[go: up one dir, main page]

WO2018230124A1 - Optical glass, preform, and optical element - Google Patents

Optical glass, preform, and optical element Download PDF

Info

Publication number
WO2018230124A1
WO2018230124A1 PCT/JP2018/015070 JP2018015070W WO2018230124A1 WO 2018230124 A1 WO2018230124 A1 WO 2018230124A1 JP 2018015070 W JP2018015070 W JP 2018015070W WO 2018230124 A1 WO2018230124 A1 WO 2018230124A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
less
refractive index
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/015070
Other languages
French (fr)
Japanese (ja)
Inventor
岩▲崎▼菜那
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018034031A external-priority patent/JP7233844B2/en
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to CN201880039982.1A priority Critical patent/CN110770183B/en
Priority to US16/622,786 priority patent/US20200131076A1/en
Priority to CN202410964910.5A priority patent/CN118908566A/en
Priority to EP18816712.6A priority patent/EP3640222A1/en
Publication of WO2018230124A1 publication Critical patent/WO2018230124A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass, a preform, and an optical element.
  • optical elements incorporated in in-vehicle optical devices such as in-vehicle cameras and optical elements incorporated in optical devices that generate a lot of heat, such as projectors, copiers, laser printers, and broadcasting equipment, have higher temperatures.
  • Use in the environment is increasing. In such a high temperature environment, the temperature at the time of use of the optical element constituting the optical system is likely to fluctuate greatly, and the temperature often reaches 100 ° C. or more.
  • the adverse effect on the imaging characteristics and the like of the optical system due to temperature fluctuation is so large that it cannot be ignored, it is required to construct an optical system in which the imaging characteristics and the like are hardly affected even by temperature fluctuation.
  • an optical element made of glass whose refractive index decreases when the temperature rises and the temperature coefficient of the relative refractive index becomes negative.
  • the combined use of an optical element made of glass that increases the refractive index when the temperature rises and has a positive temperature coefficient of relative refractive index can correct the influence on the imaging characteristics and the like due to the temperature change. This is preferable.
  • Patent Document 1 As a glass developed by paying attention to the temperature coefficient of the relative refractive index, for example, a glass composition represented by Patent Document 1 is known.
  • the glass described in Patent Document 1 is a glass containing a lot of components that provide a high refractive index, and is intended to increase the temperature coefficient of the relative refractive index.
  • a glass having a small temperature coefficient of relative refractive index has not been obtained.
  • a glass having a negative temperature coefficient of the relative refractive index and a glass having a small absolute value of the temperature coefficient of the relative refractive index are desired.
  • a low-refractive index low-dispersion glass material and a high-refractive index high-dispersion glass material may be joined. If the difference in the average linear thermal expansion coefficient of the glass materials combined at the time of joining becomes small, the joining becomes good.
  • low-refractive index low-dispersion glass materials containing fluorine are known to have a large average linear thermal expansion coefficient, but there are almost no glass materials with a high average refractive index and high-dispersion glass material that have a high average linear thermal expansion coefficient. Therefore, a glass material having a large average linear thermal expansion coefficient is demanded.
  • the glass described in Patent Document 1 has a small average linear thermal expansion coefficient, and it is difficult to say that the glass sufficiently satisfies such a requirement.
  • the optical glass according to the present invention can be manufactured at a lower cost because a glass having excellent transmittance in visible light can be obtained without going through the steps of reheating and heat treatment to remove the coloring of the glass. be able to.
  • the present invention has been made in view of the above problems, and the object of the present invention is to take a small value of the temperature coefficient of the relative refractive index and contribute to the correction of the influence on the imaging characteristics due to the temperature change.
  • the object is to obtain a preform and an optical element using optical glass having an average linear thermal expansion coefficient suitable for bonding between optical glass and a low refractive index and low dispersion glass material.
  • the present inventor has conducted earnest test research, and as a result, contains the P 2 O 5 component and the Nb 2 O 5 component, and contains a predetermined amount of the Na 2 O component and the K 2 O component.
  • the present invention provides the following.
  • An optical device including the optical element according to (6).
  • an optical glass that has a small temperature coefficient of relative refractive index, can contribute to correction of influence on imaging characteristics due to temperature change, and has good transmittance in visible light, and the same are used. Preforms and optical elements can be obtained at lower costs.
  • the optical glass of the present invention is, by mass%, 20.0% to 40.0% of P 2 O 5 component, 25.0% to 50.0% in total of Nb 2 O 5 component, Na 2 O component And the K 2 O component has a mass sum of 3.0% or more and 30.0% or less, and the temperature coefficient (40 to 60 ° C.) of the relative refractive index (589.29 nm) is + 3.0 ⁇ 10 ⁇ 6 to ⁇ 10. Within the range of 0 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ).
  • a glass material glass having a small temperature coefficient of relative refractive index and a large average linear thermal expansion coefficient can be obtained.
  • the transmittance in visible light is good
  • the temperature coefficient of the relative refractive index takes a small value, and it can contribute to the correction of the influence on the imaging characteristics due to the temperature change, and the bonding property with the low refractive index and low dispersion glass material
  • the composition range of each component constituting the optical glass of the present invention is described below.
  • the contents of the respective components are all expressed in mass% with respect to the total mass of the oxide equivalent composition.
  • the “oxide equivalent composition” is based on the assumption that the oxide, composite salt, metal fluoride, etc. used as the raw material of the glass component of the present invention are all decomposed and changed into oxides during melting. It is the composition which described each component contained in glass by making the total mass number of production
  • the P 2 O 5 component is an essential component as a glass-forming oxide.
  • the content of the P 2 O 5 component is preferably 20.0% or more, more preferably more than 21.0%, and even more preferably more than 22.0%.
  • the desired refractive index and dispersion can be maintained by setting the content of the P 2 O 5 component to 40.0% or less.
  • the content of the P 2 O 5 component is preferably 40.0% or less, more preferably 35.0% or less, and even more preferably less than 30.0%.
  • the P 2 O 5 component uses Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4, NaH 2 PO 4 , KH 2 PO 4, etc. as raw materials. be able to.
  • the Nb 2 O 5 component is an essential component as a high refractive index and high dispersion component.
  • the content of the Nb 2 O 5 component is preferably 25.0% or more, more preferably more than 28.0%, still more preferably more than 30.0%.
  • the content of the Nb 2 O 5 component is preferably 50.0% or less, more preferably 47.0% or less.
  • Nb 2 O 5 or the like can be used as a raw material.
  • the Na 2 O component When the Na 2 O component is contained in an amount of more than 0%, it is an optional component that can improve the meltability of the glass raw material, improve the transmittance, and reduce the temperature coefficient of the relative refractive index. Therefore, the content of the Na 2 O component is preferably more than 0%, more preferably more than 0.1%, still more preferably more than 0.5%, still more preferably more than 1.0%, still more preferably 1.5%. %, More preferably more than 2.0%. In particular, when the content exceeds 10.0%, the effect of reducing the temperature coefficient of the relative refractive index is enhanced, and the meltability of the glass is also improved.
  • the content of the Na 2 O component is preferably 35.0% or less, more preferably less than 30.0%, even more preferably less than 25.0%, and even more preferably less than 20.0%.
  • the Na 2 O component Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like can be used as a raw material.
  • the K 2 O component is an optional component that, when contained in excess of 0%, has a large average linear thermal expansion coefficient, good transmittance, and a small temperature coefficient of relative refractive index. Therefore, the content of the K 2 O component is preferably more than 0%, more preferably 0.5% or more, still more preferably more than 1.0%, and even more preferably more than 2.0%. In particular, when the content exceeds 5.0%, the effect of reducing the temperature coefficient of the relative refractive index is enhanced, and the stability of the glass is also improved. On the other hand, when the content of the K 2 O component is 30.0% or less, the stability of the glass can be maintained and the decrease in the refractive index can be suppressed.
  • the content of the K 2 O component is preferably 30.0% or less, more preferably less than 25.0%, further preferably less than 20.0%, and further preferably less than 15.0%.
  • K 2 O component K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like can be used.
  • the BaO component is an optional component that can increase the meltability of the glass raw material, reduce the devitrification of the glass, increase the refractive index, and decrease the temperature coefficient of the relative refractive index when it contains more than 0%.
  • the content of the BaO component is preferably more than 0%, more preferably more than 0.1%, still more preferably more than 1.0%, still more preferably more than 2.0%.
  • the content of the BaO component is 20.0% or less, the average linear thermal expansion coefficient is large, and a decrease in the refractive index of the glass due to excessive content and devitrification can be reduced.
  • the content of the BaO component is preferably 20.0% or less, more preferably less than 19.0%, and even more preferably less than 18.0%.
  • BaO component BaCO 3 , Ba (NO 3 ) 2 , Ba (PO 3 ) 2 , BaF 2 and the like can be used as raw materials.
  • the TiO 2 component is a component that can increase the refractive index of the glass, reduce the Abbe number, and can easily obtain a stable glass when it contains more than 0%. Therefore, the content of the TiO 2 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.0%, and even more preferably 5.0% or more. On the other hand, by setting the content of the TiO 2 component to 30.0% or less, the average linear thermal expansion coefficient is large, the temperature coefficient of the relative refractive index can be reduced, and devitrification due to excessive inclusion of the TiO 2 component is reduced. It is possible to suppress a decrease in transmittance of glass with respect to visible light (particularly, a wavelength of 500 nm or less).
  • the content of the TiO 2 component is preferably 30.0% or less, more preferably less than 26.0%, even more preferably less than 23.0%, and even more preferably less than 20.0%.
  • TiO 2 component TiO 2 or the like can be used as a raw material.
  • the SiO 2 component is a glass-forming oxide component that can improve the viscosity of the molten glass when it exceeds 0%. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably more than 0.1%, still more preferably more than 0.3%. On the other hand, when the content of the SiO 2 component is 5.0% or less, an increase in the glass transition point can be suppressed and a decrease in the refractive index can be suppressed. Therefore, the content of the SiO 2 component is preferably 5.0% or less, more preferably 3.0% or less, and still more preferably less than 1.0%. As the SiO 2 component, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like can be used as a raw material.
  • the B 2 O 3 component when ultra containing 0%, is optionally component used as a glass-forming oxide which can increase the melting property of the glass.
  • the content of the B 2 O 3 component is preferably 5.0% or less, more preferably 3.0% or less, more preferably less than 1.5%, and still more preferably less than 1.3%.
  • the refractive index can be increased, the Abbe number can be lowered, the glass transition point can be lowered, and the loss can be reduced while reducing the coloration of the glass by other components that bring about a high refractive index. It is an optional component that can reduce see-through.
  • the content of the WO 3 component can be 10.0% or less, the temperature coefficient of the relative refractive index can be reduced, and devitrification during reheat pressing can be suppressed.
  • the visible light transmittance can be increased by reducing the coloring of the glass by the WO 3 component.
  • the content of the WO 3 component is preferably 10.0% or less, more preferably less than 9.0%, even more preferably less than 8.0%, still more preferably less than 6.5%, still more preferably 5. It may be less than 0%.
  • WO 3 component WO 3 or the like can be used as a raw material.
  • the ZnO component When the ZnO component is contained in an amount of more than 0%, the ZnO component is an optional component that enhances the meltability of the raw material, promotes defoaming from the melted glass, and enhances the stability of the glass. It is also a component that can lower the glass transition point and improve chemical durability.
  • the content of the ZnO component less than 5.0%, the temperature coefficient of the relative refractive index can be reduced, the expansion due to heat can be reduced, the decrease in the refractive index can be suppressed, and the excessive viscosity can be reduced. Devitrification due to the reduction can be reduced.
  • the content of the ZnO component is preferably less than 5.0%, more preferably less than 4.0%, further preferably less than 2.0%, more preferably less than 1.0%, and still more preferably 0.5%. It may be less than%. Moreover, it is not necessary to contain a ZnO component.
  • ZnO component ZnO, ZnF 2 or the like can be used as a raw material.
  • the ZrO 2 component is an optional component that can increase the refractive index of the glass and reduce devitrification when it contains more than 0%. Therefore, the content of the ZrO 2 component is preferably more than 0%, more preferably more than 0.5%, and even more preferably more than 1.0%. On the other hand, by setting the content of the ZrO 2 component to 5.0% or less, the temperature coefficient of the relative refractive index can be reduced, and devitrification due to excessive inclusion of the ZrO 2 component can be reduced. Therefore, the content of the ZrO 2 component is preferably 5.0% or less, more preferably 3.0% or less, still more preferably less than 1.0%, and even more preferably less than 0.5%. Further, the ZrO 2 component may not be contained. As the ZrO 2 component, ZrO 2 , ZrF 4 or the like can be used as a raw material.
  • the MgO component, CaO component, and SrO component are optional components that can adjust the refractive index, meltability, and devitrification resistance of the glass when the content exceeds 0%.
  • the contents of the MgO component, the CaO component and the SrO component are each preferably 5.0% or less, more preferably 3.5% or less, and even more preferably less than 2.0%.
  • the Li 2 O component is an optional component that can improve the meltability of the glass and lower the glass transition point.
  • the content of the Li 2 O component is preferably 5.0% or less, more preferably less than 3.0%, further preferably 1.0% or less, and further preferably less than 0.5%.
  • Li 2 O component Li 2 CO 3 , LiNO 3 , LiF, or the like can be used as a raw material.
  • the Al 2 O 3 component and the Ga 2 O 3 component are optional components that can improve the devitrification resistance of the molten glass when the content exceeds 0%.
  • the content of the Al 2 O 3 component and the Ga 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably 1.%. It may be less than 0%.
  • Al 2 O 3 component is a raw material as Al 2 O 3, Al (OH ) can be used 3, AlF 3, etc., Ga 2 O 3 may be used as component Ga 2 O 3 or the like as raw materials.
  • the Sb 2 O 3 component is an optional component that can degas the molten glass when it contains more than 0%.
  • the content of the Sb 2 O 3 component is preferably 1.0% or less, more preferably less than 0.5%, more preferably less than 0.2%, and even more preferably less than 0.1%.
  • Sb 2 O 3 component Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 .5H 2 O, or the like can be used as a raw material.
  • the total content of the Na 2 O component and the K 2 O component is preferably 3.0% or more.
  • the mass sum (Na 2 O + K 2 O) is preferably 3.0% or more, more preferably more than 4.0%, more preferably more than 5.0%, and still more preferably more than 6.0%.
  • the mass sum (Na 2 O + K 2 O) is preferably 30.0% or less, more preferably less than 25.0%, and even more preferably less than 23.0%.
  • the total content of the Na 2 O component, K 2 O component and BaO component is preferably 10.0% or more.
  • the mass sum (Na 2 O + K 2 O + BaO) is preferably 10.0% or more, more preferably more than 12.0%, more preferably more than 14.0%, more preferably more than 16.0%, even more preferably Is over 17.5%.
  • the mass sum (Na 2 O + K 2 O + BaO) is preferably 35.0%, more preferably 33.0% or less, and even more preferably less than 30.0%.
  • the total content of the Nb 2 O 5 component and the TiO 2 component is preferably 30.0% or more.
  • the mass sum (Nb 2 O 5 + TiO 2 ) is preferably 30.0% or more, more preferably 35.0% or more, and further preferably 40.0% or more.
  • the mass sum (Nb 2 O 5 + TiO 2 ) is preferably 65.0% or less, more preferably 63.0% or less, and even more preferably 60.0 or less.
  • the ratio of the Na 2 O component, the K 2 O component and the BaO component to the total content of the B 2 O 3 component and the TiO 2 component is preferably more than 0.5.
  • the mass ratio (Na 2 O + K 2 O + BaO) / (B 2 O 3 + TiO 2 ) is preferably more than 0.5, more preferably more than 0.7, and still more preferably more than 1.0.
  • the mass ratio (Na 2 O + K 2 O + BaO) / (B 2 O 3 + TiO 2 ) is preferably less than 5.5, more preferably less than 5.0, and even more preferably less than 4.8.
  • the sum (mass sum) of the content of RO components (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is more than 0%, so that the refractive index of the glass is increased.
  • the meltability and devitrification resistance can be increased. Therefore, the lower limit of the sum (mass sum) of the RO component contents is preferably more than 0%, more preferably more than 0.5%, and still more preferably more than 1.0%.
  • the sum of the RO component contents (mass sum) is preferably 30.0% or less, more preferably 25.0% or less, and still more preferably 20.0% or less.
  • the refractive index of the glass can be increased and the loss resistance can be increased. It is an optional component that can increase the permeability.
  • the content of La 2 O 3 component, Gd 2 O 3 component, Y 2 O 3 component, Yb 2 O 3 component and Ta 2 O 5 component 5.0% or less, the raw material of optical glass The cost can be reduced, and the melting temperature of the raw material is lowered, and the energy required for melting the raw material is reduced. Therefore, the manufacturing cost of the optical glass can also be reduced. Therefore, the content of each of these components is preferably 5.0% or less, more preferably less than 3.0%, more preferably less than 2.0%, and even more preferably less than 1.0%.
  • the GeO 2 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance when it contains more than 0%.
  • the raw material price of GeO 2 is high, and the production cost increases when the content is large. Therefore, the content of the GeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, more preferably less than 3.0%, and even more preferably less than 1.0%.
  • the GeO 2 component GeO 2 or the like can be used as a raw material.
  • the Bi 2 O 3 component is an optional component that can increase the refractive index, lower the Abbe number, and lower the glass transition point when it contains more than 0%.
  • the content of the Bi 2 O 3 component is preferably 5.0% or less, more preferably less than 3.0%, and even more preferably less than 1.0%. In particular, it is preferably not contained from the viewpoint of obtaining a glass with good transmittance.
  • Bi 2 O 3 component Bi 2 O 3 or the like can be used as a raw material.
  • the TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when it exceeds 0%.
  • TeO 2 has a problem that it can be alloyed with platinum when melting a glass raw material in a crucible made of platinum or a melting tank in which a portion in contact with molten glass is formed of platinum. Therefore, the content of the TeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, more preferably less than 3.0%, and even more preferably less than 1.0%.
  • TeO 2 component can use TeO 2 or the like as a raw material.
  • the SnO 2 component When the SnO 2 component is contained in an amount of more than 0%, the SnO 2 component is an optional component that can be refined by reducing the oxidation of the molten glass and can increase the visible light transmittance of the glass.
  • the content of the SnO 2 component is 3.0% or less, the coloring of the glass due to the reduction of the molten glass and the devitrification of the glass can be reduced.
  • the alloying of the SnO 2 component and the melting equipment especially a noble metal such as Pt
  • the content of the SnO 2 component is preferably 3.0% or less, more preferably less than 1.0%, further preferably less than 0.5%, and further preferably less than 0.1%.
  • SnO 2 component SnO, SnO 2 , SnF 2 , SnF 4 or the like can be used as a raw material.
  • the components for clarifying and defoaming the glass are not limited to the above-described Sb 2 O 3 component and SnO 2 component, and well-known fining agents, defoaming agents or combinations thereof in the field of glass production are used. be able to.
  • the F component is an optional component that can increase the glass Abbe number, lower the glass transition point, and improve the devitrification resistance when it is contained in excess of 0%.
  • the content of the F component that is, the total amount of F substituted for a part or all of one or more oxides of each of the above metal elements exceeds 10.0%
  • F Since the volatilization amount of the component increases, it becomes difficult to obtain a stable optical constant, and it becomes difficult to obtain a homogeneous glass.
  • the Abbe number rises more than necessary. Therefore, the content of the F component is preferably 10.0% or less, more preferably less than 5.0%, more preferably less than 3.0%, and even more preferably less than 1.0%.
  • the F component can be contained in the glass by using, for example, ZrF 4 , AlF 3 , NaF, CaF 2 or the like as a raw material.
  • the mass ratio (SiO 2 + Al 2 O 3 + ZnO) / (B 2 O 3 + Rn 2 O) is preferably 15.0 or less, more preferably 12.0 or less, more preferably 10.0 or less, more preferably Is 8.0 or less, more preferably 6.0 or less, and still more preferably less than 5.0.
  • the mass ratio (SiO 2 + Al 2 O 3 + ZnO) / (B 2 O 3 + Rn 2 O) can be greater than zero.
  • the temperature coefficient of relative refractive index can be reduced and the average linear thermal expansion coefficient can be increased. Therefore, the mass ratio (SiO 2 + Al 2 O 3 + ZnO) / (B 2 O 3 + Rn 2 O) is preferably more than 0, more preferably more than 1.0, and still more preferably more than 2.0.
  • Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, K), the sum (mass sum) of the content is more than 1.0%, the relative refractive index And the average linear thermal expansion coefficient can be increased. Accordingly, the sum (mass sum) of the contents of the Rn 2 O component is preferably more than 1.0%, more preferably more than 1.5%, and still more preferably more than 2.0%. On the other hand, by setting the sum to 30.0% or less, devitrification due to a decrease in the viscosity of the glass can be reduced while maintaining a desired refractive index and dispersion. Therefore, the sum (mass sum) of the contents of the Rn 2 O component is preferably 30.0% or less, more preferably less than 25.0%, and even more preferably less than 23.0%.
  • the optical glass of the present invention preferably contains two or more components among the above-mentioned Rn 2 O components. This eliminates the need for a reheating and heat treatment step to reduce the temperature coefficient of the relative refractive index and improve the transmittance.
  • the Rn 2 O component to contain two or more components containing Na 2 O component and K 2 O component is a large average linear thermal expansion coefficient, the transmittance was improved, the temperature coefficient of the relative refractive index Is preferable in that it can be reduced.
  • the sum (mass sum) of the contents of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) is preferably 5.0% or less. Thereby, it is possible to obtain a glass having excellent devitrification resistance and good transmittance. Therefore, the sum (mass sum) of the contents of the Ln 2 O 3 component is preferably 5.0% or less, more preferably 3.5% or less, and still more preferably less than 2.0%.
  • each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is independent of each other. Or, even when it is contained in a small amount in combination, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. .
  • lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components with high environmental loads, it is desirable that they are not substantially contained, that is, not contained at all except for inevitable mixing.
  • each component of Th, Cd, Tl, Os, Be, and Se has tended to be refrained from being used as a harmful chemical material in recent years, and not only in the glass manufacturing process, but also in the processing process and disposal after commercialization. Until then, environmental measures are required. Therefore, when importance is placed on the environmental impact, it is preferable that these are not substantially contained.
  • the optical glass of the present invention is produced, for example, as follows. That is, as the raw materials for the above components, high purity raw materials used for ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, metaphosphate compounds, etc. Mix uniformly so as to be within the range of the content of metal, put the prepared mixture into a platinum crucible, and melt in a temperature range of 1000-1500 ° C for 1-10 hours in an electric furnace depending on the difficulty of melting the glass raw material After stirring and homogenizing, the temperature is lowered to an appropriate temperature, cast into a mold, and slowly cooled.
  • high purity raw materials used for ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, metaphosphate compounds, etc.
  • the optical glass of the present invention preferably has a high refractive index and a low Abbe number (high dispersion).
  • the refractive index (n d ) of the optical glass of the present invention is preferably 1.65 or more, more preferably 1.67 or more, and further preferably 1.69 or more.
  • This refractive index (n d ) is preferably 2.00 or less, more preferably 1.98 or less, still more preferably 1.96 or less, and even more preferably 1.95 or less.
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 10.0 or more, more preferably 13.0 or more, further preferably 15.0 or more, and further preferably 17.0 or more.
  • the Abbe number ( ⁇ d ) is preferably 35.0 or less, more preferably 34.0 or less, still more preferably 32.0 or less, and even more preferably 30.0 or less.
  • the Abbe number ( ⁇ d ) is preferably 35.0 or less, more preferably 34.0 or less, still more preferably 32.0 or less, and even more preferably 30.0 or less.
  • the optical glass of the present invention has a low temperature coefficient (dn / dT) of relative refractive index. More specifically, the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably + 3.0 ⁇ 10 ⁇ 6 ° C. ⁇ 1 , more preferably + 1.5 ⁇ 10 ⁇ 6 ° C. ⁇ 1 , more preferably The upper limit value is + 1.0 ⁇ 10 ⁇ 6 ° C. ⁇ 1 , and this upper limit value or a lower value (minus side) can be taken. On the other hand, the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably ⁇ 10.0 ⁇ 10 ⁇ 6 ° C.
  • glasses having a low temperature coefficient of relative refractive index are present as glasses having a refractive index (n d ) of 1.65 or more and an Abbe number ( ⁇ d ) of 10 or more and 35 or less. Therefore, it is possible to expand the options for correction such as image formation deviation due to temperature change, and to make the correction easier.
  • the temperature coefficient of the relative refractive index of the optical glass of the present invention is the temperature coefficient of the refractive index (589.29 nm) in air at the same temperature as the optical glass, and when the temperature is changed from 40 ° C. to 60 ° C. Of change per 1 ° C. (° C. ⁇ 1 ).
  • the average linear thermal expansion coefficient ⁇ at 100 to 300 ° C. is preferably 80 (10 ⁇ 7 ° C. ⁇ 1 ) or more. That is, the average linear thermal expansion coefficient ⁇ at 100 to 300 ° C. of the optical glass of the present invention is preferably 80 (10 ⁇ 7 ° C. ⁇ 1 ) or more, more preferably 85 (10 ⁇ 7 ° C. ⁇ 1 ) or more, more preferably Is 90 (10 ⁇ 7 ° C. ⁇ 1 ) or more. In general, if the average linear thermal expansion coefficient ⁇ is large, cracks are likely to occur when glass is processed. Therefore, it is desirable that the average linear thermal expansion coefficient ⁇ is small.
  • the glass material and the average linear thermal expansion coefficient ⁇ are the same or approximate. It is desirable.
  • glass having a refractive index (n d ) of 1.65 or more and an Abbe number ( ⁇ d ) of 10 or more and 35 or less has few glass materials having a large average linear thermal expansion coefficient ⁇ , and has a low refractive index.
  • the average linear thermal expansion coefficient ⁇ has a large value as in the present invention.
  • the optical glass of the present invention has high visible light transmittance, in particular, high transmittance of light on the short wavelength side of visible light, and thereby less coloring.
  • the shortest wavelength ( ⁇ 80 ) showing a spectral transmittance of 80% in a sample having a thickness of 10 mm is preferably 460 nm or less, more preferably 450 nm or less, and even more preferably. Is 440 nm or less.
  • the shortest wavelength ( ⁇ 70 ) having a spectral transmittance of 70% in a 10 mm thick sample is preferably 430 nm or less, more preferably 420 nm or less, and even more preferably 410 nm or less.
  • the shortest wavelength ( ⁇ 5 ) having a spectral transmittance of 5% in a 10 mm thick sample is preferably 400 nm or less, more preferably 390 nm or less, and even more preferably 380 nm or less.
  • this optical glass can be preferably used for an optical element that transmits light such as a lens.
  • a glass molded body can be produced from the produced optical glass by means of, for example, polishing or molding press molding such as reheat press molding or precision press molding.
  • polishing or molding press molding such as reheat press molding or precision press molding.
  • optical glass is subjected to mechanical processing such as grinding and polishing to produce a glass molded body, or a preform for mold press molding is produced from optical glass, and reheat press molding is performed on this preform.
  • polishing is performed to produce a glass molded body, or precision preforming is performed on a preform formed by polishing or a preform formed by known floating molding, etc., to form a glass molded body.
  • the means for producing the glass molded body is not limited to these means.
  • the optical glass of the present invention is useful for various optical elements and optical designs.
  • a preform having a large diameter can be formed, so that it is possible to realize high-definition and high-precision imaging characteristics and projection characteristics when used in an optical apparatus while increasing the size of the optical element.
  • the glass molded body made of the optical glass of the present invention can be used for applications of optical elements such as lenses, prisms, mirrors, etc., and typically tends to become high temperature such as in-vehicle optical devices, projectors, and copiers. Can be used for equipment.
  • Tables 1 to 8 show the results of temperature coefficient (dn / dT), average linear thermal expansion coefficient (100 to 300 ° C.), and transmittance ( ⁇ 80, ⁇ 70, ⁇ 5 ).
  • the following examples are merely for illustrative purposes and are not limited to these examples.
  • the glasses of the examples and comparative examples of the present invention are used for ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, and metaphosphate compounds corresponding to the raw materials of the respective components.
  • a high-purity raw material is selected, weighed so as to have the composition ratio of each example shown in the table, and mixed uniformly, and then put into a platinum crucible, which is 800 in an electric furnace according to the difficulty of melting the glass raw material. It was melted at a temperature range of ⁇ 1300 ° C. for 1 to 10 hours, homogenized with stirring, cast into a mold or the like, and slowly cooled.
  • the refractive index (n d ) and Abbe number ( ⁇ d ) of the glass of the example and the comparative example are shown as measured values with respect to the d-line (587.56 nm) of the helium lamp.
  • the Abbe number ( ⁇ d ) is the refractive index of the d line, the refractive index (n F ) for the F lamp (486.13 nm) of the hydrogen lamp, and the refractive index (n C ) for the C line (656.27 nm).
  • the Abbe number ( ⁇ d ) [(n d ⁇ 1) / (n F ⁇ n C )].
  • the temperature coefficient (dn / dT) of the relative refractive index of the glass of Examples and Comparative Examples is a method described in Japanese Optical Glass Industry Association Standard JOGIS18-2008 “Measurement Method of Temperature Coefficient of Refractive Index of Optical Glass”
  • the value of the temperature coefficient of the relative refractive index at 40 to 60 ° C. for light having a wavelength of 589.29 nm was measured by the interferometry.
  • the average linear thermal expansion coefficient (100-300 ° C.) of the glass of the example and the comparative example is the temperature and the elongation of the sample according to Japan Optical Glass Industry Association Standard JOGIS08-2003 “Measurement Method of Thermal Expansion of Optical Glass”. From the thermal expansion curve obtained by measuring the relationship of.
  • the transmittance of the glass of the example was measured according to Japan Optical Glass Industry Association Standard JOGIS02-2003.
  • the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass.
  • a face parallel polished product having a thickness of 10 ⁇ 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and ⁇ 80 (wavelength at 80% transmittance), ⁇ 70 (transmittance). (Wavelength at 70%) and ⁇ 5 (wavelength at 5% transmittance) were determined.
  • the optical glass of the example of the present invention contains a P 2 O 5 component and a Nb 2 O 5 component, and contains a predetermined amount of a Na 2 O component and a K 2 O component, so that the temperature coefficient of the relative refractive index is small.
  • An inexpensive glass with a value can be obtained.
  • the temperature coefficient of the relative refractive index is within the range of + 1.0 ⁇ 10 ⁇ 6 to ⁇ 10.0 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ). Specifically, it was within the range of + 3.0 ⁇ 10 ⁇ 6 to ⁇ 10.0 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ), and was within the desired range.
  • optical glasses of the examples all had a refractive index (n d ) of 1.65 or more, and were within a desired range. Further, the optical glasses of the examples of the present invention all had an Abbe number ( ⁇ d ) in the range of 10 or more and 35 or less, and were in a desired range.
  • optical glasses of the examples all had an average linear thermal expansion coefficient (100-300 ° C.) of 80 (10 ⁇ 7 ° C. ⁇ 1 ) or more.
  • the optical glass of the example had a transmittance ( ⁇ 80 ) of 460 nm or less, a transmittance ( ⁇ 70 ) of 430 nm or less, and a transmittance ( ⁇ 5 ) of 400 nm or less.
  • the optical glass of the example formed a stable glass, and devitrification hardly occurred at the time of glass production.
  • the glass of Comparative Example A did not vitrify because devitrification occurred.
  • the optical glass of the example has a refractive index (n d ) and an Abbe number ( ⁇ d ) within desired ranges, and takes a value with a small temperature coefficient of relative refractive index, and can be obtained at a lower material cost. It became clear. Therefore, the optical glass of the embodiment of the present invention contributes to miniaturization of an optical system such as an in-vehicle optical device or a projector used in a high temperature environment, and contributes to correction of a shift in imaging characteristics due to a temperature change. It is inferred that
  • a glass block was formed using the optical glass of the example of the present invention, and this glass block was ground and polished to be processed into the shape of a lens and a prism. As a result, it was possible to stably process into various lens and prism shapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

Provided are: an optical glass which has a low temperature coefficient of the relative refractive index and can contribute to correcting the effects on imaging characteristics due to temperature change; and a preform and an optical element using the same. The optical glass comprises, in mass%, 20.0 to 40.0% of a P2O5 component, 25.0 to 50.0% of a Nb2O5 component, and 3.0 to 30.0% of a mass sum (Na2O+K2O), and has a temperature coefficient (40 to 60°C) of the relative refractive index (589.29 nm) in a range of +3.0×10-6 to -10.0×10-6 (°C-1).

Description

光学ガラス、プリフォーム及び光学素子Optical glass, preform and optical element

 本発明は、光学ガラス、プリフォーム及び光学素子に関する。 The present invention relates to an optical glass, a preform, and an optical element.

 近年、車載カメラ等の車載用光学機器に組み込まれる光学素子や、プロジェクタ、コピー機、レーザプリンタ及び放送用機材等のような多くの熱を発生する光学機器に組み込まれる光学素子では、より高温の環境での使用が増えている。このような高温の環境では、光学系を構成する光学素子の使用時の温度が大きく変動し易く、その温度が100℃以上に達する場合も多い。このとき、温度変動による光学系の結像特性等への悪影響が無視出来ないほど大きくなるため、温度変動によっても結像特性等に影響が生じ難い光学系を構成することが求められている。 In recent years, optical elements incorporated in in-vehicle optical devices such as in-vehicle cameras and optical elements incorporated in optical devices that generate a lot of heat, such as projectors, copiers, laser printers, and broadcasting equipment, have higher temperatures. Use in the environment is increasing. In such a high temperature environment, the temperature at the time of use of the optical element constituting the optical system is likely to fluctuate greatly, and the temperature often reaches 100 ° C. or more. At this time, since the adverse effect on the imaging characteristics and the like of the optical system due to temperature fluctuation is so large that it cannot be ignored, it is required to construct an optical system in which the imaging characteristics and the like are hardly affected even by temperature fluctuation.

 温度変動による結像特性等への影響が生じ難い光学系を構成するにあたっては、温度が上昇したときに屈折率が低くなり、相対屈折率の温度係数がマイナスとなるガラスから構成される光学素子と、温度が上昇したときに屈折率が高くなり、相対屈折率の温度係数がプラスとなるガラスから構成される光学素子を併用することが、温度変化による結像特性等への影響を補正できる点で好ましい。 When constructing an optical system that does not easily affect the imaging characteristics, etc. due to temperature fluctuations, an optical element made of glass whose refractive index decreases when the temperature rises and the temperature coefficient of the relative refractive index becomes negative. The combined use of an optical element made of glass that increases the refractive index when the temperature rises and has a positive temperature coefficient of relative refractive index can correct the influence on the imaging characteristics and the like due to the temperature change. This is preferable.

 ここで、相対屈折率の温度係数に着目して開発されたガラスとしては、例えば特許文献1に代表されるようなガラス組成物が知られている。 Here, as a glass developed by paying attention to the temperature coefficient of the relative refractive index, for example, a glass composition represented by Patent Document 1 is known.

特開2007-106611号公報JP 2007-106611 A

 特許文献1に記載されたガラスは、高屈折率をもたらす成分を多く含んだガラスであり、相対屈折率の温度係数を高めることを目的とするものである。他方で、高屈折率をもたらす成分を多く含んだガラスにおいて、相対屈折率の温度係数が小さいガラスは得られていない。しかし、温度変化による結像特性への影響の補正に寄与できる観点から、相対屈折率の温度係数がマイナスとなるガラスや、相対屈折率の温度係数の絶対値の小さなガラスも望まれている。 The glass described in Patent Document 1 is a glass containing a lot of components that provide a high refractive index, and is intended to increase the temperature coefficient of the relative refractive index. On the other hand, in a glass containing a large amount of a component that provides a high refractive index, a glass having a small temperature coefficient of relative refractive index has not been obtained. However, from the viewpoint of contributing to the correction of the influence on the imaging characteristics due to the temperature change, a glass having a negative temperature coefficient of the relative refractive index and a glass having a small absolute value of the temperature coefficient of the relative refractive index are desired.

 加えて、光学設計を行う際、低屈折率低分散硝材と高屈折率高分散硝材を接合することがあり、接合時に組み合わせる硝材の平均線熱膨張係数の差が小さくなると接合が良好となる。特に、フッ素を含有する低屈折率低分散硝材は平均線熱膨張係数が大きいことが知られているが、高屈折率高分散硝材で平均線熱膨張係数が大きい硝材はほぼ存在しておらず、平均線熱膨張係数が大きい硝材が求められている。特許文献1に記載されたガラスは、平均線熱膨張係数が小さく、このような要求に十分応えるものとは言い難い。 In addition, when optical design is performed, a low-refractive index low-dispersion glass material and a high-refractive index high-dispersion glass material may be joined. If the difference in the average linear thermal expansion coefficient of the glass materials combined at the time of joining becomes small, the joining becomes good. In particular, low-refractive index low-dispersion glass materials containing fluorine are known to have a large average linear thermal expansion coefficient, but there are almost no glass materials with a high average refractive index and high-dispersion glass material that have a high average linear thermal expansion coefficient. Therefore, a glass material having a large average linear thermal expansion coefficient is demanded. The glass described in Patent Document 1 has a small average linear thermal expansion coefficient, and it is difficult to say that the glass sufficiently satisfies such a requirement.

 さらに、本発明における光学ガラスでは、再加熱して熱処理をし、ガラスの着色を取り除くという工程を経ることなく、可視光における透過率が優れたガラスを得ることができるため、より安価に製造することができる。 Furthermore, the optical glass according to the present invention can be manufactured at a lower cost because a glass having excellent transmittance in visible light can be obtained without going through the steps of reheating and heat treatment to remove the coloring of the glass. be able to.

 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、相対屈折率の温度係数が小さい値をとり、温度変化による結像特性への影響の補正に寄与できる光学ガラスと、かつ低屈折率低分散硝材との接合に適した平均線熱膨張係数をもつ光学ガラスを用いたプリフォーム及び光学素子を得ることにある。 The present invention has been made in view of the above problems, and the object of the present invention is to take a small value of the temperature coefficient of the relative refractive index and contribute to the correction of the influence on the imaging characteristics due to the temperature change. The object is to obtain a preform and an optical element using optical glass having an average linear thermal expansion coefficient suitable for bonding between optical glass and a low refractive index and low dispersion glass material.

 本発明者は、上記課題を解決するために、鋭意試験研究を重ねた結果、P成分及びNb成分を含有し、NaO成分及びKO成分を所定量含有することで、相対屈折率の温度係数が低い値をとる安価なガラスが得られることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。 In order to solve the above-mentioned problems, the present inventor has conducted earnest test research, and as a result, contains the P 2 O 5 component and the Nb 2 O 5 component, and contains a predetermined amount of the Na 2 O component and the K 2 O component. Thus, it was found that an inexpensive glass having a low temperature coefficient of relative refractive index can be obtained, and the present invention has been completed. Specifically, the present invention provides the following.

(1) 質量%で、
成分     20.0~40.0%、
Nb成分    25.0~50.0%、
質量和(NaO+KO)が3.0~30.0%、
を含有し、
 相対屈折率(589.29nm)の温度係数(40~60℃)が+3.0×10-6
-10.0×10-6(℃-1)の範囲内にある光学ガラス。
(1) In mass%,
P 2 O 5 component 20.0-40.0%,
Nb 2 O 5 component 25.0 to 50.0%,
Mass sum (Na 2 O + K 2 O) is 3.0 to 30.0%,
Containing
The temperature coefficient (40-60 ° C.) of the relative refractive index (589.29 nm) is + 3.0 × 10 −6
Optical glass in the range of −10.0 × 10 −6 (° C. −1 ).

(2) 質量和(NaO+KO+BaO)が10.0~35.0%であることを特徴とする(1)記載の光学ガラス。 (2) The optical glass as described in (1), wherein the mass sum (Na 2 O + K 2 O + BaO) is 10.0 to 35.0%.

(3) 100~300℃における平均線熱膨張係数αが80(10-7-1)以上であることを特徴とする(1)又は(2)記載の光学ガラス。 (3) The optical glass according to (1) or (2), wherein an average linear thermal expansion coefficient α at 100 to 300 ° C. is 80 (10 −7 ° C. −1 ) or more.

(4) 1.65以上2.00以下の屈折率(n)を有し、10以上35以下のアッベ数(ν)を有する(1)から(3)記載の光学ガラス。 (4) The optical glass according to (1) to (3), which has a refractive index (n d ) of 1.65 or more and 2.00 or less and an Abbe number (ν d ) of 10 or more and 35 or less.

(5) (1)から(4)のいずれか記載の光学ガラスからなるプリフォーム。 (5) A preform made of the optical glass according to any one of (1) to (4).

(6) (1)から(4)のいずれか記載の光学ガラスからなる光学素子。 (6) An optical element made of the optical glass according to any one of (1) to (4).

(7) (6)に記載の光学素子を備える光学機器。 (7) An optical device including the optical element according to (6).

 本発明によれば、相対屈折率の温度係数が小さい値をとり、温度変化による結像特性への影響の補正に寄与でき、かつ可視光における透過率が良好な光学ガラスと、これを用いたプリフォーム及び光学素子を、より安価に得ることができる。 According to the present invention, an optical glass that has a small temperature coefficient of relative refractive index, can contribute to correction of influence on imaging characteristics due to temperature change, and has good transmittance in visible light, and the same are used. Preforms and optical elements can be obtained at lower costs.

 本発明の光学ガラスは、質量%で、P成分を20.0%以上40.0%以下、Nb成分を合計25.0%以上50.0%以下、NaO成分及びKO成分の質量和が3.0%以上30.0%以下含有し、相対屈折率(589.29nm)の温度係数(40~60℃)が+3.0×10-6~-10.0×10-6(℃-1)の範囲内にある。
 NaO成分及びKO成分を多く含有することで、相対屈折率の温度係数が小さい値をとり平均線熱膨張係数が大きい硝材ガラスを得ることができる。
従って、可視光における透過率が良好でありながら、相対屈折率の温度係数が小さい値をとり、温度変化による結像特性への影響の補正に寄与でき、低屈折率低分散硝材との接合性の良く、可視光における透過率が良好な光学ガラスと、これを用いたプリフォーム及び光学素子をより安価に得ることができる。
The optical glass of the present invention is, by mass%, 20.0% to 40.0% of P 2 O 5 component, 25.0% to 50.0% in total of Nb 2 O 5 component, Na 2 O component And the K 2 O component has a mass sum of 3.0% or more and 30.0% or less, and the temperature coefficient (40 to 60 ° C.) of the relative refractive index (589.29 nm) is + 3.0 × 10 −6 to −10. Within the range of 0 × 10 −6 (° C. −1 ).
By containing a large amount of the Na 2 O component and the K 2 O component, a glass material glass having a small temperature coefficient of relative refractive index and a large average linear thermal expansion coefficient can be obtained.
Therefore, although the transmittance in visible light is good, the temperature coefficient of the relative refractive index takes a small value, and it can contribute to the correction of the influence on the imaging characteristics due to the temperature change, and the bonding property with the low refractive index and low dispersion glass material In addition, it is possible to obtain an optical glass with good visible light transmittance and a preform and an optical element using the optical glass at a lower cost.

 以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所について、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, embodiments of the optical glass of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the meaning of invention is not limited.

[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成の全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量数を100質量%として、ガラス中に含有される各成分を表記した組成である。
[Glass component]
The composition range of each component constituting the optical glass of the present invention is described below. In the present specification, unless otherwise specified, the contents of the respective components are all expressed in mass% with respect to the total mass of the oxide equivalent composition. Here, the “oxide equivalent composition” is based on the assumption that the oxide, composite salt, metal fluoride, etc. used as the raw material of the glass component of the present invention are all decomposed and changed into oxides during melting. It is the composition which described each component contained in glass by making the total mass number of production | generation oxide into 100 mass%.

<必須成分、任意成分について>
 P成分はガラス形成酸化物として必須の成分である。特に、P成分を20.0%以上含有することで、熔融ガラスの粘性を良好にし、ガラスの安定性を高められる。また、リヒートプレス時の失透性を良好とする。従って、P成分の含有量は、好ましくは20.0%以上、より好ましくは21.0%超、さらに好ましくは22.0%超とする。
 他方で、P成分の含有量を40.0%以下にすることで、所望の屈折率及び分散を維持することが出来る。従って、P成分の含有量は、好ましくは40.0%以下、より好ましくは35.0%以下、さらに好ましくは30.0%未満とする。
 P成分は、原料としてAl(PO、Ca(PO、Ba(PO、BPO、HPO4、NaHPO、KHPO等を用いることができる。
<About essential and optional components>
The P 2 O 5 component is an essential component as a glass-forming oxide. In particular, by containing 20.0% or more of the P 2 O 5 component, the viscosity of the molten glass can be improved and the stability of the glass can be enhanced. Moreover, the devitrification property at the time of reheat press is made favorable. Therefore, the content of the P 2 O 5 component is preferably 20.0% or more, more preferably more than 21.0%, and even more preferably more than 22.0%.
On the other hand, the desired refractive index and dispersion can be maintained by setting the content of the P 2 O 5 component to 40.0% or less. Therefore, the content of the P 2 O 5 component is preferably 40.0% or less, more preferably 35.0% or less, and even more preferably less than 30.0%.
The P 2 O 5 component uses Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4, NaH 2 PO 4 , KH 2 PO 4, etc. as raw materials. be able to.

 Nb成分は高屈折率高分散成分として必須の成分である。特に、Nb成分を25.0%以上含有することで、高屈折率、高分散を維持しながらガラスの安定性を高めることができる。従って、Nb成分の含有量は、好ましくは25.0%以上、より好ましくは28.0%超、さらに好ましくは30.0%超とする。
 他方で、Nb成分の含有量を50.0%以下にすることで、平均線熱膨張係数が大きく、所望の屈折率及び分散を維持することが出来る。従って、Nb成分の含有量は、好ましくは50.0%以下、より好ましくは47.0%以下とする。
 Nb成分は、原料としてNb等を用いることができる。
The Nb 2 O 5 component is an essential component as a high refractive index and high dispersion component. In particular, by containing 25.0% or more of the Nb 2 O 5 component, the stability of the glass can be enhanced while maintaining a high refractive index and high dispersion. Therefore, the content of the Nb 2 O 5 component is preferably 25.0% or more, more preferably more than 28.0%, still more preferably more than 30.0%.
On the other hand, by setting the content of the Nb 2 O 5 component to 50.0% or less, the average linear thermal expansion coefficient is large, and the desired refractive index and dispersion can be maintained. Therefore, the content of the Nb 2 O 5 component is preferably 50.0% or less, more preferably 47.0% or less.
As the Nb 2 O 5 component, Nb 2 O 5 or the like can be used as a raw material.

 NaO成分は、0%超含有する場合に、ガラス原料の熔融性を高められ、透過率を良好とし、相対屈折率の温度係数を小さくできる任意成分である。従って、NaO成分の含有量は、好ましくは0%超、より好ましくは0.1%超、さらに好ましくは0.5%超、さらに好ましくは1.0%超、さらに好ましくは1.5%超、さらに好ましくは2.0%超とする。
 特に、10.0%を超えて含有する場合、相対屈折率の温度係数を小さくする効果が高まり、ガラスの熔融性も良好となるため、10.0%超としてもよい。
 他方で、NaO成分の含有量を35.0%以下にすることで、過剰な含有によるガラスの屈折率の低下や、化学的耐久性(耐水性)の低下、失透を低減でき、リヒートプレス時の失透を抑制できる。従って、NaO成分の含有量は、好ましくは35.0%以下、より好ましくは30.0%未満、さらに好ましくは25.0%未満、さらに好ましくは20.0%未満とする。
 NaO成分は、原料としてNaCO、NaNO、NaF、NaSiF等を用いることができる。
When the Na 2 O component is contained in an amount of more than 0%, it is an optional component that can improve the meltability of the glass raw material, improve the transmittance, and reduce the temperature coefficient of the relative refractive index. Therefore, the content of the Na 2 O component is preferably more than 0%, more preferably more than 0.1%, still more preferably more than 0.5%, still more preferably more than 1.0%, still more preferably 1.5%. %, More preferably more than 2.0%.
In particular, when the content exceeds 10.0%, the effect of reducing the temperature coefficient of the relative refractive index is enhanced, and the meltability of the glass is also improved.
On the other hand, by making the content of the Na 2 O component 35.0% or less, it is possible to reduce the refractive index of the glass due to excessive inclusion, chemical durability (water resistance), and devitrification, Devitrification during reheat pressing can be suppressed. Therefore, the content of the Na 2 O component is preferably 35.0% or less, more preferably less than 30.0%, even more preferably less than 25.0%, and even more preferably less than 20.0%.
As the Na 2 O component, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like can be used as a raw material.

 KO成分は、0%超含有する場合に、平均線熱膨張係数が大きく、透過率を良好とし、相対屈折率の温度係数を小さくできる任意成分である。従って、KO成分の含有量は、好ましくは0%超、より好ましくは0.5%以上、さらに好ましくは1.0%超、さらに好ましくは2.0%超としてもよい。
 特に、5.0%を超えて含有する場合、相対屈折率の温度係数を小さくする効果が高まり、ガラスの安定性も良好となるため、5.0%超としてもよい。
 他方で、KO成分の含有量を30.0%以下にすることで、ガラスの安定性を維持し、かつ屈折率の低下を抑えられる。従って、KO成分の含有量は、好ましくは30.0%以下、さらに好ましくは25.0%未満、さらに好ましくは20.0%未満、さらに好ましくは15.0%未満とする。
 KO成分は、KCO、KNO、KF、KHF、KSiF等を用いることができる。
The K 2 O component is an optional component that, when contained in excess of 0%, has a large average linear thermal expansion coefficient, good transmittance, and a small temperature coefficient of relative refractive index. Therefore, the content of the K 2 O component is preferably more than 0%, more preferably 0.5% or more, still more preferably more than 1.0%, and even more preferably more than 2.0%.
In particular, when the content exceeds 5.0%, the effect of reducing the temperature coefficient of the relative refractive index is enhanced, and the stability of the glass is also improved.
On the other hand, when the content of the K 2 O component is 30.0% or less, the stability of the glass can be maintained and the decrease in the refractive index can be suppressed. Therefore, the content of the K 2 O component is preferably 30.0% or less, more preferably less than 25.0%, further preferably less than 20.0%, and further preferably less than 15.0%.
As the K 2 O component, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like can be used.

BaO成分は、0%超含有する場合に、ガラス原料の熔融性を高められ、ガラスの失透を低減でき、屈折率を高められ、相対屈折率の温度係数を小さくできる任意成分である。また、高屈折率をもたらす成分の中では材料コストが低く、熔解し易い成分である。従って、BaO成分の含有量は、好ましくは0%超、より好ましくは0.1%超、さらに好ましくは1.0%超、さらに好ましくは2.0%超とする。
 他方で、BaO成分の含有量を20.0%以下にすることで、平均線熱膨張係数が大きく、過剰な含有によるガラスの屈折率の低下や、失透を低減できる。従って、BaO成分の含有量は、好ましくは20.0%以下、より好ましくは19.0%未満、さらに好ましくは18.0%未満とする。
 BaO成分は、原料としてBaCO、Ba(NO、Ba(PO、BaF2、等を用いることができる。
The BaO component is an optional component that can increase the meltability of the glass raw material, reduce the devitrification of the glass, increase the refractive index, and decrease the temperature coefficient of the relative refractive index when it contains more than 0%. In addition, among the components that provide a high refractive index, the material cost is low and the components are easily melted. Therefore, the content of the BaO component is preferably more than 0%, more preferably more than 0.1%, still more preferably more than 1.0%, still more preferably more than 2.0%.
On the other hand, by setting the content of the BaO component to 20.0% or less, the average linear thermal expansion coefficient is large, and a decrease in the refractive index of the glass due to excessive content and devitrification can be reduced. Therefore, the content of the BaO component is preferably 20.0% or less, more preferably less than 19.0%, and even more preferably less than 18.0%.
As the BaO component, BaCO 3 , Ba (NO 3 ) 2 , Ba (PO 3 ) 2 , BaF 2 and the like can be used as raw materials.

 TiO成分は、0%超含有する場合に、ガラスの屈折率を高め、アッベ数を低くでき、安定なガラスを得易くできる成分である。従って、TiO成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは3.0%超、さらに好ましくは5.0%以上としてもよい。
 他方で、TiO成分の含有量を30.0%以下にすることで、平均線熱膨張係数が大きく、相対屈折率の温度係数を小さくでき、TiO成分の過剰な含有による失透を低減でき、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。従って、TiO成分の含有量は、好ましくは30.0%以下、より好ましくは26.0%未満、さらに好ましくは23.0%未満、さらに好ましくは20.0%未満としてもよい。
 TiO成分は、原料としてTiO等を用いることができる。
The TiO 2 component is a component that can increase the refractive index of the glass, reduce the Abbe number, and can easily obtain a stable glass when it contains more than 0%. Therefore, the content of the TiO 2 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.0%, and even more preferably 5.0% or more.
On the other hand, by setting the content of the TiO 2 component to 30.0% or less, the average linear thermal expansion coefficient is large, the temperature coefficient of the relative refractive index can be reduced, and devitrification due to excessive inclusion of the TiO 2 component is reduced. It is possible to suppress a decrease in transmittance of glass with respect to visible light (particularly, a wavelength of 500 nm or less). Therefore, the content of the TiO 2 component is preferably 30.0% or less, more preferably less than 26.0%, even more preferably less than 23.0%, and even more preferably less than 20.0%.
As the TiO 2 component, TiO 2 or the like can be used as a raw material.

SiO成分は、0%超含有する場合に、熔融ガラスの粘度を良好にすることができるガラス形成酸化物成分である。従って、SiO成分の含有量は、好ましくは0%超、より好ましくは0.1%超、さらに好ましくは0.3%超とする。
 他方で、SiO成分の含有量を5.0%以下にすることで、ガラス転移点の上昇を抑えられ、かつ屈折率の低下を抑えられる。従って、SiO成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%以下、さらに好ましくは1.0%未満とする。
 SiO成分は、原料としてSiO、KSiF、NaSiF等を用いることができる。
The SiO 2 component is a glass-forming oxide component that can improve the viscosity of the molten glass when it exceeds 0%. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably more than 0.1%, still more preferably more than 0.3%.
On the other hand, when the content of the SiO 2 component is 5.0% or less, an increase in the glass transition point can be suppressed and a decrease in the refractive index can be suppressed. Therefore, the content of the SiO 2 component is preferably 5.0% or less, more preferably 3.0% or less, and still more preferably less than 1.0%.
As the SiO 2 component, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like can be used as a raw material.

 B成分は、0%超含有する場合に、ガラスの熔融性を高めることができるガラス形成酸化物として任意に用いられる成分である。
 他方で、B成分の含有量を5.0%以下にすることで、相対屈折率の温度係数を小さくでき、かつ化学的耐久性の悪化を抑えられ、リヒートプレス時の失透性の悪化を低減できる。従って、B成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%以下、より好ましくは1.5%未満、さらに好ましくは1.3%未満とする。
B 2 O 3 component, when ultra containing 0%, is optionally component used as a glass-forming oxide which can increase the melting property of the glass.
On the other hand, by setting the content of the B 2 O 3 component to 5.0% or less, the temperature coefficient of the relative refractive index can be reduced, and deterioration of chemical durability can be suppressed, and devitrification during reheat pressing. Can be reduced. Therefore, the content of the B 2 O 3 component is preferably 5.0% or less, more preferably 3.0% or less, more preferably less than 1.5%, and still more preferably less than 1.3%.

 WO成分は、0%超含有する場合に、高屈折率をもたらす他の成分によるガラスの着色を低減しながら、屈折率を高め、アッベ数を低くでき、ガラス転移点を低くでき、かつ失透を低減できる任意成分である。
 他方で、WO成分の含有量を10.0%以下にすることで、相対屈折率の温度係数を小さくでき、リヒートプレス時の失透を抑えられる。また、WO成分によるガラスの着色を低減して可視光透過率を高められる。従って、WO成分の含有量は、好ましくは10.0%以下、より好ましくは9.0%未満、さらに好ましくは8.0%未満、さらに好ましくは6.5%未満、さらに好ましくは5.0%未満としてもよい。
 WO成分は、原料としてWO等を用いることができる。
When the WO 3 component is contained in an amount of more than 0%, the refractive index can be increased, the Abbe number can be lowered, the glass transition point can be lowered, and the loss can be reduced while reducing the coloration of the glass by other components that bring about a high refractive index. It is an optional component that can reduce see-through.
On the other hand, by setting the content of the WO 3 component to 10.0% or less, the temperature coefficient of the relative refractive index can be reduced, and devitrification during reheat pressing can be suppressed. In addition, the visible light transmittance can be increased by reducing the coloring of the glass by the WO 3 component. Therefore, the content of the WO 3 component is preferably 10.0% or less, more preferably less than 9.0%, even more preferably less than 8.0%, still more preferably less than 6.5%, still more preferably 5. It may be less than 0%.
As the WO 3 component, WO 3 or the like can be used as a raw material.

 ZnO成分は、0%超含有する場合に、原料の熔解性を高め、熔解したガラスからの脱泡を促進し、また、ガラスの安定性を高められる任意成分である。また、ガラス転移点を低くでき、かつ化学的耐久性を改善できる成分でもある。
 他方で、ZnO成分の含有量を5.0%未満にすることで、相対屈折率の温度係数を小さくでき、熱による膨張を低減でき、屈折率の低下を抑えられ、かつ、過剰な粘性の低下による失透を低減できる。従って、ZnO成分の含有量は、好ましくは5.0%未満、より好ましくは4.0%未満、さらに好ましくは2.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満としてもよい。また、ZnO成分は含有しなくてもよい。
 ZnO成分は、原料としてZnO、ZnF等を用いることができる。
When the ZnO component is contained in an amount of more than 0%, the ZnO component is an optional component that enhances the meltability of the raw material, promotes defoaming from the melted glass, and enhances the stability of the glass. It is also a component that can lower the glass transition point and improve chemical durability.
On the other hand, by making the content of the ZnO component less than 5.0%, the temperature coefficient of the relative refractive index can be reduced, the expansion due to heat can be reduced, the decrease in the refractive index can be suppressed, and the excessive viscosity can be reduced. Devitrification due to the reduction can be reduced. Therefore, the content of the ZnO component is preferably less than 5.0%, more preferably less than 4.0%, further preferably less than 2.0%, more preferably less than 1.0%, and still more preferably 0.5%. It may be less than%. Moreover, it is not necessary to contain a ZnO component.
As the ZnO component, ZnO, ZnF 2 or the like can be used as a raw material.

 ZrO成分は、0%超含有する場合に、ガラスの屈折率を高められ、かつ失透を低減できる任意成分である。従って、ZrO成分の含有量は、好ましくは0%超、より好ましくは0.5%超、さらに好ましくは1.0%超としてもよい。
 他方で、ZrO成分の含有量を5.0%以下にすることで、相対屈折率の温度係数を小さくでき、ZrO成分の過剰な含有による失透を低減できる。従って、ZrO成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%以下、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満としてもよい。また、ZrO成分は含有しなくてもよい。
 ZrO成分は、原料としてZrO、ZrF等を用いることができる。
The ZrO 2 component is an optional component that can increase the refractive index of the glass and reduce devitrification when it contains more than 0%. Therefore, the content of the ZrO 2 component is preferably more than 0%, more preferably more than 0.5%, and even more preferably more than 1.0%.
On the other hand, by setting the content of the ZrO 2 component to 5.0% or less, the temperature coefficient of the relative refractive index can be reduced, and devitrification due to excessive inclusion of the ZrO 2 component can be reduced. Therefore, the content of the ZrO 2 component is preferably 5.0% or less, more preferably 3.0% or less, still more preferably less than 1.0%, and even more preferably less than 0.5%. Further, the ZrO 2 component may not be contained.
As the ZrO 2 component, ZrO 2 , ZrF 4 or the like can be used as a raw material.

 MgO成分、CaO成分及びSrO成分は、0%超含有する場合に、ガラスの屈折率や熔融性、耐失透性を調整できる任意成分である。
 他方で、MgO成分、CaO成分及びSrO成分の含有量を5.0%以下にすることで、屈折率の低下を抑えることができ、かつこれらの成分の過剰な含有による失透を低減できる。従って、MgO成分、CaO成分及びSrO成分の含有量は、それぞれ好ましくは5.0%以下、より好ましくは3.5%以下、さらに好ましくは2.0%未満とする。
The MgO component, CaO component, and SrO component are optional components that can adjust the refractive index, meltability, and devitrification resistance of the glass when the content exceeds 0%.
On the other hand, by setting the contents of the MgO component, the CaO component and the SrO component to 5.0% or less, a decrease in the refractive index can be suppressed, and devitrification due to excessive inclusion of these components can be reduced. Accordingly, the contents of the MgO component, CaO component and SrO component are each preferably 5.0% or less, more preferably 3.5% or less, and even more preferably less than 2.0%.

 LiO成分はガラスの熔融性を改善でき、ガラス転移点を低くできる任意成分である。
 他方で、LiO成分の含有量を低減させることで、ガラスの屈折率を低下し難くし、かつガラスの失透及びリヒートプレス時の失透を低減できる。従って、LiO成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%未満、さらに好ましくは1.0%以下、さらに好ましくは0.5%未満としてもよい。
 LiO成分は、原料としてLiCO及び、LiNO、LiF等を用いることができる。
The Li 2 O component is an optional component that can improve the meltability of the glass and lower the glass transition point.
On the other hand, by reducing the content of the Li 2 O component, it is difficult to lower the refractive index of the glass, and devitrification of the glass and reheat press can be reduced. Therefore, the content of the Li 2 O component is preferably 5.0% or less, more preferably less than 3.0%, further preferably 1.0% or less, and further preferably less than 0.5%.
As the Li 2 O component, Li 2 CO 3 , LiNO 3 , LiF, or the like can be used as a raw material.

 Al成分及びGa成分は、0%超含有する場合に、熔融ガラスの耐失透性を向上できる任意成分である。
 他方で、Al成分又はGa成分の含有量をそれぞれ10.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Al成分及びGa成分の含有量は、それぞれ好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
 Al成分は、原料としてAl、Al(OH)、AlF等を用いることができ、Ga成分は原料としてGa等を用いることができる。
The Al 2 O 3 component and the Ga 2 O 3 component are optional components that can improve the devitrification resistance of the molten glass when the content exceeds 0%.
On the other hand, by setting the content of the Al 2 O 3 component or the Ga 2 O 3 component to 10.0% or less, the liquidus temperature of the glass can be lowered to increase the devitrification resistance. Therefore, the content of the Al 2 O 3 component and the Ga 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably 1.%. It may be less than 0%.
Al 2 O 3 component is a raw material as Al 2 O 3, Al (OH ) can be used 3, AlF 3, etc., Ga 2 O 3 may be used as component Ga 2 O 3 or the like as raw materials.

Sb成分は、0%超含有する場合に、熔融ガラスを脱泡できる任意成分である。
 他方で、Sb成分の含有量を1.0%以下にすることで、可視光領域の短波長領域における透過率の低下や、ガラスのソラリゼーション、内部品質の低下を抑えられる。従って、Sb成分の含有量は、好ましくは1.0%以下、より好ましくは0.5%未満、より好ましくは0.2%未満、さらに好ましくは0.1%未満としてもよい。
 Sb成分は、原料としてSb、Sb、NaSb・5HO等を用いることができる。
The Sb 2 O 3 component is an optional component that can degas the molten glass when it contains more than 0%.
On the other hand, by setting the content of the Sb 2 O 3 component to 1.0% or less, it is possible to suppress a decrease in transmittance in the short wavelength region of the visible light region, solarization of glass, and a decrease in internal quality. Therefore, the content of the Sb 2 O 3 component is preferably 1.0% or less, more preferably less than 0.5%, more preferably less than 0.2%, and even more preferably less than 0.1%.
As the Sb 2 O 3 component, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 .5H 2 O, or the like can be used as a raw material.

 NaO成分及びKO成分の合計含有量は、3.0%以上が好ましい。これにより、相対屈折率の温度係数を小さく、平均線熱膨張係数が大きくかつ透過率が良好なガラスを得易くできる。従って、質量和(NaO+KO)は、好ましくは3.0%以上、より好ましくは4.0%超、より好ましくは5.0%超、さらに好ましくは6.0%超とする。
 他方で、この合計含有量を30.0%以下にすることで、化学的耐久性の悪化及び過剰な含有によるガラスの屈折率の低下を抑えられる。従って、質量和(NaO+KO)は、好ましくは30.0%以下、より好ましくは25.0%未満、さらに好ましくは23.0%未満とする。
The total content of the Na 2 O component and the K 2 O component is preferably 3.0% or more. Thereby, it is possible to easily obtain a glass having a small temperature coefficient of relative refractive index, a large average linear thermal expansion coefficient, and a good transmittance. Therefore, the mass sum (Na 2 O + K 2 O) is preferably 3.0% or more, more preferably more than 4.0%, more preferably more than 5.0%, and still more preferably more than 6.0%.
On the other hand, by setting the total content to 30.0% or less, deterioration of the chemical durability and reduction of the refractive index of the glass due to excessive content can be suppressed. Accordingly, the mass sum (Na 2 O + K 2 O) is preferably 30.0% or less, more preferably less than 25.0%, and even more preferably less than 23.0%.

 NaO成分、KO成分及びBaO成分の合計含有量は、10.0%以上が好ましい。これにより、相対屈折率の温度係数が小さいガラスを得易くできる。
従って、質量和(NaO+KO+BaO)は、好ましくは10.0%以上、より好ましくは12.0%超、より好ましくは14.0%超、より好ましくは16.0%以上、さらに好ましくは17.5%超とする。
 他方で、この合計含有量を35.0%未満にすることで、化学的耐久性の悪化及び過剰な含有によるガラスの屈折率の低下、リヒートプレス時の失透性の低減を抑えられる。従って、質量和(NaO+KO+BaO)は、好ましくは35.0%、より好ましくは33.0%以下、さらに好ましくは30.0%未満とする。
The total content of the Na 2 O component, K 2 O component and BaO component is preferably 10.0% or more. Thereby, it is easy to obtain a glass having a small temperature coefficient of relative refractive index.
Accordingly, the mass sum (Na 2 O + K 2 O + BaO) is preferably 10.0% or more, more preferably more than 12.0%, more preferably more than 14.0%, more preferably more than 16.0%, even more preferably Is over 17.5%.
On the other hand, by making this total content less than 35.0%, it is possible to suppress deterioration of chemical durability, reduction of the refractive index of glass due to excessive inclusion, and reduction of devitrification during reheat pressing. Accordingly, the mass sum (Na 2 O + K 2 O + BaO) is preferably 35.0%, more preferably 33.0% or less, and even more preferably less than 30.0%.

 Nb成分とTiO成分の合計含有量は、30.0%以上が好ましい。これにより、高屈折率を維持しながらも、相対屈折率の温度係数を小さくすることができる。
 従って、質量和(Nb+TiO)は、好ましくは30.0%以上、より好ましくは35.0%以上、さらに好ましくは40.0%以上とする。
 一方で、質量和(Nb+TiO)は、65.0%以下とすることで、液相温度を下げ、安定したガラスを得ることができる。従って、質量和(Nb+TiO)は、好ましくは65.0%以下、より好ましくは63.0%以下、さらに好ましくは60.0以下とする。
The total content of the Nb 2 O 5 component and the TiO 2 component is preferably 30.0% or more. As a result, the temperature coefficient of the relative refractive index can be reduced while maintaining a high refractive index.
Accordingly, the mass sum (Nb 2 O 5 + TiO 2 ) is preferably 30.0% or more, more preferably 35.0% or more, and further preferably 40.0% or more.
On the other hand, by setting the mass sum (Nb 2 O 5 + TiO 2 ) to 65.0% or less, the liquidus temperature can be lowered and stable glass can be obtained. Accordingly, the mass sum (Nb 2 O 5 + TiO 2 ) is preferably 65.0% or less, more preferably 63.0% or less, and even more preferably 60.0 or less.

 B成分及びTiO成分の合計含有量に対する、NaO成分及びKO成分及びBaO成分の比率は、0.5超であることが好ましい。これにより、相対屈折率の温度係数を小さくし、かつ平均線熱膨張係数を大きくすることができる。従って、質量比(NaO+KO+BaO)/(B+TiO)は、好ましくは0.5超、より好ましくは0.7超、さらに好ましくは1.0超とする。
 一方で、質量比(NaO+KO+BaO)/(B+TiO)を5.5未満とすることで、所望の屈折率および透過率を維持しながら、リヒートプレスが良好なガラスを得ることができる。従って、質量比(NaO+KO+BaO)/(B+TiO)は、好ましくは5.5未満、より好ましくは5.0未満、さらに好ましくは4.8未満とする。
The ratio of the Na 2 O component, the K 2 O component and the BaO component to the total content of the B 2 O 3 component and the TiO 2 component is preferably more than 0.5. Thereby, the temperature coefficient of relative refractive index can be reduced and the average linear thermal expansion coefficient can be increased. Therefore, the mass ratio (Na 2 O + K 2 O + BaO) / (B 2 O 3 + TiO 2 ) is preferably more than 0.5, more preferably more than 0.7, and still more preferably more than 1.0.
On the other hand, by setting the mass ratio (Na 2 O + K 2 O + BaO) / (B 2 O 3 + TiO 2 ) to less than 5.5, a glass with good reheat press can be obtained while maintaining the desired refractive index and transmittance. Obtainable. Therefore, the mass ratio (Na 2 O + K 2 O + BaO) / (B 2 O 3 + TiO 2 ) is preferably less than 5.5, more preferably less than 5.0, and even more preferably less than 4.8.

 RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の和(質量和)は、0%超とすることで、ガラスの屈折率を高められ、熔融性及び耐失透性を高めることができる。従って、RO成分の含有量の和(質量和)は、好ましくは0%超、より好ましくは0.5%超、さらに好ましくは1.0%超を下限とする。一方で、RO成分を30.0%以下とすることで、平均線熱膨張係数が大きく、過剰な含有によるガラスの屈折率の低下や、失透を低減できる。そのため、RO成分の含有量の和(質量和)は、好ましくは30.0%以下、より好ましくは25.0%以下、さらに好ましくは20.0%以下を上限とする。 The sum (mass sum) of the content of RO components (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is more than 0%, so that the refractive index of the glass is increased. The meltability and devitrification resistance can be increased. Therefore, the lower limit of the sum (mass sum) of the RO component contents is preferably more than 0%, more preferably more than 0.5%, and still more preferably more than 1.0%. On the other hand, by setting the RO component to 30.0% or less, the average linear thermal expansion coefficient is large, and the glass can be reduced in refractive index and devitrification due to excessive inclusion. Therefore, the sum of the RO component contents (mass sum) is preferably 30.0% or less, more preferably 25.0% or less, and still more preferably 20.0% or less.

 La成分、Gd成分、Y成分、Yb成分及びTa成分は、0%超含有する場合に、ガラスの屈折率を高められ、かつ耐失透性を高められる任意成分である。
 他方で、La成分、Gd成分、Y成分、Yb成分及びTa成分の含有量を5.0%以下にすることで、光学ガラスの原料コストを低減でき、また、原料の熔解温度が低くなり、原料の熔解に要するエネルギーが低減されるため、光学ガラスの製造コストも低減できる。従って、これら各成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%未満、より好ましくは2.0%未満、さらに好ましくは1.0%未満としてもよい。
When the La 2 O 3 component, Gd 2 O 3 component, Y 2 O 3 component, Yb 2 O 3 component and Ta 2 O 5 component are contained in excess of 0%, the refractive index of the glass can be increased and the loss resistance can be increased. It is an optional component that can increase the permeability.
On the other hand, by making the content of La 2 O 3 component, Gd 2 O 3 component, Y 2 O 3 component, Yb 2 O 3 component and Ta 2 O 5 component 5.0% or less, the raw material of optical glass The cost can be reduced, and the melting temperature of the raw material is lowered, and the energy required for melting the raw material is reduced. Therefore, the manufacturing cost of the optical glass can also be reduced. Therefore, the content of each of these components is preferably 5.0% or less, more preferably less than 3.0%, more preferably less than 2.0%, and even more preferably less than 1.0%.

 GeO成分は、0%超含有する場合に、ガラスの屈折率を高められ、かつ耐失透性を向上できる任意成分である。
 しかしながら、GeOは原料価格が高く、その含有量が多いと生産コストが高くなる。従って、GeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、より好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
 GeO成分は、原料としてGeO等を用いることができる。
The GeO 2 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance when it contains more than 0%.
However, the raw material price of GeO 2 is high, and the production cost increases when the content is large. Therefore, the content of the GeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, more preferably less than 3.0%, and even more preferably less than 1.0%.
As the GeO 2 component, GeO 2 or the like can be used as a raw material.

 Bi成分は、0%超含有する場合に、屈折率を高められ、アッベ数を低くでき、かつガラス転移点を下げられる任意成分である。
 他方で、Bi成分の含有量を5.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Bi成分の含有量は、好ましくは5.0%以下、より好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。特に、良好な透過率のガラスを取得するという観点では含有しないことが好ましい。
 Bi成分は、原料としてBi等を用いることができる。
The Bi 2 O 3 component is an optional component that can increase the refractive index, lower the Abbe number, and lower the glass transition point when it contains more than 0%.
On the other hand, by setting the content of the Bi 2 O 3 component to 5.0% or less, the liquidus temperature of the glass can be lowered to increase the devitrification resistance. Therefore, the content of the Bi 2 O 3 component is preferably 5.0% or less, more preferably less than 3.0%, and even more preferably less than 1.0%. In particular, it is preferably not contained from the viewpoint of obtaining a glass with good transmittance.
As the Bi 2 O 3 component, Bi 2 O 3 or the like can be used as a raw material.

 TeO成分は、0%超含有する場合に、屈折率を高められ、かつガラス転移点を下げられる任意成分である。
 他方で、TeOは白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化しうる問題がある。従って、TeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、より好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
 TeO成分は、原料としてTeO等を用いることができる。
The TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when it exceeds 0%.
On the other hand, TeO 2 has a problem that it can be alloyed with platinum when melting a glass raw material in a crucible made of platinum or a melting tank in which a portion in contact with molten glass is formed of platinum. Therefore, the content of the TeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, more preferably less than 3.0%, and even more preferably less than 1.0%.
TeO 2 component can use TeO 2 or the like as a raw material.

 SnO成分は、0%超含有する場合に、熔融ガラスの酸化を低減して清澄し、かつガラスの可視光透過率を高められる任意成分である。
 他方で、SnO成分の含有量を3.0%以下にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を低減できる。また、SnO成分と熔解設備(特にPt等の貴金属)の合金化が低減されるため、熔解設備の長寿命化を図れる。従って、SnO成分の含有量は、好ましくは3.0%以下、より好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.1%未満としてもよい。
 SnO成分は、原料としてSnO、SnO、SnF、SnF等を用いることができる。
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分やSnO成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。
When the SnO 2 component is contained in an amount of more than 0%, the SnO 2 component is an optional component that can be refined by reducing the oxidation of the molten glass and can increase the visible light transmittance of the glass.
On the other hand, when the content of the SnO 2 component is 3.0% or less, the coloring of the glass due to the reduction of the molten glass and the devitrification of the glass can be reduced. Further, since the alloying of the SnO 2 component and the melting equipment (especially a noble metal such as Pt) is reduced, the life of the melting equipment can be extended. Therefore, the content of the SnO 2 component is preferably 3.0% or less, more preferably less than 1.0%, further preferably less than 0.5%, and further preferably less than 0.1%.
For the SnO 2 component, SnO, SnO 2 , SnF 2 , SnF 4 or the like can be used as a raw material.
The components for clarifying and defoaming the glass are not limited to the above-described Sb 2 O 3 component and SnO 2 component, and well-known fining agents, defoaming agents or combinations thereof in the field of glass production are used. be able to.

 F成分は、0%超含有する場合に、ガラスのアッベ数を高め、ガラス転移点を低くし、かつ耐失透性を向上できる任意成分である。
 しかし、F成分の含有量、すなわち上述した各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量が10.0%を超えると、F成分の揮発量が多くなるため、安定した光学恒数が得られ難くなり、均質なガラスが得られ難くなる。また、アッベ数が必要以上に上昇する。
 従って、F成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、より好ましくは3.0%未満、さらに好ましくは1.0%未満としてもよい。
 F成分は、原料として例えばZrF、AlF、NaF、CaF等を用いることで、ガラス内に含有することができる。
The F component is an optional component that can increase the glass Abbe number, lower the glass transition point, and improve the devitrification resistance when it is contained in excess of 0%.
However, when the content of the F component, that is, the total amount of F substituted for a part or all of one or more oxides of each of the above metal elements exceeds 10.0%, F Since the volatilization amount of the component increases, it becomes difficult to obtain a stable optical constant, and it becomes difficult to obtain a homogeneous glass. In addition, the Abbe number rises more than necessary.
Therefore, the content of the F component is preferably 10.0% or less, more preferably less than 5.0%, more preferably less than 3.0%, and even more preferably less than 1.0%.
The F component can be contained in the glass by using, for example, ZrF 4 , AlF 3 , NaF, CaF 2 or the like as a raw material.

 B成分及びRnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の合計含有量に対する、SiO成分及びAl成分及びZnO成分含有量の比率は、15.0以下が好ましい。この比率を小さくすることで、熔融性の悪化を抑えることができる。
 従って、質量比(SiO+Al+ZnO)/(B+RnO)は、好ましくは15.0以下、より好ましくは12.0以下、より好ましくは10.0以下、より好ましくは8.0以下、より好ましくは6.0以下、さらに好ましくは5.0未満とする。
 一方で、質量比(SiO+Al+ZnO)/(B+RnO)を0超とすることができる。これにより、相対屈折率の温度係数を小さくし、かつ平均線熱膨張係数を大きくすることができる。従って、質量比(SiO+Al+ZnO)/(B+RnO)は、好ましくは0超、より好ましくは1.0超、さらに好ましくは2.0超とする。
SiO 2 component, Al 2 O 3 component and ZnO component with respect to the total content of B 2 O 3 component and Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na and K) The content ratio is preferably 15.0 or less. By reducing this ratio, deterioration of meltability can be suppressed.
Therefore, the mass ratio (SiO 2 + Al 2 O 3 + ZnO) / (B 2 O 3 + Rn 2 O) is preferably 15.0 or less, more preferably 12.0 or less, more preferably 10.0 or less, more preferably Is 8.0 or less, more preferably 6.0 or less, and still more preferably less than 5.0.
On the other hand, the mass ratio (SiO 2 + Al 2 O 3 + ZnO) / (B 2 O 3 + Rn 2 O) can be greater than zero. Thereby, the temperature coefficient of relative refractive index can be reduced and the average linear thermal expansion coefficient can be increased. Therefore, the mass ratio (SiO 2 + Al 2 O 3 + ZnO) / (B 2 O 3 + Rn 2 O) is preferably more than 0, more preferably more than 1.0, and still more preferably more than 2.0.

 RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和(質量和)は、1.0%超含有することで、相対屈折率の温度係数を小さくし、かつ平均線熱膨張係数を大きくすることができる。従って、RnO成分の含有量の和(質量和)は、好ましくは1.0%超、よりに好ましくは1.5%超、さらに好ましくは2.0%超とする。
 他方で、この和を30.0%以下にすることで、所望の屈折率、分散を維持しながらガラスの粘性の低下による失透を低減することができる。従って、RnO成分の含有量の和(質量和)は、好ましくは30.0%以下、より好ましくは25.0%未満、さらに好ましくは23.0%未満とする。
Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, K), the sum (mass sum) of the content is more than 1.0%, the relative refractive index And the average linear thermal expansion coefficient can be increased. Accordingly, the sum (mass sum) of the contents of the Rn 2 O component is preferably more than 1.0%, more preferably more than 1.5%, and still more preferably more than 2.0%.
On the other hand, by setting the sum to 30.0% or less, devitrification due to a decrease in the viscosity of the glass can be reduced while maintaining a desired refractive index and dispersion. Therefore, the sum (mass sum) of the contents of the Rn 2 O component is preferably 30.0% or less, more preferably less than 25.0%, and even more preferably less than 23.0%.

 本発明の光学ガラスは、上述のRnO成分のうち2種以上の成分を含有することが好ましい。これにより、相対屈折率の温度係数を小さくし、透過率を良好とする為に再加熱して熱処理する工程が不要となる。特に、RnO成分として、NaO成分とKO成分を含む2種以上の成分を含有することが、平均線熱膨張係数が大きく、透過率を良好とし、相対屈折率の温度係数を小さくできる点で好ましい。 The optical glass of the present invention preferably contains two or more components among the above-mentioned Rn 2 O components. This eliminates the need for a reheating and heat treatment step to reduce the temperature coefficient of the relative refractive index and improve the transmittance. In particular, as the Rn 2 O component, to contain two or more components containing Na 2 O component and K 2 O component is a large average linear thermal expansion coefficient, the transmittance was improved, the temperature coefficient of the relative refractive index Is preferable in that it can be reduced.

 Ln成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)の含有量の和(質量和)は、5.0%以下が好ましい。
これにより、耐失透性に優れ、かつ透過率の良好なガラスを取得出来る。従って、Ln成分の含有量の和(質量和)は、好ましくは5.0%以下、より好ましくは3.5%以下、さらに好ましくは2.0%未満とする。
The sum (mass sum) of the contents of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) is preferably 5.0% or less.
Thereby, it is possible to obtain a glass having excellent devitrification resistance and good transmittance. Therefore, the sum (mass sum) of the contents of the Ln 2 O 3 component is preferably 5.0% or less, more preferably 3.5% or less, and still more preferably less than 2.0%.

<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<About ingredients that should not be included>
Next, components that should not be contained in the optical glass of the present invention and components that are not preferably contained will be described.

 他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。 Other components can be added as necessary within the range not impairing the characteristics of the glass of the present invention. However, each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is independent of each other. Or, even when it is contained in a small amount in combination, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. .

 また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。 Moreover, since lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components with high environmental loads, it is desirable that they are not substantially contained, that is, not contained at all except for inevitable mixing.

 さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。 Furthermore, each component of Th, Cd, Tl, Os, Be, and Se has tended to be refrained from being used as a harmful chemical material in recent years, and not only in the glass manufacturing process, but also in the processing process and disposal after commercialization. Until then, environmental measures are required. Therefore, when importance is placed on the environmental impact, it is preferable that these are not substantially contained.

[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記各成分の原料として、酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を、各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1000~1500℃の温度範囲で1~10時間熔解させて攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
[Production method]
The optical glass of the present invention is produced, for example, as follows. That is, as the raw materials for the above components, high purity raw materials used for ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, metaphosphate compounds, etc. Mix uniformly so as to be within the range of the content of metal, put the prepared mixture into a platinum crucible, and melt in a temperature range of 1000-1500 ° C for 1-10 hours in an electric furnace depending on the difficulty of melting the glass raw material After stirring and homogenizing, the temperature is lowered to an appropriate temperature, cast into a mold, and slowly cooled.

<物性>
 本発明の光学ガラスは、高屈折率及び低アッベ数(高分散)を有することが好ましい。
 特に、本発明の光学ガラスの屈折率(n)は、好ましくは1.65以上、より好ましくは1.67以上、さらに好ましくは1.69以上とする。この屈折率(n)は、好ましくは2.00以下、より好ましくは1.98以下、さらに好ましくは1.96以下、さらに好ましくは1.95以下としてもよい。
また、本発明の光学ガラスのアッベ数(ν)は、好ましくは10.0以上、より好ましくは13.0以上、さらに好ましくは15.0以上、さらに好ましくは17.0以上とする。このアッベ数(ν)は、好ましくは35.0以下、より好ましくは34.0以下、さらに好ましくは32.0以下、さらに好ましくは30.0以下としてもよい。
 このような高屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができる。また、このような高分散を有することで、単レンズとして用いたときに光の波長によって焦点を適切にずらすことができる。そのため、例えば低分散(高いアッベ数)を有する光学素子と組み合わせて光学系を構成した場合に、その光学系の全体として収差を低減させて高い結像特性等を図ることができる。
 このように、本発明の光学ガラスは、光学設計上有用であり、特に光学系を構成したときに、高い結像特性等を図りながらも、光学系の小型化を図ることができ、光学設計の自由度を広げることができる。
<Physical properties>
The optical glass of the present invention preferably has a high refractive index and a low Abbe number (high dispersion).
In particular, the refractive index (n d ) of the optical glass of the present invention is preferably 1.65 or more, more preferably 1.67 or more, and further preferably 1.69 or more. This refractive index (n d ) is preferably 2.00 or less, more preferably 1.98 or less, still more preferably 1.96 or less, and even more preferably 1.95 or less.
Further, the Abbe number (ν d ) of the optical glass of the present invention is preferably 10.0 or more, more preferably 13.0 or more, further preferably 15.0 or more, and further preferably 17.0 or more. The Abbe number (ν d ) is preferably 35.0 or less, more preferably 34.0 or less, still more preferably 32.0 or less, and even more preferably 30.0 or less.
By having such a high refractive index, a large amount of light can be obtained even if the optical element is thinned. Further, by having such high dispersion, the focal point can be appropriately shifted depending on the wavelength of light when used as a single lens. Therefore, for example, when an optical system is configured in combination with an optical element having low dispersion (high Abbe number), it is possible to achieve high imaging characteristics and the like by reducing aberrations as a whole of the optical system.
As described above, the optical glass of the present invention is useful in optical design. Particularly when an optical system is configured, the optical system can be downsized while achieving high imaging characteristics and the like. The degree of freedom can be expanded.

 本発明の光学ガラスは、相対屈折率の温度係数(dn/dT)が低い値をとる。
 より具体的には、本発明の光学ガラスの相対屈折率の温度係数は、好ましくは+3.0×10-6-1、より好ましくは+1.5×10-6-1、さらに好ましくは+1.0×10-6-1を上限値とし、この上限値又はそれよりも低い(マイナス側)の値をとりうる。
 他方で、本発明の光学ガラスの相対屈折率の温度係数は、好ましくは-10.0×10-6-1、より好ましくは-8.0×10-6-1、さらに好ましくは-7.0×10-6-1を下限値とし、この下限値又はそれよりも高い(プラス側)の値をとりうる。
 このうち、1.65以上の屈折率(n)を有し、かつ10以上35以下のアッベ数(ν)を有するガラスとして、相対屈折率の温度係数の低いガラスは多く存在しておらず、温度変化による結像のずれ等の補正の選択肢を広げられ、その補正をより容易にできる。従って、このような範囲の相対屈折率の温度係数にすることで、温度変化による結像のずれ等の補正に寄与することができる。
 本発明の光学ガラスの相対屈折率の温度係数は、光学ガラスと同一温度の空気中における屈折率(589.29nm)の温度係数のことであり、40℃から60℃に温度を変化させた際の、1℃当たりの変化量(℃-1)で表される。
The optical glass of the present invention has a low temperature coefficient (dn / dT) of relative refractive index.
More specifically, the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably + 3.0 × 10 −6 ° C. −1 , more preferably + 1.5 × 10 −6 ° C. −1 , more preferably The upper limit value is + 1.0 × 10 −6 ° C. −1 , and this upper limit value or a lower value (minus side) can be taken.
On the other hand, the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably −10.0 × 10 −6 ° C. −1 , more preferably −8.0 × 10 −6 ° C. −1 , more preferably − 7.0 × 10 −6 ° C. −1 is set as the lower limit value, and this lower limit value or a value higher (plus side) than it can be taken.
Among these, many glasses having a low temperature coefficient of relative refractive index are present as glasses having a refractive index (n d ) of 1.65 or more and an Abbe number (ν d ) of 10 or more and 35 or less. Therefore, it is possible to expand the options for correction such as image formation deviation due to temperature change, and to make the correction easier. Therefore, by setting the temperature coefficient of the relative refractive index in such a range, it is possible to contribute to correction of image formation shift due to a temperature change.
The temperature coefficient of the relative refractive index of the optical glass of the present invention is the temperature coefficient of the refractive index (589.29 nm) in air at the same temperature as the optical glass, and when the temperature is changed from 40 ° C. to 60 ° C. Of change per 1 ° C. (° C. −1 ).

本発明の光学ガラスは、100~300℃における平均線熱膨張係数αが80(10-7-1)以上であることが好ましい。すなわち、本発明の光学ガラスの100~300℃における平均線熱膨張係数αは、好ましくは80(10-7-1)以上、より好ましくは85(10-7-1)以上、より好ましくは90(10-7-1)以上とする。
 一般的に、平均線熱膨張係数αが大きいとガラスを加工する際に割れが生じやすくなるため、平均線熱膨張係数αの値は小さいほうが望ましい。一方で、相対屈折率の温度係数が低く、かつ平均線熱膨張係数αの値が大きい硝材と組み合わせて接合する観点においては、当該硝材と平均線熱膨張係数αの値が同一又は近似であることが望ましい。
 このうち、1.65以上の屈折率(n)を有し、かつ10以上35以下のアッベ数(ν)を有するガラスでは、平均線熱膨張係数αが大きい硝材が少なく、低屈折率低分散硝材と組み合わせて使用する場合に、本発明のように平均線熱膨張係数αが大きい値を有する方が有用である。
In the optical glass of the present invention, the average linear thermal expansion coefficient α at 100 to 300 ° C. is preferably 80 (10 −7 ° C. −1 ) or more. That is, the average linear thermal expansion coefficient α at 100 to 300 ° C. of the optical glass of the present invention is preferably 80 (10 −7 ° C. −1 ) or more, more preferably 85 (10 −7 ° C. −1 ) or more, more preferably Is 90 (10 −7 ° C. −1 ) or more.
In general, if the average linear thermal expansion coefficient α is large, cracks are likely to occur when glass is processed. Therefore, it is desirable that the average linear thermal expansion coefficient α is small. On the other hand, in terms of joining in combination with a glass material having a low temperature coefficient of relative refractive index and a large average linear thermal expansion coefficient α, the glass material and the average linear thermal expansion coefficient α are the same or approximate. It is desirable.
Among these, glass having a refractive index (n d ) of 1.65 or more and an Abbe number (ν d ) of 10 or more and 35 or less has few glass materials having a large average linear thermal expansion coefficient α, and has a low refractive index. When used in combination with a low dispersion glass material, it is more useful that the average linear thermal expansion coefficient α has a large value as in the present invention.

 本発明の光学ガラスは、可視光透過率、特に可視光のうち短波長側の光の透過率が高く、それにより着色が少ないことが好ましい。
 特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率80%を示す最も短い波長(λ80)は、好ましくは460nm以下、より好ましく450nm以下、さらに好ましくは440nm以下とする。
また、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率70%を示す最も短い波長(λ70)は、好ましくは430nm以下、より好ましくは420nm以下、さらに好ましくは410nm以下とする。
 また、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ)は、好ましくは400nm以下、より好ましくは390nm以下、さらに好ましくは380nm以下とする。
 これらにより、ガラスの吸収端が紫外領域の近傍になり、可視光に対するガラスの透明性が高められるため、この光学ガラスを、レンズ等の光を透過させる光学素子に好ましく用いることができる。
It is preferable that the optical glass of the present invention has high visible light transmittance, in particular, high transmittance of light on the short wavelength side of visible light, and thereby less coloring.
In particular, when the optical glass of the present invention is represented by the transmittance of the glass, the shortest wavelength (λ 80 ) showing a spectral transmittance of 80% in a sample having a thickness of 10 mm is preferably 460 nm or less, more preferably 450 nm or less, and even more preferably. Is 440 nm or less.
In the optical glass of the present invention, the shortest wavelength (λ 70 ) having a spectral transmittance of 70% in a 10 mm thick sample is preferably 430 nm or less, more preferably 420 nm or less, and even more preferably 410 nm or less.
In the optical glass of the present invention, the shortest wavelength (λ 5 ) having a spectral transmittance of 5% in a 10 mm thick sample is preferably 400 nm or less, more preferably 390 nm or less, and even more preferably 380 nm or less.
As a result, the absorption edge of the glass is in the vicinity of the ultraviolet region, and the transparency of the glass with respect to visible light is enhanced. Therefore, this optical glass can be preferably used for an optical element that transmits light such as a lens.

[プリフォーム及び光学素子]
 作製された光学ガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製したり、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。 なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
[Preforms and optical elements]
A glass molded body can be produced from the produced optical glass by means of, for example, polishing or molding press molding such as reheat press molding or precision press molding. In other words, optical glass is subjected to mechanical processing such as grinding and polishing to produce a glass molded body, or a preform for mold press molding is produced from optical glass, and reheat press molding is performed on this preform. Then, polishing is performed to produce a glass molded body, or precision preforming is performed on a preform formed by polishing or a preform formed by known floating molding, etc., to form a glass molded body. Can be produced. In addition, the means for producing the glass molded body is not limited to these means.

 このように、本発明の光学ガラスは、様々な光学素子及び光学設計に有用である。その中でも特に、本発明の光学ガラスからプリフォームを形成し、このプリフォームを用いてリヒートプレス成形や精密プレス成形等を行い、レンズやプリズム等の光学素子を作製することが好ましい。これにより、径の大きなプリフォームの形成が可能になるため、光学素子の大型化を図りながらも、光学機器に用いたときに高精細で高精度な結像特性及び投影特性を実現できる。 Thus, the optical glass of the present invention is useful for various optical elements and optical designs. Among these, it is particularly preferable to form a preform from the optical glass of the present invention, and perform reheat press molding, precision press molding or the like using this preform to produce an optical element such as a lens or a prism. As a result, a preform having a large diameter can be formed, so that it is possible to realize high-definition and high-precision imaging characteristics and projection characteristics when used in an optical apparatus while increasing the size of the optical element.

 本発明の光学ガラスからなるガラス成形体は、例えばレンズ、プリズム、ミラー等の光学素子の用途に用いることができ、典型的には車載用光学機器やプロジェクタやコピー機等の、高温になり易い機器に用いることができる。 The glass molded body made of the optical glass of the present invention can be used for applications of optical elements such as lenses, prisms, mirrors, etc., and typically tends to become high temperature such as in-vehicle optical devices, projectors, and copiers. Can be used for equipment.

 本発明の実施例(No.1~No.51)及び比較例(No.A、B)の組成、並びに、これらのガラスの屈折率(n)、アッベ数(ν)、相対屈折率の温度係数(dn/dT)、平均線熱膨張係数(100~300℃)、透過率(λ80、λ70、λ)の結果を表1~表8に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例にのみ限定されるものではない。 Compositions of Examples (No. 1 to No. 51) and Comparative Examples (No. A, B) of the present invention, and the refractive index (n d ), Abbe number (ν d ), and relative refractive index of these glasses Tables 1 to 8 show the results of temperature coefficient (dn / dT), average linear thermal expansion coefficient (100 to 300 ° C.), and transmittance (λ 80, λ 70, λ 5 ). The following examples are merely for illustrative purposes and are not limited to these examples.

 本発明の実施例及び比較例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で800~1300℃の温度範囲で1~10時間熔解させた後、攪拌均質化してから金型等に鋳込み、徐冷して作製した。 The glasses of the examples and comparative examples of the present invention are used for ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, and metaphosphate compounds corresponding to the raw materials of the respective components. A high-purity raw material is selected, weighed so as to have the composition ratio of each example shown in the table, and mixed uniformly, and then put into a platinum crucible, which is 800 in an electric furnace according to the difficulty of melting the glass raw material. It was melted at a temperature range of ˜1300 ° C. for 1 to 10 hours, homogenized with stirring, cast into a mold or the like, and slowly cooled.

 実施例及び比較例のガラスの屈折率(n)及びアッベ数(ν)は、ヘリウムランプのd線(587.56nm)に対する測定値で示した。また、アッベ数(ν)は、上記d線の屈折率と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、アッベ数(ν)=[(n-1)/(n-n)]の式から算出した。 The refractive index (n d ) and Abbe number (ν d ) of the glass of the example and the comparative example are shown as measured values with respect to the d-line (587.56 nm) of the helium lamp. The Abbe number (ν d ) is the refractive index of the d line, the refractive index (n F ) for the F lamp (486.13 nm) of the hydrogen lamp, and the refractive index (n C ) for the C line (656.27 nm). Was calculated from the equation of Abbe number (ν d ) = [(n d −1) / (n F −n C )].

 実施例及び比較例のガラスの相対屈折率の温度係数(dn/dT)は、日本光学硝子工業会規格JOGIS18-2008「光学ガラスの屈折率の温度係数の測定方法」に記載された方法のうち干渉法により、波長589.29nmの光についての、40~60℃における相対屈折率の温度係数の値を測定した。 The temperature coefficient (dn / dT) of the relative refractive index of the glass of Examples and Comparative Examples is a method described in Japanese Optical Glass Industry Association Standard JOGIS18-2008 “Measurement Method of Temperature Coefficient of Refractive Index of Optical Glass” The value of the temperature coefficient of the relative refractive index at 40 to 60 ° C. for light having a wavelength of 589.29 nm was measured by the interferometry.

 また、実施例及び比較例のガラスの平均線熱膨張係数(100-300℃)は、日本光学硝子工業会規格JOGIS08-2003「光学ガラスの熱膨張の測定方法」に従い、温度と試料の伸びとの関係を測定することで得られる熱膨張曲線より求めた。 In addition, the average linear thermal expansion coefficient (100-300 ° C.) of the glass of the example and the comparative example is the temperature and the elongation of the sample according to Japan Optical Glass Industry Association Standard JOGIS08-2003 “Measurement Method of Thermal Expansion of Optical Glass”. From the thermal expansion curve obtained by measuring the relationship of.

 実施例のガラスの透過率は、日本光学硝子工業会規格JOGIS02-2003に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、λ80(透過率80%時の波長)、λ70(透過率70%時の波長)及びλ(透過率5%時の波長)を求めた。











































The transmittance of the glass of the example was measured according to Japan Optical Glass Industry Association Standard JOGIS02-2003. In the present invention, the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass. Specifically, a face parallel polished product having a thickness of 10 ± 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and λ 80 (wavelength at 80% transmittance), λ 70 (transmittance). (Wavelength at 70%) and λ 5 (wavelength at 5% transmittance) were determined.











































Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001






Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002






Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003









Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004






Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005






Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006











Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007






Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008











 本発明の実施例の光学ガラスは、P成分及びNb成分を含有し、NaO成分及びKO成分を所定量含有することで、相対屈折率の温度係数が小さい値をとる安価なガラスが得ることができる。 The optical glass of the example of the present invention contains a P 2 O 5 component and a Nb 2 O 5 component, and contains a predetermined amount of a Na 2 O component and a K 2 O component, so that the temperature coefficient of the relative refractive index is small. An inexpensive glass with a value can be obtained.

 表に表されるように、実施例の光学ガラスは、いずれも相対屈折率の温度係数が+1.0×10-6~-10.0×10-6(℃-1)の範囲内、より詳細には+3.0×10-6~-10.0×10-6(℃-1)の範囲内にあり、所望の範囲内であった。 As shown in the table, in the optical glasses of the examples, the temperature coefficient of the relative refractive index is within the range of + 1.0 × 10 −6 to −10.0 × 10 −6 (° C. −1 ). Specifically, it was within the range of + 3.0 × 10 −6 to −10.0 × 10 −6 (° C. −1 ), and was within the desired range.

 また、実施例の光学ガラスは、いずれも屈折率(n)が1.65以上であり、所望の範囲内であった。また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が10以上35以下の範囲内にあり、所望の範囲内であった。 Further, the optical glasses of the examples all had a refractive index (n d ) of 1.65 or more, and were within a desired range. Further, the optical glasses of the examples of the present invention all had an Abbe number (ν d ) in the range of 10 or more and 35 or less, and were in a desired range.

 また、実施例の光学ガラスは、いずれも平均線熱膨張係数(100-300℃)が80(10-7-1)以上であった。 The optical glasses of the examples all had an average linear thermal expansion coefficient (100-300 ° C.) of 80 (10 −7 ° C. −1 ) or more.

 また、実施例の光学ガラスは、透過率(λ80)が460nm以下、透過率(λ70)が430nm以下、透過率(λ)が400nm以下であった。 The optical glass of the example had a transmittance (λ 80 ) of 460 nm or less, a transmittance (λ 70 ) of 430 nm or less, and a transmittance (λ 5 ) of 400 nm or less.

 また、実施例の光学ガラスは、安定なガラスを形成しており、ガラス作製時において失透が起こり難いものであった。一方で、比較例Aのガラスは失透が生じたため、ガラス化しなかった。 Further, the optical glass of the example formed a stable glass, and devitrification hardly occurred at the time of glass production. On the other hand, the glass of Comparative Example A did not vitrify because devitrification occurred.

 従って、実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が所望の範囲内にあり、相対屈折率の温度係数が小さい値をとり、より安価な材料コストで得られることが明らかになった。このことから、本発明の実施例の光学ガラスは、高温の環境で用いられる車載用光学機器やプロジェクタ等の光学系の小型化に寄与し、温度変化による結像特性のずれ等の補正に寄与することが推察される。 Accordingly, the optical glass of the example has a refractive index (n d ) and an Abbe number (ν d ) within desired ranges, and takes a value with a small temperature coefficient of relative refractive index, and can be obtained at a lower material cost. It became clear. Therefore, the optical glass of the embodiment of the present invention contributes to miniaturization of an optical system such as an in-vehicle optical device or a projector used in a high temperature environment, and contributes to correction of a shift in imaging characteristics due to a temperature change. It is inferred that

 さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定に様々なレンズ及びプリズムの形状に加工することができた。 Furthermore, a glass block was formed using the optical glass of the example of the present invention, and this glass block was ground and polished to be processed into the shape of a lens and a prism. As a result, it was possible to stably process into various lens and prism shapes.

 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 Although the present invention has been described in detail for the purpose of illustration, this embodiment is only for the purpose of illustration, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Will be understood.

Claims (7)

質量%で、
成分  20.0~40.0%、
Nb成分 25.0~50.0%、
質量和(NaO+KO)が3.0~30.0%、
を含有し、
相対屈折率(589.29nm)の温度係数(40~60℃)が+3.0×10-6
-10.0×10-6(℃-1)の範囲内にある光学ガラス。
% By mass
P 2 O 5 component 20.0-40.0%,
Nb 2 O 5 component 25.0 to 50.0%,
Mass sum (Na 2 O + K 2 O) is 3.0 to 30.0%,
Containing
The temperature coefficient (40-60 ° C.) of the relative refractive index (589.29 nm) is + 3.0 × 10 −6
Optical glass in the range of −10.0 × 10 −6 (° C. −1 ).
質量和(NaO+KO+BaO)が10.0~35.0%であることを特徴とする請求項1記載の光学ガラス。 2. The optical glass according to claim 1, wherein the mass sum (Na 2 O + K 2 O + BaO) is 10.0 to 35.0%. 100~300℃における平均線熱膨張係数αが80(10-7-1)以上であることを特徴とする請求項1又は2記載の光学ガラス。 3. The optical glass according to claim 1, wherein an average linear thermal expansion coefficient α at 100 to 300 ° C. is 80 (10 −7 ° C. −1 ) or more. 1.65以上2.00以下の屈折率(n)を有し、10以上35以下のアッベ数(ν)を有する請求項1から3記載の光学ガラス。 The optical glass according to claim 1, which has a refractive index (n d ) of 1.65 or more and 2.00 or less and an Abbe number (ν d ) of 10 or more and 35 or less. 請求項1から4のいずれか記載の光学ガラスからなるプリフォーム。 A preform comprising the optical glass according to claim 1. 請求項1から4のいずれか記載の光学ガラスからなる光学素子。 An optical element made of the optical glass according to claim 1. 請求項6に記載の光学素子を備える光学機器。 An optical apparatus comprising the optical element according to claim 6.
PCT/JP2018/015070 2017-06-16 2018-04-10 Optical glass, preform, and optical element Ceased WO2018230124A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880039982.1A CN110770183B (en) 2017-06-16 2018-04-10 Optical glass, preforms and optical components
US16/622,786 US20200131076A1 (en) 2017-06-16 2018-04-10 Optical glass, preform, and optical element
CN202410964910.5A CN118908566A (en) 2017-06-16 2018-04-10 Optical glass, preform, and optical element
EP18816712.6A EP3640222A1 (en) 2017-06-16 2018-04-10 Optical glass, preform, and optical element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-118859 2017-06-16
JP2017118859 2017-06-16
JP2018-034031 2018-02-28
JP2018034031A JP7233844B2 (en) 2017-06-16 2018-02-28 Optical glass, preforms and optical elements

Publications (1)

Publication Number Publication Date
WO2018230124A1 true WO2018230124A1 (en) 2018-12-20

Family

ID=64659837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015070 Ceased WO2018230124A1 (en) 2017-06-16 2018-04-10 Optical glass, preform, and optical element

Country Status (4)

Country Link
JP (1) JP7503163B2 (en)
CN (1) CN118908566A (en)
TW (1) TWI867322B (en)
WO (1) WO2018230124A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022159275A1 (en) * 2021-01-22 2022-07-28 Corning Incorporated Phosphate glasses with high refractive index and reduced dispersion
EP3943458A4 (en) * 2019-03-18 2022-12-07 Hikari Glass Co., Ltd. Optical glass, optical element, optical system, interchangeable lens, and optical device
WO2023286630A1 (en) * 2021-07-16 2023-01-19 株式会社 オハラ Phosphate glass, optical glass, and optical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106611A (en) 2005-10-11 2007-04-26 Ohara Inc Optical glass
JP2011144063A (en) * 2010-01-13 2011-07-28 Ohara Inc Optical glass, preform, and optical element
JP2014185075A (en) * 2013-02-19 2014-10-02 Hoya Corp Optical glass, optical glass blank, glass material for press molding, optical element, and production method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700512B2 (en) * 1992-03-19 1998-01-21 株式会社オハラ High dispersion optical glass
JP2747964B2 (en) * 1993-06-07 1998-05-06 株式会社オハラ Manufacturing method of optical glass
JPH09188540A (en) * 1995-12-29 1997-07-22 Ohara Inc Optical glass free from solarization
JP2008133189A (en) * 2008-02-19 2008-06-12 Ohara Inc Method of manufacturing optical glass
JP2010260740A (en) * 2009-04-30 2010-11-18 Ohara Inc Optical glass, and optical element
CN107082562B (en) * 2009-04-30 2021-02-09 株式会社小原 Optical glass, optical element, and preform for precision press molding
JP2012221591A (en) * 2011-04-04 2012-11-12 Ohara Inc Light emitting element and substrate material for light emitting element
JP6444021B2 (en) * 2013-09-30 2018-12-26 Hoya株式会社 Optical glass, optical glass blank, glass material for press molding, optical element, and production method thereof
JP6812147B2 (en) * 2016-06-30 2021-01-13 Hoya株式会社 Optical glass, optics blank, and optics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106611A (en) 2005-10-11 2007-04-26 Ohara Inc Optical glass
JP2011144063A (en) * 2010-01-13 2011-07-28 Ohara Inc Optical glass, preform, and optical element
JP2014185075A (en) * 2013-02-19 2014-10-02 Hoya Corp Optical glass, optical glass blank, glass material for press molding, optical element, and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943458A4 (en) * 2019-03-18 2022-12-07 Hikari Glass Co., Ltd. Optical glass, optical element, optical system, interchangeable lens, and optical device
WO2022159275A1 (en) * 2021-01-22 2022-07-28 Corning Incorporated Phosphate glasses with high refractive index and reduced dispersion
US11472731B2 (en) 2021-01-22 2022-10-18 Corning Incorporated Phosphate glasses with high refractive index and reduced dispersion
CN116802162A (en) * 2021-01-22 2023-09-22 康宁股份有限公司 Phosphate glass with high refractive index and reduced dispersion
WO2023286630A1 (en) * 2021-07-16 2023-01-19 株式会社 オハラ Phosphate glass, optical glass, and optical element

Also Published As

Publication number Publication date
TW202246193A (en) 2022-12-01
TWI867322B (en) 2024-12-21
JP2023054181A (en) 2023-04-13
CN118908566A (en) 2024-11-08
JP7503163B2 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
JP7233844B2 (en) Optical glass, preforms and optical elements
JP5854956B2 (en) Optical glass, preform and optical element
JP6560651B2 (en) Optical glass and optical element
JP2016104695A (en) Manufacturing method of optical glass, optical element and glass molding
JP2017088482A (en) Optical glass, preform material and optical element
JP2017088479A (en) Optical glass, preform material and optical element
JP2022171696A (en) Optical glass, preform and optical element
JP6664826B2 (en) Optical glass and optical element
JP2023054181A (en) Optical glass, preforms and optical elements
JP2022125089A (en) Optical glass, preform and optical element
JP6014573B2 (en) Optical glass, preform material and optical element
JP7227693B2 (en) Optical glass, preforms and optical elements
JP5875572B2 (en) Optical glass, preform material and optical element
JP2016155745A (en) Optical glass, preform and optical element
JP2016179918A (en) Optical glass, lens preform and optical element
JP7446052B2 (en) Optical glass, preforms and optical elements
JP2018203605A (en) Optical glass, preform and optical element
JP7094095B2 (en) Optical glass, preforms and optical elements
JP7174536B2 (en) Optical glass, preforms and optical elements
JP2013209232A (en) Optical glass and optical element
JP2017171578A (en) Optical glass and optical element
JP2018012631A (en) Optical glass, preform material and optical element
JP2017057121A (en) Optical glass, preform and optical element
JP6910702B2 (en) Optical glass, preform materials and optical elements
JP2015044725A (en) Optical glass, preform material and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018816712

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018816712

Country of ref document: EP

Effective date: 20200116