[go: up one dir, main page]

WO2022092246A1 - Program, information processing device, and method - Google Patents

Program, information processing device, and method Download PDF

Info

Publication number
WO2022092246A1
WO2022092246A1 PCT/JP2021/039940 JP2021039940W WO2022092246A1 WO 2022092246 A1 WO2022092246 A1 WO 2022092246A1 JP 2021039940 W JP2021039940 W JP 2021039940W WO 2022092246 A1 WO2022092246 A1 WO 2022092246A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
work
preference
output
answer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2021/039940
Other languages
French (fr)
Japanese (ja)
Inventor
真波 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mellow Ltd
Original Assignee
Mellow Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mellow Ltd filed Critical Mellow Ltd
Publication of WO2022092246A1 publication Critical patent/WO2022092246A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions

Definitions

  • This disclosure relates to programs, information processing devices, methods, and information processing systems.
  • the purpose of this disclosure is to provide a program that can be presented to the user even if the copyrighted work of the user is the copyrighted work of an unknown author.
  • the second step of selecting from a set of works including the works of authors who are not well known in the field to which they belong and the third step of outputting the selected works to the user are executed.
  • the information processing system 1 is a system for presenting a user's favorite copyrighted work to the user terminal 20.
  • the work is a painting belonging to the field of art
  • the work is not limited to paintings, and is not limited to the field of art.
  • the same parts are designated by the same reference numerals. Their names and functions are the same. Therefore, the detailed description of them will not be repeated.
  • FIG. 1 is a block diagram showing an overall configuration of the information processing system 1.
  • the information processing system 1 includes an information processing device 10, a user terminal 20, a radio base station 30, and a network 40.
  • the information processing apparatus 10 and the user terminal 20 are connected to each other so as to be able to communicate with each other via the network 40.
  • the network 40 is composed of a wired or wireless network.
  • the information processing device 10 and the user terminal 20 are connected to the network 40 by using an arbitrary wired or wireless communication standard.
  • the case where the information processing apparatus 10 is connected to the network 40 by wire and the user terminal 20 is wirelessly connected to the network 40 via the wireless base station 30 will be described as an example. The configuration is not limited to this.
  • the information processing device 10 is a device that executes a learning process for learning a user's favorite image, a display process for presenting a user's favorite painting, and the like.
  • the information processing device 10 is, for example, a laptop computer, a rack-mounted computer, a tower-type computer, or the like.
  • the information processing device 10 may be composed of a plurality of information processing devices 10 and the like.
  • FIG. 2 is a diagram showing the configuration of the information processing apparatus 10. As shown in FIG. 2, the information processing apparatus 10 includes a processor 11, a memory 12, a storage 13, a communication IF 14, and an input / output IF 15.
  • the processor 11 is hardware for executing an instruction set described in a program, and is composed of an arithmetic unit, registers, peripheral circuits, and the like.
  • the memory 12 is for temporarily storing a program, data processed by the program, or the like, and is, for example, a volatile memory such as a DRAM (Dynamic Random Access Memory).
  • DRAM Dynamic Random Access Memory
  • the storage 13 is a storage device for storing data, and is, for example, a flash memory, an HDD (Hard Disc Drive), or an SSD (Solid State Drive).
  • the communication IF 14 is an interface for inputting / outputting signals because the information processing device 10 communicates with an external device.
  • the input / output IF15 functions as an interface with an input device (for example, a pointing device such as a mouse, a keyboard) for receiving an input operation and an output device (display, speaker, etc.) for presenting information.
  • an input device for example, a pointing device such as a mouse, a keyboard
  • an output device for presenting information.
  • FIG. 3 is a block diagram showing a functional configuration of the information processing apparatus 10. As shown in FIG. 3, the information processing apparatus 10 includes a communication unit 110, a storage unit 120, and a control unit 130.
  • the communication unit 110 performs processing for the information processing device 10 to communicate with an external device.
  • the storage unit 120 stores data and programs used by the information processing device 10.
  • the storage unit 120 stores the user DB 121, the painting DB 122, the model DB 123, and the like.
  • the user DB 121 is a database that holds information about each user.
  • FIG. 4 is a diagram showing an example of the data structure of the user DB 121. As shown in FIG. 4, the record of the user DB 121 includes an item "user ID”, an item “preference”, an item “browsing history”, an item “favorite”, and the like.
  • the item "user ID” is information that identifies the user.
  • the item "preference” is information indicating the user's preference. For example, the user class described later.
  • the item "browsing history” is a history of paintings browsed by the user.
  • the item "favorite” is information indicating a painting or author registered as a favorite by the user.
  • the painting DB 122 is a database that holds information about paintings.
  • FIG. 5 is a diagram showing an example of the data structure of the painting DB 122.
  • the painting DB 122 also includes paintings by authors who are not well known in the field of art. This is to present the painting of an unfamiliar author or the unfamiliar author himself to the user in the information processing system 1 of the present disclosure.
  • a well-known author is an author who is widely known among consumers in the field to which the work belongs. For example, if the author is a painter, a painter who has a contract with a gallery, a painter who has been featured in the media, a painter who has been known to consumers by exhibiting at solo exhibitions, group exhibitions, etc., has received awards.
  • the record of the painting DB 122 includes the item "author ID”, the item “painting ID”, the item “painting data”, and the like.
  • the item "author ID” is information that identifies the author.
  • the item "painting ID” is information for identifying a painting.
  • the item "painting data” is data related to painting.
  • the painting data is, for example, image data when the painting is imaged.
  • the processor 11 of the information processing device 10 performs processing according to a program, so that the reception control unit 131, the transmission control unit 132, the first output unit 133, the learning unit 134, the selection unit 135, and the second output unit 136 , The function shown in the registration unit 137, the input unit 138, and the notification unit 139 is exhibited.
  • the reception control unit 131 controls the process in which the information processing device 10 receives a signal from an external device according to a communication protocol. Specifically, the reception control unit 131 receives various information from the user terminal 20. For example, the reception control unit 131 receives the answer described later from the user terminal 20.
  • the transmission control unit 132 controls a process in which the information processing device 10 transmits a signal to an external device according to a communication protocol. Specifically, the transmission control unit 132 transmits predetermined information to the user terminal 20. For example, the transmission control unit 132 transmits the image data of the painting, the image data of the painting selected by the selection unit 135, and the like to the user terminal 20.
  • the first output unit 133 outputs a painting for learning the user's preference to the user. Specifically, the first output unit 133 outputs a screen for displaying a painting for learning the user's preference. At this time, the first output unit 133 outputs the painting designated by the learning unit 134. The first output unit 133 outputs a painting designated by the learning unit 134 each time or in advance. The order of the paintings designated by the learning unit 134 and output by the first output unit 133 is such that the accuracy of learning the user's preference is improved.
  • the first output unit 133 causes the transmission control unit 132 to transmit the image data to the user terminal 20. As a result, the painting is displayed on the user terminal 20.
  • the first output unit 133 receives input of a subjective answer about the output painting to the user terminal 20.
  • the subjective impression is, for example, the user's subjective impression such as the emotion that the user has toward the image, the atmosphere that the user feels, the intuition, and the good or bad.
  • the first output unit 133 causes the user terminal 20 to display the user's emotions as a subjective answer so that they can be input.
  • To display the user's emotions so that they can be input for example, the following methods (1) to (3) can be adopted. (1) Prepare multiple options related to the user's emotions and display them in a selectable manner. (2) A meter showing the degree of emotion of the user is displayed, and the degree of emotion can be specified by operating the meter. (3) Display a button that allows you to enter the degree of emotion according to the time you press it.
  • a four-stage index of Happy / Relaxed / inspired / Not Internet can be adopted. Further, it may be configured to include Other (others). In this case, the painting that the user feels Happy can be regarded as the image that the user prefers most. By using such a user's subjective answer, the user's preference can be recognized more accurately. With such a configuration, it is possible to continuously input the evaluation without burdening the user and without getting bored. In particular, by using such a GUI, the user's intuitive and cognitive load can be minimized.
  • buttons 142 to 146 show an example of a screen displayed on the user terminal 20.
  • FIG. 6 is an example of the case of (1).
  • the screen 140 includes a painting display unit 141, and buttons 142 to 146.
  • the painting display unit 141 is an area for displaying a painting.
  • Buttons 142 to 146 are user emotional choices.
  • buttons 142 to 144 are buttons corresponding to Happy, Relaxed, and inspired.
  • Button 145 indicates Not internet, and button 146 indicates Other.
  • the first output unit 133 configures the screen 140 so that a user's answer is received when any one of the buttons 142 to 146 is pressed.
  • usability can be improved by making the buttons larger in size than other buttons.
  • the screen 150 includes a painting display unit 141 and a slide input unit 151.
  • the hand portion 152 indicates the user's hand and is not included in the screen 150.
  • the slide input unit 151 can input the strength of the user's emotions from Not interested to Very interested by sliding the hand unit 152.
  • the screen 160 includes a painting display unit 141 and a slide input unit 161.
  • the hand portion 152 is the same as in FIG. 7. By operating the adjustment unit 162 by the hand unit 152, the slide input unit 161 can input the emotional strength of the user from Not intersted to Very intersted.
  • a linear meter such as the slide input unit 151 or the slide input unit 161 accepts the input of the user's emotional strength at a position arbitrarily stopped by the user. With such a configuration, it is possible to obtain an answer so that the user can input easily without imposing a burden on the user.
  • FIG. 9 shows an example of the case of (3).
  • the screen 170 includes a painting display unit 141 and an input display unit 171.
  • the input display unit 171 includes a button unit 172 and a gauge unit 173.
  • the hand portion 152 is the same as in FIG. 7.
  • the input display unit 171 is configured so that the gauge of the gauge unit 173 accumulates while the button unit 172 is pressed.
  • a GUI such as the input display unit 171
  • the learning unit 134 learns the user's preference. Specifically, the learning unit 134 first accepts input of a subjective answer about the output work from the user. Specifically, the learning unit 134 receives the answer received from the user terminal 20 by the reception control unit 131. The learning unit 134 then determines the painting to be output by the first output unit 133 based on the received answer.
  • the learning unit 134 repeats outputting the copyrighted work by the first output unit 133 and accepting the input of the answer a predetermined number of times.
  • the predetermined number of times is, for example, 10 times. In this case, the painting is displayed to the user and the input of the answer is accepted 10 times.
  • the learning unit 134 learns the user's preference. Specifically, the learning unit 134 inputs in advance the order of the output paintings, the output paintings, the answers to the paintings, and the answers, so as to output the first vector showing the tendency of the user's preference in advance.
  • the user's preference is learned using the learned first model.
  • the first vector is information indicating a tendency of user's preference.
  • the first vector is, for example, information such as a vector, a matrix, a function, etc., which are composed of a plurality of elements indicating a user's preference.
  • the learning unit 134 stores the second vector of the user in the user DB 121.
  • the learning unit 134 may relearn the user's preference at a predetermined timing. This is to cope with the possibility that the user's preference may change.
  • the learning unit 134 can set the predetermined number of times of repeating the output of the copyrighted work by the first output unit 133 and the acceptance of the input of the answer to be less than the first time. Since the user's preference does not change significantly, it is possible to learn with a small number of sheets and reduce the burden on the user at the time of re-learning.
  • the learning unit 134 can be configured to have a different screen output by the first output unit 133 depending on the learning scene. For example, the learning unit 134 causes the first output unit 133 to output the example of FIG. 6 when learning the user's preference. The learning unit 134 causes the first output unit 133 to output any example of FIGS. 7 to 9 when re-learning the user's preference. With such a configuration, first, the user's preference is accurately learned by the five-step learning, and then the re-learning is performed by the continuous value of the two indexes that does not impose a load on the user. As a result, it is possible to accurately learn the user's preference without imposing a burden on the user.
  • the learning unit 134 outputs the second vector, which is a user class indicating the tendency of preference to which the user belongs, by inputting the order of the output paintings, the output paintings, the answers to the paintings, and the answers. It may be configured to learn the user's preference by using the second model learned in advance.
  • the second vector is information indicating a tendency of user's preference classified in advance.
  • the second vector is, for example, information such as a vector, a matrix, a function, etc., which are composed of a plurality of elements for classifying the user's preference.
  • the learning unit 134 stores the second vector of the user in the user DB 121.
  • the learning unit 134 may be configured to learn the first vector and the second vector as the user's preference.
  • the learning unit 134 learns the first model in advance so as to output the first vector showing the tendency of the user's preference by using the painting and the answer as teacher data.
  • the first vector user class output by the first model may differ depending on the order in which the paintings are output. Therefore, the learning unit 134 determines the order of the paintings to be output so that the first vector output by the first model is closest to the tendency of the user's preference.
  • a method for determining the order for example, a method can be adopted in which a score indicating that the first vector output by the first model is close to the tendency of the user's preference is obtained for each image and determined.
  • the learning unit 134 uses a set of a plurality of paintings, a plurality of answers, and the order in which the paintings are output for the teacher data, and the first model, the paintings output by the first output unit 133, and the order thereof. To learn. Using a plurality of sets, it is possible to verify whether or not the first vector output by the first model is close to the tendency of the user's preference according to the order of the output paintings. As the order learning method, it is possible to adopt the above-mentioned score for each image, the above-mentioned score for each combination of images to be output, and the like. The order may be different depending on the answer.
  • the first model any model such as a neural network can be used.
  • a learning method for example, an inverse error propagation method or the like can be used.
  • the first model, the painting to be output, and the order may be learned at the same time.
  • the parameters of the first model, the painting output by the first output unit 133, and the order thereof are learned so that the objective function for the first vector and the objective function for the order are maximized at the same time.
  • the learning unit 134 may be configured to learn in such an order that the user does not lose interest. In this case, it is sufficient to collect data from a plurality of users in advance as to what order of paintings loses interest in the answer.
  • the painting used for learning by the learning unit 134 and the painting output by the first output unit 133 those stored in the painting DB 122 in advance are used.
  • the painting used for learning may be configured to use one stored in an external database server.
  • the learning unit 134 stores the learned parameters of the first model, the paintings output by the first output unit 133, and their order in the model DB 123.
  • the learning unit 134 learns in advance the second model so as to output the second vector, which is a user class indicating the tendency of preference to which the user belongs, using the painting and the answer as teacher data.
  • the second vector output by the second model may differ depending on the order in which the paintings are output. Therefore, the learning unit 134 determines the order of the paintings to be output so that the second vector output by the second model is closest to the tendency of the user's preference. Therefore, the learning unit 134 uses a set of a plurality of paintings, a plurality of answers, and the order in which the paintings are output for the teacher data, the second model, the paintings output by the first output unit 133, and the paintings thereof. Learn the order and.
  • any model such as a neural network can be used.
  • a learning method for example, an inverse error propagation method or the like can be used.
  • the second model, the painting to be output, and the order may be learned at the same time.
  • the parameters of the second model, the painting output by the first output unit 133, and the order thereof are learned so that the objective function for the second vector and the objective function for the order are maximized at the same time.
  • the painting used for learning by the learning unit 134 and the painting output by the first output unit 133 those stored in the painting DB 122 in advance are used.
  • the painting used for learning may be configured to use one stored in an external database server.
  • the learning unit 134 stores the parameters of the learned second model, the paintings output by the first output unit 133, and their order in the model DB 123.
  • the learning unit 134 relearns the paintings output by the first output unit 133 and their order by using the answer received from the user terminal 20 after the output by the second output unit 136.
  • the selection unit 135 selects a painting of the user's preference from a set of paintings including a painting of an author who is not well known in the art field to which the painting belongs, based on the user's preference learned in advance. Specifically, the selection unit 135 uses a third model that outputs a painting of the user's preference when at least one of the first vector and the second vector, which is the user's preference learned, is input, and the user's preference is used. Select a painting from the painting DB 122.
  • the third model is a model in which a plurality of paintings close to the user's preference are selected from the paintings included in the painting DB 122 based on at least one of the first vector and the second vector.
  • the selection unit 135 selects a painting having a score representing a user's preference of a predetermined value or more from a plurality of paintings selected by the third model.
  • the number of paintings selected by the selection unit 135 is one.
  • the selection unit 135 may be configured to weight the paintings of unknown authors so as to preferentially select the paintings of unknown authors.
  • the selection unit 135 selects the user's favorite painting from the painting DB 122 by further using the fourth model that outputs the features of the painting that the user does not like when inputting at least one of the first vector and the second vector. It can be configured. The painting selected by the fourth model should not be presented to the user. Therefore, the selection unit 135 can use a method such as selecting a painting using the third model after excluding the plurality of paintings selected by the fourth model from the candidates in advance.
  • the second output unit 136 outputs the selected painting to the user. Specifically, the second output unit 136 outputs a screen for displaying the painting selected by the selection unit 135. First, the second output unit 136 acquires the image data of the painting and the information about the author of the painting for each of the selected paintings from the painting DB 122. Next, the second output unit 136 generates a screen including image data of the painting and information about the author of the painting. The second output unit 136 causes the transmission control unit 132 to transmit the screen to the user terminal 20. As a result, the painting is displayed on the user terminal 20. The second output unit 136 may be configured to cause the transmission control unit 132 to transmit image data for each of the selected paintings and information about the author to the user terminal 20 without generating the screen. In this case, the user terminal 20 may be configured to generate the screen and display it to the user.
  • the selection unit 135 and the second output unit 136 can be configured to be executed at a predetermined timing. For example, by selecting a painting on a regular basis such as daily, weekly, or monthly, and presenting the selected painting to the user, the user can appreciate the favorite painting. In particular, works of art such as paintings and sculptures are not frequently considered by users. Therefore, the painting is presented to the user at a predetermined timing that the user does not feel uncomfortable. This also leads to the user considering purchasing a painting. Users can also purchase and invest in paintings by authors who are not well known. The painting may be presented to such a user frequently.
  • the predetermined timing may be configured to be set by the user.
  • the number of paintings selected by the selection unit 135 can always be less than or equal to a predetermined number.
  • the number may be 5 to 10 or less.
  • the number of art that the user can view per day is limited. Therefore, the user can be motivated to check the image every day without consuming the content at once.
  • by keeping the speed of content consumption constant it is possible to prevent the time for visually recognizing each work of art from diminishing. Due to such restrictions, it takes a certain amount of time for the results selected by the user to be accumulated. For this reason, it is still important to optimize the order in which images are presented to the user.
  • a small number does not burden the user and the degree of concentration on art increases, it is possible to increase the possibility that an unknown artist can view his / her own art.
  • Registration unit 137 accepts registrations of unfamiliar authors. Specifically, the registration unit 137 accepts registrations of authors other than authors, such as authors who already belong to the gallery and authors who are well-known or well-known in the field of art. For example, in a specific area (for example, a specific country, region, other administrative division, etc.), the well-knownness is determined mainly by consumers, business associates, etc. in that field. Then, the registration unit 137 stores the author and information related to the author in the storage unit 120.
  • Information related to the author includes information indicating that it is not well known, and other information is the author's name, contact information, the author's work, etc. Even an unfamiliar author can solve the problem that it is difficult to match with a user who likes his painting. In this way, by registering an unfamiliar author, an unknown author is supported.
  • the registration unit 137 does not exclude the registration of authors other than unknown authors. That is, for such authors, the degree of familiarity, information about the gallery to which they belong, etc. are included in the information about the authors.
  • the registration unit 137 accepts the favorite registration of the author or the painting output by the second output unit 136 from the user.
  • the registration unit 137 registers the received author or painting as a favorite by storing it in the user DB 121.
  • the input unit 138 accepts the input of the painting from the registered author. Specifically, the input unit 138 stores the received image data of the painting in the painting DB 122 in association with the author.
  • the notification unit 139 When the input unit 138 receives the input of the painting from the author registered by the registration unit 137, the notification unit 139 notifies the user of the accepted work. Specifically, when a painting is newly input from the author registered as a favorite, the notification unit 139 notifies the user who has registered the author as a favorite that the new painting has been registered. Upon receiving the display request from the user terminal 20, the notification unit 139 causes the second output unit 136 to output the new painting to the user. When the user terminal 20 receives the notification, the user terminal 20 displays a screen for accepting the display request from the user. It should be noted that the user may be configured to be configurable whether or not to receive the notification by the notification unit 139. Further, the notification unit 139 may be configured to include image data of a new painting in the notification. In this case, the user terminal 20 may be configured to notify the notification as a push notification including image data.
  • FIG. 10 is a diagram showing the configuration of the user terminal 20.
  • the user terminal 20 is a device that presents a painting output from the information processing device 10 to the user.
  • the user terminal 20 is, for example, a computer such as a laptop personal computer or a smartphone.
  • the user terminal 20 includes a processor 21, a memory 22, a storage 23, a communication IF 24, and an input / output IF 25.
  • the processor 21, the memory 22, the storage 23, the communication IF 24, and the input / output IF 25 have the same configurations as the processor 11, the memory 12, the storage 13, the communication IF 14, and the input / output IF 15, respectively.
  • FIG. 11 is a block diagram showing a functional configuration of the user terminal 20.
  • the user terminal 20 includes a communication unit 210, a storage unit 220, and a control unit 230.
  • the communication unit 210 performs processing for the user terminal 20 to communicate with an external device.
  • the storage unit 220 stores data and programs used by the user terminal 20.
  • the control unit 230 exerts the functions shown in the reception control unit 231, the transmission control unit 232, the display unit 233, and the input unit 234 when the processor 31 of the user terminal 20 performs processing according to the program.
  • the reception control unit 231 controls a process in which the user terminal 20 receives a signal from an external device according to a communication protocol. Specifically, the reception control unit 231 receives various information from the information processing device 10. More specifically, the reception control unit 231 receives image data, a screen, and the like from the information processing device 10.
  • the transmission control unit 232 controls a process in which the user terminal 20 transmits a signal to an external device according to a communication protocol. Specifically, the transmission control unit 232 transmits predetermined information to the information processing apparatus 10. More specifically, the transmission control unit 232 transmits the user's subjective response to the information processing apparatus 10.
  • the display unit 233 displays the image output by the first output unit 133. Specifically, when the reception control unit 231 receives the image data output by the first output unit 133 from the information processing device 10, the display unit 233 displays the image data. At this time, the display unit 233 displays the image data so that the user's subjective answer can be input as the subjective answer.
  • the display unit 233 displays the image output by the second output unit 136. Specifically, when the reception control unit 231 receives the screen output by the second output unit 136 from the information processing device 10, the display unit 233 displays the screen. At this time, the display unit 233 displays the screen so that the user's subjective answer can be input as the subjective answer.
  • the display unit 233 displays the content of the notification.
  • the function of the user terminal 20 of the present disclosure is implemented in an application installed on the user terminal 20, the notification may be displayed to the user by push notification.
  • the display unit 233 may be configured to include the image data in the push notification and display it.
  • the input unit 234 accepts the input of the user's subjective answer from the user.
  • the transmission control unit 232 causes the transmission control unit 232 to transmit the answer to the information processing apparatus 10.
  • FIG. 12 is a flowchart showing an example of a flow of performing registration processing by the information processing apparatus 10. The registration process is executed when a painting is input by the author.
  • step S101 the input of the painting is accepted from the registered author.
  • step S102 the input unit 138 stores the received image data of the painting in the painting DB 122 in association with the author.
  • step S103 the notification unit 139 determines whether or not a painting is newly input from the author registered as a favorite.
  • step S103 If no painting has been input from the author registered as a favorite (NO in step S103 above), the process ends.
  • step S104 the notification unit 139 indicates that a new painting has been registered for the user who has registered the author as a favorite. Is notified and the process ends.
  • FIG. 13 is a flowchart showing an example of a flow of learning processing by the information processing apparatus 10.
  • step S201 the first output unit 133 outputs to the user a painting for learning the user's preference. Specifically, the first output unit 133 causes the transmission control unit 132 to transmit the image data to the user terminal 20.
  • step S202 the reception control unit 131 receives an answer from the user terminal 20.
  • step S203 the learning unit 134 determines whether the step S201 and the step S202 are repeated a predetermined number of times.
  • step S203 If the process has not been repeated a predetermined number of times (NO in step S203), the learning unit 134 next specifies the painting to be output in step S201, and returns to step S201.
  • step S204 the learning unit 134 learns the user's preference.
  • step S205 the learning unit 134 stores the user's preference in the user DB 121.
  • FIG. 14 is a flowchart showing an example of a flow of performing display processing by the information processing apparatus 10. The display process is started at a predetermined timing.
  • step S301 the selection unit 135 selects a painting of the user's preference from a set of paintings including a painting of an author who is not well known in the art field to which the painting belongs, based on the user's preference learned in advance. do.
  • step S302 the second output unit 136 outputs the selected painting to the user. Specifically, the second output unit 136 causes the transmission control unit 132 to transmit the screen for displaying the painting selected in step S301 to the user terminal 20.
  • step S303 the learning unit 134 relearns the user's preference. Specifically, the answer is received from the user terminal 20, and the user's preference is learned based on the selected painting and the answer.
  • the user did not know the type of copyrighted work that relaxed or enlightened himself.
  • preference is learned based on the subjective response of the user.
  • the user's preference can be learned by the options of Relaxed and inspired. Therefore, by presenting a favorite work based on these viewpoints, the user can present the work according to the sensibility.
  • the target to be learned above can learn not only the user's preference for likes and dislikes of the copyrighted work, but also the user's preference according to the emotion of the input answer. For example, if the answer is Relaxed, the user feels relaxed with this work, so they can learn the characteristics of the work they prefer when they want to relax. In this way, by learning the user's preference according to the emotion of the answer, by presenting the favorite work based on the above viewpoint, the user can present the copyrighted work according to the sensibility.
  • the copyrighted work is a painting
  • the work may belong to another field of art, such as engraving, prints, illustrations, and graphic design.
  • the work may be a work belonging to the field of music, scholarship, or literary arts.
  • the author is not limited to the creator of the work, but includes the creator, the person who has the right to the work, and the like.
  • 3D data can be used instead of image data.
  • each database for example, painting DB 122
  • each database may be configured as a database existing outside the information processing apparatus 10.
  • the first output unit 133 or the second output unit 136 of the information processing apparatus 10 is configured to generate a screen to be displayed to the user, but the present invention is not limited to this.
  • the user terminal 20 may be configured to generate a screen to be displayed to the user.
  • the first step is a fourth step (S201) of outputting a work for learning the user's preference to the user, and inputting a subjective answer about the work from the user.
  • S201 a fourth step of outputting a work for learning the user's preference to the user, and inputting a subjective answer about the work from the user.
  • the second step is the program described in (Appendix 1) or (Appendix 2) in which the copyrighted work of the unknown author is selected from the set of the copyrighted works.
  • the third step is the program according to any one of (Appendix 1) to (Appendix 3) that outputs information about the author of the selected work.
  • the second step uses the answer and a second model that outputs a second vector, which is a user class indicating a tendency of preference to which the user belongs, by inputting the answer.
  • the program according to any one of (Appendix 2) to (Appendix 8) for selecting a favorite work of the user from a set of objects.
  • S202 a program for executing the step (S203) of repeating the output step and the accepting step a predetermined number of times.
  • 1 information processing system 10 information processing equipment, 11 processor, 12 memory, 13 storage, 14 communication IF, 15 input / output IF, 20 user terminal, 21 processor, 22 memory, 23 storage, 24 communication IF, 25 input / output IF, 30 wireless base station, 31 processor, 40 network, 110 communication unit, 120 storage unit, 121 user DB, 122 painting DB, 123 model DB, 130 control unit, 131 reception control unit, 132 transmission control unit, 133 first output unit.
  • 134 learning unit 135 selection unit, 136 second output unit, 137 registration unit, 138 input unit, 139 notification unit, 140 screen, 141 painting display unit, 142 button, 144 button, 145 button, 146 button, 150 screen, 151 slide input unit, 152 hand unit, 160 screen, 161 slide input unit, 162 adjustment unit, 170 screen, 171 input display unit, 172 button unit, 173 gauge unit, 210 communication unit, 220 storage unit, 230 control unit, 231 Reception control unit, 232 transmission control unit, 233 display unit, 234 input unit.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

This program causes an information processing device (10) including a processor to execute: a first step of outputting to a user a literary work for learning the preferences of the user; a second step of accepting input of a response from the user, where the response is an emotion other than a preference held by the user with respect to the output literary work; a step of repeating the first step and the second step a predetermined number of times; a step of using a plurality of groups comprising the output literary work and the response to the output literary work to learn the preferences of the user; a step of selecting a literary work matching the preferences of the user from a set of literary works, on the basis of the learned preferences of the user; and a step of outputting the selected literary work to the user.

Description

[規則37.2に基づきISAが決定した発明の名称] プログラム、情報処理装置及び方法[Name of invention determined by ISA based on Rule 37.2.] Program, information processing device and method

 本開示は、プログラム、情報処理装置、方法、及び情報処理システムに関する。 This disclosure relates to programs, information processing devices, methods, and information processing systems.

 近年、著作物に関し、ユーザの好みを学習し、自動的にユーザの好みの画像を提示するアプリケーションが開発されている。 In recent years, applications have been developed that learn user preferences regarding copyrighted works and automatically present images of user preferences.

 特許文献1は、「ユーザの好みを決定するために所望の画像の一以上の例又は反例を用い;所望の画像の例及び/又は反例から一以上の画像成分又は一以上の描写特徴のいずれかに対するユーザの相対的な好みを抽出し;画像成分又は描写特徴のいずれかに対する相対的な好みを用いて所望の画像のユーザの主観的な決定を定式化する各段階を含む、所望の画像に対するユーザの好みを学習する」ことを開示している。 US Pat. The desired image, including each step of extracting the user's relative preference for the image; formulating the user's subjective determination of the desired image using the relative preference for either the image component or the depiction feature. "Learn the user's preference for".

特開2000-035974号公報Japanese Unexamined Patent Publication No. 2000-305974

 しかし、例えばアートの分野では、ユーザの好みのアートは、そのアートを創作したアーティストにより産み出されることが多い。画廊(ギャラリー)は画家と契約し、当該画家の個展を開くことで、当該画家の絵画を好むユーザに販売している。このため、ある程度名の知れたアーティストであれば画廊によりそのアートを入手することができるが、無名なアーティストのアートがユーザの好みである場合、ユーザが購入したいアートを探すことが困難である、という問題があった。 However, in the field of art, for example, the user's favorite art is often produced by the artist who created the art. The gallery contracts with a painter and opens a solo exhibition of the painter to sell it to users who like the painter's paintings. For this reason, an artist who is known to some extent can obtain the art from the gallery, but if the art of an unknown artist is the user's preference, it is difficult for the user to find the art that he / she wants to purchase. There was a problem.

 そこで、本開示の目的は、ユーザの好みである著作物が、無名な著作者の著作物であっても、ユーザに提示することができるプログラムを提供することである。 Therefore, the purpose of this disclosure is to provide a program that can be presented to the user even if the copyrighted work of the user is the copyrighted work of an unknown author.

 本開示に係るプログラムは、プロセッサを含む情報処理装置に、ユーザの好みを予め学習する第1ステップと、予め学習したユーザの好みに基づいて、前記ユーザの好みの著作物を、前記著作物の属する分野において周知でない著作者の著作物を含む著作物の集合から選択する第2ステップと、選択した著作物を前記ユーザに出力する第3ステップと、を実行させる。 In the program according to the present disclosure, a first step of learning a user's preference in advance in an information processing device including a processor, and a copyrighted work of the user's preference based on the user's preference learned in advance, the copyrighted work of the user. The second step of selecting from a set of works including the works of authors who are not well known in the field to which they belong and the third step of outputting the selected works to the user are executed.

 本開示に係るプログラムによれば、ユーザの好みである著作物が、無名な著作者の著作物であっても、ユーザに提示することができる。 According to the program according to the present disclosure, even if the copyrighted work of the user is the copyrighted work of an unknown author, it can be presented to the user.

情報処理システム1の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of an information processing system 1. 情報処理装置10の構成を示すブロック図である。It is a block diagram which shows the structure of an information processing apparatus 10. 情報処理装置10の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of an information processing apparatus 10. ユーザDB121のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the user DB 121. 絵画DB122のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of a painting DB 122. ユーザ端末20に表示される画面の一例を示す。An example of the screen displayed on the user terminal 20 is shown. ユーザ端末20に表示される画面の一例を示す。An example of the screen displayed on the user terminal 20 is shown. ユーザ端末20に表示される画面の一例を示す。An example of the screen displayed on the user terminal 20 is shown. ユーザ端末20に表示される画面の一例を示す。An example of the screen displayed on the user terminal 20 is shown. ユーザ端末20の構成を示す図である。It is a figure which shows the structure of the user terminal 20. ユーザ端末20の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of a user terminal 20. 情報処理装置10による登録処理を行う流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow which performs the registration process by an information processing apparatus 10. 情報処理装置10による学習処理を行う流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of performing a learning process by an information processing apparatus 10. 情報処理装置10による表示処理を行う流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow which performs the display process by an information processing apparatus 10.

 以下、図面を参照しつつ、本開示の実施形態について説明する。本実施形態に係る情報処理システム1は、ユーザ端末20にユーザの好みの著作物を提示するためのシステムである。以下の説明では、著作物が美術(アート)の分野に属する絵画である場合を例に説明する。なお、著作物は絵画に限定されるものではなく、アートの分野に限定されるものではない。以下の説明では、同一の部品には同一の符号を付してある。それらの名称及び機能も同じである。従って、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The information processing system 1 according to the present embodiment is a system for presenting a user's favorite copyrighted work to the user terminal 20. In the following explanation, the case where the work is a painting belonging to the field of art will be described as an example. The work is not limited to paintings, and is not limited to the field of art. In the following description, the same parts are designated by the same reference numerals. Their names and functions are the same. Therefore, the detailed description of them will not be repeated.

<1.情報処理システム1の全体構成>
 図1は、情報処理システム1の全体構成を示すブロック図である。図1に示すように、情報処理システム1は、情報処理装置10と、ユーザ端末20と、無線基地局30と、ネットワーク40とを含む。情報処理装置10と、ユーザ端末20とは、ネットワーク40を介して相互に通信可能に接続されている。ネットワーク40は、有線又は無線ネットワークにより構成される。情報処理装置10及びユーザ端末20は、任意の有線又は無線の通信規格を用いて、ネットワーク40と接続する。本開示では、情報処理装置10が、ネットワーク40に有線接続され、ユーザ端末20がネットワーク40に無線基地局30を介して無線接続される場合を例に説明する。なお、この構成に限定されるものではない。
<1. Overall configuration of information processing system 1>
FIG. 1 is a block diagram showing an overall configuration of the information processing system 1. As shown in FIG. 1, the information processing system 1 includes an information processing device 10, a user terminal 20, a radio base station 30, and a network 40. The information processing apparatus 10 and the user terminal 20 are connected to each other so as to be able to communicate with each other via the network 40. The network 40 is composed of a wired or wireless network. The information processing device 10 and the user terminal 20 are connected to the network 40 by using an arbitrary wired or wireless communication standard. In the present disclosure, the case where the information processing apparatus 10 is connected to the network 40 by wire and the user terminal 20 is wirelessly connected to the network 40 via the wireless base station 30 will be described as an example. The configuration is not limited to this.

<2.情報処理装置10の構成>
 次に、図2及び図3を用いて情報処理装置10の構成について説明する。情報処理装置10は、ユーザの好みの画像を学習する学習処理、ユーザの好みの絵画を提示する表示処理等を実行する装置である。情報処理装置10は、例えば、ラップトップパソコン又はラックマウント型若しくはタワー型等のコンピュータ等である。情報処理装置10は、複数の情報処理装置10等により構成されてもよい。
<2. Configuration of information processing device 10>
Next, the configuration of the information processing apparatus 10 will be described with reference to FIGS. 2 and 3. The information processing device 10 is a device that executes a learning process for learning a user's favorite image, a display process for presenting a user's favorite painting, and the like. The information processing device 10 is, for example, a laptop computer, a rack-mounted computer, a tower-type computer, or the like. The information processing device 10 may be composed of a plurality of information processing devices 10 and the like.

 図2は、情報処理装置10の構成を示す図である。図2に示すように、情報処理装置10は、プロセッサ11と、メモリ12と、ストレージ13と、通信IF14と、入出力IF15とを含んで構成される。 FIG. 2 is a diagram showing the configuration of the information processing apparatus 10. As shown in FIG. 2, the information processing apparatus 10 includes a processor 11, a memory 12, a storage 13, a communication IF 14, and an input / output IF 15.

 プロセッサ11は、プログラムに記述された命令セットを実行するためのハードウェアであり、演算装置、レジスタ、周辺回路などにより構成される。 The processor 11 is hardware for executing an instruction set described in a program, and is composed of an arithmetic unit, registers, peripheral circuits, and the like.

 メモリ12は、プログラム、及び、プログラム等で処理されるデータ等を一時的に記憶するためのものであり、例えばDRAM(Dynamic Random Access Memory)等の揮発性のメモリである。 The memory 12 is for temporarily storing a program, data processed by the program, or the like, and is, for example, a volatile memory such as a DRAM (Dynamic Random Access Memory).

 ストレージ13は、データを保存するための記憶装置であり、例えばフラッシュメモリ、HDD(Hard Disc Drive)、SSD(Solid State Drive)である。 The storage 13 is a storage device for storing data, and is, for example, a flash memory, an HDD (Hard Disc Drive), or an SSD (Solid State Drive).

 通信IF14は、情報処理装置10が外部の装置と通信するため、信号を入出力するためのインタフェースである。 The communication IF 14 is an interface for inputting / outputting signals because the information processing device 10 communicates with an external device.

 入出力IF15は、入力操作を受け付けるための入力装置(例えば、マウス等のポインティングデバイス、キーボード)、及び、情報を提示するための出力装置(ディスプレイ、スピーカ等)とのインタフェースとして機能する。 The input / output IF15 functions as an interface with an input device (for example, a pointing device such as a mouse, a keyboard) for receiving an input operation and an output device (display, speaker, etc.) for presenting information.

 図3は、情報処理装置10の機能構成を示すブロック図である。図3に示すように、情報処理装置10は、通信部110と、記憶部120と、制御部130とを含む。 FIG. 3 is a block diagram showing a functional configuration of the information processing apparatus 10. As shown in FIG. 3, the information processing apparatus 10 includes a communication unit 110, a storage unit 120, and a control unit 130.

 通信部110は、情報処理装置10が外部の装置と通信するための処理を行う。 The communication unit 110 performs processing for the information processing device 10 to communicate with an external device.

 記憶部120は、情報処理装置10が使用するデータ及びプログラムを記憶する。記憶部120は、ユーザDB121、絵画DB122、モデルDB123等を記憶する。 The storage unit 120 stores data and programs used by the information processing device 10. The storage unit 120 stores the user DB 121, the painting DB 122, the model DB 123, and the like.

 ユーザDB121は、各ユーザに関する情報を保持するデータベースである。図4は、ユーザDB121のデータ構造の一例を示す図である。図4に示すように、ユーザDB121のレコードは、項目「ユーザID」、項目「好み」、項目「閲覧履歴」、及び項目「お気に入り」等を含む。 The user DB 121 is a database that holds information about each user. FIG. 4 is a diagram showing an example of the data structure of the user DB 121. As shown in FIG. 4, the record of the user DB 121 includes an item "user ID", an item "preference", an item "browsing history", an item "favorite", and the like.

 項目「ユーザID」は、ユーザを識別する情報である。 The item "user ID" is information that identifies the user.

 項目「好み」は、ユーザの好みを示す情報である。例えば、後述のユーザクラス等である。 The item "preference" is information indicating the user's preference. For example, the user class described later.

 項目「閲覧履歴」は、ユーザが閲覧した絵画についての履歴である。 The item "browsing history" is a history of paintings browsed by the user.

 項目「お気に入り」は、ユーザがお気に入り登録した絵画又は著作者を示す情報である。 The item "favorite" is information indicating a painting or author registered as a favorite by the user.

 絵画DB122は、絵画についての情報を保持するデータベースである。図5は、絵画DB122のデータ構造の一例を示す図である。絵画DB122には、美術の分野で周知でない著作者の絵画も含む。本開示の情報処理システム1では、周知でない著作者の絵画又は周知でない著作者自身をユーザに提示するためである。周知な著作者とは、その著作物の属する分野において需要者の間に広く知られた著作者である。例えば著作者が画家である場合、画廊(ギャラリー)と契約している画家、メディア等で取り上げられた画家、個展・グループ展等に出展したことにより需要者に知られた画家、受賞経験のある画家等が周知な著作者に該当する。周知な著作物についても同様である。ただし、周知な著作物の著作者が周知であるとは限らない。これにより、周知でない著作者の支援、ユーザが通常の手法(画廊、ギャラリー、展示会等)で知ることができない未知の作品に到達すること等を実現する。図5に示すように、絵画DB122のレコードは、項目「著作者ID」、項目「絵画ID」、及び項目「絵画データ」等を含む。 The painting DB 122 is a database that holds information about paintings. FIG. 5 is a diagram showing an example of the data structure of the painting DB 122. The painting DB 122 also includes paintings by authors who are not well known in the field of art. This is to present the painting of an unfamiliar author or the unfamiliar author himself to the user in the information processing system 1 of the present disclosure. A well-known author is an author who is widely known among consumers in the field to which the work belongs. For example, if the author is a painter, a painter who has a contract with a gallery, a painter who has been featured in the media, a painter who has been known to consumers by exhibiting at solo exhibitions, group exhibitions, etc., has received awards. It corresponds to a well-known author such as a painter. The same applies to well-known works. However, the author of a well-known work is not always well-known. This makes it possible to support unfamiliar authors and reach unknown works that users cannot know by ordinary methods (gallery, gallery, exhibition, etc.). As shown in FIG. 5, the record of the painting DB 122 includes the item "author ID", the item "painting ID", the item "painting data", and the like.

 項目「著作者ID」は、著作者を識別する情報である。 The item "author ID" is information that identifies the author.

 項目「絵画ID」は、絵画を識別する情報である。 The item "painting ID" is information for identifying a painting.

 項目「絵画データ」は、絵画に関するデータである。絵画データは、例えば、絵画を画像化した場合の画像データ等である。 The item "painting data" is data related to painting. The painting data is, for example, image data when the painting is imaged.

 制御部130は、情報処理装置10のプロセッサ11がプログラムに従って処理を行うことにより、受信制御部131、送信制御部132、第1出力部133、学習部134、選択部135、第2出力部136、登録部137、入力部138、及び通知部139に示す機能を発揮する。 In the control unit 130, the processor 11 of the information processing device 10 performs processing according to a program, so that the reception control unit 131, the transmission control unit 132, the first output unit 133, the learning unit 134, the selection unit 135, and the second output unit 136 , The function shown in the registration unit 137, the input unit 138, and the notification unit 139 is exhibited.

 受信制御部131は、情報処理装置10が外部の装置から通信プロトコルに従って信号を受信する処理を制御する。具体的には、受信制御部131は、ユーザ端末20から各種情報を受信する。例えば、受信制御部131は、ユーザ端末20から、後述の回答を受信する。 The reception control unit 131 controls the process in which the information processing device 10 receives a signal from an external device according to a communication protocol. Specifically, the reception control unit 131 receives various information from the user terminal 20. For example, the reception control unit 131 receives the answer described later from the user terminal 20.

 送信制御部132は、情報処理装置10が外部の装置に対し通信プロトコルに従って信号を送信する処理を制御する。具体的には、送信制御部132は、所定の情報をユーザ端末20に送信する。例えば、送信制御部132は、絵画の画像データ、選択部135により選択された絵画の画像データ等をユーザ端末20に送信する。 The transmission control unit 132 controls a process in which the information processing device 10 transmits a signal to an external device according to a communication protocol. Specifically, the transmission control unit 132 transmits predetermined information to the user terminal 20. For example, the transmission control unit 132 transmits the image data of the painting, the image data of the painting selected by the selection unit 135, and the like to the user terminal 20.

 第1出力部133は、ユーザに、ユーザの好みを学習するための絵画を出力する。具体的には、第1出力部133は、ユーザの好みを学習するための絵画を表示する画面を出力する。このとき、第1出力部133は、学習部134により指定された絵画を出力する。第1出力部133は、学習部134により都度又は予め指定される絵画を出力する。学習部134により指定され、第1出力部133が出力する絵画の順番は、ユーザの好みを学習する精度を高めるような順番となる。第1出力部133は、送信制御部132に、当該画像データをユーザ端末20に送信させる。これにより、ユーザ端末20では当該絵画が表示される。 The first output unit 133 outputs a painting for learning the user's preference to the user. Specifically, the first output unit 133 outputs a screen for displaying a painting for learning the user's preference. At this time, the first output unit 133 outputs the painting designated by the learning unit 134. The first output unit 133 outputs a painting designated by the learning unit 134 each time or in advance. The order of the paintings designated by the learning unit 134 and output by the first output unit 133 is such that the accuracy of learning the user's preference is improved. The first output unit 133 causes the transmission control unit 132 to transmit the image data to the user terminal 20. As a result, the painting is displayed on the user terminal 20.

 第1出力部133は、ユーザ端末20に、出力された絵画について主観的な回答の入力を受け付ける。主観的とは、例えば、ユーザから当該画像に対して抱いた感情、ユーザが感じた雰囲気、直感、良し悪し等のユーザの主観的な印象である。本開示では、ユーザの感情を用いる場合を例に説明する。この場合、第1出力部133は、ユーザ端末20に、主観的な回答としてユーザの感情を入力可能に表示させる。ユーザの感情を入力可能に表示するとは、例えば、以下の(1)~(3)方法を採用することができる。
(1)ユーザの感情に関する複数の選択肢を用意し、選択可能に表示する。
(2)ユーザの感情の度合を表すメーターを表示し、当該メーターを操作することにより感情の度合を指定可能に表示する。
(3)押下している時間に応じた感情の度合を入力可能なボタンを表示する。
The first output unit 133 receives input of a subjective answer about the output painting to the user terminal 20. The subjective impression is, for example, the user's subjective impression such as the emotion that the user has toward the image, the atmosphere that the user feels, the intuition, and the good or bad. In this disclosure, the case of using the emotion of the user will be described as an example. In this case, the first output unit 133 causes the user terminal 20 to display the user's emotions as a subjective answer so that they can be input. To display the user's emotions so that they can be input, for example, the following methods (1) to (3) can be adopted.
(1) Prepare multiple options related to the user's emotions and display them in a selectable manner.
(2) A meter showing the degree of emotion of the user is displayed, and the degree of emotion can be specified by operating the meter.
(3) Display a button that allows you to enter the degree of emotion according to the time you press it.

 ユーザの感情は、例えば、Happy/Relaxed/Inspired/Not interestedの4段階の指標を採用することができる。また、更に、Other(その他)を含める構成としてもよい。この場合、ユーザがHappyと感じる絵画が、一番ユーザが好む画像であると捉えることができる。このようなユーザの主観的な回答を用いることで、ユーザの好みをより正確に認識することができる。このような構成とすることで、ユーザに負担にならず、かつ、飽きることなく、継続して評価を入力してもらうことができる。特に、このようなGUIを用いることにより、ユーザの直感的、認知的負荷を最小化にすることもできる。 For the user's emotion, for example, a four-stage index of Happy / Relaxed / Inspired / Not Internet can be adopted. Further, it may be configured to include Other (others). In this case, the painting that the user feels Happy can be regarded as the image that the user prefers most. By using such a user's subjective answer, the user's preference can be recognized more accurately. With such a configuration, it is possible to continuously input the evaluation without burdening the user and without getting bored. In particular, by using such a GUI, the user's intuitive and cognitive load can be minimized.

 図6~図9に、ユーザ端末20に表示される画面の一例を示す。図6は、(1)の場合の一例である。図6に示すように、画面140は、絵画表示部141、ボタン142~ボタン146を含む。絵画表示部141は、絵画を表示する領域である。ボタン142~ボタン146は、ユーザの感情に関する選択肢である。図6の例では、ボタン142~ボタン144は、Happy、Relaxed及びInspiredに対応するボタンである。ボタン145はNot interested、ボタン146はOtherを示す。第1出力部133は、ボタン142~ボタン146の何れかが押下されることにより、ユーザの回答を受け付けるように、画面140を構成する。特にユーザの感情の影響が強いものについては他のボタンよりも大きいサイズのボタンとする等ユーザビリティを高めることができる。 6 to 9 show an example of a screen displayed on the user terminal 20. FIG. 6 is an example of the case of (1). As shown in FIG. 6, the screen 140 includes a painting display unit 141, and buttons 142 to 146. The painting display unit 141 is an area for displaying a painting. Buttons 142 to 146 are user emotional choices. In the example of FIG. 6, buttons 142 to 144 are buttons corresponding to Happy, Relaxed, and Inspired. Button 145 indicates Not internet, and button 146 indicates Other. The first output unit 133 configures the screen 140 so that a user's answer is received when any one of the buttons 142 to 146 is pressed. In particular, for buttons that are strongly influenced by the user's emotions, usability can be improved by making the buttons larger in size than other buttons.

 図7及び図8は、(2)の場合の例を示す。図7に示すように、画面150は、絵画表示部141及びスライド入力部151を含む。なお、手部152は、ユーザの手を示し、画面150に含まれるものではない。スライド入力部151は、手部152がスライドさせることで、Not interestedからVery interestedまでのユーザの感情の強さを入力することができる。また、図8に示すように、画面160は、絵画表示部141及びスライド入力部161を含む。手部152に関しては、図7と同様である。スライド入力部161は、調整部162を手部152により操作されることにより、Not interestedからVery interestedまでのユーザの感情の強さを入力することができる。スライド入力部151又はスライド入力部161のような線形的なメーターにより、ユーザが任意に止めた位置でユーザの感情の強さの入力を受け付ける。このような構成により、ユーザに負担をかけず、かつ、ユーザが直感的に入力しやすいように回答を得ることができる。 7 and 8 show an example of the case of (2). As shown in FIG. 7, the screen 150 includes a painting display unit 141 and a slide input unit 151. The hand portion 152 indicates the user's hand and is not included in the screen 150. The slide input unit 151 can input the strength of the user's emotions from Not interested to Very interested by sliding the hand unit 152. Further, as shown in FIG. 8, the screen 160 includes a painting display unit 141 and a slide input unit 161. The hand portion 152 is the same as in FIG. 7. By operating the adjustment unit 162 by the hand unit 152, the slide input unit 161 can input the emotional strength of the user from Not intersted to Very intersted. A linear meter such as the slide input unit 151 or the slide input unit 161 accepts the input of the user's emotional strength at a position arbitrarily stopped by the user. With such a configuration, it is possible to obtain an answer so that the user can input easily without imposing a burden on the user.

 図9は、(3)の場合の一例を示す。図9に示すように、画面170は、絵画表示部141と、入力表示部171とを含む。入力表示部171は、ボタン部172と、ゲージ部173とを含む。手部152に関しては、図7と同様である。入力表示部171は、ボタン部172が押下されている間、ゲージ部173のゲージが溜まっていくように構成される。入力表示部171のようなGUIを用いることにより、ユーザに負担をかけず、かつ、ユーザが直感的に入力しやすいように回答を得ることができる。 FIG. 9 shows an example of the case of (3). As shown in FIG. 9, the screen 170 includes a painting display unit 141 and an input display unit 171. The input display unit 171 includes a button unit 172 and a gauge unit 173. The hand portion 152 is the same as in FIG. 7. The input display unit 171 is configured so that the gauge of the gauge unit 173 accumulates while the button unit 172 is pressed. By using a GUI such as the input display unit 171, it is possible to obtain an answer so that the user can input easily without imposing a burden on the user.

 学習部134は、ユーザの好みを学習する。具体的には、学習部134は、まず、ユーザから、出力された著作物について主観的な回答の入力を受け付ける。具体的には、学習部134は、受信制御部131がユーザ端末20から受信した回答を受け付ける。学習部134は、受け付けた回答に基づいて、次に第1出力部133が出力する絵画を決定する。 The learning unit 134 learns the user's preference. Specifically, the learning unit 134 first accepts input of a subjective answer about the output work from the user. Specifically, the learning unit 134 receives the answer received from the user terminal 20 by the reception control unit 131. The learning unit 134 then determines the painting to be output by the first output unit 133 based on the received answer.

 学習部134は、第1出力部133により著作物を出力することと、回答の入力を受け付けることとを所定回数繰り返す。所定回数は、例えば、10回である。この場合、ユーザに対して絵画を表示し、回答の入力を受け付けることを10回繰り返すこととなる。 The learning unit 134 repeats outputting the copyrighted work by the first output unit 133 and accepting the input of the answer a predetermined number of times. The predetermined number of times is, for example, 10 times. In this case, the painting is displayed to the user and the input of the answer is accepted 10 times.

 次に、学習部134は、ユーザの好みを学習する。具体的には、学習部134は、出力した絵画の順序と、出力した絵画及び当該絵画に対する回答と、回答を入力することにより、ユーザの好みの傾向を示す第1ベクトルを出力するように予め学習された第1モデルとを用いて、ユーザの好みを学習する。第1ベクトルは、ユーザの好みの傾向を示す情報である。第1ベクトルは、例えば、ユーザの好みを示す複数の要素からなるベクトル、行列、関数等の情報である。学習部134は、当該ユーザの第2ベクトルを、ユーザDB121に格納する。 Next, the learning unit 134 learns the user's preference. Specifically, the learning unit 134 inputs in advance the order of the output paintings, the output paintings, the answers to the paintings, and the answers, so as to output the first vector showing the tendency of the user's preference in advance. The user's preference is learned using the learned first model. The first vector is information indicating a tendency of user's preference. The first vector is, for example, information such as a vector, a matrix, a function, etc., which are composed of a plurality of elements indicating a user's preference. The learning unit 134 stores the second vector of the user in the user DB 121.

 学習部134は、所定のタイミングでユーザの好みを学習しなおしてもよい。ユーザの好みが変化する可能性があるため、これに対応するためである。この場合、学習部134は、第1出力部133により著作物を出力することと、回答の入力を受け付けることとを繰り返す所定回数を、初回よりも少ない回数とすることができる。ユーザの好みは大きく変化するものではないため、少ない枚数で学習可能、かつ、再学習時のユーザの負担を軽減することができる。 The learning unit 134 may relearn the user's preference at a predetermined timing. This is to cope with the possibility that the user's preference may change. In this case, the learning unit 134 can set the predetermined number of times of repeating the output of the copyrighted work by the first output unit 133 and the acceptance of the input of the answer to be less than the first time. Since the user's preference does not change significantly, it is possible to learn with a small number of sheets and reduce the burden on the user at the time of re-learning.

 なお、学習部134は、学習の場面に応じて、第1出力部133が出力する画面を異ならせる構成とすることができる。例えば、学習部134は、ユーザの好みを学習する場合に、第1出力部133に図6の例を出力させる。学習部134は、ユーザの好みを再学習する場合に、第1出力部133に図7~図9の何れか例を出力させる。このような構成により、最初に5段階の学習でユーザの好みを精度よく学習した後で、ユーザに負荷をかけない2つの指標の連続値で再学習をすることになる。これにより、ユーザに負担をかけずに精度よくユーザの好みを学習することができる。 The learning unit 134 can be configured to have a different screen output by the first output unit 133 depending on the learning scene. For example, the learning unit 134 causes the first output unit 133 to output the example of FIG. 6 when learning the user's preference. The learning unit 134 causes the first output unit 133 to output any example of FIGS. 7 to 9 when re-learning the user's preference. With such a configuration, first, the user's preference is accurately learned by the five-step learning, and then the re-learning is performed by the continuous value of the two indexes that does not impose a load on the user. As a result, it is possible to accurately learn the user's preference without imposing a burden on the user.

 また、学習部134は、出力した絵画の順序と、出力した絵画及び当該絵画に対する回答と、回答を入力することにより、ユーザの属する好みの傾向を示すユーザクラスである第2ベクトルを出力するように予め学習された第2モデルとを用いて、ユーザの好みを学習する構成としてもよい。第2ベクトルは、予め分類されたユーザの好みの傾向を示す情報である。第2ベクトルは、例えば、ユーザの好みを分類するための複数の要素からなるベクトル、行列、関数等の情報である。学習部134は、当該ユーザの第2ベクトルを、ユーザDB121に格納する。 Further, the learning unit 134 outputs the second vector, which is a user class indicating the tendency of preference to which the user belongs, by inputting the order of the output paintings, the output paintings, the answers to the paintings, and the answers. It may be configured to learn the user's preference by using the second model learned in advance. The second vector is information indicating a tendency of user's preference classified in advance. The second vector is, for example, information such as a vector, a matrix, a function, etc., which are composed of a plurality of elements for classifying the user's preference. The learning unit 134 stores the second vector of the user in the user DB 121.

 また、学習部134は、第1ベクトルと、第2ベクトルとをユーザの好みとして学習する構成としてもよい。 Further, the learning unit 134 may be configured to learn the first vector and the second vector as the user's preference.

 学習部134は、第1モデルを、絵画と回答とを教師データとして、ユーザの好みの傾向を示す第1ベクトルを出力するように予め学習する。このとき、絵画を出力した順番により、第1モデルが出力する第1ベクトルユーザクラスが異なる可能性がある。そこで、学習部134は、第1モデルが出力する第1ベクトルが最もユーザの好みの傾向に近くなるように、出力する絵画の順番を定める。順番の決定方法は、例えば、第1モデルが出力する第1ベクトルがユーザの好みの傾向に近くなったことを示すスコアを画像毎に求めて決定する等の方法を採用することができる。学習部134は、教師データには、複数の絵画と、複数の回答と、絵画を出力した順番との組を用いて、第1モデルと、第1出力部133が出力する絵画及びその順番とを学習する。複数の組を用いて、出力した絵画の順番により、第1モデルが出力する第1ベクトルがユーザの好みの傾向に近くなったか否かを検証することができる。順番の学習方法としては、画像毎に上記スコアを求める、出力する画像の組合せ毎に上記スコアを求める等を採用することができる。なお、順番は、回答に応じて次に出力される絵画が異なるようにしてもよい。 The learning unit 134 learns the first model in advance so as to output the first vector showing the tendency of the user's preference by using the painting and the answer as teacher data. At this time, the first vector user class output by the first model may differ depending on the order in which the paintings are output. Therefore, the learning unit 134 determines the order of the paintings to be output so that the first vector output by the first model is closest to the tendency of the user's preference. As a method for determining the order, for example, a method can be adopted in which a score indicating that the first vector output by the first model is close to the tendency of the user's preference is obtained for each image and determined. The learning unit 134 uses a set of a plurality of paintings, a plurality of answers, and the order in which the paintings are output for the teacher data, and the first model, the paintings output by the first output unit 133, and the order thereof. To learn. Using a plurality of sets, it is possible to verify whether or not the first vector output by the first model is close to the tendency of the user's preference according to the order of the output paintings. As the order learning method, it is possible to adopt the above-mentioned score for each image, the above-mentioned score for each combination of images to be output, and the like. The order may be different depending on the answer.

 第1モデルは、例えばニューラルネットワーク等の任意のモデルを用いることができる。学習方法は、例えば逆誤差伝搬法等を用いることができる。第1モデルと出力する絵画及び順番とを同時に学習するようにしてもよい。この場合、第1ベクトルについての目的関数と、順番についての目的関数とが同時に最大になるように、第1モデルのパラメータと、第1出力部133が出力する絵画及びその順番とを学習する。このとき、学習部134は、ユーザが興味を失わないような順番となるように学習する構成とすることができる。この場合、予め複数のユーザからどのような絵画の順番が回答に興味を失うか否かのデータを収集しておけばよい。 As the first model, any model such as a neural network can be used. As a learning method, for example, an inverse error propagation method or the like can be used. The first model, the painting to be output, and the order may be learned at the same time. In this case, the parameters of the first model, the painting output by the first output unit 133, and the order thereof are learned so that the objective function for the first vector and the objective function for the order are maximized at the same time. At this time, the learning unit 134 may be configured to learn in such an order that the user does not lose interest. In this case, it is sufficient to collect data from a plurality of users in advance as to what order of paintings loses interest in the answer.

 学習部134が学習に用いる絵画及び第1出力部133が出力する絵画は、予め絵画DB122に格納されているものを用いる。なお、学習に用いる絵画は、外部のデータベースサーバに格納されているものを用いる構成としてもよい。学習部134は、学習した第1モデルのパラメータと、第1出力部133が出力する絵画及びその順番とを、モデルDB123に格納する。 As the painting used for learning by the learning unit 134 and the painting output by the first output unit 133, those stored in the painting DB 122 in advance are used. The painting used for learning may be configured to use one stored in an external database server. The learning unit 134 stores the learned parameters of the first model, the paintings output by the first output unit 133, and their order in the model DB 123.

 また、学習部134は、第2モデルを、絵画と回答とを教師データとして、ユーザの属する好みの傾向を示すユーザクラスである第2ベクトルを出力するように予め学習する。このとき、絵画を出力した順番により、第2モデルが出力する第2ベクトルが異なる可能性がある。そこで、学習部134は、第2モデルが出力する第2ベクトルが最もユーザの好みの傾向に近くなるように、出力する絵画の順番を定める。従って、学習部134は、教師データには、複数の絵画と、複数の回答と、絵画を出力した順番との組を用いて、第2モデルと、第1出力部133が出力する絵画及びその順番とを学習する。第2モデルは、例えばニューラルネットワーク等の任意のモデルを用いることができる。学習方法は、例えば逆誤差伝搬法等を用いることができる。第2モデルと出力する絵画及び順番とを同時に学習するようにしてもよい。この場合、第2ベクトルについての目的関数と、順番についての目的関数とが同時に最大になるように、第2モデルのパラメータと、第1出力部133が出力する絵画及びその順番とを学習する。学習部134が学習に用いる絵画及び第1出力部133が出力する絵画は、予め絵画DB122に格納されているものを用いる。なお、学習に用いる絵画は、外部のデータベースサーバに格納されているものを用いる構成としてもよい。学習部134は、学習した第2モデルのパラメータと、第1出力部133が出力する絵画及びその順番とを、モデルDB123に格納する。 Further, the learning unit 134 learns in advance the second model so as to output the second vector, which is a user class indicating the tendency of preference to which the user belongs, using the painting and the answer as teacher data. At this time, the second vector output by the second model may differ depending on the order in which the paintings are output. Therefore, the learning unit 134 determines the order of the paintings to be output so that the second vector output by the second model is closest to the tendency of the user's preference. Therefore, the learning unit 134 uses a set of a plurality of paintings, a plurality of answers, and the order in which the paintings are output for the teacher data, the second model, the paintings output by the first output unit 133, and the paintings thereof. Learn the order and. As the second model, any model such as a neural network can be used. As a learning method, for example, an inverse error propagation method or the like can be used. The second model, the painting to be output, and the order may be learned at the same time. In this case, the parameters of the second model, the painting output by the first output unit 133, and the order thereof are learned so that the objective function for the second vector and the objective function for the order are maximized at the same time. As the painting used for learning by the learning unit 134 and the painting output by the first output unit 133, those stored in the painting DB 122 in advance are used. The painting used for learning may be configured to use one stored in an external database server. The learning unit 134 stores the parameters of the learned second model, the paintings output by the first output unit 133, and their order in the model DB 123.

 また、学習部134は、第2出力部136による出力の後に、ユーザ端末20から受信した回答を用いて、第1出力部133が出力する絵画及びその順番を再学習する。 Further, the learning unit 134 relearns the paintings output by the first output unit 133 and their order by using the answer received from the user terminal 20 after the output by the second output unit 136.

 選択部135は、予め学習したユーザの好みに基づいて、当該ユーザの好みの絵画を、当該絵画の属する分野である美術分野において周知でない著作者の絵画を含む絵画の集合から選択する。具体的には、選択部135は、学習したユーザの好みである第1ベクトル及び第2ベクトルの少なくとも1つを入力すると、ユーザの好みの絵画を出力する第3モデルを用いて、ユーザの好み絵画を絵画DB122から選択する。第3モデルは、絵画DB122に含まれる絵画から、第1ベクトル及び第2ベクトルの少なくとも1つに基づいて、ユーザの好みに近い絵画を複数枚選択するモデルである。 The selection unit 135 selects a painting of the user's preference from a set of paintings including a painting of an author who is not well known in the art field to which the painting belongs, based on the user's preference learned in advance. Specifically, the selection unit 135 uses a third model that outputs a painting of the user's preference when at least one of the first vector and the second vector, which is the user's preference learned, is input, and the user's preference is used. Select a painting from the painting DB 122. The third model is a model in which a plurality of paintings close to the user's preference are selected from the paintings included in the painting DB 122 based on at least one of the first vector and the second vector.

 例えば、選択部135は、第3モデルにより選択された複数枚の絵画のうち、ユーザの好みを表すスコアが所定値以上の絵画を選択する。選択部135が選択する絵画は原則として1枚とする。例外として、ユーザが予め許可している場合、同じスコアの絵画がある場合等を定めておく。また、選択部135は、周知でない著作者の絵画を優先的に選ぶように、周知でない著作者の絵画について重み付けをする構成としてもよい。 For example, the selection unit 135 selects a painting having a score representing a user's preference of a predetermined value or more from a plurality of paintings selected by the third model. As a general rule, the number of paintings selected by the selection unit 135 is one. As an exception, if the user permits it in advance, or if there is a painting with the same score, etc., it is defined. Further, the selection unit 135 may be configured to weight the paintings of unknown authors so as to preferentially select the paintings of unknown authors.

 また、選択部135は、第1ベクトル及び第2ベクトルの少なくとも1つを入力すると、ユーザの好みでない絵画の特徴を出力する第4モデルを更に用いて、ユーザの好み絵画を絵画DB122から選択する構成とすることができる。第4モデルにより選択される絵画は、ユーザに提示すべきではない。このため、選択部135は、第4モデルにより選択される複数の絵画については、予め候補から除外した上で、第3モデルを用いて絵画を選択する等の手法を用いることができる。 Further, the selection unit 135 selects the user's favorite painting from the painting DB 122 by further using the fourth model that outputs the features of the painting that the user does not like when inputting at least one of the first vector and the second vector. It can be configured. The painting selected by the fourth model should not be presented to the user. Therefore, the selection unit 135 can use a method such as selecting a painting using the third model after excluding the plurality of paintings selected by the fourth model from the candidates in advance.

 第2出力部136は、選択した絵画をユーザに出力する。具体的には、第2出力部136は、選択部135により選択された絵画を表示する画面を出力する。まず第2出力部136は、絵画DB122から、選択された絵画の各々について、当該絵画の画像データと、当該絵画の著作者に関する情報を取得する。次に、第2出力部136は、当該絵画の画像データと、当該絵画の著作者に関する情報とを含む画面を生成する。第2出力部136は、送信制御部132に、当該画面をユーザ端末20に送信させる。これにより、ユーザ端末20では当該絵画が表示される。なお、第2出力部136は、当該画面を生成せずに、送信制御部132に、選択された絵画の各々についての画像データ及び著作者に関する情報をユーザ端末20に送信させる構成としてもよい。この場合、ユーザ端末20において、当該画面を生成し、ユーザに表示する構成とすればよい。 The second output unit 136 outputs the selected painting to the user. Specifically, the second output unit 136 outputs a screen for displaying the painting selected by the selection unit 135. First, the second output unit 136 acquires the image data of the painting and the information about the author of the painting for each of the selected paintings from the painting DB 122. Next, the second output unit 136 generates a screen including image data of the painting and information about the author of the painting. The second output unit 136 causes the transmission control unit 132 to transmit the screen to the user terminal 20. As a result, the painting is displayed on the user terminal 20. The second output unit 136 may be configured to cause the transmission control unit 132 to transmit image data for each of the selected paintings and information about the author to the user terminal 20 without generating the screen. In this case, the user terminal 20 may be configured to generate the screen and display it to the user.

 ここで、選択部135と第2出力部136とを、所定のタイミングにおいて、実行する構成とすることができる。例えば毎日、毎週、又毎月等の定期的に絵画を選択し、ユーザに選択した絵画を提示することで、ユーザが好みの絵画を鑑賞させることができる。特に絵画、彫刻等の美術品は、ユーザが頻繁に購入を検討するものではない。このため、ユーザが不快に思わない所定のタイミングでユーザに絵画を提示する。これにより、ユーザに絵画の購入を検討することにも繋がる。また、周知でない著作者の絵画を提示することで、ユーザがこれを購入し、投資を行うこともできる。このようなユーザには頻繁に絵画を提示する構成とすればよい。なお、所定のタイミングはユーザにより設定可能に構成してもよい。 Here, the selection unit 135 and the second output unit 136 can be configured to be executed at a predetermined timing. For example, by selecting a painting on a regular basis such as daily, weekly, or monthly, and presenting the selected painting to the user, the user can appreciate the favorite painting. In particular, works of art such as paintings and sculptures are not frequently considered by users. Therefore, the painting is presented to the user at a predetermined timing that the user does not feel uncomfortable. This also leads to the user considering purchasing a painting. Users can also purchase and invest in paintings by authors who are not well known. The painting may be presented to such a user frequently. The predetermined timing may be configured to be set by the user.

 また、選択部135が選択する絵画の数を必ず所定数以下とすることもできる。例えば、5~10枚以下とすることができる。この場合、ユーザが1日当たりで閲覧できるアートの数が制限されることになる。このため、ユーザが一気にコンテンツを消費することなく、日々、画像を確認するように動機付けることができる。また、コンテンツの消費の速度を一定に抑えることで、ひとつひとつのアート作品を視認する時間が薄まらないようにすることができる。このような制約により、ユーザが選択した結果が蓄積されるのに一定の時間を要することとなる。このため、ユーザに対して画像を提示する順番を最適化することがなお重要になる。また、少ない数の方がユーザの負担にならず、かつ、アートに対する集中度も高まるため、無名なアーティストも自己のアートを閲覧してもらえる可能性を高めることができる。 Further, the number of paintings selected by the selection unit 135 can always be less than or equal to a predetermined number. For example, the number may be 5 to 10 or less. In this case, the number of art that the user can view per day is limited. Therefore, the user can be motivated to check the image every day without consuming the content at once. In addition, by keeping the speed of content consumption constant, it is possible to prevent the time for visually recognizing each work of art from diminishing. Due to such restrictions, it takes a certain amount of time for the results selected by the user to be accumulated. For this reason, it is still important to optimize the order in which images are presented to the user. In addition, since a small number does not burden the user and the degree of concentration on art increases, it is possible to increase the possibility that an unknown artist can view his / her own art.

 登録部137は、周知でない著作者の登録を受け付ける。具体的には、登録部137は、既にギャラリーに所属している著作者、美術の分野で周知若しくは著名な著作者等の著作者以外の著作者の登録を受け付ける。周知性は、例えば、特定の領域(例えば特定の国、地方、その他の行政区画等)において、その分野の需要者、取引関係者等を主体として判断する。そして、登録部137は、記憶部120に、著作者と当該著作者に関連する情報を記憶する。 Registration unit 137 accepts registrations of unfamiliar authors. Specifically, the registration unit 137 accepts registrations of authors other than authors, such as authors who already belong to the gallery and authors who are well-known or well-known in the field of art. For example, in a specific area (for example, a specific country, region, other administrative division, etc.), the well-knownness is determined mainly by consumers, business associates, etc. in that field. Then, the registration unit 137 stores the author and information related to the author in the storage unit 120.

 著作者に関連する情報は、周知でないことを示す情報を含み、他には著作者の氏名、連絡先、当該著作者の作品等である。周知でない著作者としても、自分の絵画を好んでくれるユーザとマッチングすることが困難である、という問題を解決できる。このように、周知でない著作者を登録しておくことで、無名な著作者を支援するのである。なお、登録部137は周知でない著作者以外の著作者の登録を排除するものではない。すなわち、そのような著作者については、周知度、所属ギャラリーについての情報等を、著作者に関する情報に含める。 Information related to the author includes information indicating that it is not well known, and other information is the author's name, contact information, the author's work, etc. Even an unfamiliar author can solve the problem that it is difficult to match with a user who likes his painting. In this way, by registering an unfamiliar author, an unknown author is supported. The registration unit 137 does not exclude the registration of authors other than unknown authors. That is, for such authors, the degree of familiarity, information about the gallery to which they belong, etc. are included in the information about the authors.

 また、登録部137は、ユーザから、第2出力部136により出力された著作者又は絵画について、お気に入り登録を受け付ける。登録部137は、受け付けた著作者又は絵画を、ユーザDB121に格納することで、お気に入り登録を行う。 Further, the registration unit 137 accepts the favorite registration of the author or the painting output by the second output unit 136 from the user. The registration unit 137 registers the received author or painting as a favorite by storing it in the user DB 121.

 入力部138は、登録された著作者から絵画の入力を受け付ける。具体的には、入力部138は、受け付けた絵画の画像データを、著作者と紐づけて絵画DB122に格納する。 The input unit 138 accepts the input of the painting from the registered author. Specifically, the input unit 138 stores the received image data of the painting in the painting DB 122 in association with the author.

 通知部139は、入力部138が、登録部137により登録された著作者から絵画の入力を受け付けると、受け付けた著作物をユーザに通知する。具体的には、通知部139は、お気に入り登録された著作者から絵画が新たに入力された場合、当該著作者をお気に入り登録したユーザに対し、新たな絵画が登録された旨を通知する。ユーザ端末20から表示要求を受信すると、通知部139は第2出力部136に当該新たな絵画をユーザに出力させる。なお、ユーザ端末20は、通知を受け取ると、ユーザから当該表示要求を受け付けるための画面を表示する。なお、ユーザが通知部139による通知を受け取るか否かを設定可能に構成してもよい。また、通知部139は、通知に新たな絵画の画像データを含める構成としてもよい。この場合、ユーザ端末20は、当該通知をプッシュ通知として、画像データを含めて通知する構成としてもよい。 When the input unit 138 receives the input of the painting from the author registered by the registration unit 137, the notification unit 139 notifies the user of the accepted work. Specifically, when a painting is newly input from the author registered as a favorite, the notification unit 139 notifies the user who has registered the author as a favorite that the new painting has been registered. Upon receiving the display request from the user terminal 20, the notification unit 139 causes the second output unit 136 to output the new painting to the user. When the user terminal 20 receives the notification, the user terminal 20 displays a screen for accepting the display request from the user. It should be noted that the user may be configured to be configurable whether or not to receive the notification by the notification unit 139. Further, the notification unit 139 may be configured to include image data of a new painting in the notification. In this case, the user terminal 20 may be configured to notify the notification as a push notification including image data.

<3.ユーザ端末20の構成>
 図10は、ユーザ端末20の構成を示す図である。ユーザ端末20は、情報処理装置10から出力された絵画をユーザに提示する装置である。ユーザ端末20は、例えば、ラップトップパソコン又はスマートフォン等のコンピュータ等である。
<3. Configuration of user terminal 20>
FIG. 10 is a diagram showing the configuration of the user terminal 20. The user terminal 20 is a device that presents a painting output from the information processing device 10 to the user. The user terminal 20 is, for example, a computer such as a laptop personal computer or a smartphone.

 ユーザ端末20は、プロセッサ21と、メモリ22と、ストレージ23と、通信IF24と、入出力IF25とを含んで構成される。プロセッサ21と、メモリ22と、ストレージ23と、通信IF24と、入出力IF25とは、プロセッサ11と、メモリ12と、ストレージ13と、通信IF14と、入出力IF15とそれぞれ同様の構成である。 The user terminal 20 includes a processor 21, a memory 22, a storage 23, a communication IF 24, and an input / output IF 25. The processor 21, the memory 22, the storage 23, the communication IF 24, and the input / output IF 25 have the same configurations as the processor 11, the memory 12, the storage 13, the communication IF 14, and the input / output IF 15, respectively.

 図11は、ユーザ端末20の機能構成を示すブロック図である。図11に示すように、ユーザ端末20は、通信部210と、記憶部220と、制御部230とを含む。 FIG. 11 is a block diagram showing a functional configuration of the user terminal 20. As shown in FIG. 11, the user terminal 20 includes a communication unit 210, a storage unit 220, and a control unit 230.

 通信部210は、ユーザ端末20が外部の装置と通信するための処理を行う。 The communication unit 210 performs processing for the user terminal 20 to communicate with an external device.

 記憶部220は、ユーザ端末20が使用するデータ及びプログラムを記憶する。 The storage unit 220 stores data and programs used by the user terminal 20.

 制御部230は、ユーザ端末20のプロセッサ31がプログラムに従って処理を行うことにより、受信制御部231、送信制御部232、表示部233、及び入力部234に示す機能を発揮する。 The control unit 230 exerts the functions shown in the reception control unit 231, the transmission control unit 232, the display unit 233, and the input unit 234 when the processor 31 of the user terminal 20 performs processing according to the program.

 受信制御部231は、ユーザ端末20が外部の装置から通信プロトコルに従って信号を受信する処理を制御する。具体的には、受信制御部231は、情報処理装置10から各種情報を受信する。より具体的には、受信制御部231は、情報処理装置10から、画像データ、画面等を受信する。 The reception control unit 231 controls a process in which the user terminal 20 receives a signal from an external device according to a communication protocol. Specifically, the reception control unit 231 receives various information from the information processing device 10. More specifically, the reception control unit 231 receives image data, a screen, and the like from the information processing device 10.

 送信制御部232は、ユーザ端末20が外部の装置に対し通信プロトコルに従って信号を送信する処理を制御する。具体的には、送信制御部232は、所定の情報を情報処理装置10に送信する。より具体的には、送信制御部232は、ユーザの主観的な回答を、情報処理装置10に送信する。 The transmission control unit 232 controls a process in which the user terminal 20 transmits a signal to an external device according to a communication protocol. Specifically, the transmission control unit 232 transmits predetermined information to the information processing apparatus 10. More specifically, the transmission control unit 232 transmits the user's subjective response to the information processing apparatus 10.

 表示部233は、第1出力部133により出力される画像を表示する。具体的には、表示部233は、受信制御部231が情報処理装置10から第1出力部133により出力された画像データを受信すると、当該画像データを表示する。このとき、表示部233は、主観的な回答としてユーザの主観的な回答を入力可能に、画像データを表示する。 The display unit 233 displays the image output by the first output unit 133. Specifically, when the reception control unit 231 receives the image data output by the first output unit 133 from the information processing device 10, the display unit 233 displays the image data. At this time, the display unit 233 displays the image data so that the user's subjective answer can be input as the subjective answer.

 また、表示部233は、第2出力部136により出力される画像を表示する。具体的には、表示部233は、受信制御部231が情報処理装置10から第2出力部136により出力された画面を受信すると、当該画面を表示する。このとき、表示部233は、主観的な回答としてユーザの主観的な回答を入力可能に、画面を表示する。 Further, the display unit 233 displays the image output by the second output unit 136. Specifically, when the reception control unit 231 receives the screen output by the second output unit 136 from the information processing device 10, the display unit 233 displays the screen. At this time, the display unit 233 displays the screen so that the user's subjective answer can be input as the subjective answer.

 また、表示部233は、受信制御部231が情報処理装置10から通知を受信すると、当該通知の内容を表示する。本開示のユーザ端末20の機能が、ユーザ端末20にインストールされるアプリケーションで実装される場合、プッシュ通知によりユーザに通知を表示してもよい。この場合、表示部233は、プッシュ通知に画像データを含めて表示する構成としてもよい。 Further, when the reception control unit 231 receives the notification from the information processing apparatus 10, the display unit 233 displays the content of the notification. When the function of the user terminal 20 of the present disclosure is implemented in an application installed on the user terminal 20, the notification may be displayed to the user by push notification. In this case, the display unit 233 may be configured to include the image data in the push notification and display it.

 入力部234は、ユーザから、ユーザの主観的な回答の入力を受け付ける。入力部234は、主観的な回答の入力を受け付けると、送信制御部232に、当該回答を情報処理装置10に対して送信させる。 The input unit 234 accepts the input of the user's subjective answer from the user. When the input unit 234 accepts the input of the subjective answer, the transmission control unit 232 causes the transmission control unit 232 to transmit the answer to the information processing apparatus 10.

<4.動作>
 以下では、情報処理システム1における各処理について図面を参照しながら説明する。図12は、情報処理装置10による登録処理を行う流れの一例を示すフローチャートである。登録処理は、著作者から絵画の入力がされた場合に実行される。
<4. Operation>
Hereinafter, each process in the information processing system 1 will be described with reference to the drawings. FIG. 12 is a flowchart showing an example of a flow of performing registration processing by the information processing apparatus 10. The registration process is executed when a painting is input by the author.

 ステップS101において、登録された著作者から絵画の入力を受け付ける。 In step S101, the input of the painting is accepted from the registered author.

 ステップS102において、入力部138は、受け付けた絵画の画像データを、著作者と紐づけて絵画DB122に格納する。 In step S102, the input unit 138 stores the received image data of the painting in the painting DB 122 in association with the author.

 ステップS103において、通知部139は、お気に入り登録された著作者から絵画が新たに入力されたか否かを判定する。 In step S103, the notification unit 139 determines whether or not a painting is newly input from the author registered as a favorite.

 お気に入り登録された著作者から絵画が入力されていない場合(上記ステップS103のNO)、処理を終了する。 If no painting has been input from the author registered as a favorite (NO in step S103 above), the process ends.

 一方、お気に入り登録された著作者から絵画が入力された場合(上記ステップS103のYES)、ステップS104において、通知部139は、著作者をお気に入り登録したユーザに対し、新たな絵画が登録された旨を通知し、処理を終了する。 On the other hand, when a painting is input from the author registered as a favorite (YES in step S103 above), in step S104, the notification unit 139 indicates that a new painting has been registered for the user who has registered the author as a favorite. Is notified and the process ends.

 図13は、情報処理装置10による学習処理を行う流れの一例を示すフローチャートである。 FIG. 13 is a flowchart showing an example of a flow of learning processing by the information processing apparatus 10.

 ステップS201において、第1出力部133は、ユーザに、ユーザの好みを学習するための絵画を出力する。具体的には、第1出力部133は、送信制御部132に、当該画像データをユーザ端末20に送信させる。 In step S201, the first output unit 133 outputs to the user a painting for learning the user's preference. Specifically, the first output unit 133 causes the transmission control unit 132 to transmit the image data to the user terminal 20.

 ステップS202において、受信制御部131は、ユーザ端末20から、回答を受信する。 In step S202, the reception control unit 131 receives an answer from the user terminal 20.

 ステップS203において、学習部134は、上記ステップS201と上記ステップS202とを所定回数繰り返したか判定する。 In step S203, the learning unit 134 determines whether the step S201 and the step S202 are repeated a predetermined number of times.

 所定回数繰り返していない場合(上記ステップS203のNO)、学習部134は、次に上記ステップS201で出力する絵画を指定し、ステップS201に戻る。 If the process has not been repeated a predetermined number of times (NO in step S203), the learning unit 134 next specifies the painting to be output in step S201, and returns to step S201.

 一方、所定回数繰り返した場合(上記ステップS203のYES)ステップS204において、学習部134は、ユーザの好みを学習する。 On the other hand, when the process is repeated a predetermined number of times (YES in step S203 above), in step S204, the learning unit 134 learns the user's preference.

 ステップS205において、学習部134は、ユーザの好みを、ユーザDB121に格納する。 In step S205, the learning unit 134 stores the user's preference in the user DB 121.

 図14は、情報処理装置10による表示処理を行う流れの一例を示すフローチャートである。表示処理は、所定のタイミングにより開始される。 FIG. 14 is a flowchart showing an example of a flow of performing display processing by the information processing apparatus 10. The display process is started at a predetermined timing.

 ステップS301において、選択部135は、予め学習したユーザの好みに基づいて、当該ユーザの好みの絵画を、当該絵画の属する分野である美術分野において周知でない著作者の絵画を含む絵画の集合から選択する。 In step S301, the selection unit 135 selects a painting of the user's preference from a set of paintings including a painting of an author who is not well known in the art field to which the painting belongs, based on the user's preference learned in advance. do.

 ステップS302において、第2出力部136は、選択した絵画をユーザに出力する。具体的には、第2出力部136は、送信制御部132に、ユーザ端末20に対し、上記ステップS301により選択された絵画を表示する画面を送信させる。 In step S302, the second output unit 136 outputs the selected painting to the user. Specifically, the second output unit 136 causes the transmission control unit 132 to transmit the screen for displaying the painting selected in step S301 to the user terminal 20.

 ステップS303において、学習部134は、ユーザの好みの再学習を行う。具体的には、ユーザ端末20から回答を受信し、選択された絵画と、回答とに基づいて、ユーザの好みを学習する。 In step S303, the learning unit 134 relearns the user's preference. Specifically, the answer is received from the user terminal 20, and the user's preference is learned based on the selected painting and the answer.

 以上説明したように、本開示に係るプログラムによれば、プロセッサを含む情報処理装置に、ユーザの好みを予め学習する第1ステップと、予め学習したユーザの好みに基づいて、当該ユーザの好みの著作物を、当該著作物の属する分野において周知でない著作者の著作物を含む著作物の集合から選択する第2ステップと、選択した著作物を当該ユーザに出力する第3ステップと、を実行させることにより、ユーザの好みである著作物が、無名な著作者の著作物であっても、ユーザに提示することができる。 As described above, according to the program according to the present disclosure, the first step of learning the user's preference in advance in the information processing apparatus including the processor, and the user's preference based on the user's preference learned in advance. Perform a second step of selecting a work from a set of works including works of authors who are not well known in the field to which the work belongs, and a third step of outputting the selected work to the user. Thereby, even if the work preferred by the user is the work of an unknown author, it can be presented to the user.

 また、従来技術では、仮に周知でない著作者の著作物を見つけることができたとしても、当該著作物の著作者の作品を継続して購入することが困難である、という問題があった。また、ユーザが好みの著作物を得るために、好みの著作物を創作する著作者を支援したい場合があるが、支援するための方法を確認するのが困難である、という問題があった。本開示では、周知でない著作者に関する情報も提示するため、ユーザと周知でない著作者の著作物とをマッチングさせることができる。そして、著作物を創出した著作者とマッチングさせることができる。このため、著作者の活動を支援させることもでき、ユーザと著作者との間で好循環を生み出すことができる。 Further, with the conventional technique, even if a work of an unknown author can be found, there is a problem that it is difficult to continuously purchase the work of the author of the work. In addition, there is a case where a user wants to support an author who creates a favorite work in order to obtain a favorite work, but there is a problem that it is difficult to confirm a method for supporting the work. Since this disclosure also presents information about an unfamiliar author, it is possible to match the user with the work of an unfamiliar author. Then, it can be matched with the author who created the work. Therefore, it is possible to support the activities of the author and create a virtuous cycle between the user and the author.

 また、ユーザは、自身をリラックスさせたり、啓発させたりする著作物の種類を知らない、という問題があった。本開示では、ユーザの主観的な回答に基づいて好みを学習する。特に、Relaxed、Inspiredという選択肢により、ユーザの好みを学習することができる。このため、これらの観点に基づく好みの著作物を提示することで、ユーザが感性に応じた著作物を提示することができる。具体的には、上記で学習する対象は、著作物に対する好き嫌いというユーザの好みだけでなく、入力された回答の感情に応じたユーザの好みを学習することができる。例えば、回答がRelaxedである場合、ユーザがこの著作物に対してリラックスすると感じたものであるので、ユーザがリラックスしたいときに好む著作物の特徴を学習することができる。このように、回答の感情に応じたユーザの好みを学習することにより、上記の観点に基づく好みの著作物を提示することで、ユーザが感性に応じた著作物を提示することができる。 In addition, there was a problem that the user did not know the type of copyrighted work that relaxed or enlightened himself. In this disclosure, preference is learned based on the subjective response of the user. In particular, the user's preference can be learned by the options of Relaxed and Inspired. Therefore, by presenting a favorite work based on these viewpoints, the user can present the work according to the sensibility. Specifically, the target to be learned above can learn not only the user's preference for likes and dislikes of the copyrighted work, but also the user's preference according to the emotion of the input answer. For example, if the answer is Relaxed, the user feels relaxed with this work, so they can learn the characteristics of the work they prefer when they want to relax. In this way, by learning the user's preference according to the emotion of the answer, by presenting the favorite work based on the above viewpoint, the user can present the copyrighted work according to the sensibility.

 また、従来、著作者が著作物を投稿し、ユーザが著作物を検索するサービスが存在する。このサービスでは、評価が高い著作物が検索上位として表示される。しかし、必ずしも全てのユーザにとって評価が高いとは言えず、ユーザの好みの著作物が検索しやすいわけではない。このため、ユーザが好みの著作物にたどり着くまで様々な検索方法、数多くの著作物を確認する必要があり、煩わしいという問題があった。本開示では、ユーザが主観的な回答を入力するだけでユーザの好みの著作物を学習し、当該ユーザに好みの著作物を自動的に提示する。このため、ユーザに負担をかけずにユーザが好みの著作物にたどり着くことができる。 In addition, there is a service in which the author posts the copyrighted work and the user searches for the copyrighted work. In this service, copyrighted works with high evaluation are displayed as the top search. However, it is not always highly evaluated by all users, and it is not easy to search for a user's favorite copyrighted work. For this reason, there is a problem that it is troublesome because it is necessary to check various search methods and a large number of copyrighted works until the user arrives at a favorite copyrighted work. In the present disclosure, a user learns a user's favorite copyrighted work simply by inputting a subjective answer, and automatically presents the user's favorite copyrighted work. Therefore, the user can reach the favorite copyrighted work without imposing a burden on the user.

 また、著作者は、高評価を得るために、自ら著作物の良さをアピールする必要があるが、自身の知名度によってはアピールが困難である、自らの著作物を好んでくれる人を探すことが困難である、という問題があった。本開示では、周知でない著作者であっても、ユーザの好みの著作物であれば、ユーザに提示する。このため、周知でない著作者でも自身の著作物を好むユーザにアピールすることができる。 Also, in order to get a high evaluation, the author needs to appeal the goodness of the work by himself, but it is difficult to appeal depending on his name, so it is possible to find a person who likes his work. There was the problem that it was difficult. In this disclosure, even an unfamiliar author presents a user's favorite work to the user. Therefore, even an unfamiliar author can appeal to a user who likes his / her own work.

 以上、開示に係る実施形態について説明したが、これらはその他の様々な形態で実施することが可能であり、種々の省略、置換及び変更を行なって実施することができる。これらの実施形態及び変形例ならびに省略、置換及び変更を行なったものは、特許請求の範囲の技術的範囲とその均等の範囲に含まれる。 Although the embodiments related to the disclosure have been described above, these can be implemented in various other embodiments, and can be implemented by making various omissions, substitutions, and changes. These embodiments and modifications, as well as those omitted, replaced or modified, are included in the technical scope of the claims and the equivalent scope thereof.

 例えば、上記開示では、著作物が絵画である場合を例に説明したが、これに限定されるものではない。著作物が、彫刻、版画、イラスト、グラフィックデザイン等の他の美術(アート)の分野に属するものであってもよい。また、著作物が、音楽、学術、又は文芸の分野に属する著作物であってもよい。また、著作者は、著作物を創作した者に限定されず、創作者、著作物に関する権利を有する者等を含む。 For example, in the above disclosure, the case where the copyrighted work is a painting has been described as an example, but the present invention is not limited to this. The work may belong to another field of art, such as engraving, prints, illustrations, and graphic design. Further, the work may be a work belonging to the field of music, scholarship, or literary arts. In addition, the author is not limited to the creator of the work, but includes the creator, the person who has the right to the work, and the like.

 絵画の場合、周知な著作者は画廊に登録し、そこで絵画を販売することが通常である。その他の絵画は基本的に出回らない。絵画を登録するサイトはあるが、本当にユーザが好むものを提示してくれている訳ではない、そもそも好みを学習してくれてはいない等の問題がある。また、絵画、彫刻などの美術品は1品しか存在しない。このため、投資価値等も含んでいる。本開示は、ユーザの好みを学習して、無名の著作物を選択している。このため、本開示の技術は、特に美術分野での周知でない著作者を支援することに有用である。 In the case of paintings, it is normal for well-known authors to register in the gallery and sell the paintings there. Other paintings are basically not available. There is a site for registering paintings, but there are problems such as not showing what the user really likes, and not learning the taste in the first place. In addition, there is only one work of art such as paintings and sculptures. Therefore, the investment value is also included. This disclosure learns user preferences and selects anonymous works. For this reason, the techniques of the present disclosure are useful in supporting unfamiliar authors, especially in the arts field.

 彫刻の場合、画像データではなく、3Dデータを用いることができる。 In the case of engraving, 3D data can be used instead of image data.

 また、本開示では各データベース(例えば、絵画DB122)が情報処理装置10内に構成される場合を例に説明したが、これに限定されるものではない。各データベースを、情報処理装置10の外部に存在するデータベースとして構成されてもよい。 Further, in the present disclosure, the case where each database (for example, painting DB 122) is configured in the information processing apparatus 10 has been described as an example, but the present invention is not limited to this. Each database may be configured as a database existing outside the information processing apparatus 10.

 また、本開示では、情報処理装置10の第1出力部133又は第2出力部136によりユーザに表示する画面を生成する構成としたが、これに限定されるものではない。ユーザ端末20が、ユーザに表示する画面を生成する構成としてもよい。 Further, in the present disclosure, the first output unit 133 or the second output unit 136 of the information processing apparatus 10 is configured to generate a screen to be displayed to the user, but the present invention is not limited to this. The user terminal 20 may be configured to generate a screen to be displayed to the user.

<付記>
 以上の各実施形態で説明した事項を、以下に付記する。
<Additional notes>
The matters described in each of the above embodiments will be added below.

 (付記1)プロセッサを含む情報処理装置(10)に、ユーザの好みを予め学習する第1ステップ(S204)と、予め学習したユーザの好みに基づいて、前記ユーザの好みの著作物を、前記著作物の属する分野において周知でない著作者の著作物を含む著作物の集合から選択する第2ステップ(S301)と、選択した著作物を前記ユーザに出力する第3ステップ(S302)と、を実行させるプログラム。 (Appendix 1) In the information processing apparatus (10) including the processor, the first step (S204) of learning the user's preference in advance and the user's favorite copyrighted work based on the user's preference learned in advance are described. The second step (S301) of selecting from a set of works including the works of authors who are not well known in the field to which the works belong, and the third step (S302) of outputting the selected works to the user are executed. Program to let you.

 (付記2)前記第1ステップは、前記ユーザに前記ユーザの好みを学習するための著作物を出力する第4ステップ(S201)と、前記ユーザから、前記著作物について主観的な回答の入力を受け付ける第5ステップ(S202)と、前記第4ステップと、前記第5ステップとを所定回数繰り返す第6ステップ(S203)と、を実行することにより、前記ユーザの好みを予め学習する(付記1)記載のプログラム。 (Appendix 2) The first step is a fourth step (S201) of outputting a work for learning the user's preference to the user, and inputting a subjective answer about the work from the user. By executing the fifth step (S202) of acceptance, the fourth step, and the sixth step (S203) of repeating the fifth step a predetermined number of times, the user's preference is learned in advance (Appendix 1). The program described.

 (付記3)前記第2ステップは、前記著作物の集合から、前記周知でない著作者の著作物を選択する(付記1)又は(付記2)記載のプログラム。 (Appendix 3) The second step is the program described in (Appendix 1) or (Appendix 2) in which the copyrighted work of the unknown author is selected from the set of the copyrighted works.

 (付記4)前記第3ステップは、選択した著作物の著作者に関する情報を出力する(付記1)~(付記3)の何れか記載のプログラム。 (Appendix 4) The third step is the program according to any one of (Appendix 1) to (Appendix 3) that outputs information about the author of the selected work.

 (付記5)前記周知でない著作者の登録を受け付ける第7ステップと、登録された著作者から著作物の入力を受け付ける第8ステップ(S102)と、を実行させる(付記1)~(付記4)の何れか記載のプログラム。 (Appendix 5) The seventh step of accepting the registration of the unknown author and the eighth step (S102) of accepting the input of the work from the registered author are executed (Appendix 1) to (Appendix 4). The program described in any of.

 (付記6)前記ユーザから、前記第3ステップにより出力された前記著作者について、お気に入り登録を受け付ける第9ステップと、前記第9ステップにより登録された著作者から著作物の入力を受け付けると、受け付けた前記著作物を前記ユーザに通知する第10ステップ(S104)と、を実行させる(付記5)記載のプログラム。 (Appendix 6) The 9th step of accepting the favorite registration of the author output by the 3rd step from the user and the input of the copyrighted work from the author registered by the 9th step are accepted. The program according to the tenth step (S104) for notifying the user of the work and the execution (Appendix 5).

 (付記7)前記第4ステップにおいて出力した著作物と、前記第2ステップにおいて選択した前記ユーザの好みの著作物とに基づいて、前記第6ステップにより繰り返される前記第4ステップにおいて出力する著作物の順番を学習する第11ステップを実行する(付記2)~(付記6)の何れか記載のプログラム。 (Appendix 7) A work output in the fourth step repeated in the sixth step based on the work output in the fourth step and the favorite work of the user selected in the second step. The program according to any one of (Appendix 2) to (Appendix 6) for executing the eleventh step of learning the order of.

 (付記8)前記第4ステップにおいて、前記第6ステップにより繰り返される毎に、前記ユーザの好みを学習する精度を高めるような順番で著作物を出力するように、出力する著作物を変更する(付記7)記載のプログラム。 (Appendix 8) In the fourth step, each time the sixth step is repeated, the output works are changed so as to output the works in an order that enhances the accuracy of learning the user's preference ((Appendix 8). Appendix 7) The program described.

 (付記9)前記第2ステップは、前記回答と、前記回答を入力することにより、好みの傾向を示す第1ベクトルを出力する第1モデルとを用いて、前記著作物の集合から、前記ユーザの好みの著作物を選択する(付記2)~(付記8)の何れか記載のプログラム。 (Appendix 9) In the second step, the user is selected from the set of copyrighted works by using the answer and a first model that outputs a first vector showing a tendency of preference by inputting the answer. The program according to any one of (Appendix 2) to (Appendix 8) for selecting a favorite work.

 (付記10)前記第2ステップは、前記回答と、前記回答を入力することにより、ユーザの属する好みの傾向を示すユーザクラスである第2ベクトルを出力する第2モデルとを用いて、前記著作物の集合から、前記ユーザの好みの著作物を選択する(付記2)~(付記8)の何れか記載のプログラム。 (Appendix 10) The second step uses the answer and a second model that outputs a second vector, which is a user class indicating a tendency of preference to which the user belongs, by inputting the answer. The program according to any one of (Appendix 2) to (Appendix 8) for selecting a favorite work of the user from a set of objects.

 (付記11)前記第2ステップは、前記回答と前記第2モデルとに基づいて前記ユーザクラスを求め、求めた前記第1ベクトルを入力すると、前記ユーザの好みの絵画を出力するように予め学習された第3モデルとを用いて、前記著作物の集合から、前記周知でない著作者の著作物を選択する(付記9)記載のプログラム。 (Appendix 11) In the second step, the user class is obtained based on the answer and the second model, and when the obtained first vector is input, the user's favorite painting is output in advance. The program according to (Appendix 9), which selects a work of an unknown author from a set of the works by using the third model.

 (付記12)前記第2ステップは、前記第3モデルと、前記第1ベクトルを入力すると、前記ユーザの好みでない著作物の特徴を示す第4ベクトルを出力するように予め学習された第4モデルとを用いて、前記著作物の集合から、前記ユーザの好みの著作物を選択する(付記11)記載のプログラム (Appendix 12) In the second step, when the third model and the first vector are input, a fourth model trained in advance so as to output a fourth vector showing the characteristics of the copyrighted work that the user does not like is output. The program according to (Appendix 11), which selects a favorite work of the user from a set of the works using and.

 (付記13)前記第5ステップにおいて、前記ユーザから、前記第4ステップにより出力された著作物について主観的な評価を回答として入力を受け付ける(付記2)~(付記12)の何れか記載のプログラム (Appendix 13) The program according to any one of (Appendix 2) to (Appendix 12), which accepts input from the user in the fifth step with a subjective evaluation as an answer to the copyrighted work output by the fourth step.

 (付記14)前記主観的な評価は、前記第4ステップにより出力された著作物について、前記ユーザの抱いた感情である(付記13)記載のプログラム。 (Appendix 14) The program according to (Appendix 13), wherein the subjective evaluation is the emotion held by the user with respect to the work output by the fourth step.

 (付記15)前記第4ステップにおいて、前記ユーザの感情を選択可能に表示する(付記14)記載のプログラム。 (Appendix 15) The program according to (Appendix 14) that displays the emotions of the user in a selectable manner in the fourth step.

 (付記16)前記第4ステップにおいて、前記ユーザの感情の度合を表すメーターを表示し、前記メーターを操作することにより前記感情の度合を指定可能に表示する(付記14)記載のプログラム。 (Appendix 16) The program according to (Appendix 14), in which, in the fourth step, a meter indicating the degree of emotion of the user is displayed, and the degree of emotion can be specified by operating the meter (Appendix 14).

 (付記17)ユーザの好みを予め学習する第1ステップ(S204)と、予め学習したユーザの好みに基づいて、前記ユーザの好みの著作物を、前記著作物の属する分野において周知でない著作者の著作物を含む著作物の集合から選択する第2ステップ(S301)と、選択した著作物を前記ユーザに出力する第3ステップ(S302)と、を実行する情報処理装置。 (Appendix 17) Based on the first step (S204) of learning the user's preference in advance and the user's preference learned in advance, the author's favorite work is not well known in the field to which the work belongs. An information processing device that executes a second step (S301) of selecting from a set of copyrighted works including a copyrighted work and a third step (S302) of outputting the selected copyrighted work to the user.

 (付記18)ユーザの好みを予め学習する第1ステップ(S204)と、予め学習したユーザの好みに基づいて、前記ユーザの好みの著作物を、前記著作物の属する分野において周知でない著作者の著作物を含む著作物の集合から選択する第2ステップ(S301)と、選択した著作物を前記ユーザに出力する第3ステップ(S302)と、を実行する方法。 (Appendix 18) Based on the first step (S204) of learning the user's preference in advance and the user's preference learned in advance, the author's favorite work is not well known in the field to which the work belongs. A method of executing a second step (S301) of selecting from a set of works including a work, and a third step (S302) of outputting the selected work to the user.

 (付記19)プロセッサを含む情報処理装置に、ユーザの好みを予め学習するステップ(S204)と、予め学習した前記ユーザの好みの著作物を、著作物の集合から選択するステップ(S301)と、を実行させ、前記学習するステップにおいて、前記ユーザに前記ユーザの好みを学習するための著作物を出力するステップ(S201)と、前記ユーザから、前記著作物について主観的な回答の入力を受け付けるステップ(S202)と、前記出力するステップと、前記受け付けるステップとを所定回数繰り返すステップ(S203)と、を実行するプログラム。 (Appendix 19) A step (S204) of preliminarily learning a user's preference in an information processing apparatus including a processor, and a step (S301) of selecting a pre-learned user's favorite work from a set of works. In the learning step, a step (S201) of outputting a literary work for learning the user's preference to the user and a step of receiving a subjective answer about the literary work from the user. (S202), a program for executing the step (S203) of repeating the output step and the accepting step a predetermined number of times.

1 情報処理システム、10 情報処理装置、11 プロセッサ、12 メモリ、13 ストレージ、14 通信IF、15 入出力IF、20 ユーザ端末、21 プロセッサ、22 メモリ、23 ストレージ、24 通信IF、25 入出力IF、30 無線基地局、31 プロセッサ、40 ネットワーク、110 通信部、120 記憶部、121 ユーザDB、122 絵画DB、123 モデルDB、130 制御部、131 受信制御部、132 送信制御部、133 第1出力部、134 学習部、135 選択部、136 第2出力部、137 登録部、138 入力部、139 通知部、140 画面、141 絵画表示部、142 ボタン、144 ボタン、145 ボタン、146 ボタン、150 画面、151 スライド入力部、152 手部、160 画面、161 スライド入力部、162 調整部、170 画面、171 入力表示部、172 ボタン部、173 ゲージ部、210 通信部、220 記憶部、230 制御部、231 受信制御部、232 送信制御部、233 表示部、234 入力部。 1 information processing system, 10 information processing equipment, 11 processor, 12 memory, 13 storage, 14 communication IF, 15 input / output IF, 20 user terminal, 21 processor, 22 memory, 23 storage, 24 communication IF, 25 input / output IF, 30 wireless base station, 31 processor, 40 network, 110 communication unit, 120 storage unit, 121 user DB, 122 painting DB, 123 model DB, 130 control unit, 131 reception control unit, 132 transmission control unit, 133 first output unit. , 134 learning unit, 135 selection unit, 136 second output unit, 137 registration unit, 138 input unit, 139 notification unit, 140 screen, 141 painting display unit, 142 button, 144 button, 145 button, 146 button, 150 screen, 151 slide input unit, 152 hand unit, 160 screen, 161 slide input unit, 162 adjustment unit, 170 screen, 171 input display unit, 172 button unit, 173 gauge unit, 210 communication unit, 220 storage unit, 230 control unit, 231 Reception control unit, 232 transmission control unit, 233 display unit, 234 input unit.

Claims (14)

 プロセッサを含む情報処理装置に、
 ユーザに、前記ユーザの好みを学習するための著作物を出力する第1ステップと、
 前記ユーザが出力された著作物に対して抱いた、好みを除く感情を回答として、前記ユーザから、前記回答の入力を受け付ける第2ステップと、
 前記第1ステップと、前記第2ステップとを所定回数繰り返すステップと、
 前記出力された著作物と前記出力された著作物に対する前記回答との組を複数用いて、前記回答の感情に応じた前記ユーザの好みを学習するステップと、
 学習した前記ユーザの好みに基づいて、前記ユーザの好みの著作物を、著作物の集合から選択するステップと、
 選択した著作物を前記ユーザに出力するステップと、
 を実行させるプログラム。
For information processing equipment including processors
The first step of outputting a copyrighted work to the user for learning the user's preference,
The second step of accepting the input of the answer from the user with the emotions other than the preference that the user has for the output work as an answer.
A step of repeating the first step and the second step a predetermined number of times,
A step of learning the user's preference according to the emotion of the answer by using a plurality of pairs of the output work and the answer to the output work, and
A step of selecting a copyrighted work of the user's preference from a set of copyrighted works based on the learned preference of the user.
Steps to output the selected copyrighted work to the user,
A program to execute.
 前記第2ステップにおいて、前記回答として、幸福、リラックス、又は刺激的の入力を受け付け、
 前記第1ステップにおいて、前記著作物と共に、前記回答を選択可能に表示する、
 請求項1に記載のプログラム。
In the second step, the answer is to accept happiness, relaxation, or stimulating input.
In the first step, the answer is selectively displayed together with the work.
The program according to claim 1.
 ユーザの好みを再学習する第3ステップと、
 再学習した前記ユーザの好みに基づいて、前記ユーザの好みの著作物を、前記著作物の集合から選択するステップと、
 を更に実行させ、
 前記第3ステップは、
 前記ユーザに、前記ユーザの好みを再学習するための著作物と、前記ユーザが出力された著作物に対して抱いた所定の感情の度合を表すメーターであって、ユーザにより操作可能な前記メーターを表示するステップと、
 前記ユーザが前記メーターを操作することにより前記所定の感情の度合を回答として、前記ユーザから、前記回答の入力を受け付けるステップと、
 前記出力された著作物と前記出力された著作物に対する前記回答とを用いて、前記ユーザの好みを再学習するステップと、
 を実行する請求項2に記載のプログラム。
The third step to relearn the user's preferences,
A step of selecting a copyrighted work of the user's preference from a set of the copyrighted works based on the relearned user's preference.
To execute further,
The third step is
A meter that indicates to the user a work for re-learning the user's preference and a predetermined degree of emotion that the user has for the output work, and is a meter that can be operated by the user. Steps to display and
A step of receiving the input of the answer from the user with the predetermined degree of emotion as the answer by the user operating the meter.
A step of re-learning the user's preference using the output work and the answer to the output work, and
The program according to claim 2.
 前記選択した著作物を前記ユーザに出力するステップにおいて、前記選択した著作物と共に、前記選択した著作物の著作者に関する情報を出力する
 請求項1~請求項3の何れかに記載のプログラム。
The program according to any one of claims 1 to 3, which outputs information about the author of the selected work together with the selected work in the step of outputting the selected work to the user.
 著作者の登録を受け付けるステップと、
 登録された著作者から著作物の入力を受け付けるステップと、
 を実行させる請求項1~請求項4の何れかに記載のプログラム。
Steps to accept the registration of authors and
Steps to accept input of copyrighted works from registered authors,
The program according to any one of claims 1 to 4.
 前記ユーザから、前記選択した著作物を前記ユーザに出力するステップにより出力された前記著作者について、お気に入り登録を受け付けるステップと、
 前記お気に入り登録を受け付けるステップにより登録された著作者から著作物の入力を受け付けると、受け付けた前記著作物を前記ユーザに通知するステップと、
 を実行させる請求項5に記載のプログラム。
A step of accepting a favorite registration for the author output by the step of outputting the selected work to the user from the user, and a step of accepting the favorite registration.
When the input of the copyrighted work is received from the author registered by the step of accepting the favorite registration, the step of notifying the user of the accepted copyrighted work and the step of notifying the user.
The program according to claim 5.
 前記第1ステップにおいて出力した著作物と、前記選択するステップにおいて選択した前記ユーザの好みの著作物とに基づいて、前記繰り返すステップにより繰り返される前記第1ステップにおいて出力する著作物の順番を学習するステップ
 を実行する請求項1~請求項6の何れかに記載のプログラム。
Based on the copyrighted work output in the first step and the favorite copyrighted work of the user selected in the selected step, the order of the copyrighted works output in the first step repeated by the repeating step is learned. The program according to any one of claims 1 to 6, wherein the step is executed.
 前記第1ステップにおいて、前記繰り返すステップにより繰り返される毎に、前記ユーザの好みを学習する精度を高めるような順番で著作物を出力するように、出力する著作物を変更する
 請求項7に記載のプログラム。
The seventh step is described in claim 7, wherein the output works are changed so that the works are output in an order that enhances the accuracy of learning the user's preference each time the repeated steps are repeated. program.
 前記選択するステップは、前記回答と、前記回答を入力することにより、好みの傾向を示す第1ベクトルを出力する第1モデルとを用いて、前記著作物の集合から、前記ユーザの好みの著作物を選択する
 請求項1~請求項8の何れかに記載のプログラム。
The selection step is a work of the user's preference from the set of works using the answer and a first model that outputs a first vector indicating a tendency of preference by inputting the answer. The program according to any one of claims 1 to 8, which selects a product.
 前記選択するステップは、前記回答と、前記回答を入力することにより、ユーザの属する好みの傾向を示すユーザクラスである第2ベクトルを出力する第2モデルとを用いて、前記著作物の集合から、前記ユーザの好みの著作物を選択する
 請求項1~請求項8の何れかに記載のプログラム。
The selection step is from the set of works using the answer and a second model that outputs a second vector, which is a user class indicating the tendency of the user's preference by inputting the answer. The program according to any one of claims 1 to 8, wherein the user's favorite copyrighted work is selected.
前記選択するステップは、前記回答と前記第2モデルとに基づいて前記ユーザクラスを求め、求めた前記第1ベクトルを入力すると、前記ユーザの好みの絵画を出力するように予め学習された第3モデルとを用いて、前記著作物の集合から、前記著作者の著作物を選択する
 請求項10に記載のプログラム。
The selection step is a third pre-learned step to obtain the user class based on the answer and the second model, input the obtained first vector, and output the user's favorite painting. The program according to claim 10, wherein a work of the author is selected from a set of the works using a model.
 前記選択するステップは、前記第3モデルと、前記第1ベクトルを入力すると、前記ユーザの好みでない著作物の特徴を示す第4ベクトルを出力するように予め学習された第4モデルとを用いて、前記著作物の集合から、前記ユーザの好みの著作物を選択する
 請求項11に記載のプログラム。
The selection step uses the third model and, upon input of the first vector, a fourth model pre-learned to output a fourth vector showing features of the work that the user does not like. The program according to claim 11, wherein the user's favorite copyrighted work is selected from the set of copyrighted works.
 ユーザに、前記ユーザの好みを学習するための著作物を出力する第1ステップと、
 前記ユーザが出力された著作物に対して抱いた、好みを除く感情を回答として、前記ユーザから、前記回答の入力を受け付ける第2ステップと、
 前記第1ステップと、前記第2ステップとを所定回数繰り返すステップと、
 前記出力された著作物と前記出力された著作物に対する前記回答との組を複数用いて、前記回答の感情に応じた前記ユーザの好みを学習するステップと、
 学習した前記ユーザの好みに基づいて、前記ユーザの好みの著作物を、著作物の集合から選択するステップと、
 選択した著作物を前記ユーザに出力するステップと、
 を実行する情報処理装置。
The first step of outputting a copyrighted work to the user for learning the user's preference,
The second step of accepting the input of the answer from the user with the emotions other than the preference that the user has for the output work as an answer.
A step of repeating the first step and the second step a predetermined number of times,
A step of learning the user's preference according to the emotion of the answer by using a plurality of pairs of the output work and the answer to the output work, and
A step of selecting a copyrighted work of the user's preference from a set of copyrighted works based on the learned preference of the user.
Steps to output the selected copyrighted work to the user,
Information processing device that executes.
 コンピュータが、
 ユーザに、前記ユーザの好みを学習するための著作物を出力する第1ステップと、
 前記ユーザが出力された著作物に対して抱いた、好みを除く感情を回答として、前記ユーザから、前記回答の入力を受け付ける第2ステップと、
 前記第1ステップと、前記第2ステップとを所定回数繰り返すステップと、
 前記出力された著作物と前記出力された著作物に対する前記回答との組を複数用いて、前記回答の感情に応じた前記ユーザの好みを学習するステップと、
 学習した前記ユーザの好みに基づいて、前記ユーザの好みの著作物を、著作物の集合から選択するステップと、
 選択した著作物を前記ユーザに出力するステップと、
 を実行する方法。
The computer
The first step of outputting a copyrighted work to the user for learning the user's preference,
The second step of accepting the input of the answer from the user with the emotions other than the preference that the user has for the output work as an answer.
A step of repeating the first step and the second step a predetermined number of times,
A step of learning the user's preference according to the emotion of the answer by using a plurality of pairs of the output work and the answer to the output work, and
A step of selecting a copyrighted work of the user's preference from a set of copyrighted works based on the learned preference of the user.
Steps to output the selected copyrighted work to the user,
How to run.
PCT/JP2021/039940 2020-10-30 2021-10-29 Program, information processing device, and method Ceased WO2022092246A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020182903 2020-10-30
JP2020-182903 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022092246A1 true WO2022092246A1 (en) 2022-05-05

Family

ID=81382630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039940 Ceased WO2022092246A1 (en) 2020-10-30 2021-10-29 Program, information processing device, and method

Country Status (1)

Country Link
WO (1) WO2022092246A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH096802A (en) * 1995-06-20 1997-01-10 Matsushita Electric Ind Co Ltd Kansei input device and data search device
JPH09114802A (en) * 1995-10-20 1997-05-02 Omron Corp Investigation device and investigation method
JPH11175546A (en) * 1997-12-11 1999-07-02 Hitachi Ltd Copyright search support system
JP2000035974A (en) * 1998-06-29 2000-02-02 Eastman Kodak Co Method for retrieval based on subjective image content similarity and computer program product
JP2001312609A (en) * 2000-04-28 2001-11-09 Toshiba Corp Creator discovery method and information collection method using network
JP2004117407A (en) * 2002-09-20 2004-04-15 Masao Hozumi Computer-readable recording medium containing compilation album, method of use and system of use
JP2014174912A (en) * 2013-03-12 2014-09-22 Nintendo Co Ltd Content sharing system, content sharing server device, content sharing method, and computer program
WO2020162486A1 (en) * 2019-02-05 2020-08-13 ソニー株式会社 Preference computation device, preference computation method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH096802A (en) * 1995-06-20 1997-01-10 Matsushita Electric Ind Co Ltd Kansei input device and data search device
JPH09114802A (en) * 1995-10-20 1997-05-02 Omron Corp Investigation device and investigation method
JPH11175546A (en) * 1997-12-11 1999-07-02 Hitachi Ltd Copyright search support system
JP2000035974A (en) * 1998-06-29 2000-02-02 Eastman Kodak Co Method for retrieval based on subjective image content similarity and computer program product
JP2001312609A (en) * 2000-04-28 2001-11-09 Toshiba Corp Creator discovery method and information collection method using network
JP2004117407A (en) * 2002-09-20 2004-04-15 Masao Hozumi Computer-readable recording medium containing compilation album, method of use and system of use
JP2014174912A (en) * 2013-03-12 2014-09-22 Nintendo Co Ltd Content sharing system, content sharing server device, content sharing method, and computer program
WO2020162486A1 (en) * 2019-02-05 2020-08-13 ソニー株式会社 Preference computation device, preference computation method, and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENICHIRO SAITO; INOMAE GORO; HIROSHI SHIGENO; KEN-ICHI OKADA: "Proposal of information selection system using charge formula", IPSJ SIG TECHNICAL REPORT, vol. 2004, no. 61 (2004-DPS-118), 4 June 2004 (2004-06-04), JP , pages 71 - 76, XP009536539, ISSN: 0919-6072 *
YOSHIHIKO SUKO, YURI KOIKE, JUN MURAI: "Promoting Exchange of Digital Art Works - picsense", COMPUTER SOFTWARE, vol. 24, no. 4, 1 January 2007 (2007-01-01), pages 66 - 77, XP055925984, ISSN: 0289-6540, DOI: 10.11309/jssst.24.4_66 *

Similar Documents

Publication Publication Date Title
Yang et al. Personalized tourism recommendations and the E-tourism user experience
Ma et al. Insights into older adults’ technology acceptance through meta-analysis
Kang et al. Understanding museum visitor satisfaction and revisit intentions through mobile guide system: moderating role of age in museum mobile guide adoption
Wang et al. Can active labour market programmes emulate the mental health benefits of regular paid employment? Longitudinal evidence from the United Kingdom
Sarsam et al. A first look at the effectiveness of personality dimensions in promoting users’ satisfaction with the system
Yin et al. Life satisfaction and the human development index across the world
Chen et al. Mining students' learning patterns and performance in Web-based instruction: a cognitive style approach
US8126766B2 (en) Interactive user interface for collecting and processing nomenclature and placement metrics for website design
Bosch et al. Measurement reliability, validity, and quality of slider versus radio button scales in an online probability-based panel in Norway
JP7423994B2 (en) Recommendation device and recommendation method
Westerwick et al. Peers versus pros: Confirmation bias in selective exposure to user-generated versus professional media messages and its consequences
Oztekin et al. A Taguchi-based Kansei engineering study of mobile phones at product design stage
Zha et al. Comparing digital libraries in the web and mobile contexts from the perspective of the digital divide
Wu et al. Negativity makes us polarized: a longitudinal study of media tone and opinion polarization in Hong Kong
Kaufman Implementing novel, flexible, and powerful survey designs in R Shiny
Weinrich Notes on the Kinsey scale
Kim Demographic differences in perceptions of media brand personality: A multilevel analysis
Tracey We can do that? Technological advances in interest assessment
Hall The social implications of enjoyment of different types of music, movies, and television programming
Richthammer et al. Situation awareness for recommender systems: C. Richthammer, G. Pernul
Adhikary et al. Micro-modelling of individual tourist’s information-seeking behaviour: a heterogeneity-specific study
Lee et al. The moderating role of perceived interactivity in the relationship between online customer experience and behavioral intentions to use parenting apps for Taiwanese preschool parents
Workman et al. Gen Z’s social media engagement, fashion innovativeness, need for variety, and gender
Liu et al. Cross-cultural examination of music sharing intentions on social media: a comparative study in China and the United States
JP2020126392A (en) Selection device, selection method, and selection program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP