[go: up one dir, main page]

WO2019159522A1 - Cooling structure for rotary electric machine - Google Patents

Cooling structure for rotary electric machine Download PDF

Info

Publication number
WO2019159522A1
WO2019159522A1 PCT/JP2018/046097 JP2018046097W WO2019159522A1 WO 2019159522 A1 WO2019159522 A1 WO 2019159522A1 JP 2018046097 W JP2018046097 W JP 2018046097W WO 2019159522 A1 WO2019159522 A1 WO 2019159522A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil end
end portion
stator core
central axis
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/046097
Other languages
French (fr)
Japanese (ja)
Inventor
村上 聡
秀明 高御堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Publication of WO2019159522A1 publication Critical patent/WO2019159522A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a cooling structure for a rotating electric machine.
  • a cooling structure for a rotating electric machine is known.
  • Such a cooling structure for a rotating electric machine is disclosed in, for example, US Patent Application Publication No. 2015/0130302.
  • US Patent Application Publication No. 2015/0130302 discloses a cooling jacket for an in-vehicle motor.
  • the cooling jacket includes a cylindrical housing and a cylindrical case that covers the outer periphery of the housing.
  • the cylindrical housing is configured to surround the outer periphery of the motor.
  • a plurality of fins are provided on the outer peripheral surface of the cylindrical housing so as to extend along the circumferential direction.
  • the cylindrical case is provided so that the outer periphery of a cylindrical housing may be covered.
  • a flow path through which the refrigerant flows is constituted by a space surrounded by the cylindrical case and the cylindrical housing.
  • a refrigerant inlet and outlet are provided on one side in the central axis direction of the cooling jacket.
  • the refrigerant flowing in from the inflow port flows toward the other side in the central axis direction, and then flows along the circumferential direction between a plurality of fins provided so as to extend along the circumferential direction. Thereafter, the refrigerant changes its flowing direction from the circumferential direction toward one side in the central axis direction, and then flows out from the outlet.
  • a coil is arranged on a stator core of a motor. Further, the coil end portions of the coils protrude from the end surface on one side and the end surface on the other side in the central axis direction of the stator core, respectively. Due to the difference in volume between the coil end portion protruding from one side in the central axis direction of the stator core and the coil end portion protruding from the other side, one side in the central axis direction of the motor (stator core) The temperature difference from the other side may be relatively large. Specifically, the heat generation amount from the coil end portion having a large volume is larger than the heat generation amount from the coil end portion having a small volume.
  • the heat generation amount from the coil end portion having a large volume is larger than the heat generation amount from the coil end portion having a small volume, in US Patent Application Publication No. 2015/0130302.
  • the cooling jacket By providing the described cooling jacket, it is possible to dissipate heat generated from the coil end portion by the refrigerant flowing along the circumferential direction. Specifically, the heat generated from the coil end portion is radiated from the cooling jacket (refrigerant) through the stator core.
  • the cooling jacket described in US Patent Application Publication No. 2015/0130302 since the refrigerant flows along the circumferential direction, the coil end portion side having a large volume (heat generation amount) also has a small volume (heat generation amount).
  • the present invention has been made to solve the above-described problems, and one object of the present invention is when the volume of the coil end portion is different between one side and the other side in the central axis direction of the stator core. Another object is to provide a cooling structure for a rotating electrical machine capable of reducing a temperature difference between one side and the other side in the central axis direction of the rotating electrical machine.
  • a cooling structure for a rotating electrical machine is a cooling structure for a rotating electrical machine including a rotor core and a stator core provided to face the rotor core and in which a coil is disposed. And a jacket portion provided so as to cover the outer peripheral surface of the stator core and provided therein with a flow path through which a refrigerant for cooling the stator core flows.
  • the coil protrudes from an end surface on one side in the central axis direction of the stator core.
  • a first coil end portion and a second coil end portion protruding from the other end surface of the stator core in the central axis direction and having a volume larger than the volume of the first coil end portion.
  • the flow path is configured to flow from the second coil end portion side toward the first coil end portion side.
  • the refrigerant moves from the second coil end portion side having a large volume toward the first coil end portion side having a small volume in the central axis direction. Are configured to flow through the flow path. Accordingly, the refrigerant flows from the second coil end portion side having a large volume (relatively high temperature) in a state where the refrigerant temperature is relatively low. As a result, the second coil end portion side having a relatively high temperature is efficiently cooled, so that the temperature on the second coil end portion side can be relatively reduced. As a result, the degree of temperature decrease on the second coil end portion side is greater than the degree of temperature decrease on the first coil end portion side.
  • the temperature on the second coil end portion side can be made closer to the temperature on the first coil end portion side. Therefore, even when the volume of the coil end portion is different on one side and the other side in the central axis direction of the stator core. The temperature difference between the one side and the other side in the central axis direction of the rotating electrical machine can be reduced.
  • the temperature at the one side and the other side in the central axis direction of the rotating electric machine is different.
  • the difference can be reduced.
  • the “center axis direction” means a direction along the rotation axis (reference numeral O) of the stator core 21 (rotor core 11).
  • the “circumferential direction” means the circumferential direction (A direction) of the stator core 21.
  • “inner side in the radial direction” and “inner side” mean the direction toward the center of the stator core 21 (the direction of the arrow B1).
  • “outside in the radial direction” and “outside of the outer diameter” mean a direction toward the outside of the stator core 21 (arrow B2 direction).
  • the rotating electrical machine 1 includes a rotor 10 and a stator 20.
  • the rotor 10 includes an annular rotor core 11.
  • the rotor core 11 is formed by laminating a plurality of electromagnetic steel plates.
  • a plurality of permanent magnets 12 are embedded in the rotor core 11.
  • the rotor core 11 is rotated by a force generated by a magnetic field from the permanent magnet 12 and a current flowing in a coil 30 described later.
  • a shaft 13 is provided along the central axis of the rotor core 11.
  • Bearings 14 are respectively provided on one side and the other side of the shaft 13 in the central axis direction.
  • the stator 20 includes an annular stator core 21.
  • the stator 20 constitutes a part of the inner rotor type rotating electrical machine 1, and the stator core 21 is disposed so as to face the rotor core 11 in the radial direction.
  • the stator core 21 is formed by laminating a plurality of electromagnetic steel plates.
  • the stator core 21 is formed with a plurality of teeth (not shown) and slots (not shown) provided between adjacent teeth.
  • a coil 30 is disposed in the slot of the stator core 21.
  • the coil 30 is formed, for example, by winding a rectangular conductor wire a plurality of times.
  • the coil 30 includes a first coil end portion 31 that is a portion projecting from an end surface 21 a on one side (X1 direction side) of the stator core 21 in the central axis direction, and the other side (X2 direction side) of the stator core 21 in the central axis direction.
  • 2nd coil end part 32 which is a part projected from end face 21b.
  • the volume of the second coil end portion 32 is configured to be larger than the volume of the first coil end portion 31.
  • the protruding length L2 of the second coil end portion 32 from the end surface 21b in the central axis direction of the stator core 21 is the end surface in the central axis direction of the stator core 21 of the first coil end portion 31. It is larger than the protruding length L1 from 21a. Thereby, the volume of the second coil end portion 32 is larger than the volume of the first coil end portion 31. Further, the first coil end portion 31 (second coil end portion 32) is disposed in an annular shape on the end surface 21a (end surface 21b) of the stator core 21.
  • the second coil end portion 32 is configured such that at least one of the power line 41 that supplies power to the coil 30 and the neutral line 42 connected to the neutral point is connected. Has been. Specifically, both the power line 41 and the neutral line 42 are connected to the second coil end portion 32. Thus, since the power line 41 and the neutral line 42 are connected to the second coil end portion 32, the volume of the second coil end portion 32 is larger than that of the first coil end portion 31.
  • the second coil end portion 32 side to which the power line 41 and the neutral line 42 are connected is called a lead side. This is because the second coil end portion 32 is provided with a lead wire connected to the power line 41 and the neutral wire 42.
  • the first coil end portion 31 side is called an anti-lead side.
  • the temperature of the second coil end portion 32 is changed to the first coil end portion. It tends to be higher than the temperature of 31.
  • the distance from the end portion 32 a of the second coil end portion 32 to the end face 21 b of the stator core 21 in the central axis direction is from the end portion 31 a of the first coil end portion 31. It is longer than the distance to the end surface 21a of the stator core 21 (the length L1 of the first coil end portion 31).
  • the second coil end part 32 is in the first coil. It is less likely to be cooled than the end portion 31 and is likely to be hot.
  • a jacket portion 50 is provided so as to cover the outer peripheral surface 21 c of the stator core 21.
  • a flow path 51 through which a coolant for cooling the stator core 21 flows is provided in the jacket portion 50.
  • the jacket portion 50 includes an inner jacket portion 52 that contacts the outer peripheral surface 21 c of the stator core 21, and an outer jacket portion 53 that is provided so as to cover the outer periphery of the inner jacket portion 52.
  • Both the inner jacket portion 52 and the outer jacket portion 53 are formed of a material having a relatively high thermal conductivity such as aluminum.
  • Both the inner jacket portion 52 and the outer jacket portion 53 have a cylindrical shape.
  • the jacket portion 50 is attached to the stator core 21 by shrink fitting or the like. Thereby, the jacket portion 50 is in close contact with the stator core 21. The heat generated from the coil 30 is transferred to the jacket portion 50 via the stator core 21.
  • a gap C is provided between the jacket portion 50 (inner jacket portion 52) and the first coil end portion 31 and the second coil end portion 32. This is to ensure insulation between the jacket portion 50 and the first coil end portion 31 and the second coil end portion 32. A part of the heat generated from the first coil end portion 31 and the second coil end portion 32 is transferred to the jacket portion 50 through the gap C (air).
  • the refrigerant flows in the flow path 51 from the second coil end portion 32 side (X2 direction side) toward the first coil end portion 31 side (X1 direction side) in the central axis direction.
  • the refrigerant is, for example, water, oil, or ethylene glycol.
  • the flow path 51 surrounds the outer peripheral surface 21 c of the stator core 21, and from the second coil end portion 32 side (X2 direction side) to the first coil end portion 31 side (X1 direction). Side).
  • the term “spiral” means a curve that moves in a direction (center axis direction) perpendicular to the plane of rotation while rotating. Further, the turning radius is constant along the central axis direction.
  • the refrigerant is configured to flow from the second coil end portion 32 side to the first coil end portion 31 side while rotating spirally.
  • the refrigerant flows from the refrigerant inlet port 56 to the outlet port 57 as a series of flow paths through which the refrigerant flows, and the portion of the series flow paths that contacts the stator core 21 via the inner jacket portion 52 is the highest.
  • An inner diameter layer (specifically, a spiral channel 51, see FIG. 2) is used.
  • a portion connected to the inflow port portion 56 is referred to as an innermost diameter layer inlet portion
  • a portion connected to the outlet port portion 57 is referred to as an innermost diameter layer outlet portion.
  • the innermost layer inlet portion is disposed on the second coil end portion 32 side in the central axis direction, and the innermost layer outlet portion is disposed on the first coil end portion 31 side in the central axis direction.
  • the innermost diameter layer is configured such that the refrigerant flows from the innermost diameter layer inlet portion toward the innermost diameter layer outlet portion in the central axis direction.
  • the innermost diameter layer does not include a folded flow path from the innermost diameter layer inlet portion side toward the innermost diameter layer outlet portion side in the central axis direction.
  • the refrigerant is configured to flow from the second coil end portion 32 side (X2 direction side) to the first coil end portion 31 side (X1 direction side) while rotating spirally in the central axis direction. And does not flow from the X1 direction side to the X2 direction side.
  • the cross section of the flow path 51 has a substantially rectangular shape. Further, the cross-sectional shape (width and height) of the flow path 51 is substantially the same throughout the flow path 51.
  • the inner jacket portion 52 is provided with a spiral wall portion 54 (groove portion 55). And the flow path 51 is comprised by the wall part 54 (groove part 55) being covered with the outer side jacket part 53.
  • FIG. Note that the width W1 of the groove 55 is larger than the width W2 of the wall 54 in the central axis direction.
  • the flow path 51 overlaps the stator core 21, the first coil end portion 31, and the second coil end portion 32 when viewed from the direction orthogonal to the central axis direction. Is provided. Specifically, all portions of the stator core 21 and the first coil end portion 31 overlap the flow path 51. Further, the stator coil 21 side (X1 direction side) portion of the second coil end portion 32 overlaps the flow path 51.
  • the jacket portion 50 is provided with an inlet portion 56 for allowing the refrigerant to flow into the flow path 51.
  • the inflow port portion 56 is provided closer to the second coil end portion 32 than the central portion C1 in the central axis direction of the stator core 21 (jacket portion 50). Specifically, the inflow port portion 56 is connected to the end portion 51a (the end portion 51a on the X2 direction side) of the spiral flow path 51. Further, the width W3 of the inflow port portion 56 in the central axis direction is smaller than the width W1 of the groove portion 55.
  • the inflow port portion 56 is provided so as to overlap the second coil end portion 32 when viewed from the direction orthogonal to the central axis direction. Specifically, the inflow port portion 56 overlaps the portion of the second coil end portion 32 on the stator core 21 side (X1 direction side).
  • the jacket part 50 is provided with an outlet part 57 for allowing the refrigerant to flow out of the flow path 51.
  • the outlet part 57 is provided closer to the first coil end part 31 (X1 direction side) than the center part C1 in the central axis direction of the stator core 21 (jacket part 50).
  • the outflow port 57 is connected to the end 51b side (the end 51b side on the X1 direction side) of the spiral flow path 51.
  • the outlet 57 is not connected to the end 51b of the flow channel 51 but to a position shifted by one groove 55 from the end 51b to the X2 direction (second groove 55 from the X1 side).
  • the width W4 of the outlet portion 57 in the central axis direction is smaller than the width W1 of the groove portion 55.
  • the outlet part 57 is provided so as to overlap the first coil end part 31 when viewed from the direction orthogonal to the central axis direction. Specifically, the outflow port portion 57 overlaps the portion of the first coil end portion 31 on the stator core 21 side (X2 direction side).
  • the jacket part 50 has a flange shape.
  • the jacket portion 50 is fixed to the housing 60 with screws 61.
  • the oil that has passed through the shaft 13 is sprayed on the first coil end portion 31 and the second coil end portion 32, thereby The part 31 and the second coil end part 32 are cooled.
  • the inlet portion 156 is provided on the first coil end portion 31 side (X1 direction side) of the jacket portion 150, and the second coil end portion 32.
  • a spout portion 157 is provided on the side (X2 direction side). That is, the flow direction of the refrigerant in the cooling structure 200 according to the comparative example is opposite to the flow direction of the refrigerant in the cooling structure 100 of the first embodiment.
  • the temperature of the first coil end portion 31 is T1 ° C.
  • the temperature of the slot accommodating portion (the portion disposed in the slot of the coil 30) is T2 ° C.
  • the second coil It was confirmed that the temperature of the end portion 32 was T3 ° C.
  • T1, T2, and T3 have a relationship of T3> T1> T2.
  • the difference between T3 and T1 (T3 ⁇ T1) was about 20 ° C.
  • the temperature of the refrigerant (water) flowing through the jacket portion 150 was T11 ° C. on the first coil end portion 31 side and T12 ° C. (> T11) on the second coil end portion 32 side.
  • the difference between T11 and T12 (T12 ⁇ T11) was about 9 ° C.
  • the temperature inside the rotating electrical machine 1 was T21 ° C. on the first coil end portion 31 side and T22 ° C. (> T21) on the second coil end portion 32 side.
  • the difference between T21 and T22 (T22 ⁇ T21) was about 13 ° C.
  • the temperature in the vicinity of the bearing 14 was T31 ° C. on the first coil end portion 31 side and T32 ° C. (> T31) on the second coil end portion 32 side.
  • the difference between T31 and T32 (T32 ⁇ T31) was about 10 ° C.
  • the temperature of the outer surface of the rotating electrical machine 1 was T41 ° C. on the first coil end portion 31 side and T42 ° C. (> T41) on the second coil end portion 32 side.
  • the difference between T41 and T42 (T42 ⁇ T41) was about 4 ° C.
  • the temperature of the atmosphere outside the rotating electrical machine 1 was T51 ° C. on the first coil end portion 31 side and T52 ° C. (> T51) on the second coil end portion 32 side.
  • the difference between T51 and T52 (T52 ⁇ T51) was about 20 ° C.
  • the temperature difference (about 20 ° C.) between the first coil end portion 31 and the second coil end portion 32 is particularly large, the first coil end portion 31 side and the second coil end portion of the rotating electrical machine 1 are large. It was found that there was a temperature difference on the 32 side.
  • the temperature of the refrigerant (T12 ° C) has increased by about 9 ° C. For this reason, since the 2nd coil end part 32 side cannot be cooled effectively, it is thought that the temperature difference of the 1st coil end part 31 and the 2nd coil end part 32 becomes comparatively large.
  • the refrigerant flows from the second coil end portion 32 side.
  • the relatively high temperature second coil end portion 32 side is cooled by the relatively low temperature refrigerant.
  • the temperature difference (T3 ⁇ T2) between the temperature T1 of the first coil end portion 31 and the temperature T3 of the second coil end portion 32 becomes approximately 0 ° C.
  • the temperature difference of the 1st coil end part 31 side of the rotary electric machine 1 and the 2nd coil end part 32 side is reduced.
  • the cooling structure 300 of the rotary electric machine 1 of 2nd Embodiment is demonstrated.
  • the outlet portion 257 is provided so as to be adjacent to the inlet portion 256.
  • the outlet portion 257 is provided so as to be adjacent to the inlet portion 256 on the second coil end portion 32 side with respect to the central portion C ⁇ b> 2 in the central axis direction of the stator core 21 (jacket portion 250). It has been. Specifically, the flow path 251 is spirally provided from the second coil end portion 32 side to the first coil end portion 31 side, and then connected to the outlet portion 257 through the outer peripheral side of the jacket portion 250. ing.
  • the refrigerant moves from the second coil end portion (32) side having a large volume to the first coil end portion (31) side having a small volume in the central axis direction. It is comprised so that a flow path (51,251) may flow toward. Accordingly, the refrigerant flows from the second coil end portion (32) side having a large volume (relatively high temperature) in a state where the refrigerant temperature is relatively low. As a result, since the second coil end portion (32) side having a relatively high temperature is efficiently cooled, the temperature on the second coil end portion (32) side can be lowered relatively greatly.
  • the degree of temperature decrease on the second coil end part (32) side becomes larger than the degree of temperature decrease on the first coil end part (31) side.
  • the temperature on the second coil end portion (32) side can be brought close to the temperature on the first coil end portion (31) side, so that the first side and the other side in the central axis direction of the stator core (21)
  • the volume of the first coil end portion (31) is different from the volume of the second coil end portion (32)
  • the temperature difference between one side and the other side in the central axis direction of the rotating electrical machine (1) is reduced. Can do.
  • the protrusion length (L2) of the second coil end portion (32) from the end surface (21b) in the central axis direction of the stator core (21) is the first length.
  • the coil end portion (31) is configured to be longer than the protruding length (L1) from the end surface (21a) in the central axis direction of the stator core (21).
  • the second coil end portion (32) side having the large protrusion length (L2) also has a large calorific value, so that it is cooled by the refrigerant having a relatively low temperature, so that the rotating electric machine (1) The temperature difference between the one side and the other side in the central axis direction can be effectively reduced.
  • the second coil end portion (32) is connected to the power line (41) for supplying power to the coil (30) and the neutral point. At least one of the lines (42) is configured to be connected. If comprised in this way, the state where the temperature is comparatively low in the 2nd coil end part (32) side whose volume will become large when at least one of a power line (41) and a neutral line (42) is connected. Therefore, the temperature difference between the one side and the other side in the central axis direction of the rotating electrical machine (1) can be effectively reduced.
  • the flow path (51, 251) includes the stator core (21) and the first coil end portion (31) as viewed from the direction orthogonal to the central axis direction. ) And the second coil end portion (32). If comprised in this way, all of a stator core (21), a 1st coil end part (31), and a 2nd coil end part (32) will be cooled with the refrigerant
  • an inflow port part (56,256) is a 2nd coil end part (C1, C2) rather than the center part (C1, C2) in the center axis direction of a stator core (21). 32) side. If comprised in this way, a refrigerant
  • coolant can be easily poured from the 2nd coil end part (32) side to the 1st coil end part (31) side.
  • the inflow port portions (56, 256) overlap the second coil end portion (32) when viewed from the direction orthogonal to the central axis direction. It is provided to do. If comprised in this way, compared with the case where the inflow port part (56,256) overlaps with the stator core (21), a refrigerant
  • coolant is more upstream (center axial direction outer side of a 2nd coil end part (32)). The temperature of the rotating electrical machine (1) can be further lowered.
  • an outflow port part (57) is provided in the 1st coil end part (31) side rather than the center part (C1) in the center axis direction of a stator core (21). Yes. If comprised in this way, the refrigerant
  • the outlet portion (257) is closer to the second coil end portion (32) than the center portion (C2) in the central axis direction of the stator core (21). (256) is provided adjacent to it. If comprised in this way, since an inflow port part (256) and an outflow port part (257) are arrange
  • the outlet portion (57) is provided so as to overlap the first coil end portion (31) when viewed from the direction orthogonal to the central axis direction. ing. If comprised in this way, compared with the case where the outflow port part (57) overlaps with the stator core (21), a refrigerant
  • coolant is more downstream (end of the axial direction outer side of a 1st coil end part (31)). Part (31a) side), the first coil end part (31) itself can be cooled, and the temperature of the rotating electrical machine (1) can be further lowered.
  • the innermost diameter layer is configured such that the refrigerant flows from the innermost diameter layer inlet portion side toward the innermost diameter layer outlet portion side in the central axis direction. Yes. If comprised in this way, since a refrigerant
  • the innermost diameter layer (the spiral flow paths (51, 251)) is arranged in the direction of the central axis from the innermost diameter layer inlet portion side to the innermost diameter layer outlet portion. It does not include the folded channel that goes to the side. If comprised in this way, a refrigerant
  • coolant can be smoothly poured with respect to an innermost diameter layer.
  • the flow path (51, 251) surrounds the outer peripheral surface (21c) of the stator core (21) and also from the second coil end portion (32) side. It is provided in a spiral shape toward the one coil end portion (31) side. If comprised in this way, since a refrigerant
  • the refrigerant is, for example, water, oil, or ethylene glycol. If comprised in this way, compared with the case where a refrigerant
  • coolant is gas etc., cooling efficiency can be improved. Moreover, handling of the refrigerant can be facilitated.
  • the jacket portion is fixed by being shrink-fitted to the stator core, but the present invention is not limited to this.
  • the jacket portion may be fixed to the stator core by a method other than shrink fitting.
  • the coil is formed by a flat wire
  • the present invention is not limited to this.
  • the coil may be comprised by conducting wires (round wire etc.) other than a rectangular conducting wire.
  • the second coil end portion is connected to both the power line and the neutral line.
  • the present invention is not limited to this.
  • the second coil end portion may be connected to only one of the power line and the neutral line.
  • the flow path overlaps with the stator core, the first coil end portion, and the second coil end portion as seen from the direction orthogonal to the central axis direction.
  • this invention is not limited to this.
  • the flow path may overlap the stator core (only the stator core) without overlapping the first coil end portion and the second coil end portion. If comprised in this way, since the full length of a flow path is shortened, a cooling structure can be simplified.
  • the inlet portion may overlap the stator core without overlapping the second coil end portion.
  • the outlet portion overlaps the first coil end portion
  • the present invention is not limited to this.
  • the outlet portion may overlap the stator core without overlapping the first coil end portion.
  • the flow path 351 may be provided in a labyrinth shape as in the cooling structure 400 according to the modification shown in FIG. FIG. 5 shows a state where the flow path 351 (inner jacket portion) is developed.
  • the refrigerant flowing in from the inflow port portion 356 flows from the second coil end portion 32 side (X2 direction side) to the first coil end portion 31 side (X1 direction side) and flows out from the outflow port portion 357.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

This cooling structure for a rotary electric machine is provided with a jacket part having, on the inside, a flow channel through which a refrigerant for cooling a stator core flows, wherein the cooling structure is configured such that the refrigerant flows in the flow channel in a central axial line direction from a second coil end side toward a first coil end part side.

Description

回転電機の冷却構造Cooling structure of rotating electric machine

 本発明は、回転電機の冷却構造に関する。 The present invention relates to a cooling structure for a rotating electric machine.

 従来、回転電機の冷却構造が知られている。このような回転電機の冷却構造は、たとえば、米国特許出願公開第2015/0130302号明細書に開示されている。 Conventionally, a cooling structure for a rotating electric machine is known. Such a cooling structure for a rotating electric machine is disclosed in, for example, US Patent Application Publication No. 2015/0130302.

 米国特許出願公開第2015/0130302号明細書には、車載用のモータの冷却ジャケットが開示されている。具体的には、冷却ジャケットは、円筒状のハウジングとハウジングの外周を覆う円筒状のケースとにより構成されている。円筒状のハウジングは、モータの外周を取り囲むように構成されている。また、円筒状のハウジングの外周面には、周方向に沿って延びるように設けられる複数のフィンが設けられている。また、円筒状のケースは、円筒状のハウジングの外周を覆うように設けられている。そして、円筒状のケースと円筒状のハウジングとによって囲まれた空間によって、冷媒が流通する流路が構成されている。 US Patent Application Publication No. 2015/0130302 discloses a cooling jacket for an in-vehicle motor. Specifically, the cooling jacket includes a cylindrical housing and a cylindrical case that covers the outer periphery of the housing. The cylindrical housing is configured to surround the outer periphery of the motor. A plurality of fins are provided on the outer peripheral surface of the cylindrical housing so as to extend along the circumferential direction. Moreover, the cylindrical case is provided so that the outer periphery of a cylindrical housing may be covered. A flow path through which the refrigerant flows is constituted by a space surrounded by the cylindrical case and the cylindrical housing.

 また、米国特許出願公開第2015/0130302号明細書では、冷却ジャケットの中心軸線方向の一方側に冷媒の流入口と流出口とが設けられている。そして、流入口から流入した冷媒は、中心軸線方向の他方側に向かって流れた後、周方向に沿って延びるように設けられる複数のフィンの間を周方向に沿って流れる。その後、冷媒は、周方向から中心軸線方向の一方側に向かうように流れる方向を変えた後、流出口から流出する。 Also, in US Patent Application Publication No. 2015/0130302, a refrigerant inlet and outlet are provided on one side in the central axis direction of the cooling jacket. The refrigerant flowing in from the inflow port flows toward the other side in the central axis direction, and then flows along the circumferential direction between a plurality of fins provided so as to extend along the circumferential direction. Thereafter, the refrigerant changes its flowing direction from the circumferential direction toward one side in the central axis direction, and then flows out from the outlet.

 一方、米国特許出願公開第2015/0130302号明細書には記載されていないが、従来、モータのステータコアにはコイルが配置されている。また、ステータコアの中心軸線方向の一方側の端面と他方側の端面とから、それぞれ、コイルのコイルエンド部が突出している。そして、ステータコアの中心軸線方向の一方側から突出するコイルエンド部と他方側から突出するコイルエンド部との容積の大きさの差異に起因して、モータ(ステータコア)の中心軸線方向の一方側と他方側との温度差が比較的大きくなる場合がある。具体的には、容積の大きいコイルエンド部からの発熱量が、容積の小さいコイルエンド部からの発熱量よりも大きくなる。 On the other hand, although not described in US Patent Application Publication No. 2015/0130302, conventionally, a coil is arranged on a stator core of a motor. Further, the coil end portions of the coils protrude from the end surface on one side and the end surface on the other side in the central axis direction of the stator core, respectively. Due to the difference in volume between the coil end portion protruding from one side in the central axis direction of the stator core and the coil end portion protruding from the other side, one side in the central axis direction of the motor (stator core) The temperature difference from the other side may be relatively large. Specifically, the heat generation amount from the coil end portion having a large volume is larger than the heat generation amount from the coil end portion having a small volume.

米国特許出願公開第2015/0130302号明細書US Patent Application Publication No. 2015/0130302

 ここで、上記した従来のような、容積の大きいコイルエンド部からの発熱量が容積の小さいコイルエンド部からの発熱量よりも大きくなるモータに、米国特許出願公開第2015/0130302号明細書に記載される冷却ジャケットを設けることにより、周方向に沿うように流れる冷媒によって、コイルエンド部から発生した熱を放熱することが可能になる。具体的には、コイルエンド部から発生した熱がステータコアを介して冷却ジャケット(冷媒)から放熱される。しかしながら、米国特許出願公開第2015/0130302号明細書に記載される冷却ジャケットでは、冷媒が周方向に沿って流れるため、容積(発熱量)の大きいコイルエンド部側も容積(発熱量)の小さいコイルエンド部側も同様に冷却されると考えられる。その結果、モータ(ステータコア)の全体を略一定の温度分低下させることが可能であると考えられる一方、モータ(回転電機)の中心軸線方向の一方側と他方側とにおける温度差は解消できないという問題点がある。 Here, in the conventional motor as described above, the heat generation amount from the coil end portion having a large volume is larger than the heat generation amount from the coil end portion having a small volume, in US Patent Application Publication No. 2015/0130302. By providing the described cooling jacket, it is possible to dissipate heat generated from the coil end portion by the refrigerant flowing along the circumferential direction. Specifically, the heat generated from the coil end portion is radiated from the cooling jacket (refrigerant) through the stator core. However, in the cooling jacket described in US Patent Application Publication No. 2015/0130302, since the refrigerant flows along the circumferential direction, the coil end portion side having a large volume (heat generation amount) also has a small volume (heat generation amount). It is considered that the coil end side is also cooled in the same manner. As a result, it is considered that the entire motor (stator core) can be reduced by a substantially constant temperature, while the temperature difference between one side and the other side in the central axis direction of the motor (rotating electrical machine) cannot be resolved. There is a problem.

 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、ステータコアの中心軸線方向の一方側と他方側とでコイルエンド部の容積が異なる場合にも、回転電機の中心軸線方向の一方側と他方側とにおける温度差を低減することが可能な回転電機の冷却構造を提供することである。 The present invention has been made to solve the above-described problems, and one object of the present invention is when the volume of the coil end portion is different between one side and the other side in the central axis direction of the stator core. Another object is to provide a cooling structure for a rotating electrical machine capable of reducing a temperature difference between one side and the other side in the central axis direction of the rotating electrical machine.

 上記目的を達成するために、この発明の一の局面における回転電機の冷却構造は、ロータコアと、ロータコアに対向するように設けられコイルが配置されるステータコアとを備える回転電機の冷却構造であって、ステータコアの外周面を覆うように設けられ、内部にステータコアを冷却するための冷媒が流れる流路が設けられるジャケット部を備え、コイルは、ステータコアの中心軸線方向の一方側の端面から突出する部分である第1コイルエンド部と、ステータコアの中心軸線方向の他方側の端面から突出する部分であり第1コイルエンド部の容積よりも大きい容積を有する第2コイルエンド部とを含み、冷媒は、中心軸線方向において、第2コイルエンド部側から第1コイルエンド部側に向かって流路を流れるように構成されている。 In order to achieve the above object, a cooling structure for a rotating electrical machine according to one aspect of the present invention is a cooling structure for a rotating electrical machine including a rotor core and a stator core provided to face the rotor core and in which a coil is disposed. And a jacket portion provided so as to cover the outer peripheral surface of the stator core and provided therein with a flow path through which a refrigerant for cooling the stator core flows. The coil protrudes from an end surface on one side in the central axis direction of the stator core. A first coil end portion and a second coil end portion protruding from the other end surface of the stator core in the central axis direction and having a volume larger than the volume of the first coil end portion. In the central axis direction, the flow path is configured to flow from the second coil end portion side toward the first coil end portion side.

 この発明の一の局面における回転電機の冷却構造では、上記のように、冷媒は、中心軸線方向において、大きい容積を有する第2コイルエンド部側から小さい容積を有する第1コイルエンド部側に向かって流路を流れるように構成されている。これにより、冷媒の温度が比較的低い状態で、冷媒が容積の大きい(温度が比較的高い)第2コイルエンド部側から流れる。その結果、温度が比較的高い第2コイルエンド部側が効率よく冷却されるので、第2コイルエンド部側の温度を比較的大きく低下させることができる。これにより、第2コイルエンド部側の温度の低下の度合いが、第1コイルエンド部側の温度の低下の度合いよりも大きくなる。その結果、第2コイルエンド部側の温度を第1コイルエンド部側の温度に近づけることができるので、ステータコアの中心軸線方向の一方側と他方側とでコイルエンド部の容積が異なる場合にも、回転電機の中心軸線方向の一方側と他方側とにおける温度差を低減することができる。 In the cooling structure for a rotating electrical machine according to one aspect of the present invention, as described above, the refrigerant moves from the second coil end portion side having a large volume toward the first coil end portion side having a small volume in the central axis direction. Are configured to flow through the flow path. Accordingly, the refrigerant flows from the second coil end portion side having a large volume (relatively high temperature) in a state where the refrigerant temperature is relatively low. As a result, the second coil end portion side having a relatively high temperature is efficiently cooled, so that the temperature on the second coil end portion side can be relatively reduced. As a result, the degree of temperature decrease on the second coil end portion side is greater than the degree of temperature decrease on the first coil end portion side. As a result, the temperature on the second coil end portion side can be made closer to the temperature on the first coil end portion side. Therefore, even when the volume of the coil end portion is different on one side and the other side in the central axis direction of the stator core. The temperature difference between the one side and the other side in the central axis direction of the rotating electrical machine can be reduced.

 本発明によれば、上記のように、ステータコアの中心軸線方向の一方側と他方側とでコイルエンド部の容積が異なる場合にも、回転電機の中心軸線方向の一方側と他方側とにおける温度差を低減することができる。 According to the present invention, as described above, even when the volume of the coil end portion is different between the one side and the other side in the central axis direction of the stator core, the temperature at the one side and the other side in the central axis direction of the rotating electric machine is different. The difference can be reduced.

第1実施形態による回転電機および冷却構造の断面図である。It is sectional drawing of the rotary electric machine and cooling structure by 1st Embodiment. 第1実施形態による冷却構造の流路を示す斜視図である。It is a perspective view which shows the flow path of the cooling structure by 1st Embodiment. 比較例による回転電機の温度分布を説明するための図である。It is a figure for demonstrating the temperature distribution of the rotary electric machine by a comparative example. 第2実施形態による回転電機および冷却構造の断面図である。It is sectional drawing of the rotary electric machine and cooling structure by 2nd Embodiment. 第1および第2実施形態の変形例による冷却構造の流路を示す図(展開図)である。It is a figure (development drawing) which shows the flow path of the cooling structure by the modification of 1st and 2nd embodiment.

 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

 [第1実施形態]
 (回転電機の構造)
 図1を参照して、第1実施形態による回転電機1の構造について説明する。
[First Embodiment]
(Structure of rotating electrical machine)
With reference to FIG. 1, the structure of the rotary electric machine 1 by 1st Embodiment is demonstrated.

 図1に示すように、本願明細書では、「中心軸線方向」とは、ステータコア21(ロータコア11)の回転軸線(符号O)に沿った方向を意味する。また、「周方向」とは、ステータコア21の周方向(A方向)を意味する。また、「径方向内側」および「内径側」とは、ステータコア21の中心に向かう方向(矢印B1方向)を意味する。また、「径方向外側」および「外径側」とは、ステータコア21の外に向かう方向(矢印B2方向)を意味する。 As shown in FIG. 1, in the present specification, the “center axis direction” means a direction along the rotation axis (reference numeral O) of the stator core 21 (rotor core 11). The “circumferential direction” means the circumferential direction (A direction) of the stator core 21. Further, “inner side in the radial direction” and “inner side” mean the direction toward the center of the stator core 21 (the direction of the arrow B1). Further, “outside in the radial direction” and “outside of the outer diameter” mean a direction toward the outside of the stator core 21 (arrow B2 direction).

 回転電機1は、ロータ10と、ステータ20とを備える。 The rotating electrical machine 1 includes a rotor 10 and a stator 20.

 ロータ10は、円環状のロータコア11を備えている。ロータコア11は、複数の電磁鋼板が積層されることにより形成されている。また、ロータコア11には、複数の永久磁石12が埋め込まれている。永久磁石12からの磁界と後述するコイル30に流れる電流とによって生じる力によって、ロータコア11が回転する。 The rotor 10 includes an annular rotor core 11. The rotor core 11 is formed by laminating a plurality of electromagnetic steel plates. A plurality of permanent magnets 12 are embedded in the rotor core 11. The rotor core 11 is rotated by a force generated by a magnetic field from the permanent magnet 12 and a current flowing in a coil 30 described later.

 また、ロータコア11の中心軸線に沿うように、シャフト13が設けられている。中心軸線方向におけるシャフト13の一方側と他方側とには、それぞれ、軸受け14が設けられている。 Further, a shaft 13 is provided along the central axis of the rotor core 11. Bearings 14 are respectively provided on one side and the other side of the shaft 13 in the central axis direction.

 ステータ20は、円環状のステータコア21を備えている。たとえば、ステータ20は、インナーロータ型の回転電機1の一部を構成し、ステータコア21は、ロータコア11と径方向に対向するように配置されている。 The stator 20 includes an annular stator core 21. For example, the stator 20 constitutes a part of the inner rotor type rotating electrical machine 1, and the stator core 21 is disposed so as to face the rotor core 11 in the radial direction.

 ステータコア21は、複数の電磁鋼板が積層されることにより形成されている。ステータコア21には、複数のティース(図示せず)と、隣り合うティースの間に設けられるスロット(図示せず)とが形成されている。また、ステータコア21のスロットには、コイル30が配置されている。 The stator core 21 is formed by laminating a plurality of electromagnetic steel plates. The stator core 21 is formed with a plurality of teeth (not shown) and slots (not shown) provided between adjacent teeth. A coil 30 is disposed in the slot of the stator core 21.

 コイル30は、たとえば、平角導線が複数回巻回されることにより形成されている。
コイル30は、ステータコア21の中心軸線方向の一方側(X1方向側)の端面21aから突出する部分である第1コイルエンド部31と、ステータコア21の中心軸線方向の他方側(X2方向側)の端面21bから突出する部分である第2コイルエンド部32とを含む。そして、第2コイルエンド部32の容積は、第1コイルエンド部31の容積よりも大きくなるように構成されている。
The coil 30 is formed, for example, by winding a rectangular conductor wire a plurality of times.
The coil 30 includes a first coil end portion 31 that is a portion projecting from an end surface 21 a on one side (X1 direction side) of the stator core 21 in the central axis direction, and the other side (X2 direction side) of the stator core 21 in the central axis direction. 2nd coil end part 32 which is a part projected from end face 21b. The volume of the second coil end portion 32 is configured to be larger than the volume of the first coil end portion 31.

 具体的には、第1実施形態では、第2コイルエンド部32のステータコア21の中心軸線方向の端面21bからの突出長さL2は、第1コイルエンド部31のステータコア21の中心軸線方向の端面21aからの突出長さL1よりも大きい。これにより、第2コイルエンド部32の容積は、第1コイルエンド部31の容積よりも大きくなる。また、第1コイルエンド部31(第2コイルエンド部32)は、ステータコア21の端面21a(端面21b)上に、円環状に配置されている。 Specifically, in the first embodiment, the protruding length L2 of the second coil end portion 32 from the end surface 21b in the central axis direction of the stator core 21 is the end surface in the central axis direction of the stator core 21 of the first coil end portion 31. It is larger than the protruding length L1 from 21a. Thereby, the volume of the second coil end portion 32 is larger than the volume of the first coil end portion 31. Further, the first coil end portion 31 (second coil end portion 32) is disposed in an annular shape on the end surface 21a (end surface 21b) of the stator core 21.

 また、第1実施形態では、第2コイルエンド部32は、コイル30に電力を供給する動力線41および中性点に接続される中性線42のうちの少なくとも一方が接続されるように構成されている。具体的には、第2コイルエンド部32には、動力線41および中性線42の両方が接続されている。このように、第2コイルエンド部32に動力線41および中性線42が接続されるので、第2コイルエンド部32の容積が第1コイルエンド部31に比べて大きくなる。また、動力線41および中性線42が接続される第2コイルエンド部32側は、リード側と呼ばれる。第2コイルエンド部32に、動力線41および中性線42に接続されるリード線が設けられるためである。また、第1コイルエンド部31側は、反リード側と呼ばれる。 In the first embodiment, the second coil end portion 32 is configured such that at least one of the power line 41 that supplies power to the coil 30 and the neutral line 42 connected to the neutral point is connected. Has been. Specifically, both the power line 41 and the neutral line 42 are connected to the second coil end portion 32. Thus, since the power line 41 and the neutral line 42 are connected to the second coil end portion 32, the volume of the second coil end portion 32 is larger than that of the first coil end portion 31. The second coil end portion 32 side to which the power line 41 and the neutral line 42 are connected is called a lead side. This is because the second coil end portion 32 is provided with a lead wire connected to the power line 41 and the neutral wire 42. The first coil end portion 31 side is called an anti-lead side.

 また、第2コイルエンド部32の容積(コイル30を構成する銅の量)が、第1コイルエンド部31の容積よりも大きいので、第2コイルエンド部32の温度が、第1コイルエンド部31の温度よりも高くなりやすい。また、中心軸線方向における第2コイルエンド部32の端部32aからステータコア21の端面21bまでの距離(第2コイルエンド部32の長さL2)が、第1コイルエンド部31の端部31aからステータコア21の端面21aまでの距離(第1コイルエンド部31の長さL1)よりも長い。このため、第2コイルエンド部32の方が、ステータコア21と後述するジャケット部50との接触面(熱交換面)までの距離が長くなるので、第2コイルエンド部32の方が第1コイルエンド部31よりも冷却されにくく、高温になりやすい。 Further, since the volume of the second coil end portion 32 (the amount of copper constituting the coil 30) is larger than the volume of the first coil end portion 31, the temperature of the second coil end portion 32 is changed to the first coil end portion. It tends to be higher than the temperature of 31. Further, the distance from the end portion 32 a of the second coil end portion 32 to the end face 21 b of the stator core 21 in the central axis direction (the length L2 of the second coil end portion 32) is from the end portion 31 a of the first coil end portion 31. It is longer than the distance to the end surface 21a of the stator core 21 (the length L1 of the first coil end portion 31). For this reason, since the distance to the contact surface (heat exchange surface) of the stator core 21 and the jacket part 50 mentioned later is longer in the second coil end part 32, the second coil end part 32 is in the first coil. It is less likely to be cooled than the end portion 31 and is likely to be hot.

 (回転電機の冷却構造)
 次に、図1および図2を参照して、回転電機1の冷却構造100について説明する。
(Cooling structure of rotating electric machine)
Next, a cooling structure 100 for the rotating electrical machine 1 will be described with reference to FIGS. 1 and 2.

 図1に示すように、ステータコア21の外周面21cを覆うようにジャケット部50が設けられている。ジャケット部50の内部には、ステータコア21を冷却するための冷媒が流れる流路51が設けられている。具体的には、ジャケット部50は、ステータコア21の外周面21cに接触する内側ジャケット部分52と、内側ジャケット部分52の外周を覆うように設けられる外側ジャケット部分53とを含む。内側ジャケット部分52および外側ジャケット部分53は、共に、アルミニウムなどの熱伝導率の比較的高い材料により形成されている。また、内側ジャケット部分52および外側ジャケット部分53は、共に、円筒形状を有する。ジャケット部50は、ステータコア21に対して焼き嵌めなどにより取り付けられている。これにより、ジャケット部50は、ステータコア21に対して密着する。そして、コイル30から発生した熱は、ステータコア21を介して、ジャケット部50に伝熱される。 As shown in FIG. 1, a jacket portion 50 is provided so as to cover the outer peripheral surface 21 c of the stator core 21. A flow path 51 through which a coolant for cooling the stator core 21 flows is provided in the jacket portion 50. Specifically, the jacket portion 50 includes an inner jacket portion 52 that contacts the outer peripheral surface 21 c of the stator core 21, and an outer jacket portion 53 that is provided so as to cover the outer periphery of the inner jacket portion 52. Both the inner jacket portion 52 and the outer jacket portion 53 are formed of a material having a relatively high thermal conductivity such as aluminum. Both the inner jacket portion 52 and the outer jacket portion 53 have a cylindrical shape. The jacket portion 50 is attached to the stator core 21 by shrink fitting or the like. Thereby, the jacket portion 50 is in close contact with the stator core 21. The heat generated from the coil 30 is transferred to the jacket portion 50 via the stator core 21.

 また、ジャケット部50(内側ジャケット部分52)と、第1コイルエンド部31および第2コイルエンド部32との間には、隙間Cが設けられている。ジャケット部50と、第1コイルエンド部31および第2コイルエンド部32との絶縁を確保するためである。なお、第1コイルエンド部31および第2コイルエンド部32から発生した熱の一部は、隙間C(空気)を介してジャケット部50に伝熱される。 Further, a gap C is provided between the jacket portion 50 (inner jacket portion 52) and the first coil end portion 31 and the second coil end portion 32. This is to ensure insulation between the jacket portion 50 and the first coil end portion 31 and the second coil end portion 32. A part of the heat generated from the first coil end portion 31 and the second coil end portion 32 is transferred to the jacket portion 50 through the gap C (air).

 ここで、第1実施形態では、冷媒は、中心軸線方向において、第2コイルエンド部32側(X2方向側)から第1コイルエンド部31側(X1方向側)に向かって流路51を流れるように構成されている。なお、冷媒は、たとえば、水、油またはエチレングリコールである。具体的には、図2に示すように、流路51は、ステータコア21の外周面21cを取り囲むとともに、第2コイルエンド部32側(X2方向側)から第1コイルエンド部31側(X1方向側)に向かって螺旋状に設けられている。なお、「螺旋」とは、回転しながら回転面に垂直な方向(中心軸線方向)に移動する曲線を意味する。また、回転半径は、中心軸線方向に沿って一定である。そして、冷媒は、第2コイルエンド部32側から、螺旋状に回転しながら、第1コイルエンド部31側に流れるように構成されている。 Here, in the first embodiment, the refrigerant flows in the flow path 51 from the second coil end portion 32 side (X2 direction side) toward the first coil end portion 31 side (X1 direction side) in the central axis direction. It is configured as follows. Note that the refrigerant is, for example, water, oil, or ethylene glycol. Specifically, as shown in FIG. 2, the flow path 51 surrounds the outer peripheral surface 21 c of the stator core 21, and from the second coil end portion 32 side (X2 direction side) to the first coil end portion 31 side (X1 direction). Side). The term “spiral” means a curve that moves in a direction (center axis direction) perpendicular to the plane of rotation while rotating. Further, the turning radius is constant along the central axis direction. The refrigerant is configured to flow from the second coil end portion 32 side to the first coil end portion 31 side while rotating spirally.

 また、第1実施形態では、冷媒の流入口部56から流出口部57までを冷媒が流れる一連流路とし、一連流路のうち、内側ジャケット部分52を介してステータコア21と接触する部分を最内径層(具体的には、螺旋状の流路51、図2参照)とする。最内径層のうち、流入口部56に連結する部分を最内径層入口部とし、最内径層のうち、流出口部57に連結する部分を最内径層出口部とする。そして、最内径層入口部は、中心軸線方向において、第2コイルエンド部32側に配置されており、最内径層出口部は、中心軸線方向において、第1コイルエンド部31側に配置されている。そして、最内径層は、中心軸線方向において、冷媒が最内径層入口部から最内径層出口部に向かって流れるように構成されている。また、最内径層(螺旋状の流路51)は、中心軸線方向において、最内径層入口部側から最内径層出口部側に向かう折り返し流路を含まない。つまり、冷媒は、中心軸線方向において、第2コイルエンド部32側(X2方向側)から、螺旋状に回転しながら、第1コイルエンド部31側(X1方向側)に流れるように構成されており、X1方向側からX2方向側には流れない。 In the first embodiment, the refrigerant flows from the refrigerant inlet port 56 to the outlet port 57 as a series of flow paths through which the refrigerant flows, and the portion of the series flow paths that contacts the stator core 21 via the inner jacket portion 52 is the highest. An inner diameter layer (specifically, a spiral channel 51, see FIG. 2) is used. Of the innermost diameter layer, a portion connected to the inflow port portion 56 is referred to as an innermost diameter layer inlet portion, and among the innermost diameter layer, a portion connected to the outlet port portion 57 is referred to as an innermost diameter layer outlet portion. The innermost layer inlet portion is disposed on the second coil end portion 32 side in the central axis direction, and the innermost layer outlet portion is disposed on the first coil end portion 31 side in the central axis direction. Yes. The innermost diameter layer is configured such that the refrigerant flows from the innermost diameter layer inlet portion toward the innermost diameter layer outlet portion in the central axis direction. In addition, the innermost diameter layer (spiral flow path 51) does not include a folded flow path from the innermost diameter layer inlet portion side toward the innermost diameter layer outlet portion side in the central axis direction. That is, the refrigerant is configured to flow from the second coil end portion 32 side (X2 direction side) to the first coil end portion 31 side (X1 direction side) while rotating spirally in the central axis direction. And does not flow from the X1 direction side to the X2 direction side.

 また、図1に示すように、流路51の断面は、略長方形形状を有する。また、流路51の断面の形状(幅、高さ)は、流路51の全体に渡って略同様である。また、内側ジャケット部分52に螺旋状の壁部54(溝部55)が設けられている。そして、壁部54(溝部55)が外側ジャケット部分53に覆われることにより流路51が構成される。なお、中心軸線方向において、溝部55の幅W1は、壁部54の幅W2よりも大きい。 Moreover, as shown in FIG. 1, the cross section of the flow path 51 has a substantially rectangular shape. Further, the cross-sectional shape (width and height) of the flow path 51 is substantially the same throughout the flow path 51. The inner jacket portion 52 is provided with a spiral wall portion 54 (groove portion 55). And the flow path 51 is comprised by the wall part 54 (groove part 55) being covered with the outer side jacket part 53. FIG. Note that the width W1 of the groove 55 is larger than the width W2 of the wall 54 in the central axis direction.

 また、第1実施形態では、中心軸線方向に対して直交する方向から見て、流路51は、ステータコア21、第1コイルエンド部31、および、第2コイルエンド部32にオーバラップするように設けられている。具体的には、ステータコア21および第1コイルエンド部31の全ての部分が、流路51にオーバラップしている。また、第2コイルエンド部32のステータコア21側(X1方向側)の部分が、流路51にオーバラップしている。 In the first embodiment, the flow path 51 overlaps the stator core 21, the first coil end portion 31, and the second coil end portion 32 when viewed from the direction orthogonal to the central axis direction. Is provided. Specifically, all portions of the stator core 21 and the first coil end portion 31 overlap the flow path 51. Further, the stator coil 21 side (X1 direction side) portion of the second coil end portion 32 overlaps the flow path 51.

 また、第1実施形態では、ジャケット部50には、流路51に冷媒を流入させるための流入口部56が設けられている。流入口部56は、ステータコア21(ジャケット部50)の中心軸線方向における中央部C1よりも第2コイルエンド部32側に設けられている。具体的には、流入口部56は、螺旋状の流路51の端部51a(X2方向側の端部51a)に接続されている。また、中心軸線方向における流入口部56の幅W3は、溝部55の幅W1よりも小さい。 In the first embodiment, the jacket portion 50 is provided with an inlet portion 56 for allowing the refrigerant to flow into the flow path 51. The inflow port portion 56 is provided closer to the second coil end portion 32 than the central portion C1 in the central axis direction of the stator core 21 (jacket portion 50). Specifically, the inflow port portion 56 is connected to the end portion 51a (the end portion 51a on the X2 direction side) of the spiral flow path 51. Further, the width W3 of the inflow port portion 56 in the central axis direction is smaller than the width W1 of the groove portion 55.

 また、第1実施形態では、中心軸線方向に対して直交する方向から見て、流入口部56は、第2コイルエンド部32にオーバラップするように設けられている。具体的には、流入口部56は、第2コイルエンド部32のステータコア21側(X1方向側)の部分にオーバラップする。 In the first embodiment, the inflow port portion 56 is provided so as to overlap the second coil end portion 32 when viewed from the direction orthogonal to the central axis direction. Specifically, the inflow port portion 56 overlaps the portion of the second coil end portion 32 on the stator core 21 side (X1 direction side).

 また、第1実施形態では、ジャケット部50には、流路51から冷媒を流出させるための流出口部57が設けられている。流出口部57は、ステータコア21(ジャケット部50)の中心軸線方向における中央部C1よりも第1コイルエンド部31側(X1方向側)に設けられている。具体的には、流出口部57は、螺旋状の流路51の端部51b側(X1方向側の端部51b側)に接続されている。なお、流出口部57は、流路51の端部51bではなく、端部51bから1つの溝部55分、X2方向側にずれた位置(X1方向側から2つ目の溝部55)に接続されている。また、中心軸線方向における流出口部57の幅W4は、溝部55の幅W1よりも小さい。 In the first embodiment, the jacket part 50 is provided with an outlet part 57 for allowing the refrigerant to flow out of the flow path 51. The outlet part 57 is provided closer to the first coil end part 31 (X1 direction side) than the center part C1 in the central axis direction of the stator core 21 (jacket part 50). Specifically, the outflow port 57 is connected to the end 51b side (the end 51b side on the X1 direction side) of the spiral flow path 51. The outlet 57 is not connected to the end 51b of the flow channel 51 but to a position shifted by one groove 55 from the end 51b to the X2 direction (second groove 55 from the X1 side). ing. Further, the width W4 of the outlet portion 57 in the central axis direction is smaller than the width W1 of the groove portion 55.

 また、第1実施形態では、流出口部57は、中心軸線方向に対して直交する方向から見て、第1コイルエンド部31にオーバラップするように設けられている。具体的には、流出口部57は、第1コイルエンド部31のステータコア21側(X2方向側)の部分にオーバラップする。 Further, in the first embodiment, the outlet part 57 is provided so as to overlap the first coil end part 31 when viewed from the direction orthogonal to the central axis direction. Specifically, the outflow port portion 57 overlaps the portion of the first coil end portion 31 on the stator core 21 side (X2 direction side).

 また、ジャケット部50は、フランジ形状を有する。そして、ジャケット部50は、ネジ61によって筐体60に固定されている。 Moreover, the jacket part 50 has a flange shape. The jacket portion 50 is fixed to the housing 60 with screws 61.

 また、図1の太い破線に示すように、回転電機1では、シャフト13内を通過した油が、第1コイルエンド部31および第2コイルエンド部32に噴霧されることにより、第1コイルエンド部31および第2コイルエンド部32が冷却される。 Further, as shown by the thick broken line in FIG. 1, in the rotating electrical machine 1, the oil that has passed through the shaft 13 is sprayed on the first coil end portion 31 and the second coil end portion 32, thereby The part 31 and the second coil end part 32 are cooled.

 (回転電機の温度分布)
 次に、図3を参照して、回転電機1の温度分布(シミュレーションによる結果)について、比較例による冷却構造200と比較しながら説明する。
(Temperature distribution of rotating electrical machines)
Next, with reference to FIG. 3, the temperature distribution (result by simulation) of the rotating electrical machine 1 will be described in comparison with the cooling structure 200 of the comparative example.

 図3に示すように、比較例による回転電機1の冷却構造200では、ジャケット部150の第1コイルエンド部31側(X1方向側)に注入口部156が設けられ、第2コイルエンド部32側(X2方向側)に、注出口部157が設けられている。つまり、比較例による冷却構造200の冷媒の流れる方向は、第1実施形態の冷却構造100の冷媒の流れる方向と逆である。 As shown in FIG. 3, in the cooling structure 200 for the rotating electrical machine 1 according to the comparative example, the inlet portion 156 is provided on the first coil end portion 31 side (X1 direction side) of the jacket portion 150, and the second coil end portion 32. A spout portion 157 is provided on the side (X2 direction side). That is, the flow direction of the refrigerant in the cooling structure 200 according to the comparative example is opposite to the flow direction of the refrigerant in the cooling structure 100 of the first embodiment.

 図3に示すように、第1コイルエンド部31の温度は、T1℃であり、スロット収容部(コイル30のうちのスロットに配置される部分)の温度は、T2℃であり、第2コイルエンド部32の温度は、T3℃であることが確認された。なお、T1、T2およびT3は、T3>T1>T2の関係を有する。また、T3とT1との差(T3-T1)は、約20℃であった。 As shown in FIG. 3, the temperature of the first coil end portion 31 is T1 ° C., the temperature of the slot accommodating portion (the portion disposed in the slot of the coil 30) is T2 ° C., and the second coil. It was confirmed that the temperature of the end portion 32 was T3 ° C. T1, T2, and T3 have a relationship of T3> T1> T2. The difference between T3 and T1 (T3−T1) was about 20 ° C.

 また、ジャケット部150を流れる冷媒(水)の温度は、第1コイルエンド部31側においてT11℃であり、第2コイルエンド部32側においてT12℃(>T11)であることが確認された。なお、T11とT12との差(T12-T11)は、約9℃であった。 Further, it was confirmed that the temperature of the refrigerant (water) flowing through the jacket portion 150 was T11 ° C. on the first coil end portion 31 side and T12 ° C. (> T11) on the second coil end portion 32 side. The difference between T11 and T12 (T12−T11) was about 9 ° C.

 また、回転電機1の内部の温度は、第1コイルエンド部31側においてT21℃であり、第2コイルエンド部32側においてT22℃(>T21)であることが確認された。なお、T21とT22との差(T22-T21)は、約13℃であった。 Also, it was confirmed that the temperature inside the rotating electrical machine 1 was T21 ° C. on the first coil end portion 31 side and T22 ° C. (> T21) on the second coil end portion 32 side. The difference between T21 and T22 (T22−T21) was about 13 ° C.

 また、軸受け14の近傍の温度は、第1コイルエンド部31側においてT31℃であり、第2コイルエンド部32側においてT32℃(>T31)であることが確認された。なお、T31とT32との差(T32-T31)は、約10℃であった。 Further, it was confirmed that the temperature in the vicinity of the bearing 14 was T31 ° C. on the first coil end portion 31 side and T32 ° C. (> T31) on the second coil end portion 32 side. The difference between T31 and T32 (T32−T31) was about 10 ° C.

 また、回転電機1の外部の表面の温度は、第1コイルエンド部31側においてT41℃であり、第2コイルエンド部32側においてT42℃(>T41)であることが確認された。なお、T41とT42との差(T42-T41)は、約4℃であった。 Further, it was confirmed that the temperature of the outer surface of the rotating electrical machine 1 was T41 ° C. on the first coil end portion 31 side and T42 ° C. (> T41) on the second coil end portion 32 side. The difference between T41 and T42 (T42−T41) was about 4 ° C.

 また、回転電機1の外部の雰囲気の温度は、第1コイルエンド部31側においてT51℃であり、第2コイルエンド部32側においてT52℃(>T51)であることが確認された。なお、T51とT52との差(T52-T51)は、約20℃であった。 Further, it was confirmed that the temperature of the atmosphere outside the rotating electrical machine 1 was T51 ° C. on the first coil end portion 31 side and T52 ° C. (> T51) on the second coil end portion 32 side. The difference between T51 and T52 (T52−T51) was about 20 ° C.

 上記のように、特に、第1コイルエンド部31と第2コイルエンド部32との温度差(約20℃)が大きいため、回転電機1の第1コイルエンド部31側と第2コイルエンド部32側とにおいて温度差が生じることが判明した。比較例による冷却構造200では、冷媒が第1コイルエンド部31側から流入されているので、発熱量の比較的大きい第2コイルエンド部32側を冷媒が通過する際には冷媒の温度(T12℃)が約9℃上昇している。このため、第2コイルエンド部32側を効果的に冷却することができないため、第1コイルエンド部31と第2コイルエンド部32との温度差が比較的大きくなると考えられる。 As described above, since the temperature difference (about 20 ° C.) between the first coil end portion 31 and the second coil end portion 32 is particularly large, the first coil end portion 31 side and the second coil end portion of the rotating electrical machine 1 are large. It was found that there was a temperature difference on the 32 side. In the cooling structure 200 according to the comparative example, since the refrigerant flows in from the first coil end portion 31 side, when the refrigerant passes through the second coil end portion 32 side having a relatively large calorific value, the temperature of the refrigerant (T12 ° C) has increased by about 9 ° C. For this reason, since the 2nd coil end part 32 side cannot be cooled effectively, it is thought that the temperature difference of the 1st coil end part 31 and the 2nd coil end part 32 becomes comparatively large.

 一方、第1実施形態による回転電機1の冷却構造100では、冷媒が第2コイルエンド部32側から流入する。これにより、比較的低い温度の冷媒によって、比較的温度の高い第2コイルエンド部32側が冷却される。これにより、第1コイルエンド部31の温度T1と第2コイルエンド部32の温度T3との温度差(T3-T2)は、略0℃となる。これにより、回転電機1の第1コイルエンド部31側と第2コイルエンド部32側との温度差が低減される。 On the other hand, in the cooling structure 100 for the rotating electrical machine 1 according to the first embodiment, the refrigerant flows from the second coil end portion 32 side. Thereby, the relatively high temperature second coil end portion 32 side is cooled by the relatively low temperature refrigerant. As a result, the temperature difference (T3−T2) between the temperature T1 of the first coil end portion 31 and the temperature T3 of the second coil end portion 32 becomes approximately 0 ° C. Thereby, the temperature difference of the 1st coil end part 31 side of the rotary electric machine 1 and the 2nd coil end part 32 side is reduced.

 [第2実施形態]
 次に、図4を参照して、第2実施形態の回転電機1の冷却構造300について説明する。冷却構造300では、流出口部257が流入口部256と隣り合うように設けられている。
[Second Embodiment]
Next, with reference to FIG. 4, the cooling structure 300 of the rotary electric machine 1 of 2nd Embodiment is demonstrated. In the cooling structure 300, the outlet portion 257 is provided so as to be adjacent to the inlet portion 256.

 回転電機1の冷却構造300では、流出口部257は、ステータコア21(ジャケット部250)の中心軸線方向における中央部C2よりも第2コイルエンド部32側に流入口部256と隣り合うように設けられている。具体的には、流路251は、第2コイルエンド部32側から第1コイルエンド部31側に螺旋状に設けられた後、ジャケット部250の外周側を通って流出口部257に接続されている。 In the cooling structure 300 of the rotating electrical machine 1, the outlet portion 257 is provided so as to be adjacent to the inlet portion 256 on the second coil end portion 32 side with respect to the central portion C <b> 2 in the central axis direction of the stator core 21 (jacket portion 250). It has been. Specifically, the flow path 251 is spirally provided from the second coil end portion 32 side to the first coil end portion 31 side, and then connected to the outlet portion 257 through the outer peripheral side of the jacket portion 250. ing.

 [第1および第2実施形態の効果]
 上記第1および第2実施形態では、以下のような効果を得ることができる。
[Effects of the first and second embodiments]
In the first and second embodiments, the following effects can be obtained.

 第1および第2実施形態では、上記のように、冷媒は、中心軸線方向において、大きい容積を有する第2コイルエンド部(32)側から小さい容積を有する第1コイルエンド部(31)側に向かって流路(51、251)を流れるように構成されている。これにより、冷媒の温度が比較的低い状態で、冷媒が容積の大きい(温度が比較的高い)第2コイルエンド部(32)側から流れる。その結果、温度が比較的高い第2コイルエンド部(32)側が効率よく冷却されるので、第2コイルエンド部(32)側の温度を比較的大きく低下させることができる。これにより、第2コイルエンド部(32)側の温度の低下の度合いが、第1コイルエンド部(31)側の温度の低下の度合いよりも大きくなる。その結果、第2コイルエンド部(32)側の温度を第1コイルエンド部(31)側の温度に近づけることができるので、ステータコア(21)の中心軸線方向の一方側と他方側とで第1コイルエンド部(31)の容積と第2コイルエンド部(32)の容積とが異なる場合にも、回転電機(1)の中心軸線方向の一方側と他方側とにおける温度差を低減することができる。 In the first and second embodiments, as described above, the refrigerant moves from the second coil end portion (32) side having a large volume to the first coil end portion (31) side having a small volume in the central axis direction. It is comprised so that a flow path (51,251) may flow toward. Accordingly, the refrigerant flows from the second coil end portion (32) side having a large volume (relatively high temperature) in a state where the refrigerant temperature is relatively low. As a result, since the second coil end portion (32) side having a relatively high temperature is efficiently cooled, the temperature on the second coil end portion (32) side can be lowered relatively greatly. Thereby, the degree of temperature decrease on the second coil end part (32) side becomes larger than the degree of temperature decrease on the first coil end part (31) side. As a result, the temperature on the second coil end portion (32) side can be brought close to the temperature on the first coil end portion (31) side, so that the first side and the other side in the central axis direction of the stator core (21) Even when the volume of the first coil end portion (31) is different from the volume of the second coil end portion (32), the temperature difference between one side and the other side in the central axis direction of the rotating electrical machine (1) is reduced. Can do.

 また、第1および第2実施形態では、上記のように、第2コイルエンド部(32)のステータコア(21)の中心軸線方向の端面(21b)からの突出長さ(L2)は、第1コイルエンド部(31)のステータコア(21)の中心軸線方向の端面(21a)からの突出長さ(L1)よりも大きくなるように構成されている。このように、突出長さ(L2)の大きい第2コイルエンド部(32)側は、発熱量も大きくなるので、温度が比較的低い状態の冷媒によって冷却することにより、回転電機(1)の中心軸線方向の一方側と他方側とにおける温度差を効果的に低減することができる。 In the first and second embodiments, as described above, the protrusion length (L2) of the second coil end portion (32) from the end surface (21b) in the central axis direction of the stator core (21) is the first length. The coil end portion (31) is configured to be longer than the protruding length (L1) from the end surface (21a) in the central axis direction of the stator core (21). As described above, the second coil end portion (32) side having the large protrusion length (L2) also has a large calorific value, so that it is cooled by the refrigerant having a relatively low temperature, so that the rotating electric machine (1) The temperature difference between the one side and the other side in the central axis direction can be effectively reduced.

 また、第1および第2実施形態では、上記のように、第2コイルエンド部(32)は、コイル(30)に電力を供給する動力線(41)および中性点に接続される中性線(42)のうちの少なくとも一方が接続されるように構成されている。このように構成すれば、動力線(41)および中性線(42)のうちの少なくとも一方が接続されることにより容積が大きくなる第2コイルエンド部(32)側が、温度が比較的低い状態の冷媒によって冷却されるので、回転電機(1)の中心軸線方向の一方側と他方側とにおける温度差を効果的に低減することができる。 In the first and second embodiments, as described above, the second coil end portion (32) is connected to the power line (41) for supplying power to the coil (30) and the neutral point. At least one of the lines (42) is configured to be connected. If comprised in this way, the state where the temperature is comparatively low in the 2nd coil end part (32) side whose volume will become large when at least one of a power line (41) and a neutral line (42) is connected. Therefore, the temperature difference between the one side and the other side in the central axis direction of the rotating electrical machine (1) can be effectively reduced.

 また、第1および第2実施形態では、上記のように、中心軸線方向に対して直交する方向から見て、流路(51、251)は、ステータコア(21)、第1コイルエンド部(31)、および、第2コイルエンド部(32)にオーバラップするように設けられている。このように構成すれば、流路(51、251)を流れる冷媒によって、ステータコア(21)、第1コイルエンド部(31)、および、第2コイルエンド部(32)のいずれもが冷却されるので、回転電機(1)の温度をより低下させることができる。 In the first and second embodiments, as described above, the flow path (51, 251) includes the stator core (21) and the first coil end portion (31) as viewed from the direction orthogonal to the central axis direction. ) And the second coil end portion (32). If comprised in this way, all of a stator core (21), a 1st coil end part (31), and a 2nd coil end part (32) will be cooled with the refrigerant | coolant which flows through a flow path (51,251). Therefore, the temperature of the rotating electrical machine (1) can be further reduced.

 また、第1および第2実施形態では、上記のように、流入口部(56、256)は、ステータコア(21)の中心軸線方向における中央部(C1、C2)よりも第2コイルエンド部(32)側に設けられている。このように構成すれば、容易に、冷媒を第2コイルエンド部(32)側から第1コイルエンド部(31)側に流すことができる。 Moreover, in 1st and 2nd embodiment, as above-mentioned, an inflow port part (56,256) is a 2nd coil end part (C1, C2) rather than the center part (C1, C2) in the center axis direction of a stator core (21). 32) side. If comprised in this way, a refrigerant | coolant can be easily poured from the 2nd coil end part (32) side to the 1st coil end part (31) side.

 また、第1および第2実施形態では、上記のように、中心軸線方向に対して直交する方向から見て、流入口部(56、256)は、第2コイルエンド部(32)にオーバラップするように設けられている。このように構成すれば、流入口部(56、256)がステータコア(21)にオーバラップしている場合に比べて、冷媒をより上流側(第2コイルエンド部(32)の中心軸線方向外側の端部(32a)側)から流すことができるので、回転電機(1)の温度をさらに低下させることができる。 In the first and second embodiments, as described above, the inflow port portions (56, 256) overlap the second coil end portion (32) when viewed from the direction orthogonal to the central axis direction. It is provided to do. If comprised in this way, compared with the case where the inflow port part (56,256) overlaps with the stator core (21), a refrigerant | coolant is more upstream (center axial direction outer side of a 2nd coil end part (32)). The temperature of the rotating electrical machine (1) can be further lowered.

 また、第1実施形態では、上記のように、流出口部(57)は、ステータコア(21)の中心軸線方向における中央部(C1)よりも第1コイルエンド部(31)側に設けられている。このように構成すれば、第2コイルエンド部(32)側から第1コイルエンド部(31)側に向かって流れた冷媒を、容易に、流出口部(57)から流出させることができる。 Moreover, in 1st Embodiment, as above-mentioned, an outflow port part (57) is provided in the 1st coil end part (31) side rather than the center part (C1) in the center axis direction of a stator core (21). Yes. If comprised in this way, the refrigerant | coolant which flowed toward the 1st coil end part (31) side from the 2nd coil end part (32) side can be easily flowed out from an outflow port part (57).

 また、第2実施形態では、上記のように、流出口部(257)は、ステータコア(21)の中心軸線方向における中央部(C2)よりも第2コイルエンド部(32)側に流入口部(256)と隣り合うように設けられている。このように構成すれば、流入口部(256)と流出口部(257)とが比較的近い位置に配置されるので、冷媒を循環させる配管(流入口部(256)と流出口部(257)とに接続された冷媒を循環させるための配管)の長さを短縮することができる。 In the second embodiment, as described above, the outlet portion (257) is closer to the second coil end portion (32) than the center portion (C2) in the central axis direction of the stator core (21). (256) is provided adjacent to it. If comprised in this way, since an inflow port part (256) and an outflow port part (257) are arrange | positioned in the comparatively near position, piping (inlet port part (256) and outflow port part (257) which circulates a refrigerant | coolant. ) And the length of the piping for circulating the refrigerant connected to.

 また、第1実施形態では、上記のように、流出口部(57)は、中心軸線方向に対して直交する方向から見て、第1コイルエンド部(31)にオーバラップするように設けられている。このように構成すれば、流出口部(57)がステータコア(21)にオーバラップしている場合に比べて、冷媒をより下流側(第1コイルエンド部(31)の中心軸線方向外側の端部(31a)側)まで流すことができるので、第1コイルエンド部(31)自体も冷却することができ、回転電機(1)の温度をさらに低下させることができる。 In the first embodiment, as described above, the outlet portion (57) is provided so as to overlap the first coil end portion (31) when viewed from the direction orthogonal to the central axis direction. ing. If comprised in this way, compared with the case where the outflow port part (57) overlaps with the stator core (21), a refrigerant | coolant is more downstream (end of the axial direction outer side of a 1st coil end part (31)). Part (31a) side), the first coil end part (31) itself can be cooled, and the temperature of the rotating electrical machine (1) can be further lowered.

 また、第1および第2実施形態では、上記のように、最内径層は、中心軸線方向において、冷媒が最内径層入口部側から最内径層出口部側に向かって流れるように構成されている。このように構成すれば、ステータコア(21)に比較的近い位置に配置される最内径層において冷媒が最内径層入口部側から最内径層出口部側に向かって流れるので、回転電機(1)の中心軸線方向の一方側と他方側とにおける温度差を効果的に低減することができる。 In the first and second embodiments, as described above, the innermost diameter layer is configured such that the refrigerant flows from the innermost diameter layer inlet portion side toward the innermost diameter layer outlet portion side in the central axis direction. Yes. If comprised in this way, since a refrigerant | coolant flows toward the innermost diameter layer exit part side from the innermost diameter layer entrance part side in the innermost diameter layer arrange | positioned in the position comparatively close to a stator core (21), a rotary electric machine (1) The temperature difference between the one side and the other side in the central axis direction can be effectively reduced.

 また、第1および第2実施形態では、上記のように、最内径層(螺旋状の流路(51、251))は、中心軸線方向において、最内径層入口部側から最内径層出口部側に向かう折り返し流路を含まない。このように構成すれば、最内径層に対して冷媒をスムーズに流すことができる。 In the first and second embodiments, as described above, the innermost diameter layer (the spiral flow paths (51, 251)) is arranged in the direction of the central axis from the innermost diameter layer inlet portion side to the innermost diameter layer outlet portion. It does not include the folded channel that goes to the side. If comprised in this way, a refrigerant | coolant can be smoothly poured with respect to an innermost diameter layer.

 また、第1および第2実施形態では、上記のように、流路(51、251)は、ステータコア(21)の外周面(21c)を取り囲むとともに、第2コイルエンド部(32)側から第1コイルエンド部(31)側に向かって螺旋状に設けられている。このように構成すれば、冷媒がステータコア(21)の外周を螺旋状に流れるので、ステータコア(21)の全体を効果的に冷却することができる。 In the first and second embodiments, as described above, the flow path (51, 251) surrounds the outer peripheral surface (21c) of the stator core (21) and also from the second coil end portion (32) side. It is provided in a spiral shape toward the one coil end portion (31) side. If comprised in this way, since a refrigerant | coolant flows spirally around the outer periphery of a stator core (21), the whole stator core (21) can be cooled effectively.

 また、第1および第2実施形態では、上記のように、冷媒は、たとえば、水、油またはエチレングリコールである。このように構成すれば、冷媒がガスなどの場合に比べて、冷却効率を高めることができる。また、冷媒の取り扱いを容易にすることができる。 In the first and second embodiments, as described above, the refrigerant is, for example, water, oil, or ethylene glycol. If comprised in this way, compared with the case where a refrigerant | coolant is gas etc., cooling efficiency can be improved. Moreover, handling of the refrigerant can be facilitated.

 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiment but by the scope of claims for patent, and further includes all modifications (modifications) within the meaning and scope equivalent to the scope of claims for patent.

 たとえば、上記第1および第2実施形態では、ジャケット部がステータコアに焼き嵌めされることにより固定されている例を示したが、本発明はこれに限られない。たとえば、ジャケット部がステータコアに焼き嵌め以外の方法により固定されていてもよい。 For example, in the first and second embodiments, the example in which the jacket portion is fixed by being shrink-fitted to the stator core is shown, but the present invention is not limited to this. For example, the jacket portion may be fixed to the stator core by a method other than shrink fitting.

 また、上記第1および第2実施形態では、コイルが平角導線により形成されている例を示したが、本発明はこれに限られない。たとえば、コイルが平角導線以外の導線(丸線など)によって構成されていてもよい。 Further, in the first and second embodiments, the example in which the coil is formed by a flat wire is shown, but the present invention is not limited to this. For example, the coil may be comprised by conducting wires (round wire etc.) other than a rectangular conducting wire.

 また、上記第1および第2実施形態では、第2コイルエンド部が動力線および中性線の両方に接続されている例を示したが、本発明はこれに限られない。たとえば、第2コイルエンド部が動力線および中性線のうちの一方にのみ接続されていてもよい。 In the first and second embodiments, the second coil end portion is connected to both the power line and the neutral line. However, the present invention is not limited to this. For example, the second coil end portion may be connected to only one of the power line and the neutral line.

 また、上記第1および第2実施形態では、中心軸線方向に対して直交する方向から見て、流路が、ステータコア、第1コイルエンド部、および、第2コイルエンド部にオーバラップするように設けられている例を示したが、本発明はこれに限られない。たとえば、流路が、第1コイルエンド部および第2コイルエンド部にはオーバラップせずに、ステータコアに(ステータコアのみに)オーバラップしていてもよい。このように構成すれば、流路の全長が短縮されるので、冷却構造を簡素化することができる。 In the first and second embodiments, the flow path overlaps with the stator core, the first coil end portion, and the second coil end portion as seen from the direction orthogonal to the central axis direction. Although the example provided is shown, this invention is not limited to this. For example, the flow path may overlap the stator core (only the stator core) without overlapping the first coil end portion and the second coil end portion. If comprised in this way, since the full length of a flow path is shortened, a cooling structure can be simplified.

 また、上記第1および第2実施形態では、流入口部が第2コイルエンド部にオーバラップしている例を示したが、本発明はこれに限られない。たとえば、流入口部が第2コイルエンド部にオーバラップせずにステータコアにオーバラップしていてもよい。 In the first and second embodiments, the example in which the inlet portion overlaps the second coil end portion is shown, but the present invention is not limited to this. For example, the inlet portion may overlap the stator core without overlapping the second coil end portion.

 また、上記第1実施形態では、流出口部が第1コイルエンド部にオーバラップしている例を示したが、本発明はこれに限られない。たとえば、流出口部が第1コイルエンド部にオーバラップせずにステータコアにオーバラップしていてもよい。 In the first embodiment, the example in which the outlet portion overlaps the first coil end portion is shown, but the present invention is not limited to this. For example, the outlet portion may overlap the stator core without overlapping the first coil end portion.

 また、上記第1および第2実施形態では、流路が螺旋状に設けられている例を示したが、本発明はこれに限られない。たとえば、図5に示す変形例による冷却構造400のように、流路351がラビリンス状に設けられていてもよい。なお、図5は、流路351(内側ジャケット部分)を展開した状態を示している。流入口部356から流入した冷媒は、第2コイルエンド部32側(X2方向側)から第1コイルエンド部31側(X1方向側)に流れて、流出口部357から流出する。 In the first and second embodiments, the example in which the flow path is provided in a spiral shape is shown, but the present invention is not limited to this. For example, the flow path 351 may be provided in a labyrinth shape as in the cooling structure 400 according to the modification shown in FIG. FIG. 5 shows a state where the flow path 351 (inner jacket portion) is developed. The refrigerant flowing in from the inflow port portion 356 flows from the second coil end portion 32 side (X2 direction side) to the first coil end portion 31 side (X1 direction side) and flows out from the outflow port portion 357.

 1 回転電機
 11 ロータコア
 21 ステータコア
 21a 端面
 21b 端面
 21c 外周面
 30 コイル
 31 第1コイルエンド部
 32 第2コイルエンド部
 41 動力線
 42 中性線
 50、250 ジャケット部
 51、251、351 流路
 56、256、356 流入口部
 57、257、357 流出口部
 100、300、400 冷却構造
 C1、C2 中央部
DESCRIPTION OF SYMBOLS 1 Rotating electrical machine 11 Rotor core 21 Stator core 21a End surface 21b End surface 21c Outer peripheral surface 30 Coil 31 1st coil end part 32 2nd coil end part 41 Power line 42 Neutral wire 50, 250 Jacket part 51,251,351 Flow path 56,256 356 Inlet part 57, 257, 357 Outlet part 100, 300, 400 Cooling structure C1, C2 Central part

Claims (13)

 ロータコアと、前記ロータコアに対向するように設けられコイルが配置されるステータコアとを備える回転電機の冷却構造であって、
 前記ステータコアの外周面を覆うように設けられ、内部に前記ステータコアを冷却するための冷媒が流れる流路が設けられるジャケット部を備え、
 前記コイルは、前記ステータコアの中心軸線方向の一方側の端面から突出する部分である第1コイルエンド部と、前記ステータコアの中心軸線方向の他方側の端面から突出する部分であり前記第1コイルエンド部の容積よりも大きい容積を有する第2コイルエンド部とを含み、
 前記冷媒は、中心軸線方向において、前記第2コイルエンド部側から前記第1コイルエンド部側に向かって前記流路を流れるように構成されている、回転電機の冷却構造。
A cooling structure for a rotating electrical machine comprising a rotor core and a stator core provided to face the rotor core and in which a coil is disposed,
A jacket portion provided to cover the outer peripheral surface of the stator core, and provided with a flow path through which a coolant for cooling the stator core flows;
The coil is a first coil end portion that protrudes from one end surface in the central axis direction of the stator core, and a portion that protrudes from the other end surface in the central axis direction of the stator core, and the first coil end A second coil end portion having a volume larger than the volume of the portion,
A cooling structure for a rotating electric machine, wherein the refrigerant is configured to flow in the flow path from the second coil end portion side toward the first coil end portion side in a central axis direction.
 前記第2コイルエンド部の前記ステータコアの中心軸線方向の端面からの突出長さは、前記第1コイルエンド部の前記ステータコアの中心軸線方向の端面からの突出長さよりも大きくなるように構成されている、請求項1に記載の回転電機の冷却構造。 The protruding length of the second coil end portion from the end surface in the central axis direction of the stator core is configured to be larger than the protruding length of the first coil end portion from the end surface in the central axis direction of the stator core. The cooling structure for a rotating electrical machine according to claim 1.  前記第2コイルエンド部は、前記コイルに電力を供給する動力線および中性点に接続される中性線のうちの少なくとも一方が接続されるように構成されている、請求項1または2に記載の回転電機の冷却構造。 The said 2nd coil end part is comprised so that at least one of the power wire which supplies electric power to the said coil, and the neutral wire connected to a neutral point may be connected. The rotating electrical machine cooling structure described.  中心軸線方向に対して直交する方向から見て、前記流路は、前記ステータコア、前記第1コイルエンド部、および、前記第2コイルエンド部にオーバラップするように設けられている、請求項1~3のいずれか1項に記載の回転電機の冷却構造。 2. The flow path is provided so as to overlap the stator core, the first coil end portion, and the second coil end portion when viewed from a direction orthogonal to a central axis direction. 4. The cooling structure for a rotating electric machine according to any one of items 1 to 3.  中心軸線方向に対して直交する方向から見て、前記流路は、前記第1コイルエンド部および前記第2コイルエンド部にはオーバラップせずに、前記ステータコアにオーバラップするように設けられている、請求項1~3のいずれか1項に記載の回転電機の冷却構造。 When viewed from a direction perpendicular to the central axis direction, the flow path is provided so as not to overlap the first coil end portion and the second coil end portion but to overlap the stator core. The rotating electrical machine cooling structure according to any one of claims 1 to 3.  前記ジャケット部は、前記流路に前記冷媒を流入させるための流入口部を含み、
 前記流入口部は、前記ステータコアの中心軸線方向における中央部よりも前記第2コイルエンド部側に設けられている、請求項1~5のいずれか1項に記載の回転電機の冷却構造。
The jacket portion includes an inlet portion for allowing the refrigerant to flow into the flow path,
The cooling structure for a rotating electrical machine according to any one of claims 1 to 5, wherein the inflow port portion is provided closer to the second coil end portion than a central portion in a central axis direction of the stator core.
 中心軸線方向に対して直交する方向から見て、前記流入口部は、前記第2コイルエンド部にオーバラップするように設けられている、請求項6に記載の回転電機の冷却構造。 The cooling structure for a rotating electrical machine according to claim 6, wherein the inlet portion is provided so as to overlap the second coil end portion when viewed from a direction orthogonal to the central axis direction.  前記ジャケット部は、前記流路から前記冷媒を流出させるための流出口部をさらに含み、
 前記流出口部は、前記ステータコアの中心軸線方向における中央部よりも前記第1コイルエンド部側に設けられているか、または、前記ステータコアの中心軸線方向における中央部よりも前記第2コイルエンド部側に前記流入口部と隣り合うように設けられている、請求項6または7に記載の回転電機の冷却構造。
The jacket part further includes an outlet part for allowing the refrigerant to flow out of the flow path,
The outlet portion is provided closer to the first coil end portion than the central portion in the central axis direction of the stator core, or is closer to the second coil end portion than the central portion in the central axis direction of the stator core. The cooling structure for a rotating electrical machine according to claim 6, wherein the cooling structure is provided adjacent to the inlet portion.
 前記流出口部は、前記ステータコアの中心軸線方向における中央部よりも前記第1コイルエンド部側に設けられているとともに、中心軸線方向に対して直交する方向から見て、前記第1コイルエンド部にオーバラップするように設けられている、請求項8に記載の回転電機の冷却構造。 The outlet portion is provided closer to the first coil end portion than the center portion in the central axis direction of the stator core, and the first coil end portion is viewed from a direction orthogonal to the central axis direction. The cooling structure for a rotating electric machine according to claim 8, wherein the cooling structure is provided so as to overlap with each other.  前記ジャケット部は、前記ステータコアの外周面に接触する内側ジャケット部分を含み、
 前記冷媒の前記流入口部から前記流出口部までを前記冷媒が流れる一連流路とし、前記一連流路のうち、前記内側ジャケット部分を介して前記ステータコアと接触する部分を最内径層とし、前記最内径層のうち、前記流入口部に連結する部分を最内径層入口部とし、前記最内径層のうち、前記流出口部に連結する部分を最内径層出口部とし、
 前記最内径層入口部は、中心軸線方向において、前記第2コイルエンド部側に配置されており、前記最内径層出口部は、中心軸線方向において、前記第1コイルエンド部側に配置されており、
 前記最内径層は、中心軸線方向において、前記冷媒が前記最内径層入口部から前記最内径層出口部に向かって流れるように構成されている、請求項8または9に記載の回転電機の冷却構造。
The jacket portion includes an inner jacket portion that contacts an outer peripheral surface of the stator core,
A series of flow paths through which the refrigerant flows from the inlet part to the outlet part of the refrigerant, and a part of the series flow path that contacts the stator core via the inner jacket part is an innermost diameter layer, Of the innermost diameter layer, the portion connected to the inlet portion is the innermost diameter layer inlet portion, and among the innermost diameter layer, the portion connected to the outlet portion is the innermost diameter layer outlet portion,
The innermost diameter layer inlet portion is disposed on the second coil end portion side in the central axis direction, and the innermost diameter layer outlet portion is disposed on the first coil end portion side in the central axis direction. And
The cooling of the rotating electrical machine according to claim 8 or 9, wherein the innermost diameter layer is configured such that the refrigerant flows from the innermost diameter layer inlet portion toward the innermost diameter layer outlet portion in a central axis direction. Construction.
 前記最内径層は、中心軸線方向において、前記最内径層入口部側から前記最内径層出口部側に向かう折り返し流路を含まない、請求項10に記載の回転電機の冷却構造。 The cooling structure for a rotating electrical machine according to claim 10, wherein the innermost diameter layer does not include a return flow path from the innermost diameter layer inlet portion side toward the innermost diameter layer outlet portion side in the central axis direction.  前記流路は、前記ステータコアの外周面を取り囲むとともに、前記第2コイルエンド部側から前記第1コイルエンド部側に向かって螺旋状に設けられている、請求項1~11のいずれか1項に記載の回転電機の冷却構造。 The flow path surrounds the outer peripheral surface of the stator core and is provided in a spiral shape from the second coil end portion side to the first coil end portion side. The rotating electrical machine cooling structure described in 1.  前記冷媒は、水を含む、請求項1~12のいずれか1項に記載の回転電機の冷却構造。 The cooling structure for a rotating electric machine according to any one of claims 1 to 12, wherein the refrigerant includes water.
PCT/JP2018/046097 2018-02-19 2018-12-14 Cooling structure for rotary electric machine Ceased WO2019159522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018026752 2018-02-19
JP2018-026752 2018-02-19

Publications (1)

Publication Number Publication Date
WO2019159522A1 true WO2019159522A1 (en) 2019-08-22

Family

ID=67619260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046097 Ceased WO2019159522A1 (en) 2018-02-19 2018-12-14 Cooling structure for rotary electric machine

Country Status (1)

Country Link
WO (1) WO2019159522A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021151599A1 (en) * 2020-01-30 2021-08-05 Robert Bosch Gmbh Cooling of an electric drive in an electrically driven vehicle
WO2022152897A1 (en) * 2021-01-18 2022-07-21 Valeo Embrayages Vehicle transmission assembly and method for assembling a vehicle transmission assembly
WO2023188619A1 (en) * 2022-03-31 2023-10-05 ニデック株式会社 Drive device and method for manufacturing drive device
WO2025164308A1 (en) * 2024-01-31 2025-08-07 株式会社小松製作所 Stator, rotary electric machine, and work machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205475A (en) * 1995-01-30 1996-08-09 Hitachi Ltd Electric motor
JP2002191149A (en) * 2000-12-20 2002-07-05 Isuzu Ceramics Res Inst Co Ltd Rotating electric machine
JP2012034481A (en) * 2010-07-30 2012-02-16 Ntn Corp Vehicle motor driving apparatus
JP2012090405A (en) * 2010-10-19 2012-05-10 Toyota Motor Corp Cooling structure of rotary electric machine
JP2015019494A (en) * 2013-07-10 2015-01-29 日産自動車株式会社 Rotary machine and method of manufacturing the same
KR20170088708A (en) * 2016-01-25 2017-08-02 엘지전자 주식회사 Electric motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205475A (en) * 1995-01-30 1996-08-09 Hitachi Ltd Electric motor
JP2002191149A (en) * 2000-12-20 2002-07-05 Isuzu Ceramics Res Inst Co Ltd Rotating electric machine
JP2012034481A (en) * 2010-07-30 2012-02-16 Ntn Corp Vehicle motor driving apparatus
JP2012090405A (en) * 2010-10-19 2012-05-10 Toyota Motor Corp Cooling structure of rotary electric machine
JP2015019494A (en) * 2013-07-10 2015-01-29 日産自動車株式会社 Rotary machine and method of manufacturing the same
KR20170088708A (en) * 2016-01-25 2017-08-02 엘지전자 주식회사 Electric motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021151599A1 (en) * 2020-01-30 2021-08-05 Robert Bosch Gmbh Cooling of an electric drive in an electrically driven vehicle
CN115004518A (en) * 2020-01-30 2022-09-02 罗伯特·博世有限公司 Cooling of electric drives in electric vehicles
US12273007B2 (en) 2020-01-30 2025-04-08 Robert Bosch Gmbh Cooling of an electric drive in an electrically driven vehicle
WO2022152897A1 (en) * 2021-01-18 2022-07-21 Valeo Embrayages Vehicle transmission assembly and method for assembling a vehicle transmission assembly
FR3118910A1 (en) * 2021-01-18 2022-07-22 Valeo Embrayages Vehicle transmission assembly and method of assembling a vehicle transmission assembly
WO2023188619A1 (en) * 2022-03-31 2023-10-05 ニデック株式会社 Drive device and method for manufacturing drive device
WO2025164308A1 (en) * 2024-01-31 2025-08-07 株式会社小松製作所 Stator, rotary electric machine, and work machine

Similar Documents

Publication Publication Date Title
JP7139969B2 (en) Rotating electric machine
JP6072866B1 (en) Rotating electric machine
US8963383B2 (en) Stator section for an axial flux electric machine with liquid cooling system
WO2019159522A1 (en) Cooling structure for rotary electric machine
US20130342052A1 (en) Electric machine with circumferential rotor and housing fins
JP2019161752A (en) Rotary electric machine stator
EP3136550B1 (en) Rotor assembly having improved cooling path
US20130062978A1 (en) Electric rotating machine
CN104380576A (en) Stator of rotary electric machine
EP3764524B1 (en) Dynamo-electric machine
CN117999728A (en) Motor with a motor housing
JP6247555B2 (en) Rotating electric machine
JP5924352B2 (en) Rotating electric machine
JP6212998B2 (en) Rotating machine and manufacturing method of rotating machine
JPWO2019123977A1 (en) Stator manufacturing method
JP5892091B2 (en) Multi-gap rotating electric machine
CN111478519B (en) Rotating electrical machine
JP2024087796A (en) Electric motor
JP7545287B2 (en) Rotating electric machine stator
JP5330860B2 (en) Rotating electric machine
JP7649204B2 (en) Rotating electric machine case and rotating electric machine
JP2024013921A (en) Rotary electric machine
JP2005245155A (en) Motor cooling structure
US9362794B2 (en) Stator winding comprising multiple phase windings
JP2010239680A (en) Armature for rotating electrical machine and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP