WO2018139604A1 - 電源制御方法、電源制御装置及び電源制御システム - Google Patents
電源制御方法、電源制御装置及び電源制御システム Download PDFInfo
- Publication number
- WO2018139604A1 WO2018139604A1 PCT/JP2018/002560 JP2018002560W WO2018139604A1 WO 2018139604 A1 WO2018139604 A1 WO 2018139604A1 JP 2018002560 W JP2018002560 W JP 2018002560W WO 2018139604 A1 WO2018139604 A1 WO 2018139604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power demand
- storage battery
- pattern
- demand pattern
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000000446 fuel Substances 0.000 description 44
- 238000004891 communication Methods 0.000 description 26
- 230000005611 electricity Effects 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000004044 response Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/12—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- This disclosure relates to a power control method, a power control device, and a power control system.
- control for reducing the peak value of purchased power in a predetermined time (for example, 30 minutes) by performing a discharging operation of a storage battery device is known (for example, Patent Document 1).
- the charging operation and the discharging operation of the storage battery device are determined based on the estimation result of the power demand.
- the power control method includes a first distributed power source having a first priority as a cost priority, and a second distributed power source having a second priority lower than the first priority as the cost priority. And a method used in a facility having a storage battery device having a third priority lower than the second priority as the cost priority.
- the power control method indicates information indicating an appropriate time zone as a time zone for performing the charging operation of the storage battery device and an appropriate power source as a power source used for the charging operation of the storage battery device for each of two or more power demand patterns.
- Step A for managing information, and a power demand pattern corresponding to the facility is identified from the two or more power demand patterns, and is identified in the appropriate time zone managed for the identified power demand pattern Step B of performing the charging operation of the storage battery device using the appropriate power source managed for the power demand pattern.
- the power supply control device includes a first distributed power source having a first priority as a cost priority, a second distributed power source having a second priority lower than the first priority as the cost priority, and It is an apparatus used in a facility having a storage battery device having a third priority lower than the second priority as the cost priority.
- the power supply control device indicates information indicating an appropriate time zone as a time zone for performing the charging operation of the storage battery device and an appropriate power source as a power source used for the charging operation of the storage battery device for each of two or more power demand patterns.
- a management unit that manages information; and a power demand pattern corresponding to the facility is identified from the two or more power demand patterns, and is identified in the appropriate time zone managed for the identified power demand pattern
- a power supply control system includes a first distributed power supply having a first priority as a cost priority and a second distributed power supply having a second priority lower than the first priority as the cost priority. And a storage battery device having a third priority lower than the second priority as the cost priority, and a power control device for controlling at least the storage battery device.
- the power supply control device indicates information indicating an appropriate time zone as a time zone for performing the charging operation of the storage battery device and an appropriate power source as a power source used for the charging operation of the storage battery device for each of two or more power demand patterns. Manage information.
- the power control device identifies a power demand pattern corresponding to the facility from the two or more power demand patterns, and identifies the power demand identified in the appropriate time zone managed for the identified power demand pattern The storage battery device is charged using the appropriate power source managed for the pattern.
- FIG. 1 is a diagram illustrating a power supply control system 100 according to an embodiment.
- FIG. 2 is a diagram illustrating a facility 300 according to an embodiment.
- FIG. 3 is a diagram illustrating a power management server 200 according to an embodiment.
- FIG. 4 is a diagram illustrating the local control device 360 according to an embodiment.
- FIG. 5 is a diagram for explaining a power demand pattern according to an embodiment.
- FIG. 6 is a diagram for explaining a power demand pattern according to an embodiment.
- FIG. 7 is a diagram for explaining a power demand pattern according to an embodiment.
- FIG. 8 is a diagram for explaining a power demand pattern according to an embodiment.
- FIG. 9 is a diagram for explaining a power demand pattern according to an embodiment.
- FIG. 10 is a diagram illustrating a power control method according to an embodiment.
- the present disclosure provides a power supply control method, a power supply control apparatus, and a power supply control system that enable an appropriate power supply to be selected as a power supply used for a charging operation of a storage battery device by a simple method.
- the power supply control system 100 includes a power management server 200 and a facility 300.
- a facility 300A to a facility 300C are illustrated.
- Each facility 300 is connected to the power system 110.
- the flow of power from the power system 110 to the facility 300 is referred to as tidal current, and the flow of power from the facility 300 to the power system 110 is referred to as reverse power flow.
- the power management server 200 and the facility 300 are connected to the network 120.
- the network 120 may provide a line between the power management server 200 and the facility 300.
- the network 120 is, for example, the Internet.
- the network 120 may provide a dedicated line such as a VPN (Virtual Private Network).
- the power management server 200 is a server managed by a business operator such as a power generation business, a power transmission / distribution business, or a retail business.
- the power management server 200 transmits, to the local control device 360 provided in the facility 300, a control message instructing control of a distributed power source (for example, a solar cell device, a storage battery device, and a fuel cell device) provided in the facility 300.
- a distributed power source for example, a solar cell device, a storage battery device, and a fuel cell device
- the power management server 200 may transmit a power flow control message (for example, DR; Demand Response) that requests control of power flow, or may transmit a reverse power flow control message that requests control of reverse power flow.
- the power management server 200 may transmit a power control message for controlling the operating state of the distributed power.
- the degree of control of the tidal current or the reverse tidal current may be represented by an absolute value (for example, OO kW) or a relative value (for example, OO%).
- control degree of a tidal current or a reverse tidal current may be represented by two or more levels.
- the degree of control of the tidal current or reverse power flow may be represented by a power rate (RTP: Real Time Pricing) determined by the current power supply / demand balance, or a power rate (TOU: Time Of Use) determined by the past power supply / demand balance May be represented by
- the facility 300 includes a router 500 as shown in FIG.
- the router 500 is connected to the power management server 200 via the network 120.
- the router 500 forms a local area network and is connected to each device (for example, a power meter 321, a PCS 331, a PCS 332, a PCS 333 load 350, a local control device 360, and the like).
- a solid line indicates a power line
- a dotted line indicates a signal line.
- the embodiment is not limited to this, and a signal may be transmitted through a power line.
- the facility 300 includes a solar cell 311, a storage battery 312, a fuel cell 313, a hot water supply device 314, a power meter 321, a PCS 331, a PCS 332, a PCS 333, a distribution board 340, a load 350, and a local control device. 360.
- the solar cell 311 is a device that generates power in response to light reception.
- the solar cell 311 outputs the generated DC power.
- the amount of power generated by the solar cell 311 changes according to the amount of solar radiation applied to the solar cell 311.
- the storage battery 312 is a device that stores electric power.
- the storage battery 312 outputs the accumulated DC power.
- the storage battery 312 may be a power source used for VPP (Virtual Power Plant).
- the fuel cell 313 is a battery that generates electric power using fuel.
- the fuel may be, for example, a material containing hydrogen or a material containing alcohol.
- the fuel cell 313 includes, for example, a solid oxide fuel cell (hereinafter referred to as SOFC: Solid Oxide Fuel Cell), a solid polymer fuel cell (hereinafter referred to as PEFC: Polymer Electrolyte Fuel Cell), a phosphoric acid fuel cell (hereinafter referred to as PAFC). : Phosphoric Acid Fuel Cell) or Molten Carbonate Fuel Cell (hereinafter referred to as MCFC: Molten Carbonate Fuel Cell).
- SOFC Solid Oxide Fuel Cell
- PEFC Polymer Electrolyte Fuel Cell
- PAFC phosphoric acid fuel cell
- MCFC Molten Carbonate Fuel Cell
- the hot water supply device 314 has a hot water storage tank, and uses the exhaust heat of the fuel cell 313 to maintain or increase the amount of water (hot water) stored in the hot water storage tank, or to store water in the hot water storage tank. Maintain or increase the temperature of (hot water). Such control may be referred to as boiling water stored in the hot water tank.
- the wattmeter 321 is a wattmeter that measures the power (power demand) supplied from the power system 110 to the facility 300.
- the wattmeter 321 may be a CT (Current Transformer) that measures current from the power system 110 to the facility 300.
- the power demand is a value obtained by subtracting the output power of the distributed power source from the power consumption of the load 350.
- the storage battery 312 may be considered as one of the loads 350.
- the PCS 331 is a power conversion device (PCS; Power Conditioning System) connected to the solar cell 311.
- the PCS 331 converts DC power from the solar cell 311 into AC power.
- the PCS 331 may output the converted AC power to the first distribution board 340A.
- the PCS 331 may output the converted AC power to the storage battery 312.
- PCS 332 is a power conversion device connected to the storage battery 312.
- the PCS 332 converts DC power from the storage battery 312 into AC power.
- the PCS 332 outputs the converted AC power to the first distribution board 340A.
- the PCS 332 converts AC power to the storage battery 312 into DC power.
- the PCS 332 outputs the converted DC power to the storage battery 312.
- PCS333 is a power converter connected to the fuel cell 313.
- the PCS 333 converts DC power from the fuel cell 313 into AC power.
- the PCS 333 may output the converted AC power to the first distribution board 340A.
- the PCS 333 may output the converted AC power to the storage battery 312.
- Distribution board 340 is connected to main power line 10L.
- the distribution board 340 includes a first distribution board 340A and a second distribution board 340B.
- the first distribution board 340A is connected to the power system 110 via the main power line 10LA.
- the first distribution board 340A is connected to the solar cell 311 via the PCS 331, is connected to the storage battery 312 via the PCS 332, and is connected to the fuel cell 313 via the PCS 333.
- the first distribution board 340 ⁇ / b> A may supply AC power supplied from the power system 110 to the storage battery 312 via the PCS 332.
- the first distribution board 340A may supply the AC power supplied from the PCS 331 to the power system 110 via the main power line 10LA as a reverse power flow.
- the first distribution board 340A may supply the AC power supplied from the PCS 332 to the power system 110 via the main power line 10LA as a reverse power flow.
- the first distribution board 340A may supply the AC power supplied from the PCS 333 to the power system 110 via the main power line 10LA as a reverse power flow.
- the first distribution board 340A supplies the power output from the PCS 331 to PCS 333 and the power supplied from the power system 110 to the second distribution board 340B via the main power line 10LB.
- the second distribution board 340B distributes the power supplied via the main power line 10LB to each device.
- Each device is, for example, a load 350, a local control device 360, and the like.
- the load 350 is a device that consumes power supplied through the power line.
- the load 350 includes devices such as an air conditioner, a lighting device, a refrigerator, and a television.
- the load 350 may be a single device or may include a plurality of devices.
- the local control device 360 is a device (EMS; Energy Management System) that manages power information indicating power in the facility 300.
- the power in the facility 300 is the power flowing through the facility 300, the power purchased by the facility 300, or the power sold from the facility 300. Accordingly, the local control device 360 manages at least the PCS 331 to PCS 333.
- the local control device 360 may manage the load 350. Further, when the load 350 includes a plurality of devices, the local control device 360 may manage some of the plurality of devices. In this case, the local control device 360 may manage a plurality of devices according to a predetermined priority order. Further, such a priority order may be determined by the local control device 360 based on the power consumption amount consumed by the load 350.
- the solar cell 311 is an example of a first distributed power source having a first priority as a cost priority.
- a single solar cell 311 may be referred to as a solar cell device, and the solar cell 311 and the PCS 331 may be referred to as a solar cell device.
- the fuel cell 313 is an example of a second distributed power source having a second priority lower than the first priority as the cost priority.
- the single fuel cell 313 may be referred to as a fuel cell device
- the fuel cell 313 and the PCS 333 may be referred to as a fuel cell device
- the fuel cell 313, the hot water supply device 314, and the PCS 333 may be referred to as a fuel cell device.
- the storage battery 312 is an example of a third distributed power source having a third priority lower than the second priority as the cost priority.
- the single storage battery 312 may be referred to as a storage battery device, and the storage battery 312 and the PCS 332 may be referred to as storage battery devices.
- the power cost of the fuel cell 313 mainly depends on the charge of gas serving as fuel.
- the power cost of the storage battery 312 mainly depends on the power charge when charging. For example, the power cost of the storage battery 312 is calculated based on the power charge when purchasing power from the power system 110. Moreover, if the storage battery 312 charges the generated electric power of the solar cell 311, the power cost can be further reduced. As described above, the power cost of the storage battery 312 varies depending on the power source (charging power source) used for the charging operation of the storage battery 312.
- the storage battery 312 may have a higher cost priority than the fuel cell 313.
- the solar cell 311 does not require fuel or the like during power generation, and therefore has a lower power cost and higher cost priority than the fuel cell 313 and the storage battery 312. Therefore, since the cost priority of the solar cell 311 is higher than the cost priority of the fuel cell 313, the cost priority of the storage battery 312 in the case where the power source used for charging is the solar cell 311 is that the power source used for charging is the fuel cell 313. It is higher than the cost priority of the storage battery 312 in a certain case.
- the cost priority of the storage battery 312 in the case where the power source used for charging is the fuel cell 313 is that the power source used for charging is power. It becomes higher than the cost priority of the storage battery 312 in the case of the system 110.
- communication between the power management server 200 and the local control device 360 is performed according to the first protocol.
- communication between the local control device 360 and the distributed power supply is performed according to a second protocol different from the first protocol.
- the first protocol for example, a protocol conforming to Open ADR (Automated Demand Response) (trademark) or a unique dedicated protocol can be used.
- the second protocol for example, a protocol conforming to ECHONET Lite (registered trademark), SEP (Smart Energy Profile) 2.0, KNX, or an original dedicated protocol can be used.
- ECHONET Lite registered trademark
- SEP Smart Energy Profile 2.0
- KNX Smart Energy Profile
- the power management server 200 includes a management unit 210, a communication unit 220, and a control unit 230.
- the power management server 200 is an example of a VTN (Virtual Top Node).
- the management unit 210 is configured by a storage medium such as a non-volatile memory and / or an HDD, and manages data related to the facility 300.
- the data related to the facility 300 includes, for example, the type of the distributed power source provided in the facility 300, the specifications of the distributed power source provided in the facility 300, and the like.
- the spec may be the rated generated power of the PCS 331 connected to the solar cell 311, the rated output power of the PCS 332 connected to the storage battery 312, the rated output power of the PCS 333 connected to the fuel cell 313, and the like.
- the communication unit 220 includes a communication module, and communicates with the local control device 360 via the network 120. As described above, the communication unit 220 performs communication according to the first protocol. For example, the communication unit 220 transmits the first message to the local control device 360 according to the first protocol. The communication unit 220 receives the first message response from the local control device 360 according to the first protocol.
- the control unit 230 includes a memory, a CPU, and the like, and controls each component provided in the power management server 200. For example, the control unit 230 instructs the local control device 360 provided in the facility 300 to control the distributed power source provided in the facility 300 by transmitting a control message. The control unit 230 may instruct the local control device 360 provided in the facility 300 to control the load 350 provided in the facility 300. As described above, the control message may be a power flow control message, a reverse power flow control message, or a power control message.
- the local control device 360 includes a first communication unit 361, a second communication unit 362, and a control unit 363.
- the local control device 360 is an example of a VEN (Virtual End Node).
- the first communication unit 361 is configured by a communication module and communicates with the power management server 200 via the network 120. As described above, the first communication unit 361 performs communication according to the first protocol. For example, the first communication unit 361 receives the first message from the power management server 200 according to the first protocol. The first communication unit 361 transmits a first message response to the power management server 200 according to the first protocol.
- the second communication unit 362 includes a communication module, and communicates with distributed power sources (for example, PCS331 to PCS333). As described above, the second communication unit 362 performs communication according to the second protocol. For example, the second communication unit 362 transmits the second message to the distributed power source according to the second protocol. The second communication unit 362 receives the second message response from the distributed power source according to the second protocol. In addition, the second communication unit 362 may transmit the second message to the load 350 according to the second protocol. Further, the second communication unit 362 may receive the second message response from the load 350 according to the second protocol.
- distributed power sources for example, PCS331 to PCS333.
- the control unit 363 includes a memory and a CPU, and controls each component provided in the local control device 360. Specifically, in order to control the power of the facility 300, the control unit 363 instructs the distributed power supply to set the operating state of the distributed power supply by transmitting the second message and receiving the second message response. In order to manage the power of the facility 300, the control unit 363 may instruct the distributed power supply to report information on the distributed power supply by transmitting the second message and receiving the second message response. Further, the control unit 363 may instruct the load 350 to set the operation state of the load 350 by transmitting the second message and receiving the second message response. Further, the control unit 363 may instruct the load 350 to report information on the load 350 by transmitting the second message and receiving the second message response in order to manage the power of the facility 300.
- control unit 363 controls a storage battery device including at least the storage battery 312.
- the control unit 363 may control a solar cell device including at least the solar cell 311 and a fuel cell device including at least the fuel cell 313 in addition to the storage battery device.
- the control unit 363 is suitable as information indicating an appropriate time zone (hereinafter referred to as a charging time zone) as a time zone for performing the charging operation of the storage battery device and a power source used for the charging operation of the storage battery device Information (see FIG. 5) indicating a valid power source (as described above, a charging power source).
- a charging time zone As shown in FIG. 1-No.
- Six power demand patterns are possible. In such a case, consider peak cut control for reducing the peak value of power supplied from the power system 110 to the facility 300 by the discharging operation of the storage battery device.
- the peak value is a maximum value of the demand value in a predetermined period (for example, one day).
- the demand value may be a cumulative value (kWh) of power supplied from the power system 110 to the facility 300 in a predetermined time (for example, 30 minutes), or an instantaneous value of power supplied from the power system 110 to the facility 300. (KW).
- the power demand pattern 1 is a power demand pattern in which a peak of power demand occurs in the daytime.
- the left vertical axis represents the absolute value (kW) of electricity demand
- the right vertical axis represents the electricity demand index.
- the power demand pattern of the facility 300 is No. When it corresponds to the power demand pattern 1, as shown in FIG.
- the power demand pattern of the facility 300 is No.
- the fuel cell 313 having a lower cost priority than the solar cell 311 may be used as the charging power source in order to surely perform the peak cut control.
- One power demand pattern is, for example, a pattern found in department stores, supermarkets, home appliance mass retailers, government offices, research institutions, offices, hospitals, and the like.
- the power demand pattern 2 is a power demand pattern in which a peak of power demand occurs at night as shown in FIG.
- the left vertical axis represents the absolute value (kW) of electricity demand
- the right vertical axis represents the electricity demand index.
- the power demand pattern of the facility 300 is No. When it corresponds to the power demand pattern 2, as shown in FIG.
- the daytime is managed as the charging time zone, and the solar cell device (PV) is managed as the charging power source. That is, the power demand pattern of the facility 300 is No. In the case of corresponding to the power demand pattern of 2, the solar cell 311 having a high cost priority can be used as the charging power source. As a result, the power cost of the storage battery 312 can be reduced.
- the power demand pattern 2 is, for example, a pattern seen in restaurants and the like whose business hours are from evening to morning.
- the power demand pattern 3 is a power demand pattern in which a peak of power demand occurs in the morning as shown in FIG.
- the left vertical axis represents the absolute value (kW) of electricity demand
- the right vertical axis represents the electricity demand index.
- it is necessary to perform a charging operation of the storage battery device in preparation for peak cut control.
- the power demand pattern of the facility 300 is No.
- the fuel cell device (FC) is managed as the charging power source. That is, the power demand pattern of the facility 300 is No.
- a fuel cell 313 having a lower cost priority than the solar cell 311 may be used as a charging power source in order to reliably perform peak cut control.
- the power demand pattern 3 is a pattern found in, for example, a hotel, a hotel, a solar battery device, a facility having a heat demand device (for example, a hot water supply device), or the like.
- the power demand pattern No. 4 is a power demand pattern in which the peak of power demand occurs in the morning and at night as shown in FIG.
- the left vertical axis represents the absolute value (kW) of electricity demand
- the right vertical axis represents the electricity demand index.
- the power demand pattern of the facility 300 is No. In the case of corresponding to the power demand pattern of 4, as shown in FIG. 5, the two charging time zones and the charging power source are managed.
- the night is managed as the charging time zone, and the fuel cell device (FC) is managed as the charging power source.
- daytime is managed as a charging time zone, and a solar cell device (PV) is managed as a charging power source.
- the power demand pattern of the facility 300 is No. 4 corresponds to the power demand pattern of No. 4
- the peak of morning power demand is No.
- the fuel cell 313 may be used as a charging power source as in the case of corresponding to the power demand pattern 3.
- the solar battery 311 is used as a charging power source as in the case of corresponding to the power demand pattern of No. 2.
- the power demand pattern 4 is, for example, a pattern that is found in kindergartens, elementary schools, junior high schools, cultural facilities, welfare facilities, and the like in winter.
- the power demand pattern No. 5 is a power demand pattern in which the time zone in which the peak of power demand exists differs from season to season. Such a power demand pattern includes a first power demand pattern applied to the first season in which the peak value is the first peak value, and a second season in which the peak value is the second peak value smaller than the first peak value. And a second power demand pattern to be applied. Alternatively, no.
- the power demand pattern No. 5 is a power demand pattern in which the time zone in which the peak of power demand exists differs for each day of the week. Such a power demand pattern includes a first power demand pattern applied to the first day of the week when the peak value is the first peak value, and a second day of the week where the peak value is the second peak value smaller than the first peak value.
- the power demand pattern in which the time period in which the peak of power demand exists varies from season to season is a pattern found in, for example, kindergartens, elementary schools, junior high schools, cultural facilities, welfare facilities, and the like.
- the power demand pattern in which the time zone in which the peak of power demand exists differs for each day of the week is, for example, a pattern seen in a store or office where a closed day (day of the week) is set.
- the power demand pattern 6 is a power demand pattern in which fluctuations in power demand fall within a predetermined range during the day. In such a power demand pattern, since it is difficult to specify the peak of power demand, normal control that does not require charging operation of the storage battery device provided for peak cut control and peak cut control is performed.
- the power demand pattern No. 6 is a pattern seen in convenience stores, restaurants open 24 hours, and the like.
- the two or more power demand patterns include at least a specific power demand pattern that does not require peak cut control.
- the specific power demand pattern is No. No. 5 second power demand pattern, No. 5; 6 is a power demand pattern.
- the control unit 363 acquires the power demand of the facility 300 to be controlled, and the acquired power demand pattern is “No. 1-No. Specify which of 6 is applicable. Subsequently, the control unit 363 controls the charging operation of the storage battery device according to the specified power demand pattern. However, when the specified power demand pattern is the specific power demand pattern, the control unit 363 performs normal control that does not require the peak cut control and the charging operation of the storage battery device in preparation for the peak cut control.
- the normal control may include control in which the facility 300 purchases necessary power from the power system 110 in accordance with the transition of the output power of the solar cell device and the power consumption of the load 350.
- step S10 the local control device 360 determines whether or not the coefficient of variation is smaller than a predetermined value for the facility 300 to be controlled.
- the process of step S12 is performed, and when the variation coefficient is not smaller than the predetermined value, the process of step S11 is performed.
- the coefficient of variation is calculated based on, for example, a sample value of power demand in a predetermined period (for example, one day).
- the sample value is, for example, a cumulative value (kWh) of power supplied from the power system 110 to the facility 300 in a predetermined time (for example, 30 minutes). Therefore, the number of sample values is a value obtained by dividing a predetermined period by a predetermined time.
- the variation coefficient may be calculated by, for example, standard deviation of sample values / average value of sample values.
- the variation coefficient may be a standard deviation of sample values. It means that the smaller the coefficient of variation, the smaller the fluctuation in power demand.
- the predetermined value compared with the coefficient of variation is 0.1.
- the power demand pattern with a coefficient of variation smaller than a predetermined value is the above-mentioned No. There is a high possibility that the power demand pattern 6 is met. That is, the process of step S10 is a process for determining whether the power demand pattern of the facility 300 to be controlled corresponds to the specific power demand pattern.
- step S11 the local control device 360 determines whether the peak value is smaller than a predetermined value. When the peak value is smaller than the predetermined value, the process of step S12 is performed, and when the peak value is not smaller than the predetermined value, the process of step S13 is performed.
- the peak value is the maximum value of the demand value in a predetermined period (for example, one day).
- the predetermined value compared with the peak value is, for example, 90% of the maximum value of the electricity demand determined by the contract.
- the power demand pattern where the peak value is smaller than the predetermined value is the No. mentioned above.
- the process of step S11 is a process for determining whether or not the power demand pattern of the facility 300 to be controlled corresponds to the specific power demand pattern.
- the local control device 360 performs normal control that does not require charging operation of the storage battery device provided for peak cut control and peak cut control.
- the local control device 360 may control the storage battery device based on a factor other than the peak cut control. Another factor may be, for example, reception of a control message received from the power management server 200 or reception of an operation by the user.
- step S13 the local control device 360 determines that the power demand pattern of the facility 300 to be controlled is No. 1-No. The power demand pattern of 4 is identified.
- the local control device 360 is No. 1-No.
- the correlation coefficient C of the power demand pattern of the facility 300 to be controlled with respect to each of the four power demand patterns is calculated.
- the local control device 360 is No. 1-No.
- the power demand pattern having the largest correlation coefficient C is specified as the power demand pattern of the facility 300 to be controlled.
- step S14 the local control device 360 performs the peak cut control and the charging operation of the storage battery device prepared for the peak cut control according to the power demand pattern specified in step S13.
- the local control device 360 manages information indicating a charging time zone and information indicating a charging power source for each of two or more power demand patterns.
- the local control device 360 identifies the power demand pattern corresponding to the facility from the two or more power demand patterns, and is managed for the identified power demand pattern in the charging time zone managed for the identified power demand pattern.
- the storage battery device is charged using the charging power source. According to such a configuration, since the charging time zone and the charging power source are managed in advance for two or more power demand patterns, the transition of the output power of the solar cell device and the power consumption of the load 350 is grasped in real time, etc.
- the charging operation of the storage battery device provided for the peak cut control can be performed by a relatively simple method without the need for complicated control.
- the two or more power demand patterns include at least a specific power demand pattern that does not require peak cut control. According to such a configuration, unnecessary peak cut control is performed by a relatively simple method without requiring complicated control such as grasping the transition of the output power of the solar cell device and the power consumption of the load 350 in real time. It is possible to perform normal control that does not need to be performed.
- a solar cell device is exemplified as the first distributed power source.
- the first distributed power supply may be a distributed power supply that uses natural energy such as wind power or geothermal heat.
- the fuel cell device is exemplified as the second distributed power source.
- the embodiment is not limited to this.
- a storage battery device is illustrated as the third distributed power source.
- the second distributed power source and the third distributed power source may be any distributed power source that satisfies a relationship in which the cost priority of the third distributed power source is relatively lower than the cost priority of the second distributed power source.
- the types of the first distributed power source, the second distributed power source, and the third distributed power source are different from the viewpoint of cost priority.
- the embodiment is not limited to this.
- the types of the distributed power sources may be different in terms of specifications such as the rated output power of the distributed power source, the maintenance information of the distributed power source, and the control history of the distributed power source.
- the power cost is different for each distributed power source.
- the distributed power supply maintenance information may include information on the total operating time of the distributed power supply, distributed power life information, distributed power supply deterioration information, distributed power supply replacement information, distributed power supply repair information, and the like.
- the control history of the distributed power supply may include distributed power supply stop information including information related to the normal stop or abnormal stop of the distributed power supply, distributed power supply start information, and the like. Note that the cost priority may be changed in accordance with changes in the distributed power source maintenance information, the distributed power source control history, and the like.
- each distributed power source is provided with a PCS individually.
- One PCS may be provided for two or more distributed power sources.
- the local control device 360 provided in the facility 300 may not necessarily be provided in the facility 300.
- some of the functions of the local control device 360 may be provided by a cloud server provided on the Internet. That is, it may be considered that the local control device 360 includes a cloud server.
- the power supply control device that controls each distributed power supply is the local control device 360 (EMS)
- the power supply control device may be PCS331 to PCS333.
- the PCS 331 to PCS 333 may have a function of communicating with each other.
- the power control device may be the power management server 200.
- the first protocol is a protocol conforming to Open ADR2.0 and the second protocol is a protocol conforming to ECHONET Lite is illustrated.
- the first protocol may be a protocol standardized as a protocol used for communication between the power management server 200 and the local control device 360.
- the second protocol may be a protocol standardized as a protocol used in the facility 300.
- the basic charge of power supplied from the power system 110 to the facility 300 may be determined based on the maximum value of the demand value in the basic charge calculation period (for example, one year).
- the maximum value of the demand value may be synonymous with the maximum value of the electricity demand determined by the contract described above.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
電源制御方法は、2以上の電力需要パターンのそれぞれについて、蓄電池装置の充電動作を行う時間帯として適切な時間帯を示す情報及び前記蓄電池装置の充電動作に用いる電源として適切な電源を示す情報を管理するステップAと、前記2以上の電力需要パターンの中から前記施設に対応する電力需要パターンを特定し、特定された電力需要パターンについて管理される前記適切な時間帯において、特定された電力需要パターンについて管理される前記適切な電源を用いて、前記蓄電池装置の充電動作を行うステップBとを含む。
Description
本開示は、電源制御方法、電源制御装置及び電源制御システムに関する技術である。
近年、蓄電池装置の放電動作を行うことによって、所定時間(例えば、30分)における買電電力のピーク値を低減する制御(ピークカット制御)が知られている(例えば、特許文献1)。このような制御においては、電力需要の推定結果に基づいて蓄電池装置の充電動作及び放電動作が定められる。
第1の態様に係る、電源制御方法は、コスト優先度として第1優先度を有する第1分散電源、前記コスト優先度として前記第1優先度よりも低い第2優先度を有する第2分散電源及び前記コスト優先度として前記第2優先度よりも低い第3優先度を有する蓄電池装置を有する施設で用いる方法である。前記電源制御方法は、2以上の電力需要パターンのそれぞれについて、前記蓄電池装置の充電動作を行う時間帯として適切な時間帯を示す情報及び前記蓄電池装置の充電動作に用いる電源として適切な電源を示す情報を管理するステップAと、前記2以上の電力需要パターンの中から前記施設に対応する電力需要パターンを特定し、特定された電力需要パターンについて管理される前記適切な時間帯において、特定された電力需要パターンについて管理される前記適切な電源を用いて、前記蓄電池装置の充電動作を行うステップBとを含む。
第2の態様に係る電源制御装置は、コスト優先度として第1優先度を有する第1分散電源、前記コスト優先度として前記第1優先度よりも低い第2優先度を有する第2分散電源及び前記コスト優先度として前記第2優先度よりも低い第3優先度を有する蓄電池装置を有する施設で用いる装置である。前記電源制御装置は、2以上の電力需要パターンのそれぞれについて、前記蓄電池装置の充電動作を行う時間帯として適切な時間帯を示す情報及び前記蓄電池装置の充電動作に用いる電源として適切な電源を示す情報を管理する管理部と、前記2以上の電力需要パターンの中から前記施設に対応する電力需要パターンを特定し、特定された電力需要パターンについて管理される前記適切な時間帯において、特定された電力需要パターンについて管理される前記適切な電源を用いて、前記蓄電池装置の充電動作を行う制御部とを備える。
第3の態様に係る電源制御システムは、コスト優先度として第1優先度を有する第1分散電源と、前記コスト優先度として前記第1優先度よりも低い第2優先度を有する第2分散電源と、前記コスト優先度として前記第2優先度よりも低い第3優先度を有する蓄電池装置と、少なくとも前記蓄電池装置を制御する電源制御装置とを備える。前記電源制御装置は、2以上の電力需要パターンのそれぞれについて、前記蓄電池装置の充電動作を行う時間帯として適切な時間帯を示す情報及び前記蓄電池装置の充電動作に用いる電源として適切な電源を示す情報を管理する。前記電源制御装置は、前記2以上の電力需要パターンの中から前記施設に対応する電力需要パターンを特定し、特定された電力需要パターンについて管理される前記適切な時間帯において、特定された電力需要パターンについて管理される前記適切な電源を用いて、前記蓄電池装置の充電動作を行う。
背景技術において言及された技術においては、蓄電池装置の放電動作によってピークカット制御を行う前段階として、蓄電池装置の充電動作を行う必要がある。しかしながら、蓄電池装置の充電動作を行うための電源として複数の電源が想定されておらず、どの電源から供給される電力によって蓄電池装置の充電動作を行うのかについて議論されていない。一方で、蓄電池装置の充電動作に用いる電源を様々な環境要因に応じて演算しようとすると、このような演算負荷が増大する。
本開示は、蓄電池装置の充電動作に用いる電源として適切な電源を簡易な方法で選択することを可能とする電源制御方法、電源制御装置及び電源制御システムを提供する。
[実施形態]
(電源制御システム)
以下において、実施形態に係る電源制御システムについて説明する。
(電源制御システム)
以下において、実施形態に係る電源制御システムについて説明する。
図1に示すように、電源制御システム100は、電力管理サーバ200と、施設300とを有する。図1では、施設300として、施設300A~施設300Cが例示されている。
各施設300は、電力系統110に接続される。以下において、電力系統110から施設300への電力の流れを潮流と称し、施設300から電力系統110への電力の流れを逆潮流と称する。
電力管理サーバ200、施設300は、ネットワーク120に接続されている。ネットワーク120は、電力管理サーバ200と施設300との間の回線を提供すればよい。ネットワーク120は、例えば、インターネットである。ネットワーク120は、VPN(Virtual Private Network)などの専用回線を提供してもよい。
電力管理サーバ200は、発電事業者、送配電事業者或いは小売事業者などの事業者によって管理されるサーバである。
電力管理サーバ200は、施設300に設けられるローカル制御装置360に対して、施設300に設けられる分散電源(例えば、太陽電池装置、蓄電池装置及び燃料電池装置)に対する制御を指示する制御メッセージを送信する。例えば、電力管理サーバ200は、潮流の制御を要求する潮流制御メッセージ(例えば、DR;Demand Response)を送信してもよく、逆潮流の制御を要求する逆潮流制御メッセージを送信してもよい。さらに、電力管理サーバ200は、分散電源の動作状態を制御する電源制御メッセージを送信してもよい。潮流又は逆潮流の制御度合いは、絶対値(例えば、○○kW)で表されてもよく、相対値(例えば、○○%)で表されてもよい。或いは、潮流又は逆潮流の制御度合いは、2以上のレベルで表されてもよい。潮流又は逆潮流の制御度合いは、現在の電力需給バランスによって定められる電力料金(RTP;Real Time Pricing)によって表されてもよく、過去の電力需給バランスによって定められる電力料金(TOU;Time Of Use)によって表されてもよい。
施設300は、図2に示すように、ルータ500を有する。ルータ500は、ネットワーク120を介して電力管理サーバ200と接続される。ルータ500は、ローカルエリアネットワークを構成しており、各装置(例えば、電力計321、PCS331、PCS332、PCS333負荷350及びローカル制御装置360など)と接続される。図2において、実線は電力線を示しており、点線は信号線を示している。実施形態はこれに限定されるものではなく、電力線で信号が送信されてもよい。
施設300は、太陽電池311と、蓄電池312と、燃料電池313と、給湯装置314と、電力計321と、PCS331と、PCS332と、PCS333と、分電盤340と、負荷350と、ローカル制御装置360とを有する。
太陽電池311は、受光に応じて発電を行う装置である。太陽電池311は、発電された直流電力を出力する。太陽電池311の発電量は、太陽電池311に照射される日射量に応じて変化する。
蓄電池312は、電力を蓄積する装置である。蓄電池312は、蓄積された直流電力を出力する。蓄電池312は、VPP(Virtual Power Plant)に用いられる電源であってもよい。
燃料電池313は、燃料を用いて電力を発電する電池である。燃料は、例えば水素を含む材料であってもよいし、アルコールを含む材料であってもよい。燃料電池313は、例えば、固体酸化物型燃料電池(以下、SOFC:Solid Oxide Fuel Cell)、固体高分子型燃料電池(以下、PEFC:Polymer Electrolyte Fuel Cell)、リン酸型燃料電池(以下、PAFC:Phosphoric Acid Fuel Cell)及び溶融炭酸塩型燃料電池(以下、MCFC:Molten Carbonate Fuel Cell)のいずれかであってもよい。
給湯装置314は、貯湯槽を有しており、燃料電池313の排熱を用いて、貯湯槽に貯留される水(湯)の量を維持又は増大し、或いは、貯湯槽に貯留される水(湯)の温度を維持又は上昇する。このような制御は、貯湯槽に貯留される水の沸き上げと称してもよい。
電力計321は、電力系統110から施設300に供給される電力(電力需要)を計測する電力計である。電力計321は、電力系統110から施設300に対する電流を計測するCT(Current Transformer)であってもよい。電力需要は、負荷350の消費電力から分散電源の出力電力を差し引いた値である。蓄電池312が充電動作を行う場合には、蓄電池312を負荷350の一つと考えてもよい。
PCS331は、太陽電池311に接続される電力変換装置(PCS;Power Conditioning System)である。PCS331は、太陽電池311からの直流電力を交流電力に変換する。PCS331は、変換した交流電力を第1分電盤340Aに出力してもよい。PCS331は、変換した交流電力を蓄電池312に出力してもよい。
PCS332は、蓄電池312に接続される電力変換装置である。PCS332は、蓄電池312からの直流電力を交流電力に変換する。PCS332は、変換した交流電力を第1分電盤340Aに出力する。PCS332は、蓄電池312への交流電力を直流電力に変換する。PCS332は、変換した直流電力を蓄電池312に出力する。
PCS333は、燃料電池313に接続される電力変換装置である。PCS333は、燃料電池313からの直流電力を交流電力に変換する。PCS333は、変換した交流電力を第1分電盤340Aに出力してもよい。PCS333は、変換した交流電力を蓄電池312に出力してもよい。
分電盤340は、主幹電力線10Lに接続される。分電盤340は、第1分電盤340A及び第2分電盤340Bを有する。第1分電盤340Aは、主幹電力線10LAを介して電力系統110に接続される。第1分電盤340Aは、PCS331を介して太陽電池311と接続されており、PCS332を介して蓄電池312と接続されており、PCS333を介して燃料電池313と接続される。第1分電盤340Aは、PCS332を介して、電力系統110から供給される交流電力を蓄電池312に供給してもよい。第1分電盤340Aは、PCS331から供給される交流電力を、逆潮流として、主幹電力線10LAを介して電力系統110に供給してもよい。第1分電盤340Aは、PCS332から供給される交流電力を、逆潮流として、主幹電力線10LAを介して電力系統110に供給してもよい。第1分電盤340Aは、PCS333から供給される交流電力を、逆潮流として、主幹電力線10LAを介して電力系統110に供給してもよい。第1分電盤340Aは、主幹電力線10LBを介して、PCS331~PCS333から出力される電力及び電力系統110から供給される電力を第2分電盤340Bに供給する。第2分電盤340Bは、主幹電力線10LBを介して供給される電力を各機器に分配する。各機器は、例えば、負荷350、ローカル制御装置360等である。
負荷350は、電力線を介して供給される電力を消費する装置である。例えば、負荷350は、エアーコンディショナ、照明装置、冷蔵庫、テレビなどの装置を含む。負荷350は、単数の装置であってもよく、複数の装置を含んでもよい。
ローカル制御装置360は、施設300における電力を示す電力情報を管理する装置(EMS;Energy Management System)である。施設300における電力とは、施設300内を流れる電力、施設300が買電する電力、又は施設300から売電する電力である。従って、ローカル制御装置360は、少なくともPCS331~PCS333を管理する。ローカル制御装置360は、負荷350を管理してもよい。また、負荷350が複数の装置を含む場合には、ローカル制御装置360は、複数の装置のうち一部の装置を管理してもよい。また、この場合、ローカル制御装置360は、所定の優先順位に従って、複数の装置を管理してもよい。また、このような優先順位は、負荷350が消費する消費電力量に基づいて、ローカル制御装置360が決定してもよい。
実施形態において、太陽電池311は、コスト優先度として第1優先度を有する第1分散電源の一例である。太陽電池311の単体を太陽電池装置と称してもよく、太陽電池311及びPCS331を太陽電池装置と称してもよい。
燃料電池313は、コスト優先度として第1優先度よりも低い第2優先度を有する第2分散電源の一例である。燃料電池313の単体を燃料電池装置と称してもよく、燃料電池313及びPCS333を燃料電池装置と称してもよく、燃料電池313、給湯装置314及びPCS333を燃料電池装置と称してもよい。
蓄電池312は、コスト優先度として第2優先度よりも低い第3優先度を有する第3分散電源の一例である。蓄電池312の単体を蓄電池装置と称してもよく、蓄電池312及びPCS332を蓄電池装置と称してもよい。
なお、コスト優先度は、分散電源の種類によって異なるものであり、実施形態においては、コスト優先度が高い分散電源ほど、電力コストが低いものとする。次に電力コストについて説明する。燃料電池313の電力コストは、主として燃料となるガスの料金に依存する。蓄電池312の電力コストは、主として充電する際の電力料金に依存する。例えば、蓄電池312の電力コストは、電力系統110から買電する際の電力料金に基づいて算出される。また、蓄電池312は、太陽電池311の発電電力を充電すれば、電力コストをより低減できる。このように、蓄電池312の電力コストは、蓄電池312の充電動作に用いる電源(充電使用電源)によって変動する。それゆえ、蓄電池312は燃料電池313よりもコスト優先度が高くなる場合もある。なお、太陽電池311は、発電時に燃料等が不要であるため、燃料電池313および蓄電池312に比べて電力コストが低く、コスト優先度が高い。したがって、太陽電池311のコスト優先度は、燃料電池313のコスト優先度よりも高いため、充電使用電源が太陽電池311であるケースにおける蓄電池312のコスト優先度は、充電使用電源が燃料電池313であるケースにおける蓄電池312のコスト優先度よりも高い。また、燃料電池313の電力コストは、電力系統110から買電する際の電力料金よりも低いため、充電使用電源が燃料電池313であるケースにおける蓄電池312のコスト優先度は、充電使用電源が電力系統110であるケースにおける蓄電池312のコスト優先度よりも高くなる。
実施形態において、電力管理サーバ200とローカル制御装置360との間の通信は、第1プロトコルに従って行われる。一方で、ローカル制御装置360と分散電源との間の通信は、第1プロトコルとは異なる第2プロトコルに従って行われる。第1プロトコルとしては、例えば、Open ADR(Automated Demand Response)(商標)に準拠するプロトコル、或いは、独自の専用プロトコルを用いることができる。第2プロトコルは、例えば、ECHONET Lite(登録商標)に準拠するプロトコル、SEP(Smart Energy Profile)2.0、KNX、或いは、独自の専用プロトコルを用いることができる。なお、第1プロトコルと第2プロトコルは異なっていればよく、例えば、両方が独自の専用プロトコルであっても異なる規則で作られたプロトコルであればよい。
(電力管理サーバ)
以下において、実施形態に係る電力管理サーバについて説明する。図3に示すように、電力管理サーバ200は、管理部210と、通信部220と、制御部230とを有する。電力管理サーバ200は、VTN(Virtual Top Node)の一例である。
以下において、実施形態に係る電力管理サーバについて説明する。図3に示すように、電力管理サーバ200は、管理部210と、通信部220と、制御部230とを有する。電力管理サーバ200は、VTN(Virtual Top Node)の一例である。
管理部210は、不揮発性メモリ又は/及びHDDなどの記憶媒体によって構成されており、施設300に関するデータを管理する。施設300に関するデータは、例えば、施設300に設けられる分散電源の種別、施設300に設けられる分散電源のスペックなどである。スペックは、太陽電池311に接続されるPCS331の定格発電電力、蓄電池312に接続されるPCS332の定格出力電力、燃料電池313に接続されるPCS333の定格出力電力などであってもよい。
通信部220は、通信モジュールによって構成されており、ネットワーク120を介してローカル制御装置360と通信を行う。通信部220は、上述したように、第1プロトコルに従って通信を行う。例えば、通信部220は、第1プロトコルに従って第1メッセージをローカル制御装置360に送信する。通信部220は、第1プロトコルに従って第1メッセージ応答をローカル制御装置360から受信する。
制御部230は、メモリ及びCPUなどによって構成されており、電力管理サーバ200に設けられる各構成を制御する。制御部230は、例えば、制御メッセージの送信によって、施設300に設けられるローカル制御装置360に対して、施設300に設けられる分散電源に対する制御を指示する。また、制御部230は、施設300に設けられるローカル制御装置360に対して、施設300に設けられる負荷350に対する制御を指示してもよい。制御メッセージは、上述したように、潮流制御メッセージであってもよく、逆潮流制御メッセージであってもよく、電源制御メッセージであってもよい。
(ローカル制御装置)
以下において、実施形態に係るローカル制御装置について説明する。図4に示すように、ローカル制御装置360は、第1通信部361と、第2通信部362と、制御部363とを有する。ローカル制御装置360は、VEN(Virtual End Node)の一例である。
以下において、実施形態に係るローカル制御装置について説明する。図4に示すように、ローカル制御装置360は、第1通信部361と、第2通信部362と、制御部363とを有する。ローカル制御装置360は、VEN(Virtual End Node)の一例である。
第1通信部361は、通信モジュールによって構成されており、ネットワーク120を介して電力管理サーバ200と通信を行う。第1通信部361は、上述したように、第1プロトコルに従って通信を行う。例えば、第1通信部361は、第1プロトコルに従って第1メッセージを電力管理サーバ200から受信する。第1通信部361は、第1プロトコルに従って第1メッセージ応答を電力管理サーバ200に送信する。
第2通信部362は、通信モジュールによって構成されており、分散電源(例えば、PCS331~PCS333)と通信を行う。第2通信部362は、上述したように、第2プロトコルに従って通信を行う。例えば、第2通信部362は、第2プロトコルに従って第2メッセージを分散電源に送信する。第2通信部362は、第2プロトコルに従って第2メッセージ応答を分散電源から受信する。また、第2通信部362は、第2プロトコルに従って第2メッセージを負荷350に送信してもよい。また、第2通信部362は、第2プロトコルに従って第2メッセージ応答を負荷350から受信してもよい。
制御部363は、メモリ及びCPUなどによって構成されており、ローカル制御装置360に設けられる各構成を制御する。具体的には、制御部363は、施設300の電力を制御するために、第2メッセージの送信及び第2メッセージ応答の受信によって、分散電源の動作状態の設定を分散電源に指示する。制御部363は、施設300の電力を管理するために、第2メッセージの送信及び第2メッセージ応答の受信によって分散電源の情報の報告を分散電源に指示してもよい。また、制御部363は、第2メッセージの送信及び第2メッセージ応答の受信によって、負荷350の動作状態の設定を負荷350に指示してもよい。また、制御部363は、施設300の電力を管理するために、第2メッセージの送信及び第2メッセージ応答の受信によって負荷350の情報の報告を負荷350に指示してもよい。
実施形態において、制御部363は、蓄電池312を少なくとも含む蓄電池装置を制御する。制御部363は、蓄電池装置に加えて、太陽電池311を少なくとも含む太陽電池装置、及び燃料電池313を少なくとも含む燃料電池装置を制御してもよい。
制御部363は、2以上の電力需要パターンのそれぞれについて、蓄電池装置の充電動作を行う時間帯として適切な時間帯(以下、充電時間帯)を示す情報及び蓄電池装置の充電動作に用いる電源として適切な電源(上述したように、充電使用電源)を示す情報(図5を参照)を管理する。例えば、2以上の電力需要パターンとしては、図5に示すように、No.1~No.6の電力需要パターンが考えられる。このようなケースにおいて、電力系統110から施設300に供給される電力のピーク値を蓄電池装置の放電動作によって低減するピークカット制御について考える。ピーク値は、所定期間(例えば、1日)におけるデマンド値の最大値である。デマンド値は、所定時間(例えば、30分)において電力系統110から施設300に供給される電力の累積値(kWh)であってもよく、電力系統110から施設300に供給される電力の瞬時値(kW)であってもよい。
No.1の電力需要パターンは、図6に示すように、電量需要のピークが昼に発生する電力需要パターンである。図6において、左側の縦軸は、電量需要の絶対値(kW)を表しており、右側の縦軸は、電量需要の指数を表している。指数=1は、契約によって定められる電量需要の最大値を表している。このような電力需要パターンでは、ピークカット制御に備えて蓄電池装置の充電動作を行う必要があるが、電量需要のピークが昼に発生するため、充電使用電源として太陽電池311を用いることが難しい。従って、施設300の電力需要パターンがNo.1の電力需要パターンに該当する場合には、図5に示すように、充電時間帯として夜間が管理され、充電使用電源として燃料電池装置(FC)が管理される。つまり、施設300の電力需要パターンがNo.1の電力需要パターンに該当する場合には、ピークカット制御を確実に行うために、太陽電池311よりもコスト優先度が低い燃料電池313を充電使用電源として用いてもよい。
No.1の電力需要パターンは、例えば、デパート、スーパーマーケット、家電量販店、官公庁、研究機関、事務所、病院等に見られるパターンである。
No.2の電力需要パターンは、図7に示すように、電量需要のピークが夜に発生する電力需要パターンである。図7において、左側の縦軸は、電量需要の絶対値(kW)を表しており、右側の縦軸は、電量需要の指数を表している。指数=1は、契約で定める電量需要の最大値を表している。このような電力需要パターンでは、ピークカット制御に備えて蓄電池装置の充電動作を行う必要があるが、電量需要のピークが夜に発生するため、充電使用電源として太陽電池311を用いることができる。従って、施設300の電力需要パターンがNo.2の電力需要パターンに該当する場合には、図5に示すように、充電時間帯として昼間が管理され、充電使用電源として太陽電池装置(PV)が管理される。つまり、施設300の電力需要パターンがNo.2の電力需要パターンに該当する場合には、コスト優先度が高い太陽電池311を充電使用電源として用いることができる。その結果、蓄電池312の電力コストを低減できる。
No.2の電力需要パターンは、例えば、営業時間が夕方から朝方までである飲食店等に見られるパターンである。
No.3の電力需要パターンは、図8に示すように、電量需要のピークが朝に発生する電力需要パターンである。図8において、左側の縦軸は、電量需要の絶対値(kW)を表しており、右側の縦軸は、電量需要の指数を表している。指数=1は、契約で定める電量需要の最大値を表している。このような電力需要パターンでは、ピークカット制御に備えて蓄電池装置の充電動作を行う必要があるが、電量需要のピークが朝に発生するため、充電使用電源として太陽電池311を用いても、蓄電池装置の蓄電残量が朝まで残っている確実性が低い。従って、施設300の電力需要パターンがNo.3の電力需要パターンに該当する場合には、図5に示すように、充電時間帯として夜間が管理され、充電使用電源として燃料電池装置(FC)が管理される。つまり、施設300の電力需要パターンがNo.3の電力需要パターンに該当する場合には、ピークカット制御を確実に行うために、太陽電池311よりもコスト優先度が低い燃料電池313を充電使用電源として用いてもよい。
No.3の電力需要パターンは、例えば、ホテル、旅館、太陽電池装置や熱需要装置(例えば、給湯装置)を有する施設等に見られるパターンである。
No.4の電力需要パターンは、図9に示すように、電量需要のピークが朝及び夜に発生する電力需要パターンである。図9において、左側の縦軸は、電量需要の絶対値(kW)を表しており、右側の縦軸は、電量需要の指数を表している。指数=1は、契約で定める電量需要の最大値を表している。このような電力需要パターンでは、ピークカット制御に備えて蓄電池装置の充電動作を行う必要があるが、2回の電量需要のピークが発生する。従って、施設300の電力需要パターンがNo.4の電力需要パターンに該当する場合には、図5に示すように、2つの充電時間帯及び充電使用電源が管理される。すなわち、朝の電力需要のピークについては、充電時間帯として夜間が管理され、充電使用電源として燃料電池装置(FC)が管理される。一方で、夜の電力需要のピークについては、充電時間帯として昼間が管理され、充電使用電源として太陽電池装置(PV)が管理される。つまり、施設300の電力需要パターンがNo.4の電力需要パターンに該当する場合には、朝の電力需要のピークに対しては、No.3の電力需要パターンに該当する場合と同様に燃料電池313を充電使用電源として用いてもよい。夜の電力需要のピークに対しては、No.2の電力需要パターンに該当する場合と同様に太陽電池311を充電使用電源として用いる。
No.4の電力需要パターンは、例えば、冬場において、幼稚園、小学校、中学校、文化施設、福祉施設等に見られるパターンである。
No.5の電力需要パターンは、電力需要のピークが存在する時間帯が季節毎に異なる電力需要パターンである。このような電力需要パターンは、ピーク値が第1ピーク値である第1季節に適用する第1電力需要パターンと、ピーク値が第1ピーク値よりも小さい第2ピーク値である第2季節に適用する第2電力需要パターンとを含む。或いは、No.5の電力需要パターンは、電力需要のピークが存在する時間帯が曜日毎に異なる電力需要パターンである。このような電力需要パターンは、ピーク値が第1ピーク値である第1曜日に適用する第1電力需要パターンと、ピーク値が第1ピーク値よりも小さい第2ピーク値である第2曜日に適用する第2電力需要パターンとを含む。これらの電力需要パターンでは、第2季節(又は第2曜日)の第2ピーク値が第1季節(又は第1曜日)の第1ピーク値よりも小さいため、第2季節(又は第2曜日)において、契約によって定められる電量需要の最大値をピーク値が超える可能性が小さく、ピークカット制御を行う必要性が小さい。従って、第1季節(又は第1曜日)においては、上述したNo.1~No.5のいずれかと同様のピークカット制御及びピークカット制御に備えた蓄電池装置の充電動作が行われるが、第2季節(又は第2曜日)においてピークカット制御及びピークカット制御に備えた蓄電池装置の充電動作を要さない通常制御が行われる。
電力需要のピークが存在する時間帯が季節毎に異なる電力需要パターンは、例えば、幼稚園、小学校、中学校、文化施設、福祉施設等に見られるパターンである。電力需要のピークが存在する時間帯が曜日毎に異なる電力需要パターンは、例えば、休業日(曜日)が定められた店舗や事務所等に見られるパターンである。
No.6の電力需要パターンは、1日の中で電力需要の変動が所定範囲内に収まる電力需要パターンである。このような電力需要パターンでは、電力需要のピークを特定することが困難であるため、ピークカット制御及びピークカット制御に備えた蓄電池装置の充電動作を要さない通常制御が行われる。
No.6の電力需要パターンは、コンビニエンスストアや24時間営業の飲食店等で見られるパターンである。
このように、2以上の電力需要パターンは、少なくとも、ピークカット制御を要さない特定電力需要パターンを含む。特定電力需要パターンは、No.5の第2電力需要パターン、No.6の電力需要パターンである。
このような背景において、制御部363は、制御対象の施設300の電力需要を取得するとともに、取得された電力需要のパターンがNo.1~No.6のいずれに該当するか特定する。続いて、制御部363は、特定された電力需要のパターンに従って、蓄電池装置の充電動作を制御する。但し、制御部363は、特定された電力需要のパターンが特定電力需要パターンである場合には、ピークカット制御及びピークカット制御に備えた蓄電池装置の充電動作を要さない通常制御を行う。通常制御は、太陽電池装置の出力電力や負荷350の消費電力の推移に応じて、施設300が電力系統110から必要な電力を買電する制御を含んでもよい。
(電源制御方法)
以下において、実施形態に係る電源制御方法について説明する。
以下において、実施形態に係る電源制御方法について説明する。
図10に示すように、ステップS10において、ローカル制御装置360は、制御対象の施設300について、変動係数が所定値よりも小さいか判定する。変動係数が所定値よりも小さい場合には、ステップS12の処理が行われ、変動係数が所定値よりも小さくない場合には、ステップS11の処理が行われる。
ここで、変動係数は、例えば、所定期間(例えば、1日)における電力需要のサンプル値に基づいて算出される。サンプル値は、例えば、所定時間(例えば、30分)において電力系統110から施設300に供給される電力の累積値(kWh)である。従って、サンプル値の数は、所定期間を所定時間で除算した値である。変動係数は、例えば、サンプル値の標準偏差/サンプル値の平均値によって算出されてもよい。変動係数は、サンプル値の標準偏差であってもよい。変動係数が小さいほど、電力需要の変動が小さいことを意味する。例えば、変動係数と比較される所定値は0.1である。
変動係数が所定値よりも小さい電力需要パターンは、上述したNo.6の電力需要パターンに該当する可能性が高い。すなわち、ステップS10の処理は、制御対象の施設300の電力需要パターンが特定電力需要パターンに該当するか否かを判定するための処理である。
ステップS11において、ローカル制御装置360は、ピーク値が所定値よりも小さいか判定する。ピーク値が所定値よりも小さい場合には、ステップS12の処理が行われ、ピーク値が所定値よりも小さくない場合には、ステップS13の処理が行われる。
ここで、ピーク値は、所定期間(例えば、1日)におけるデマンド値の最大値である。ピーク値と比較される所定値は、例えば、契約によって定められる電量需要の最大値の90%の値である。
ピーク値が所定値よりも小さい電力需要パターンは、上述したNo.5の電力需要パターンのうち、第2季節(又は第2曜日)における第2電力需要パターンに該当する可能性が高い。すなわち、ステップS11の処理は、制御対象の施設300の電力需要パターンが特定電力需要パターンに該当するか否かを判定するための処理である。
ステップS12において、ローカル制御装置360は、ピークカット制御及びピークカット制御に備えた蓄電池装置の充電動作要さない通常制御を行う。ローカル制御装置360は、ピークカット制御以外の他の要因に基づいて蓄電池装置を制御してもよい。他の要因は、例えば、電力管理サーバ200から受信する制御メッセージの受信であってもよく、ユーザによる操作の受付であってもよい。
ステップS13において、ローカル制御装置360は、制御対象の施設300の電力需要パターンがNo.1~No.4の電力需要パターンのいずれに該当するかを特定する。
例えば、ローカル制御装置360は、以下の式に従って、No.1~No.4の電力需要パターンのそれぞれに対する制御対象の施設300の電力需要パターンの相関係数Cを算出する。
ローカル制御装置360は、No.1~No.4の電力需要パターンの中から、相関係数Cが最も大きい電力需要パターンを、制御対象の施設300の電力需要パターンとして特定する。
ステップS14において、ローカル制御装置360は、ステップS13で特定された電力需要パターンに従って、ピークカット制御及びピークカット制御に備えた蓄電池装置の充電動作を行う。
(作用及び効果)
実施形態では、ローカル制御装置360は、2以上の電力需要パターンのそれぞれについて、充電時間帯を示す情報及び充電使用電源を示す情報を管理する。ローカル制御装置360は、2以上の電力需要パターンの中から施設に対応する電力需要パターンを特定し、特定された電力需要パターンについて管理される充電時間帯において、特定された電力需要パターンについて管理される充電使用電源を用いて、蓄電池装置の充電動作を行う。このような構成によれば、2以上の電力需要パターンについて充電時間帯及び充電使用電源が予め管理されているため、太陽電池装置の出力電力や負荷350の消費電力の推移をリアルタイムに把握する等の複雑な制御を必要とせずに、比較的に簡易な方法によってピークカット制御に備えた蓄電池装置の充電動作を行うことができる。
実施形態では、ローカル制御装置360は、2以上の電力需要パターンのそれぞれについて、充電時間帯を示す情報及び充電使用電源を示す情報を管理する。ローカル制御装置360は、2以上の電力需要パターンの中から施設に対応する電力需要パターンを特定し、特定された電力需要パターンについて管理される充電時間帯において、特定された電力需要パターンについて管理される充電使用電源を用いて、蓄電池装置の充電動作を行う。このような構成によれば、2以上の電力需要パターンについて充電時間帯及び充電使用電源が予め管理されているため、太陽電池装置の出力電力や負荷350の消費電力の推移をリアルタイムに把握する等の複雑な制御を必要とせずに、比較的に簡易な方法によってピークカット制御に備えた蓄電池装置の充電動作を行うことができる。
実施形態では、2以上の電力需要パターンは、少なくとも、ピークカット制御を要さない特定電力需要パターンを含む。このような構成によれば、太陽電池装置の出力電力や負荷350の消費電力の推移をリアルタイムに把握する等の複雑な制御を必要とせずに、比較的に簡易な方法によって不要なピークカット制御を要さない通常制御を行うことができる。
[その他の実施形態]
本開示は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
本開示は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
実施形態では、第1分散電源として太陽電池装置を例示した。しかしながら、実施形態はこれに限定されるものではない。第1分散電源は、風力又は地熱などの自然エネルギーを利用する分散電源であってもよい。
実施形態では、第2分散電源として燃料電池装置を例示した。しかしながら、実施形態はこれに限定されるものではない。同様に、第3分散電源として蓄電池装置を例示した。しかしながら、実施形態はこれに限定されるものではない。第2分散電源及び第3分散電源は、第3分散電源のコスト優先度が第2分散電源のコスト優先度よりも相対的に低い関係を満たす分散電源であればよい。
実施形態では、第1分散電源、第2分散電源及び第3分散電源は、コスト優先度の観点において種類が異なるものとした。しかしながら、実施形態はこれに限定されるものではない。例えば、各分散電源は、電池の種類が同じだった場合、分散電源の定格出力電力等のスペック、分散電源の保守情報、分散電源の制御履歴等の観点において種類が異なるようにしてもよい。この場合、電力コストは、それぞれの各分散電源で異なる。なお、分散電源の保守情報は、分散電源の総運転時間に関する情報、分散電源の寿命の情報、分散電源の劣化情報、分散電源の交換情報、分散電源の修理情報等を含んでもよい。また、分散電源の制御履歴は、分散電源の通常停止または異常停止に関する情報を含む分散電源の停止情報、分散電源の起動情報等を含んでもよい。なお、コスト優先度は、分散電源の保守情報、分散電源の制御履歴等の変化に応じて、変動するものであってもよい。
実施形態では、各分散電源に個別にPCSが設けられる。しかしながら、実施形態はこれに限定されるものではない。2以上の分散電源に対して1つのPCSが設けられてもよい。
実施形態では特に触れていないが、施設300に設けられるローカル制御装置360は、必ずしも施設300内に設けられていなくてもよい。例えば、ローカル制御装置360の機能の一部は、インターネット上に設けられるクラウドサーバによって提供されてもよい。すなわち、ローカル制御装置360がクラウドサーバを含むと考えてもよい。
実施形態では、各分散電源を制御する電源制御装置がローカル制御装置360(EMS)であるケースを例示した。しかしながら、電源制御装置は、PCS331~PCS333であってもよい。このようなケースにおいて、PCS331~PCS333は相互に通信を行う機能を有してもよい。電源制御装置は、電力管理サーバ200であってもよい。
実施形態では、第1プロトコルがOpen ADR2.0に準拠するプロトコルであり、第2プロトコルがECHONET Liteに準拠するプロトコルであるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。第1プロトコルは、電力管理サーバ200とローカル制御装置360との間の通信で用いるプロトコルとして規格化されたプロトコルであればよい。第2プロトコルは、施設300で用いるプロトコルとして規格化されたプロトコルであればよい。
実施形態では特に触れていないが、電力系統110から施設300に供給される電力の基本料金は、基本料算出期間(例えば、1年)におけるデマンド値の最大値に基づいて定められてもよい。デマンド値の最大値は、上述した契約によって定められる電量需要の最大値と同義であってもよい。
なお、日本国特許出願第2017-012848号(2017年1月27日出願)の全内容が、参照により、本願に組み込まれている。
Claims (10)
- 第1分散電源、前記第1分散電源と種類が異なる第2分散電源及び蓄電池装置を有する施設で用いる電源制御方法であって、
2以上の電力需要パターンのそれぞれについて、前記蓄電池装置の充電動作を行う時間帯として適切な時間帯を示す情報及び前記蓄電池装置の充電動作に用いる電源として適切な電源を示す情報を管理するステップAと、
前記2以上の電力需要パターンの中から前記施設に対応する電力需要パターンを特定し、特定された電力需要パターンについて管理される前記適切な時間帯において、特定された電力需要パターンについて管理される前記適切な電源を用いて、前記蓄電池装置の充電動作を行うステップBとを含む、電源制御方法。 - 前記2以上の電力需要パターンは、電力系統から前記施設に供給される電力のピーク値を低減するピークカット制御を要さない特定電力需要パターンを含む、請求項1に記載の電源制御方法。
- 前記特定電力需要パターンは、1日の中で電力需要の変動が所定範囲内に収まる電力需要パターンである、請求項2に記載の電源制御方法。
- 前記2以上の電力需要パターンは、電力需要のピークが存在する時間帯が季節毎に異なる電力需要パターンを含む、請求項1乃至請求項3のいずれかに記載の電源制御方法。
- 前記2以上の電力需要パターンは、電力需要のピークが存在する時間帯が曜日毎に異なる電力需要パターンを含む、請求項1乃至請求項4のいずれかに記載の電源制御方法。
- 前記電力需要のピークが存在する時間帯が季節毎に異なる電力需要パターンは、電力系統から前記施設に供給される電力のピーク値が第1ピーク値である第1季節に適用する第1電力需要パターンと、前記ピーク値が前記第1ピーク値よりも小さい第2ピーク値である第2季節に適用する第2電力需要パターンとを含み、
前記特定電力需要パターンは、前記第2電力需要パターンである、請求項4に記載の電源制御方法。 - 前記電力需要のピークが存在する時間帯が曜日毎に異なる電力需要パターンは、電力系統から前記施設に供給される電力のピーク値が第1ピーク値である第1曜日に適用する第1電力需要パターンと、前記ピーク値が前記第1ピーク値よりも小さい第2ピーク値である第2曜日に適用する第2電力需要パターンとを含み、
前記特定電力需要パターンは、前記第2電力需要パターンである、請求項5に記載の電源制御方法。 - 前記第1分散電源は、コスト優先度として第1優先度を有し、前記第2分散電源は、前記コスト優先度として前記第1優先度よりも低い第2優先度を有し、前記蓄電池装置は、前記コスト優先度として前記第2優先度よりも低い第3優先度を有する、請求項1に記載の電源制御方法。
- 第1分散電源、前記第1分散電源と種類が異なる第2分散電源及び蓄電池装置を有する施設で用いる電源制御装置であって、
2以上の電力需要パターンのそれぞれについて、前記蓄電池装置の充電動作を行う時間帯として適切な時間帯を示す情報及び前記蓄電池装置の充電動作に用いる電源として適切な電源を示す情報を管理する管理部と、
前記2以上の電力需要パターンの中から前記施設に対応する電力需要パターンを特定し、特定された電力需要パターンについて管理される前記適切な時間帯において、特定された電力需要パターンについて管理される前記適切な電源を用いて、前記蓄電池装置の充電動作を行う制御部とを備える、電源制御装置。 - 第1分散電源と、
前記第1分散電源と種類が異なる第2分散電源と、
蓄電池装置と、
少なくとも前記蓄電池装置を制御する電源制御装置とを備え、
前記電源制御装置は、2以上の電力需要パターンのそれぞれについて、前記蓄電池装置の充電動作を行う時間帯として適切な時間帯を示す情報及び前記蓄電池装置の充電動作に用いる電源として適切な電源を示す情報を管理し、
前記電源制御装置は、前記2以上の電力需要パターンの中から施設に対応する電力需要パターンを特定し、特定された電力需要パターンについて管理される前記適切な時間帯において、特定された電力需要パターンについて管理される前記適切な電源を用いて、前記蓄電池装置の充電動作を行う、電源制御システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018564663A JP6781274B2 (ja) | 2017-01-27 | 2018-01-26 | 電源制御方法、電源制御装置及び電源制御システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017012848 | 2017-01-27 | ||
JP2017-012848 | 2017-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018139604A1 true WO2018139604A1 (ja) | 2018-08-02 |
Family
ID=62978470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/002560 WO2018139604A1 (ja) | 2017-01-27 | 2018-01-26 | 電源制御方法、電源制御装置及び電源制御システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6781274B2 (ja) |
WO (1) | WO2018139604A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015004893A1 (ja) * | 2013-07-12 | 2015-01-15 | パナソニック株式会社 | 電力管理装置、電力管理システム、サーバ、電力管理方法、プログラム |
JP2017005990A (ja) * | 2012-04-20 | 2017-01-05 | 京セラ株式会社 | 管理サーバ、局所気象情報生成システム、および局所気象情報生成方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013136419A1 (ja) * | 2012-03-12 | 2013-09-19 | 富士通株式会社 | 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置 |
-
2018
- 2018-01-26 WO PCT/JP2018/002560 patent/WO2018139604A1/ja active Application Filing
- 2018-01-26 JP JP2018564663A patent/JP6781274B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017005990A (ja) * | 2012-04-20 | 2017-01-05 | 京セラ株式会社 | 管理サーバ、局所気象情報生成システム、および局所気象情報生成方法 |
WO2015004893A1 (ja) * | 2013-07-12 | 2015-01-15 | パナソニック株式会社 | 電力管理装置、電力管理システム、サーバ、電力管理方法、プログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018139604A1 (ja) | 2019-11-07 |
JP6781274B2 (ja) | 2020-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018139603A1 (ja) | 電源制御方法、電源制御装置及び電源制御システム | |
JP2018113839A (ja) | 電源制御方法、電力管理サーバ、ローカル制御装置及び電源制御システム | |
WO2020158591A1 (ja) | 電力管理装置、蓄電装置及び電力管理方法 | |
JP7014870B2 (ja) | 電力変換装置及びその制御方法 | |
JP2019030123A (ja) | 電源管理方法、電源管理サーバ及び電源管理装置 | |
JP2019017154A (ja) | 電源管理方法及び電源管理装置 | |
JPWO2018079813A1 (ja) | 電力管理方法、ローカル制御装置及び電力管理システム | |
JPWO2020080284A1 (ja) | 電力管理装置、電力管理システム及び電力管理方法 | |
JP6781274B2 (ja) | 電源制御方法、電源制御装置及び電源制御システム | |
JP7178429B2 (ja) | 電力供給方法及び電力管理装置 | |
JP7592021B2 (ja) | 入札支援システム及び入札支援方法 | |
JP7037583B2 (ja) | 電力管理システム、電力管理サーバ及び電力管理方法 | |
JP2023005861A (ja) | 電力管理装置、電力管理システム及び電力管理方法 | |
EP3605438B1 (en) | Energy management method, energy management device, and energy management system | |
JP6825866B2 (ja) | 電力管理方法、電力管理装置、燃料電池装置及び電力管理システム | |
JP7316433B2 (ja) | 電力管理装置、蓄電装置及び電力管理方法 | |
JP7590262B2 (ja) | 電力管理装置、電力管理システム及び電力管理方法 | |
WO2018079814A1 (ja) | 電力管理方法、ローカル制御装置及び電力管理システム | |
JP7480246B2 (ja) | 電力管理装置及び電力管理方法 | |
US20240380214A1 (en) | Power management apparatus and power management method | |
WO2021060143A1 (ja) | 電力管理システム及び電力管理方法 | |
JP2022050576A (ja) | 電力管理装置、蓄電装置及び電力管理方法 | |
JP2023108966A (ja) | 電力管理装置及び電力管理方法 | |
JP2025132843A (ja) | 電源制御装置及び電源制御方法 | |
WO2021060142A1 (ja) | 電力管理システム及び電力管理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18745426 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018564663 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18745426 Country of ref document: EP Kind code of ref document: A1 |