[go: up one dir, main page]

WO2018139654A1 - 1,1,2,2-テトラフルオロプロパンの製造方法 - Google Patents

1,1,2,2-テトラフルオロプロパンの製造方法 Download PDF

Info

Publication number
WO2018139654A1
WO2018139654A1 PCT/JP2018/002786 JP2018002786W WO2018139654A1 WO 2018139654 A1 WO2018139654 A1 WO 2018139654A1 JP 2018002786 W JP2018002786 W JP 2018002786W WO 2018139654 A1 WO2018139654 A1 WO 2018139654A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetrafluoropropane
catalyst
reaction
hydrogen
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/002786
Other languages
English (en)
French (fr)
Inventor
真理 市野川
厚史 藤森
岡本 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2018564693A priority Critical patent/JPWO2018139654A1/ja
Publication of WO2018139654A1 publication Critical patent/WO2018139654A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing 1,1,2,2-tetrafluoropropane.
  • 1,1,2,2-tetrafluoropropane (CHF 2 —CF 2 —CH 3 (HFC-254cb)) is a rigid polyurethane foam blowing agent, solvent, cleaning agent, aerosol, refrigerant, working fluid, propellant, or It is useful as a raw material for them and fluororesins.
  • HFC-254cb for example, 1,3,3-trichloro-1,1,2,2-tetrafluoropropane (CClF 2 -CF 2 -CHCl 2 ( HCFC-224ca), hereinafter also referred to as 224ca. ) And 1,1,1-trichloro-2,2,3,3-tetrafluoropropane (CHF 2 —CF 2 —CCl 3 (HCFC-224 cc), hereinafter also referred to as 224 cc)) in the presence of a hydrogenation catalyst.
  • a method for producing HFC-254cb by reacting with hydrogen is known (for example, see Patent Document 1).
  • the selectivity of the target product, 254cb is as low as 1% or less.
  • the selectivity of 254 cb is low, and 3-chloro-1,1,2,2-tetrafluoropropane (CHF 2 —CF 2 —CH 2 Cl (HCFC-244ca), hereinafter 244ca) is used.
  • CHF 2 —CF 2 —CH 2 Cl HCFC-244ca
  • the present invention uses 1-chloro-1,1,2,2-tetrafluoropropane (CClF 2 —CF 2 —CH 3 (HCFC-244cc), hereinafter also referred to as 244cc), which is an easily available raw material.
  • Economically advantageous 254 cb of 1,1,2,2-tetrafluoropropane (CHF 2 —CF 2 —CH 3 (HFC-254cb), hereinafter also referred to as 254cb)) can be obtained with high selectivity.
  • the object is to provide a manufacturing method.
  • the present invention provides a method for producing 1,1,2,2-tetrafluoropropane having the following constitution.
  • 1,1,2,2-Tetra characterized by reacting 1-chloro-1,1,2,2-tetrafluoropropane and hydrogen at a temperature exceeding 200 ° C. in the presence of a catalyst A method for producing fluoropropane.
  • 254 cb is produced by reacting 244 cc with hydrogen at a temperature exceeding 200 ° C. in the presence of a catalyst.
  • the method of reacting 244 cc with hydrogen in the presence of a catalyst is not particularly limited except for the reaction temperature.
  • the reaction between 244 cc and hydrogen is performed by supplying 244 cc and hydrogen to a reaction field where the catalyst is disposed (usually in a reactor in which the catalyst is accommodated).
  • a method of supplying 244 cc and hydrogen to react in a reactor containing a catalyst will be described, but the present invention is not limited thereto.
  • the reaction between 244 cc and hydrogen may be performed in the liquid phase or in the gas phase. It is preferable to carry out the reaction in the gas phase because there are advantages that the reaction time can be shortened and the production of by-products can be suppressed.
  • the manufacturing method of this embodiment can be performed by either a batch method or a continuous method.
  • 244 cc and hydrogen are supplied to a reactor containing a catalyst, 244 cc is reacted in the reactor, and hydrogen is brought into contact with the catalyst, and the 254 cb reactor obtained by the reaction is used. The removal from is performed continuously.
  • the timing of supplying 244 cc and hydrogen into the reactor containing the catalyst is not particularly limited in both batch and continuous methods. That is, either one may be supplied first and the other may be supplied later, or both may be supplied simultaneously.
  • the previously supplied component is retained in the reactor, and the other component is supplied to the reactor so that 244 cc, hydrogen, catalyst, May be contacted for a predetermined time.
  • 244 cc and hydrogen may be supplied to the reactor from separate supply pipes, or may be mixed in advance and supplied from one supply pipe.
  • the manufacturing method of the present embodiment is preferably a continuous method in terms of manufacturing efficiency.
  • the manufacturing method of the present embodiment will be described with respect to a method of reacting 244 cc with hydrogen in a gas phase in a continuous manner.
  • the amount of hydrogen used is preferably about 0.1 to 5.0 moles, more preferably 0.5 to 3.0 moles per mole of 244 cc. If the amount of hydrogen is not less than the lower limit, the conversion rate is improved. Moreover, if the quantity of hydrogen is below the said upper limit, the production
  • (244cc) 244 cc used in the production method of the present embodiment is a compound represented by the general formula (A): CClF 2 CF 2 CH a Cl (3-a) (wherein a is an integer of 0 to 2).
  • the compound (A) can be easily produced by bringing it into contact with hydrogen in the presence of a hydrogenation catalyst to cause a reduction reaction.
  • this reduction reaction one of the compounds (A) in which a is an integer of 0 to 2 may be used alone, or two or more compounds (A) having different a may be used as raw materials. It is good.
  • a compound in which a is 0 is 1,1,1,3-tetrachloro-2,2,3,3-tetrafluoropropane (CClF 2 -CF 2 -CCl 3 (CFC-214cb ), Hereinafter also referred to as 214cb), the compound in which a is 1 is 224ca, and the compound in which a is 2 is 1,3-dichloro-1,1,2,2-tetrafluoropropane (CCIF 2 -CF 2 -CClH 2 (HCFC-234cc), hereinafter also referred to as 234cc).
  • 214cb and 224ca can be obtained by reacting tetrafluoroethylene (TFE) with one or both of CCl 4 and CHCl 3 in the presence of a Lewis acid catalyst such as aluminum chloride.
  • TFE tetrafluoroethylene
  • 234 cc is obtained by hydrogenating one or both of 214cb and 224ca obtained above in the presence of, for example, a palladium catalyst, or reacting TFE and CH 2 Cl 2 in the presence of a Lewis acid catalyst as described above. Can be obtained.
  • Reduction reaction by contacting a compound represented by the above general formula (A) obtained by these methods, specifically 214cb, 224ca, 234cc, etc. with hydrogen in the presence of a hydrogenation catalyst such as a palladium catalyst. By doing so, a composition containing 244 cc can be obtained.
  • a hydrogenation catalyst such as a palladium catalyst.
  • the composition containing 244 cc obtained by the above method may contain 244 cc, TFE, 214 cb, 224 ca, 234 cc, CH 2 Cl 2 , CCl 4 , CHCl 3, etc. in addition to 244 cc. is there.
  • the composition containing 244 cc obtained by the above method may be used as a raw material as it is, and known methods such as distillation, extractive distillation, azeotropic distillation, membrane separation, two-layer separation, adsorption, etc.
  • a material having an increased purity of 244 cc may be used as a raw material.
  • 244 cc and other compounds other than hydrogen may be supplied to the reactor containing the catalyst.
  • examples of other compounds include the above-mentioned 244 cc production raw materials and by-products produced in addition to 244 cc when 244 cc is produced.
  • by-products generated from the other compounds should be removed by known means such as distillation, extractive distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption. Is possible.
  • the other compound is preferably a compound that is inactive under the reaction conditions of the reaction between 244 cc and hydrogen.
  • Catalyst The catalyst used in the production method of the present invention is not particularly limited as long as it has a function of promoting the reaction between 244 cc and hydrogen.
  • Catalysts include Group 4 elements such as zirconium, Group 6 elements such as molybdenum, Group 7 elements such as rhenium, Group 8 elements such as iron, ruthenium and osmium, and Group 9 elements such as cobalt, rhodium and iridium. Examples thereof include metals such as elements, Group 10 elements such as palladium, nickel and platinum, and Group 11 elements such as gold.
  • the catalyst preferably contains at least one metal selected from platinum, palladium, rhodium, ruthenium, nickel, rhenium, molybdenum and zirconium from the viewpoint of improving the conversion rate of 244 cc and the selectivity of 254 cb.
  • the catalyst may be one of the above metals or two or more.
  • the catalyst composed of two or more metals may be a mixture of two or more metals or an alloy of two or more metals.
  • group 9 elements, group 10 elements palladium and platinum are particularly preferable in that the selectivity of 254cb is further improved.
  • the catalyst is preferably used by being supported on a carrier in order to improve the reactivity.
  • the carrier is not particularly limited as long as it can sufficiently carry the catalyst.
  • the carrier preferably includes at least one carrier selected from alumina, activated carbon, zirconia, and silica. As the carrier, alumina and activated carbon are preferable, and activated carbon is more preferable in that the conversion rate of 244 cc and the selectivity of 254 cb are further improved.
  • One type of carrier may be used alone, or two or more types may be used in combination.
  • the activated carbon examples include activated carbon obtained from plant raw materials such as wood, charcoal, fruit husk and coconut husk, and mineral raw materials such as peat, lignite and coal.
  • the carrier for supporting the hydrogenation catalyst activated carbon obtained from plant raw materials is preferable from the viewpoint of catalyst durability, and coconut shell activated carbon is particularly preferable.
  • the shape of the activated carbon may be any shape, and examples thereof include formed coal having a length of about 2 to 10 mm, crushed coal having a size of about 4 to 50 mesh, and granular coal.
  • alumina supporting palladium, activated carbon supporting palladium, activated carbon supporting platinum, and the like are preferable because the catalytic activity can be maintained for a long time.
  • the amount of the catalyst supported on the carrier is preferably 0.1 to 10% by mass, more preferably 0.5 to 3% by mass, more preferably 1.0 to 3% by mass is more preferable, and 1.5 to 2.5% by mass is most preferable. If the supported amount of the catalyst is at least the lower limit value, the reaction rate between the raw material and hydrogen and the conversion rate of 244 cc can be improved. If the supported amount of the catalyst is not more than the upper limit value, it is easy to suppress an excessive temperature rise of the catalyst due to the heat of reaction, and it is easy to reduce the production of by-products.
  • the reaction temperature when 244 cc and hydrogen are reacted in a gas phase is a temperature exceeding 200 ° C., preferably about 210 to 350 ° C., more preferably 250 to 300 ° C. If the reaction time is not less than the lower limit, the conversion rate of 244 cc is good, and if the reaction time is not more than the upper limit, the production of by-products can be suppressed and catalyst deterioration can be suppressed.
  • the reaction temperature refers to the temperature in the reactor where 244 cc reacts with hydrogen, more specifically, the temperature of the catalyst.
  • the contact time (reaction time) of 244 cc and hydrogen in the reactor is preferably about 4 to 120 seconds, more preferably about 8 to 100 seconds. If the contact time is equal to or greater than the lower limit value, the conversion rate of 244 cc is good, and if the contact time is equal to or less than the upper limit value, generation of by-products can be suppressed.
  • the contact time can be controlled by adjusting the supply amount (flow rate) of 244 cc and hydrogen to the reactor.
  • the reaction pressure can be normal pressure or under pressure, but it is preferable to carry out the reaction at normal pressure from the viewpoint of ease of industrial implementation.
  • a diluent gas may be further supplied into the reactor.
  • a diluent gas By supplying the diluting gas into the reactor and allowing it to flow and adjusting the concentration of 244 cc and hydrogen contacted with the catalyst, an excessive temperature rise of the catalyst due to the heat of reaction can be suppressed, and the reaction can be performed safely.
  • an inert gas such as nitrogen gas or a rare gas, or chlorofluorocarbons inert to the hydrogenation reaction of this embodiment can be used. Of these, nitrogen gas is preferred as the dilution gas. Dilution gas may be used individually by 1 type, and may use 2 or more types together.
  • the amount of dilution gas supplied into the reactor is easy to maintain the maximum temperature of the catalyst low, easily reduce the production of by-products, and suppress the deterioration of the catalyst and maintain the catalyst activity for a long time.
  • 0.1 mol or more is preferable with respect to 1 mol of 244cc, and 0.5 mol or more is more preferable.
  • the supply amount of the dilution gas is preferably 10 mol or less, more preferably 5 mol or less, and further preferably 3 mol or less with respect to 1 mol of 244 cc from the viewpoint of the recovery rate of the dilution gas.
  • the reactor used in the production method of the present embodiment is not particularly limited as long as it is a reactor that can be filled with a catalyst, preferably a catalyst support, to form a catalyst layer.
  • a catalyst preferably a catalyst support
  • Examples of the material for the reactor include glass, iron, nickel, and alloys containing these as main components.
  • the catalyst preferably a catalyst-supporting carrier
  • the catalyst may be accommodated in either a fixed bed type or a fluidized bed type.
  • a fixed bed type it may be either a horizontal fixed bed type or a vertical fixed bed type, but in a mixed gas composed of multiple components, the concentration distribution of each component is generated depending on the location due to the difference in specific gravity. It is preferable to use a vertical fixed floor type.
  • the 244 cc and hydrogen supplied to the reactor are kept as they are when they are mixed in advance, or they are usually mixed in the vicinity of the inlet of the reactor in the direction from the inlet side to the outlet when they are separated. It distribute
  • the product gas discharged from the outlet of the reactor contains 244 cc which is an unreacted raw material, hydrogen, various by-products and HCl in addition to 254 cb which is a target substance.
  • the by-product is, for example, a compound having 6 carbon atoms (C6 compound) in which 244 cc and 254 cb produced, 244 cc or 254 cb are bonded (C1 compound), a compound having 1 carbon (C1 compound) in which 244 cc or 254 cb is decomposed, or 2 carbon atoms.
  • Components other than 254cb in the outlet gas can be removed to the extent desired by distillation or the like. Further, 244 cc in the outlet gas can also be separated by distillation or the like. The separated 244 cc can be recycled as a production raw material of 254 cb by returning it to the reactor again. By recycling the unreacted raw material in this manner, the productivity of 254cb as a whole can be increased even when the conversion rate of 244cc in the reaction of 244cc and hydrogen is low.
  • reaction of 244cc and hydrogen when performing the manufacturing method of this embodiment in a liquid phase, you may perform reaction of 244cc and hydrogen using a solvent, and without solvent.
  • a solvent alcohols such as ethanol and isopropyl alcohol, acetic acid, ethyl acetate, pyridine and the like can be used as the solvent.
  • 244 cc can be liquefied by pressurization.
  • the reaction temperature is preferably from room temperature (about 25 ° C.) to about 150 ° C.
  • the reaction pressure is preferably from atmospheric pressure to about 5 MPa.
  • the reaction time is usually preferably about 1 to 72 hours.
  • the reaction time is preferably 1 to 9 hours.
  • 244cb can be easily obtained with high selectivity using 244cc that is easily available as a raw material, which is economically advantageous.
  • Examples 1 to 13 are examples of the present invention, and Examples 14 to 19 are comparative examples.
  • anhydrous aluminum chloride 25 g, 0.19 mol
  • CHCl 3 500 g, 4.19 mol
  • 224ca 100 g, 0.45 mol
  • reaction solution was cooled to room temperature and analyzed by gas chromatography.
  • the conversion of CHCl 3 was 33% and the selectivity of 224ca was 84%.
  • 102 g of molecular sieve 4A was added and stirred overnight to dehydrate.
  • 224ca (230 g, 1.05 mol) was manufactured by distilling and purifying the crude product obtained by separating the stirred crude liquid by filtration.
  • a gas phase reactor made of SUS316, diameter 25 mm, length 30 cm
  • activated carbon pellets 15 g supporting palladium at a ratio of 2.0 mass%
  • the temperature was raised to 130 ° C. while flowing nitrogen (N 2 ) gas (500 NmL / min).
  • N 2 nitrogen
  • the catalyst was dried until the moisture in the crude gas after passing through the reactor became 20 ppm or less.
  • the supply of nitrogen was stopped, the reaction tube was heated to 200 ° C. while supplying hydrogen (180 mL / min), and then 224ca (0.44 g / min) was supplied.
  • the crude gas from the reaction tube was washed with water, and then acid and moisture were removed through an alkali washing tower and molecular sieve 5A, and then collected in a cold trap.
  • the conversion rate of 224ca was 98%, and 234cc was obtained with a selectivity of 24% and 244cc with a selectivity of 70%.
  • a total of 500 g (2.27 mol) of 224ca was reacted above to give 298 g of crude product.
  • the obtained crude product was subjected to normal pressure rectification in a 25-stage rectification column to obtain 244 cc (210 g, 1.4 mol).
  • Example 1 First, a gas phase reactor (made of Inconel (registered trademark) 600, a reaction tube having a diameter of 26 mm and a length of 60 cm) including a cylindrical reaction tube equipped with a salt bath furnace is used with respect to 100% by mass of activated carbon (crushed coal). A palladium catalyst supporting palladium at a ratio of 0.5% by mass was filled to form a catalyst layer having a height of 40 cm. After heating the reactor to 250 ° C. in a salt bath furnace, 244 cc and hydrogen are supplied so that the ratio of the molar flow rate per unit time of 244 cc and hydrogen (H 2 ) (244 cc / H 2 ) is halved. For 30 seconds to obtain a product gas.
  • a gas phase reactor made of Inconel (registered trademark) 600, a reaction tube having a diameter of 26 mm and a length of 60 cm
  • a palladium catalyst supporting palladium at a ratio of 0.5% by mass was filled to form a catalyst layer
  • the generated gas was analyzed using gas chromatography (GC).
  • DB-1301 length 60 m ⁇ inner diameter 250 ⁇ m ⁇ thickness 1 ⁇ m, manufactured by Agilent Technologies
  • the conversion and selectivity were calculated by the following formulas.
  • Examples 2 to 8 The reaction was performed in the same manner as in Example 1 except that the reaction conditions were changed as shown in Tables 1 and 2. Tables 1 and 2 show the conversion rate of 244 cc and the selectivity of each compound produced together with the reaction conditions. In Examples 5 and 6, in addition to 244 cc, hydrogen, nitrogen was also supplied. The nitrogen supply molar ratio is also shown in Table 2.
  • Example 9 to 13 The reaction was performed in the same manner as in Example 1 except that the catalyst was changed to activated carbon pellets carrying palladium at a ratio of 2.0% by mass and the reaction conditions were changed as shown in Table 3. The conversion rate of 244 cc and the selectivity of each compound produced are shown in Table 3 together with the reaction conditions.
  • Example 14 to 17 The raw material was changed from 244cc to 214cb, and activated carbon pellets carrying palladium at a ratio of 2.0% by mass were used as a catalyst. Moreover, reaction conditions were set as shown in Table 4. The reaction was performed in the same manner as in Example 1 except for these. The composition of the product gas was analyzed by GC in the same manner as in Example 1, and the conversion rate of 214 cb as a raw material and the selectivity of each compound produced were calculated by the above formula.
  • Example 18 The reaction was carried out in the same manner as in Example 1 except that the reaction conditions were changed as shown in Table 5.
  • Table 5 shows the conversion rate of 244 cc and the selectivity of each compound produced together with the reaction conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

入手しやすい原料を用いて、簡易かつ高選択率で1,1,2,2-テトラフルオロプロパン(HFC-254cb)が得られる経済的に有利なHFC-254cbの製造方法を提供すること。触媒の存在下で、1-クロロ-1,1,2,2-テトラフルオロプロパン(HCFC-244cc)と水素を、200℃を超える温度で反応させることを特徴とする1,1,2,2-テトラフルオロプロパンの製造方法。

Description

1,1,2,2-テトラフルオロプロパンの製造方法
 本発明は、1,1,2,2-テトラフルオロプロパンの製造方法に関する。
 1,1,2,2-テトラフルオロプロパン(CHF-CF-CH(HFC-254cb))は硬質ポリウレタンフォームの発泡剤、溶剤、洗浄剤、エアゾール、冷媒、作動流体、噴射剤、またはそれらやフッ素樹脂の原料等として有用である。
 HFC-254cbの製造方法としては例えば、1,3,3-トリクロロ-1,1,2,2-テトラフルオロプロパン(CClF-CF-CHCl(HCFC-224ca)、以下、224caとも記す。)や1,1,1-トリクロロ-2,2,3,3-テトラフルオロプロパン(CHF-CF-CCl(HCFC-224cc)、以下、224ccとも記す。)を水素化触媒の存在下に水素と反応させることによってHFC-254cbを製造する方法が知られている(例えば、特許文献1参照。)。
 しかしながら、上記の224caを用いた反応では目的物である254cbの選択率が1%以下と低い。また、224ccを用いた反応では、254cbの選択率が低く、3-クロロ-1,1,2,2-テトラフルオロプロパン(CHF-CF-CHCl(HCFC-244ca)、以下、244caとも記す。)の副生量が多く、原料である224ccの入手が困難といった問題点がある。そこで、入手しやすい原料を用いて、簡易かつ高選択率で254cbが得られる経済的に有利な方法が求められている。
特開平2-204445号公報
 本発明は、入手しやすい原料である1-クロロ-1,1,2,2-テトラフルオロプロパン(CClF-CF-CH(HCFC-244cc)、以下、244ccとも記す。)を用いて、簡易かつ高選択率で1,1,2,2-テトラフルオロプロパン(CHF-CF-CH(HFC-254cb)、以下、254cbとも記す。)が得られる経済的に有利な254cbの製造方法を提供することを目的としている。
 本発明は、以下に示す構成の1,1,2,2-テトラフルオロプロパンの製造方法を提供する。
 [1]触媒の存在下で、1-クロロ-1,1,2,2-テトラフルオロプロパンと水素を、200℃を超える温度で反応させることを特徴とする1,1,2,2-テトラフルオロプロパンの製造方法。
 [2]前記触媒が、白金、パラジウム、ロジウム、ルテニウム、ニッケル、レニウム、モリブデンおよびジルコニウムからなる群から選ばれる少なくとも一種を含む[1]に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
 [3]前記触媒が、活性炭、アルミナ、ジルコニアおよびシリカからなる群から選ばれる少なくとも一種を含む担体に担持される、[2]に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
 [4]前記触媒の担持量が、前記担体の100質量%に対して0.1~10質量%である、[3]に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
 [5]前記反応の温度が210~350℃である[1]~[4]のいずれかに記載の1,1,2,2-テトラフルオロプロパンの製造方法。
 [6]前記反応における前記水素の量が、前記1-クロロ-1,1,2,2-テトラフルオロプロパン1モルに対して0.1~5.0モルである[1]~[5]のいずれかに記載の1,1,2,2-テトラフルオロプロパンの製造方法。
 [7]前記反応を気相で行い、反応時間が4~120秒である[1]~[6]のいずれかに記載の1,1,2,2-テトラフルオロプロパンの製造方法。
 [8]前記反応を希釈ガスの存在下で行う[1]~[7]のいずれかに記載の1,1,2,2-テトラフルオロプロパンの製造方法。
 [9]前記希釈ガスの量が、前記1-クロロ-1,1,2,2-テトラフルオロプロパン1モルに対して0.1~10モルである[8]に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
 [10]一般式:CClFCFCHCl(3-a)(式中、aは0~2の整数である。)を水素化触媒の存在下で水素と反応させて前記1-クロロ-1,1,2,2-テトラフルオロプロパンを得る工程をさらに有する、[1]~[9]のいずれかに記載の1,1,2,2-テトラフルオロプロパンの製造方法。
 本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記し、必要に応じて化合物名に代えてその略称を用いる。
 本発明によれば、入手しやすい244ccを原料として用いて、簡易かつ高選択率で254cbが得られる経済的に有利な254cbの製造方法を提供することができる。
 以下、本発明について、実施形態を参照しながら詳細に説明する。本実施形態は、触媒の存在下、244ccと水素を、200℃を超える温度で反応させて、254cbを製造する方法である。
 本実施形態の製造方法において、244ccと水素を触媒の存在下で反応させる方法は、反応温度以外は特に制限されない。例えば、244ccと水素の反応は、触媒が配設された反応の場(通常、触媒が収容された反応器内)に、244ccと水素とを供給することで行われる。以下、触媒を収容した反応器内に244ccと水素を供給して反応させる方法について説明するが、これに限定されない。
 244ccと水素との反応は、液相で行ってもよいし、気相で行ってもよい。反応時間を短くすることができ、副生成物の生成を抑制できるといった利点があるため、気相で反応させることが好ましい。
 本実施形態の製造方法は、バッチ式、連続式のどちらの方法でも行うことができる。連続式の製造方法において、触媒が収容された反応器への244ccおよび水素の供給、上記反応器内での244ccおよび水素と触媒との接触による反応、該反応により得られた254cbの上記反応器からの取り出しは、いずれも連続的に行われる。
 触媒が収容された反応器内への244ccおよび水素の供給のタイミングは、バッチ式、連続式のどちらの方法においても、特に限定されない。すなわち、いずれか一方を先に、他方を後に供給してもよいし、両方同時に供給してもよい。244ccと水素のいずれか一方を先に供給する場合は、先に供給された成分を反応器内で滞留させ、該反応器に、他方の成分を供給することで、244ccおよび水素と、触媒とを所定の時間接触させればよい。また、反応器内に244ccおよび水素を同時に供給する場合、反応器への244ccおよび水素の供給は別々の供給管から行ってもよく、予め混合して1つの供給管から行ってもよい。また、連続式の場合、244ccの供給初期には244ccと触媒の吸着熱が発生するため、244ccを先に供給し、吸着熱が収まった後に水素を添加する方が、反応温度の制御の点で好ましい。
 本実施形態の製造方法は、製造効率の点で連続式の方法であることが好ましい。以下、特に断らない限り、本実施形態の製造方法を、連続式で、気相で244ccと水素を反応させる方法について説明する。
 本実施形態の製造方法において、用いられる水素の量は、244ccの1モルに対して0.1~5.0モル程度が好ましく、0.5~3.0モルがより好ましい。水素の量が前記下限値以上であれば、転化率が向上する。また、水素の量が前記上限値以下であれば、副生成物の生成を抑制できる。また、水素の量が、前記上限値以下であれば、水素が未反応のまま反応器内を通流することを抑えられるため、生産面や経済面で有利となりやすい。なお、連続式で反応させる場合、244ccと水素のモル比は、単位時間当たりのモル流量の比で表わされる。
(244cc)
 本実施形態の製造方法において用いられる244ccは、一般式(A):CClFCFCHCl(3-a)(式中、aは0~2の整数である。)で表わされる化合物(以下、化合物(A)と記す。)を、水素化触媒の存在下で水素と接触させて還元反応させることによって、容易に製造できる。この還元反応においては、aが0~2の整数のいずれかである化合物(A)のうち1種の化合物を単独で原料としてもよいし、aが異なる2種以上の化合物(A)を原料としてもよい。
 上記一般式(A)において、aが0の化合物は、1,1,1,3-テトラクロロ-2,2,3,3-テトラフルオロプロパン(CClF-CF-CCl(CFC-214cb)、以下、214cbともいう。)であり、aが1の化合物は、224caであり、aが2の化合物は、1,3-ジクロロ-1,1,2,2-テトラフルオロプロパン(CClF-CF-CClH(HCFC-234cc)、以下、234ccとも記す。)である。
 214cbと224caは、テトラフルオロエチレン(TFE)と、CClおよびCHClのいずれか一方または両方を、例えば、塩化アルミニウムなどのルイス酸触媒の存在下で反応させて得ることができる。
 234ccは、上記で得られた214cbおよび224caのいずれか一方または両方を例えば、パラジウム触媒の存在下で水素化させるか、またはTFEとCHClを上記同様にルイス酸触媒の存在下で反応させて得ることができる。
 これらの方法で得られた上記一般式(A)で表わされる化合物、具体的には、214cb、224ca、234cc等を、例えばパラジウム触媒等の水素化触媒の存在下で水素と接触させて還元反応させることによって、244ccを含む組成物を得ることができる。
 上記の方法で得られた244ccを含む組成物中には、244ccの他、244ccの製造原料であるTFE、214cb、224ca、234cc、CHCl、CCl、CHCl等が含まれることがある。本実施形態の製造方法では、上記方法で得られた244ccを含む組成物をそのまま原料として用いてもよく、蒸留、抽出蒸留、共沸蒸留、膜分離、二層分離、吸着等の公知の方法により、244ccの純度を高めたものを原料として用いてもよい。244ccの転化率、254cbの選択率を向上させる点では、214cb、224ca、234cc等を除去して、244ccの純度を高めたものを本実施形態の製造方法の原料として用いることが好ましい。
 本実施形態の製造方法において、触媒を収容した反応器には、244ccと水素以外のその他の化合物が供給されてもよい。その他の化合物としては、前述の244ccの製造原料や、244ccを製造する際に244cc以外に生成する副生物等である。なお、上記のその他の化合物が供給される場合、その他の化合物から生成する副生成物は、蒸留、抽出蒸留、共沸蒸留、膜分離、二層分離、吸着等の既知の手段により除去することが可能である。その他の化合物としては、244ccと水素との反応の反応条件において不活性な化合物であることが好ましい。
(触媒)
 本発明の製造方法に用いる触媒は、244ccと水素との反応を促進する作用を有する触媒であれば特に制限されない。触媒としては、ジルコニウムなどの第4族元素、モリブデン等の第6族元素、レニウム等の第7族元素、鉄、ルテニウム、オスミウム等の第8族元素、コバルト、ロジウム、イリジウム等の第9族元素、パラジウム、ニッケル、白金等の第10族元素、金等の第11族元素などの金属が挙げられる。
 なかでも、触媒としては、244ccの転化率および254cbの選択率を向上させる点から、白金、パラジウム、ロジウム、ルテニウム、ニッケル、レニウム、モリブデン、ジルコニウムから選ばれる少なくとも一種の金属を含むことが好ましい。
 触媒は、上記金属の1種であってもよく、2種以上であってもよい。2種以上の金属で構成される触媒は、2種以上の金属の混合物であってもよく、2種以上の金属の合金であってもよい。
 触媒としては、254cbの選択率をさらに向上させる点で、第9族元素、第10族元素であるパラジウム、白金が特に好ましい。
 また、触媒は、反応性を向上させるために、担体に担持させて用いることが好ましい。担体としては、触媒を十分に担持できる担体であれば特に制限されない。担体としては、アルミナ、活性炭、ジルコニア、シリカから選ばれる少なくとも一種の担体を含むことが好ましい。担体としては244ccの転化率および254cbの選択率をさらに向上させる点で、アルミナ、活性炭が好ましく、活性炭がさらに好ましい。担体は1種を単独で用いてもよく、2種以上を併用してもよい。
 活性炭としては、木材、木炭、果実殻、ヤシ殻等の植物原料や、泥炭、亜炭、石炭等の鉱物原料等から得られる活性炭が挙げられる。水素化触媒を担持させる担体としては、触媒耐久性の点から、植物原料から得られる活性炭が好ましく、ヤシ殻活性炭が特に好ましい。活性炭の形状としては、どのような形状であってもよく、長さ2~10mm程度の成形炭、4~50メッシュ程度の破砕炭、粒状炭等が挙げられる。
 担体に担持させた触媒の具体例としては、パラジウムを担持したアルミナ、パラジウムを担持した活性炭、白金を担持した活性炭等が、触媒活性を長時間維持できる点で、好ましい。
 触媒を担体に担持させて用いる場合、担体に対する触媒の担持量は、担体の100質量%に対し0.1~10質量%が好ましく、0.5~3質量%がより好ましく、1.0~3質量%がさらに好ましく、1.5~2.5質量%が最も好ましい。触媒の担持量が下限値以上であれば、原料と水素の反応率および244ccの転化率を向上させることができる。触媒の担持量が上限値以下であれば、反応熱による触媒の過剰な温度上昇を抑制しやすく、副生成物の生成を低減しやすい。
(反応条件)
 本実施形態の製造方法において、244ccと水素を気相で反応させる際の反応温度は、200℃を超える温度であり、210~350℃程度が好ましく、250~300℃がさらに好ましい。反応時間が前記下限値以上であれば、244ccの転化率が良好であり、前記上限値以下であれば、副生成物の生成を抑え、触媒の劣化を抑制できる。なお、反応温度とは、244ccと水素を反応させる反応器内の温度、より具体的には、触媒の温度のことをいう。
 反応器内での244ccと水素の接触時間(反応時間)は4~120秒程度が好ましく、8~100秒程度がより好ましい。接触時間が前記下限値以上であれば、244ccの転化率が良好であり、前記上限値以下であれば、副生成物の生成を抑えることができる。接触時間は、244ccおよび水素の反応器への供給量(流量)を調節することで制御できる。
 反応圧力は、常圧でも加圧下でも可能であるが、工業的な実施のしやすさの点から、常圧で反応を行うことが好ましい。
反応器内には、244ccと水素以外にさらに希釈ガスを供給してもよい。希釈ガスを反応器内に供給して流通させ、触媒に接触される244ccおよび水素の濃度を調節することで、反応熱による触媒の過剰な温度上昇を抑制でき、安全に反応させることができる。希釈ガスとしては、窒素ガス、希ガスなどの不活性ガス、本実施形態の水素化反応に不活性なフロン類などを用いることができる。なかでも、希釈ガスとしては窒素ガスが好ましい。希釈ガスは1種を単独で用いてもよく、2種以上を併用してもよい。
 反応器内への希釈ガスの供給量は、触媒の最高温度を低く維持しやすく、副生成物の生成を低減しやすい点、および触媒の劣化を抑制し、触媒活性を長時間維持できる点から、244ccの1モルに対して、0.1モル以上が好ましく、0.5モル以上がより好ましい。また、希釈ガスの供給量は、該希釈ガスの回収率の点から、244ccの1モルに対して、10モル以下が好ましく、5モル以下がより好ましく、3モル以下がさらに好ましい。
 本実施形態の製造方法に用いる反応器としては、触媒、好ましくは触媒担持担体を充填して触媒層を形成できる反応器であれば特に限定されない。反応器の材質としては、例えば、ガラス、鉄、ニッケル、またはこれらを主成分とする合金等が挙げられる。
 このような反応器内に上記触媒(好ましくは触媒担持担体)が収容されて、反応の場としての触媒層が形成される。触媒(好ましくは触媒担持担体)は、固定床型または流動床型のいずれの形式で収容されていてもよい。また、固定床型である場合、水平固定床型または垂直固定床型のいずれであってもよいが、多成分より構成される混合ガスにおいて、比重差により場所によって各成分の濃度分布が生じることを防ぎやすいことから、垂直固定床型であることが好ましい。
 反応器に供給された244ccと水素は、予め混合されている場合はそのまま、またその供給が別々である場合は、通常、反応器入口付近で混合されて、反応器の入口側から出口方向に触媒層を通過するように流通する。
 反応器の出口から排出される生成ガスには目的物質である254cbの他に、未反応原料である244ccと水素、種々の副生成物およびHClが含まれる。副生成物は、例えば、244ccと生成した254cb、244cc同士または254cb同士が結合した炭素数6の化合物(C6化合物)、244ccや254cbが分解した炭素数1の化合物(C1化合物)または炭素数2の化合物(C2化合物)、プロパン、1-クロロ-1,1,2-トリフルオロプロパン(CClF-CHF-CH(HCFC-253ec)、以下、253ecとも記す。)、1,1,2-トリフルオロプロパン(CHF-CHF-CH(HCFC-263eb)、以下、263ebとも記す。)、1,2,2-トリフルオロプロパン(CHF-CF-CH(HCFC-263ca)、以下、263caとも記す。)、2,2-ジフルオロプロパン(CH-CF-CH(HCFC-272ca)、以下、272caとも記す。)等である。生成ガスは、HClを除去するために、通常、アルカリ洗浄された後、脱水処理が施される。本明細書においては、このようにしてHClが除去された後に得られるガスを出口ガスという。
 出口ガス中の254cb以外の成分は、蒸留などによって望まれる程度に除去することができる。また、出口ガス中の244ccも蒸留などによって分離することができる。分離した244ccは、再び反応器に戻すことで、254cbの製造原料としてリサイクルすることができる。このように未反応原料をリサイクルすることで、244ccと水素の反応における244ccの転化率が低い場合であっても、全体として254cbの生産性を高くすることができる。
 なお、本実施形態の製造方法を液相で行う場合には、244ccと水素の反応は、溶媒を用いて行ってもよく、無溶媒で行ってもよい。244ccと水素の反応を、溶媒を用いて行う場合、溶媒としては、エタノール、イソプロピルアルコール等のアルコール類、酢酸、酢酸エチル、ピリジン等を用いることができる。無溶媒で行う場合、加圧して244ccを液化させて行うことができる。本実施形態の製造方法を液相で行う場合の反応温度は、室温(25℃程度)~150℃程度が好ましく、反応圧力は常圧~5MPa程度が好ましい。反応時間は、通常1~72時間程度が好ましい。本実施形態の製造方法を、液相で、かつバッチ式で行う場合の反応時間は1~9時間が好ましい。
 以上、本実施形態の製造方法によれば、入手しやすい244ccを原料として用いて、簡易かつ高選択率で254cbが得られるため、経済的に有利である。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。例1~13は本発明の実施例であり、例14~19は比較例である。
(1)224caの製造
 下記反応式に従って、次の手順で、1,1,3-トリクロロ-2,2,3,3-テトラフルオロプロパン(224ca)を製造した。
 CHCl + TFE → 224ca
 まず、500mLステンレス製オートクレーブに、無水塩化アルミニウム(25g、0.19mol)、CHCl(500g、4.19mol)および224ca(100g、0.45mol)を入れて撹拌しながら減圧脱気した後、TFEをオートクレーブ内が0.05MPaとなるまで供給し、オートクレーブ内を80℃に昇温した。その後、オートクレーブ内の圧力を0.8MPaで維持しながら、TFEをさらに供給した。オートクレーブに供給されたTFEは総量で0.17kg(1.65mol)であった。
 さらに1時間撹拌した後、室温まで冷却して、反応液をガスクロマトグラフィで分析したところ、CHClの転化率は33%であり、224caの選択率は84%であった。反応後の液を濾別し得られた粗液に、モレキュラーシーブ4Aを102g加え一晩撹拌して、脱水した。撹拌後の粗液を濾別し得られた粗生成物を蒸留精製することにより224ca(230g、1.05mol)を製造した。
(2)244ccの製造
 上記した方法で得られた224caを原料として、下記の方法で3-クロロ-1,1,2,2-テトラフルオロプロパン(244cc)を得た。
 まず、電気炉を備えた円筒形反応管からなる気相反応装置(SUS316製、直径25mm、長さ30cm)に2.0質量%の割合でパラジウムを担持した活性炭ペレット(15g)を充填し、窒素(N)ガス(500NmL/min)を流しながら130℃まで昇温した。反応器を大気圧(1気圧)に維持しながら、反応器通過後の粗ガス中の水分が20ppm以下になるまで触媒を乾燥した。触媒の乾燥終了後、窒素の供給を停止し、水素(180mL/min)を供給しながら反応管を200℃に加熱した後、224ca(0.44g/min)を供給した。
 反応管からの粗ガスは水洗後、アルカリ洗浄塔およびモレキュラーシーブ5Aを通して酸分と水分とを除去した後、コールドトラップに捕集した。捕集した粗生成物をガスクロマトグラフィで分析したところ、224caの転化率は98%であり、234ccが選択率24%、244ccが選択率70%で得られた。合計500g(2.27mol)の224caを上記で反応させて、298gの粗生成物を得た。
 得られた粗生成物を25段精留塔で常圧精留して、244cc(210g、1.4mol)を得た。
[例1]
 まず、塩浴炉を備えた円筒形反応管からなる気相反応器(インコネル(登録商標)600製、直径26mm、長さ60cmの反応管)に活性炭(破砕炭)の100質量%に対して0.5質量%の割合でパラジウムを担持したパラジウム触媒を充填し、高さ40cmの触媒層を形成した。塩浴炉によって反応器を250℃に加熱した後、244ccおよび水素を供給し、244ccと水素(H)の単位時間あたりのモル流量の比(244cc/H)が1/2となるように30秒間触媒と接触させて生成ガスを得た。
 生成ガスの分析は、ガスクロマトグラフィー(GC)を用いて行った。カラムには、DB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー株式会社製)を用いた。GC分析結果から、下記式で転化率、選択率を算出した。
 原料化合物の転化率(%)={(反応器に供給した原料化合物の量(モル)-生成ガスに含まれる原料化合物の量(モル))/反応器に供給した原料化合物の量(モル)}×100
 生成化合物の選択率(%)={生成ガスに含まれる生成化合物の量(モル)/反応で消費された原料化合物の量(モル)}×100
 原料化合物である244ccの転化率、生成した各化合物の選択率を、反応条件(触媒の種類、反応器への244ccと水素の供給モル比、接触時間、塩浴炉の温度(反応温度))と併せて表1に示す。
[例2~8]
 表1、2に示すように反応条件を変更した以外は、例1と同様にして反応を行った。244ccの転化率、生成した各化合物の選択率を、反応条件と併せて表1、2に示す。なお、例5、6においては、244cc、水素に加え、窒素も供給した。窒素の供給モル比も併せて表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[例9~13]
 触媒を、2.0質量%の割合でパラジウムを担持した活性炭ペレットに変更し、表3に示すように反応条件を変更した以外は、例1と同様にして反応を行った。244ccの転化率、生成した各化合物の選択率を、反応条件と併せて表3に示す。
Figure JPOXMLDOC01-appb-T000003
[例14~17]
 原料を244ccから214cbに変更し、触媒として2.0質量%の割合でパラジウムを担持した活性炭ペレットを用いた。また、表4に示すように反応条件を設定した。これら以外は例1と同様にして反応を行った。例1と同様にGCによって生成ガスの組成を分析し、原料である214cbの転化率、生成した各化合物の選択率を上記式によって算出した。
 214cbの転化率、生成した各化合物の選択率を、反応条件(触媒の種類、反応器への214cb、水素および窒素の供給モル比、接触時間、塩浴炉の温度(反応温度))と併せて表4に示す。
Figure JPOXMLDOC01-appb-T000004
[例18~19]
 表5に示すように反応条件を変更した以外は、例1と同様にして反応を行った。244ccの転化率、生成した各化合物の選択率を、反応条件と併せて表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表1~5より、例1~13の製造方法(実施例)では、例14~19の製造方法(比較例)に比べて、入手しやすい244ccを用いて、88%以上の高選択率で254cbが得られることが分かる。

Claims (10)

  1.  触媒の存在下で、1-クロロ-1,1,2,2-テトラフルオロプロパンと水素を、200℃を超える温度で反応させることを特徴とする、1,1,2,2-テトラフルオロプロパンの製造方法。
  2.  前記触媒が、ルテニウム、ロジウム、パラジウム、ニッケル、レニウム、モリブデン、白金およびジルコニウムからなる群から選ばれる少なくとも一種を含む、請求項1に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
  3.  前記触媒が、活性炭、アルミナ、ジルコニアおよびシリカからなる群から選ばれる少なくとも一種を含む担体に担持される、請求項2に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
  4.  前記触媒の担持量が、前記担体の100質量%に対して0.1~10質量%である、請求項3に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
  5.  前記反応の温度が、210~350℃である、請求項1~4のいずれか一項に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
  6.  前記反応における前記水素の量が、前記1-クロロ-1,1,2,2-テトラフルオロプロパン1モルに対して0.1~5.0モルである、請求項1~5のいずれか一項に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
  7.  前記反応を気相で行い、前記水素と前記1-クロロ-1,1,2,2-テトラフルオロプロパンの接触時間が4~120秒である、請求項1~6のいずれか一項に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
  8.  前記反応を希釈ガスの存在下で行う、請求項1~7のいずれか一項に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
  9.  前記希釈ガスの量が、前記1-クロロ-1,1,2,2-テトラフルオロプロパン1モルに対して0.1~10モルである、請求項8に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
  10.  一般式:CClFCFCHCl(3-a)(式中、aは0~2の整数である。)を水素化触媒の存在下で水素と反応させて前記1-クロロ-1,1,2,2-テトラフルオロプロパンを得る工程をさらに有する、請求項1~9のいずれか一項に記載の1,1,2,2-テトラフルオロプロパンの製造方法。
PCT/JP2018/002786 2017-01-30 2018-01-29 1,1,2,2-テトラフルオロプロパンの製造方法 Ceased WO2018139654A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564693A JPWO2018139654A1 (ja) 2017-01-30 2018-01-29 1,1,2,2−テトラフルオロプロパンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014198 2017-01-30
JP2017-014198 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139654A1 true WO2018139654A1 (ja) 2018-08-02

Family

ID=62979450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002786 Ceased WO2018139654A1 (ja) 2017-01-30 2018-01-29 1,1,2,2-テトラフルオロプロパンの製造方法

Country Status (2)

Country Link
JP (1) JPWO2018139654A1 (ja)
WO (1) WO2018139654A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185811A1 (ja) * 2023-03-08 2024-09-12 Agc株式会社 含フッ素化合物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008753A1 (en) * 1989-02-02 1990-08-09 Asahi Glass Company Ltd. Process for producing a hydrogen-containing 2,2-difluoropropane
JPH02207037A (ja) * 1989-02-06 1990-08-16 Asahi Glass Co Ltd ジフルオロメチレン基を有するテトラヒドロフルオロプロパン類およびテトラヒドロクロロフルオロプロパン類の製造方法
JPH0383937A (ja) * 1989-08-25 1991-04-09 Asahi Glass Co Ltd ジクロロペンタフルオロプロパンの製法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008753A1 (en) * 1989-02-02 1990-08-09 Asahi Glass Company Ltd. Process for producing a hydrogen-containing 2,2-difluoropropane
JPH02207037A (ja) * 1989-02-06 1990-08-16 Asahi Glass Co Ltd ジフルオロメチレン基を有するテトラヒドロフルオロプロパン類およびテトラヒドロクロロフルオロプロパン類の製造方法
JPH0383937A (ja) * 1989-08-25 1991-04-09 Asahi Glass Co Ltd ジクロロペンタフルオロプロパンの製法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185811A1 (ja) * 2023-03-08 2024-09-12 Agc株式会社 含フッ素化合物の製造方法

Also Published As

Publication number Publication date
JPWO2018139654A1 (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
US9061957B2 (en) Method for producing fluorinated organic compounds
EP2736864B1 (en) Process for preparing 2,3,3,3-tetrafluoropropene
US8445736B2 (en) Catalytic gas phase fluorination of 1230xa to 1234yf
JP5713016B2 (ja) 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法
US8530711B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
JP2022105072A (ja) HCFO-1233zdの製造方法
EP2371793A1 (en) Processes for production of 1,1-dichloro-2,3,3,3-tetra- fluoropropene and 2,3,3,3-tetrafluoropropene
JP2019206600A (ja) 1−クロロ−1,2−ジフルオロエチレンの製造方法
CN102471192A (zh) 2-氯-3,3,3-三氟丙烯的制造方法
JP6477712B2 (ja) ハイドロフルオロオレフィンの製造方法
WO2011162339A1 (ja) 2,3,3,3-テトラフルオロプロペンの製造方法
JP5817591B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP5533002B2 (ja) 3,3,3−トリフルオロプロペンの製造方法
JP2016056132A (ja) 1,2−ジフルオロエチレンの製造方法
TW201238658A (en) Selective catalytic dehydrochlorination of hydrochlorofluorocarbons
EP0703208A1 (en) Process for producing 1,1,1,3,3-pentafluoropropane, process for producing 2,2,3-trichloro-1,1,1,3,3-pentafluoropropane, and process for producing 2,2,3-trichloro-1,1,1-trifluoropropane
KR100798734B1 (ko) 클로로플루오로카본의 제조 및 정제를 위한 재료 및 방법
US6291729B1 (en) Halofluorocarbon hydrogenolysis
EP2586763A1 (en) Process for preparation of 1,1-dichloro-2,2,3,3,3-penta- fluoropropane
WO2018139654A1 (ja) 1,1,2,2-テトラフルオロプロパンの製造方法
US6235950B1 (en) Method of making hydrofluorocarbons
WO2022163746A1 (ja) 水素還元反応によるハイドロフルオロカーボンの製造方法
JP3794859B2 (ja) パーハロゲン化シクロペンタンの製造方法
JPH11335309A (ja) フッ素化不飽和炭化水素の製造方法
JP4064727B2 (ja) 1,1,1−トリフルオロアセトンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745224

Country of ref document: EP

Kind code of ref document: A1