2018564464A priority Critical patent/JP6982580B2/ja
Priority to CN201880007615.3A priority patent/CN110234537B/zh
Priority to US16/479,018 priority patent/US10883693B2/en
Priority to DE112018000522.4T priority patent/DE112018000522T5/de
Publication of WO2018139202A1 publication Critical patent/WO2018139202A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • F21S43/145Surface emitters, e.g. organic light emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/19Attachment of light sources or lamp holders
    • F21S43/195Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • organic EL element such as an organic EL (Electroluminescence) panel
  • OLED Organic Light Emitting Diode
  • the luminous flux maintenance factor decreases as the organic EL element is kept on for a long time. If a predetermined light distribution can not be realized as the luminous flux maintenance rate decreases, maintenance such as repair of the organic EL element and replacement with a new organic EL element becomes necessary. Of course, frequent occurrence of such work is not desirable.
  • the present invention has been made in view of such a situation, and an object thereof is to suppress a decrease in luminous flux maintenance rate for a vehicle lamp using an organic EL element.
  • an organic EL type vehicle lamp capable of suppressing a decrease in luminous flux maintenance rate.
  • the equivalent circuit of the organic EL element is considered to include a capacitor, and charge is accumulated between the electrodes during lighting. It is inferred that the electrostatic attraction force acting between both electrodes due to the accumulated charge is involved in the decrease of the luminous flux maintenance factor of the organic EL element. The adverse effect of such electrostatic attraction is reduced or prevented by discharging the accumulated charge from the organic EL element. Thereby, the decrease in the luminous flux maintenance factor of the organic EL element is suppressed or minimized. In addition, the discharge of the accumulated charge is performed along with the momentary extinction of the organic EL element.
  • the discharge path may include a switch and a discharge resistor connected in parallel to the organic EL element.
  • the lighting control unit may form a discharge path by turning on the switch during momentary light-off.
  • the lighting circuit may include a first switch that switches between lighting and momentary turning off of the organic EL element.
  • the discharge path may include a second switch and a discharge resistor connected in parallel to the organic EL element.
  • the lighting control unit may form a discharge path by turning on the second switch during momentary light-off.
  • the repetition interval of the momentary light off may be set within 15 minutes.
  • the discharge path may include a discharge resistor connected in parallel to the organic EL element, and the discharge path may be formed also during lighting of the organic EL element.
  • the vehicular lamp may further include a transparent substrate having a three-dimensional curved surface, and a sealing member having a three-dimensional curved shape that matches the three-dimensional curved shape of the transparent substrate.
  • the organic EL element may be formed on the surface of the three-dimensional curved surface of the transparent substrate and may be covered by a sealing member.
  • the fall of a light beam maintenance factor can be suppressed about the vehicle lamp using an organic EL element.
  • FIG. 1 is a graph showing the results of measurement of the luminous flux maintenance factor of the organic EL element.
  • the vertical axis indicates the luminous flux maintenance factor
  • the horizontal axis indicates the lighting time (on time at blink) of the organic EL element in logarithm.
  • Symbols ⁇ and ⁇ in FIG. 1 represent measured values.
  • the symbol ⁇ is the result of the blink drive test of the organic EL element, and indicates the luminous flux maintenance rate when the cumulative lighting time reaches 1000 hours. This blinking is a repetition of lighting time (2 minutes, 5 minutes, 10 minutes, 15 minutes, 1 hour, 5 hours, 10 hours) shown on the horizontal axis and turning off of 1 minute.
  • the symbol ⁇ does not blink but lights the organic EL element continuously for 1000 hours and indicates the luminous flux maintenance rate when it is finished.
  • the luminous flux maintenance factor of the organic EL element decreases as the lighting time becomes longer. For example, in the case where the lighting time blinks for 15 minutes, the luminous flux maintenance rate is about 78% due to the cumulative 1000 hours of lighting. In the case where the lighting time is blinking for 10 hours, the luminous flux maintenance rate is lowered to about 74% by the lighting for 1000 hours in total. The luminous flux maintenance rate has dropped to about 72% by continuous lighting for 1000 hours.
  • the luminous flux maintenance rate is higher in the organic EL element which is blinked so as to be lit for the same time in cumulative as compared with the organic EL element which is continuously lit for a certain lighting time. Further, the decrease in the luminous flux maintenance rate is suppressed as the lighting time of the flickering is shorter. If the lighting time of the blink is shorter than 15 minutes, the luminous flux maintenance factor further increases. For example, when the lighting time blinks for 2 minutes, the luminous flux maintenance rate is improved to about 84%.
  • the decrease in the luminous flux maintenance rate is considered to be caused by the charge accumulated in the organic EL element.
  • a charge is accumulated between the electrodes of the organic EL element during lighting. It is inferred that the electrostatic attraction force acting between both electrodes due to the accumulated charge is involved in the decrease of the luminous flux maintenance factor of the organic EL element.
  • the organic EL element is driven to blink, if the turn-off time is a certain length, a natural discharge of the accumulated charge occurs during that time. It can be understood that the reduction of the luminous flux maintenance factor due to the blinking is obtained as described above.
  • the decrease in the luminous flux maintenance rate should be suppressed or prevented.
  • the stored charge can be discharged in a very short turn-off time which can be said to be instantaneous. It is possible to suppress a decrease in the luminous flux maintenance factor of the organic EL element while making it appear to the human eye that the organic EL element continues to light.
  • FIG. 2 is a vertical cross-sectional view showing a schematic structure of the vehicular lamp 100 according to the embodiment.
  • the vehicular lamp 100 according to the present embodiment is, for example, a tail lamp disposed at the rear of the vehicle.
  • the vehicular lamp 100 is fixed to the rear panel 1 of the vehicle.
  • the rear panel 1 has a recessed portion 2 recessed toward the vehicle front side, and the vehicular lamp 100 is accommodated in the recessed portion 2.
  • the vehicular lamp 100 is fixed to the rear panel 1 in a state of being accommodated in the recess 2.
  • the vehicular lamp 100 includes a lamp body 102 and a translucent cover 104.
  • the lamp body 102 is a housing having an opening on the vehicle rear side (the lamp front side).
  • the translucent cover 104 is attached to the lamp body 102 so as to cover the opening of the lamp body 102.
  • the translucent cover 104 is formed of a translucent resin, glass, or the like, and functions as an inner cover (inner lens).
  • an outer cover (outer lens) 106 that constitutes an outer casing of the vehicle lamp 100 is provided on the lamp front side of the light transmitting cover 104.
  • the outer cover 106 closes the opening of the recess 2.
  • a lamp chamber 103 is formed by the lamp body 102 and the light transmitting cover 104.
  • the light source 110 and the lighting circuit 200 are accommodated.
  • the light source 110 is mounted on the bracket 108.
  • the bracket 108 is fixed to the lamp body 102.
  • the lighting circuit 200 applies a voltage to the light source 110.
  • the lighting circuit 200 may be provided outside the lamp chamber 103.
  • FIG. 3 is a cross-sectional view showing a schematic structure of the light source 110.
  • the light source 110 includes a first substrate 112, a second substrate 114, and a sealing material 116.
  • the sealing material 116 is interposed between the substrates at peripheral portions of the first substrate 112 and the second substrate 114.
  • the first substrate 112, the second substrate 114, and the sealing material 116 are made of conventionally known materials.
  • the first substrate 112 and the second substrate 114 are a glass substrate or a light-transmitting resin substrate.
  • the sealing material 116 is, for example, an adhesive that fixes the first substrate 112 and the second substrate 114.
  • An internal space 118 is formed by the first substrate 112 and the second substrate 114 and the sealing material 116.
  • the organic EL element 120 is accommodated in the internal space 118.
  • the organic EL element 120 is a conventionally known general organic EL element, and has a light emitting surface 122.
  • the light L1 emitted from the light emitting surface 122 passes through the first substrate 112 and is irradiated to the front of the lamp.
  • the structure of the light source 110 is not particularly limited, and the organic EL element 120 is mounted on the main surface of the substrate, and the upper surface and the side surface of the organic EL element 120 are covered with a sealing material. It is also good.
  • the organic EL element 120 can perform uniform surface light emission.
  • the organic EL element 120 has relatively high flexibility, and can have a curved surface shape (so-called 2.5 dimensional curved surface shape) or the like.
  • the whole of the organic EL element 120 is nearly transparent. For this reason, by using the organic EL element 120 as the light source 110, the designability of the vehicular lamp 100 can be enhanced. Further, since the organic EL element 120 is thin and light, the depth dimension of the vehicular lamp 100 can be reduced, and the lightweight of the vehicular lamp 100 can also be achieved. Furthermore, the organic EL element 120 has lower directivity of light than an LED or the like. For this reason, the visibility of the vehicular lamp 100 can be improved. In addition, it is possible to realize the vehicular lamp 100 that is less likely to give glare to drivers and the like of other vehicles.
  • FIG. 4 is a cross-sectional view showing a schematic structure of the organic EL element 120.
  • the organic EL element 120 includes a first electrode 124, an organic layer 126, a second electrode 128, and an inorganic sealing layer 130.
  • the first electrode 124 is an anode
  • the second electrode 128 is a cathode.
  • the first electrode 124 is a transparent electrode made of ITO or the like
  • the second electrode 128 is a metal electrode, for example, an aluminum electrode obtained by vapor deposition of aluminum on the organic layer 126.
  • the organic layer 126 is a light emitting layer disposed between the first electrode 124 and the second electrode 128.
  • the inorganic sealing layer 130 is made of silicon nitride (SiN x ), silicon oxide (SiO x ), aluminum oxide (AlO x ) or the like, and functions as a barrier layer against moisture, oxygen or the like.
  • the inorganic sealing layer 130 prevents moisture or oxygen entering the interior space 118 from the exterior space from contacting the second electrode 128 or the like.
  • the thickness of the organic layer 126 is, for example, about 500 nm, and the total thickness of the first electrode 124, the organic layer 126, and the second electrode 128 is, for example, about 1 ⁇ m.
  • the light emitting surface 122 described above corresponds to the surface of the first electrode 124.
  • FIG. 5 is a block diagram of the vehicular lamp 100 according to the embodiment.
  • the vehicular lamp 100 includes a light source 110, a lighting circuit 200, and a lighting control unit 202.
  • the light source 110 includes the organic EL element 120.
  • the lighting circuit 200 is also referred to as an LDM (LED Driving Module).
  • the lighting control unit 202 may be a lamp ECU (Electronic Control Unit).
  • a power supply 204 such as a battery and a vehicle ECU 206 are provided in association with the vehicular lamp 100.
  • the vehicle ECU 206 is connected to the lighting control unit 202 via a control line such as a CAN (Controller Area Network) bus, and controls the vehicle lamp 100 in an integrated manner.
  • a control signal such as a lighting command S1 instructing lighting on / off of the organic EL element 120 is transmitted from the vehicle ECU 206 to the lighting control unit 202.
  • the lighting circuit 200 is configured to switch on and off the organic EL element 120.
  • the lighting circuit 200 includes a first switch 208 and a discharge path 210.
  • the first switch 208 is disposed on a feed path from the power source 204 to the organic EL element 120.
  • the first switch 208 When the first switch 208 is on, power is supplied from the power supply 204 to the organic EL element 120, and the organic EL element 120 is lit. At this time, an OLED current Ia flows from the power supply 204 to the organic EL element 120.
  • the first switch 208 is off, power feeding is stopped, and the organic EL element 120 is turned off.
  • a light switch 209 is provided in series with the first switch 208 on a power feeding path from the power source 204 to the organic EL element 120. Switching between lighting and extinguishing of the organic EL element 120 may be controlled not only by the control signal from the vehicle ECU 206 but also by manual operation of the light switch 209 by the driver.
  • the discharge path 210 is formed at least during momentary extinction to discharge the accumulated charge from the organic EL element 120.
  • the discharge path 210 can also be called a short circuit.
  • the discharge path 210 includes a second switch 212 and a discharge resistor 214 connected in parallel to the organic EL element 120.
  • the second switch 212 and the discharge resistor 214 are connected in series.
  • the discharge resistor 214 is connected to the organic EL element 120, and the accumulated charge is discharged from the organic EL element 120.
  • the short circuit current Ib flows from the organic EL element 120 to the discharge resistor 214.
  • the discharge resistor 214 is disconnected from the organic EL element 120. Discharging of the accumulated charge by the discharge resistor 214 is possible by turning on and off the second switch 212 regardless of whether the first switch 208 is on and off.
  • the lighting control unit 202 controls the lighting circuit 200 so that the momentary light-off is repeated in a state in which the organic EL element 120 is to be lighted.
  • the lighting command S1 given from the vehicle ECU 206 to the lighting control unit 202 instructs lighting of the organic EL element 120
  • this corresponds to "a state in which the organic EL element 120 should be lit”.
  • the lighting command S1 instructs the extinguishing of the organic EL element 120
  • the "state in which the organic EL element 120 should be lit" is not in effect.
  • the “instantly turning off” of the organic EL element 120 is realized by momentarily turning off the first switch 208. Further, the lighting control unit 202 forms the discharge path 210 by turning on the second switch 212 while the organic EL element 120 is momentarily turned off. The lighting control unit 202 controls the lighting circuit 200 to synchronize the momentary turning off of the first switch 208 and the momentary turning on of the second switch 212. Thus, the stored charge of the organic EL element 120 is consumed by the discharge resistor 214 while the organic EL element 120 is momentarily turned off.
  • the instantaneous light-off length of the organic EL element 120 may be set within 10 milliseconds. In this way, the turning off of the organic EL element 120 is not detected by the human eye.
  • the length of momentary light off may be set within 1 millisecond.
  • the momentary light-off length may be set to 10 microseconds or more.
  • the repetition interval of the momentary light off that is, the lighting time of each blink may be set within 15 minutes. In this way, it is possible to suppress the decrease in the luminous flux maintenance factor of the organic EL element 120 as compared to the case of continuous lighting. According to the measurement results shown in FIG. 1, the luminous flux maintenance factor can be improved from about 72% to about 78% after lighting for a total of 1000 hours.
  • the repetition interval of the momentary light off may be set within 10 minutes, 5 minutes, or 2 minutes. In this way, the luminous flux maintenance factor can be further improved.
  • the repetition interval of the momentary light-off may be set to, for example, one minute or more or one second or more.
  • the lighting control unit 202 includes a timer 216.
  • the timer 216 can measure elapsed time from any time. Further, the timer 216 generates the first switch control signal S2 and the second switch control signal S3 in response to the lighting command S1.
  • the timer 216 transmits a first switch control signal S 2 to the first switch 208 and transmits a second switch control signal S 3 to the second switch 212.
  • the first switch control signal S2 is a signal for instructing on / off of the first switch 208
  • the second switch control signal S3 is a signal for instructing on / off of the second switch 212.
  • the first switch 208 is switched on / off in accordance with a first switch control signal S2, and the second switch 212 is switched on / off in accordance with a second switch control signal S3.
  • FIG. 6 is an operation waveform diagram of the vehicular lamp 100 according to the embodiment.
  • FIG. 6 shows the lighting command S1, the first switch control signal S2, the second switch control signal S3, the OLED current Ia, and the short circuit current Ib in order from the top.
  • the lighting command S1 instructs turning off the organic EL element 120 until time t0.
  • the first switch control signal S2 instructs the first switch 208 to turn off
  • the second switch control signal S3 instructs the second switch 212 to turn on.
  • the organic EL element 120 is turned off.
  • the discharge resistor 214 is connected to the organic EL element 120, and a discharge path 210 is formed.
  • the lighting command S1 shifts from off to on.
  • the timer 216 changes the first switch control signal S2 to on and changes the second switch control signal S3 to off (first on / off state).
  • the first switch 208 is switched on, the OLED current Ia flows through the organic EL element 120, and the organic EL element 120 is lit.
  • the second switch 212 is switched off, and the discharge resistor 214 is disconnected from the organic EL element 120.
  • the timer 216 changes the first switch control signal S2 to off and changes the second switch control signal S3 to on (second on / off state).
  • the first switch 208 is switched off, and the organic EL element 120 is turned off.
  • the second switch 212 is switched on, and the organic EL element 120 is connected to the discharge resistor 214.
  • the charge accumulated during lighting flows from the organic EL element 120 to the discharge path 210 as the short circuit current Ib. Thus, the accumulated charge can be removed from the organic EL element 120.
  • the timer 216 continues the second on / off state until the second predetermined time T2 elapses.
  • the second predetermined time T2 is a very short time which is not sensed by the human eye, for example, a time preset within 10 milliseconds. Here, for example, 10 milliseconds.
  • the timer 216 returns from the second on / off state to the first on / off state. While the lighting command S1 instructs the lighting of the organic EL element 120, the first on / off state and the second on / off state are periodically repeated in the same manner.
  • the OLED current Ia periodically changes similarly to the first switch control signal S2.
  • the short circuit current Ib changes periodically in the same manner as the second switch control signal S3.
  • FIG. 7 is a graph illustrating the resistance value of the discharge path 210 according to the embodiment.
  • the ordinate represents the resistance value in logarithm
  • the abscissa represents the area of the light emitting surface 122 of the organic EL element 120.
  • This graph is a calculation result by the present inventors, and gives an indication of the resistance value of the discharge resistance 214 which is appropriate for sufficiently attenuating the accumulated charge of the organic EL element 120 by the instantaneous light-off of 10 milliseconds or less.
  • the organic EL element 120 is considered to be a capacitor that has accumulated charge.
  • a CR circuit is formed by the discharge path 210 and the organic EL element 120. Therefore, the accumulated charge Q of the organic EL element 120 decays exponentially as expressed by the following equation.
  • Q Q 0 exp (-t / RC)
  • Q 0 is an initial charge (that is, the charge stored immediately before the second switch 212 is turned on)
  • R is a resistance value of the discharge resistor 214
  • C is a capacitance of the organic EL element 120.
  • the value R can be calculated from the above equation.
  • the resistance value R of the discharge resistor 214 is approximately 10 4 ⁇ . According to FIG. 7, even if the area of the organic EL element 120 is further expanded, it is estimated that the resistance value R does not change significantly.
  • the resistance value R may be larger than 10 4 ⁇ or smaller than 10 6 ⁇ .
  • the resistance value R may be larger than 10 ⁇ or smaller than 10 3 ⁇ .
  • the resistance R may be greater than 10 ohms or less than 10 6 ohms.
  • the stored charge is discharged from the organic EL element 120 while the lighting of the organic EL element 120 appears to the human eye as being continuous. Can. Therefore, it is possible to suppress the decrease in the luminous flux maintenance rate without giving the user such as a driver or a pedestrian a sense of discomfort such as flickering of the illumination light.
  • FIG. 8 is a block diagram of a vehicular lamp 100 according to a modification.
  • the discharge path 210 includes a discharge resistor 214 connected in parallel to the organic EL element 120.
  • the second switch 212 may not be provided in the discharge path 210. That is, the discharge resistor 214 is always connected to the organic EL element 120.
  • the discharge path 210 may be formed not only during momentary extinction of the organic EL element 120 but also during lighting of the organic EL element 120. Also in this case, it is possible to suppress the decrease in the luminous flux maintenance rate without giving a sense of discomfort to the user, as in the embodiment described above.
  • the configuration of the blinking control of the organic EL element according to the embodiment can be applied to other vehicle lamps including the organic EL element or various organic EL devices. Take an example of such a device.
  • FIG. 9 is a cross-sectional view showing a schematic structure of a vehicular lamp 100 according to a modification.
  • the vehicular lamp 100 includes a transparent substrate 220 having a three-dimensional curved surface shape and an organic EL element 120.
  • the transparent substrate 220 is an outer lens of the vehicular lamp 100.
  • the vehicular lamp 100 is attached to the outer plate 224 of the vehicle body by an appropriate fixture 222.
  • FIG. 9 also shows the light L2 emitted from the organic EL element 120.
  • a barrier layer 226 is formed in advance on the three-dimensional curved surface of the transparent substrate 220.
  • the organic EL element 120 includes a first electrode 124 which is a transparent anode, an organic layer 126, and a second electrode 128 which is a metal cathode.
  • the organic EL element 120 is formed directly on the surface of the transparent substrate 220 using a film forming method such as coating or printing. That is, the first electrode 124, the organic layer 126, and the second electrode 128 are sequentially stacked on the barrier layer 226. Thus, the organic EL element 120 is formed on the surface of the three-dimensional curved surface of the transparent substrate 220.
  • the organic EL type vehicle lamp 100 having a three-dimensional curved surface shape can be realized with a simple structure.
  • Such a simple structure can reduce the reflection of the light output from the organic EL element 120.
  • the organic EL panel can be relatively easily adapted to the complicated three-dimensional shape of the car body outer plate.
  • the vehicle lamp 100 illustrated in FIGS. 9 and 10 may not have the configuration of the blinking control of the organic EL element described with reference to FIGS. 1 to 8.
  • the present invention is not limited to the above-described embodiment and modifications, and may be combined with the embodiments and modifications or may be further modified such as various design changes based on the knowledge of those skilled in the art. Embodiments and modifications in which such combinations or further modifications are made are also included in the scope of the present invention.
  • the vehicular lamp 100 may be a turn signal lamp, a daytime running lamp, a marker lamp such as a clearance lamp, a head lamp, a brake lamp, or the like.
  • the present invention can be used for a vehicle lamp, for example, a vehicle lamp using an organic EL element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

車両用灯具100は、有機EL素子120と、有機EL素子120の点灯と消灯を切り替える点灯回路200と、有機EL素子120を点灯すべき状態において瞬間的消灯が繰り返されるよう点灯回路200を制御する点灯制御部202と、を備える。点灯回路200は、有機EL素子120から蓄積電荷を放電するよう少なくとも瞬間的消灯の間に形成される放電経路210を備える。

Description

車両用灯具
 本発明は、車両用灯具、例えば有機EL素子を用いた車両用灯具に関する。
 有機EL(Electroluminescence)パネルのような有機EL素子を用いた車両用灯具の実用化が試みられている。有機ELパネルは、OLED(Organic Light Emitting Diode)パネルとも呼ばれる(例えば、特許文献1参照)。
国際公開第2015/098822号
 有機EL素子は長時間点灯し続けると、光束維持率が低下することが知られている。光束維持率の低下に伴って所定の配光を実現できなくなれば、有機EL素子の修理や新たな有機EL素子との交換といった整備が必要となる。当然、そのような作業の頻発は望まれない。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、有機EL素子を用いた車両用灯具について光束維持率の低下を抑制することにある。
 上記課題を解決するために、本発明のある態様の車両用灯具は、有機EL素子と、有機EL素子の点灯と消灯を切り替える点灯回路と、有機EL素子を点灯すべき状態において瞬間的消灯が繰り返されるよう点灯回路を制御する点灯制御部と、を備える。点灯回路は、有機EL素子から蓄積電荷を放電するよう少なくとも瞬間的消灯の間に形成される放電経路を備える。
 この態様によると、光束維持率の低下を抑制することができる有機EL式の車両用灯具が提供される。有機EL素子の等価回路はコンデンサを含むとみなされ、その両極間には点灯中に電荷が蓄積される。蓄積された電荷に起因して両極間に作用する静電吸引力が有機EL素子の光束維持率の低下に関与していると推測される。こうした静電吸引力の悪影響は、有機EL素子から蓄積電荷を放電させることにより、低減されまたは未然に防止される。それにより、有機EL素子の光束維持率の低下は抑制され、または最小化される。また、蓄積電荷の放電は、有機EL素子の瞬間的消灯とともになされる。そのため、運転者や歩行者など人は有機EL素子の点滅または消灯を感知しがたい。したがって、人の目には有機EL素子の点灯が長時間続いているように見せながら、有機EL素子の光束維持率の低下を抑制することができる。
 放電経路は、有機EL素子に並列接続されたスイッチおよび放電抵抗を備えてもよい。点灯制御部は、瞬間的消灯の間にスイッチをオンとすることにより放電経路を形成してもよい。
 点灯回路は、有機EL素子の点灯と瞬間的消灯を切り替える第1スイッチを備えてもよい。放電経路は、有機EL素子に並列接続された第2スイッチおよび放電抵抗を備えてもよい。点灯制御部は、瞬間的消灯の間に第2スイッチをオンとすることにより放電経路を形成してもよい。
 瞬間的消灯の長さは、10ミリ秒以内に設定されていてもよい。
 瞬間的消灯の繰り返し間隔は、15分以内に設定されていてもよい。
 放電経路は、有機EL素子に並列接続された放電抵抗を備え、放電経路が有機EL素子の点灯中にも形成されていてもよい。
 車両用灯具は、三次元曲面形状の表面を有する透明基板と、透明基板の三次元曲面形状に整合する三次元曲面形状を有する封止部材と、をさらに備えてもよい。有機EL素子は、透明基板の三次元曲面形状の表面に形成され、封止部材によって覆われていてもよい。
 本発明によれば、有機EL素子を用いた車両用灯具について光束維持率の低下を抑制することができる。
本発明者らにより有機EL素子の光束維持率を測定した結果を示すグラフである。 実施の形態に係る車両用灯具の概略構造を示す鉛直断面図である。 光源の概略構造を示す断面図である。 有機EL素子の概略構造を示す断面図である。 実施の形態に係る車両用灯具のブロック図である。 実施の形態に係る車両用灯具の動作波形図である。 実施の形態に係る放電経路の抵抗値を例示するグラフである。 変形例に係る車両用灯具のブロック図である。 変形例に係る車両用灯具の概略構造を示す断面図である。 別の変形例に係る車両用灯具の概略構造を示す断面図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に用いられる「第1」、「第2」等の用語は、いかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。
 図1は、有機EL素子の光束維持率を測定した結果を示すグラフである。縦軸は光束維持率を示し、横軸は有機EL素子の点灯時間(点滅におけるオン時間)を対数で示す。図1において記号◇および◆が測定値を表す。記号◇は、有機EL素子の点滅駆動試験の結果であり、点灯時間の累積が1000時間に達したときの光束維持率を示す。この点滅は、横軸に示される点灯時間(2分、5分、10分、15分、1時間、5時間、10時間)と1分間の消灯の繰り返しである。記号◆は、点滅ではなく、有機EL素子を連続的に1000時間点灯させ、それが終了したときの光束維持率を示す。
 図1から理解されるように、点灯時間が長くなるとともに、有機EL素子の光束維持率が低下する。たとえば点灯時間が15分の点滅の場合、累積で1000時間の点灯により光束維持率が約78%となっている。点灯時間が10時間の点滅の場合、累積で1000時間の点灯により光束維持率が約74%に低下している。1000時間の連続点灯により光束維持率は約72%に低下している。
 このように、ある点灯時間にわたり連続して点灯した有機EL素子に比べて、累積で同じ時間だけ点灯するよう点滅させた有機EL素子のほうが、光束維持率が高くなる。また、点滅の点灯時間が短いほど、光束維持率の低下が抑制される。点滅の点灯時間が15分より短ければ、光束維持率はさらに高まる。たとえば点灯時間が2分の点滅の場合、光束維持率が約84%に向上している。
 光束維持率の低下は、有機EL素子に蓄積される電荷に原因があると考えられる。有機EL素子の両極間には点灯中に電荷が蓄積される。蓄積された電荷に起因して両極間に作用する静電吸引力が有機EL素子の光束維持率の低下に関与していると推測される。有機EL素子を点滅駆動させた場合、消灯時間がある程度の長さであれば、その間に蓄積電荷の自然放電が起こる。点滅による光束維持率の低下抑制はこうして得られたものと理解することができる。
 能動的な手段によって有機EL素子から蓄積電荷を放電させても同様に、光束維持率の低下は抑制されまたは防止されるはずである。この場合、自然放電とは異なり、瞬間的とも言えるごく短い消灯時間で蓄積電荷は放電されうる。人の目には有機EL素子が点灯し続けているように見せながら、有機EL素子の光束維持率の低下を抑制することができる。
 このような本発明者らによる独自の検討に基づき、本発明者らは、定期的かつ瞬間的にOLEDの蓄積電荷を抜く機構をもつOLED照明システムを考案した。これを車両用灯具に適用することにより、以下に説明するように、運転者や歩行者など利用者に違和感を与えることなく光束維持率の低下を抑制することができる。
 図2は、実施の形態に係る車両用灯具100の概略構造を示す鉛直断面図である。本実施の形態に係る車両用灯具100は、例えば車両後方に配置されるテールランプである。車両用灯具100は、車両のリアパネル1に固定される。具体的には、リアパネル1は車両前方側に凹んだ凹部2を有し、車両用灯具100は凹部2に収容される。車両用灯具100は、凹部2に収容された状態でリアパネル1に固定される。
 車両用灯具100は、ランプボディ102と、透光カバー104とを備える。ランプボディ102は、車両後方側(灯具前方側)に開口部を有する筐体である。透光カバー104は、ランプボディ102の開口部を覆うようにしてランプボディ102に取り付けられる。透光カバー104は、透光性を有する樹脂やガラス等で形成され、インナーカバー(インナーレンズ)として機能する。透光カバー104の灯具前方側には、車両用灯具100の外筐を構成するアウターカバー(アウターレンズ)106が設けられる。アウターカバー106により、凹部2の開口が塞がれる。
 ランプボディ102と透光カバー104とにより灯室103が形成される。灯室103内には、光源110及び点灯回路200が収容される。光源110は、ブラケット108に搭載される。ブラケット108は、ランプボディ102に固定される。点灯回路200によって、光源110に電圧が印加される。なお、点灯回路200は灯室103の外に設けられてもよい。
 図3は、光源110の概略構造を示す断面図である。光源110は、第1基板112と、第2基板114と、封止材116とを有する。封止材116は、第1基板112及び第2基板114の周縁部において基板間に介在する。第1基板112、第2基板114及び封止材116は、従来公知の材料からなる。例えば、第1基板112及び第2基板114は、ガラス基板、あるいは透光性を有する樹脂基板である。封止材116は、例えば第1基板112と第2基板114とを固定する接着剤である。
 第1基板112及び第2基板114と、封止材116とで、内部空間118が形成される。内部空間118には、有機EL素子120が収容される。有機EL素子120は、従来公知の一般的な有機EL素子であり、発光面122を有する。発光面122から出射される光L1は、第1基板112を通過して灯具前方に照射される。なお、光源110の構造は特に限定されず、有機EL素子120が基板の主表面に搭載されるとともに、有機EL素子120の上面と側面とが封止材で覆われた構造等を有してもよい。
 有機EL素子120は、均一な面発光が可能である。また、有機EL素子120は、比較的柔軟性が高く、曲面形状(いわゆる2.5次元曲面形状)等も取り得る。また、有機EL素子120は全体が透明に近い。このため、光源110に有機EL素子120を用いることで、車両用灯具100の意匠性を高めることができる。また、有機EL素子120は薄く軽量であるため、車両用灯具100の奥行き寸法を小さくすることができ、また車両用灯具100の軽量化も可能である。さらに、有機EL素子120は、LED等に比べ光の指向性が低い。このため、車両用灯具100の被視認性を高めることができる。また、他車両の運転者等にグレアを与えにくい車両用灯具100を実現できる。
 図4は、有機EL素子120の概略構造を示す断面図である。有機EL素子120は、第1電極124、有機層126、第2電極128、及び無機封止層130を備える。例えば、第1電極124は陽極であり、第2電極128は陰極である。また、第1電極124はITO等からなる透明電極であり、第2電極128は金属電極、例えば有機層126へのアルミニウムの蒸着によって得られるアルミニウム電極である。有機層126は、第1電極124及び第2電極128の間に配置される発光層である。無機封止層130は、窒化シリコン(SiN)、酸化シリコン(SiO)、酸化アルミニウム(AlO)等からなり、水分や酸素等に対するバリア層として機能する。無機封止層130は、外部空間から内部空間118内に進入した水分や酸素が第2電極128等に接触することを防ぐ。有機層126の厚さは、例えば約500nmであり、第1電極124、有機層126及び第2電極128の合計の厚さは、例えば約1μmである。上述の発光面122は、第1電極124の表面にあたる。
 図5は、実施の形態に係る車両用灯具100のブロック図である。車両用灯具100は、光源110、点灯回路200、および点灯制御部202を備える。上述のように光源110は有機EL素子120を備える。点灯回路200は、LDM(LED Driving Module)とも称される。点灯制御部202は、灯具ECU(Electronic Control Unit)であってもよい。また、車両用灯具100に関連して、バッテリなどの電源204、および車両ECU206が設けられている。
 車両ECU206は、点灯制御部202と、CAN(Controller Area Network)バスなどの制御ラインを介して接続されており、車両用灯具100を統合的に制御する。車両ECU206から点灯制御部202には、有機EL素子120の点消灯を指示する点灯指令S1などの制御信号が送信される。
 点灯回路200は、有機EL素子120の点灯と消灯を切り替えるよう構成されている。点灯回路200は、第1スイッチ208と、放電経路210とを含む。第1スイッチ208は、電源204から有機EL素子120への給電経路上に配置されている。第1スイッチ208がオンであるとき電源204から有機EL素子120に電力が供給され、有機EL素子120が点灯する。このとき電源204から有機EL素子120にOLED電流Iaが流れる。第1スイッチ208がオフであるとき給電は停止され、有機EL素子120は消灯する。また、ライトスイッチ209が、電源204から有機EL素子120への給電経路上で第1スイッチ208と直列に設けられている。有機EL素子120の点灯と消灯の切替は、車両ECU206からの制御信号により制御されるだけでなく、運転者によるライトスイッチ209の手操作により制御されてもよい。
 放電経路210は、有機EL素子120から蓄積電荷を放電するよう少なくとも瞬間的消灯の間に形成される。放電経路210は、ショート回路と呼ぶこともできる。放電経路210は、有機EL素子120に並列接続された第2スイッチ212および放電抵抗214を備える。第2スイッチ212と放電抵抗214は直列に接続されている。第2スイッチ212がオンであるとき放電抵抗214が有機EL素子120に接続され、有機EL素子120から蓄積電荷が放電される。このとき有機EL素子120から放電抵抗214にショート回路電流Ibが流れる。第2スイッチ212がオフであるときは放電抵抗214は有機EL素子120から切り離される。第1スイッチ208のオンオフに関わらず、放電抵抗214による蓄積電荷の放電は、第2スイッチ212のオンオフによって可能である。
 点灯制御部202は、有機EL素子120を点灯すべき状態において瞬間的消灯が繰り返されるよう点灯回路200を制御する。たとえば車両ECU206から点灯制御部202に与えられる点灯指令S1が有機EL素子120の点灯を指示している間は、「有機EL素子120を点灯すべき状態」にあたる。逆に、点灯指令S1が有機EL素子120の消灯を指示している間は、「有機EL素子120を点灯すべき状態」にはあたらない。
 有機EL素子120の「瞬間的消灯」は、第1スイッチ208を瞬間的にオフとすることにより実現される。また、点灯制御部202は、有機EL素子120の瞬間的消灯の間に第2スイッチ212をオンとすることにより放電経路210を形成する。点灯制御部202は、第1スイッチ208の瞬間的なオフと第2スイッチ212の瞬間的なオンとを同期させるように点灯回路200を制御する。こうして、有機EL素子120の瞬間的消灯の間に、有機EL素子120の蓄積電荷が放電抵抗214で消費される。
 有機EL素子120の瞬間的消灯の長さは、10ミリ秒以内に設定されていてもよい。このようにすれば、有機EL素子120の消灯は人の目で感知されない。瞬間的消灯の長さは、1ミリ秒以内に設定されていてもよい。瞬間的消灯の長さは、10マイクロ秒以上に設定されていてもよい。
 瞬間的消灯の繰り返し間隔、つまり点滅における毎回の点灯時間は、15分以内に設定されていてもよい。このようにすれば、連続的に点灯する場合に比べて、有機EL素子120の光束維持率の低下を抑制することができる。図1に示す測定結果によれば、合計1000時間の点灯後において光束維持率を約72%から約78%に改善することができる。瞬間的消灯の繰り返し間隔は、10分以内、5分以内、または2分以内に設定されてもよい。このようにすれば、光束維持率をさらに改善することができる。瞬間的消灯の繰り返し間隔は、たとえば1分以上または1秒以上に設定されていてもよい。
 点灯制御部202は、タイマー216を備える。タイマー216は、任意の時刻から経過時間を計ることができる。また、タイマー216は、点灯指令S1に応じて、第1スイッチ制御信号S2および第2スイッチ制御信号S3を生成する。タイマー216は、第1スイッチ制御信号S2を第1スイッチ208に送信し、第2スイッチ制御信号S3を第2スイッチ212に送信する。第1スイッチ制御信号S2は第1スイッチ208のオンオフを指示する信号であり、第2スイッチ制御信号S3は第2スイッチ212のオンオフを指示する信号である。第1スイッチ208は第1スイッチ制御信号S2に従ってオンオフが切り替えられ、第2スイッチ212は第2スイッチ制御信号S3に従ってオンオフが切り替えられる。
 図6は、実施の形態に係る車両用灯具100の動作波形図である。図6には上から順に、点灯指令S1、第1スイッチ制御信号S2、第2スイッチ制御信号S3、OLED電流Ia、およびショート回路電流Ibを示す。
 時刻t0までは点灯指令S1は有機EL素子120の消灯を指示している。このとき第1スイッチ制御信号S2は第1スイッチ208にオフを指示し、第2スイッチ制御信号S3は第2スイッチ212にオンを指示する。その結果、有機EL素子120は消灯されている。放電抵抗214は有機EL素子120に接続され、放電経路210が形成されている。
 時刻t0に点灯指令S1が消灯から点灯に遷移する。これに応答してタイマー216は、第1スイッチ制御信号S2をオンに変更し、第2スイッチ制御信号S3をオフに変更する(第1オンオフ状態)。第1スイッチ208はオンに切り替わり、有機EL素子120にはOLED電流Iaが流れ、有機EL素子120が点灯する。一方、第2スイッチ212はオフに切り替わり、放電抵抗214は有機EL素子120から切り離される。
 タイマー216は、第1オンオフ状態を、第1所定時間T1が経過するまで継続する。第1所定時間T1は、上述の「瞬間的消灯の繰り返し間隔」に相当し、例えば、15分以内で予め設定された時間である。ここでは例えば5分間である。
 時刻t0から第1所定時間T1が経過した時刻t1にて、タイマー216は、第1スイッチ制御信号S2をオフに変更し、第2スイッチ制御信号S3をオンに変更する(第2オンオフ状態)。第1スイッチ208はオフに切り替わり、有機EL素子120は消灯する。第2スイッチ212はオンに切り替わり、有機EL素子120が放電抵抗214に接続される。点灯中に蓄積した電荷がショート回路電流Ibとして有機EL素子120から放電経路210に流れる。こうして有機EL素子120から蓄積電荷を抜くことができる。
 タイマー216は、第2オンオフ状態を、第2所定時間T2が経過するまで継続する。第2所定時間T2は上述のように、人の目で感知されない程度のごく短い時間、例えば10ミリ秒以内で予め設定された時間である。ここでは例えば10ミリ秒である。
 時刻t1から第2所定時間T2が経過した時刻t2にて、タイマー216は、第2オンオフ状態から第1オンオフ状態に復帰する。点灯指令S1が有機EL素子120の点灯を指示している間は、以降も同様にして、第1オンオフ状態と第2オンオフ状態が周期的に繰り返される。
 OLED電流Iaは、第1スイッチ制御信号S2と同様に周期的に変化する。また、ショート回路電流Ibは、第2スイッチ制御信号S3と同様に周期的に変化する。
 図7は、実施の形態に係る放電経路210の抵抗値を例示するグラフである。縦軸は抵抗値を対数で表し、横軸は有機EL素子120の発光面122の面積を表す。このグラフは本発明者らによる計算結果であり、10ミリ秒以下の瞬間的消灯によって有機EL素子120の蓄積電荷を十分に減衰させるために適正な放電抵抗214の抵抗値の目安を与える。
 有機EL素子120は、電荷を蓄積したコンデンサとみなされる。第2スイッチ212がオンとされ有機EL素子120の両極が短絡されたとき、放電経路210と有機EL素子120でCR回路が形成される。したがって、有機EL素子120の蓄積電荷Qは、次式に表されるように、指数関数的に減衰する。
 Q=Qexp(-t/RC)
ここで、Qは初期電荷(すなわち第2スイッチ212のオン直前に蓄積している電荷)、Rは放電抵抗214の抵抗値、Cは有機EL素子120のキャパシタンスである。単位面積あたりの有機EL素子120のキャパシタンスC/S(Sは有機EL素子の面積を表す)は一般に、約10-7~10-9[F/cm]であることが既知である。したがって、設定時間t(例えば、10マイクロ秒から10ミリ秒)で、初期電荷Qからある比率(例えば1%)まで蓄積電荷(Q=10-2)を減衰させるのに必要な抵抗値Rを上式から算出することができる。
 図7に示されるように、例えば、t=10ミリ秒で有機EL素子120の面積が50cmの場合、放電抵抗214の抵抗値Rは約10Ωとなる。図7によれば、有機EL素子120の面積がさらに拡大されても抵抗値Rは大きく変わらないと推測される。t=10ミリ秒の場合、抵抗値Rは、10Ωより大きくてもよく、10Ωより小さくてもよい。また、t=10マイクロ秒の場合、抵抗値Rは、10Ωより大きくてもよく、10Ωより小さくてもよい。よって、抵抗値Rは、10Ωより大きくてもよく、10Ωより小さくてもよい。
 以上説明したように、実施の形態に係る車両用灯具100によると、人の目には有機EL素子120の点灯が連続しているように見せながら、有機EL素子120から蓄積電荷を放電させることができる。したがって、運転者や歩行者など利用者に例えば照明光のちらつきなどの違和感を与えることなく、光束維持率の低下を抑制することができる。
 図8は、変形例に係る車両用灯具100のブロック図である。放電経路210は、有機EL素子120に並列接続された放電抵抗214を備える。ただし、図示されるように、放電経路210には第2スイッチ212が設けられていなくてもよい。すなわち、放電抵抗214は、有機EL素子120に常に接続されている。放電経路210が、有機EL素子120の瞬間的消灯の間だけでなく、有機EL素子120の点灯中にも形成されていてもよい。このようにしても、既述の実施の形態と同様に、利用者に違和感を与えることなく光束維持率の低下を抑制することができる。
 実施の形態に係る有機EL素子の点滅制御の構成は、有機EL素子を備える他の車両用灯具、または、種々の有機EL装置にも適用することができる。そうした装置の例を挙げる。
 図9は、変形例に係る車両用灯具100の概略構造を示す断面図である。車両用灯具100は、三次元曲面形状を有する透明基板220と、有機EL素子120とを備える。透明基板220は、車両用灯具100のアウターレンズである。車両用灯具100は、適宜の取付具222によって車体の外板224に取り付けられている。図9には有機EL素子120から出る光L2を併せて示す。
 透明基板220の三次元曲面形状の表面にはバリア層226が予め形成されている。有機EL素子120は、透明陽極である第1電極124、有機層126、および金属陰極である第2電極128を含む。有機EL素子120は、透明基板220の表面に塗布または印刷といった成膜方法を用いて直接形成される。すなわち、バリア層226の上に、第1電極124、有機層126、第2電極128が順番に積層形成される。このようにして、有機EL素子120は、透明基板220の三次元曲面形状の表面に形成されている。
 有機EL素子120は、乾燥剤付きシート228と共に、接着剤付き封止板230によって覆われている。接着剤付き封止板230は、透明基板220の三次元曲面形状に整合する三次元曲面形状を有する封止部材の一例である。有機EL素子120の第2電極128の上に乾燥剤付きシート228が重ねられ、その上に接着剤付き封止板230が貼り合わされている。乾燥剤付きシート228および接着剤付き封止板230は不透明であってもよい。接着剤付き封止板230は例えば、バリア膜付き樹脂フィルム、金属フォイル等であってもよい。接着剤付き封止板230は、透明基板220の三次元曲面形状をとることができる。バリア層226と接着剤付き封止板230によって十分な封止性能が得られる場合には、乾燥剤付きシート228は省かれてもよい。
 このようにして、三次元曲面形状をもつ有機EL式の車両用灯具100を簡素な構造で実現することができる。こうした簡素な構造は有機EL素子120からの光出力の反射を減らすことができる。それにより、発光効率の向上ひいては消費電力の低減といった利点を得ることができる。また、車体外板の複雑な三次元形状にも比較的容易に有機ELパネルを適合させることができる。
 図10は、別の変形例に係る車両用灯具100の概略構造を示す断面図である。図10に示す車両用灯具100は、車両のウインドウ232に一体化されている。ウインドウ232は三次元曲面形状を有する。ウインドウ232は例えば透明樹脂で形成され、その表面にバリア層226が形成されている。有機EL素子120は、バリア層226上に塗布または印刷といった成膜方法を用いて直接形成される。有機EL素子120の第2電極128は、ストライプ状に形成されている。有機EL素子120は、透明乾燥剤シート234と共に、接着剤付き透明封止板236によって覆われている。こうして、車両用灯具100は、いわゆるシースルー有機ELパネルとして構成されている。このようにしても、三次元曲面形状をもつ有機EL装置を簡素な構造で実現することができる。
 なお、図9および図10に例示した車両用灯具100は、図1から図8を参照して説明した有機EL素子の点滅制御の構成を備えなくてもよい。
 本発明は、上述した実施の形態及び変形例に限定されるものではなく、実施の形態及び変形例を組み合わせたり、当業者の知識に基づいて各種の設計変更などのさらなる変形を加えることも可能であり、そのように組み合わせられ、もしくはさらなる変形が加えられた実施の形態や変形例も本発明の範囲に含まれる。上述した実施の形態や変形例、及び上述した実施の形態や変形例と以下の変形との組合せによって生じる新たな実施の形態は、組み合わされる実施の形態、変形例及びさらなる変形それぞれの効果をあわせもつ。
 上述の実施の形態では、車両用灯具100がテールランプである場合を例に挙げて説明したが、車両用灯具100はこの具体例に限られない。車両用灯具100は、ターンシグナルランプ、デイタイムランニングランプ、クリアランスランプ等の標識灯や、ヘッドランプ、ブレーキランプ等であってもよい。
 100 車両用灯具、 120 有機EL素子、 200 点灯回路、 202 点灯制御部、 208 第1スイッチ、 210 放電経路、 212 第2スイッチ、 214 放電抵抗、 216 タイマー。
 本発明は、車両用灯具、例えば有機EL素子を用いた車両用灯具に利用できる。

Claims (7)

  1.  有機EL素子と、
     前記有機EL素子の点灯と消灯を切り替える点灯回路と、
     前記有機EL素子を点灯すべき状態において瞬間的消灯が繰り返されるよう前記点灯回路を制御する点灯制御部と、を備え、
     前記点灯回路は、前記有機EL素子から蓄積電荷を放電するよう少なくとも前記瞬間的消灯の間に形成される放電経路を備えることを特徴とする車両用灯具。
  2.  前記放電経路は、前記有機EL素子に並列接続されたスイッチおよび放電抵抗を備え、
     前記点灯制御部は、前記瞬間的消灯の間に前記スイッチをオンとすることにより前記放電経路を形成することを特徴とする請求項1に記載の車両用灯具。
  3.  前記点灯回路は、前記有機EL素子の点灯と前記瞬間的消灯を切り替える第1スイッチを備え、
     前記放電経路は、前記有機EL素子に並列接続された第2スイッチおよび放電抵抗を備え、
     前記点灯制御部は、前記瞬間的消灯の間に前記第2スイッチをオンとすることにより前記放電経路を形成することを特徴とする請求項1に記載の車両用灯具。
  4.  前記瞬間的消灯の長さは、10ミリ秒以内に設定されていることを特徴とする請求項1から3のいずれかに記載の車両用灯具。
  5.  前記瞬間的消灯の繰り返し間隔は、15分以内に設定されていることを特徴とする請求項1から4のいずれかに記載の車両用灯具。
  6.  前記放電経路は、前記有機EL素子に並列接続された放電抵抗を備え、前記放電経路が前記有機EL素子の点灯中にも形成されていることを特徴とする請求項1に記載の車両用灯具。
  7.  三次元曲面形状の表面を有する透明基板と、前記透明基板の前記三次元曲面形状に整合する三次元曲面形状を有する封止部材と、をさらに備え、
     前記有機EL素子は、前記透明基板の前記三次元曲面形状の表面に形成され、前記封止部材によって覆われていることを特徴とする請求項1から6のいずれかに記載の車両用灯具。
PCT/JP2018/000415 2017-01-25 2018-01-11 車両用灯具 WO2018139202A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018564464A JP6982580B2 (ja) 2017-01-25 2018-01-11 車両用灯具
CN201880007615.3A CN110234537B (zh) 2017-01-25 2018-01-11 车辆用灯具
US16/479,018 US10883693B2 (en) 2017-01-25 2018-01-11 Vehicle lamp
DE112018000522.4T DE112018000522T5 (de) 2017-01-25 2018-01-11 Fahrzeuglampenfassung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-011452 2017-01-25
JP2017011452 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018139202A1 true WO2018139202A1 (ja) 2018-08-02

Family

ID=62978287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000415 WO2018139202A1 (ja) 2017-01-25 2018-01-11 車両用灯具

Country Status (5)

Country Link
US (1) US10883693B2 (ja)
JP (1) JP6982580B2 (ja)
CN (1) CN110234537B (ja)
DE (1) DE112018000522T5 (ja)
WO (1) WO2018139202A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018952A (ja) * 2019-07-23 2021-02-15 株式会社小糸製作所 車両用ランプ
WO2022039270A1 (ja) * 2020-08-21 2022-02-24 株式会社ファルテック 移動体搭載表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613181A (ja) * 1992-06-29 1994-01-21 Fuji Electric Co Ltd 有機薄膜発光素子の発光方法
JP2014165104A (ja) * 2013-02-27 2014-09-08 Institute Of National Colleges Of Technology Japan 有機el点灯装置
JP2015080963A (ja) * 2013-10-21 2015-04-27 株式会社小糸製作所 車両用標識灯
WO2015141522A1 (ja) * 2014-03-19 2015-09-24 コニカミノルタ株式会社 3次元曲面部を有する有機エレクトロルミネッセンス素子の製造方法及び発光装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013181B2 (ja) * 1977-09-16 1985-04-05 株式会社リコー 電子写真二色複写方法
JPS616042A (ja) * 1984-06-18 1986-01-11 Sanyo Electric Co Ltd 車輛用安全灯装置
JPH0765952A (ja) * 1993-08-31 1995-03-10 Nec Kansai Ltd 分散型el素子の駆動回路
US6356038B2 (en) * 1994-12-14 2002-03-12 Richard A. Bishel Microcomputer-controlled AC power switch controller and DC power supply method and apparatus
JP2004034741A (ja) * 2002-06-28 2004-02-05 Matsushita Electric Works Ltd 車載用のテール/ストップランプ
US6933686B1 (en) * 2003-01-09 2005-08-23 Richard Anthony Bishel Programmable AC power switch
JP4662011B2 (ja) * 2003-07-29 2011-03-30 東北パイオニア株式会社 発光表示パネルの駆動装置および駆動方法
JP2006119999A (ja) * 2004-10-22 2006-05-11 Orion Denki Kk 表示制御機能を備えた電子機器
JP2007171544A (ja) * 2005-12-22 2007-07-05 Fuji Electric Holdings Co Ltd 有機elディスプレイの駆動回路
US8279063B2 (en) * 2008-11-12 2012-10-02 Xhale, Inc. Personnel location and monitoring system and method for enclosed facilities
JP4496270B1 (ja) * 2009-01-30 2010-07-07 株式会社東芝 映像表示装置及び映像表示方法
CN202016427U (zh) * 2011-04-01 2011-10-26 广东威捷极光汽车灯具有限公司 新型汽车后尾灯
WO2015098822A1 (ja) 2013-12-25 2015-07-02 株式会社小糸製作所 車両用灯具
CN103956138B (zh) * 2014-04-18 2015-04-08 京东方科技集团股份有限公司 Amoled像素驱动电路、方法和显示装置
JP6473032B2 (ja) * 2015-04-03 2019-02-20 株式会社小糸製作所 車両用灯具
US9913334B2 (en) * 2015-09-17 2018-03-06 Chia-Hua Lin Timing device
JP6778504B2 (ja) * 2016-04-07 2020-11-04 株式会社小糸製作所 車両用灯具、及び有機el素子の検査方法
JP2017204434A (ja) * 2016-05-13 2017-11-16 株式会社小糸製作所 車両用灯具、及び有機el素子の検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613181A (ja) * 1992-06-29 1994-01-21 Fuji Electric Co Ltd 有機薄膜発光素子の発光方法
JP2014165104A (ja) * 2013-02-27 2014-09-08 Institute Of National Colleges Of Technology Japan 有機el点灯装置
JP2015080963A (ja) * 2013-10-21 2015-04-27 株式会社小糸製作所 車両用標識灯
WO2015141522A1 (ja) * 2014-03-19 2015-09-24 コニカミノルタ株式会社 3次元曲面部を有する有機エレクトロルミネッセンス素子の製造方法及び発光装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018952A (ja) * 2019-07-23 2021-02-15 株式会社小糸製作所 車両用ランプ
JP7286459B2 (ja) 2019-07-23 2023-06-05 株式会社小糸製作所 車両用ランプ
WO2022039270A1 (ja) * 2020-08-21 2022-02-24 株式会社ファルテック 移動体搭載表示装置
JP2022035593A (ja) * 2020-08-21 2022-03-04 株式会社ファルテック 移動体搭載表示装置
JP7527155B2 (ja) 2020-08-21 2024-08-02 株式会社ファルテック スクリーングリル
US12305825B2 (en) 2020-08-21 2025-05-20 Faltec Co., Ltd. Mobile-object-mounted display device

Also Published As

Publication number Publication date
US20190353322A1 (en) 2019-11-21
JP6982580B2 (ja) 2021-12-17
CN110234537B (zh) 2022-11-01
JPWO2018139202A1 (ja) 2019-11-14
CN110234537A (zh) 2019-09-13
US10883693B2 (en) 2021-01-05
DE112018000522T5 (de) 2019-10-10

Similar Documents

Publication Publication Date Title
JP4286674B2 (ja) 車両用灯体制御装置
JP6982580B2 (ja) 車両用灯具
JP5396134B2 (ja) 車両用灯具
TW200303273A (en) Light emitting circuit and lighting device
KR20130031116A (ko) 오엘이디가 장착된 차량용 램프
US20140015442A1 (en) Lighting device
JP2007106383A (ja) 車両用リアコンビネーションランプ
US10120038B2 (en) Vehicle lamp and method for inspecting organic EL element
WO2013118549A1 (ja) 車両用表示装置
KR102529870B1 (ko) 차량용 램프
JP2017007356A (ja) ランプユニット
JPH10166936A (ja) 車両用発光表示装置
JP2006269194A (ja) 車両用照明装置
JP2020069919A (ja) 車両用灯具
KR20050120022A (ko) 인사이드 미러용 표시창의 조도 조절 장치
KR200282487Y1 (ko) 와이퍼
TWM537708U (zh) 用於切換車載燈功率的系統
US20250296500A1 (en) Tail light system
JP2024057984A (ja) 車載照明装置
JP3165457U (ja) 車両の補助ランプ
KR100994191B1 (ko) 투명 전광판의 전원공급 방법
KR19990019625U (ko) 자동차용 비상 삼각대
JP3491457B2 (ja) 車両用表示装置
KR100811718B1 (ko) 전자식 반사율 조절 미러
JP2954653B2 (ja) 車両の前照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564464

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18745298

Country of ref document: EP

Kind code of ref document: A1