[go: up one dir, main page]

WO2019004382A1 - Immunoisolation membrane, method for producing immunoisolation membrane, transplant chamber, and transplant device - Google Patents

Immunoisolation membrane, method for producing immunoisolation membrane, transplant chamber, and transplant device Download PDF

Info

Publication number
WO2019004382A1
WO2019004382A1 PCT/JP2018/024671 JP2018024671W WO2019004382A1 WO 2019004382 A1 WO2019004382 A1 WO 2019004382A1 JP 2018024671 W JP2018024671 W JP 2018024671W WO 2019004382 A1 WO2019004382 A1 WO 2019004382A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
porous membrane
immunoisolation
modified porous
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/024671
Other languages
French (fr)
Japanese (ja)
Inventor
勇輔 望月
邦行 神長
長谷川 和弘
竜太 竹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of WO2019004382A1 publication Critical patent/WO2019004382A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/022Artificial gland structures using bioreactors

Definitions

  • the present invention relates to an immunoisolation membrane and a method of producing the same.
  • the invention also relates to a grafting chamber having an immunoisolating membrane and a grafting device.
  • Immunoisolation is one of the methods to prevent the immune response in recipients during transplantation of biological components such as cells, tissues and organs, and the immunoisolation membrane allows water, oxygen, glucose, etc. to permeate.
  • the immunoisolation membrane allows water, oxygen, glucose, etc. to permeate.
  • it is a permselective membrane that performs immune isolation by blocking the permeation of immune cells involved in immune rejection.
  • a transplant device utilizing an immunoisolating membrane which allows the physiologically active substance to permeate the transplantation of cells secreting the physiologically active substance can achieve the purpose of transplantation while preventing immune rejection.
  • Non-Patent Document 1 a commercially available transplantation chamber formed using a porous membrane which is a laminated membrane of a cell holding membrane with a pore diameter of 0.45 ⁇ m and an outer membrane of polytetrafluoroethylene (PTFE) with a pore diameter of 5 ⁇ m. It is described that transplantation was performed using (TheraCyte®).
  • Patent Document 1 a membrane containing polysulfone as a porous membrane is well known as a precision filtration membrane used for industrial applications and the like.
  • the immunoisolation membrane described in Non-Patent Document 1 is a laminate of a plurality of layers, and is likely to increase costs.
  • An object of the present invention is to provide an immunoisolation membrane which can be manufactured inexpensively.
  • the present inventors examined the use of various porous membranes as an immunoisolation membrane under the above-mentioned problems, and a porous membrane containing polysulfone as described in Patent Document 1 can be used as an immunoisolation membrane. Yes, I found that I could solve the above problems. On the other hand, a porous membrane containing polysulfone required vacuuming for degassing treatment during use as a grafting device. The present inventors have further studied to improve this, and have found that the surface treatment of the porous membrane containing polysulfone imparts advantageous properties when used in a device for implantation, and this finding The present invention has been completed on the basis of
  • an immunoisolation membrane comprising a surface-modified porous membrane,
  • the surface modified porous membrane comprises polysulfone or polyethersulfone,
  • the ratio of the number of oxygen atoms to the total number of oxygen atoms, nitrogen atoms, carbon atoms, and sulfur atoms on at least one surface of the surface-modified porous membrane is 11.3% or more and 31.2% or less.
  • the carbon atom number ratio with respect to the said total number of at least one surface of said 2nd is 65.8%-80.9%, and the sulfur atom ratio with respect to said total number is 2.2%-2.9% or less
  • ⁇ 3> The immunoisolation membrane according to ⁇ 1> or ⁇ 2>, wherein the surface modified porous membrane comprises a nitrogen-containing polymer.
  • ⁇ 4> The immunoisolation membrane according to ⁇ 3>, wherein the nitrogen-containing polymer is polyvinyl pyrrolidone.
  • ⁇ 5> The immunoisolation membrane according to any one of ⁇ 1> to ⁇ 4>, wherein at least one surface of the above is both surfaces.
  • ⁇ 6> The immunoisolation membrane according to any one of ⁇ 1> to ⁇ 5>, which comprises the surface-modified porous membrane.
  • ⁇ 7> The immunoisolation membrane according to any one of ⁇ 1> to ⁇ 6>, wherein the thickness of the surface modified porous membrane is 1.0 ⁇ m to 200 ⁇ m.
  • ⁇ 8> The immunoisolation membrane according to any one of ⁇ 1> to ⁇ 7>, wherein the surface-modified porous membrane has a layered compact portion in which the pore diameter is minimized.
  • ⁇ 9> The immunoisolation membrane according to ⁇ 8>, in which the pore diameter is continuously increased in the thickness direction from the dense portion toward at least one surface of the surface-modified porous membrane.
  • ⁇ 10> The immune isolation membrane according to ⁇ 8> or ⁇ 9>, wherein the dense portion is biased to one surface X of the central portion of the thickness of the surface-modified porous membrane.
  • a transplantation chamber for containing a biological component comprising: The implantation chamber having the immunoisolation membrane according to any one of ⁇ 1> to ⁇ 10> on at least a part of the boundary between the inside and the outside of the implantation chamber.
  • a transplantation chamber for containing a biological composition The immune isolation membrane according to ⁇ 10> is provided on at least a part of the boundary between the inside and the outside of the transplantation chamber, The implantation chamber, wherein the surface X of the surface modified porous membrane is on the inner side.
  • transplantation device any one of ⁇ 14> ⁇ 11> to ⁇ 13>, wherein the biological composition is contained in the transplantation chamber.
  • the biological component releases a physiologically active substance.
  • the physiologically active substance is insulin.
  • It is a manufacturing method of ⁇ 17> immune isolation film Comprising: The manufacturing method including performing physical oxygen atom osmosis processing to the porous membrane surface. It is a manufacturing method of the immuno isolation film in any one of ⁇ 18> ⁇ 1>- ⁇ 10>, Comprising: The surface of the porous membrane containing a polysulfone or a polyether sulfone is physically oxygenated, and the said surface is processed. A method of manufacture comprising obtaining a modified porous membrane.
  • the present invention can provide an immunoisolation membrane which can be manufactured inexpensively.
  • the immunoisolation membrane of the present invention can be used as a grafting chamber and a grafting device in which a biological component is enclosed.
  • the immunoisolation membrane of the present invention has advantages such as no need for vacuuming in degassing treatment when used in a device for transplantation.
  • the surface-modified porous membrane of 2 cm square is embedded under the back skin of a rat and sutured, and after 1 week rearing of the rat, the same site is excised and the image of the tissue stained section prepared.
  • immunoisolation membrane means a membrane used for immunoisolation.
  • Immunoisolation is one of the methods to prevent the recipient's immune rejection during transplantation.
  • the immune rejection is the rejection of the recipient for the biological composition to be transplanted.
  • Immunoisolation isolates the biological composition from the recipient's immune rejection. Immune rejection includes those based on cellular immune responses and those based on humoral immune responses.
  • the immunoisolation membrane is a selectively permeable membrane that transmits nutrients such as oxygen, water, glucose and the like and blocks the permeation of immune cells and the like involved in immune rejection.
  • the immune cells include macrophages, dendritic cells, neutrophils, eosinophils, basophils, natural killer cells, various T cells, B cells, and other lymphocytes.
  • the immunoisolation membrane of the present invention preferably blocks permeation of high molecular weight proteins such as immunoglobulins (such as IgM or IgG) and complement depending on the use, and it is preferable to use relatively low molecular weight physiologically active substances such as insulin. It is preferable to make it permeate.
  • the selective permeability of the immunoisolation membrane may be adjusted according to the application.
  • the immunoisolation membrane of the present invention may be, for example, a selectively permeable membrane that blocks substances having a molecular weight of 500 kDa or more, 100 kDa or more, 80 kDa or more, or 50 kDa or more.
  • the immunoisolation membrane is preferably capable of blocking the permeation of the smallest IgG (molecular weight: about 160 kDa) among antibodies.
  • the immunoisolation membrane of the present invention may be a selectively permeable membrane that blocks substances having a diameter of 500 nm or more, 100 nm or more, 50 nm or more, or 10 nm or more as spheres.
  • the immunoisolation membrane of the present invention comprises a surface modified porous membrane.
  • the immunoisolation membrane of the present invention may consist only of the surface modified porous membrane, or may include other layers such as a hydrogel membrane in addition to the surface modified porous membrane.
  • the immunoisolation membrane of the present invention may have a protective film which can be easily peeled off for transport and the like.
  • the immunoisolation membrane of the present invention preferably comprises only a surface-modified porous membrane.
  • the surface modified porous membrane comprises polysulfone or polyethersulfone.
  • the surface modified porous membrane contained in the immunoisolation membrane of the present invention has an oxygen atom number ratio to the total number of oxygen atoms, nitrogen atoms, carbon atoms, and sulfur atoms on at least one surface (hereinafter referred to as "O element ratio") May be 11.3% or more and 31.2% or less, and the nitrogen atom ratio to the total number (hereinafter sometimes referred to as "O element ratio") is 0.1% or more and 4.0% or less As such, it is a porous membrane modified.
  • a surface satisfying the above-described element ratio or a surface to which a physical oxygen atom infiltration treatment is performed as described later may be referred to as a modified surface.
  • the surface of the film means the main surface (the front or back surface indicating the area of the film), and does not mean the surface in the thickness direction of the end of the film.
  • the surface of the surface-modified porous membrane may be an interface with another layer.
  • the carbon atom number ratio (hereinafter sometimes referred to as “C element ratio”) to the total number of oxygen atoms, nitrogen atoms, carbon atoms, and sulfur atoms is 65.8% to 80.9%. It is preferable that the sulfur atom number ratio (hereinafter sometimes referred to as “S element ratio”) to the total number is 2.2% or more and 2.9% or less.
  • the O element ratio, the N element ratio, the C element ratio, and the S element ratio of the film surface are calculated from data of measurement based on X-ray photoelectron spectroscopy.
  • X-ray photoelectron spectroscopy is a method of analyzing the composition of elements constituting a film surface by irradiating the film surface with X-rays and measuring the kinetic energy of photoelectrons emitted from the film surface.
  • -ray Photoelectron Spectroscopy or ESCA (Electron Spectroscopy for Chemical Analysis). The measurement may be performed, for example, under the conditions using the monochromatized Al-K ⁇ ray described in the examples.
  • the O element ratio of the modified surface is preferably 13% or more and 31.2% or less, and more preferably 24% or more and 31.2% or less.
  • the elemental ratio of N is preferably 0.1% to 3.9%, and more preferably 0.1% to 3.1%.
  • the C element ratio of the modified surface is preferably 65.8% to 80.9%, and more preferably 65.8% to 70.5%. Furthermore, it is preferable that it is 2.2% or more and 2.9% or less, and, as for S element ratio of said at least one surface, it is more preferable that it is 2.4% or more and 2.9% or less.
  • either surface of the surface-modified porous membrane may be a modified surface or both surfaces may be modified surfaces, but both surfaces are modified surfaces.
  • the surface-modified porous film satisfy the above-described element ratio on both surfaces thereof.
  • the surface modified porous membrane in the immunoisolation membrane of the present invention has a surface N element ratio decreased and an O element ratio increased as compared to the modified porous membrane in the prior art, and preferably, The surface C element ratio decreases and the S element ratio increases. Within this range, the immunoisolation membrane of the present invention has the advantage that when it is used as a grafting device, no vacuuming is required when degassing the cells inside the membrane. .
  • the immunoisolation membrane of the present invention when used as a grafting device that contains pancreatic ⁇ cells and the like and releases insulin, there is an advantage that insulin responsiveness (insulin permeability) in the initial stage of use is high.
  • the initial stage of use means within one day after the start of use.
  • the thickness of the immunoisolation membrane of the present invention is not particularly limited, but may be 1 ⁇ m to 500 ⁇ m, preferably 10 ⁇ m to 300 ⁇ m, and more preferably 15 ⁇ m to 250 ⁇ m.
  • porous membrane refers to a membrane having a plurality of pores.
  • the holes can be identified, for example, in a scanning electron microscope (SEM) image or a transmission electron microscope (TEM) image of the cross section of the film.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the thickness of the porous membrane is not particularly limited, but may be 1 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 180 ⁇ m, and more preferably 15 ⁇ m to 150 ⁇ m.
  • the porous membrane preferably has a layered dense portion in which the pore size is minimized.
  • the pore diameter continuously increases in the thickness direction from the dense portion toward at least one surface of the porous membrane.
  • the hole diameter is determined by the average hole diameter of the dividing line described later.
  • the porous membrane has a uniform structure in the in-membrane direction (direction parallel to the membrane surface) with respect to the pore size or pore size distribution (difference in pore size in the thickness direction). preferable.
  • the immunoisolation membrane of the present invention can improve the life. This is because the effect of multistage filtration using a plurality of membranes having substantially different pore sizes can be obtained, and deterioration of the membranes can be prevented.
  • the pore size may be measured from a photograph of the cross section of the membrane obtained by an electron microscope.
  • the porous membrane is cut by a microtome or the like, and a photograph of the cross section of the porous membrane can be obtained as a section of the thin film whose cross section can be observed.
  • the comparison of the pore size in the thickness direction of the membrane is made by comparing the pore sizes at 19 dividing lines when the SEM photograph of the cross section of the membrane is divided into 20 in the thickness direction of the membrane.
  • a total of 50 or more holes intersecting or touching the parting line are continuously selected, the respective pore sizes are measured, and an average value is calculated to be an average pore size.
  • the hole diameter is not the length of the portion where the selected hole intersects with the dividing line, but the area of the hole is calculated by image processing from the SEM photograph of the membrane cross section, and the obtained area is taken as the area of a true circle. Use the calculated diameter.
  • the field of view of the SEM photograph for obtaining the cross section of the film is expanded to be measured at 50.
  • the average pore diameter obtained is compared for each parting line to compare the pore diameter in the thickness direction of the membrane.
  • the layered compact portion where the pore size is minimized refers to the layered portion of the porous membrane including the parting line where the average pore diameter is minimized among the parting lines in the film cross-sectional photograph.
  • the compacted site may contain more than one parting line.
  • the dense portion is assumed to include the two or more continuous parting lines.
  • the thickness of the dense portion is the product of the number of parting lines included in the dense portion and 1/20 of the thickness of the film.
  • the thickness of the dense portion may be 0.5 ⁇ m to 50 ⁇ m, and preferably 0.5 ⁇ m to 30 ⁇ m.
  • the average pore diameter of the dense portion is taken as the minimum pore diameter of the porous membrane.
  • the minimum pore size of the porous membrane is preferably 0.02 ⁇ m to 1.5 ⁇ m, and more preferably 0.02 ⁇ m to 1.3 ⁇ m. This is because the minimum pore size of such a porous membrane can at least prevent normal cell permeation.
  • ASTM F316-80 ASTM F316-80.
  • the porous membrane preferably has a dense portion inside.
  • inside means not in contact with the surface of the membrane, and "having a compact site inside” means that the compact site is not a site including the above-mentioned dividing line closest to any surface of the membrane.
  • the permeability of a substance intended to be permeated is less likely to decrease than when a porous membrane having a dense portion in contact with the surface is used.
  • the dense portion is preferably biased toward one of the surface sides of the central portion of the thickness of the porous membrane. Specifically, the dense portion is preferably located at a distance smaller than one half of the thickness of the porous membrane from any one surface of the porous membrane, and more preferably within two fifths of the porous membrane. . This distance may be determined in the film cross-sectional photograph described above.
  • the surface of the porous membrane on the side closer to the dense portion is referred to as “surface X”.
  • the surface X is preferably a modified surface.
  • the pore diameter continuously increases in the thickness direction from the dense portion toward at least one of the surfaces.
  • the pore diameter may be continuously increased in the thickness direction from the dense portion toward the surface X, and the pore diameter is continuously increased in the thickness direction from the dense portion toward the surface opposite to the surface X
  • the pore diameter may be continuously increased when going from the dense portion to any surface of the porous membrane in the thickness direction.
  • the pore diameter continuously increases in the thickness direction from at least the dense portion toward the surface opposite to the surface X, and when the dense portion is directed in the thickness direction to any surface of the porous membrane More preferably, the pore size is continuously increased.
  • the pore diameter continuously increases in the thickness direction means that the difference in average pore diameter between the above-mentioned dividing lines adjacent in the thickness direction is the difference between the maximum average pore diameter (maximum pore diameter) and the minimum average pore diameter (minimum pore diameter). It is said to increase to 50% or less, preferably 40% or less, more preferably 30% or less. "Continuously increasing” essentially means increasing uniformly without decreasing, but decreasing sites may occur accidentally. For example, when dividing lines are combined two by two from the surface, if the average value of the combination is uniformly increased (uniformly decreased when going from the surface toward the dense region), The hole diameter is continuously increased in the thickness direction.
  • the structure of the porous membrane in which the pore diameter continuously increases in the thickness direction can be realized, for example, by the manufacturing method described later.
  • the maximum pore size of the porous membrane is preferably 1.5 ⁇ m or more and 25 ⁇ m or less, more preferably 1.8 ⁇ m to 23 ⁇ m, and still more preferably 2.0 ⁇ m to 21 ⁇ m.
  • the average pore diameter of the dividing line at which the average pore diameter is the largest is taken as the maximum pore diameter of the porous membrane.
  • the ratio of the average pore diameter of the dense portion to the maximum pore diameter of the porous membrane (the ratio of the minimum pore diameter to the maximum pore diameter of the porous membrane, the maximum pore diameter divided by the minimum pore diameter, referred to herein as "anisotropic ratio 3) is preferable, 3 or more is preferable, 4 or more is more preferable, and 5 or more is further preferable. This is to increase the average pore diameter of regions other than the dense region and to increase the material permeability of the porous membrane.
  • the anisotropy ratio is preferably 25 or less, more preferably 20 or less. This is because an effect such as the above-described multistage filtration can be efficiently obtained when the anisotropy ratio is 25 or less.
  • the parting line where the average pore diameter is the largest is the parting line closest to any surface of the membrane or a parting line in contact with the parting line.
  • the average pore diameter is preferably more than 0.05 ⁇ m and 25 ⁇ m or less, more preferably more than 0.08 ⁇ m and 23 ⁇ m or less, and more than 0.5 ⁇ m and 21 ⁇ m or less Is more preferred.
  • the ratio of the average pore diameter of the parting line closest to any surface of the membrane to the average pore diameter of the dense part is preferably 1.2 or more and 20 or less, and more preferably 1.5 or more and 15 or less. The number is preferably 2 or more and 13 or less.
  • the porous membrane (before the surface modification by physical oxygen atom permeation treatment) has the formula (I) and the formula on at least one surface, and the surface modified porous membrane has a surface other than the modified surface. It is preferable to satisfy (II).
  • A indicates the ratio of N element (nitrogen atom) to C element (carbon atom) on the surface of the film
  • B indicates the ratio of N element to C element at a depth of 30 nm from the same surface.
  • Formula (II) indicates that a certain amount or more of N element is present on at least one surface of the porous membrane, and in formula (I), the N element in the porous membrane is localized at less than 30 nm on the surface Indicates that the
  • the biocompatibility of the porous membrane in particular, the biocompatibility on the surface side satisfying the formulas (I) and (II) is enhanced.
  • the porous membrane only one of the surfaces may satisfy formula (I) and formula (II), or both surfaces may satisfy formula (I) and formula (II), It is preferred that both surfaces satisfy the formula (I) and the formula (II).
  • the surface may be inside or outside in the implantation chamber described later, but it is inside Is preferred.
  • the formula (I) and the formula (II) are preferably surface X.
  • the ratio (A value) of N element to C element on the film surface and the ratio (B value) of N element to C element at a depth of 30 nm from the surface are those calculated using XPS measurement results.
  • the A value was calculated from the result at the start of sputtering under the conditions using monochromatized Al-K ⁇ radiation described in the examples, and the result of the time calculated to be 30 nm from the surface of the film measured from the sputter rate B We shall calculate the value.
  • B / A may be 0.02 or more, preferably 0.03 or more, and more preferably 0.05 or more.
  • A is preferably 0.050 or more, more preferably 0.080 or more.
  • A may be 0.20 or less, preferably 0.15 or less, and more preferably 0.10 or less.
  • B may be 0.001 to 0.10, preferably 0.002 to 0.08, and more preferably 0.003 to 0.07.
  • the element distribution of the porous film is the concentration of water contained in the temperature-controlled air, the time for applying the temperature-controlled air, the temperature of the coagulating solution, the immersion time in the method for producing the porous film described later. It can be controlled by the temperature of the diethylene glycol bath for washing, the immersion time in the diethylene glycol bath for washing, the speed of the porous production line, etc.
  • the distribution of the N element can also be controlled by the water content in the stock solution.
  • the porous membrane comprises polysulfone or polyethersulfone.
  • the porous membrane preferably contains 30% by mass or more, preferably 40% by mass or more of polysulfone or polyethersulfone based on the total mass.
  • the polysulfone or polyethersulfone preferably has a number average molecular weight (Mn) of 1,000 to 10,000,000, and more preferably 5,000 to 1,000,000.
  • the porous membrane preferably comprises a nitrogen-containing polymer with polysulfone or polyethersulfone.
  • nitrogen-containing polymers mention may be made of polyvinyl pyrrolidone, polypropyl acrylamide, chitin, chitosan, polyacrylamide, polyamines, polylysine.
  • polyvinyl pyrrolidone is particularly preferred. Biocompatibility can be increased by combining hydrophobic polysulfone or polyethersulfone with hydrophilic polyvinyl pyrrolidone.
  • the porous membrane may contain other components other than the above components as additives.
  • Additives include metal salts of inorganic acids such as sodium chloride, lithium chloride, sodium nitrate, potassium nitrate, sodium sulfate and zinc chloride, metal salts of organic acids such as sodium acetate and sodium formate, and other polymers such as polyethylene glycol And polyelectrolytes such as sodium polystyrene sulfonate and polyvinylbenzyltrimethyl ammonium chloride; and ionic surfactants such as sodium dioctyl sulfosuccinate and sodium alkylmethyl taurate.
  • the additive may act as a swelling agent for the porous structure.
  • metal salts in particular lithium chloride.
  • the porous membrane is preferably a membrane formed from one composition as a single layer, and is preferably not a laminated structure of multiple layers.
  • the present inventors have carried out a vacuum treatment when degassing the immunoisolation membrane by performing physical oxygen atom permeation treatment on the porous membrane of the immunoisolation membrane including the porous membrane containing polysulfone or polyethersulfone. It has been found that there is an advantage that the pulling becomes unnecessary. Also, in particular, when the manufactured immunoisolation membrane is used as a grafting device that contains pancreatic ⁇ cells and the like and releases insulin, there is an advantage that insulin responsiveness (insulin permeability) in the initial stage of use is high. I found it.
  • the physical composition of the porous membrane surface can be modified by physical oxygen atom permeation treatment.
  • the immunoisolation membrane of the present invention having the above-described surface elemental composition can be produced by subjecting a porous membrane containing polysulfone or polyethersulfone to physical oxygen atom permeation treatment to obtain the above surface-modified porous membrane. .
  • the method for producing the porous membrane is not particularly limited, and any usual polymer membrane forming method can be used.
  • the polymer film forming method may, for example, be a stretching method or a casting method, and the casting method is preferable.
  • the porous membrane having the above-described structure can be produced by adjusting the type and amount of the solvent used for the membrane forming solution and the drying method after casting.
  • the production of a porous membrane using a casting method can be carried out, for example, by a method comprising the following (1) to (4) in this order.
  • a film-forming stock solution containing polysulfone or polyethersulfone, optionally, a nitrogen-containing polymer (in particular, polyvinyl pyrrolidone), an additive, and, if necessary, a solvent is cast on a support in a dissolved state.
  • the temperature and humidity are applied to the surface of the cast liquid film.
  • the temperature of the temperature and humidity air may be 4 ° C. to 60 ° C., preferably 10 ° C. to 40 ° C.
  • the relative humidity of the temperature and humidity style may be 15% to 100%, preferably 25% to 95%.
  • the temperature and humidity air may be applied at a velocity of 0.1 m / sec to 10 m / sec for 0.1 second to 30 seconds, preferably 1 second to 10 seconds.
  • the average pore diameter and position of the dense portion can be controlled by the concentration of water contained in the temperature-controlled air and the time for applying the temperature-controlled air.
  • the average pore diameter of the dense portion can also be controlled by the water content in the stock solution for membrane formation.
  • the evaporation of the solvent can be controlled by applying the temperature and humidity to the surface of the liquid film, and coacervation can be generated from the surface of the liquid film toward the inside.
  • the coacervation phase is fixed as micropores to form pores other than micropores by immersing in a coagulating liquid containing a solvent having low solubility of the polymer but being compatible with the solvent of the polymer in this state. be able to.
  • the temperature of the coagulating solution may be -10 ° C to 80 ° C in the process of immersing in the above-mentioned coagulating solution.
  • plastic film or a glass plate may be used as a support.
  • plastic film materials include polyesters such as polyethylene terephthalate (PET), polycarbonates, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, silicones and the like.
  • PET polyethylene terephthalate
  • acrylic resins acrylic resins
  • epoxy resins epoxy resins
  • polyurethanes polyamides
  • polyolefins polyolefins
  • cellulose derivatives cellulose derivatives
  • silicones silicones and the like.
  • glass plate or PET is preferable, and PET is more preferable.
  • the membrane-forming stock solution may contain a solvent.
  • a solvent having high solubility of the polymer to be used hereinafter sometimes referred to as “good solvent” may be used depending on the polymer to be used.
  • the good solvent is preferably one which is quickly replaced with the coagulating solution when immersed in the coagulating solution.
  • the solvent include N-methyl-2-pyrrolidone, dioxane, tetrahydrofuran, dimethylformamide, dimethylacetamide or a mixed solvent thereof. Of these, N-methyl-2-pyrrolidone is preferred.
  • non-solvent a solvent having a low solubility of polysulfone or polyethersulfone but having compatibility with the above-mentioned good solvent
  • non-solvent include water, cellsorbs, methanol, ethanol, propanol, acetone, tetrahydrofuran, polyethylene glycol, glycerin and the like. Of these, water is preferably used.
  • the concentration of polysulfone or polyethersulfone as a membrane forming solution may be 5% by mass to 35% by mass, preferably 10% by mass to 30% by mass.
  • sufficient permeability for example, permeability to water
  • the porous membrane selectively transmitting the substance Can secure the formation of
  • the additive amount of the additive is not particularly limited as long as the uniformity of the membrane forming solution is not lost by the addition, but it is usually 0.5% by volume or more and 10% by volume or less with respect to the solvent.
  • the ratio of the non-solvent to the good solvent is not particularly limited as long as the mixture can maintain a uniform state, but 1.0 to 50 mass% Preferably, 2.0% by mass to 30% by mass is more preferable, and 3.0% by mass to 10% by mass is more preferable.
  • polyvinyl pyrrolidone When polyvinyl pyrrolidone is used, polyvinyl pyrrolidone is preferably contained in an amount of 50% by mass to 120% by mass with respect to the total mass of polysulfone and polyethersulfone in the membrane-forming solution, and is preferably 80% by mass to 110%. More preferably, it is contained by mass%. Furthermore, when the membrane-forming solution contains lithium chloride as an additive, lithium chloride is preferably contained in an amount of 5% by mass to 20% by mass with respect to the total mass of polysulfone and polyethersulfone, and 10% by mass More preferably, it is contained at 15% by mass.
  • a solvent having low solubility of polysulfone or polyethersulfone examples include alcohols such as water, methanol, ethanol and butanol; glycols such as ethylene glycol and diethylene glycol; aliphatic hydrocarbons such as ether, n-hexane and n-heptane; Glycerol etc. are mentioned.
  • preferred coagulating solutions include water, alcohols or a mixture of two or more thereof. Of these, water is preferably used.
  • the washing can be carried out by immersion in a solvent.
  • Diethylene glycol is preferred as the washing solvent.
  • the distribution of N element in the porous film can be controlled by using diethylene glycol as a washing solvent and adjusting one or both of the temperature and the immersion time of diethylene glycol in which the film is immersed. In particular, the remaining amount of polyvinyl pyrrolidone to the membrane can be controlled. After washing with diethylene glycol, it may be further washed with water.
  • JP-A-4-349927, JP-B-4-64966, JP-A-4-351645, JP-A-2010-235808 and the like can be referred to for the method of producing the porous membrane.
  • the surface-modified porous membrane can be obtained by physically impregnating the porous membrane obtained as described above.
  • the surface-modified porous membrane obtained by such treatment is suitable for use in the immunoisolation membrane, since the physical oxygen atom permeation treatment does not cause changes on the surface of the porous membrane to be a stimulus to cells etc. It is thought that also, although the porous membrane containing polysulfone or polyethersulfone is usually highly hydrophobic, the physical oxygen atom permeation treatment increases the hydrophilicity of the surface of the porous membrane, and when defoaming treatment is performed as described above It is considered that the advantage of eliminating the need for evacuation is obtained.
  • physical oxygen atom penetration treatment removes impurities and the like on the surface of the porous membrane, and has the advantage of eliminating the need for evacuation when degassing treatment and the advantage of increasing the initial permeability of insulin etc. It is considered to be
  • the physical oxygen atom permeation treatment may be performed on either surface of the porous membrane or on both surfaces, but it is preferable to perform on both surfaces.
  • Examples of physical oxygen atom permeation treatment include plasma treatment, corona discharge treatment, glow discharge treatment, ozone / ultraviolet irradiation treatment, flame treatment, hot air treatment and the like. Among these, plasma treatment and corona discharge treatment are preferable, and plasma treatment is more preferable.
  • the plasma treatment can be performed by disposing a porous film to be treated between opposing electrodes, introducing a plasma-exciting gas into the apparatus, and applying a high frequency voltage between the electrodes.
  • the surface treatment of the porous membrane is performed by causing the gas to be plasma-excited to cause glow discharge between the electrodes.
  • the frequency of the high frequency voltage is preferably 1 kHz to 100 kHz, and more preferably 1 kHz to 10 kHz.
  • the inert gas flow rate is preferably 5 to 500 cm 3 (STP) / minute, more preferably 50 to 200 cm 3 (STP) / minute, and particularly preferably 80 to 120 cm 3 (STP) / minute. preferable. Further, a limiting oxygen flow rate 45cm 3 (STP) / min or more, preferably 50cm 3 (STP) / min or more, more preferably 50 ⁇ 100cm 3 (STP) / min.
  • the plasma treatment is preferably performed under reduced pressure.
  • the degree of vacuum at the time of plasma treatment is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa.
  • Plasma treatment under such conditions can be performed using a vacuum plasma treatment apparatus.
  • the treatment may be performed using an atmospheric pressure plasma treatment apparatus capable of stably generating high density plasma under an atmospheric pressure atmosphere.
  • the input power (discharge output) in the plasma treatment may be 1 to 300 W, preferably 3 to 150 W, and particularly preferably 5 to 100 W.
  • the time of the plasma treatment depends on the input power and the like, but is preferably 3 to 270 seconds, and more preferably 5 to 180 seconds, for example, when the input power is 50 W. Moreover, it is preferable to use anodic coupling as plasma processing conditions.
  • Corona discharge treatment can be carried out by any method known in the art, such as Japanese Patent Publication Nos. 48-5043, 47-51905, 47-28067, 49-83767, and 51-41770. The method can be carried out according to the method disclosed in JP-A-51-131576.
  • the processor various commercially available corona processors can be applied. For example, a corona processor having a multi-knife electrode manufactured by SOFTAL (Sophtal) can be used.
  • the immunoisolation membrane of the present invention may include other layers other than the surface modified porous membrane.
  • Other layers include hydrogel membranes.
  • the hydrogel film is preferably biocompatible, and examples thereof include an alginate gel film, an agarose gel film, a polyisopropylacrylamide film, a film containing cellulose, a film containing a cellulose derivative (such as methyl cellulose), a polyvinyl alcohol film, etc. Can be mentioned.
  • Alginic acid gel membrane is preferred as the hydrogel membrane.
  • Specific examples of alginic acid gel membranes include alginic acid-poly-L-lysine-alginic acid polyion complex membranes.
  • the immunoisolation membrane of the present invention preferably comprises only a surface-modified porous membrane. It is because the above-mentioned effect obtained by physical oxygen atom permeation treatment can be more easily obtained.
  • another layer may be provided on the surface side other than the modified surface.
  • a layer or the like made of a biocompatible plastic having a reticulated structure that does not impair the above-described effect of the immunoisolation film may be provided on the surface.
  • Immunoisolation membranes can be used to prevent immune rejection. In particular, it can be used to prevent the immune rejection of the recipient against the biological composition to be transplanted. That is, the immunoisolation membrane can be used to protect biological constituents from the recipient's immune system.
  • the recipient means a living body to receive transplantation. Preferably, the recipient is a mammal, more preferably a human.
  • biological composition By biological composition is meant a structure of biological origin. Organisms include viruses, bacteria, yeast, fungal cells, insects, plants, mammals and the like. It is preferable that the living body is usually a mammal. Mammals include cows, pigs, sheep, cats, dogs, humans and the like. Preferably, the biological construct is a construct derived from any mammal.
  • Biological compositions include organs, tissues, cells and the like. Of these, cells are preferred as biological constituents.
  • the number of cells may be one or more, preferably two or more.
  • the plurality of cells may be separated from one another or may be aggregates.
  • the biological composition may be obtained directly from the living body.
  • the biological component may be obtained directly from the living body, such as embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), What induced differentiation of cells such as mesenchymal stem cells may be used.
  • the cells may be progenitor cells.
  • physiologically active substances include various hormones, various cytokines, various enzymes, and various other in vivo factors. More specific examples include insulin, dopamine, factor VIII and the like.
  • insulin is a polypeptide (molecular weight about 6000) in which the A chain of 21 amino acid residues and the B chain of 30 amino acid residues are linked via a disulfide bond.
  • insulin is secreted from ⁇ cells in the islets of Langerhans of the pancreas.
  • the insulin to be secreted may be human insulin or insulin of other mammalian types (eg, pig type).
  • the insulin may be insulin produced by a method of genetic modification. For a method of obtaining genetically modified insulin, for example, the description of Takafumi Kadowaki: Diabetes Navigator (pp.
  • the biological construct is an insulin secreting cell.
  • Insulin-secreting cells are cells that can secrete insulin in response to changes in blood glucose level.
  • the insulin-secreting cells are not particularly limited, and examples thereof include pancreatic ⁇ cells present in the islets of Langerhans of the pancreas.
  • the pancreatic ⁇ cells may be human pancreatic ⁇ cells or pancreatic ⁇ cells such as pigs and mice.
  • the method of extracting pancreatic ⁇ cells from swine can be referred to the description of JP-A-2007-195573.
  • insulin-secreting cells cells derived from human stem cells (for example, see Miyazaki Jun-ichi, Regenerative Medicine, vol. 1, No.
  • An insulinotropic cell which may be a cell (see, for example, Atsuko Fujimiya et al., Regenerative Medicine, Vol. 1, No. 2, p. 63-68, 2002), and which incorporates a gene encoding insulin. (See, for example, HC Lee, J. W. Yoon, et al., Nature, 408, 483-488, 2000). Furthermore, it may be the islet of Langerhans of the pancreas (see, for example, Horiyo, Inoue Ichichi, Regenerative Medicine, Volume 1, No. 2, pp. 69-77, 2002).
  • the immunoisolation membrane of the present invention can be used as a component of a transplantation chamber for containing a biological composition.
  • the implantation chamber can be used as a container for containing a biological composition when implanting the biological composition into a recipient.
  • the immunoisolation membrane is disposed at least part of the boundary between the inside and the outside of the implantation chamber.
  • the immunoisolation membrane may be disposed on the entire surface of the boundary between the inside and the outside of the transplantation chamber, and for example, 1 to 99%, 5 to 90%, 10 to 80%, 20 to 70% of the entire surface. It may be arranged in a part corresponding to the area of 30 to 60%, 40 to 50%, etc.
  • the surface on which the immunoisolation membrane is disposed may be one continuous portion or may be divided into two or more portions.
  • the immunoisolation membrane of the present invention is not disposed on the entire surface of the boundary between the inside and the outside of the transplantation chamber, the remaining surface is, for example, nonpermeabilizing not to permeate nutrients such as oxygen, water and glucose in addition to cells. It may be formed of a permeable membrane.
  • the modified surface may be inside or outside.
  • the surface modified porous membrane has a dense portion and has the above-mentioned surface X
  • the implantation chamber may have a junction where the immunoisolation membranes are oppositely joined.
  • the portion of the immunoisolation membrane to which it is conjugated is not particularly limited, but is preferably the end of the immunoisolation membrane. In particular, it is preferable that the ends be joined.
  • the film when the film is referred to as an "end", it means an outer peripheral portion or a part of a fixed width substantially in contact with the side surface (edge) consisting of the thickness of the film. It is preferable that the entire periphery of the immunoisolation membrane is joined except for the injection port described later.
  • the implantation chamber has a configuration in which two immunoisolation membranes are opposed and their outer circumferences are joined, or one immunoisolation membrane of axisymmetric structure is folded in two and the facing outer circumferences are joined. Is also preferred.
  • Bonding can be performed using adhesion or fusion using an adhesive.
  • a curable adhesive can be used to bond.
  • the adhesive include known adhesives such as epoxy type, silicon type, acrylic type and urethane type.
  • a thermoplastic resin may be sandwiched between the porous membranes, and the two may be joined by heating the portion.
  • the thermoplastic resin it is preferable to use a resin having a melting point lower than that of the polymer forming the porous film.
  • the thermoplastic resin include polyethylene, polypropylene, polyurethane, polyvinyl chloride, polytetrafluoroethylene, polyethylene terephthalate, polycarbonate and the like. Among them, polyethylene, polypropylene, polyurethane, polyvinyl chloride and polytetrafluoroethylene are preferable, and polyethylene, polyurethane and polyvinyl chloride are more preferable.
  • the porous membranes in the immunoisolation membrane may be fused in direct contact with each other without sandwiching other materials between them. By such fusion, it is possible to obtain a transplantation chamber which has no problem derived from a resin to be inserted or the like.
  • a porous membrane containing a polymer selected from the group consisting of polysulfone and polyethersulfone is used, the porous membranes are fused and integrated by heating to a temperature lower than the melting point of the polymer and higher than the glass transition temperature.
  • heating for fusion may be 190 ° C. or more and less than 340 ° C., and preferably 230 ° C. or more and less than 340 ° C.
  • the form of the implantation chamber is not limited, and may be bag-like, bag-like, tube-like, microcapsule-like, drum-like or the like.
  • a drum-shaped implantation chamber can be formed by adhering an immuno-isolating membrane on the top and bottom of a silicone ring.
  • the shape of the implantation chamber is preferably a shape that can prevent movement of the implantation chamber in the recipient when used as an implantation device described later.
  • Specific examples of the shape of the implantation chamber include a cylindrical shape, a disk shape, a rectangular shape, an oval shape, a star shape, and a circular shape.
  • the implantation chamber may be sheet-like, strand-like, spiral-like or the like.
  • the implantation chamber may contain the biological component, and may have the above-described shape only when it is used as an implantation device described later.
  • the implantation chamber may include a biocompatible plastic or the like for maintaining the shape and strength of the container.
  • the boundary between the inside and the outside of the implantation chamber may be made of a biocompatible plastic which does not correspond to the immunoisolation membrane and the immunoisolation membrane.
  • the implantation chamber in which the immunoisolation membrane is disposed substantially on the entire inner / outer border is further arranged with a network-like biocompatible plastic outside the inner / outer border in terms of strength. It may be
  • the implantation chamber is provided with an injection port for injecting a biological component or the like into the implantation chamber.
  • a tube may be provided which leads to the interior of the implantation chamber.
  • the tube may be, for example, one containing a thermoplastic resin.
  • the thermoplastic resin preferably has a melting point lower than that of the porous membrane polymer material.
  • thermoplastic resin used for the tube examples include polyethylene, polypropylene, polyurethane, polyvinyl chloride, polytetrafluoroethylene, polyethylene terephthalate, polycarbonate and the like.
  • polyethylene, polypropylene, polyurethane, polyvinyl chloride and polytetrafluoroethylene are preferable, and polyethylene, polyurethane and polyvinyl chloride are particularly preferable.
  • the tube is, for example, sandwiched with the immunoisolation membrane so as to be in contact with a part of the porous membrane and then joined with the part. Bonding can be performed by fusion bonding or adhesion using an adhesive. Among these, it is preferable to perform fusion.
  • the fusion may be heat fusion.
  • the tube preferably comprises a thermoplastic resin having a melting point lower than that of the porous membrane polymer material. When a tube containing a thermoplastic resin having a lower melting point is fused to a porous membrane, it is thought that the tube material can be melted first and then enter into the pores of the porous membrane during heating.
  • the adhesive can be appropriately selected according to the material of the polymer forming the film and the tube, and an adhesive of epoxy type, silicon type, acrylic type, urethane type or the like can be used.
  • an adhesive of epoxy type, silicon type, acrylic type, urethane type or the like can be used.
  • bonding can be performed by adhesion.
  • the implantation device is a complex comprising at least the implantation chamber and the biological composition.
  • the implanting chamber encloses the biological composition.
  • the chamber for transplantation may contain only the biological component or may contain other components or components other than the biological component and the biological component.
  • the biological composition may be contained in the implantation chamber together with the hydrogel, preferably in the state of being contained in the hydrogel.
  • the implant device may contain a pH buffer, an inorganic salt, an organic solvent, a protein such as albumin, and a peptide.
  • only one type of biological composition may be contained, or two or more types may be contained.
  • it may contain only biological constituents that release bioactive substances for the purpose of transplantation, or perform other functions of the purpose of transplantation, which support the function of these biological constituents Further biological constituents may be included.
  • the implanting device may be implanted in, for example, the abdominal cavity or subcutaneously.
  • the implantable device may be a vascular connection device.
  • transplanting blood and a membrane in direct contact with each other enables insulin secretion corresponding to a change in blood glucose level.
  • the device for transplantation and the chamber for transplantation are described in Protein Nucleic Acid Enzyme, Volume 45, pp. 2307 to 2312 (Okuhara Hisako, 2000), JP 2009-522269, JP 6-507412, etc. You can refer to
  • the obtained porous film is placed in a desktop vacuum plasma apparatus (manufactured by U-Tech Co., Ltd.), and the carrier gas conditions are: oxygen flow 20 cm 3 (STP) / min, argon flow 100 cm 3 (STP) / min, vacuum degree 30 Pa, input power
  • the surface X is first plasma-treated at a processing time between 0 and 270 seconds shown in Table 1, and then reversely processed, and the opposite surface is plasma-treated to plasma-treat both surfaces.
  • a porous membrane was obtained.
  • the membrane of a Corning insert cell (6.5 mm Transwell with 5.0 ⁇ m Pore Polycarbonate Membrane Insert) was hollowed out, and instead, the surface-modified porous membrane was fixed to the insert cell with double-sided tape.
  • the surface-modified porous membrane sample to be subjected to pretreatment for evacuation is an insert cell in which the surface-modified porous membrane is attached to the well of a 24-well plate containing 1 mL of culture medium (medium for pancreatic islet culture, Cosmobio, PNIM3) was set so that the membrane was immersed in the medium, and vacuum was applied using a vacuum pump for 10 minutes.
  • a medium islet culture containing 0.2 ⁇ g / mL of insulin (Wako Pure Chemical Industries, Insulin Humane recombinant, 097-06474) in the insert cell 100 ⁇ L of medium, Cosmobio, PNIM3) was added and inserted into a 24-well plate containing 800 ⁇ L of a similar medium without insulin.
  • the mixture was allowed to stand for 1 hour, the medium on the insert cell side and the 24-well plate side was collected, and the amount of insulin was quantified by insulin ELISA (80-INSRT-E01 manufactured by ALPCO).
  • the amount of permeated insulin on the 24 well side was evaluated according to the following criteria.
  • the amount of insulin on the permeation side is 4.5 ng or more ... AA
  • the amount of insulin on the permeation side is 4.0 ng or more and less than 4.5 ng ...
  • the amount of insulin on the permeation side is 2.0 ng or more and less than 4.0 ng ...
  • the amount of insulin on the permeation side is 1.0 ng or more and less than 2.0 ng ...
  • the amount of insulin on the permeation side is 0 ng or more and less than 1.0 ng ... D
  • Cell infiltration inhibition test The inhibition of cell infiltration into the membrane inside of the living body of the produced transplantation chamber was evaluated as follows. The evaluation of cell infiltration inhibition is an index of the function of blocking various cells. A 1 cm ⁇ 2 cm implantation chamber was implanted and sutured subcutaneously on the back of SD rat (Sprague-Dawley rat). After rearing for 2 weeks, the same site was excised and HE (hematoxylin and eosin) tissue stained sections were prepared. An image of this tissue stained section is shown in FIG. As shown in FIG. 1, the cell infiltration-inhibiting layer was observed, and no cell invasion into the inside was observed, which indicates that the cell infiltration was inhibited.
  • HE hematoxylin and eosin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Molecular Biology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided are: an immunoisolation membrane which is resistant to a drop in substance permeability, and which can be produced inexpensively; and a method for producing same. This immunoisolation memrane contains a surface-modified porous membrane, and the surface-modified porous membrane contains polysulfone or polyethersulfone and preferably polyvinyl pyrrolidone. The ratio of the number of oxygen atoms to the total number of oxygen atoms, nitrogen atoms, carbon atoms and sulfur atoms on at least one surface of the surface-modified porous membrane falls within the range of 11.3% to 31.2%, inclusive, and the ratio of the number of nitrogen atoms to the aforementioned total number of atoms falls within the range of 0.1% to 4.0%. The production method for immunoisolation membrane includes subjecting the porous membrane surface to physical oxygen atom penetration, such as plasma treatment.

Description

免疫隔離膜、免疫隔離膜の製造方法、移植用チャンバー、および移植用デバイスImmuno-isolating membrane, method for producing immuno-isolating membrane, chamber for transplantation, and device for transplantation

 本発明は、免疫隔離膜および免疫隔離膜の製造方法に関する。本発明はまた、免疫隔離膜を有する移植用チャンバーならびに移植用デバイスに関する。 The present invention relates to an immunoisolation membrane and a method of producing the same. The invention also relates to a grafting chamber having an immunoisolating membrane and a grafting device.

 免疫隔離は、細胞、組織、器官などの生物学的構成物の移植の際にレシピエントにおける免疫反応を防止する方法の1つであり、免疫隔離膜は、水、酸素およびグルコース等は透過させる一方で、免疫拒絶反応に関与する免疫細胞等の透過を阻止することにより免疫隔離を行なう選択透過性の膜である。例えば、生理活性物質を分泌する細胞の移植にその生理活性物質を透過させる免疫隔離膜を利用した移植用デバイスにより、免疫拒絶反応を防止しながら移植の目的を達成することができる。 Immunoisolation is one of the methods to prevent the immune response in recipients during transplantation of biological components such as cells, tissues and organs, and the immunoisolation membrane allows water, oxygen, glucose, etc. to permeate. On the other hand, it is a permselective membrane that performs immune isolation by blocking the permeation of immune cells involved in immune rejection. For example, a transplant device utilizing an immunoisolating membrane which allows the physiologically active substance to permeate the transplantation of cells secreting the physiologically active substance can achieve the purpose of transplantation while preventing immune rejection.

 非特許文献1では、孔径0.45μmの細胞保持性の膜と孔径5μmのポリテトラフルオロエチレン(PTFE)の外側膜との積層膜である多孔質膜を用いて形成された市販の移植用チャンバー(TheraCyte(登録商標))を用いて移植を行ったことが記載されている。 In Non-Patent Document 1, a commercially available transplantation chamber formed using a porous membrane which is a laminated membrane of a cell holding membrane with a pore diameter of 0.45 μm and an outer membrane of polytetrafluoroethylene (PTFE) with a pore diameter of 5 μm. It is described that transplantation was performed using (TheraCyte®).

 一方、多孔質膜としてポリスルホンを含む膜は工業用途等に用いられる精密濾過膜としてよく知られている(特許文献1)。 On the other hand, a membrane containing polysulfone as a porous membrane is well known as a precision filtration membrane used for industrial applications and the like (Patent Document 1).

特開平4-349927号公報JP-A-4-349927

Transplantation , 67, 665(1995)Transplantation, 67, 665 (1995)

 非特許文献1に記載の免疫隔離膜は、複数層の積層体であり、コスト増加を招きやすい。本発明は、安価に製造が可能な免疫隔離膜を提供することを課題とする。 The immunoisolation membrane described in Non-Patent Document 1 is a laminate of a plurality of layers, and is likely to increase costs. An object of the present invention is to provide an immunoisolation membrane which can be manufactured inexpensively.

 本発明者らは、上記課題の下、種々の多孔質膜の免疫隔離膜としての利用を検討し、特許文献1に記載のようなポリスルホンを含む多孔質膜が、免疫隔離膜として使用可能であり、上記問題を解決しうることを見出した。一方で、ポリスルホンを含む多孔質膜は、移植用デバイスとしての使用時の脱泡処理に真空引きが必要であった。本発明者らは、これを改善するためにさらに検討を進め、ポリスルホンを含む多孔質膜の表面処理により、移植用デバイスにおいて用いられる場合の利点となる性質が付与されることを見出し、この知見に基づいて、本発明を完成させた。 The present inventors examined the use of various porous membranes as an immunoisolation membrane under the above-mentioned problems, and a porous membrane containing polysulfone as described in Patent Document 1 can be used as an immunoisolation membrane. Yes, I found that I could solve the above problems. On the other hand, a porous membrane containing polysulfone required vacuuming for degassing treatment during use as a grafting device. The present inventors have further studied to improve this, and have found that the surface treatment of the porous membrane containing polysulfone imparts advantageous properties when used in a device for implantation, and this finding The present invention has been completed on the basis of

 すなわち、本発明は以下の<1>~<21>を提供するものである。
<1>表面改質多孔質膜を含む免疫隔離膜であって、
上記表面改質多孔質膜はポリスルホンまたはポリエーテルスルホンを含み、
上記表面改質多孔質膜の少なくとも一方の表面の、酸素原子、窒素原子、炭素原子、および硫黄原子の総数に対する酸素原子数比が11.3%以上31.2%以下であり,上記総数に対する窒素原子数比が0.1%以上4.0%以下である免疫隔離膜。
<2>上記の少なくとも一方の表面の、上記総数に対する炭素原子数比が65.8%以上80.9%以下であり,上記総数に対する硫黄原子数比が2.2%以上2.9%以下である<1>に記載の免疫隔離膜。
<3>上記表面改質多孔質膜が窒素含有ポリマーを含む<1>または<2>に記載の免疫隔離膜。
<4>上記窒素含有ポリマーがポリビニルピロリドンである<3>に記載の免疫隔離膜。
<5>上記の少なくとも一方の表面が両表面である<1>~<4>のいずれかに記載の免疫隔離膜。
<6>上記表面改質多孔質膜からなる<1>~<5>のいずれかに記載の免疫隔離膜。
<7>上記表面改質多孔質膜の厚みが1.0μm~200μmである<1>~<6>のいずれかに記載の免疫隔離膜。
<8>上記表面改質多孔質膜は、孔径が最小となる層状の緻密部位を内部に有する<1>~<7>のいずれかに記載の免疫隔離膜。
<9>上記緻密部位から上記表面改質多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加している<8>に記載の免疫隔離膜。
<10>上記緻密部位が上記表面改質多孔質膜の厚みの中央部位よりもいずれか一方の表面Xに偏っている<8>または<9>に記載の免疫隔離膜。
That is, the present invention provides the following <1> to <21>.
<1> An immunoisolation membrane comprising a surface-modified porous membrane,
The surface modified porous membrane comprises polysulfone or polyethersulfone,
The ratio of the number of oxygen atoms to the total number of oxygen atoms, nitrogen atoms, carbon atoms, and sulfur atoms on at least one surface of the surface-modified porous membrane is 11.3% or more and 31.2% or less. An immunoisolation membrane having a nitrogen atom number ratio of 0.1% or more and 4.0% or less.
<2> The carbon atom number ratio with respect to the said total number of at least one surface of said 2nd is 65.8%-80.9%, and the sulfur atom ratio with respect to said total number is 2.2%-2.9% or less The immunoisolation membrane as described in <1>.
<3> The immunoisolation membrane according to <1> or <2>, wherein the surface modified porous membrane comprises a nitrogen-containing polymer.
<4> The immunoisolation membrane according to <3>, wherein the nitrogen-containing polymer is polyvinyl pyrrolidone.
<5> The immunoisolation membrane according to any one of <1> to <4>, wherein at least one surface of the above is both surfaces.
<6> The immunoisolation membrane according to any one of <1> to <5>, which comprises the surface-modified porous membrane.
<7> The immunoisolation membrane according to any one of <1> to <6>, wherein the thickness of the surface modified porous membrane is 1.0 μm to 200 μm.
<8> The immunoisolation membrane according to any one of <1> to <7>, wherein the surface-modified porous membrane has a layered compact portion in which the pore diameter is minimized.
<9> The immunoisolation membrane according to <8>, in which the pore diameter is continuously increased in the thickness direction from the dense portion toward at least one surface of the surface-modified porous membrane.
<10> The immune isolation membrane according to <8> or <9>, wherein the dense portion is biased to one surface X of the central portion of the thickness of the surface-modified porous membrane.

<11>生物学的構成物を内包するための移植用チャンバーであって、
上記移植用チャンバーの内部と外部との境界の少なくとも一部に<1>~<10>のいずれかに記載の免疫隔離膜を有する上記移植用チャンバー。
<12>生物学的構成物を内包するための移植用チャンバーであって、
上記移植用チャンバーの内部と外部との境界の少なくとも一部に<10>に記載の免疫隔離膜を有し、
上記表面改質多孔質膜の表面Xが上記内部側にある上記移植用チャンバー。
<13>上記生物学的構成物が細胞である<11>または<12>に記載の移植用チャンバー。
<14><11>~<13>のいずれかに記載の移植用チャンバーに上記生物学的構成物が内包されている移植用デバイス。
<15>上記生物学的構成物が生理活性物質を放出する<14>に記載の移植用デバイス。
<16>上記生理活性物質がインスリンである<15>に記載の移植用デバイス。
<11> A transplantation chamber for containing a biological component, the chamber comprising:
The implantation chamber having the immunoisolation membrane according to any one of <1> to <10> on at least a part of the boundary between the inside and the outside of the implantation chamber.
<12> A transplantation chamber for containing a biological composition,
The immune isolation membrane according to <10> is provided on at least a part of the boundary between the inside and the outside of the transplantation chamber,
The implantation chamber, wherein the surface X of the surface modified porous membrane is on the inner side.
<13> The transplantation chamber according to <11> or <12>, wherein the biological construct is a cell.
The transplantation device according to any one of <14><11> to <13>, wherein the biological composition is contained in the transplantation chamber.
<15> The transplantation device according to <14>, wherein the biological component releases a physiologically active substance.
<16> The transplantation device according to <15>, wherein the physiologically active substance is insulin.

<17>免疫隔離膜の製造方法であって、多孔質膜表面に物理的酸素原子浸透処理を行うことを含む製造方法。
<18><1>~<10>のいずれかに記載の免疫隔離膜の製造方法であって、ポリスルホンまたはポリエーテルスルホンを含む多孔質膜の表面に物理的酸素原子浸透処理を行って上記表面改質多孔質膜を得ることを含む製造方法。
<19>ポリスルホンまたはポリエーテルスルホンを含む製膜原液を支持体上に流延すること、
流延された液膜の表面に調温湿風を当てること、および
調温湿風を当てた後に得られる膜を凝固液に浸漬すること
を含む方法で、上記多孔質膜を得ることをさらに含む<17>または<18>に記載の製造方法。
<20>上記製膜原液がポリビニルピロリドンを含む<19>に記載の製造方法。
<21>上記物理的酸素原子浸透処理がプラズマ処理である<17>~<20>のいずれかに記載の製造方法。
It is a manufacturing method of <17> immune isolation film, Comprising: The manufacturing method including performing physical oxygen atom osmosis processing to the porous membrane surface.
It is a manufacturing method of the immuno isolation film in any one of <18><1>-<10>, Comprising: The surface of the porous membrane containing a polysulfone or a polyether sulfone is physically oxygenated, and the said surface is processed. A method of manufacture comprising obtaining a modified porous membrane.
Casting a membrane-forming solution containing <19> polysulfone or polyethersulfone on a support,
Further, it is possible to obtain the above-mentioned porous membrane by a method including the steps of applying temperature-controlled humid air to the surface of the cast liquid film, and immersing the film obtained after applying temperature-controlled air in the coagulating liquid. The manufacturing method as described in <17> or <18> containing.
<20> The method according to <19>, wherein the membrane-forming solution contains polyvinyl pyrrolidone.
<21> The method according to any one of <17> to <20>, wherein the physical oxygen atom permeation treatment is plasma treatment.

 本発明により、安価に製造が可能な免疫隔離膜を提供することができる。本発明の免疫隔離膜は移植用チャンバーおよびこれに生物学的構成物を内包した移植用デバイスとして使用することができる。本発明の免疫隔離膜は、移植用デバイスにおいて使用する際の脱泡処理において真空引きが不要になるなどの利点がある。 The present invention can provide an immunoisolation membrane which can be manufactured inexpensively. The immunoisolation membrane of the present invention can be used as a grafting chamber and a grafting device in which a biological component is enclosed. The immunoisolation membrane of the present invention has advantages such as no need for vacuuming in degassing treatment when used in a device for transplantation.

ラットの背部皮下に2cm四方の表面改質多孔質膜を埋植し縫合し、ラット1週間飼育後に同部位を切除し、作製された組織染色切片の画像である。The surface-modified porous membrane of 2 cm square is embedded under the back skin of a rat and sutured, and after 1 week rearing of the rat, the same site is excised and the image of the tissue stained section prepared.

 以下、本発明を詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
Hereinafter, the present invention will be described in detail.
In the present specification, “to” is used in the meaning including the numerical values described before and after that as the lower limit value and the upper limit value.

<免疫隔離膜>
 本明細書において、免疫隔離膜は免疫隔離のために用いられる膜を意味する。
 免疫隔離は移植の際のレシピエントの免疫拒絶反応を防止する方法の一つである。ここで、免疫拒絶反応は、移植される生物学的構成物に対するレシピエントの拒絶反応である。免疫隔離により、レシピエントの免疫拒絶反応から生物学的構成物が隔離される。免疫拒絶反応としては、細胞性免疫応答に基づくものおよび液性免疫応答に基づくものが挙げられる。
<Immune isolation membrane>
As used herein, immunoisolation membrane means a membrane used for immunoisolation.
Immunoisolation is one of the methods to prevent the recipient's immune rejection during transplantation. Here, the immune rejection is the rejection of the recipient for the biological composition to be transplanted. Immunoisolation isolates the biological composition from the recipient's immune rejection. Immune rejection includes those based on cellular immune responses and those based on humoral immune responses.

 免疫隔離膜は酸素、水、グルコース等の栄養分は透過させ、免疫拒絶反応に関与する免疫細胞等の透過を阻止する選択透過性の膜である。免疫細胞としては、マクロファージ、樹状細胞、好中球、好酸球、好塩基球、ナチュラルキラー細胞、各種T細胞、B細胞、その他リンパ球が挙げられる。
 本発明の免疫隔離膜は、用途に応じ、免疫グロブリン(IgMまたはIgG等)および補体のような高分子量タンパク質の透過を阻止することが好ましく、インスリンなどの比較的低分子量の生理活性物質を透過させることが好ましい。
The immunoisolation membrane is a selectively permeable membrane that transmits nutrients such as oxygen, water, glucose and the like and blocks the permeation of immune cells and the like involved in immune rejection. The immune cells include macrophages, dendritic cells, neutrophils, eosinophils, basophils, natural killer cells, various T cells, B cells, and other lymphocytes.
The immunoisolation membrane of the present invention preferably blocks permeation of high molecular weight proteins such as immunoglobulins (such as IgM or IgG) and complement depending on the use, and it is preferable to use relatively low molecular weight physiologically active substances such as insulin. It is preferable to make it permeate.

 免疫隔離膜の選択透過性は用途に応じて調整すればよい。本発明の免疫隔離膜は、例えば、分子量500kDa以上、100kDa以上、80kDa以上、または50kDa以上などの物質を遮断する選択透過性の膜であればよい。例えば、免疫隔離膜は、抗体の中で最も小さいIgG(分子量約160kDa)の透過を阻止できることが好ましい。また、本発明の免疫隔離膜は、球体としてのサイズとして直径500nm以上、100nm以上、50nm以上、または10nm以上などの物質を遮断する選択透過性の膜であればよい。 The selective permeability of the immunoisolation membrane may be adjusted according to the application. The immunoisolation membrane of the present invention may be, for example, a selectively permeable membrane that blocks substances having a molecular weight of 500 kDa or more, 100 kDa or more, 80 kDa or more, or 50 kDa or more. For example, the immunoisolation membrane is preferably capable of blocking the permeation of the smallest IgG (molecular weight: about 160 kDa) among antibodies. Furthermore, the immunoisolation membrane of the present invention may be a selectively permeable membrane that blocks substances having a diameter of 500 nm or more, 100 nm or more, 50 nm or more, or 10 nm or more as spheres.

 本発明の免疫隔離膜は表面改質多孔質膜を含む。本発明の免疫隔離膜は表面改質多孔質膜のみからなっていてもよく、または表面改質多孔質膜に加えてハイドロゲル膜などの他の層を含んでいてもよい。本発明の免疫隔離膜は、輸送等のために容易に剥離可能な保護フィルムを表面に有していてもよい。本発明の免疫隔離膜は表面改質多孔質膜のみからなることが好ましい。
 本発明の免疫隔離膜において、表面改質多孔質膜はポリスルホンまたはポリエーテルスルホンを含む。
The immunoisolation membrane of the present invention comprises a surface modified porous membrane. The immunoisolation membrane of the present invention may consist only of the surface modified porous membrane, or may include other layers such as a hydrogel membrane in addition to the surface modified porous membrane. The immunoisolation membrane of the present invention may have a protective film which can be easily peeled off for transport and the like. The immunoisolation membrane of the present invention preferably comprises only a surface-modified porous membrane.
In the immunoisolation membrane of the present invention, the surface modified porous membrane comprises polysulfone or polyethersulfone.

 本発明の免疫隔離膜に含まれる表面改質多孔質膜は、少なくとも一方の表面の、酸素原子、窒素原子、炭素原子、および硫黄原子の総数に対する酸素原子数比(以下「O元素比」ということがある)が11.3%以上31.2%以下であり,上記総数に対する窒素原子数比(以下「O元素比」ということがある)が0.1%以上4.0%以下であるように改質された多孔質膜である。本明細書において、上記元素比を満たす表面、または後述の物理的酸素原子浸透処理された表面を、改質表面ということがある。
 膜の表面とは主表面(膜の面積を示すおもて面または裏面)を意味し、膜の端の厚み方向の面を意味するものではない。表面改質多孔質膜の表面は他の層との界面であってもよい。
The surface modified porous membrane contained in the immunoisolation membrane of the present invention has an oxygen atom number ratio to the total number of oxygen atoms, nitrogen atoms, carbon atoms, and sulfur atoms on at least one surface (hereinafter referred to as "O element ratio") May be 11.3% or more and 31.2% or less, and the nitrogen atom ratio to the total number (hereinafter sometimes referred to as "O element ratio") is 0.1% or more and 4.0% or less As such, it is a porous membrane modified. In the present specification, a surface satisfying the above-described element ratio or a surface to which a physical oxygen atom infiltration treatment is performed as described later may be referred to as a modified surface.
The surface of the film means the main surface (the front or back surface indicating the area of the film), and does not mean the surface in the thickness direction of the end of the film. The surface of the surface-modified porous membrane may be an interface with another layer.

 また、改質表面においては酸素原子、窒素原子、炭素原子、および硫黄原子の総数に対する炭素原子数比(以下「C元素比」ということがある)が65.8%以上80.9%以下であり,上記総数に対する硫黄原子数比(以下「S元素比」ということがある)が2.2%以上2.9%以下であることが好ましい。 Also, on the modified surface, the carbon atom number ratio (hereinafter sometimes referred to as “C element ratio”) to the total number of oxygen atoms, nitrogen atoms, carbon atoms, and sulfur atoms is 65.8% to 80.9%. It is preferable that the sulfur atom number ratio (hereinafter sometimes referred to as "S element ratio") to the total number is 2.2% or more and 2.9% or less.

 本明細書において、膜表面のO元素比、N元素比、C元素比、およびS元素比はX線光電子分光法に基づく測定のデータから算出したものとする。X線光電子分光法は、膜表面にX線を照射し、膜表面から放出される光電子の運動エネルギーを計測することで、膜表面を構成する元素の組成を分析する方法であり、XPS(X-ray Photoelectron Spectroscopy)またはESCA(Electron Spectroscopy for Chemical Analysis)と略称されることがある。測定は例えば、実施例に記載する単色化Al-Kα線を用いた条件で行えばよい。表面における酸素原子、窒素原子、炭素原子、および硫黄原子の測定値の合計に対する酸素原子、窒素原子、炭素原子、硫黄原子の測定値の比率を、それぞれ、O元素比、N元素比、C元素比、およびS元素比とする。 In the present specification, the O element ratio, the N element ratio, the C element ratio, and the S element ratio of the film surface are calculated from data of measurement based on X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy is a method of analyzing the composition of elements constituting a film surface by irradiating the film surface with X-rays and measuring the kinetic energy of photoelectrons emitted from the film surface. Sometimes referred to as -ray Photoelectron Spectroscopy) or ESCA (Electron Spectroscopy for Chemical Analysis). The measurement may be performed, for example, under the conditions using the monochromatized Al-Kα ray described in the examples. Ratios of measured values of oxygen atom, nitrogen atom, carbon atom and sulfur atom to the total of measured values of oxygen atom, nitrogen atom, carbon atom and sulfur atom on the surface, O element ratio, N element ratio and C element respectively The ratio and the S element ratio.

 改質表面のO元素比は13%以上31.2%以下であることが好ましく、24%以上31.2%以下であることがより好ましい。Nの元素比は0.1%以上3.9%以下であることが好ましく、0.1%以上3.1%以下であることがより好ましい。
 また、改質表面のC元素比は65.8%以上80.9%以下であることが好ましく、65.8%以上70.5%以下であることがより好ましい。さらに上記の少なくとも一方の表面のS元素比は2.2%以上2.9%以下であることが好ましく、2.4%以上2.9%以下であることがより好ましい。
The O element ratio of the modified surface is preferably 13% or more and 31.2% or less, and more preferably 24% or more and 31.2% or less. The elemental ratio of N is preferably 0.1% to 3.9%, and more preferably 0.1% to 3.1%.
The C element ratio of the modified surface is preferably 65.8% to 80.9%, and more preferably 65.8% to 70.5%. Furthermore, it is preferable that it is 2.2% or more and 2.9% or less, and, as for S element ratio of said at least one surface, it is more preferable that it is 2.4% or more and 2.9% or less.

 本発明の免疫隔離膜においては表面改質多孔質膜の、いずれか一方の表面が改質表面であっても、両表面が改質表面であってもよいが、両表面が改質表面であることが好ましい。すなわち、表面改質多孔質膜はその両表面において、上述の元素比を満たしていることが好ましい。
 本発明の免疫隔離膜における表面改質多孔質膜は、従来技術における改質多孔質膜と比較して表面のN元素比が減少し、かつO元素比が増加しており、好ましくは、さらに表面のC元素比が減少し、かつS元素比が増加している。このような範囲であることによって、本発明の免疫隔離膜は、移植用デバイスとして使用される際に、膜内部の気泡を抜く脱泡処理を行うときに真空引きが不要になるという利点がある。すなわち、真空引きを行わなくても、生理食塩水等の水性媒体に浸すだけで使用を始めることができるという利点がある。また、特に本発明の免疫隔離膜を膵β細胞等を内包しインスリンを放出する移植用デバイスとして使用する際に、使用初期のインスリン応答性(インスリン透過性)が高いという利点がある。ここで、使用初期とは使用開始後1日以内を意味する。
 本発明の免疫隔離膜の厚みは、特に限定されないが、1μm~500μmであればよく、10μm~300μmであることが好ましく、15μm~250μmであることがより好ましい。
In the immunoisolation membrane of the present invention, either surface of the surface-modified porous membrane may be a modified surface or both surfaces may be modified surfaces, but both surfaces are modified surfaces. Is preferred. That is, it is preferable that the surface-modified porous film satisfy the above-described element ratio on both surfaces thereof.
The surface modified porous membrane in the immunoisolation membrane of the present invention has a surface N element ratio decreased and an O element ratio increased as compared to the modified porous membrane in the prior art, and preferably, The surface C element ratio decreases and the S element ratio increases. Within this range, the immunoisolation membrane of the present invention has the advantage that when it is used as a grafting device, no vacuuming is required when degassing the cells inside the membrane. . That is, there is an advantage that use can be started only by immersion in an aqueous medium such as physiological saline without vacuuming. In addition, when the immunoisolation membrane of the present invention is used as a grafting device that contains pancreatic β cells and the like and releases insulin, there is an advantage that insulin responsiveness (insulin permeability) in the initial stage of use is high. Here, the initial stage of use means within one day after the start of use.
The thickness of the immunoisolation membrane of the present invention is not particularly limited, but may be 1 μm to 500 μm, preferably 10 μm to 300 μm, and more preferably 15 μm to 250 μm.

[多孔質膜、表面改質多孔質膜]
 以下、多孔質膜の構造および組成について、説明する。この説明において、特に言及しない場合、「多孔質膜」についての説明は「表面改質多孔質膜」にも当てはまる。
(多孔質膜の構造)多孔質膜は複数の孔を有する膜をいう。孔は例えば膜断面の走査型電子顕微鏡(SEM)撮影画像または透過型電子顕微鏡(TEM)撮影画像で確認することができる。
 多孔質膜の厚みは、特に限定されないが、1μm~200μmであればよく、10μm~180μmであることが好ましく、15μm~150μmであることがより好ましい。
[Porous membrane, surface modified porous membrane]
Hereinafter, the structure and composition of the porous membrane will be described. In this description, unless stated otherwise, the description of "porous membrane" also applies to "surface modified porous membrane".
(Structure of Porous Membrane) The porous membrane refers to a membrane having a plurality of pores. The holes can be identified, for example, in a scanning electron microscope (SEM) image or a transmission electron microscope (TEM) image of the cross section of the film.
The thickness of the porous membrane is not particularly limited, but may be 1 μm to 200 μm, preferably 10 μm to 180 μm, and more preferably 15 μm to 150 μm.

 多孔質膜は、孔径が最小となる層状の緻密部位を内部に有することが好ましい。また、この緻密部位から多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加していることが好ましい。孔径は、後述する分割線の平均孔径で判断するものとする。
 本発明の免疫隔離膜において、多孔質膜は孔径または孔径分布(厚み方向での孔径の差異)などについて膜内方向(膜表面に平行な方向)で一様の構造を有していることが好ましい。
The porous membrane preferably has a layered dense portion in which the pore size is minimized. In addition, it is preferable that the pore diameter continuously increases in the thickness direction from the dense portion toward at least one surface of the porous membrane. The hole diameter is determined by the average hole diameter of the dividing line described later.
In the immunoisolation membrane of the present invention, the porous membrane has a uniform structure in the in-membrane direction (direction parallel to the membrane surface) with respect to the pore size or pore size distribution (difference in pore size in the thickness direction). preferable.

 多孔質膜が厚み方向で孔径分布を有することにより、本発明の免疫隔離膜は、寿命を向上させることができる。実質的に異なる孔径の複数の膜を用いて多段階の濾過を行なったような効果が得られ、膜の劣化を防止することができるからである。 By the porous membrane having a pore size distribution in the thickness direction, the immunoisolation membrane of the present invention can improve the life. This is because the effect of multistage filtration using a plurality of membranes having substantially different pore sizes can be obtained, and deterioration of the membranes can be prevented.

 孔径は電子顕微鏡によって得られた膜断面の写真から測定すればよい。多孔質膜はミクロトーム等により切断し、断面が観察できる薄膜の切片として、多孔質膜断面の写真を得ることができる。 The pore size may be measured from a photograph of the cross section of the membrane obtained by an electron microscope. The porous membrane is cut by a microtome or the like, and a photograph of the cross section of the porous membrane can be obtained as a section of the thin film whose cross section can be observed.

 本明細書において、膜の厚み方向の孔径の比較は、膜断面のSEM撮影写真を膜の厚み方向に20分割したときの19本の分割線における孔径の比較により行なうものとする。分割線と交差するまたは接する孔を連続して50個以上選択し、それぞれの孔径を測定し、平均値を算出して平均孔径とする。ここで、孔径は、選択された孔が分割線と交差する部分の長さではなく、膜断面のSEM撮影写真から孔の面積を画像処理により算出し、得られた面積を真円の面積として算出される直径を用いる。このとき、孔が大きく、50個以上選択できない分割線については、膜断面を得るSEM撮影写真の視野を広げて50個測定するものとする。得られた平均孔径を分割線ごとで比較することにより膜の厚み方向の孔径の比較を行なう。 In the present specification, the comparison of the pore size in the thickness direction of the membrane is made by comparing the pore sizes at 19 dividing lines when the SEM photograph of the cross section of the membrane is divided into 20 in the thickness direction of the membrane. A total of 50 or more holes intersecting or touching the parting line are continuously selected, the respective pore sizes are measured, and an average value is calculated to be an average pore size. Here, the hole diameter is not the length of the portion where the selected hole intersects with the dividing line, but the area of the hole is calculated by image processing from the SEM photograph of the membrane cross section, and the obtained area is taken as the area of a true circle. Use the calculated diameter. At this time, for a dividing line which has a large hole and can not be selected at 50 or more, the field of view of the SEM photograph for obtaining the cross section of the film is expanded to be measured at 50. The average pore diameter obtained is compared for each parting line to compare the pore diameter in the thickness direction of the membrane.

 孔径が最小となる層状の緻密部位は、上記膜断面写真における分割線のうちで平均孔径が最小となる分割線を含む多孔質膜の層状の部位をいう。緻密部位は2つ以上の分割線を含んでいてもよい。例えば、最小平均孔径の1.1倍以内の平均孔径を有する連続する分割線が2つ以上連続しているとき、緻密部位はこの連続する2つ以上の分割線を含むものとする。本明細書において、緻密部位の厚みは、緻密部位が含む分割線の数と膜の厚みの20分の1との積とする。 The layered compact portion where the pore size is minimized refers to the layered portion of the porous membrane including the parting line where the average pore diameter is minimized among the parting lines in the film cross-sectional photograph. The compacted site may contain more than one parting line. For example, when two or more continuous parting lines having an average pore size within 1.1 times the minimum average pore size are continuous, the dense portion is assumed to include the two or more continuous parting lines. In the present specification, the thickness of the dense portion is the product of the number of parting lines included in the dense portion and 1/20 of the thickness of the film.

 緻密部位の厚みは、0.5μm~50μmであればよく、0.5μm~30μmであることが好ましい。本明細書において、緻密部位の平均孔径を多孔質膜の最小孔径とする。多孔質膜の最小孔径は0.02μm~1.5μmであることが好ましく、0.02μm~1.3μmであることがより好ましい。このような多孔質膜の最小孔径で少なくとも通常の細胞の透過を阻止することができるからである。ここで、緻密部位の平均孔径はASTM F316-80により測定したものとする。 The thickness of the dense portion may be 0.5 μm to 50 μm, and preferably 0.5 μm to 30 μm. In the present specification, the average pore diameter of the dense portion is taken as the minimum pore diameter of the porous membrane. The minimum pore size of the porous membrane is preferably 0.02 μm to 1.5 μm, and more preferably 0.02 μm to 1.3 μm. This is because the minimum pore size of such a porous membrane can at least prevent normal cell permeation. Here, it is assumed that the average pore diameter of the dense portion is measured by ASTM F316-80.

 多孔質膜は、緻密部位を内部に有することが好ましい。内部とは膜の表面に接していないことを意味し、「緻密部位を内部に有する」とは、緻密部位が、膜のいずれかの表面にもっとも近い上記分割線を含む部位ではないことを意味する。緻密部位を内部に有する構造の多孔質膜を用いることにより、緻密部位を表面に接して有する多孔質膜を用いた場合よりも、透過させることが意図された物質の透過性が低下しにくい。いかなる理論にも拘泥するものではないが、緻密部位が内部にあることによりタンパク質の吸着が起こりにくくなるためと考えられる。 The porous membrane preferably has a dense portion inside. The term "inside" means not in contact with the surface of the membrane, and "having a compact site inside" means that the compact site is not a site including the above-mentioned dividing line closest to any surface of the membrane. Do. By using a porous membrane having a structure having a dense portion inside, the permeability of a substance intended to be permeated is less likely to decrease than when a porous membrane having a dense portion in contact with the surface is used. Although not bound by any theory, it is thought that protein adsorption is less likely to occur due to the presence of a compact site inside.

 緻密部位は、多孔質膜の厚みの中央部位よりもいずれか一方の表面側に偏っていることが好ましい。具体的には、緻密部位が多孔質膜のいずれか一方の表面から多孔質膜の厚みの2分の1より小さい距離にあることが好ましく、5分の2以内の距離にあることがより好ましい。この距離は上述の膜断面写真において判断すればよい。本明細書において、緻密部位がより近い側の多孔質膜の表面を「表面X」という。
 なお、表面改質多孔質膜のいずれか一方の表面のみが改質表面である場合、表面Xが改質表面であることが好ましい。
The dense portion is preferably biased toward one of the surface sides of the central portion of the thickness of the porous membrane. Specifically, the dense portion is preferably located at a distance smaller than one half of the thickness of the porous membrane from any one surface of the porous membrane, and more preferably within two fifths of the porous membrane. . This distance may be determined in the film cross-sectional photograph described above. In the present specification, the surface of the porous membrane on the side closer to the dense portion is referred to as “surface X”.
When only one of the surfaces of the surface-modified porous membrane is a modified surface, the surface X is preferably a modified surface.

 多孔質膜においては緻密部位から少なくともいずれか一方の表面に向かって厚み方向で孔径が連続的に増加していることが好ましい。多孔質膜において、緻密部位から表面Xに向かって厚み方向で孔径が連続的に増加していてもよく、緻密部位から表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加していてもよく、緻密部位から多孔質膜のいずれの表面に厚み方向で向かうときも孔径が連続的に増加していてもよい。これらのうち、少なくとも緻密部位から表面Xと反対側の表面に向かって厚み方向で孔径が連続的に増加していることが好ましく、緻密部位から多孔質膜のいずれの表面に厚み方向で向かうときも孔径が連続的に増加していることがより好ましい。「厚み方向で孔径が連続的に増加」とは、厚み方向に隣り合う上述の分割線の間の平均孔径の差異が、最大平均孔径(最大孔径)と最小平均孔径(最小孔径)の差異の50%以下、好ましくは40%以下、より好ましくは30%以下となるように増加していることをいう。「連続的に増加」は、本質的には、減少がなく一律に増加することを意味するものであるが、減少している部位が偶発的に生じていてもよい。例えば、分割線を表面から2つずつ組み合わせたときに、組み合わせの平均値が、一律に増加(表面から緻密部位に向かう場合は一律に減少)している場合は、「緻密部位から膜の表面に向かって厚み方向で孔径が連続的に増加している」と判断できる。
 厚み方向で孔径が連続的に増加する多孔質膜の構造は、例えば後述する製造方法により実現することができる。
In the porous membrane, it is preferable that the pore diameter continuously increases in the thickness direction from the dense portion toward at least one of the surfaces. In the porous membrane, the pore diameter may be continuously increased in the thickness direction from the dense portion toward the surface X, and the pore diameter is continuously increased in the thickness direction from the dense portion toward the surface opposite to the surface X The pore diameter may be continuously increased when going from the dense portion to any surface of the porous membrane in the thickness direction. Among these, it is preferable that the pore diameter continuously increases in the thickness direction from at least the dense portion toward the surface opposite to the surface X, and when the dense portion is directed in the thickness direction to any surface of the porous membrane More preferably, the pore size is continuously increased. “The pore diameter continuously increases in the thickness direction” means that the difference in average pore diameter between the above-mentioned dividing lines adjacent in the thickness direction is the difference between the maximum average pore diameter (maximum pore diameter) and the minimum average pore diameter (minimum pore diameter). It is said to increase to 50% or less, preferably 40% or less, more preferably 30% or less. "Continuously increasing" essentially means increasing uniformly without decreasing, but decreasing sites may occur accidentally. For example, when dividing lines are combined two by two from the surface, if the average value of the combination is uniformly increased (uniformly decreased when going from the surface toward the dense region), The hole diameter is continuously increased in the thickness direction.
The structure of the porous membrane in which the pore diameter continuously increases in the thickness direction can be realized, for example, by the manufacturing method described later.

 多孔質膜の最大孔径は1.5μm超25μm以下であることが好ましく、1.8μm~23μmであることがより好ましく、2.0μm~21μmであることがさらに好ましい。本明細書において、上記膜断面の分割線のうちで平均孔径が最大となる分割線のその平均孔径を多孔質膜の最大孔径とする。 The maximum pore size of the porous membrane is preferably 1.5 μm or more and 25 μm or less, more preferably 1.8 μm to 23 μm, and still more preferably 2.0 μm to 21 μm. In the present specification, among the dividing lines of the membrane cross section, the average pore diameter of the dividing line at which the average pore diameter is the largest is taken as the maximum pore diameter of the porous membrane.

 緻密部位の平均孔径と多孔質膜の最大孔径との比(多孔質膜の最小孔径と最大孔径との比であって最大孔径を最小孔径で割った値、本明細書において「異方性比」ということもある。)は、3以上が好ましく、4以上がより好ましく、5以上がさらに好ましい。緻密部位以外の平均孔径を大きくし、多孔質膜の物質透過性を高くするためである。また、異方性比は、25以下であることが好ましく、20以下であることがより好ましい。上記の多段濾過のような効果が異方性比が25以下の範囲で効率よく得られるためである。
 平均孔径が最大となる分割線は膜のいずれかの表面にもっとも近い分割線またはその分割線に接する分割線であることが好ましい。
 膜のいずれかの表面にもっとも近い分割線においては、平均孔径が0.05μm超25μm以下であることが好ましく、0.08μm超23μm以下であることがより好ましく、0.5μm超21μm以下であることがさらに好ましい。また、膜のいずれかの表面にもっとも近い分割線の平均孔径の緻密部の平均孔径との比は、1.2以上20以下であることが好ましく、1.5以上15以下であることがより好ましく、2以上13以下であることがさらに好ましい。
The ratio of the average pore diameter of the dense portion to the maximum pore diameter of the porous membrane (the ratio of the minimum pore diameter to the maximum pore diameter of the porous membrane, the maximum pore diameter divided by the minimum pore diameter, referred to herein as "anisotropic ratio 3) is preferable, 3 or more is preferable, 4 or more is more preferable, and 5 or more is further preferable. This is to increase the average pore diameter of regions other than the dense region and to increase the material permeability of the porous membrane. The anisotropy ratio is preferably 25 or less, more preferably 20 or less. This is because an effect such as the above-described multistage filtration can be efficiently obtained when the anisotropy ratio is 25 or less.
It is preferable that the parting line where the average pore diameter is the largest is the parting line closest to any surface of the membrane or a parting line in contact with the parting line.
At a dividing line closest to any surface of the membrane, the average pore diameter is preferably more than 0.05 μm and 25 μm or less, more preferably more than 0.08 μm and 23 μm or less, and more than 0.5 μm and 21 μm or less Is more preferred. Further, the ratio of the average pore diameter of the parting line closest to any surface of the membrane to the average pore diameter of the dense part is preferably 1.2 or more and 20 or less, and more preferably 1.5 or more and 15 or less. The number is preferably 2 or more and 13 or less.

(多孔質膜の元素分布)
 多孔質膜(物理的酸素原子浸透処理による表面改質前のもの)は、少なくとも一方の表面において、また、表面改質多孔質膜は、改質表面以外の表面において、式(I)および式(II)を満たすことが好ましい。
 B/A ≦ 0.7 (I)
 A ≧ 0.015 (II)
式中、Aは膜の表面におけるC元素(炭素原子)に対するN元素(窒素原子)の比率を示し、Bは同じ表面から30nmの深さにおけるC元素に対するN元素の比率を示す。
 式(II)は多孔質膜の少なくとも一方の表面に一定量以上のN元素が存在することを示すものであり、式(I)は多孔質膜中のN元素が表面30nm未満に偏在していることを示しているものである。
(Element distribution of porous membrane)
The porous membrane (before the surface modification by physical oxygen atom permeation treatment) has the formula (I) and the formula on at least one surface, and the surface modified porous membrane has a surface other than the modified surface. It is preferable to satisfy (II).
B / A ≦ 0.7 (I)
A 0.01 0.015 (II)
In the formula, A indicates the ratio of N element (nitrogen atom) to C element (carbon atom) on the surface of the film, and B indicates the ratio of N element to C element at a depth of 30 nm from the same surface.
Formula (II) indicates that a certain amount or more of N element is present on at least one surface of the porous membrane, and in formula (I), the N element in the porous membrane is localized at less than 30 nm on the surface Indicates that the

 表面が式(I)および式(II)を満たすことにより、多孔質膜の生体親和性、特に、特に、式(I)および式(II)を満たす表面側の生体親和性が高くなる。
 多孔質膜は、いずれか一方のみの表面が、式(I)および式(II)を満たしていてもよく、または両表面が式(I)および式(II)を満たしていてもよいが、両表面が式(I)および式(II)を満たしていることが好ましい。いずれか一方のみの表面が式(I)および式(II)を満たす場合、その表面は、後述の移植用チャンバーにおいて、内側であっても、または外側であってもよいが、内側であることが好ましい。また、いずれか一方のみの表面が式(I)および式(II)を満たす場合であって、多孔質膜が上述の表面Xを有しているとき、式(I)および式(II)を満たす表面は表面Xであることが好ましい。
When the surface satisfies the formulas (I) and (II), the biocompatibility of the porous membrane, in particular, the biocompatibility on the surface side satisfying the formulas (I) and (II) is enhanced.
In the porous membrane, only one of the surfaces may satisfy formula (I) and formula (II), or both surfaces may satisfy formula (I) and formula (II), It is preferred that both surfaces satisfy the formula (I) and the formula (II). When only one of the surfaces satisfies the formulas (I) and (II), the surface may be inside or outside in the implantation chamber described later, but it is inside Is preferred. Also, in the case where only one of the surfaces satisfies the formula (I) and the formula (II) and the porous membrane has the above-mentioned surface X, the formula (I) and the formula (II) The surface to be filled is preferably surface X.

 本明細書において、膜表面のC元素に対するN元素の比率(A値)および表面から30nmの深さにおけるC元素に対するN元素の比率(B値)は、XPS測定結果を用いて算出したものとする。実施例に記載する単色化Al-Kα線を用いた条件で、スパッタ開始時の結果からA値を計算し、スパッタレートから測定した膜の表面から30nmであると計算される時間の結果からB値を計算するものとする。 In the present specification, the ratio (A value) of N element to C element on the film surface and the ratio (B value) of N element to C element at a depth of 30 nm from the surface are those calculated using XPS measurement results. Do. The A value was calculated from the result at the start of sputtering under the conditions using monochromatized Al-Kα radiation described in the examples, and the result of the time calculated to be 30 nm from the surface of the film measured from the sputter rate B We shall calculate the value.

 B/Aは0.02以上であればよく、0.03以上であることが好ましく、0.05以上であることがより好ましい。
 Aは0.050以上であることが好ましく、0.080以上であることがより好ましい。また、Aは0.20以下であればよく、0.15以下であることが好ましく、0.10以下であることがより好ましい。
 Bは0.001~0.10であればよく、0.002~0.08であることが好ましく、0.003~0.07であることがより好ましい。
B / A may be 0.02 or more, preferably 0.03 or more, and more preferably 0.05 or more.
A is preferably 0.050 or more, more preferably 0.080 or more. Further, A may be 0.20 or less, preferably 0.15 or less, and more preferably 0.10 or less.
B may be 0.001 to 0.10, preferably 0.002 to 0.08, and more preferably 0.003 to 0.07.

 多孔質膜の元素分布、特にN元素の分布は、後述する多孔質膜の製造方法において、調温湿風中に含まれる水分濃度、調温湿風を当てる時間、凝固液の温度、浸漬時間、洗浄のためのジエチレングリコール浴の温度、洗浄のためのジエチレングリコール浴への浸漬時間、多孔質製造ラインの速度等によって制御することができる。なお、N元素の分布は、製膜原液中の含有水分量によっても制御することができる。 The element distribution of the porous film, particularly the distribution of the N element, is the concentration of water contained in the temperature-controlled air, the time for applying the temperature-controlled air, the temperature of the coagulating solution, the immersion time in the method for producing the porous film described later. It can be controlled by the temperature of the diethylene glycol bath for washing, the immersion time in the diethylene glycol bath for washing, the speed of the porous production line, etc. The distribution of the N element can also be controlled by the water content in the stock solution.

(多孔質膜の組成)
 多孔質膜はポリスルホンまたはポリエーテルスルホンを含む。多孔質膜は全質量に対し、30質量%以上、好ましくは40質量%以上のポリスルホンまたはポリエーテルスルホンを含むことが好ましい。
 ポリスルホンまたはポリエーテルスルホンは数平均分子量(Mn)が1,000~10,000,000であるものが好ましく、5,000~1,000,000であるものがより好ましい。
(Composition of porous membrane)
The porous membrane comprises polysulfone or polyethersulfone. The porous membrane preferably contains 30% by mass or more, preferably 40% by mass or more of polysulfone or polyethersulfone based on the total mass.
The polysulfone or polyethersulfone preferably has a number average molecular weight (Mn) of 1,000 to 10,000,000, and more preferably 5,000 to 1,000,000.

 多孔質膜はポリスルホンまたはポリエーテルスルホンとともに窒素含有ポリマーを含むことが好ましい。窒素含有ポリマーの例としては、ポリビニルピロリドン、ポリプロピルアクリルアミド、キチン、キトサン、ポリアクリルアミド、ポリアミン、ポリリシンを挙げることができる。この中で特にポリビニルピロリドンを含むことが好ましい。疎水性であるポリスルホンまたはポリエーテルスルホンを親水性のポリビニルピロリドンと組み合わせることにより、生体適合性を上げることができる。 The porous membrane preferably comprises a nitrogen-containing polymer with polysulfone or polyethersulfone. As examples of nitrogen-containing polymers, mention may be made of polyvinyl pyrrolidone, polypropyl acrylamide, chitin, chitosan, polyacrylamide, polyamines, polylysine. Among these, polyvinyl pyrrolidone is particularly preferred. Biocompatibility can be increased by combining hydrophobic polysulfone or polyethersulfone with hydrophilic polyvinyl pyrrolidone.

 多孔質膜は上記成分以外の他の成分を添加剤として含んでいてもよい。添加剤としては、塩化ナトリウム、塩化リチウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、塩化亜鉛等の無機酸の金属塩、酢酸ナトリウム、ギ酸ナトリウム等の有機酸の金属塩、ポリエチレングリコール等のその他の高分子、ポリスチレンスルホン酸ナトリウム、ポリビニルベンジルトリメチルアンモニウムクロライド等の高分子電解質、ジオクチルスルホコハク酸ナトリウム、アルキルメチルタウリン酸ナトリウム等のイオン系界面活性剤等を挙げることができる。添加剤は多孔質構造のための膨潤剤として作用していてもよい。添加剤としては、金属塩、特に塩化リチウムを用いることが好ましい。 The porous membrane may contain other components other than the above components as additives. Additives include metal salts of inorganic acids such as sodium chloride, lithium chloride, sodium nitrate, potassium nitrate, sodium sulfate and zinc chloride, metal salts of organic acids such as sodium acetate and sodium formate, and other polymers such as polyethylene glycol And polyelectrolytes such as sodium polystyrene sulfonate and polyvinylbenzyltrimethyl ammonium chloride; and ionic surfactants such as sodium dioctyl sulfosuccinate and sodium alkylmethyl taurate. The additive may act as a swelling agent for the porous structure. As additives it is preferred to use metal salts, in particular lithium chloride.

 多孔質膜は単一の層として1つの組成物から形成された膜であることが好ましく、複数層の積層構造ではないことが好ましい。 The porous membrane is preferably a membrane formed from one composition as a single layer, and is preferably not a laminated structure of multiple layers.

<免疫隔離膜の製造方法>
 本発明者らは、ポリスルホンまたはポリエーテルスルホンとを含む多孔質膜を含む免疫隔離膜の多孔質膜に物理的酸素原子浸透処理を行うことにより、免疫隔離膜の脱泡処理を行うときに真空引きが不要になるという利点があることを見出した。また、特に、製造した免疫隔離膜を、膵β細胞等を内包しインスリンを放出する移植用デバイスとして使用する際に、使用初期のインスリン応答性(インスリン透過性)が高いという利点があることを見出した。物理的酸素原子浸透処理によって、多孔質膜表面の元素組成を改変することができる。上述の表面元素組成を有する本発明の免疫隔離膜はポリスルホンまたはポリエーテルスルホンを含む多孔質膜に物理的酸素原子浸透処理を行って上記表面改質多孔質膜を得ることにより製造することができる。
<Method of producing immunoisolation membrane>
The present inventors have carried out a vacuum treatment when degassing the immunoisolation membrane by performing physical oxygen atom permeation treatment on the porous membrane of the immunoisolation membrane including the porous membrane containing polysulfone or polyethersulfone. It has been found that there is an advantage that the pulling becomes unnecessary. Also, in particular, when the manufactured immunoisolation membrane is used as a grafting device that contains pancreatic β cells and the like and releases insulin, there is an advantage that insulin responsiveness (insulin permeability) in the initial stage of use is high. I found it. The physical composition of the porous membrane surface can be modified by physical oxygen atom permeation treatment. The immunoisolation membrane of the present invention having the above-described surface elemental composition can be produced by subjecting a porous membrane containing polysulfone or polyethersulfone to physical oxygen atom permeation treatment to obtain the above surface-modified porous membrane. .

[多孔質膜の製造方法]
 多孔質膜(物理的酸素原子浸透処理による表面改質前のもの)の製造方法としては、特に限定されず、通常のポリマー膜形成方法をいずれも用いることができる。ポリマー膜形成方法としては延伸法および流延法などが挙げられ、流延法が好ましい。
 例えば、流延法において、製膜原液に用いる溶媒の種類および量や流延後の乾燥方法を調節することにより上述の構造を有する多孔質膜を作製することができる。
[Method of producing porous membrane]
The method for producing the porous membrane (prior to surface modification by physical oxygen atom permeation treatment) is not particularly limited, and any usual polymer membrane forming method can be used. The polymer film forming method may, for example, be a stretching method or a casting method, and the casting method is preferable.
For example, in the casting method, the porous membrane having the above-described structure can be produced by adjusting the type and amount of the solvent used for the membrane forming solution and the drying method after casting.

 流延法を用いた多孔質膜の製造は、例えば以下(1)~(4)をこの順で含む方法で行なうことができる。
(1)ポリスルホンまたはポリエーテルスルホン、必要に応じて、窒素含有ポリマー(特に、ポリビニルピロリドン)、添加剤、および必要に応じて溶媒を含む製膜原液を溶解状態で支持体上に流延する。
(2)流延された液膜の表面に調温湿風を当てる。
(3)調温湿風を当てた後に得られる膜を凝固液に浸漬する。
(4)必要に応じて支持体を剥離する。
The production of a porous membrane using a casting method can be carried out, for example, by a method comprising the following (1) to (4) in this order.
(1) A film-forming stock solution containing polysulfone or polyethersulfone, optionally, a nitrogen-containing polymer (in particular, polyvinyl pyrrolidone), an additive, and, if necessary, a solvent is cast on a support in a dissolved state.
(2) The temperature and humidity are applied to the surface of the cast liquid film.
(3) Immerse the film obtained after application of temperature and humidity air in the coagulating liquid.
(4) Peel the support if necessary.

 調温湿風の温度は、4℃~60℃、好ましくは10℃~40℃であればよい。調温湿風の相対湿度は、15%~100%、好ましくは25%~95%であればよい。調温湿風は、0.1m/秒~10m/秒の風速で0.1秒間~30秒間、好ましくは1秒間~10秒間、当てていればよい。
 緻密部位の平均孔径および位置は、調温湿風中に含まれる水分濃度、調温湿風を当てる時間によって制御することができる。なお、緻密部位の平均孔径は、製膜原液中の含有水分量によっても制御することができる。
The temperature of the temperature and humidity air may be 4 ° C. to 60 ° C., preferably 10 ° C. to 40 ° C. The relative humidity of the temperature and humidity style may be 15% to 100%, preferably 25% to 95%. The temperature and humidity air may be applied at a velocity of 0.1 m / sec to 10 m / sec for 0.1 second to 30 seconds, preferably 1 second to 10 seconds.
The average pore diameter and position of the dense portion can be controlled by the concentration of water contained in the temperature-controlled air and the time for applying the temperature-controlled air. The average pore diameter of the dense portion can also be controlled by the water content in the stock solution for membrane formation.

 上記のように液膜の表面に調温湿風を当てることによって、溶媒の蒸発の制御を行い、液膜の表面から内部に向かってコアセルベーションを起こすことができる。この状態でポリマーの溶解性が低いがポリマーの溶媒に相溶性を有する溶媒を含む凝固液に浸漬することによって、上記のコアセルベーション相を微細孔として固定させ微細孔以外の細孔も形成することができる。 As described above, the evaporation of the solvent can be controlled by applying the temperature and humidity to the surface of the liquid film, and coacervation can be generated from the surface of the liquid film toward the inside. The coacervation phase is fixed as micropores to form pores other than micropores by immersing in a coagulating liquid containing a solvent having low solubility of the polymer but being compatible with the solvent of the polymer in this state. be able to.

 上記の凝固液に浸漬する過程において凝固液の温度は-10℃~80℃であればよい。この間で温度を変化させることによって、緻密部位より支持体面側におけるコアセルベーション相の形成から凝固に至るまでの時間を調節し、支持体面側に至るまでの孔径の大きさを制御することが可能である。凝固液の温度を高くすると、コアセルベーション相の形成が早くなり凝固に至るまでの時間が長くなるため、支持体面側へ向かう孔径は大きくなりやすい。一方、凝固液の温度を低くすると、コアセルベーション相の形成が遅くなり凝固に至るまでの時間が短くなるため、支持体面側へ向かう孔径は大きくなりにくい。 The temperature of the coagulating solution may be -10 ° C to 80 ° C in the process of immersing in the above-mentioned coagulating solution. By changing the temperature during this period, it is possible to control the time from formation of the coacervation phase on the support surface side to the solidification from the dense region, and to control the size of the pore diameter to the support surface side. It is. When the temperature of the coagulating solution is increased, the formation of the coacervation phase is accelerated and the time to solidification is prolonged, so the pore diameter toward the surface of the support tends to be large. On the other hand, when the temperature of the coagulating solution is lowered, the formation of the coacervation phase is delayed and the time to solidification is shortened, so the pore diameter toward the surface of the support is hardly increased.

 支持体としては、プラスチックフィルムまたはガラス板を用いればよい。プラスチックフィルムの材料の例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーンなどが挙げられる。支持体としてはガラス板またはPETが好ましく、PETがより好ましい。 As a support, a plastic film or a glass plate may be used. Examples of plastic film materials include polyesters such as polyethylene terephthalate (PET), polycarbonates, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, silicones and the like. As a support, a glass plate or PET is preferable, and PET is more preferable.

 製膜原液は溶媒を含んでいてもよい。溶媒は使用するポリマーに応じて、使用するポリマーの溶解性が高い溶媒(以下、「良溶媒」ということがある)を用いればよい。良溶媒は、凝固液に浸漬した時に速やかに凝固液と置換されるものが好ましい。溶媒の例としては、N-メチル-2-ピロリドン、ジオキサン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミドあるいはこれらの混合溶媒が挙げられる。これらのうち、N-メチル-2-ピロリドンが好ましい。 The membrane-forming stock solution may contain a solvent. As the solvent, a solvent having high solubility of the polymer to be used (hereinafter sometimes referred to as “good solvent”) may be used depending on the polymer to be used. The good solvent is preferably one which is quickly replaced with the coagulating solution when immersed in the coagulating solution. Examples of the solvent include N-methyl-2-pyrrolidone, dioxane, tetrahydrofuran, dimethylformamide, dimethylacetamide or a mixed solvent thereof. Of these, N-methyl-2-pyrrolidone is preferred.

 製膜原液は良溶媒に加えて、ポリスルホンまたはポリエーテルスルホンの溶解性が低いが上記の良溶媒に相溶性を有する溶媒(以下、「非溶媒」ということがある)を用いることが好ましい。非溶媒としては、水、セルソルブ類、メタノール、エタノール、プロパノール、アセトン、テトラヒドロフラン、ポリエチレングリコール、グリセリン等が挙げられる。これらのうち、水を用いることが好ましい。 It is preferable to use, in addition to the good solvent, a solvent having a low solubility of polysulfone or polyethersulfone but having compatibility with the above-mentioned good solvent (hereinafter sometimes referred to as “non-solvent”). Examples of the non-solvent include water, cellsorbs, methanol, ethanol, propanol, acetone, tetrahydrofuran, polyethylene glycol, glycerin and the like. Of these, water is preferably used.

 製膜原液としてのポリスルホンまたはポリエーテルスルホンの濃度は、5質量%以上35質量%以下、好ましくは10質量%以上30質量%以下であればよい。35質量%以下であることにより、得られる多孔質膜に十分な透過性(例えば水の透過性)を与えることができ、5質量%以上とすることにより選択的に物質を透過する多孔質膜の形成を担保することができる。添加剤の添加量は添加によって製膜原液の均一性が失われることが無い限り特に制限は無いが、通常溶媒に対して0.5容量%以上10容量%以下である。製膜原液が非溶媒と良溶媒とを含む場合、非溶媒の良溶媒に対する割合は、混合液が均一状態を保てる範囲であれば特に制限はないが、1.0質量%~50質量%が好ましく、2.0質量%~30質量%がより好ましく、3.0質量%~10質量%がさらに好ましい。 The concentration of polysulfone or polyethersulfone as a membrane forming solution may be 5% by mass to 35% by mass, preferably 10% by mass to 30% by mass. When the content is 35% by mass or less, sufficient permeability (for example, permeability to water) can be given to the obtained porous membrane, and by setting the content to 5% by mass or more, the porous membrane selectively transmitting the substance Can secure the formation of The additive amount of the additive is not particularly limited as long as the uniformity of the membrane forming solution is not lost by the addition, but it is usually 0.5% by volume or more and 10% by volume or less with respect to the solvent. When the membrane forming solution contains a non-solvent and a good solvent, the ratio of the non-solvent to the good solvent is not particularly limited as long as the mixture can maintain a uniform state, but 1.0 to 50 mass% Preferably, 2.0% by mass to 30% by mass is more preferable, and 3.0% by mass to 10% by mass is more preferable.

 また、ポリビニルピロリドンを用いる場合は、製膜原液において、ポリビニルピロリドンは、ポリスルホンおよびポリエーテルスルホンの総質量に対し、50質量%~120質量%で含まれていることが好ましく、80質量%~110質量%で含まれていることがより好ましい。
 さらに、製膜原液が添加剤として塩化リチウムを含むとき、塩化リチウムは、ポリスルホンおよびポリエーテルスルホンの総質量に対し、5質量%~20質量%で含まれていることが好ましく、10質量%~15質量%で含まれていることがより好ましい。
When polyvinyl pyrrolidone is used, polyvinyl pyrrolidone is preferably contained in an amount of 50% by mass to 120% by mass with respect to the total mass of polysulfone and polyethersulfone in the membrane-forming solution, and is preferably 80% by mass to 110%. More preferably, it is contained by mass%.
Furthermore, when the membrane-forming solution contains lithium chloride as an additive, lithium chloride is preferably contained in an amount of 5% by mass to 20% by mass with respect to the total mass of polysulfone and polyethersulfone, and 10% by mass More preferably, it is contained at 15% by mass.

 凝固液としては、用いられるポリスルホンまたはポリエーテルスルホンの溶解度が低い溶媒を用いることが好ましい。このような溶媒の例としては、水、メタノール、エタノール、ブタノールなどのアルコール類;エチレングリコール、ジエチレングリコールなどのグリコール類;エーテル、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;グリセリン等のグリセロール類などが挙げられる。好ましい凝固液の例としては、水、アルコール類またはこれらの2種以上の混合物が挙げられる。これらのうち、水を用いることが好ましい。 As the coagulating liquid, it is preferable to use a solvent having low solubility of polysulfone or polyethersulfone to be used. Examples of such solvents include alcohols such as water, methanol, ethanol and butanol; glycols such as ethylene glycol and diethylene glycol; aliphatic hydrocarbons such as ether, n-hexane and n-heptane; Glycerol etc. are mentioned. Examples of preferred coagulating solutions include water, alcohols or a mixture of two or more thereof. Of these, water is preferably used.

 凝固液への浸漬の後、使用した凝固液とは異なる溶媒で洗浄を行なうことも好ましい。洗浄は、溶媒に浸漬することにより行なうことができる。洗浄溶媒としてはジエチレングリコールが好ましい。洗浄溶媒としてジエチレングリコールを用い、フィルムを浸漬するジエチレングリコールの温度および浸漬時間のいずれか一方または双方を調節することにより、多孔質膜中のN元素の分布を調節できる。特に、ポリビニルピロリドンの膜への残量を制御することができる。ジエチレングリコールでの洗浄の後さらに、水で洗浄してもよい。 It is also preferable to wash with a solvent different from the coagulation solution used after immersion in the coagulation solution. The washing can be carried out by immersion in a solvent. Diethylene glycol is preferred as the washing solvent. The distribution of N element in the porous film can be controlled by using diethylene glycol as a washing solvent and adjusting one or both of the temperature and the immersion time of diethylene glycol in which the film is immersed. In particular, the remaining amount of polyvinyl pyrrolidone to the membrane can be controlled. After washing with diethylene glycol, it may be further washed with water.

 多孔質膜の製造方法については、特開平4-349927号公報、特公平4-68966号公報、特開平4-351645号公報、特開2010-235808号公報等を参照することができる。 JP-A-4-349927, JP-B-4-64966, JP-A-4-351645, JP-A-2010-235808 and the like can be referred to for the method of producing the porous membrane.

[物理的酸素原子浸透処理]
 上記のようにして得られた多孔質膜に物理的酸素原子浸透処理を行って上記表面改質多孔質膜を得ることができる。物理的酸素原子浸透処理は多孔質膜の表面に細胞等に対して刺激となるような変化を生じさせないため、このような処理により得られる表面改質多孔質膜は免疫隔離膜における使用に適していると考えられる。また、ポリスルホンまたはポリエーテルスルホンを含む多孔質膜は通常疎水性が高いが、物理的酸素原子浸透処理により、多孔質膜の表面の親水性が上がり、上述のように、脱泡処理を行うときに真空引きが不要になるという利点が得られていると考えられる。また、物理的酸素原子浸透処理によって、多孔質膜の表面の不純物等が取り除かれ、脱泡処理を行うときに真空引きが不要になるという利点や、インスリン等の初期透過性が上がる利点が得られていると考えられる。
[Physical oxygen atom penetration treatment]
The surface-modified porous membrane can be obtained by physically impregnating the porous membrane obtained as described above. The surface-modified porous membrane obtained by such treatment is suitable for use in the immunoisolation membrane, since the physical oxygen atom permeation treatment does not cause changes on the surface of the porous membrane to be a stimulus to cells etc. It is thought that Also, although the porous membrane containing polysulfone or polyethersulfone is usually highly hydrophobic, the physical oxygen atom permeation treatment increases the hydrophilicity of the surface of the porous membrane, and when defoaming treatment is performed as described above It is considered that the advantage of eliminating the need for evacuation is obtained. In addition, physical oxygen atom penetration treatment removes impurities and the like on the surface of the porous membrane, and has the advantage of eliminating the need for evacuation when degassing treatment and the advantage of increasing the initial permeability of insulin etc. It is considered to be

 物理的酸素原子浸透処理は多孔質膜のいずれか一方の表面に行なってもよく、両表面に行なってもよいが、両表面に行なうことが好ましい。 The physical oxygen atom permeation treatment may be performed on either surface of the porous membrane or on both surfaces, but it is preferable to perform on both surfaces.

 物理的酸素原子浸透処理としては、プラズマ処理、コロナ放電処理、グロー放電処理、オゾン・紫外線照射処理、火炎処理、熱風処理等が挙げられる。これらのうち、プラズマ処理、コロナ放電処理が好ましく、プラズマ処理がより好ましい。 Examples of physical oxygen atom permeation treatment include plasma treatment, corona discharge treatment, glow discharge treatment, ozone / ultraviolet irradiation treatment, flame treatment, hot air treatment and the like. Among these, plasma treatment and corona discharge treatment are preferable, and plasma treatment is more preferable.

(プラズマ処理)
 プラズマ処理は、相対する電極の間に処理する多孔質膜を配置し、この装置中にプラズマ励起性気体を導入し、電極間に高周波電圧を印加することにより行なうことができる。この気体をプラズマ励起させ電極間にグロー放電を行わせることにより多孔質膜の表面処理が行われる。
 上記高周波電圧の周波数としては、1kHz以上100kHz以下が好ましく用いられ、より好ましくは1kHz以上10kHz以下である。
(Plasma treatment)
The plasma treatment can be performed by disposing a porous film to be treated between opposing electrodes, introducing a plasma-exciting gas into the apparatus, and applying a high frequency voltage between the electrodes. The surface treatment of the porous membrane is performed by causing the gas to be plasma-excited to cause glow discharge between the electrodes.
The frequency of the high frequency voltage is preferably 1 kHz to 100 kHz, and more preferably 1 kHz to 10 kHz.

 上記プラズマ励起性気体としては、例えば、アルゴン、ネオン等の不活性ガスに酸素原子を加えたものが好ましい。不活性ガス流量が5~500cm3(STP)/分であることが好ましく、50~200cm3(STP)/分であることがより好ましく、80~120cm3(STP)/分であることが特に好ましい。また、酸素流量が45cm3(STP)/分以上であり、50cm3(STP)/分以上であることが好ましく、50~100cm3(STP)/分であることがより好ましい。 As said plasma excitation gas, what added the oxygen atom to inert gas, such as argon and neon, for example is preferable. The inert gas flow rate is preferably 5 to 500 cm 3 (STP) / minute, more preferably 50 to 200 cm 3 (STP) / minute, and particularly preferably 80 to 120 cm 3 (STP) / minute. preferable. Further, a limiting oxygen flow rate 45cm 3 (STP) / min or more, preferably 50cm 3 (STP) / min or more, more preferably 50 ~ 100cm 3 (STP) / min.

 上記プラズマ処理は、減圧下で行なうことが好ましい。プラズマ処理時の真空度は0.6~100Paであることが好ましく、1~60Paであることがより好ましく、2~40Paであることが特に好ましい。このような条件のプラズマ処理は、真空プラズマ処理装置を用いて行なうことができる。または、大気圧雰囲気下で高密度プラズマを安定して発生させることができる大気圧プラズマ処理装置を用いて処理を行なってもよい。 The plasma treatment is preferably performed under reduced pressure. The degree of vacuum at the time of plasma treatment is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa. Plasma treatment under such conditions can be performed using a vacuum plasma treatment apparatus. Alternatively, the treatment may be performed using an atmospheric pressure plasma treatment apparatus capable of stably generating high density plasma under an atmospheric pressure atmosphere.

 上記プラズマ処理での投入電力(放電出力)は1~300Wであればよく、3~150Wであることが好ましく、5~100Wであることが特に好ましい。
 上記プラズマ処理の時間は、投入電力等にもよるが、例えば、投入電力が50Wである場合、3~270秒間であることが好ましく、5~180秒間であることがさらに好ましい。
 また、プラズマ処理条件としては、アノードカップリングを用いることが好ましい。
The input power (discharge output) in the plasma treatment may be 1 to 300 W, preferably 3 to 150 W, and particularly preferably 5 to 100 W.
The time of the plasma treatment depends on the input power and the like, but is preferably 3 to 270 seconds, and more preferably 5 to 180 seconds, for example, when the input power is 50 W.
Moreover, it is preferable to use anodic coupling as plasma processing conditions.

(コロナ放電処理)
 コロナ放電処理は、従来公知のいずれかの方法、例えば特公昭48-5043号公報、同47-51905号公報、特開昭47-28067号公報、同49-83767号公報、同51-41770号公報、同51-131576号公報等に開示された方法により行なうことができる。処理機としては市販の各種コロナ処理機が適用でき、例えばSOFTAL(ソフタル)社のマルチナイフ電極を有するコロナ処理機を用いることができる。
(Corona discharge treatment)
Corona discharge treatment can be carried out by any method known in the art, such as Japanese Patent Publication Nos. 48-5043, 47-51905, 47-28067, 49-83767, and 51-41770. The method can be carried out according to the method disclosed in JP-A-51-131576. As the processor, various commercially available corona processors can be applied. For example, a corona processor having a multi-knife electrode manufactured by SOFTAL (Sophtal) can be used.

[他の層]
 本発明の免疫隔離膜は表面改質多孔質膜以外の他の層を含んでいてもよい。他の層としては、ハイドロゲル膜が挙げられる。ハイドロゲル膜は、生体適合性であるものが好ましく、例としては、アルギン酸ゲル膜、アガロースゲル膜、ポリイソプロピルアクリルアミド膜、セルロースを含む膜、セルロース誘導体(例えばメチルセルロース)を含む膜、ポリビニルアルコール膜などが挙げられる。ハイドロゲル膜としては、アルギン酸ゲル膜が好ましい。アルギン酸ゲル膜の具体例としては、アルギン酸-ポリ-L-リジン-アルギン酸のポリイオンコンプレックス膜を挙げることができる。
 本発明の免疫隔離膜は表面改質多孔質膜のみからなることが好ましい。物理的酸素原子浸透処理により得られる上述の効果がより得られ易いからである。ただし、改質表面以外の表面を有する免疫隔離膜においては、改質表面以外の表面側に他の層を有していてもよい。また、改質表面側であっても、免疫隔離膜上述の効果を損なわない網状構造の生体適合性プラスチックからなる層などをその表面に設けてもよい。
[Other layer]
The immunoisolation membrane of the present invention may include other layers other than the surface modified porous membrane. Other layers include hydrogel membranes. The hydrogel film is preferably biocompatible, and examples thereof include an alginate gel film, an agarose gel film, a polyisopropylacrylamide film, a film containing cellulose, a film containing a cellulose derivative (such as methyl cellulose), a polyvinyl alcohol film, etc. Can be mentioned. Alginic acid gel membrane is preferred as the hydrogel membrane. Specific examples of alginic acid gel membranes include alginic acid-poly-L-lysine-alginic acid polyion complex membranes.
The immunoisolation membrane of the present invention preferably comprises only a surface-modified porous membrane. It is because the above-mentioned effect obtained by physical oxygen atom permeation treatment can be more easily obtained. However, in the immunoisolation membrane having a surface other than the modified surface, another layer may be provided on the surface side other than the modified surface. Furthermore, even on the modified surface side, a layer or the like made of a biocompatible plastic having a reticulated structure that does not impair the above-described effect of the immunoisolation film may be provided on the surface.

<免疫隔離膜の用途>
 免疫隔離膜は免疫拒絶反応の防止に用いることができる。具体的には、移植される生物学的構成物に対するレシピエントの免疫拒絶反応を防止するために使用することができる。すなわち、免疫隔離膜はレシピエントの免疫系からの生物学的構成物の保護のために用いることができる。なお、本明細書において、レシピエントは移植を受ける生体を意味する。レシピエントは哺乳動物であることが好ましく、ヒトであることがより好ましい。
<Use of immunoisolation membrane>
Immunoisolation membranes can be used to prevent immune rejection. In particular, it can be used to prevent the immune rejection of the recipient against the biological composition to be transplanted. That is, the immunoisolation membrane can be used to protect biological constituents from the recipient's immune system. In the present specification, the recipient means a living body to receive transplantation. Preferably, the recipient is a mammal, more preferably a human.

[生物学的構成物]
 生物学的構成物は、生体由来の構造物を意味する。生体としては、ウイルス、細菌、酵母、真菌細胞、昆虫、植物、および哺乳動物などが挙げられる。生体は通常哺乳動物であることが好ましい。哺乳動物としては、ウシ、ブタ、ヒツジ、ネコ、イヌ、ヒト等が挙げられる。生物学的構成物は哺乳動物のいずれか由来の構造物であることが好ましい。
[Biological composition]
By biological composition is meant a structure of biological origin. Organisms include viruses, bacteria, yeast, fungal cells, insects, plants, mammals and the like. It is preferable that the living body is usually a mammal. Mammals include cows, pigs, sheep, cats, dogs, humans and the like. Preferably, the biological construct is a construct derived from any mammal.

 生物学的構成物としては、器官、組織、細胞などが挙げられる。生物学的構成物としては、これらのうち、細胞が好ましい。細胞は1つであっても複数であってもよいが複数であることが好ましい。複数の細胞は、互いに分離したものであってもよく、集合体であってもよい。 Biological compositions include organs, tissues, cells and the like. Of these, cells are preferred as biological constituents. The number of cells may be one or more, preferably two or more. The plurality of cells may be separated from one another or may be aggregates.

 生物学的構成物は、生体から直接取得したものであってもよい。また、特に生物学的構成物が細胞である場合、生物学的構成物は生体から直接取得したものであってもよく、胚性幹細胞(ES細胞)、誘導多能性幹細胞(iPS細胞)、間葉系幹細胞等の細胞を分化誘導したものであってもよい。細胞は、前駆細胞であってもよい。 The biological composition may be obtained directly from the living body. In addition, especially when the biological component is a cell, the biological component may be obtained directly from the living body, such as embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), What induced differentiation of cells such as mesenchymal stem cells may be used. The cells may be progenitor cells.

 生物学的構成物としては、一態様として、生理活性物質を放出するものが好ましい。生理活性物質の例としては、各種ホルモン、各種サイトカイン、各種酵素、その他各種生体内因子が挙げられる。より具体的な例としては、インスリン、ドーパミン、第VIII因子等が挙げられる。 As the biological composition, in one aspect, one that releases a physiologically active substance is preferable. Examples of physiologically active substances include various hormones, various cytokines, various enzymes, and various other in vivo factors. More specific examples include insulin, dopamine, factor VIII and the like.

 ここで、インスリンとは、21アミノ酸残基のA鎖と30アミノ酸残基のB鎖がジスルフィド結合を介してつながったポリペプチド(分子量約6000)である。ほ乳類の生体内においてインスリンは、膵臓のランゲルハンス島にあるβ細胞から分泌されている。本発明において生物学的構成物としてインスリン分泌細胞を用いる場合、分泌するインスリンは、ヒト型のインスリンでもよく、その他のほ乳類型(例えばブタ型)のインスリンでもよい。インスリンは遺伝子組み換えの方法により作製されたインスリンでもよい。遺伝子組み換えインスリンの取得方法としては、例えば、門脇孝編:糖尿病ナビゲーター(270~271頁、田尾健、岡芳和「現在と将来のインスリン製剤」、メディカルレビュー社、2002年参照)の記載を参照できる。各種、インスリン類似体(例えば、H.C.Lee,J.W.Yoon,et al.,Nature、第408巻、483~488頁、2000年参照)を用いてもよい。 Here, insulin is a polypeptide (molecular weight about 6000) in which the A chain of 21 amino acid residues and the B chain of 30 amino acid residues are linked via a disulfide bond. In mammalian organisms, insulin is secreted from β cells in the islets of Langerhans of the pancreas. When insulin-secreting cells are used as a biological component in the present invention, the insulin to be secreted may be human insulin or insulin of other mammalian types (eg, pig type). The insulin may be insulin produced by a method of genetic modification. For a method of obtaining genetically modified insulin, for example, the description of Takafumi Kadowaki: Diabetes Navigator (pp. 270-271, Takeshi Tao, Yoshikazu Oka "Present and Future Insulin Preparations", Medical Review, 2002) can be referred to. . Various insulin analogues (see, for example, HC Lee, J. W. Yoon, et al., Nature, 408, 483-488, 2000) may be used.

 生物学的構成物はインスリン分泌細胞であることが好ましい。インスリン分泌細胞とは、血糖値変化に応答してインスリンを分泌できる細胞をいう。インスリン分泌細胞としては、特に限定されるものではなく、例えば、膵臓のランゲルハンス島に存在する膵β細胞を挙げることができる。膵β細胞としては、ヒトの膵β細胞でもよく、ブタ、マウスなどの膵β細胞であってもよい。ブタからの膵β細胞の抽出方法は特開2007-195573号公報の記載を参考にすることができる。また、インスリン分泌細胞としては、ヒト幹細胞から誘導された細胞(例えば、宮崎純一、再生医療、第1巻、第2号、57~61頁、2002年参照)、または小腸上皮幹細胞から誘導された細胞(例えば、藤宮峯子ら、再生医療、第1巻、第2号、63~68頁、2002年参照)であってもよく、インスリンをコードする遺伝子を組み込んだ、インスリン分泌性の細胞であってもよい(例えば、H.C.Lee,J.W.Yoon,et al.,Nature、第408巻、483~488頁、2000年参照)。さらに、膵臓のランゲルハンス島であってもよい(例えば、堀洋、井上一知、再生医療、第1巻、第2号、69~77頁、2002年参照)。 Preferably the biological construct is an insulin secreting cell. Insulin-secreting cells are cells that can secrete insulin in response to changes in blood glucose level. The insulin-secreting cells are not particularly limited, and examples thereof include pancreatic β cells present in the islets of Langerhans of the pancreas. The pancreatic β cells may be human pancreatic β cells or pancreatic β cells such as pigs and mice. The method of extracting pancreatic β cells from swine can be referred to the description of JP-A-2007-195573. Furthermore, as insulin-secreting cells, cells derived from human stem cells (for example, see Miyazaki Jun-ichi, Regenerative Medicine, vol. 1, No. 2, page 57-61 (2002)), or small intestinal epithelial stem cells An insulinotropic cell, which may be a cell (see, for example, Atsuko Fujimiya et al., Regenerative Medicine, Vol. 1, No. 2, p. 63-68, 2002), and which incorporates a gene encoding insulin. (See, for example, HC Lee, J. W. Yoon, et al., Nature, 408, 483-488, 2000). Furthermore, it may be the islet of Langerhans of the pancreas (see, for example, Horiyo, Inoue Ichichi, Regenerative Medicine, Volume 1, No. 2, pp. 69-77, 2002).

[移植用チャンバー]
 本発明の免疫隔離膜は生物学的構成物を内包するための移植用チャンバーの構成部材として用いることができる。移植用チャンバーは、生物学的構成物をレシピエントに移植する際に生物学的構成物を内包するための容器として用いることができる。免疫隔離膜は移植用チャンバーの内部と外部との境界の少なくとも一部に配置される。このように配置することにより、移植用チャンバーに内包される生物学的構成物を外部に存在する免疫細胞等から保護しつつ、水、酸素、グルコース等の栄養分を移植用チャンバーの外部から内部に取り込むことができる。
[Chamber for transplantation]
The immunoisolation membrane of the present invention can be used as a component of a transplantation chamber for containing a biological composition. The implantation chamber can be used as a container for containing a biological composition when implanting the biological composition into a recipient. The immunoisolation membrane is disposed at least part of the boundary between the inside and the outside of the implantation chamber. By arranging in this manner, nutrients such as water, oxygen, glucose and the like can be incorporated from the outside to the inside of the transplantation chamber while protecting the biological components contained in the transplantation chamber from the immune cells etc. existing outside. It can be imported.

 免疫隔離膜は移植用チャンバーの内部と外部との境界の全面に配置されていてもよく、全面に対し、例えば、1~99%、5~90%、10~80%、20~70%、30~60%、40~50%等の面積に相当する一部に配置されていてもよい。免疫隔離膜が配置される面は1つの連続した部分であってもよく、2つ以上の部分に分かれていてもよい。
 本発明の免疫隔離膜が移植用チャンバーの内部と外部との境界の全面に配置されていないとき、残りの面は、例えば、細胞等に加えて酸素、水、グルコース等の栄養分も透過させない不透過性の膜で形成されていればよい。
The immunoisolation membrane may be disposed on the entire surface of the boundary between the inside and the outside of the transplantation chamber, and for example, 1 to 99%, 5 to 90%, 10 to 80%, 20 to 70% of the entire surface. It may be arranged in a part corresponding to the area of 30 to 60%, 40 to 50%, etc. The surface on which the immunoisolation membrane is disposed may be one continuous portion or may be divided into two or more portions.
When the immunoisolation membrane of the present invention is not disposed on the entire surface of the boundary between the inside and the outside of the transplantation chamber, the remaining surface is, for example, nonpermeabilizing not to permeate nutrients such as oxygen, water and glucose in addition to cells. It may be formed of a permeable membrane.

 表面改質多孔質膜のいずれか一方の表面のみが改質表面である場合、移植用チャンバーにおいては、改質表面は内側にあっても外側にあってもよい。
 また、表面改質多孔質膜が緻密部位を有し、上述の表面Xを有している場合、表面Xは移植用チャンバーの内部側にあることが好ましい。すなわち、免疫隔離膜中の多孔質膜の緻密部位がより移植用チャンバーの内部に近くなるように、免疫隔離膜が配置されていることが好ましい。表面Xを移植用チャンバーの内部側にすることにより、生理活性物質の透過性をより高くすることができるからである。
If only one surface of the surface modified porous membrane is a modified surface, in the implantation chamber, the modified surface may be inside or outside.
In addition, when the surface modified porous membrane has a dense portion and has the above-mentioned surface X, it is preferable that the surface X be on the inside side of the implantation chamber. That is, it is preferable that the immunoisolation membrane be disposed so that the compacted portion of the porous membrane in the immunoisolation membrane is closer to the inside of the implantation chamber. By making the surface X inside the implantation chamber, the permeability of the physiologically active substance can be further increased.

 移植用チャンバーは、免疫隔離膜同士が対向して接合している接合部を有していてもよい。接合している免疫隔離膜の部分は特に限定されないが、免疫隔離膜の端部であることが好ましい。特に、端部同士が接合されていることが好ましい。なお、本明細書において、膜について「端部」というとき、膜の厚みからなる側面(エッジ)に実質的に接する一定幅の外周部分またはその一部を意味する。免疫隔離膜同士は、後述の注入口などを除く外周全てが接合されていることが好ましい。例えば、移植用チャンバーは、2つの免疫隔離膜を対向させてその外周を接合した構成、または、線対称構造の1つの免疫隔離膜が2つ折りにされ、対面した外周を接合した構造であることも好ましい。 The implantation chamber may have a junction where the immunoisolation membranes are oppositely joined. The portion of the immunoisolation membrane to which it is conjugated is not particularly limited, but is preferably the end of the immunoisolation membrane. In particular, it is preferable that the ends be joined. In the present specification, when the film is referred to as an "end", it means an outer peripheral portion or a part of a fixed width substantially in contact with the side surface (edge) consisting of the thickness of the film. It is preferable that the entire periphery of the immunoisolation membrane is joined except for the injection port described later. For example, the implantation chamber has a configuration in which two immunoisolation membranes are opposed and their outer circumferences are joined, or one immunoisolation membrane of axisymmetric structure is folded in two and the facing outer circumferences are joined. Is also preferred.

 接合は接着剤を利用した接着または融着等を用いて行なうことができる。
 例えば、硬化性接着剤を用いて接着させることができる。接着剤としては、エポキシ系、シリコン系、アクリル系、ウレタン系などの公知の接着剤が挙げられる。
 また、多孔質膜の間に熱可塑性の樹脂を挟み、その部分を加熱することにより、両者を接合してもよい。このとき、熱可塑性の樹脂として、多孔質膜を形成するポリマーよりも低い融点の樹脂を用いることが好ましい。熱可塑性の樹脂の例として、具体的にはポリエチレン、ポリプロピレン、ポリウレタン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、ポリカーボネートなどが挙げられる。中でもポリエチレン、ポリプロピレン、ポリウレタン、ポリ塩化ビニル、ポリテトラフルオロエチレンが好ましく、ポリエチレン、ポリウレタン、ポリ塩化ビニルがより好ましい。
Bonding can be performed using adhesion or fusion using an adhesive.
For example, a curable adhesive can be used to bond. Examples of the adhesive include known adhesives such as epoxy type, silicon type, acrylic type and urethane type.
Alternatively, a thermoplastic resin may be sandwiched between the porous membranes, and the two may be joined by heating the portion. At this time, as the thermoplastic resin, it is preferable to use a resin having a melting point lower than that of the polymer forming the porous film. Specific examples of the thermoplastic resin include polyethylene, polypropylene, polyurethane, polyvinyl chloride, polytetrafluoroethylene, polyethylene terephthalate, polycarbonate and the like. Among them, polyethylene, polypropylene, polyurethane, polyvinyl chloride and polytetrafluoroethylene are preferable, and polyethylene, polyurethane and polyvinyl chloride are more preferable.

 さらに、免疫隔離膜中の多孔質膜同士を両者の間に他の材料を挟まずに、直接接した状態で融着してもよい。このような融着によっては、挟み込む樹脂などに由来する問題がない移植用チャンバーを得ることができる。ポリスルホンおよびポリエーテルスルホンからなる群より選択されるポリマーを含む多孔質膜を用いる場合、上記ポリマーの融点未満かつガラス転移温度以上の温度に加熱することによって、多孔質膜同士が融着して一体化することができる。融着のための加熱は具体的には、190℃以上340℃未満であればよく、230℃以上340℃未満が好ましい。 Furthermore, the porous membranes in the immunoisolation membrane may be fused in direct contact with each other without sandwiching other materials between them. By such fusion, it is possible to obtain a transplantation chamber which has no problem derived from a resin to be inserted or the like. When a porous membrane containing a polymer selected from the group consisting of polysulfone and polyethersulfone is used, the porous membranes are fused and integrated by heating to a temperature lower than the melting point of the polymer and higher than the glass transition temperature. Can be Specifically, heating for fusion may be 190 ° C. or more and less than 340 ° C., and preferably 230 ° C. or more and less than 340 ° C.

 移植用チャンバーの形態は限定されず、袋状、バッグ状、チューブ状、マイクロカプセル状、太鼓状などであればよい。例えば、太鼓状の移植用チャンバーはシリコーンリングの上下に免疫隔離膜を接着させて形成することができる。移植用チャンバーの形状は、後述する移植用デバイスとしての使用の際に、レシピエント内における移植用チャンバーの移動を防止できる形状であることが好ましい。移植用チャンバーの形状の具体例としては、円筒状、円盤状、矩形、卵型、星形、円形などが挙げられる。移植用チャンバーは、シート状、ストランド状、らせん状などであってもよい。移植用チャンバーは、生物学的構成物を内包し、後述の移植用デバイスとした際に初めて上記の形状となるものであってもよい。 The form of the implantation chamber is not limited, and may be bag-like, bag-like, tube-like, microcapsule-like, drum-like or the like. For example, a drum-shaped implantation chamber can be formed by adhering an immuno-isolating membrane on the top and bottom of a silicone ring. The shape of the implantation chamber is preferably a shape that can prevent movement of the implantation chamber in the recipient when used as an implantation device described later. Specific examples of the shape of the implantation chamber include a cylindrical shape, a disk shape, a rectangular shape, an oval shape, a star shape, and a circular shape. The implantation chamber may be sheet-like, strand-like, spiral-like or the like. The implantation chamber may contain the biological component, and may have the above-described shape only when it is used as an implantation device described later.

 移植用チャンバーは、容器としての形状や強度を維持するための生体適合性プラスチック等を含んでいてもよい。例えば、移植用チャンバーの内部と外部との境界が免疫隔離膜および免疫隔離膜に該当しない生体適合性プラスチックからなっていてもよい。または実質的に内部と外部との境界の全面に免疫隔離膜が配置されている移植用チャンバーは、強度の観点からさらに内部と外部との境界の外側に網状構造の生体適合性プラスチックが配置されていてもよい。 The implantation chamber may include a biocompatible plastic or the like for maintaining the shape and strength of the container. For example, the boundary between the inside and the outside of the implantation chamber may be made of a biocompatible plastic which does not correspond to the immunoisolation membrane and the immunoisolation membrane. Alternatively, the implantation chamber in which the immunoisolation membrane is disposed substantially on the entire inner / outer border is further arranged with a network-like biocompatible plastic outside the inner / outer border in terms of strength. It may be

(注入口)
 移植用チャンバーは、移植用チャンバー内部に生物学的構成物等を注入するための注入口などが設けられていることも好ましい。注入口として、移植用チャンバーの内部に通じるチューブが設けられていてもよい。
 チューブは例えば熱可塑性の樹脂を含むものであればよい。熱可塑性の樹脂は多孔質膜のポリマー材料よりも融点が低いものであることが好ましい。
(Inlet)
It is also preferable that the implantation chamber is provided with an injection port for injecting a biological component or the like into the implantation chamber. As an inlet, a tube may be provided which leads to the interior of the implantation chamber.
The tube may be, for example, one containing a thermoplastic resin. The thermoplastic resin preferably has a melting point lower than that of the porous membrane polymer material.

 チューブに用いられる熱可塑性の樹脂として、具体的にはポリエチレン、ポリプロピレン、ポリウレタン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、ポリカーボネートなどが挙げられる。中でもポリエチレン、ポリプロピレン、ポリウレタン、ポリ塩化ビニル、ポリテトラフルオロエチレンが好ましく、ポリエチレン、ポリウレタン、ポリ塩化ビニルが特に好ましい。 Specific examples of the thermoplastic resin used for the tube include polyethylene, polypropylene, polyurethane, polyvinyl chloride, polytetrafluoroethylene, polyethylene terephthalate, polycarbonate and the like. Among them, polyethylene, polypropylene, polyurethane, polyvinyl chloride and polytetrafluoroethylene are preferable, and polyethylene, polyurethane and polyvinyl chloride are particularly preferable.

 チューブは、例えば多孔質膜の一部に接するように免疫隔離膜に挟んだ後、上記一部と接合される。接合は融着または接着剤を用いた接着等により行うことができる。このうち、融着を行うことが好ましい。融着は熱融着であればよい。
 融着を行う場合、チューブは多孔質膜のポリマー材料よりも融点が低い熱可塑性の樹脂を含むことが好ましい。融点がより低い熱可塑性の樹脂を含むチューブを多孔質膜と融着するとき、加熱時にまずチューブ材が溶けて多孔質膜の孔に入り込むことができると考えられるからである。
The tube is, for example, sandwiched with the immunoisolation membrane so as to be in contact with a part of the porous membrane and then joined with the part. Bonding can be performed by fusion bonding or adhesion using an adhesive. Among these, it is preferable to perform fusion. The fusion may be heat fusion.
When fusion is performed, the tube preferably comprises a thermoplastic resin having a melting point lower than that of the porous membrane polymer material. When a tube containing a thermoplastic resin having a lower melting point is fused to a porous membrane, it is thought that the tube material can be melted first and then enter into the pores of the porous membrane during heating.

 接着を行う場合、接着剤としては膜を構成するポリマーやチューブの材質に応じて適宜選択でき、エポキシ系、シリコン系、アクリル系、ウレタン系などの接着剤を用いることができる。例えば、多孔質膜のポリマー材料よりも融点が低い樹脂材料を含むチューブを用いる場合に、接着による接合を行うことができる。 When bonding is performed, the adhesive can be appropriately selected according to the material of the polymer forming the film and the tube, and an adhesive of epoxy type, silicon type, acrylic type, urethane type or the like can be used. For example, when using a tube containing a resin material having a melting point lower than that of the porous membrane polymer material, bonding can be performed by adhesion.

[移植用デバイス]
 移植用デバイスは、少なくとも、上記移植用チャンバー用および生物学的構成物を含む複合体である。移植用デバイスにおいては、移植用チャンバーに生物学的構成物が内包されている。
 移植用デバイスにおいて、移植用チャンバーには、生物学的構成物のみが内包されていてもよく、または、生物学的構成物および生物学的構成物以外の他の構成物または成分が内包されていてもよい。例えば、生物学的構成物はハイドロゲルとともに、好ましくはハイドロゲルに内包された状態で、移植用チャンバーに内包されていてもよい。または、移植用デバイスは、pH緩衝剤、無機塩、有機溶媒、アルブミンなどのタンパク質、ペプチドを含んでいてもよい。
 移植用デバイスにおいて、生物学的構成物は1種のみ含まれていてもよく、2種以上含まれていてもよい。例えば、移植の目的の生理活性物質を放出するか、またはその他の移植の目的の機能を果たす生物学的構成物のみが含まれていてもよく、これらの生物学的構成物の機能を補助する生物学的構成物がさらに含まれていてもよい。
[Porting device]
The implantation device is a complex comprising at least the implantation chamber and the biological composition. In the implanting device, the implanting chamber encloses the biological composition.
In the device for transplantation, the chamber for transplantation may contain only the biological component or may contain other components or components other than the biological component and the biological component. May be For example, the biological composition may be contained in the implantation chamber together with the hydrogel, preferably in the state of being contained in the hydrogel. Alternatively, the implant device may contain a pH buffer, an inorganic salt, an organic solvent, a protein such as albumin, and a peptide.
In the device for transplantation, only one type of biological composition may be contained, or two or more types may be contained. For example, it may contain only biological constituents that release bioactive substances for the purpose of transplantation, or perform other functions of the purpose of transplantation, which support the function of these biological constituents Further biological constituents may be included.

 移植用デバイスは例えば腹腔内または皮下などに移植されるものであればよい。または、移植用デバイスは血管接続デバイスであってもよい。例えば、生物学的構成物としてインスリン分泌細胞を用いる場合、血液と膜を直接接するように移植することによって、血糖値変化に対応したインスリン分泌が可能となる。 The implanting device may be implanted in, for example, the abdominal cavity or subcutaneously. Alternatively, the implantable device may be a vascular connection device. For example, in the case of using an insulin-secreting cell as a biological component, transplanting blood and a membrane in direct contact with each other enables insulin secretion corresponding to a change in blood glucose level.

 移植用デバイスおよび移植用チャンバーについては、蛋白質核酸酵素、第45巻、2307~2312頁、(大河原久子、2000年)、特表2009-522269号公報、特表平6-507412号公報等の記載を参照できる。 The device for transplantation and the chamber for transplantation are described in Protein Nucleic Acid Enzyme, Volume 45, pp. 2307 to 2312 (Okuhara Hisako, 2000), JP 2009-522269, JP 6-507412, etc. You can refer to

 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be more specifically described below with reference to examples and comparative examples. The materials, amounts used, proportions, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as limited by the specific examples shown below.

[多孔質膜の作製]
 ポリスルホン(ソルベイ社製 P3500)15質量部、ポリビニルピロリドン(K-30)15質量部、塩化リチウム1質量部、水2質量部をN-メチル-2-ピロリドン67質量部に溶解して製膜原液を得た。この製膜原液をPETフィルム表面に流延した。上記流延した液膜表面に30℃、相対湿度80%RHに調節した空気を2m/secで5秒間当てた。その後直ちに水を満たした65℃の凝固液槽に浸漬した。PETフィルムを剥離して多孔質膜を得た。その後、80℃のジエチレングリコール浴に120秒間つけ、その後純水でよく洗浄し、乾燥厚み50μmの多孔質膜を得た。
[Preparation of porous membrane]
15 parts by mass of polysulfone (Sorbay Corporation P3500), 15 parts by mass of polyvinyl pyrrolidone (K-30), 1 part by mass of lithium chloride and 2 parts by mass of water dissolved in 67 parts by mass of N-methyl-2-pyrrolidone I got This film-forming solution was cast on the surface of a PET film. Air adjusted to 30 ° C. and relative humidity 80% RH was applied at 2 m / sec for 5 seconds to the surface of the cast liquid film. Immediately thereafter, it was immersed in a 65 ° C. coagulation bath filled with water. The PET film was peeled off to obtain a porous membrane. Then, it was placed in a diethylene glycol bath at 80 ° C. for 120 seconds, and then thoroughly washed with pure water to obtain a porous membrane with a dry thickness of 50 μm.

 得られた多孔質膜の膜断面のSEM撮影(S-5200, 日立ハイテクノロジーズ、10.0kBV)を行った。画像分析の結果、得られた多孔質膜は、厚み方向で孔径が表面に向かって連続的に増加する孔径分布を有し、内部に緻密部位を有していた。多孔質膜の膜厚は50μm、最小孔径は0.8μm、最大孔径は5.6μmであった。緻密部位は一方の表面(表面X)から15μmの位置であった。 An SEM photograph (S-5200, Hitachi High-Technologies, 10.0 kBV) of the cross section of the obtained porous membrane was performed. As a result of image analysis, the obtained porous film had a pore diameter distribution in which the pore diameter was continuously increased toward the surface in the thickness direction, and had a dense region inside. The thickness of the porous membrane was 50 μm, the minimum pore size was 0.8 μm, and the maximum pore size was 5.6 μm. The dense portion was located 15 μm from one surface (surface X).

 得られた多孔質膜をデスクトップ真空プラズマ装置(ユーテック社製)に入れ、キャリアガス条件を酸素流量20cm(STP)/min、アルゴン流量100cm(STP)/minとし、真空度30Pa、投入電力を50Wとし、表1に示す0から270秒の間の処理時間で、まず表面Xをプラズマ処理し、その後裏返し、反対面をプラズマ処理することで、両表面にプラズマ処理を行い、表面改質多孔質膜を得た。 The obtained porous film is placed in a desktop vacuum plasma apparatus (manufactured by U-Tech Co., Ltd.), and the carrier gas conditions are: oxygen flow 20 cm 3 (STP) / min, argon flow 100 cm 3 (STP) / min, vacuum degree 30 Pa, input power The surface X is first plasma-treated at a processing time between 0 and 270 seconds shown in Table 1, and then reversely processed, and the opposite surface is plasma-treated to plasma-treat both surfaces. A porous membrane was obtained.

(元素比の測定)
 得られた表面改質多孔質膜の中心部をサンプリングし、表面の元素比を、ESCA(Electron Spectroscopy FOR Chemical Analysis)を使用して算出した。
 表面改質多孔質膜をPhysical Electronics, Inc. 社製 QuanteraSXMに入れ、X線源:Al-Kα線(1490eV,25W,100μmの直径)、測定領域:300μm×300μm、Pass Energy 55eV、 Step 0.05eVの条件で、表面Xにおける炭素原子、酸素原子、窒素原子、硫黄原子の合計に対する各元素の比率を計測した。結果を表1に示す。
(Measurement of elemental ratio)
The central part of the obtained surface modified porous membrane was sampled, and the elemental ratio of the surface was calculated using ESCA (Electron Spectroscopy FOR Chemical Analysis).
Surface modified porous membrane was prepared from Physical Electronics, Inc. X-ray source: Al-Kα ray (1490 eV, 25 W, 100 μm diameter), measurement area: 300 μm × 300 μm, Pass Energy 55 eV, Step 0.05 eV, carbon atoms on surface X, oxygen The ratio of each element to the total of atoms, nitrogen atoms, and sulfur atoms was measured. The results are shown in Table 1.

(インスリン透過性)
 コーニング社製のインサートセル(6.5mm Transwell with 5.0μmPore Polycarbonate Membrane Insert)の膜をくり抜き、代わりにインサートセルに表面改質多孔質膜を両面テープで固定した。
 真空引き前処理を行う表面改質多孔質膜サンプルは、培地(膵島培養用メディウム、コスモバイオ、PNIM3)1mLが入った24穴プレートのウェルに、表面改質多孔質膜を貼り付けたインサートセルをセットし膜が培地に浸かるようにし、真空ポンプで真空に引き10分間放置した。
(Insulin permeability)
The membrane of a Corning insert cell (6.5 mm Transwell with 5.0 μm Pore Polycarbonate Membrane Insert) was hollowed out, and instead, the surface-modified porous membrane was fixed to the insert cell with double-sided tape.
The surface-modified porous membrane sample to be subjected to pretreatment for evacuation is an insert cell in which the surface-modified porous membrane is attached to the well of a 24-well plate containing 1 mL of culture medium (medium for pancreatic islet culture, Cosmobio, PNIM3) Was set so that the membrane was immersed in the medium, and vacuum was applied using a vacuum pump for 10 minutes.

 その後インサートセルを取り出し、膜が乾燥しないよう素早く培地を取り除いた後、インサートセル内に0.2μg/mLのインスリン(和光純薬工業、インスリンHumaneレコンビナント、097-06474)を含む培地(膵島培養用メディウム、コスモバイオ、PNIM3)を100μL入れ、同様のインスリンを含まない培地800μLを含む24穴プレートに挿入した。1時間静置し、インサートセル側、24穴プレート側の培地を採取し、Insulin ELISA(ALPCO製80-INSRT-E01)でインスリン量を定量した。24穴側の透過してきたインスリン量を以下の基準で評価した。
 
60分後に透過側のインスリン量が4.5ng以上・・・AA
60分後に透過側のインスリン量が4.0ng以上4.5ng未満・・・A
60分後に透過側のインスリン量が2.0ng以上4.0ng未満・・・B
60分後に透過側のインスリン量が1.0ng以上2.0ng未満・・・C
60分後に透過側のインスリン量が0ng以上1.0ng未満・・・D
After removing the insert cell and quickly removing the medium so as not to dry the membrane, a medium (islet culture) containing 0.2 μg / mL of insulin (Wako Pure Chemical Industries, Insulin Humane recombinant, 097-06474) in the insert cell 100 μL of medium, Cosmobio, PNIM3) was added and inserted into a 24-well plate containing 800 μL of a similar medium without insulin. The mixture was allowed to stand for 1 hour, the medium on the insert cell side and the 24-well plate side was collected, and the amount of insulin was quantified by insulin ELISA (80-INSRT-E01 manufactured by ALPCO). The amount of permeated insulin on the 24 well side was evaluated according to the following criteria.

After 60 minutes, the amount of insulin on the permeation side is 4.5 ng or more ... AA
After 60 minutes, the amount of insulin on the permeation side is 4.0 ng or more and less than 4.5 ng ... A
After 60 minutes, the amount of insulin on the permeation side is 2.0 ng or more and less than 4.0 ng ... B
After 60 minutes, the amount of insulin on the permeation side is 1.0 ng or more and less than 2.0 ng ... C
After 60 minutes, the amount of insulin on the permeation side is 0 ng or more and less than 1.0 ng ... D

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

[移植用チャンバーの作製]
 上記で作製したプラズマ処理時間90秒を両面に行った表面改質多孔質膜を3cm×5cmに切り出し、製造時に空気を当てた側の面を内側にして2つ折りにした。その後、富士インパルス社製茶袋シーラー(T-230K)を用い、3cm×2.5cmの長方形の長辺2辺および短辺2辺の4辺を230℃で加熱し、接合し、外周部を接合部を1mm残してカットし、1cm×2cmの移植用チャンバーを作製した。
[Preparation of chamber for transplantation]
The surface-modified porous membrane subjected to plasma treatment for 90 seconds on both sides was cut into 3 cm × 5 cm, and the surface on the side to which air was applied at the time of production was turned inside to be folded in two. Thereafter, using a tea bag sealer (T-230K) manufactured by Fuji Impulse Co., four long sides of 3 cm × 2.5 cm rectangular long sides and two short sides are heated at 230 ° C. and joined, and the outer peripheral portion is joined The part was cut leaving 1 mm to make a 1 cm × 2 cm implantation chamber.

(細胞浸潤阻害性試験)
 作製した移植用チャンバーの生体での膜内部への細胞浸潤阻害を以下のように評価した。細胞浸潤阻害性の評価は各種細胞を遮断する機能の指標となる。
 SDラット(Sprague-Dawley rat)の背部皮下に1cm×2cmの移植用チャンバーを埋植し縫合した。2週間飼育後に同部位を切除しHE(ヘマトキシリン・エオシン)組織染色切片を作製した。この組織染色切片の画像を図1に示す。図1に示すように細胞浸潤阻害層が認められ、また内部への細胞の侵入が認められなかったことから、細胞の浸潤を阻害できていることがわかる。
(Cell infiltration inhibition test)
The inhibition of cell infiltration into the membrane inside of the living body of the produced transplantation chamber was evaluated as follows. The evaluation of cell infiltration inhibition is an index of the function of blocking various cells.
A 1 cm × 2 cm implantation chamber was implanted and sutured subcutaneously on the back of SD rat (Sprague-Dawley rat). After rearing for 2 weeks, the same site was excised and HE (hematoxylin and eosin) tissue stained sections were prepared. An image of this tissue stained section is shown in FIG. As shown in FIG. 1, the cell infiltration-inhibiting layer was observed, and no cell invasion into the inside was observed, which indicates that the cell infiltration was inhibited.

1 表面改質多孔質膜
2 細胞浸潤阻害層
1 surface modified porous membrane 2 cell infiltration inhibition layer

Claims (21)

表面改質多孔質膜を含む免疫隔離膜であって、
前記表面改質多孔質膜はポリスルホンまたはポリエーテルスルホンを含み、
前記表面改質多孔質膜の少なくとも一方の表面の、酸素原子、窒素原子、炭素原子、および硫黄原子の総数に対する酸素原子数比が11.3%以上31.2%以下であり,前記総数に対する窒素原子数比が0.1%以上4.0%以下である免疫隔離膜。
An immunoisolation membrane comprising a surface modified porous membrane,
The surface modified porous membrane comprises polysulfone or polyethersulfone,
The ratio of the number of oxygen atoms to the total number of oxygen atoms, nitrogen atoms, carbon atoms, and sulfur atoms on at least one surface of the surface-modified porous membrane is 11.3% or more and 31.2% or less, with respect to the total number An immunoisolation membrane having a nitrogen atom number ratio of 0.1% or more and 4.0% or less.
前記の少なくとも一方の表面の、前記総数に対する炭素原子数比が65.8%以上80.9%以下であり,前記総数に対する硫黄原子数比が2.2%以上2.9%以下である請求項1に記載の免疫隔離膜。 The carbon atom number ratio to the total number of the at least one surface is 65.8% to 80.9%, and the sulfur atom number ratio to the total number is 2.2% to 2.9%. The immune isolation membrane according to Item 1. 前記表面改質多孔質膜が窒素含有ポリマーを含む請求項1または2に記載の免疫隔離膜。 The immunoisolation membrane according to claim 1 or 2, wherein the surface modified porous membrane comprises a nitrogen-containing polymer. 前記窒素含有ポリマーがポリビニルピロリドンである請求項3に記載の免疫隔離膜。 The immunoisolation membrane according to claim 3, wherein the nitrogen-containing polymer is polyvinyl pyrrolidone. 前記の少なくとも一方の表面が両表面である請求項1~4のいずれか一項に記載の免疫隔離膜。 The immunoisolation membrane according to any one of claims 1 to 4, wherein the at least one surface is both surfaces. 前記表面改質多孔質膜からなる請求項1~5のいずれか一項に記載の免疫隔離膜。 The immunoisolation membrane according to any one of claims 1 to 5, comprising the surface-modified porous membrane. 前記表面改質多孔質膜の厚みが1.0μm~200μmである請求項1~6のいずれか一項に記載の免疫隔離膜。 The immunoisolation membrane according to any one of claims 1 to 6, wherein the thickness of the surface modified porous membrane is 1.0 μm to 200 μm. 前記表面改質多孔質膜は、孔径が最小となる層状の緻密部位を内部に有する請求項1~7のいずれか一項に記載の免疫隔離膜。 The immunoisolation membrane according to any one of claims 1 to 7, wherein the surface-modified porous membrane has a layered compact portion in which the pore size is minimized. 前記緻密部位から前記表面改質多孔質膜の少なくとも一方の表面に向かって厚み方向で孔径が連続的に増加している請求項8に記載の免疫隔離膜。 The immunoisolation membrane according to claim 8, wherein the pore diameter is continuously increased in the thickness direction from the dense portion toward at least one surface of the surface-modified porous membrane. 前記緻密部位が前記表面改質多孔質膜の厚みの中央部位よりもいずれか一方の表面Xに偏っている請求項8または9に記載の免疫隔離膜。 The immunoisolation membrane according to claim 8 or 9, wherein the dense portion is biased to one surface X of the central portion of the thickness of the surface-modified porous membrane. 生物学的構成物を内包するための移植用チャンバーであって、
前記移植用チャンバーの内部と外部との境界の少なくとも一部に請求項1~10のいずれか一項に記載の免疫隔離膜を有する前記移植用チャンバー。
A grafting chamber for containing biological constituents, wherein
The implantation chamber having the immunoisolation membrane according to any one of claims 1 to 10 at least a part of the boundary between the inside and the outside of the implantation chamber.
生物学的構成物を内包するための移植用チャンバーであって、
前記移植用チャンバーの内部と外部との境界の少なくとも一部に請求項10に記載の免疫隔離膜を有し、
前記表面改質多孔質膜の表面Xが前記内部側にある前記移植用チャンバー。
A grafting chamber for containing biological constituents, wherein
The immunoisolation membrane according to claim 10 is provided on at least a part of the boundary between the inside and the outside of the transplantation chamber,
The implanting chamber, wherein the surface X of the surface modified porous membrane is on the inner side.
前記生物学的構成物が細胞である請求項11または12に記載の移植用チャンバー。 The implantation chamber according to claim 11 or 12, wherein the biological construct is a cell. 請求項11~13のいずれか一項に記載の移植用チャンバーに前記生物学的構成物が内包されている移植用デバイス。 A device for transplantation, wherein the biological composition is contained in the chamber for transplantation according to any one of claims 11 to 13. 前記生物学的構成物が生理活性物質を放出する請求項14に記載の移植用デバイス。 The implantable device according to claim 14, wherein the biological composition releases a biologically active substance. 前記生理活性物質がインスリンである請求項15に記載の移植用デバイス。 The implantable device according to claim 15, wherein the physiologically active substance is insulin. 免疫隔離膜の製造方法であって、多孔質膜表面に物理的酸素原子浸透処理を行うことを含む製造方法。 A method of producing an immunoisolation membrane, which comprises performing physical oxygen atom permeation treatment on the surface of a porous membrane. 請求項1~10のいずれか一項に記載の免疫隔離膜の製造方法であって、ポリスルホンまたはポリエーテルスルホンを含む多孔質膜の表面に物理的酸素原子浸透処理を行って前記表面改質多孔質膜を得ることを含む製造方法。 The method for producing an immunoisolation membrane according to any one of claims 1 to 10, wherein the surface modified porous membrane is subjected to physical oxygen atom permeation treatment on the surface of the porous membrane containing polysulfone or polyethersulfone. A method of manufacture comprising obtaining a quality membrane ポリスルホンまたはポリエーテルスルホンを含む製膜原液を支持体上に流延すること、
流延された液膜の表面に調温湿風を当てること、および
調温湿風を当てた後に得られる膜を凝固液に浸漬すること
を含む方法で、前記多孔質膜を得ることをさらに含む請求項17または18に記載の製造方法。
Casting a casting solution containing polysulfone or polyethersulfone on a support;
The porous membrane is further obtained by a method including applying temperature-controlling temperature / humidity air to the surface of the casted liquid film, and immersing the film obtained after applying temperature-controlling air-conditioning in a coagulating solution. The production method according to claim 17 or 18, comprising.
前記製膜原液がポリビニルピロリドンを含む請求項19に記載の製造方法。 The method according to claim 19, wherein the membrane-forming solution contains polyvinyl pyrrolidone. 前記物理的酸素原子浸透処理がプラズマ処理である請求項17~20のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 17 to 20, wherein the physical oxygen atom permeation treatment is plasma treatment.
PCT/JP2018/024671 2017-06-29 2018-06-28 Immunoisolation membrane, method for producing immunoisolation membrane, transplant chamber, and transplant device Ceased WO2019004382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127660 2017-06-29
JP2017-127660 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019004382A1 true WO2019004382A1 (en) 2019-01-03

Family

ID=64742346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024671 Ceased WO2019004382A1 (en) 2017-06-29 2018-06-28 Immunoisolation membrane, method for producing immunoisolation membrane, transplant chamber, and transplant device

Country Status (1)

Country Link
WO (1) WO2019004382A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115245741A (en) * 2022-01-24 2022-10-28 江西博鑫环保科技股份有限公司 A kind of preparation method of polydopamine ceramic composite membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017129A1 (en) * 1995-11-09 1997-05-15 University Of Toledo Immunoprotective membrane
JP2009291708A (en) * 2008-06-05 2009-12-17 Hitachi Ltd Reverse osmosis membrane and surface treating method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017129A1 (en) * 1995-11-09 1997-05-15 University Of Toledo Immunoprotective membrane
JP2009291708A (en) * 2008-06-05 2009-12-17 Hitachi Ltd Reverse osmosis membrane and surface treating method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETERSEN, P. ET AL.: "Improved Diffusion Properties of a New Polysulfone Membrane for the Development of a Bioartificial Pancreas", TRANSPLANTATION PROCEEDINGS, vol. 33, no. 1-2, 2001, pages 1952 - 1953, XP055566976 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115245741A (en) * 2022-01-24 2022-10-28 江西博鑫环保科技股份有限公司 A kind of preparation method of polydopamine ceramic composite membrane
CN115245741B (en) * 2022-01-24 2024-05-14 江西博鑫环保科技股份有限公司 Preparation method of polydopamine ceramic composite membrane

Similar Documents

Publication Publication Date Title
JP6818042B2 (en) Immune isolation membranes, transplant chambers, and transplant devices
JP6892874B2 (en) Immune Isolation Membranes, Transplant Chambers, and Transplant Devices
US11771806B2 (en) Chamber for transplantation and device for transplantation
US11576370B2 (en) Chamber for transplantation, method for manufacturing chamber for transplantation, device for transplantation, and method for fusion welding porous membranes
JP7023717B2 (en) Semipermeable membrane and its manufacturing method
WO2019004382A1 (en) Immunoisolation membrane, method for producing immunoisolation membrane, transplant chamber, and transplant device
JPWO2020138028A1 (en) Cell transplant kits, bag-like structure manufacturing methods, and diabetes treatment agents
US11856946B2 (en) Chamber for transplantation and device for transplantation
WO2019004380A1 (en) Chamber for implantation and device for implantation
WO2019004378A1 (en) Transplant chamber and transplant device
Voicu et al. Cellulose derivatives based membranes for biomedical applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP