[go: up one dir, main page]

WO2019044584A1 - Nucleus hydrogenation reaction catalyst - Google Patents

Nucleus hydrogenation reaction catalyst Download PDF

Info

Publication number
WO2019044584A1
WO2019044584A1 PCT/JP2018/030780 JP2018030780W WO2019044584A1 WO 2019044584 A1 WO2019044584 A1 WO 2019044584A1 JP 2018030780 W JP2018030780 W JP 2018030780W WO 2019044584 A1 WO2019044584 A1 WO 2019044584A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation reaction
catalyst
nuclear hydrogenation
present
aromatic ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/030780
Other languages
French (fr)
Japanese (ja)
Inventor
智照 水崎
弘康 鈴鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2019539389A priority Critical patent/JP7089527B2/en
Publication of WO2019044584A1 publication Critical patent/WO2019044584A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/70Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines
    • C07C209/72Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines by reduction of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/35Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a catalyst used for the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring.
  • the nuclear hydrogenation reaction of aromatic compounds has been used to synthesize, for example, a polyamideimide resin as a raw material for highly functional plastic products.
  • a ruthenium catalyst is known as a catalyst used for the nuclear hydrogenation reaction of an aromatic compound.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-286747 efficiently uses N, N-dimethylcyclohexylamines useful as catalysts for polyurethane foam production, epoxy curing agents, resist release agents, and corrosion inhibitors for steel.
  • the aromatic compound is subjected to a nuclear hydrogenation reaction in the presence of a ruthenium catalyst or the like and hydrogen, and the resulting cyclohexyl compound is converted to the above-mentioned noble metal catalyst, formaldehyde derivative and hydrogen.
  • Patent Document 1 [Summary]
  • ruthenium catalyst in which 5% of ruthenium is supported on alumina (support) is disclosed (Patent Document 1, [0032] Example 1 and [0034] Example 2, etc.).
  • the present invention has been made in view of such technical circumstances, and provides a catalyst for nuclear hydrogenation reaction having a catalytic activity superior to that of a conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound.
  • the purpose is to
  • the present inventors focused on the state of ruthenium contained in the catalyst particles supported on the carrier in the ruthenium catalyst used for the nuclear hydrogenation reaction, and conducted intensive studies on the configuration for realizing further improvement of the catalytic activity.
  • the ratio of Ru (zero valence) in the analysis region near the surface of the ruthenium catalyst measured by X-ray photoelectron spectroscopy (XPS) R Ratio of Ru (zero valence) Ru oxide to Ru ratio of Ru Rux The inventors have found that satisfying the following conditions is effective to improve the catalyst activity, and have completed the present invention.
  • the present invention is constituted by the following technical matters. That is, the present invention A catalyst for nuclear hydrogenation reaction, which is used in a nuclear hydrogenation reaction for hydrogenating at least one of ⁇ -bonds of the aromatic ring in which an aromatic ring has one or more amino groups bonded to the aromatic ring, A carrier, and catalyst particles supported on the carrier,
  • the catalyst particles contain Ru (0 valence) and Ru oxide, The ratio of Ru (zero valence) R Ru (atom%) and the ratio of Ru oxide R RuO x (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) The condition of equation (1) is satisfied, Provided is a catalyst for nuclear hydrogenation reaction. 0.60 ⁇ ⁇ R RuOx / (R RuOx + R Ru ) ⁇ ⁇ 0.90 Formula (1)
  • the ratio of Ru (zero valence) R Ru (atom%) in the analysis region in the vicinity of the surface of the catalyst for nuclear hydrogenation reaction observed by XPS R RuO x (atom “%)” Is a numerical value calculated under the condition that the sum of these two components is 100%.
  • the nuclear hydrogenation reaction of the present invention by setting the value of R RuOx / (R RuOx + R Ru ) shown in the above-mentioned formula (1) to be 0.60 or more and 0.90 or less, the nuclear hydrogenation reaction of the present invention
  • the catalyst can exhibit catalytic activity superior to that of conventional ruthenium catalysts in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring.
  • the nuclear hydrogenation reaction catalyst having a structure satisfying the formula (1) has a higher ratio of Ru oxide to Ru (zero-valent) than the conventional nuclear hydrogenation reaction catalyst, the nuclear water of the aromatic compound is It is inferred that the activity for the addition reaction is improved.
  • the Ru oxide contained in the catalyst particles may be in a state in which a hydroxyl group is bonded to a part of the Ru oxide.
  • a catalyst for nuclear hydrogenation reaction which has a catalytic activity superior to that of a conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring.
  • FIG. 1 It is a schematic diagram which shows schematic structure of the XPS apparatus for demonstrating the analysis conditions of the X ray photoelectron spectroscopy (XPS) in this invention.
  • the catalyst for hydrogenation reaction of the present invention is used in a nuclear hydrogenation reaction for hydrogenating at least one of ⁇ -bonds of the aromatic ring in which an aromatic ring is bound to one or more amino groups. .
  • the aromatic ring of the aromatic compound “4-tert-butylaniline [4-tert-Butylaniline, a reactant 1 in the following reaction formula (1)] represented by the following chemical reaction formula (1):
  • the ⁇ bond can be hydrogenated and used in a nuclear hydrogenation reaction to convert to “4-tert-butylcyclohexylamine [(4-tert-Butylcyclohexylamine, product 2 in the following reaction formula (1))]”.
  • the catalyst for nuclear hydrogenation reaction of the present invention only needs to contain a support and catalyst particles supported on the support, and the form of the support of the catalyst particles is not particularly limited, and various structures can be adopted. obtain.
  • the carrier is not particularly limited as long as it can carry catalyst particles and has a relatively large surface area, but it has good dispersibility in a solution containing catalyst particles and is inert preferable.
  • the inert carrier for example, carbon-based materials (carbon), silica, alumina, cilia carmina, magnesia and the like are preferable, and alumina is particularly preferable.
  • alumina support with a pore size PS obtained by BJH method is 8.00nm ⁇ 12.00nm
  • a pore volume PV obtained by BJH method 0.250cm 3 /g ⁇ 0.400cm 3 / g Is preferred.
  • the pore size PS is determined from the desorption isotherm which is the relationship between the relative pressure and the adsorption amount when the adsorbate (gas molecule) is desorbed from the solid surface by the BJH (Barrett, Joyner, Hallender) method.
  • Value BJH Desorption average pore diameter
  • the pore volume PV is also a value (BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter) determined by the BJH method.
  • Examples of the carbon-based material include glassy carbon (GC), fine carbon, carbon black, graphite, carbon fibers, activated carbon, pulverized products of activated carbon, carbon nanofibers, carbon nanotubes and the like.
  • GC glassy carbon
  • fine carbon fine carbon
  • carbon black carbon black
  • graphite carbon fibers
  • activated carbon pulverized products of activated carbon
  • carbon nanofibers carbon nanotubes and the like.
  • electroconductive carbon is preferable and electroconductive carbon black is preferable as electroconductive carbon especially.
  • conductive carbon black brand names "Ketjen black EC300J”, “Ketjen black EC600”, “Carbon EPC” etc. (made by Lion Chemical Co., Ltd.) can be illustrated.
  • the catalyst particles supported on the above-mentioned support contain Ru (zero valent) and Ru oxide, and in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS)
  • the ratio R Ru (atom%) of Ru (0 valence) and the ratio R RuO x (atom%) of the Ru oxide satisfy the condition of the following formula (1). 0.60 ⁇ ⁇ R RuOx / (R RuOx + R Ru ) ⁇ ⁇ 0.90 Formula (1)
  • the amount of the catalyst particles supported on the carrier is not particularly limited as long as the effects of the present invention are not impaired, and the reaction system and reaction conditions in which the catalyst for nuclear hydrogenation reaction of the present invention is employed It is set appropriately. Usually, it may be about 0.5 to 10 wt%.
  • the supported amount refers to the value (rate) obtained by the formula: ⁇ mass of catalyst particles / (mass of catalyst particles + mass of carrier) ⁇ ⁇ 100.
  • the mass of the catalyst particles refers to the mass of the Ru component obtained by combining Ru (zero-valent) and the Ru oxide contained in the catalyst particles.
  • the value of ⁇ R RuO x / (R RuO x + R Ru ) ⁇ shown in the above-mentioned formula (1) should be configured to be 0.60 or more and 0.90 or less.
  • the Ru oxide contained in the catalyst particles may be in a state in which a hydroxyl group is bonded to a part thereof.
  • X-ray photoelectron spectroscopy is performed under the following analysis conditions (A1) to (A5).
  • A1 X-ray source: monochromized AlK ⁇
  • A2) Photoelectron extraction accuracy: ⁇ 75 ° C.
  • A3) Charge correction: correction with C1s peak energy set to 284.8 eV
  • analysis region 200 ⁇ m
  • the X-ray emitted from the X-ray source 32 is irradiated to the sample set on the sample stage 34, and the photoelectron extraction accuracy ⁇ of (A2) is emitted from the sample
  • the method for producing a catalyst for nuclear hydrogenation reaction of the present invention is not particularly limited as long as the method can support the above-described catalyst particles on a carrier.
  • an impregnation method in which a support is brought into contact with a solution containing a Ru compound, and the support is impregnated with a catalyst component a liquid phase reduction method performed by adding a reducing agent to a solution containing a catalyst component, an electrochemical deposition method, chemistry
  • a production method employing a reduction method, a reduction deposition method using adsorbed hydrogen, and the like can be exemplified.
  • the production conditions in the production of the catalyst for nuclear hydrogenation reaction are the ratio R Ru (atom%) of Ru (0 valence) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS), It is necessary to adjust the synthesis reaction conditions in the manufacturing process so that the proportion of Ru oxide R RuOx (atom%) satisfies the condition of the formula (1) described above.
  • the catalyst for nuclear hydrogenation reaction of the present invention so as to satisfy the essential condition shown in the above-mentioned formula (1)
  • a catalyst precursor obtained in each production step and finally The chemical composition and structure of the obtained catalyst for nuclear hydrogenation reaction are analyzed using various known analysis methods, and the obtained analysis result is fed back to each manufacturing process to select the raw material to be selected, the compounding ratio of the raw material, Methods for preparing and changing the synthesis reaction, reaction conditions of the synthesis reaction (temperature, pressure of gas component, solvent) and the like can be mentioned.
  • a water-soluble Ru salt is dissolved in water to form Ru hydroxide, and the Ru hydroxide is used as a carrier (preferably alumina)
  • the synthesis can be performed through a first step of synthesizing a supported catalyst precursor and a second step of heating and drying the catalyst precursor obtained in the first step in air.
  • the type of Ru salt in the first step the amount (concentration) of Ru salt to be added to water, the pH of the aqueous solution in which the Ru salt is dissolved, the temperature of the aqueous solution, the temperature of heating / drying treatment in the second step, and the treatment time
  • the catalyst for nuclear hydrogenation reaction can be synthesized so as to satisfy the condition of the formula (1) described above.
  • a third step of reducing the catalyst for nuclear hydrogenation reaction obtained by obtaining the second step using a reducing agent as a precursor may be carried out, if necessary.
  • the ratio R Ru (atom value) of Ru (zero valence) and the ratio R RuO x (atom%) of Ru oxide are adjusted so as to more surely satisfy the condition of the equation (1) described above. can do.
  • the kind of reducing agent, the concentration of the reducing agent, the temperature of the reduction treatment in the third step, and the treatment time can be adjusted.
  • gas phase reduction in which hydrogen gas (reducing agent) is diluted with nitrogen gas may be preferably employed.
  • the heating and drying treatment is performed twice or more successively, and the measurement by X-ray photoelectron spectroscopy (XPS) is carried out in between to determine the ratio R Ru (atom%) of Ru (0 valence) ) And the proportion of Ru oxide R RuOx (atom%) may be confirmed.
  • XPS X-ray photoelectron spectroscopy
  • the precursor obtained in the second step is measured by X-ray photoelectron spectroscopy (XPS), and the ratio R Ru (atomic valence) of Ru (zero valence), Ru oxidation
  • the reduction conditions in the third step may be adjusted as appropriate.
  • the catalyst for nuclear hydrogenation reaction that satisfies the condition of the formula (1) described above can be synthesized more reliably.
  • the ⁇ R RuOx / (R RuOx + R Ru ) ⁇ value of the catalyst for nuclear hydrogenation reaction is shown in Table 1.
  • the nuclear hydrogenation reaction catalyst 1 comprises a first step of synthesizing alumina and a water-soluble Ru salt in water to synthesize a catalyst precursor having a Ru hydroxide supported on a carrier (alumina);
  • the catalyst precursor obtained in one step was synthesized through a second step of heating and drying treatment (treatment temperature: 80 ° C.) in air.
  • Example 2 The procedure of Example 1 is repeated except that the value of ⁇ R RuOx / (R RuOx + R Ru ) ⁇ in the catalyst particles is changed to that shown in Table 1 with respect to the catalyst for nuclear hydrogenation reaction of Example 1.
  • Catalyst 2 for nuclear hydrogenation reaction (trade name “NECC-RA2” (manufactured by NE CHEMCAT Co.)) was produced.
  • the nuclear hydrogenation reaction catalyst 2 was subjected to the first step and the second step under the same conditions as the nuclear hydrogenation reaction catalyst 1 of Example 1, and thereafter the nuclear hydrogenation was obtained by obtaining the second step.
  • a third step was carried out to reduce the reaction catalyst as a precursor using a reducing agent. In the third step, reduction treatment was performed at 100 ° C. in a gas atmosphere of 90% nitrogen and 10% hydrogen.
  • Example 3 The procedure of Example 1 is repeated, except that the value of ⁇ R RuOx / (R RuOx + R Ru ) ⁇ in the catalyst particles is changed to that shown in Table 1 with respect to the catalyst for nuclear hydrogenation reaction of Example 1.
  • a trade name "NECC-RA3" (manufactured by NE CHEMCAT Co., Ltd.) was manufactured as a catalyst for nuclear hydrogenation reaction of the present invention (hereinafter referred to as "catalyst 3 for nuclear hydrogenation reaction”).
  • the nuclear hydrogenation reaction catalyst 3 was subjected to the first step and the second step under the same conditions as the nuclear hydrogenation reaction catalyst 1 of Example 1, and then the nuclear hydrogenation was obtained by obtaining the second step.
  • a third step was carried out to reduce the reaction catalyst as a precursor using a reducing agent. In the third step, reduction treatment was performed at 150 ° C. in a gas atmosphere of 90% nitrogen and 10% hydrogen.
  • the catalyst for nuclear hydrogenation reaction of the present invention has excellent catalytic activity in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring, and an excellent yield of product can be obtained. it can. Accordingly, the present invention is a catalyst for nuclear hydrogenation reaction that can be applied to the synthesis of polyamideimide resin and the like as a raw material of high-performance plastic products, and contributes to the development of various industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a nucleus hydrogenation reaction catalyst having a catalytic activity superior to conventional ruthenium catalysts in a nucleus hydrogenation reaction of an aromatic compound in which at least one amino group is bonded to an aromatic ring. Disclosed is a nucleus hydrogenation reaction catalyst used for a nucleus hydrogenation reaction for hydrogenating at least one π bond of an aromatic ring of an aromatic compound in which at least one amino group is bonded to the aromatic ring, the nucleus hydrogenation reaction catalyst comprising a support and catalyst particles supported on the support, wherein: the catalyst particles include Ru (0 valence) and a Ru oxide; and the percentage RRu (atom%) of Ru (0 valence) and the percentage RRuOx (atom%) of the Ru oxide in an analysis region in the vicinity of the surface being measured by X-ray photoelectron spectroscopy (XPS) satisfy the condition of formula (1): 0.60≤{RRuOx/(RRuOx+RRu)}≤0.90.

Description

核水添反応用触媒Nuclear hydrogenation reaction catalyst

 本発明は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応に使用される触媒に関する。 The present invention relates to a catalyst used for the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring.

 従来から、芳香族化合物の核水添反応は、高機能プラスチック製品の原料となるポリアミドイミド樹脂等を合成するために利用されている。そして、芳香族化合物の核水添反応に使用される触媒としてはルテニウム触媒が知られている。 Conventionally, the nuclear hydrogenation reaction of aromatic compounds has been used to synthesize, for example, a polyamideimide resin as a raw material for highly functional plastic products. And a ruthenium catalyst is known as a catalyst used for the nuclear hydrogenation reaction of an aromatic compound.

 例えば、特許文献1(特開2009-286747号公報)には、ポリウレタンフォーム製造用触媒、エポキシ硬化剤、レジスト剥離剤、鋼用腐食防止剤として有用なN,N-ジメチルシクロヘキシルアミン類を効率的に経済性良く製造する方法を提供することを目的とし、芳香族化合物をルテニウム触媒等及び水素の存在下で核水添反応させ、得られたシクロヘキシル化合物を、前記貴金属触媒、ホルムアルデヒド誘導体及び水素の存在下で還元メチル化反応させるN,N-ジメチルシクロへキシルアミン類の製造法が開示されている(特許文献1、[要約])。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 2009-286747) efficiently uses N, N-dimethylcyclohexylamines useful as catalysts for polyurethane foam production, epoxy curing agents, resist release agents, and corrosion inhibitors for steel. The aromatic compound is subjected to a nuclear hydrogenation reaction in the presence of a ruthenium catalyst or the like and hydrogen, and the resulting cyclohexyl compound is converted to the above-mentioned noble metal catalyst, formaldehyde derivative and hydrogen. A process for producing N, N-dimethylcyclohexylamines which are subjected to reductive methylation in the presence is disclosed (Patent Document 1, [Summary]).

 より具体的には、アルミナ(担体)にルテニウムが5%担持されたルテニウム触媒が開示されている(特許文献1、[0032]実施例1及び[0034]実施例2等)。 More specifically, a ruthenium catalyst in which 5% of ruthenium is supported on alumina (support) is disclosed (Patent Document 1, [0032] Example 1 and [0034] Example 2, etc.).

特開2009-286747号公報JP, 2009-286747, A

 しかしながら、上記のような従来のルテニウム触媒では、芳香族化合物の核水添反応において反応物の転化率をより向上させるという観点からは、未だ改善の余地があることを本発明者らは見出した。 However, the inventors have found that there is still room for improvement in the conventional ruthenium catalyst as described above from the viewpoint of further improving the conversion of the reactant in the nuclear hydrogenation reaction of an aromatic compound. .

 そこで、本発明は、かかる技術的事情に鑑みてなされたものであって、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を有する核水添反応用触媒を提供することを目的とする。 Therefore, the present invention has been made in view of such technical circumstances, and provides a catalyst for nuclear hydrogenation reaction having a catalytic activity superior to that of a conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound. The purpose is to

 本件発明者らは、核水添反応に用いられるルテニウム触媒において、担体上に担持される触媒粒子に含まれるルテニウムの状態に着目し、触媒活性の更なる向上を実現する構成について鋭意検討を行った。 The present inventors focused on the state of ruthenium contained in the catalyst particles supported on the carrier in the ruthenium catalyst used for the nuclear hydrogenation reaction, and conducted intensive studies on the configuration for realizing further improvement of the catalytic activity. The

 その結果、X線光電子分光分析法(XPS)により測定されるルテニウム触媒の表面近傍の分析領域におけるRu(0価)の割合RRuに対するRu(0価)Ru酸化物の割合RRuOxの割合が下記の条件を満たしていることが触媒活性の向上に有効であることを見出し、本発明を完成するに至った。 As a result, the ratio of Ru (zero valence) in the analysis region near the surface of the ruthenium catalyst measured by X-ray photoelectron spectroscopy (XPS) R Ratio of Ru (zero valence) Ru oxide to Ru ratio of Ru Rux The inventors have found that satisfying the following conditions is effective to improve the catalyst activity, and have completed the present invention.

 より具体的には、本発明は、以下の技術的事項により構成される。
 即ち、本発明は、
 芳香環に1以上のアミノ基が結合した芳香族化合物の前記芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
 担体と、前記担体上に担持される触媒粒子と、を含んでおり、
 前記触媒粒子には、Ru(0価)とRu酸化物とが含まれており、
 X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている、
核水添反応用触媒を提供する。
 0.60≦{RRuOx/(RRuOx+RRu)}≦0.90・・・式(1)
More specifically, the present invention is constituted by the following technical matters.
That is, the present invention
A catalyst for nuclear hydrogenation reaction, which is used in a nuclear hydrogenation reaction for hydrogenating at least one of π-bonds of the aromatic ring in which an aromatic ring has one or more amino groups bonded to the aromatic ring,
A carrier, and catalyst particles supported on the carrier,
The catalyst particles contain Ru (0 valence) and Ru oxide,
The ratio of Ru (zero valence) R Ru (atom%) and the ratio of Ru oxide R RuO x (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) The condition of equation (1) is satisfied,
Provided is a catalyst for nuclear hydrogenation reaction.
0.60 ≦ {R RuOx / (R RuOx + R Ru )} ≦ 0.90 Formula (1)

 ここで、本発明においては、XPSで観察される核水添反応用触媒の表面近傍の分析領域におけるRu(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とは、これら2つの成分の合計が100%となる条件で算出される数値としている。 Here, in the present invention, the ratio of Ru (zero valence) R Ru (atom%) in the analysis region in the vicinity of the surface of the catalyst for nuclear hydrogenation reaction observed by XPS R RuO x (atom “%)” Is a numerical value calculated under the condition that the sum of these two components is 100%.

 本発明において、上記式(1)に示されるRRuOx/(RRuOx+RRu)の値が0.60以上で0.90以下となる構成とすることにより、本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を発揮することができる。 In the present invention, by setting the value of R RuOx / (R RuOx + R Ru ) shown in the above-mentioned formula (1) to be 0.60 or more and 0.90 or less, the nuclear hydrogenation reaction of the present invention The catalyst can exhibit catalytic activity superior to that of conventional ruthenium catalysts in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring.

 本発明の核水添反応用触媒が優れた触媒活性を有することについて詳細な理由は十分に解明されていないが、本発明者らは、以下のように考えている。 The detailed reason for the excellent catalytic activity of the catalyst for nuclear hydrogenation reaction of the present invention is not sufficiently clarified, but the present inventors think as follows.

 即ち、式(1)を満たす構造の核水添反応用触媒は、Ru(0価)に対するRu酸化物)の割合が従来の核水添反応用触媒よりも高いので、芳香族化合物の核水添反応に対する活性が向上していると推察している。 That is, since the nuclear hydrogenation reaction catalyst having a structure satisfying the formula (1) has a higher ratio of Ru oxide to Ru (zero-valent) than the conventional nuclear hydrogenation reaction catalyst, the nuclear water of the aromatic compound is It is inferred that the activity for the addition reaction is improved.

 また、本発明の核水添反応用触媒において、触媒粒子に含まれるRu酸化物はその一部に水酸基が結合した状態であってもよい。 In the catalyst for nuclear hydrogenation reaction of the present invention, the Ru oxide contained in the catalyst particles may be in a state in which a hydroxyl group is bonded to a part of the Ru oxide.

 本発明によれば、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を有する核水添反応用触媒が提供される。 According to the present invention, there is provided a catalyst for nuclear hydrogenation reaction which has a catalytic activity superior to that of a conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring.

本発明におけるX線光電子分光分析法(XPS)の分析条件を説明するためのXPS装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the XPS apparatus for demonstrating the analysis conditions of the X ray photoelectron spectroscopy (XPS) in this invention.

<核水添反応用触媒>
 以下、本発明の核水添反応用触媒の好適な実施形態について詳細に説明する。
 本発明の水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の当該芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用されるものである。
<Catalyst for nuclear hydrogenation reaction>
Hereinafter, preferred embodiments of the catalyst for nuclear hydrogenation reaction of the present invention will be described in detail.
The catalyst for hydrogenation reaction of the present invention is used in a nuclear hydrogenation reaction for hydrogenating at least one of π-bonds of the aromatic ring in which an aromatic ring is bound to one or more amino groups. .

 例えば、下記の化学反応式(1)で示される、芳香族化合物である「4-ターシャリーブチルアニリン[4-tert-Butylaniline、下記反応式(1)中の反応物1]」の芳香環のπ結合を水素化して、「4-ターシャリーブチルシクロヘキシルアミン[(4-tert-Butylcyclohexylamine、下記反応式(1)中の生成物2]」に転化する核水添反応に使用することができる。

Figure JPOXMLDOC01-appb-C000001
For example, the aromatic ring of the aromatic compound “4-tert-butylaniline [4-tert-Butylaniline, a reactant 1 in the following reaction formula (1)] represented by the following chemical reaction formula (1): The π bond can be hydrogenated and used in a nuclear hydrogenation reaction to convert to “4-tert-butylcyclohexylamine [(4-tert-Butylcyclohexylamine, product 2 in the following reaction formula (1))]”.
Figure JPOXMLDOC01-appb-C000001

 本発明の核水添反応用触媒は、担体と、前記担体上に担持される触媒粒子と、を含んでいればよく、触媒粒子の担持の形態については特に制限はなく、種々の構造を採り得る。 The catalyst for nuclear hydrogenation reaction of the present invention only needs to contain a support and catalyst particles supported on the support, and the form of the support of the catalyst particles is not particularly limited, and various structures can be adopted. obtain.

(担体)
 担体としては、触媒粒子を担持することができ、かつ表面積が比較的大きいものであれば特に制限されないが、触媒粒子を含んだ溶液中で良好な分散性を有し、不活性であることが好ましい。
(Carrier)
The carrier is not particularly limited as long as it can carry catalyst particles and has a relatively large surface area, but it has good dispersibility in a solution containing catalyst particles and is inert preferable.

 不活性担体としては、例えば、炭素系材料(カーボン)、シリカ、アルミナ、シリアカルミナ、マグネシア等が好ましく、アルミナが特に好ましい。
 また、上記アルミナ担体については、BJH法により求められる細孔径PSが8.00nm~12.00nmであり、BJH法により求められる細孔容積PVが0.250cm/g~0.400cm/gであるのが好ましい。
As the inert carrier, for example, carbon-based materials (carbon), silica, alumina, cilia carmina, magnesia and the like are preferable, and alumina is particularly preferable.
As for the alumina support with a pore size PS obtained by BJH method is 8.00nm ~ 12.00nm, a pore volume PV obtained by BJH method 0.250cm 3 /g~0.400cm 3 / g Is preferred.

 ここで、本発明において、細孔径PSはBJH(Barrett, Joyner, Hallender)法により吸着質(気体分子)が固体表面から脱離するときの相対圧と吸着量の関係である脱着等温線から求められる値(BJH Desorption average pore diameter)である。また、本発明において、細孔容積PVも、BJH法により求められる値(BJH Desorption cumulative  volume of pores between 1.7000 nm and 300.0000 nm diameter)である。 Here, in the present invention, the pore size PS is determined from the desorption isotherm which is the relationship between the relative pressure and the adsorption amount when the adsorbate (gas molecule) is desorbed from the solid surface by the BJH (Barrett, Joyner, Hallender) method. Value (BJH Desorption average pore diameter). Further, in the present invention, the pore volume PV is also a value (BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter) determined by the BJH method.

 炭素系材料としては、例えば、グラッシーカーボン(GC)、ファインカーボン、カーボンブラック、黒鉛、炭素繊維、活性炭、活性炭の粉砕物、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。 Examples of the carbon-based material include glassy carbon (GC), fine carbon, carbon black, graphite, carbon fibers, activated carbon, pulverized products of activated carbon, carbon nanofibers, carbon nanotubes and the like.

 なお、炭素系材料としては、導電性カーボンが好ましく、特に、導電性カーボンとしては、導電性カーボンブラックが好ましい。また、導電性カーボンブラックとしては、商品名「ケッチェンブラックEC300J」、「ケッチェンブラックEC600」、「カーボンEPC」等(ライオン化学株式会社製)を例示することができる。 In addition, as a carbon-type material, electroconductive carbon is preferable and electroconductive carbon black is preferable as electroconductive carbon especially. Moreover, as conductive carbon black, brand names "Ketjen black EC300J", "Ketjen black EC600", "Carbon EPC" etc. (made by Lion Chemical Co., Ltd.) can be illustrated.

(触媒粒子)
 次に、本発明において上記担体に担持される触媒粒子は、Ru(0価)とRu酸化物とを含んでおり、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている。
 0.60≦{RRuOx/(RRuOx+RRu)}≦0.90・・・式(1)
(Catalyst particles)
Next, in the present invention, the catalyst particles supported on the above-mentioned support contain Ru (zero valent) and Ru oxide, and in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) The ratio R Ru (atom%) of Ru (0 valence) and the ratio R RuO x (atom%) of the Ru oxide satisfy the condition of the following formula (1).
0.60 ≦ {R RuOx / (R RuOx + R Ru )} ≦ 0.90 Formula (1)

 上記担体への上記触媒粒子の担持量は、本発明の効果を損なわない範囲であれば特に限定されるものではなく、本発明の核水添反応用触媒が採用される反応系、反応条件により適宜設定される。通常0.5~10wt%程度であればよい。 The amount of the catalyst particles supported on the carrier is not particularly limited as long as the effects of the present invention are not impaired, and the reaction system and reaction conditions in which the catalyst for nuclear hydrogenation reaction of the present invention is employed It is set appropriately. Usually, it may be about 0.5 to 10 wt%.

 なお、ここでいう担持量とは、式:{触媒粒子の質量/(触媒粒子の質量+担体の質量)}×100で得られる値(率)のことをいう。ここで、触媒粒子の質量とは、触媒粒子に含まれるRu(0価)とRu酸化物とを合わせたRu成分の質量を示す。 Here, the supported amount refers to the value (rate) obtained by the formula: {mass of catalyst particles / (mass of catalyst particles + mass of carrier)} × 100. Here, the mass of the catalyst particles refers to the mass of the Ru component obtained by combining Ru (zero-valent) and the Ru oxide contained in the catalyst particles.

 本発明の核水添反応用触媒は、上記の式(1)に示される{RRuOx/(RRuOx+RRu)}の値が0.60以上で0.90以下となる構成とすることにより、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を発揮することができる。 In the catalyst for nuclear hydrogenation reaction of the present invention, the value of {R RuO x / (R RuO x + R Ru )} shown in the above-mentioned formula (1) should be configured to be 0.60 or more and 0.90 or less. Thus, in the nuclear hydrogenation reaction of an aromatic compound, catalytic activity superior to that of a conventional ruthenium catalyst can be exhibited.

 この{RRuOx/(RRuOx+RRu)}の値が大きいと、核水添反応用触媒粒子の表面近傍においてRu酸化物がRu(0価)に比べてより多く存在し、この{RRuOx/(RRuOx+RRu)}の値が小さいと、核水添反応用触媒粒子の表面近傍においてRu酸化物がRu(0価)に比べてより少なく存在することを意味する。 When the value of this {R RuO x / (R RuO x + R Ru )} is large, more Ru oxides are present in the vicinity of the surface of the catalyst particle for nuclear hydrogenation reaction than Ru (0 valence), and this {R The small value of RuO x / (R RuO x + R Ru )} means that less Ru oxide is present in the vicinity of the surface of the catalyst particle for nuclear hydrogenation reaction than Ru (zero valence).

 そして、本発明の核水添反応用触媒粒子の表面近傍においてRu酸化物がRu(0価)に比べてより多く存在すると、詳細なメカニズムは解明されていないが、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応に対する触媒活性が向上するという効果が得られる傾向にある。 And when more Ru oxides are present in the vicinity of the surface of the catalyst particle for nuclear hydrogenation reaction of the present invention than Ru (0 valence), the detailed mechanism has not been elucidated, but one or more amino groups in the aromatic ring The effect of improving the catalytic activity for the nuclear hydrogenation reaction of the aromatic compound having a group bonded thereto tends to be obtained.

 また逆に、本発明の核水添反応用触媒粒子の表面近傍においてRu酸化物がRu(0価)に比べてより少なく存在すると、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応に対する触媒活性が低下するという効果が得られる傾向にある。 Conversely, when less Ru oxide is present in the vicinity of the surface of the catalyst particle for nuclear hydrogenation reaction of the present invention than Ru (0 valence), an aromatic compound in which one or more amino groups are bonded to an aromatic ring The effect of reducing the catalytic activity for the nuclear hydrogenation reaction tends to be obtained.

 本発明では、上記式(1)に示されるRRuOx/(RRuOx+RRu)の値が0.60以上で0.90以下となる構成にすることにより、これらの作用効果をバランス良く実現するものである。 In the present invention, by setting the value of R RuOx / (R RuOx + R Ru ) shown in the above-mentioned formula (1) to be 0.60 or more and 0.90 or less, these functions and effects are realized in a well-balanced manner. It is

 なお、本発明において、触媒粒子に含まれるRu酸化物はその一部に水酸基が結合した状態であってもよい。 In the present invention, the Ru oxide contained in the catalyst particles may be in a state in which a hydroxyl group is bonded to a part thereof.

 なお、本発明において、X線光電子分光分析法(XPS)は、以下の分析条件(A1)~(A5)で実施しされるものとする。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm、
(A5)分析時チャンバ圧力:約1×10-6Pa
In the present invention, X-ray photoelectron spectroscopy (XPS) is performed under the following analysis conditions (A1) to (A5).
(A1) X-ray source: monochromized AlKα
(A2) Photoelectron extraction accuracy: θ = 75 ° C.
(A3) Charge correction: correction with C1s peak energy set to 284.8 eV (A4) analysis region: 200 μm,
(A5) Chamber pressure during analysis: about 1 × 10 -6 Pa

 ここで、(A2)の光電子取出確度θは、図1に示すように、エックス線源32から放射されたX線が、試料ステージ34上にセットされた試料へ照射され、当該試料から放射される光電子を分光器36で受光するときの角度θである。すなわち、光電子取出確度θは、分光器36の受光軸と試料ステージ34の試料の層の面との角度に該当する。 Here, as shown in FIG. 1, the X-ray emitted from the X-ray source 32 is irradiated to the sample set on the sample stage 34, and the photoelectron extraction accuracy θ of (A2) is emitted from the sample This is the angle θ when the photoelectrons are received by the spectroscope 36. That is, the photoelectron take-off accuracy θ corresponds to the angle between the light receiving axis of the spectroscope 36 and the surface of the layer of the sample on the sample stage 34.

<核水添反応用触媒の製造方法>
 本発明の核水添反応用触媒の製造方法は、担体に上記触媒粒子を担持させることができる方法であれば、特に制限されるものではない。
<Method of producing catalyst for nuclear hydrogenation reaction>
The method for producing a catalyst for nuclear hydrogenation reaction of the present invention is not particularly limited as long as the method can support the above-described catalyst particles on a carrier.

 例えば、担体にRu化合物を含有する溶液を接触させ、担体に触媒成分を含浸させる含浸法、触媒成分を含有する溶液に還元剤を投入して行う液相還元法、電気化学的析出法、化学還元法、吸着水素による還元析出法等を採用した製造方法を例示することができる。 For example, an impregnation method in which a support is brought into contact with a solution containing a Ru compound, and the support is impregnated with a catalyst component, a liquid phase reduction method performed by adding a reducing agent to a solution containing a catalyst component, an electrochemical deposition method, chemistry A production method employing a reduction method, a reduction deposition method using adsorbed hydrogen, and the like can be exemplified.

 ただし、核水添反応用触媒の製造における製造条件は、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、先に述べた式(1)の条件を満たすように製造工程における合成反応条件を調節することが必要である。 However, the production conditions in the production of the catalyst for nuclear hydrogenation reaction are the ratio R Ru (atom%) of Ru (0 valence) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS), It is necessary to adjust the synthesis reaction conditions in the manufacturing process so that the proportion of Ru oxide R RuOx (atom%) satisfies the condition of the formula (1) described above.

 なお、本発明の核水添反応用触媒を、上述した式(1)で示した必須の条件を満たすように製造する方法としては、例えば、各製造工程において得られる触媒前駆体、最終的に得られる核水添反応用触媒の化学組成や構造を各種の公知の分析手法を用いて分析し、得られる分析結果を各製造工程にフィードバックし、選択する原料、その原料の配合比、選択する合成反応、その合成反応の反応条件(温度、ガス成分の圧力、溶媒)などを調製・変更する方法等が挙げられる。 In addition, as a method for producing the catalyst for nuclear hydrogenation reaction of the present invention so as to satisfy the essential condition shown in the above-mentioned formula (1), for example, a catalyst precursor obtained in each production step, and finally The chemical composition and structure of the obtained catalyst for nuclear hydrogenation reaction are analyzed using various known analysis methods, and the obtained analysis result is fed back to each manufacturing process to select the raw material to be selected, the compounding ratio of the raw material, Methods for preparing and changing the synthesis reaction, reaction conditions of the synthesis reaction (temperature, pressure of gas component, solvent) and the like can be mentioned.

 より具体的には、例えば、本発明の核水添反応用触媒は、水溶性のRu塩を水に溶解してRu水酸化物を生成させ当該Ru水酸化物が担体(好ましくはアルミナ)に担持された触媒前駆体を合成する第1工程と、この第1工程で得られる触媒前駆体を空気中で加熱・乾燥処理する第2工程と、を経て合成することができる。 More specifically, for example, in the catalyst for nuclear hydrogenation reaction of the present invention, a water-soluble Ru salt is dissolved in water to form Ru hydroxide, and the Ru hydroxide is used as a carrier (preferably alumina) The synthesis can be performed through a first step of synthesizing a supported catalyst precursor and a second step of heating and drying the catalyst precursor obtained in the first step in air.

 そして、第1工程におけるRu塩の種類、水に投入するRu塩の量(濃度)、Ru塩が溶解した水溶液のpH、水溶液の温度、第2工程における加熱・乾燥処理の温度、処理時間を調節して、先に述べた式(1)の条件を満たすように核水添反応用触媒を合成することができる。 Then, the type of Ru salt in the first step, the amount (concentration) of Ru salt to be added to water, the pH of the aqueous solution in which the Ru salt is dissolved, the temperature of the aqueous solution, the temperature of heating / drying treatment in the second step, and the treatment time By adjusting, the catalyst for nuclear hydrogenation reaction can be synthesized so as to satisfy the condition of the formula (1) described above.

 更に、第2工程を得て得られる核水添反応用触媒を前駆体として更に還元剤を用いて還元する第3工程を必要に応じて実施してもよい。これにより、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを、先に述べた式(1)の条件をより確実に満たすように調整することができる。還元剤の種類、還元剤の濃度、第3工程における還元処理の温度、その処理時間を調製することができる。第3工程を実施する場合、水素ガス(還元剤)を窒素ガスで希釈した気相還元を好ましく採用してもよい。 Furthermore, a third step of reducing the catalyst for nuclear hydrogenation reaction obtained by obtaining the second step using a reducing agent as a precursor may be carried out, if necessary. By this, the ratio R Ru (atom value) of Ru (zero valence) and the ratio R RuO x (atom%) of Ru oxide are adjusted so as to more surely satisfy the condition of the equation (1) described above. can do. The kind of reducing agent, the concentration of the reducing agent, the temperature of the reduction treatment in the third step, and the treatment time can be adjusted. When the third step is carried out, gas phase reduction in which hydrogen gas (reducing agent) is diluted with nitrogen gas may be preferably employed.

 また、第2工程において、2回以上の加熱・乾燥処理を逐次的に行い、合間にX線光電子分光分析法(XPS)による測定を実施してRu(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを確認してもよい。 Further, in the second step, the heating and drying treatment is performed twice or more successively, and the measurement by X-ray photoelectron spectroscopy (XPS) is carried out in between to determine the ratio R Ru (atom%) of Ru (0 valence) ) And the proportion of Ru oxide R RuOx (atom%) may be confirmed.

 更に、第3工程を実施する場合、第2工程で得られた前駆体をX線光電子分光分析法(XPS)により測定し、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを確認してから、第3工程での還元条件を適宜調整してもよい。これにより先に述べた式(1)の条件を満たす核水添反応用触媒をより確実に合成することができる。 Furthermore, when the third step is carried out, the precursor obtained in the second step is measured by X-ray photoelectron spectroscopy (XPS), and the ratio R Ru (atomic valence) of Ru (zero valence), Ru oxidation After confirming the product ratio R RuOx (atom%), the reduction conditions in the third step may be adjusted as appropriate. As a result, the catalyst for nuclear hydrogenation reaction that satisfies the condition of the formula (1) described above can be synthesized more reliably.

 以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to the following examples.

≪実施例1≫
 Ru(0価)とRu酸化物とを含む触媒粒子が担体であるアルミナ(Al)粒子に5質量%の担持率で担持された本発明の核水添反応用触媒(以下、「核水添反応用触媒1」という)として、商品名「NECC-RA1」(N.E.CHEMCAT社製)を製造した。
 核水添反応用触媒の{RRuOx/(RRuOx+RRu)}値を表1に示した。
 この核水添反応用触媒1は、アルミナと水溶性のRu塩とを水に溶解してRu水酸化物が担体(アルミナ)に担持された触媒前駆体を合成する第1工程と、この第1工程で得られる触媒前駆体を空気中で加熱・乾燥処理(処理温度:80℃)する第2工程と、を経て合成した。
Example 1
Ru (0 valence) and nuclear water添反applications catalyst of the present invention that catalyst particles supported by alumina (Al 2 O 3) loading of particles to 5% by weight is a carrier comprising a Ru oxide (hereinafter, " A trade name “NECC-RA1” (manufactured by NE CHEMCAT Co., Ltd.) was manufactured as “catalyst 1 for nuclear hydrogenation reaction”.
The {R RuOx / (R RuOx + R Ru )} value of the catalyst for nuclear hydrogenation reaction is shown in Table 1.
The nuclear hydrogenation reaction catalyst 1 comprises a first step of synthesizing alumina and a water-soluble Ru salt in water to synthesize a catalyst precursor having a Ru hydroxide supported on a carrier (alumina); The catalyst precursor obtained in one step was synthesized through a second step of heating and drying treatment (treatment temperature: 80 ° C.) in air.

≪実施例2≫
 実施例1の核水添反応用触媒に対して、触媒粒子における{RRuOx/(RRuOx+RRu)}の値を表1に示すものに変更したこと以外は、実施例1と同様にして、本発明の核水添反応用触媒(以下、「核水添反応用触媒2」という)として(商品名「NECC-RA2」(N.E.CHEMCAT社製))を製造した。
 この核水添反応用触媒2は、実施例1の核水添反応用触媒1と同一条件の第1工程と第2工程を実施し、その後、第2工程を得て得られた核水添反応用触媒を前駆体として更に還元剤を用いて還元する第3工程を実施した。第3工程では窒素90%、水素10%のガス雰囲気中、100℃で還元処理を実施した。
Example 2
The procedure of Example 1 is repeated except that the value of {R RuOx / (R RuOx + R Ru )} in the catalyst particles is changed to that shown in Table 1 with respect to the catalyst for nuclear hydrogenation reaction of Example 1. As a catalyst for nuclear hydrogenation reaction of the present invention (hereinafter referred to as “catalyst 2 for nuclear hydrogenation reaction”) (trade name “NECC-RA2” (manufactured by NE CHEMCAT Co.)) was produced.
The nuclear hydrogenation reaction catalyst 2 was subjected to the first step and the second step under the same conditions as the nuclear hydrogenation reaction catalyst 1 of Example 1, and thereafter the nuclear hydrogenation was obtained by obtaining the second step. A third step was carried out to reduce the reaction catalyst as a precursor using a reducing agent. In the third step, reduction treatment was performed at 100 ° C. in a gas atmosphere of 90% nitrogen and 10% hydrogen.

≪実施例3≫
 実施例1の核水添反応用触媒に対して、触媒粒子における{RRuOx/(RRuOx+RRu)}の値を表1に示すものに変更した以外は、実施例1と同様にして、本発明の核水添反応用触媒(以下、「核水添反応用触媒3」という)として商品名「NECC-RA3」(N.E.CHEMCAT社製))を製造した。
 この核水添反応用触媒3は、実施例1の核水添反応用触媒1と同一条件の第1工程と第2工程を実施し、その後、第2工程を得て得られた核水添反応用触媒を前駆体として更に還元剤を用いて還元する第3工程を実施した。第3工程では窒素90%、水素10%のガス雰囲気中、150℃で還元処理を実施した。
Example 3
The procedure of Example 1 is repeated, except that the value of {R RuOx / (R RuOx + R Ru )} in the catalyst particles is changed to that shown in Table 1 with respect to the catalyst for nuclear hydrogenation reaction of Example 1. A trade name "NECC-RA3" (manufactured by NE CHEMCAT Co., Ltd.) was manufactured as a catalyst for nuclear hydrogenation reaction of the present invention (hereinafter referred to as "catalyst 3 for nuclear hydrogenation reaction").
The nuclear hydrogenation reaction catalyst 3 was subjected to the first step and the second step under the same conditions as the nuclear hydrogenation reaction catalyst 1 of Example 1, and then the nuclear hydrogenation was obtained by obtaining the second step. A third step was carried out to reduce the reaction catalyst as a precursor using a reducing agent. In the third step, reduction treatment was performed at 150 ° C. in a gas atmosphere of 90% nitrogen and 10% hydrogen.

≪比較例1≫
 触媒粒子における{RRuOx/(RRuOx+RRu)}の値を表1に示すものに変更した以外は、実施例1と同様にして、本発明の比較核水添反応用触媒1(商品名「NECC-5E、N.E.CHEMCAT社製)を製造した。
«Comparative Example 1»
Catalyst 1 for a comparative nuclear hydrogenation reaction of the present invention (commodity 1 of the present invention) in the same manner as in Example 1 except that the value of {R RuO x / (R RuO x + R Ru )} in the catalyst particles was changed to that shown in Table 1. The name "NECC-5E, manufactured by NE CHEMCAT" was manufactured.

[評価試験]
 上記の実施例1~3及び比較例1で得た核水添反応用触媒を用い、下記の反応式(1)にしたがって、芳香族化合物である「4-ターシャリーブチルアニリン[4-tert-Butylaniline、下記反応式(1)中の反応物1]」の芳香環のπ結合を水素化して、「4-ターシャリーブチルシクロヘキシルアミン[(4-tert-Butylcyclohexylamine、下記反応式(1)中の生成物2]」に転化する核水添反応を行った。
 反応は以下の反応条件で実施した。溶媒:イソプロピルアルコール、反応物1の濃度:1.6mol%、水素ガス:0.6MPa、反応温度:60℃、反応時間:6時間。

Figure JPOXMLDOC01-appb-C000002
[Evaluation test]
Using the catalyst for nuclear hydrogenation reaction obtained in the above Examples 1 to 3 and Comparative Example 1, according to the following reaction formula (1), the aromatic compound “4-tert-butylaniline [4-tert- Butylaniline, the π bond of the aromatic ring of the reaction product 1 in the following reaction formula (1) is hydrogenated to give “4-tert-butylcyclohexylamine [(4-tert-Butylcyclohexylamine, in the following reaction formula (1) The nuclear hydrogenation reaction was carried out to convert the product 2].
The reaction was carried out under the following reaction conditions. Solvent: isopropyl alcohol, concentration of reactant 1: 1.6 mol%, hydrogen gas: 0.6 MPa, reaction temperature: 60 ° C., reaction time: 6 hours.
Figure JPOXMLDOC01-appb-C000002

(1)X線光電子分光分析(XPS:X-ray photoelectron spectroscopy)による核水添反応用触媒の表面分析
 実施例1~3及び比較例1の核水添反応用触媒についてXPSによる表面分析を実施し、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを測定し、{RRuOx/(RRuOx+RRu)}の値を算出した。
 具体的には、XPS装置として「Quantera SXM」(アルバック・ファイ社製)を使用し、以下の分析条件で実施した。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃(図1参照)
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm
(A5)分析時のチャンバ圧力:約1×10-6Pa
(A6)測定深さ(脱出深さ):約5nm以下
 分析結果を表1に示した。なお、Ru(0価)の割合RRu(atom%)とRu酸化物の割合RRuOx(atom%)については、これらの2成分で100%となるように算出した。
(1) Surface analysis of catalyst for nuclear hydrogenation reaction by X-ray photoelectron spectroscopy (XPS): Surface analysis by XPS of the catalyst for nuclear hydrogenation reaction of Examples 1 to 3 and Comparative Example 1 is carried out And the ratio R Ru (atom%) of Ru (zero valence) and the ratio R RuO x (atom%) of Ru oxide were measured, and the value of {R RuO x / (R RuO x + R Ru )} was calculated. .
Specifically, “Quantera SXM” (manufactured by ULVAC-PHI, Inc.) was used as an XPS apparatus under the following analysis conditions.
(A1) X-ray source: monochromized AlKα
(A2) Photoelectric extraction accuracy: θ = 75 ° C. (see FIG. 1)
(A3) Charge correction: correction with C1s peak energy set to 284.8 eV (A4) analysis region: 200 μm
(A5) Chamber pressure during analysis: about 1 × 10 -6 Pa
(A6) Measurement depth (escape depth): about 5 nm or less The analysis results are shown in Table 1. The ratio R Ru (zero valence) R Ru (atom%) to the ratio Ru oxide R RuO x (atom%) were calculated so as to be 100% for these two components.

(2)Ruの担持率の測定(ICP分析)
 実施例1~2及び比較例1の核水添反応用触媒について、Ru(0価)とRu酸化物とを含む触媒粒子の担持率(wt%)を以下の方法で測定した。即ち、核水添反応用触媒を王水に浸し、金属を溶解させた。次に、王水から不溶成分のアルミナを除去した。次に、アルミナを除いた王水をICP分析した。
 実施例1~3と比較例1の核水添反応用触媒について、Ruの担持率{Ru(0価)とRu酸化物とを合わせたRu成分に由来するRuの担持率})は5wt%であった。
(2) Measurement of Ru loading (ICP analysis)
For the nuclear hydrogenation reaction catalysts of Examples 1 and 2 and Comparative Example 1, the loading (wt%) of the catalyst particles containing Ru (0 valence) and Ru oxide was measured by the following method. That is, the catalyst for nuclear hydrogenation reaction was immersed in aqua regia to dissolve the metal. Next, the insoluble component alumina was removed from aqua regia. Next, the aqua regia from which alumina was removed was subjected to ICP analysis.
In the catalysts for nuclear hydrogenation reaction of Examples 1 to 3 and Comparative Example 1, the supporting rate of Ru {the supporting rate of Ru derived from Ru component obtained by combining Ru (zero valence) and Ru oxide} is 5 wt% Met.

(3)転化率、収率の算出
 反応後に得られた混合組成物における反応物1、生成物2の含有量、含有比を測定することによって、反応物1の転化率(%)、生成物2の収率を算出し、結果を表1に示した。

Figure JPOXMLDOC01-appb-T000003
(3) Calculation of conversion, yield The conversion (%) of the reactant 1 by measuring the content of the reactant 1, product 2 in the mixed composition obtained after the reaction, and the content ratio, the product The yield of 2 was calculated and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003

 表1に示す結果から、{RRuOx/(RRuOx+RRu)}の値が先に述べた式(1)の条件を満たす本発明に係る実施例1~3の触媒は、比較例1の触媒(従来のルテニウム触媒)に比べて、反応物1の転化率、生成物2の収率が高いことが明らかとなった。すなわち、本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を有することが明らかとなった。 From the results shown in Table 1, the catalysts of Examples 1 to 3 according to the present invention according to the present invention, in which the value of {R RuO x / (R RuO x + R Ru )} satisfies the condition of Formula (1) described above, are Comparative Example 1 It was revealed that the conversion of reactant 1 and the yield of product 2 were higher than those of the catalysts of the prior art (conventional ruthenium catalysts). That is, it is apparent that the catalyst for nuclear hydrogenation reaction of the present invention has a catalytic activity superior to that of the conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring. became.

 本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において優れた触媒活性を有し、優れた生成物の収率を得ることができる。従って、本発明は、高機能プラスチック製品の原料となるポリアミドイミド樹脂等の合成に適用することができる核水添反応用触媒であり、各種産業の発達に寄与する。

 
The catalyst for nuclear hydrogenation reaction of the present invention has excellent catalytic activity in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring, and an excellent yield of product can be obtained. it can. Accordingly, the present invention is a catalyst for nuclear hydrogenation reaction that can be applied to the synthesis of polyamideimide resin and the like as a raw material of high-performance plastic products, and contributes to the development of various industries.

Claims (1)

 芳香環に1以上のアミノ基が結合した芳香族化合物の前記芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
 担体と、前記担体上に担持される触媒粒子と、を含んでおり、
 前記触媒粒子には、Ru(0価)とRu酸化物とが含まれており、
 X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている、
核水添反応用触媒。
 0.60≦{RRuOx/(RRuOx+RRu)}≦0.90・・・式(1)
 

 
A catalyst for nuclear hydrogenation reaction, which is used in a nuclear hydrogenation reaction for hydrogenating at least one of π-bonds of the aromatic ring in which an aromatic ring has one or more amino groups bonded to the aromatic ring,
A carrier, and catalyst particles supported on the carrier,
The catalyst particles contain Ru (0 valence) and Ru oxide,
The ratio of Ru (zero valence) R Ru (atom%) and the ratio of Ru oxide R RuO x (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) The condition of equation (1) is satisfied,
Nuclear hydrogenation reaction catalyst.
0.60 ≦ {R RuOx / (R RuOx + R Ru )} ≦ 0.90 Formula (1)


PCT/JP2018/030780 2017-09-01 2018-08-21 Nucleus hydrogenation reaction catalyst Ceased WO2019044584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019539389A JP7089527B2 (en) 2017-09-01 2018-08-21 Catalyst for nuclear hydrogenation reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-168767 2017-09-01
JP2017168767 2017-09-01

Publications (1)

Publication Number Publication Date
WO2019044584A1 true WO2019044584A1 (en) 2019-03-07

Family

ID=65525354

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/030780 Ceased WO2019044584A1 (en) 2017-09-01 2018-08-21 Nucleus hydrogenation reaction catalyst
PCT/JP2018/030781 Ceased WO2019044585A1 (en) 2017-09-01 2018-08-21 Nucleus hydrogenation reaction catalyst

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030781 Ceased WO2019044585A1 (en) 2017-09-01 2018-08-21 Nucleus hydrogenation reaction catalyst

Country Status (4)

Country Link
JP (2) JP7059289B2 (en)
CN (1) CN111032214B (en)
TW (2) TWI805608B (en)
WO (2) WO2019044584A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240059848A1 (en) * 2021-01-12 2024-02-22 Bridgestone Corporation Rubber vulcanization processes employing a eutectic mixture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847231A (en) * 1988-06-08 1989-07-11 Gas Research Institute Mixed ruthenium catalyst
JP2017505289A (en) * 2013-12-11 2017-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for hydrogenating aromatic compounds

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2606925A (en) * 1949-12-15 1952-08-12 Du Pont Ruthenium catalyzed hydrogenation process for obtaining aminocyclohexyl compounds
US5026914A (en) * 1989-04-11 1991-06-25 Air Products And Chemicals, Inc. Hydrogenation of aromatic amines using rhodium on titania or zirconia support
JPH06279368A (en) * 1991-10-23 1994-10-04 Mitsubishi Gas Chem Co Inc Process for producing bisaminomethylcyclohexane
JP3608354B2 (en) * 1997-10-24 2005-01-12 宇部興産株式会社 Dicyclohexyl-2,3,3 ', 4'-tetracarboxylic acid compound
ES2322033T3 (en) * 2002-05-31 2009-06-16 Evonik Degussa Gmbh SUPPORTED RUTENIUM CATALYST AND PROCEDURE FOR HYDROGENATION OF AN AROMATIC AMINA IN THE PRESENCE OF THIS CATALYST.
JP2008543551A (en) * 2005-06-22 2008-12-04 ビーエーエスエフ ソシエタス・ヨーロピア Heterogeneous ruthenium catalyst and process for hydrogenating carbocyclic aromatic groups, especially for the production of nucleated hydrogenated bisglycidyl ethers of bisphenols A and F
DE102005060176A1 (en) * 2005-12-14 2007-06-21 Degussa Gmbh Process for the preparation of ethylcyclohexane by selective hydrogenation of 4-vinylcyclohexene
DE102009034773A1 (en) * 2009-07-25 2011-01-27 Bayer Materialscience Ag Process for producing chlorine by gas-phase oxidation on nanostructured ruthenium-supported catalysts
CN102627569B (en) * 2012-03-01 2014-04-02 江苏清泉化学有限公司 Method for synthesizing 3,3'-dimethyl-4,4'-diamino dicyclohexyl methane
EP2905273B1 (en) * 2014-02-05 2018-06-06 Covestro Deutschland AG Process for hydrogenating aromatic di- and polyamines
CN106552618A (en) * 2015-09-25 2017-04-05 上海华谊能源化工有限公司 A kind of catalyst of aromatic carboxylic acid esters' phenyl ring selective hydrogenation and its preparation method and application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847231A (en) * 1988-06-08 1989-07-11 Gas Research Institute Mixed ruthenium catalyst
JP2017505289A (en) * 2013-12-11 2017-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for hydrogenating aromatic compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAZZIERI, V. ET AL.: "XPS, FTIR and TPR characterization of Ru/Al?O? catalysts", APPLIED SURFACE SCIENCE, vol. 210, no. 3 / 4, 15 April 2003 (2003-04-15), pages 222 - 230, XP055579819 *

Also Published As

Publication number Publication date
TW201919761A (en) 2019-06-01
TWI805608B (en) 2023-06-21
TW201919762A (en) 2019-06-01
JPWO2019044584A1 (en) 2020-10-15
JP7089527B2 (en) 2022-06-22
JP7059289B2 (en) 2022-04-25
JPWO2019044585A1 (en) 2020-10-15
TWI782080B (en) 2022-11-01
CN111032214B (en) 2024-02-06
CN111032214A (en) 2020-04-17
WO2019044585A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
Yang et al. Facile synthesis of ultrathin Pt–Pd nanosheets for enhanced formic acid oxidation and oxygen reduction reaction
Chen et al. Solvent-driven selectivity control to either anilines or dicyclohexylamines in hydrogenation of nitroarenes over a bifunctional Pd/MIL-101 catalyst
Wang et al. Nickel embedded in N-doped porous carbon for the hydrogenation of nitrobenzene to p-aminophenol in sulphuric acid
Zhang et al. Facile synthesis of graphene nanoplate-supported porous Pt–Cu alloys with high electrocatalytic properties for methanol oxidation
CN111054424B (en) A kind of monolithic catalyst containing palladium and its preparation method and use
Zhao et al. Au nanoparticles confined in SBA-15 as a highly efficient and stable catalyst for hydrogenation of quinoline to 1, 2, 3, 4-tetrahydroquinoline
WO2013038674A1 (en) Ruthenium microparticles having essentially face-centered cubic structure and method for producing same
Cattaneo et al. Ru supported on micro and mesoporous carbons as catalysts for biomass-derived molecules hydrogenation
KR20090101534A (en) Pd catalyst dopped in active carbon and a method for preparing thereof
JP6737435B2 (en) Method for producing fine particles carrying a noble metal solid solution
WO2019044584A1 (en) Nucleus hydrogenation reaction catalyst
CN114588940B (en) A nickel-based catalyst for hydrogenation of phenolic compounds and its preparation method and application
RU2496574C1 (en) Catalyst for hydrofining diesel fractions
Ouyang et al. In situ synthesis of highly-active Pt nanoclusters via thermal decomposition for high-temperature catalytic reactions
CN115318328B (en) Sandwich bimetallic catalyst, preparation method thereof and application thereof in catalysis oriented synthesis of secondary amine
JP7008686B2 (en) Catalyst for nuclear hydrogenation reaction
WO2024078481A1 (en) Heterogeneous dual-catalytic-center catalyst, preparation method therefor, and use thereof
JP5072200B2 (en) Methane steam reforming catalyst, method for producing the same, and method for producing hydrogen using the same
CN111036204A (en) A kind of glycerol hydrogenolysis method
JP2017162660A (en) Fuel cell electrode catalyst
JP4165653B2 (en) Alcohol oxidation solid catalyst and synthesis method thereof
TWI392663B (en) The application of mo-doped nicob catalyst for hydrogenation for chloronitrobenzene
CN117123238A (en) Raney nickel composite material and preparation method and application thereof
Mengane et al. Metal Nanoparticles: Ligand-Free Approach Towards Coupling Reactions
CN119500275A (en) Aminosilica ball supported palladium catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851327

Country of ref document: EP

Kind code of ref document: A1