[go: up one dir, main page]

WO2022154060A1 - Transmissive screen - Google Patents

Transmissive screen Download PDF

Info

Publication number
WO2022154060A1
WO2022154060A1 PCT/JP2022/001003 JP2022001003W WO2022154060A1 WO 2022154060 A1 WO2022154060 A1 WO 2022154060A1 JP 2022001003 W JP2022001003 W JP 2022001003W WO 2022154060 A1 WO2022154060 A1 WO 2022154060A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
transmissive screen
layer
axis
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2022/001003
Other languages
French (fr)
Japanese (ja)
Inventor
朋宏 高橋
基弘 藤井
敦 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2022575633A priority Critical patent/JPWO2022154060A1/ja
Publication of WO2022154060A1 publication Critical patent/WO2022154060A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a transmissive screen, and particularly to a micromirror array that diffuses light.
  • Patent Documents 1 and 2 disclose a transmissive screen.
  • the transmissive screen of Patent Document 1 includes a reflective layer made of a curved surface having periodic irregularities.
  • the transmissive screen of Patent Document 2 includes a light scattering portion having a trapezoidal cross section.
  • FIG. 1B of Patent Document 3 discloses a microlens array for enlarging the exit pupil.
  • the microlens array has an asymmetric structure.
  • the present invention provides a transmissive screen that anisotropically diffuses light with an embedded micromirror array.
  • a transmissive screen in which a micromirror array is embedded the transmissive screen includes a first layer on the back side and a second layer on the front side, and the first layer is the transmissive.
  • An array of lens bodies with the curved surface of the lens facing the front side of the mold screen is provided, and the lens body has a high diffusion surface composed of the lens curved surface and a low diffusion surface having a smaller curvature than the lens curved surface back to back.
  • the micromirror array is formed by forming a reflective film that has an asymmetric structure and at least on the highly diffused surface that transmits a part of the incident light and reflects a part of the incident light.
  • the layer includes an inverted array that covers the array of the lens body toward the back side of the transmissive screen, and the image light obliquely projected from the back side of the transmissive screen is the first layer.
  • a transmissive screen that is refracted at an interface on the back surface side, further reflected at the high diffusion surface, further refracted at an interface on the front surface side of the second layer, and emitted toward the front surface side of the transmissive screen.
  • the sag amount Z (Y) of the high diffusion surface in the cross section parallel to the yz plane is represented by the same curve and a mathematical formula.
  • Formula Iy Formula IIy: C: Lens curvature of the high diffusion surface in a plane parallel to the yz plane K: Conic constant Y: y coordinates reset for the high diffusion plane in a plane parallel to the yz plane [3]
  • the lens bodies are arranged parallel to the y-axis, and in the group of the lens bodies arranged in the y-axis direction, the sag amount Z (X) in the cross section parallel to the xx plane is the same.
  • the transmissive screen of [2] represented by a curve and also represented by the formula Ix or the formula IIx.
  • Formula Ix Formula IIx: B: Lens curvature of the high diffusion plane in a plane parallel to the xz plane J: Conic constant X: x coordinates reset for the high diffusion plane in a plane parallel to the xz plane [4]
  • the lens bodies are arranged parallel to the x-axis.
  • the curve appearing by cutting the high diffusion surface at a plane parallel to the yz plane is oblique to the extending surface of the transmissive screen.
  • is 0 °.
  • the transmissive screen according to any one of [1] to [3], wherein ⁇ satisfies the formula III when the temperature is 40 ° or more and less than 40 °, and ⁇ satisfies the formula IV when ⁇ is 40 ° or more and less than 90 °.
  • Formula III Formula IV: In the ⁇ : yz plane, the angle formed by the image light Im traveling in the first layer with respect to the z-axis ⁇ : In the yz plane, the slope at an arbitrary height of the high diffusion surface 33 [5]
  • a Cartesian coordinate system consisting of an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the xy plane is set, the lens bodies are arranged parallel to the x-axis.
  • a transmissive screen according to any one of [1] to [4], wherein a flat surface parallel to the xy plane is formed between the lens bodies adjacent to each other in the y-axis direction.
  • the curves appearing by cutting the high diffusion surface in a cross section parallel to the xz plane are the same, and the high diffusion surface is the z axis.
  • the first layer is composed of an array of the lens bodies which are convex lens bodies and is more transparent than the reflective film
  • the second layer is composed of an array of concave lens bodies covering the convex lens body and is composed of an array of concave lens bodies.
  • a vehicle or structure comprising a window having the transmissive screen according to any one of [1] to [13] and a projector for projecting the image light onto the window.
  • the present invention provides a transmissive screen that anisotropically diffuses light with an embedded micromirror array.
  • Example W1 Perspective view of a convex lens body
  • Example W1 Iso-illuminance graph
  • Example W2 Iso-illuminance graph
  • Example R1 Perspective view of a convex lens body
  • Example R1 Iso-illuminance graph
  • Example W5 Iso-illuminance graph
  • Example W8 Perspective view of a convex lens body
  • Example W9 Perspective view of a convex lens body
  • Example W9 Iso-illuminance graph
  • FIG. 1 shows a right side view of the screen 25.
  • the screen 25 is a transmissive screen.
  • the screen 25 is a transparent optical element for displaying an image.
  • a scattering layer 30 made of a micromirror array is embedded in the screen 25. The scattering layer 30 is inserted between the two transparent materials.
  • an orthogonal coordinate system is set in which the front-rear axis of the screen 25 is the z-axis, the up-down axis is the y-axis, and the left-right axis is the x-axis.
  • the combination of a circle and a cross indicates that it goes from the front to the back of the paper.
  • the combination of circles and dots indicates that the paper goes from the back to the front.
  • the xy plane is parallel to the extending plane of the screen 25.
  • the z-axis is orthogonal to the extending surface of the screen 25.
  • the image light source 29 projects an image from the back surface of the screen 25.
  • the video light source 29 is a projector.
  • the image light Im is projected obliquely from the back side of the screen 25.
  • the image light Im is scattered forward in the scattering layer 30.
  • a part of the image light Im is emitted as scattered light Sc from the front side of the screen 25 toward the observer Ob located in the + z direction.
  • the + z direction of each member is defined as the “front side” and the ⁇ z direction is defined as the “back side”.
  • the scattering layer 30 also presents the projected image light Im on the back side.
  • the screen 25 is a screen having dual functions of transmissive type and reflective type.
  • FIG. 2 shows a cross section of the screen 25 cut in a plane parallel to the yz plane.
  • the micromirror array of the scattering layer 30 is a convex mirror array.
  • the cross section shows an array of convex lens bodies 31 included in the screen 25.
  • the convex lens body 31 is a one-sided convex lens that is convex toward the front side of the screen 25.
  • the convex lens body 31 is a so-called microlens.
  • the cross section includes the central axis 34 of the convex lens body 31.
  • the convex lens body 31 has an asymmetric structure in which the high diffusion surface 33 and the low diffusion surface 36 are back to back.
  • the high diffusion surface 33 is composed of a convex lens curved surface that is biased toward the side where the image light Im comes, and on the + y side in the drawing.
  • the low diffusion surface 36 is composed of a curved surface having a smaller curvature than the convex lens curved surface of the high diffusion surface 33.
  • the convex lens curved surface is the curved surface of a spherical lens or an aspherical lens.
  • the low diffusion surface 36 is a flat surface parallel to the xz plane.
  • the curve of the cross section obtained by cutting the convex lens curved surface of the high diffusion surface 33 in parallel with the yz plane has the axis of symmetry 35.
  • the focal point of the curve is on the axis of symmetry 35.
  • the convex lens curved surface itself may be a curved surface that does not have a focal point, that is, a three-dimensional focal point or a focused line.
  • the convex lens body 31 is not a lens having a three-dimensional focal point or focused line.
  • the axis of symmetry 35 is included in the cross section shown in FIG. The axis of symmetry 35 does not coincide with the central axis 34 of the convex lens body 31.
  • the array of the convex lens body 31 shown in FIG. 2 is formed by a known method.
  • a coating film of a curable composition is formed on the base material 32, and then the coating film is shaped by a mold.
  • injection molding or other molding method is used to generate an array of convex lens bodies 31 integrated with the base material 32.
  • the screen 25 includes a reflective film Rf formed on the high diffusion surface 33.
  • the reflective film Rf is hatched. Hatching is omitted for each element except the reflective film Rf.
  • a convex mirror array is formed by attaching the reflective film Rf to the array of the convex lens body 31.
  • the reflective film Rf is also provided on a portion other than the high diffusion surface 33 on the array of the convex lens body 31.
  • the reflective film Rf makes the reflectance of the high diffusion surface 33 higher than the reflectance of the low diffusion surface 36.
  • the reflective film Rf is provided only on the high diffusion surface 33. In such an embodiment, no reflective film is formed on the low diffusion surface 36.
  • the transparency of the screen has a predetermined haze value measured in accordance with JIS K7136: 2000.
  • the haze value is preferably more than 0% and less than 40%.
  • the haze value is preferably any of 35%, 30%, 25%, 20%, 15%, 10% and 5%.
  • the product of R and ⁇ is 10 or more and 25 or less. In one embodiment, the product of R and ⁇ is one of 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24.
  • the reflective film Rf is made of a metal oxide film or a metal film.
  • the metal oxide film is a single layer or a multilayer.
  • the metal oxide film does not easily absorb the image light Im.
  • the reflective film Rf made of a metal oxide film suppresses a decrease in the brightness of the image on the screen 25.
  • the metal film is silver, aluminum, or the like.
  • the metal oxide film or metal film can be formed by vacuum deposition, sputtering and other known techniques.
  • the screen 25 includes a first layer 37 on the back side thereof and a second layer 38 on the front side thereof.
  • the first layer 37 is composed of a base material 32 and an array of convex lens bodies 31 provided on the front side thereof.
  • the base material 32 and the array of the convex lens body 31 are separate bodies.
  • the base material 32 and the array of the convex lens body 31 are integral structural materials.
  • the array of convex lens bodies 31 is a convex mirror array formed on the front surface of the base material 32.
  • the convex lens body 31 and the base material 32 are more transparent than the reflective film Rf.
  • the first layer 37 on the back surface side is more transparent than the reflective film Rf.
  • the second layer 38 is composed of an array of concave lens bodies 39.
  • the concave lens body 39 covers the convex lens body 31.
  • the reflective film Rf is sandwiched between the convex lens body 31 and the concave lens body 39.
  • the concave lens body 39 is more transparent than the reflective film Rf.
  • the second layer 38 is more transparent than the reflective film Rf.
  • the ambient light Ab is incident on the front surface and the back surface of the screen 25. In the figure, it is incident on the back surface. The observer Ob visually recognizes the scenery on the other side of the screen 25.
  • the refractive index of the first layer 37 is equal to the refractive index of the second layer 38.
  • the refractive index of the convex lens body 31 is equal to the refractive index of the substrate 32.
  • the boundary between the first layer 37 and the reflective film Rf, or the second layer 38 and the reflective film Rf It suppresses the occurrence of refraction or reflection of ambient light Ab at the boundary, which reduces the visibility of the background.
  • the first layer 37 is transparent. Since the first layer 37 and the second layer 38 are transparent and the reflective film Rf is translucent, the observer Ob can visually recognize the landscape and the image on the other side of the screen 25 at the same time.
  • the material of the first layer 37 is an organic material or an inorganic material.
  • the organic material is any of a thermoplastic resin, a thermosetting resin, a photocurable resin and other resins.
  • the inorganic material is glass.
  • the first layer 37 reflects, absorbs, or scatters visible light.
  • the first layer 37 improves the contrast of the projected image by weakening the ambient light Ab that passes through the screen 25 and heads toward the observer Ob.
  • the material of the first layer 37 contains a colorant.
  • the colorant is either a dye or a pigment.
  • the first layer 37 is formed by laminating a metal thin film on a transparent material.
  • the second layer 38 is transparent.
  • the transmittance of the second layer may be lowered by increasing any of the reflection, absorption or scattering of the light in the second layer.
  • the transmittance of the second layer may be increased by reducing any of the reflection, absorption or scattering of the light in the second layer.
  • the transmittance of the second layer may be decreased by increasing any of the reflection, absorption or scattering of light in the second layer.
  • the transmittance of the second layer may be increased by reducing any of the reflection, absorption or scattering of light in the second layer.
  • the material of the second layer 38 is an organic material or an inorganic material.
  • the organic material is any of a thermoplastic resin, a thermosetting resin, a photocurable resin and other resins.
  • the inorganic material is glass.
  • a preferred material for the second layer 38 is a photocurable resin.
  • the photocurable resin is an acrylate-based resin.
  • the material of the first layer 37 is the same as the material of the second layer 38.
  • the material of the convex lens body 31 is the same as the material of the base material 32.
  • the image light Im is incident on the back side of the screen 25 from the ⁇ z direction.
  • the image light Im passes through the screen 25 from the ⁇ z direction to the + z direction.
  • the image light Im is incident on the convex side of the high diffusion surface 33.
  • scattered light Sc is generated toward the observer Ob.
  • a part of the image light Im is emitted as transmitted light Tm in the + z direction without being scattered.
  • the observer Ob is located on the front side of the screen 25. Since the image light Im is projected obliquely with respect to the screen 25, the transmitted light Tm does not reach the eyes of the observer Ob.
  • the scattering layer 30 anisotropically diffuses the image light Im.
  • the scattering layer 30 has a light distribution biased in the + y direction with respect to the scattered light Sc. Anisotropic diffusion increases the brightness of the image that the observer Ob sees on the screen 25.
  • a plate member 27 is further provided on the back surface side of the first layer 37.
  • a plate member 28 is further provided on the front side of the second layer 38.
  • the plate material 27 and the plate material 28 are both plate glass.
  • the screen 25 is placed between the flat glass.
  • the first layer 37 and the plate material 27 are bonded with an adhesive.
  • the second layer 38 and the plate 28 are bonded with an adhesive.
  • the adhesive is a resin containing a polyvinyl butyral resin (PVB resin).
  • an antireflection film is formed on at least one of the outermost layers on the back surface side of the first layer 37 and the front surface side of the second layer 38.
  • a film harder than the first layer 37 is formed on the back surface side of the first layer 37.
  • a film harder than the second layer 38 is formed on the front side of the second layer 38.
  • FIG. 3 is a perspective view of the convex lens body 31.
  • the convex lens bodies 31 are arranged parallel to the x-axis and the y-axis.
  • the sag amount Z (Y) of the convex lens curved surface in the cross section parallel to the yz plane is represented by the same curve.
  • the curve representing the sag amount Z (Y) is represented by the following formula Iy or formula IIy.
  • the curve appearing by cutting the convex lens curved surface of the high diffusion surface 33 in parallel with the yz plane consists of a quadratic curve of the same shape having no y displacement in a continuous section on the x coordinate. ..
  • the axis of symmetry of the convex lens curved surface of the high diffusion surface 33 is parallel to or coincides with the z-axis.
  • the axis of symmetry of the convex lens surface passes through the vertices of the convex lens surface. In a mode different from the mode shown in the figure, the axis of symmetry of the convex lens curved surface does not intersect the high diffusion surface 33 itself.
  • the sag amount Z (X) of the convex lens curved surface in the cross section parallel to the xz plane is represented by the same curve.
  • the curve representing the sag amount Z (X) is represented by the following formula Ix or formula IIx.
  • the curve appearing by cutting the convex lens curved surface of the high diffusion surface 33 in parallel with the xz plane consists of a quadratic curve of the same shape having no x displacement in a continuous section on the y coordinate. ..
  • the convex lens curved surface of the high diffusion surface 33 is not a rotationally symmetric curved surface.
  • the curve in the cross section parallel to the yz plane and the curve in the cross section parallel to the xx plane match at least one of the type of formula representing these curves, the curvature, and the conic constant. do not do.
  • the high diffusion surface 33 of each convex lens body 31 has the same convex lens curved surface as each other.
  • the high diffusion surfaces 33 of each convex lens body 31 have the same convex lens curved surface as each other.
  • FIG. 4 shows a cross section of the scattering layer 30 composed of the convex mirror array, parallel to the yz plane at an arbitrary x coordinate.
  • the reflective film Rf shown in FIG. 2 is omitted in FIG.
  • the convex lens bodies 31 are arranged parallel to the x-axis.
  • the image light Im is considered by being decomposed into an yz plane and an xx plane.
  • the image light Im shown in FIG. 4 shows a component parallel to the yz plane.
  • the paper surface is the incident surface of the image light Im.
  • the figure shows a curve that appears by cutting the high diffusion surface 33 at the incident surface.
  • the angle formed by such a curve and the extending surface of the transmissive screen, that is, the slope ⁇ of the high diffusion surface 33 with respect to the surface parallel to the xy plane changes along the y coordinate.
  • is 0 ° in the ⁇ y direction and 90 ° in the + z direction. 0 ⁇ ⁇ ⁇ 90 °.
  • the angle ⁇ is the angle formed by the image light Im traveling in the first layer with respect to the z-axis.
  • the angle ⁇ is the refraction angle when the image light Im is refracted at the interface on the back surface side of the first layer 37 shown in FIG.
  • FIG. 4 shows an optical path in which the image light Im passes through the low diffusion surface 36, enters the high diffusion surface 33 inside the second layer 38, and is further reflected. In a mode different from the mode shown in FIG. 4, an optical path in which the image light Im is incident on the high diffusion surface 33 inside the first layer 37, is further reflected, and then passes through the low diffusion surface 36 is also conceivable.
  • the refractive index of the convex lens body 31 with respect to the light having the wavelength included in the image light Im is defined as n.
  • the incident angle of the reflected light with respect to the interface is sin -1 (1 / n).
  • 180 ° - ⁇ -2 ⁇ is preferably ⁇ 40 ° or more and 40 ° or less.
  • the slope ⁇ is 0 ° or more and less than 90 ° for the convenience of shape fabrication. Therefore, the range of the slope ⁇ satisfies the formula III when ⁇ is 0 ° or more and less than 40 °, and is expressed by the formula IV when ⁇ is 40 ° or more and less than 90 °.
  • FIG. 5 shows a cross section of the scattering layer 30 composed of the convex mirror array, parallel to the yz plane at an arbitrary x coordinate.
  • the reflective film Rf shown in FIG. 2 is omitted in FIG.
  • the convex lens bodies 31 are arranged parallel to the x-axis.
  • the direction 180 ° ⁇ -2 ⁇ of the scattered light Sc in the region 43 may be 40 ° or more and 180 ° or less.
  • the scattered light Sc is not emitted to the front side of the screen 25, it does not contribute to the brightness of the image light visually recognized by the observer Ob.
  • the region 43 is not formed on the high diffusion surface 33 shown in FIG. 5, and instead, a flat surface 42 between the convex lens bodies 31 adjacent to each other in the y-axis direction is provided.
  • the flat surface 42 is the interface between the first layer 37 and the second layer 38.
  • the flat surface 42 is the front surface of the substrate 32.
  • the ambient light Ab passes through the flat surface 42.
  • the transmittance of the ambient light Ab transmitted through the scattering layer 30 increases.
  • the brightness of the scattered light Sc per convex lens body 31 does not decrease.
  • the size of the flat surface 42 exceeds the area projected on the xy plane of the region 43.
  • the size of the flat surface 42 is less than the area of the region 43 projected onto the xy plane.
  • the larger flat surface 42 increases the ambient light Ab through the screen. Therefore, the transparency of the screen is increased.
  • the smaller flat surface 42 increases the scattered light Sc more. Therefore, the brightness of the image projected on the screen is increased.
  • a reflective film is not formed on the flat surface 42.
  • the flat surface 42 further increases the ambient light Ab transmitted through the screen. Therefore, the transparency of the screen is increased.
  • the flat surface 42 reduces the stray light of the image light Im. Therefore, the image quality of the image projected on the screen is improved.
  • the transparency of the screen has a predetermined haze value measured in accordance with JIS K7136: 2000.
  • the haze value is preferably more than 0% and less than 40%.
  • the haze value is preferably any of 35%, 30%, 25%, 20%, 15%, 10% and 5%.
  • FIG. 6 shows a cross section of the scattering layer 30 made of a convex mirror array.
  • the reflective film Rf shown in FIG. 2 is omitted in FIG.
  • the convex lens bodies 31 are arranged parallel to the y-axis.
  • a part of the image light Im is reflected by the low diffusion surface 36 and returns to the back surface side of the scattering layer 30 without proceeding to the high diffusion surface 33.
  • the observer can visually recognize the image from the back side of the scattering layer 30 as well. Further, it is possible to prevent the light reflected by the low diffusion surface 36 from being visually recognized by the observer Ob as stray light.
  • the low diffusion surface 36 is flat. At any x coordinate in the transmissive screen, the incident surface of the image light Im when the low diffusion surface 36 is used as the reflecting surface is parallel to the yz plane.
  • the paper surface is the incident surface of the image light Im.
  • the figure shows a straight line appearing by cutting the low diffusion surface 36 at the incident surface.
  • the angle formed by the straight line and the extending surface of the transmissive screen is defined as the slope ⁇ .
  • the slope ⁇ is the slope of the low diffusion surface 36 with respect to the surface parallel to the xy plane.
  • the sum of the slope ⁇ and the angle ⁇ is substantially 90 °.
  • the image light Im and the low diffusion surface 36 are substantially orthogonal to each other.
  • the image light Im recurses to the image light source. No image on the screen is visible to the observer on the back side of the scattering layer 30.
  • the low diffusion surface 36 is useful for privacy protection and security management.
  • a reflective film is not formed on the low diffusion surface 36.
  • the low diffusion surface 36 further increases the ambient light Ab transmitted through the screen. Therefore, the transparency of the screen is increased.
  • the low diffusion surface 36 reduces the stray light of the image light Im. Therefore, the image quality of the image projected on the screen is improved.
  • FIG. 7 shows a cross section of the screen 25 cut in a plane parallel to the yz plane.
  • the convex lens bodies 31 are arranged parallel to the x-axis and parallel to the y-axis.
  • the high diffusion surface 33 of each convex lens body 31 has the same convex lens curved surface as each other.
  • a mosaic is generated in the z-displacement of the high diffusion surface 33 between the convex lens bodies 31. Therefore, the light reflected by the high diffusion surface 33 will have different phases between the convex lens bodies 31 adjacent to each other on the xy plane, that is, will have a phase difference.
  • the z displacement is randomly determined in the range from 0 to S max .
  • S max is represented by the formula V.
  • Diffracted light is generated from the convex lens bodies 31 that are arranged periodically. The diffraction peak of the diffracted light is visually recognized by the observer Ob as uneven brightness or color cracking. Since the z-displacement mosaic causes an optical path difference of scattered light Sc between the convex lens bodies 31, these uneven brightness or color cracking are suppressed. It is preferable that the optical path difference of the scattered light Sc between the convex lens bodies 31 is one wavelength or two wavelengths of the image light at the maximum.
  • n Refractive index of convex lens body 31 at wavelength ⁇
  • the window has a screen.
  • the vehicle or structure comprises a projector that projects the image light onto the window.
  • the structure is composed of a plurality of materials and members like a building, and is constructed with a structure in which the weight is supported by a foundation or the like.
  • the vehicle is a vehicle.
  • the screen is a material that constitutes either a transparent door, a showcase or a transparent partition.
  • the screen displays the destination of the vehicle to the observer in front of the vehicle.
  • the image light source is installed near the ceiling inside the vehicle. The image light is emitted diagonally downward.
  • the screen displays a description of the goods in the showcase to the observer in front of the showcase.
  • the screen displays other communications to the observer in front of it.
  • the screen provides a display that makes it difficult for the observer to see the scenery on the back side of the screen. Such display is suitable for either security management or privacy protection.
  • the vertical light distribution direction is defined by the declination V.
  • V 0 ° be the + z direction.
  • V + 90 ° be the + y direction.
  • V -90 ° be the -y direction.
  • the pitch Py indicates the interval when the convex lens bodies 31 are continuously arranged in parallel with the x-axis. See FIG. 2 for pitch Python below.
  • FIG. 8 is a cross-sectional view of the screen 25 in a plane parallel to the xz plane.
  • the horizontal light distribution direction is defined by the declination H.
  • the pitch Px indicates the interval when the convex lens bodies 31 are continuously arranged in parallel with the x-axis. See FIG. 8 for the pitch Px below.
  • the convex lens bodies 31 are arranged so as to be orthogonal to the x direction and the y direction.
  • the sag amount of the convex lens surface of the convex lens body 31 is the sum of Z (Y) and Z (X).
  • Z (Y) is represented by any of the following mathematical formulas Iy and IIy.
  • Z (X) is represented by any of the following mathematical formulas Ix and IIx.
  • the refractive index n of the first layer and the second layer of the screen used in each of the following examples is 1.50.
  • FIG. 9 is a perspective view of a convex lens body included in the screen according to Example W1.
  • the curvature is 0.071 ⁇ m -1
  • the radius of curvature is 14 ⁇ m
  • the conic constant K ⁇ 0.25
  • the pitch Px 30 ⁇ m.
  • the x-coordinate of the axis of symmetry of the convex lens surface coincides with the x-coordinate of the projection center with respect to the xy plane of the convex lens body.
  • the maximum value of the slope of the curve formed by the curved surface of the convex lens is 70.8 °.
  • the period is 20 ⁇ m
  • the curvature is 0.167 ⁇ m -1
  • the radius of curvature is 6 ⁇ m
  • the conic constant K -1.
  • the y-coordinate of the axis of symmetry of the convex lens surface is deviated by ⁇ 5 ⁇ m in the y direction with respect to the projection center of the convex lens body with respect to the xy plane.
  • the maximum value of the slope of the curve formed by the curved surface of the convex lens is 68.2 °.
  • the low diffusion surface back to back with the high diffusion surface 33 is a flat surface parallel to the xx plane.
  • the high diffusion surface 33 also has a transmittance of 70% and a reflectance of 30%.
  • such a high diffusion surface 33 can be obtained by forming an inorganic oxide film as a reflection film on the high diffusion surface 33.
  • the image light Im is incident on the extending surface of the screen 25 at an incident angle of 75 °.
  • FIG. 10 shows an isoilluminance graph for reference. The dark areas are bright. It should be noted that the color intensity is adjusted to suit the patent drawings and does not represent the exact illuminance.
  • FIG. 3 is a perspective view of a convex lens body included in the screen according to Example W2.
  • the y coordinate of the axis of symmetry of the curve of the convex lens curved surface in the cross section parallel to the yz plane is deviated by -12 ⁇ m in the y direction with respect to the projection center of the convex lens body with respect to the xy plane.
  • the screen of Example W2 conforms to the screen shown in Example W1.
  • the convex lens curved surface is more biased in the + Y direction than the convex lens curved surface shown in FIG.
  • FIG. 11 is an isoilluminance graph showing the distribution of light scattered in the + Z direction.
  • the range is larger than that shown in FIG.
  • the screen of Example W2 allows the observer to visually recognize the image in a wider range than that of Example W1.
  • Example R1 the y-coordinate of the axis of symmetry of the curve of the convex lens curved surface in the cross section parallel to the yz plane coincides with the y-coordinate of the projection center of the convex lens body with respect to the xy plane.
  • the light distribution of the light reflected in the + Z direction was calculated.
  • Other points The screen of Example R1 conforms to the screen shown in Example W1.
  • FIG. 12 is a perspective view of a convex lens body included in the screen according to Example R1.
  • FIG. 13 is an isoilluminance graph showing the distribution of light scattered in the + Z direction.
  • the screen of Example R1 has a narrower range in which the observer can visually recognize the image than that of Example W1.
  • Haze represents the percentage of transmitted light that deviates by 0.044 rad (2.5 °) or more from the direction of incident light due to forward scattering.
  • the haze of the screen of the above example W2 was 33.5%.
  • a flat surface 42 parallel to the extending surface of the screen was provided between the convex lens bodies 31 adjacent to each other in the y direction.
  • the screens of Examples W3 and W4 conform to the screens shown in Example W2.
  • the width of the narrowest portion of the flat surface is 10 ⁇ m.
  • the width of the narrowest portion of the flat surface is 20 ⁇ m. The larger the flat surface, the lower the haze and the more transparent the screen.
  • Example W5 the reflective film is formed only on the high diffusion surface 33 shown in FIG. A reflective film is not formed on the back surface of the high diffusion surface 33, that is, the low diffusion surface located in the ⁇ Y direction. Regarding other points, the screen of Example W5 conforms to the screen shown in Example W4.
  • FIG. 14 is an isoilluminance graph showing the distribution of light scattered in the + Z direction. Unlike Example W2, it becomes dark when the declination angle is V + 30 ° or more. The graph shows that the image cannot be seen except in front of the screen. The haze is 9.6%. The transparency of the screen is further improved.
  • Example W6 Adjustment of reflectance>
  • Example W6 Example W7 and Example R2
  • the reflectance of the reflective film of the screen is adjusted. Calculate the light distribution of the light reflected in the + Z direction.
  • Video light is supplied from a 3300 Lm projector. The projected size on the screen is 40 inches.
  • the reflectance R of the high diffusion surface of the screen of the above example W2 is 30%.
  • the reflectance R of the high diffusion surface of the screen of Example W6 is 50%.
  • the reflectance R of the high diffusion surface of the screen of Example W7 is 70%.
  • the reflectance of the high diffusion surface of the screen of Example R2 is 10%.
  • the brightness of each example is shown in Table 2. Other than that, the screens of these examples are similar to the screens shown in Example W2.
  • the larger the product of the reflectance R and the transmittance ⁇ on the high diffusion surface the higher the brightness of the diffused light. Therefore, the projected image becomes brighter.
  • FIG. 15 is a perspective view of a convex lens body included in the screen according to Example W8.
  • the curvature is 0.067 ⁇ m -1
  • the radius of curvature is 15 ⁇ m
  • the conic constant K ⁇ 0.5.
  • the x-coordinate of the axis of symmetry of the convex lens surface coincides with the x-coordinate of the projection center with respect to the xy plane of the convex lens body.
  • the maximum value of the slope of the curve formed by the curved surface of the convex lens is 54.7 °.
  • the screen of Example W8 conforms to the screen shown in Example W1.
  • the maximum value of the slope of the curve formed by the curved surface of the convex lens is 75.0 °.
  • FIG. 16 is an isoilluminance graph showing the light distribution of light scattered in the + Z direction.
  • FIG. 17 is a perspective view of a convex lens body included in the screen according to Example W9.
  • a flat low diffusion surface 36 is provided as shown in FIG. Regarding other points, the screen of Example W9 conforms to the screen shown in Example W8.
  • the slope of the low diffusion surface 36 is 40.1 °.
  • the traveling video light is orthogonal to the low diffusion surface 36.
  • FIG. 16 is an isoilluminance graph showing the light distribution of light scattered in the + Z direction.
  • the strong light reflected near (H, V) (0 °, + 75 °) is reduced. Therefore, it becomes impossible to eavesdrop on the image from this direction.
  • Example W10, Example W11 and Example R3 z displacement mosaic>
  • n of image light Refraction coefficient ⁇ of convex lens body 31 at wavelength ⁇ : Inclination ⁇ at arbitrary height of high diffusion surface 33: Angle ⁇ of image light Im, ⁇ ⁇ 90 °
  • Example W10 and Example W11 there was no color cracking in the image.
  • Example R3 a rainbow-colored pattern was mixed in the white-colored image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A screen (25) is provided with a back surface-side first layer (37) and a front surface-side second layer (38). The first layer (37) is provided with an array of lens bodies (31) facing the front surface side of the screen (25). Each lens body (31) has an asymmetric structure in which a high diffusion surface (33) formed by a lens curved surface and a low diffusion surface (36) having a smaller curvature than the lens curved surface are placed back to back. At least on the high diffusion surface (33), a reflection film (Rf) that transmits a part of incident light and reflects a part thereof is formed. The second layer (38) is provided with an inversely shaped array that covers the lens bodies (31) while facing the back surface side of the screen (25). Image light (Im) obliquely projected from the back surface side of the screen (25) is refracted by an interface on the back surface side of the first layer (37), further reflected by the high diffusion surface (33), and further refracted by an interface on the front surface side of the second layer (38) and emitted toward the front surface side of the screen (25).

Description

透過型スクリーンTransparent screen

 本発明は透過型スクリーンに関し、特にマイクロミラーアレイにて光を拡散するものに関する。 The present invention relates to a transmissive screen, and particularly to a micromirror array that diffuses light.

 特許文献1及び2は透過型スクリーンを開示している。特許文献1の透過型スクリーンは周期的な凹凸を有する曲面からなる反射層を備える。特許文献2の透過型スクリーンは台形断面を有する光散乱部を備える。特許文献3の図1Bは射出瞳を拡大するためのマイクロレンズアレイを開示している。マイクロレンズアレイは非対称な構造を有する。 Patent Documents 1 and 2 disclose a transmissive screen. The transmissive screen of Patent Document 1 includes a reflective layer made of a curved surface having periodic irregularities. The transmissive screen of Patent Document 2 includes a light scattering portion having a trapezoidal cross section. FIG. 1B of Patent Document 3 discloses a microlens array for enlarging the exit pupil. The microlens array has an asymmetric structure.

特開2018-132546号公報JP-A-2018-132546 特開2018-163318号公報JP-A-2018-163318 特開2010-539525号公報Japanese Unexamined Patent Publication No. 2010-539525

 本発明は透過型スクリーンであって、包埋されたマイクロミラーアレイにて光を異方性拡散するものを提供する。 The present invention provides a transmissive screen that anisotropically diffuses light with an embedded micromirror array.

[1] マイクロミラーアレイが包埋されてなる透過型スクリーンであって、前記透過型スクリーンは、背面側の第1層と正面側の第2層とを備え、前記第1層は、前記透過型スクリーンの正面側にレンズ曲面を向けているレンズ体のアレイを備え、前記レンズ体は、前記レンズ曲面からなる高拡散面と、前記レンズ曲面よりも曲率の小さな低拡散面とが背中合わせになった非対称構造を有し、少なくとも前記高拡散面上には、入射した光の一部を透過し、一部を反射する反射膜が形成されることで前記マイクロミラーアレイが形成され、前記第2層は、前記透過型スクリーンの背面側に向かって前記レンズ体の前記アレイを覆う反転形状のアレイを備え、前記透過型スクリーンの背面側から斜めに投射される映像光は、前記第1層の背面側の界面で屈折し、さらに前記高拡散面で反射し、さらに前記第2層の正面側の界面で屈折するとともに前記透過型スクリーンの正面側に向かって出射する、透過型スクリーン。
[2] 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、前記レンズ体は、x軸に対して平行に配列されており、x軸方向に配列された前記レンズ体の群において、y-z平面に平行な断面における前記高拡散面のサグ量Z(Y)は、同一の曲線で表されるとともに、数式Iy又は数式IIyで表される、[1]の透過型スクリーン。

数式Iy:

Figure JPOXMLDOC01-appb-M000008

数式IIy:
Figure JPOXMLDOC01-appb-M000009
C:y-z平面に平行な面における、前記高拡散面のレンズ曲率
K:コーニック定数
Y:y-z平面に平行な面における、前記高拡散面のために再設定したy座標
[3] 前記レンズ体は、y軸に対して平行に配列されており、y軸方向に配列された前記レンズ体の群において、x-z平面に平行な断面におけるサグ量Z(X)は、同一の曲線で表されるとともに、数式Ix又は数式IIxで表される、[2]の透過型スクリーン。

数式Ix:
Figure JPOXMLDOC01-appb-M000010

数式IIx:
Figure JPOXMLDOC01-appb-M000011
B:x-z平面に平行な面における、前記高拡散面のレンズ曲率
J:コーニック定数
X:x-z平面に平行な面における、前記高拡散面のために再設定したx座標

[4] 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、前記レンズ体は、x軸に対して平行に配列されており、x軸方向に配列した前記レンズ体の群において、y-z平面に平行な面にて前記高拡散面を切断して現れる曲線の、前記透過型スクリーンの前記延在面に対する斜度をα、前記第1層の背面側の界面で屈折した前記映像光の、y-z平面に平行な面における前記映像光と前記z軸とのなす角をθとすると、θが0°以上40°未満の時にαは数式IIIを満たし、θが40°以上90°未満の時にαは数式IVを満たす、[1]~[3]のいずれかの透過型スクリーン。

数式III:
Figure JPOXMLDOC01-appb-M000012

数式IV:
Figure JPOXMLDOC01-appb-M000013
θ:y-z平面において、第1層内を進行する映像光Imがz軸に対してなす角度
α:y-z平面において、高拡散面33の任意の高さにおける斜度
[5] 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、前記レンズ体は、x軸に対して平行に配列されており、y軸方向に互いに隣り合う前記レンズ体の間に、x-y平面に平行な平坦面が形成されることを特徴とする、[1]~[4]のいずれかに透過型スクリーン。
[6] 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、前記レンズ体は、x軸に対して平行に配列されており、 前記低拡散面は平坦であり、y-z平面に平行な断面にて前記低拡散面を切断して現れる直線と前記映像光とが略直交することを特徴とする、[1]~[5]のいずれかに透過型スクリーン。
[7] 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、前記レンズ体は、x軸に対して平行に配列されているとともに、y軸に対して平行に配列されており、x軸方向に配列された前記レンズ体の群において、前記高拡散面をy-z平面に平行な断面で切断して現れる曲線は同一であり、y軸方向に配列された前記レンズ体の群において、前記高拡散面をx-z平面に平行な断面で切断して現れる曲線は同一であり、前記高拡散面はz軸方向の変位にモザイクが生じており、前記高拡散面で反射した光がx-y平面上で隣り合う前記レンズ体の間で位相差を生じることを特徴とする、[1]~[6]のいずれかに透過型スクリーン。
[8] 前記高拡散面のz軸方向に生じる変位に関して、前記変位は0から数式Vで表されるSmaxまでの範囲でランダムに決まる、[7]の透過型スクリーン。

数式V:
Figure JPOXMLDOC01-appb-M000014
m:1又は2
λ:映像光の波長
n:レンズ体の波長λにおける屈折率
θ:第1層内を進行する映像光Imがz軸に対してなす角度
[9] 前記高拡散面の反射率が前記低拡散面の反射率よりも高いことを特徴とする、[1]~[8]のいずれかの透過型スクリーン。
[10] 前記反射膜の反射率をR(%)、透過率をτ(%)とした時、Rとτとの積が10(%)以上25(%)以下である、[1]~[9]のいずれかの透過型スクリーン。
[11] JIS K7136:2000に準拠して計測されるヘーズ値が40%未満である、[1]~[10]のいずれかに記載の透過型スクリーン。
[12] 前記第1層は、凸レンズ体である前記レンズ体のアレイからなるとともに、前記反射膜よりも透明であり、前記第2層は、前記凸レンズ体を覆う凹レンズ体のアレイからなるとともに、前記反射膜よりも透明である、[1]~[11]のいずれかの透過型スクリーン。
[13] 前記第1層と前記第2層とは、屈折率が等しい、又は同一の材質からなる、 [1]~[12]のいずれかの透過型スクリーン。
[14] [1]~[13]のいずれかの透過型スクリーンを有する窓と、前記映像光を前記窓に投射する投影機とを備える、乗り物又は構造物。 [1] A transmissive screen in which a micromirror array is embedded, the transmissive screen includes a first layer on the back side and a second layer on the front side, and the first layer is the transmissive. An array of lens bodies with the curved surface of the lens facing the front side of the mold screen is provided, and the lens body has a high diffusion surface composed of the lens curved surface and a low diffusion surface having a smaller curvature than the lens curved surface back to back. The micromirror array is formed by forming a reflective film that has an asymmetric structure and at least on the highly diffused surface that transmits a part of the incident light and reflects a part of the incident light. The layer includes an inverted array that covers the array of the lens body toward the back side of the transmissive screen, and the image light obliquely projected from the back side of the transmissive screen is the first layer. A transmissive screen that is refracted at an interface on the back surface side, further reflected at the high diffusion surface, further refracted at an interface on the front surface side of the second layer, and emitted toward the front surface side of the transmissive screen.
[2] When an orthogonal coordinate system including an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the xy plane is set, the lens bodies are arranged parallel to the x-axis. In the group of the lens bodies arranged in the x-axis direction, the sag amount Z (Y) of the high diffusion surface in the cross section parallel to the yz plane is represented by the same curve and a mathematical formula. The transmissive screen of [1] represented by Iy or the formula IIy.

Formula Iy:
Figure JPOXMLDOC01-appb-M000008

Formula IIy:
Figure JPOXMLDOC01-appb-M000009
C: Lens curvature of the high diffusion surface in a plane parallel to the yz plane K: Conic constant Y: y coordinates reset for the high diffusion plane in a plane parallel to the yz plane [3] The lens bodies are arranged parallel to the y-axis, and in the group of the lens bodies arranged in the y-axis direction, the sag amount Z (X) in the cross section parallel to the xx plane is the same. The transmissive screen of [2] represented by a curve and also represented by the formula Ix or the formula IIx.

Formula Ix:
Figure JPOXMLDOC01-appb-M000010

Formula IIx:
Figure JPOXMLDOC01-appb-M000011
B: Lens curvature of the high diffusion plane in a plane parallel to the xz plane J: Conic constant X: x coordinates reset for the high diffusion plane in a plane parallel to the xz plane

[4] When a Cartesian coordinate system including an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the xy plane is set, the lens bodies are arranged parallel to the x-axis. In the group of the lens bodies arranged in the x-axis direction, the curve appearing by cutting the high diffusion surface at a plane parallel to the yz plane is oblique to the extending surface of the transmissive screen. If the degree is α and the angle between the image light and the z-axis on the plane parallel to the yz plane of the image light refracted at the interface on the back surface side of the first layer is θ, then θ is 0 °. The transmissive screen according to any one of [1] to [3], wherein α satisfies the formula III when the temperature is 40 ° or more and less than 40 °, and α satisfies the formula IV when θ is 40 ° or more and less than 90 °.

Formula III:
Figure JPOXMLDOC01-appb-M000012

Formula IV:
Figure JPOXMLDOC01-appb-M000013
In the θ: yz plane, the angle formed by the image light Im traveling in the first layer with respect to the z-axis α: In the yz plane, the slope at an arbitrary height of the high diffusion surface 33 [5] When a Cartesian coordinate system consisting of an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the xy plane is set, the lens bodies are arranged parallel to the x-axis. A transmissive screen according to any one of [1] to [4], wherein a flat surface parallel to the xy plane is formed between the lens bodies adjacent to each other in the y-axis direction.
[6] When an orthogonal coordinate system including an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the xy plane is set, the lens bodies are arranged parallel to the x-axis. The low diffusion surface is flat, and the straight line appearing by cutting the low diffusion surface in a cross section parallel to the yz plane and the image light are substantially orthogonal to each other [1]. ] To [5] Transmissive screen.
[7] When a Cartesian coordinate system including an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the xy plane is set, the lens bodies are arranged parallel to the x-axis. A curve that appears by cutting the highly diffused surface in a cross section parallel to the yz plane in the group of lens bodies arranged parallel to the y-axis and arranged in the x-axis direction. Are the same, and in the group of the lens bodies arranged in the y-axis direction, the curves appearing by cutting the high diffusion surface in a cross section parallel to the xz plane are the same, and the high diffusion surface is the z axis. [1] to [6], wherein a mosaic is generated in the displacement in the direction, and the light reflected on the high diffusion surface causes a phase difference between the lens bodies adjacent to each other on the xy plane. Transparent screen to any of.
[8] The transmissive screen according to [7], wherein the displacement of the high diffusion surface in the z-axis direction is randomly determined in the range from 0 to Smax represented by the mathematical formula V.

Formula V:
Figure JPOXMLDOC01-appb-M000014
m: 1 or 2
λ: Wavelength of image light n: Refractive index at wavelength λ of the lens body θ: Angle formed by the image light Im traveling in the first layer with respect to the z-axis [9] The reflectance of the high diffusion surface is the low diffusion. The transmissive screen according to any one of [1] to [8], which is characterized by having a reflectance higher than that of a surface.
[10] When the reflectance of the reflective film is R (%) and the transmittance is τ (%), the product of R and τ is 10 (%) or more and 25 (%) or less, [1] to The transmissive screen according to any one of [9].
[11] The transmissive screen according to any one of [1] to [10], wherein the haze value measured in accordance with JIS K7136: 2000 is less than 40%.
[12] The first layer is composed of an array of the lens bodies which are convex lens bodies and is more transparent than the reflective film, and the second layer is composed of an array of concave lens bodies covering the convex lens body and is composed of an array of concave lens bodies. The transmissive screen according to any one of [1] to [11], which is more transparent than the reflective film.
[13] The transmissive screen according to any one of [1] to [12], wherein the first layer and the second layer are made of the same material or have the same refractive index.
[14] A vehicle or structure comprising a window having the transmissive screen according to any one of [1] to [13] and a projector for projecting the image light onto the window.

 本発明は透過型スクリーンであって、包埋されたマイクロミラーアレイにて光を異方性拡散するものを提供する。 The present invention provides a transmissive screen that anisotropically diffuses light with an embedded micromirror array.

スクリーンの右側面図Right side view of the screen スクリーンの縦断面図Longitudinal section of the screen 凸レンズ体の斜視図Perspective view of convex lens body 凸面鏡アレイの断面図Sectional view of convex mirror array 凸面鏡アレイの断面図Sectional view of convex mirror array 凸面鏡アレイの断面図Sectional view of convex mirror array スクリーンの断面図Cross section of screen スクリーンの横断面図Cross section of the screen 例W1:凸レンズ体の斜視図Example W1: Perspective view of a convex lens body 例W1:等照度グラフExample W1: Iso-illuminance graph 例W2:等照度グラフExample W2: Iso-illuminance graph 例R1:凸レンズ体の斜視図Example R1: Perspective view of a convex lens body 例R1:等照度グラフExample R1: Iso-illuminance graph 例W5:等照度グラフExample W5: Iso-illuminance graph 例W8:凸レンズ体の斜視図Example W8: Perspective view of a convex lens body 例W8:等照度グラフExample W8: Iso-illuminance graph 例W9:凸レンズ体の斜視図Example W9: Perspective view of a convex lens body 例W9:等照度グラフExample W9: Iso-illuminance graph

<スクリーン> <Screen>

 図1はスクリーン25の右側面図を示す。スクリーン25は透過型スクリーンである。スクリーン25は映像を表示するための透明な光学素子である。スクリーン25にマイクロミラーアレイからなる散乱層30が包埋されている。散乱層30は2層の透明材料の間に挿入されている。 FIG. 1 shows a right side view of the screen 25. The screen 25 is a transmissive screen. The screen 25 is a transparent optical element for displaying an image. A scattering layer 30 made of a micromirror array is embedded in the screen 25. The scattering layer 30 is inserted between the two transparent materials.

 図1に示すように、スクリーン25の前後軸をz軸、上下軸をy軸、左右軸をx軸とする直交座標系を設定する。直交座標系を表す記号において、円とクロスの組み合わせは紙面の表から裏に向かうことを示す。円とドットの組み合わせは紙面の裏から表に向かうことを示す。x-y平面はスクリーン25の延在面に平行である。z軸はスクリーン25の延在面に直交する。 As shown in FIG. 1, an orthogonal coordinate system is set in which the front-rear axis of the screen 25 is the z-axis, the up-down axis is the y-axis, and the left-right axis is the x-axis. In the symbol representing the Cartesian coordinate system, the combination of a circle and a cross indicates that it goes from the front to the back of the paper. The combination of circles and dots indicates that the paper goes from the back to the front. The xy plane is parallel to the extending plane of the screen 25. The z-axis is orthogonal to the extending surface of the screen 25.

 図1に示すように映像光源29がスクリーン25の背面より映像を投影する。一態様において映像光源29は投影機である。映像光Imは、スクリーン25の背面側から斜めに投射される。映像光Imは散乱層30にて前方散乱する。映像光Imの一部は、散乱光Scとしてスクリーン25の正面側から、+z方向に位置する観察者Obに向かって出射する。便宜的に本実施形態では各部材の+z方向を「正面側」と、-z方向を「背面側」と規定する。 As shown in FIG. 1, the image light source 29 projects an image from the back surface of the screen 25. In one aspect, the video light source 29 is a projector. The image light Im is projected obliquely from the back side of the screen 25. The image light Im is scattered forward in the scattering layer 30. A part of the image light Im is emitted as scattered light Sc from the front side of the screen 25 toward the observer Ob located in the + z direction. For convenience, in this embodiment, the + z direction of each member is defined as the “front side” and the −z direction is defined as the “back side”.

 図1に示す態様と異なる態様において散乱層30は投影された映像光Imを背面側にも提示する。一態様においてスクリーン25は透過型及び反射型の二重の機能を有するスクリーンである。 In a mode different from the mode shown in FIG. 1, the scattering layer 30 also presents the projected image light Im on the back side. In one aspect, the screen 25 is a screen having dual functions of transmissive type and reflective type.

<散乱層> <Scattering layer>

 図2は、スクリーン25をy-z平面に平行な平面で切断した断面を示す。散乱層30のマイクロミラーアレイは凸面鏡アレイである。断面にはスクリーン25の備える凸レンズ体31のアレイが表れている。凸レンズ体31はスクリーン25の正面側に向かって凸である片側凸レンズである。凸レンズ体31はいわゆるマイクロレンズである。断面には凸レンズ体31の中心軸34が含まれる。 FIG. 2 shows a cross section of the screen 25 cut in a plane parallel to the yz plane. The micromirror array of the scattering layer 30 is a convex mirror array. The cross section shows an array of convex lens bodies 31 included in the screen 25. The convex lens body 31 is a one-sided convex lens that is convex toward the front side of the screen 25. The convex lens body 31 is a so-called microlens. The cross section includes the central axis 34 of the convex lens body 31.

 図2に示すように凸レンズ体31は、高拡散面33と低拡散面36とが背中合わせになった非対称構造からなる。高拡散面33は映像光Imの来る側、図中では+y側、に偏った凸レンズ曲面からなる。低拡散面36は高拡散面33の凸レンズ曲面よりも曲率の小さな曲面からなる。一態様において凸レンズ曲面は球面レンズ又は非球面レンズの曲面である。一態様において低拡散面36はx-z平面に平行な平坦面である。 As shown in FIG. 2, the convex lens body 31 has an asymmetric structure in which the high diffusion surface 33 and the low diffusion surface 36 are back to back. The high diffusion surface 33 is composed of a convex lens curved surface that is biased toward the side where the image light Im comes, and on the + y side in the drawing. The low diffusion surface 36 is composed of a curved surface having a smaller curvature than the convex lens curved surface of the high diffusion surface 33. In one aspect, the convex lens curved surface is the curved surface of a spherical lens or an aspherical lens. In one aspect, the low diffusion surface 36 is a flat surface parallel to the xz plane.

 図2に示すように、高拡散面33の凸レンズ曲面をy-z平面に平行に切断した断面の曲線は対称軸35を有する。一態様において対称軸35上に曲線の焦点がある。しかしながら凸レンズ曲面自体はそれ自体が焦点すなわち3次元上の焦点や焦線を持たない曲面であってもよい。一態様において凸レンズ体31は、3次元上の焦点又は焦線を有するレンズではない。対称軸35は図2に示す断面に含まれる。対称軸35は凸レンズ体31の中心軸34と一致しない。 As shown in FIG. 2, the curve of the cross section obtained by cutting the convex lens curved surface of the high diffusion surface 33 in parallel with the yz plane has the axis of symmetry 35. In one aspect, the focal point of the curve is on the axis of symmetry 35. However, the convex lens curved surface itself may be a curved surface that does not have a focal point, that is, a three-dimensional focal point or a focused line. In one aspect, the convex lens body 31 is not a lens having a three-dimensional focal point or focused line. The axis of symmetry 35 is included in the cross section shown in FIG. The axis of symmetry 35 does not coincide with the central axis 34 of the convex lens body 31.

 図2に示す凸レンズ体31のアレイの形成は公知の方法で行う。一態様において基材32上に、硬化性組成物の塗膜を形成した後に、金型により塗膜に対して賦形する。他の態様において射出成型又はその他の成型法により、基材32と一体になった凸レンズ体31のアレイを生成する。 The array of the convex lens body 31 shown in FIG. 2 is formed by a known method. In one embodiment, a coating film of a curable composition is formed on the base material 32, and then the coating film is shaped by a mold. In another embodiment, injection molding or other molding method is used to generate an array of convex lens bodies 31 integrated with the base material 32.

 図2に示すように、スクリーン25は高拡散面33上に形成された反射膜Rfを備える。図において、反射膜Rfにハッチングを付している。反射膜Rfを除く各要素についてハッチングを付すことを省略している。凸レンズ体31のアレイに反射膜Rfを付することで凸面鏡アレイを形成する。 As shown in FIG. 2, the screen 25 includes a reflective film Rf formed on the high diffusion surface 33. In the figure, the reflective film Rf is hatched. Hatching is omitted for each element except the reflective film Rf. A convex mirror array is formed by attaching the reflective film Rf to the array of the convex lens body 31.

 図2に示す一態様において反射膜Rfは凸レンズ体31のアレイ上の高拡散面33以外の部分にも設けられる。他の態様において反射膜Rfが高拡散面33の反射率を、低拡散面36の反射率よりも高くする。 In one aspect shown in FIG. 2, the reflective film Rf is also provided on a portion other than the high diffusion surface 33 on the array of the convex lens body 31. In another embodiment, the reflective film Rf makes the reflectance of the high diffusion surface 33 higher than the reflectance of the low diffusion surface 36.

 図2に示す一態様において、反射膜Rfは高拡散面33にだけ設けられる。係る態様において低拡散面36には反射膜を形成しない。この場合、スクリーンの透明度はJIS K7136:2000に準拠して計測される所定のヘーズ値を有する。ヘーズ値は好ましくは0%超、40%未満である。ヘーズ値は好ましくは35%、30%、25%、20%、15%、10%及び5%のいずれかである。 In one aspect shown in FIG. 2, the reflective film Rf is provided only on the high diffusion surface 33. In such an embodiment, no reflective film is formed on the low diffusion surface 36. In this case, the transparency of the screen has a predetermined haze value measured in accordance with JIS K7136: 2000. The haze value is preferably more than 0% and less than 40%. The haze value is preferably any of 35%, 30%, 25%, 20%, 15%, 10% and 5%.

 図2に示す一態様において、反射膜Rfの反射率をR(%)とし、透過率をτ(%)とした時、Rとτとの積が10以上、25以下である。一態様においてRとτとの積は11、12、13、14、15、16、17、18、19、20、21、22、23及び24のいずれかである。 In one aspect shown in FIG. 2, when the reflectance of the reflective film Rf is R (%) and the transmittance is τ (%), the product of R and τ is 10 or more and 25 or less. In one embodiment, the product of R and τ is one of 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24.

 図2に示す一態様において反射膜Rfは金属酸化膜、又は金属膜からなる。金属酸化膜は単層又は多層である。金属酸化膜は映像光Imを吸収しにくい。金属酸化膜からなる反射膜Rfはスクリーン25における映像の輝度低下を抑制する。金属膜は銀やアルミニウムなどである。金属酸化膜、又は金属膜は真空蒸着、スパッタリング及びその他の公知技術で形成できる。 In one aspect shown in FIG. 2, the reflective film Rf is made of a metal oxide film or a metal film. The metal oxide film is a single layer or a multilayer. The metal oxide film does not easily absorb the image light Im. The reflective film Rf made of a metal oxide film suppresses a decrease in the brightness of the image on the screen 25. The metal film is silver, aluminum, or the like. The metal oxide film or metal film can be formed by vacuum deposition, sputtering and other known techniques.

 図2に示すように、スクリーン25はその背面側の第1層37と、その正面側の第2層38とを備える。第1層37は基材32とその正面側に設けられた凸レンズ体31のアレイとからなる。一態様において基材32と凸レンズ体31のアレイとは別体である。他の態様において基材32と凸レンズ体31のアレイとは一体の構造材である。一態様において凸レンズ体31のアレイは、基材32の正面に形成された凸面鏡アレイである。 As shown in FIG. 2, the screen 25 includes a first layer 37 on the back side thereof and a second layer 38 on the front side thereof. The first layer 37 is composed of a base material 32 and an array of convex lens bodies 31 provided on the front side thereof. In one aspect, the base material 32 and the array of the convex lens body 31 are separate bodies. In another aspect, the base material 32 and the array of the convex lens body 31 are integral structural materials. In one aspect, the array of convex lens bodies 31 is a convex mirror array formed on the front surface of the base material 32.

 凸レンズ体31と基材32とは反射膜Rfよりも透明である。一態様において背面側の第1層37は反射膜Rfよりも透明である。 The convex lens body 31 and the base material 32 are more transparent than the reflective film Rf. In one aspect, the first layer 37 on the back surface side is more transparent than the reflective film Rf.

 図2に示すように、第2層38は凹レンズ体39のアレイからなる。凹レンズ体39は凸レンズ体31を覆う。反射膜Rfは凸レンズ体31と凹レンズ体39とに挟まれている。凹レンズ体39は反射膜Rfよりも透明である。第2層38は反射膜Rfよりも透明である。 As shown in FIG. 2, the second layer 38 is composed of an array of concave lens bodies 39. The concave lens body 39 covers the convex lens body 31. The reflective film Rf is sandwiched between the convex lens body 31 and the concave lens body 39. The concave lens body 39 is more transparent than the reflective film Rf. The second layer 38 is more transparent than the reflective film Rf.

 図2に示す一態様において環境光Abはスクリーン25の正面及び背面に入射する。図中では背面に入射している。観察者Obはスクリーン25の向こう側の景色を視認する。一態様において第1層37の屈折率は、第2層38の屈折率に等しい。一態様において凸レンズ体31の屈折率は、基材32の屈折率に等しい。第1層37の屈折率と第2層38の屈折率とを近づけることで、又は一致させることで、第1層37と反射膜Rfとの境界、又は第2層38と反射膜Rfとの境界にて、背景の視認性を低下させるような環境光Abの屈折又は反射が起きることを抑制する。 In one aspect shown in FIG. 2, the ambient light Ab is incident on the front surface and the back surface of the screen 25. In the figure, it is incident on the back surface. The observer Ob visually recognizes the scenery on the other side of the screen 25. In one embodiment, the refractive index of the first layer 37 is equal to the refractive index of the second layer 38. In one aspect, the refractive index of the convex lens body 31 is equal to the refractive index of the substrate 32. By bringing the refractive index of the first layer 37 closer to or matching the refractive index of the second layer 38, the boundary between the first layer 37 and the reflective film Rf, or the second layer 38 and the reflective film Rf It suppresses the occurrence of refraction or reflection of ambient light Ab at the boundary, which reduces the visibility of the background.

 図2に示す一態様において第1層37は透明である。第1層37及び第2層38が透明であるとともに、反射膜Rfが半透明であることで、観察者Obはスクリーン25の向こう側の風景と映像を同時に視認することが出来る。一態様において第1層37の材質は、有機材料又は無機材料である。一態様において有機材料は熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂及びその他の樹脂のいずれかである。一態様において無機材料はガラスである。 In one aspect shown in FIG. 2, the first layer 37 is transparent. Since the first layer 37 and the second layer 38 are transparent and the reflective film Rf is translucent, the observer Ob can visually recognize the landscape and the image on the other side of the screen 25 at the same time. In one aspect, the material of the first layer 37 is an organic material or an inorganic material. In one aspect, the organic material is any of a thermoplastic resin, a thermosetting resin, a photocurable resin and other resins. In one aspect, the inorganic material is glass.

 図2に示す一態様において第1層37は可視光を反射、吸収又は散乱する。かかる第1層37は、スクリーン25を透過して観察者Obに向かう環境光Abを弱めることで、投影された映像のコントラストを向上する。一態様において第1層37の材質は着色剤を含有する。一態様において着色剤は染料及び顔料のいずれかである。一態様において第1層37は透明材料に金属薄膜が積層されてなる。 In one aspect shown in FIG. 2, the first layer 37 reflects, absorbs, or scatters visible light. The first layer 37 improves the contrast of the projected image by weakening the ambient light Ab that passes through the screen 25 and heads toward the observer Ob. In one aspect, the material of the first layer 37 contains a colorant. In one aspect, the colorant is either a dye or a pigment. In one embodiment, the first layer 37 is formed by laminating a metal thin film on a transparent material.

 図2に示す一態様において第2層38は透明である。一態様において映像光Imの強さを高めた場合には、第2層内で光の反射、吸収又は散乱のいずれかを増やすことで第2層の透過率を下げてもよい。映像光Imの強さを下げた場合には、第2層内で光の反射、吸収又は散乱のいずれかを減らすことで第2層の透過率を上げてもよい。他の態様において反射膜Rfの反射率を高めた場合には、第2層内で光の反射、吸収又は散乱のいずれかを増やしことで第2層の透過率を下げてもよい。反射膜Rfの反射率を下げた場合には、第2層内で光の反射、吸収又は散乱のいずれかを減らすことで第2層の透過率を上げてもよい。 In one aspect shown in FIG. 2, the second layer 38 is transparent. When the intensity of the image light Im is increased in one embodiment, the transmittance of the second layer may be lowered by increasing any of the reflection, absorption or scattering of the light in the second layer. When the intensity of the image light Im is lowered, the transmittance of the second layer may be increased by reducing any of the reflection, absorption or scattering of the light in the second layer. When the reflectance of the reflective film Rf is increased in another embodiment, the transmittance of the second layer may be decreased by increasing any of the reflection, absorption or scattering of light in the second layer. When the reflectance of the reflective film Rf is lowered, the transmittance of the second layer may be increased by reducing any of the reflection, absorption or scattering of light in the second layer.

 図2に示す一態様において第2層38の材質は、有機材料又は無機材料である。一態様において有機材料は熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂及びその他の樹脂のいずれかである。一態様において無機材料はガラスである。第2層38の好ましい材質は、光硬化性樹脂である。一態様において光硬化性樹脂はアクリレート系樹脂である。 In one aspect shown in FIG. 2, the material of the second layer 38 is an organic material or an inorganic material. In one aspect, the organic material is any of a thermoplastic resin, a thermosetting resin, a photocurable resin and other resins. In one aspect, the inorganic material is glass. A preferred material for the second layer 38 is a photocurable resin. In one aspect, the photocurable resin is an acrylate-based resin.

 図2に示す一態様において第1層37の材質は、第2層38の材質と同一である。一態様において凸レンズ体31の材質は、基材32の材質と同一である。 In one aspect shown in FIG. 2, the material of the first layer 37 is the same as the material of the second layer 38. In one aspect, the material of the convex lens body 31 is the same as the material of the base material 32.

 図2に示すように、映像光Imは-z方向から、スクリーン25の背面側に入射する。映像光Imは-z方向から+z方向に向かってスクリーン25を透過する。映像光Imが高拡散面33の凸である側に入射する。映像光Imの一部が高拡散面33にて反射すると、観察者Obに向かう散乱光Scが生じる。映像光Imの一部は透過光Tmとして散乱することなく+z方向に出射する。 As shown in FIG. 2, the image light Im is incident on the back side of the screen 25 from the −z direction. The image light Im passes through the screen 25 from the −z direction to the + z direction. The image light Im is incident on the convex side of the high diffusion surface 33. When a part of the image light Im is reflected by the high diffusion surface 33, scattered light Sc is generated toward the observer Ob. A part of the image light Im is emitted as transmitted light Tm in the + z direction without being scattered.

 図2に示すよう観察者Obはスクリーン25の正面側に位置する。映像光Imはスクリーン25に対して斜めに投射されるので、その透過光Tmは観察者Obの目に届かない。散乱層30は映像光Imを異方性拡散する。散乱層30は散乱光Scに対して、+y方向に偏った配光を持たせる。異方性拡散により観察者Obがスクリーン25上にて視認する映像の輝度が高まる。 As shown in FIG. 2, the observer Ob is located on the front side of the screen 25. Since the image light Im is projected obliquely with respect to the screen 25, the transmitted light Tm does not reach the eyes of the observer Ob. The scattering layer 30 anisotropically diffuses the image light Im. The scattering layer 30 has a light distribution biased in the + y direction with respect to the scattered light Sc. Anisotropic diffusion increases the brightness of the image that the observer Ob sees on the screen 25.

 図2に示す一態様において第1層37の背面側に板材27をさらに設ける。一態様において第2層38の正面側に板材28をさらに設ける。一態様において板材27及び板材28はいずれも板ガラスである。一態様において板ガラスの間にスクリーン25を配置する。一態様において第1層37と板材27とを接着剤で結合する。一態様において第2層38と板材28とを接着剤で結合する。一態様において、接着剤はポリビニルブチラール樹脂(PVB樹脂)を含む樹脂である。 In one aspect shown in FIG. 2, a plate member 27 is further provided on the back surface side of the first layer 37. In one aspect, a plate member 28 is further provided on the front side of the second layer 38. In one aspect, the plate material 27 and the plate material 28 are both plate glass. In one aspect, the screen 25 is placed between the flat glass. In one aspect, the first layer 37 and the plate material 27 are bonded with an adhesive. In one embodiment, the second layer 38 and the plate 28 are bonded with an adhesive. In one aspect, the adhesive is a resin containing a polyvinyl butyral resin (PVB resin).

 図2に示す一態様において第1層37の背面側、及び第2層38の正面側の少なくともいずれかの最外層に反射防止膜を形成する。一態様において第1層37の背面側に第1層37よりも硬い被膜を形成する。一態様において第2層38の正面側に第2層38よりも硬い被膜を形成する。 In one aspect shown in FIG. 2, an antireflection film is formed on at least one of the outermost layers on the back surface side of the first layer 37 and the front surface side of the second layer 38. In one embodiment, a film harder than the first layer 37 is formed on the back surface side of the first layer 37. In one embodiment, a film harder than the second layer 38 is formed on the front side of the second layer 38.

 図2に示すピッチPy及び偏角Vは後述する。 The pitch Py and the declination V shown in FIG. 2 will be described later.

<凸レンズ曲面> <Convex lens curved surface>

 図3は凸レンズ体31の斜視図である。凸レンズ体31は、x軸及びy軸に対して平行に配列されている。x座標上の連続する区間Sxにおいて、y-z平面に平行な断面における前記凸レンズ曲面のサグ量Z(Y)は、同一の曲線で表される。サグ量Z(Y)を表す曲線は下記の数式Iy又は数式IIyで表される。 FIG. 3 is a perspective view of the convex lens body 31. The convex lens bodies 31 are arranged parallel to the x-axis and the y-axis. In the continuous section Sx on the x-coordinate, the sag amount Z (Y) of the convex lens curved surface in the cross section parallel to the yz plane is represented by the same curve. The curve representing the sag amount Z (Y) is represented by the following formula Iy or formula IIy.


数式Iy:

Figure JPOXMLDOC01-appb-M000015

Formula Iy:
Figure JPOXMLDOC01-appb-M000015


数式IIy:

Figure JPOXMLDOC01-appb-M000016

Formula IIy:
Figure JPOXMLDOC01-appb-M000016

C:y-z平面に平行な面における、前記高拡散面のレンズ曲率
K:コーニック定数
Y:y-z平面に平行な面における、前記高拡散面のために再設定したy座標
C: Lens curvature of the high diffusion surface in a plane parallel to the yz plane K: Conic constant Y: y coordinate reset for the high diffusion surface in a plane parallel to the yz plane

 図3に示す一態様において高拡散面33の凸レンズ曲面をy-z平面に平行に切断して現れる曲線は、x座標上の連続する区間において、y変位を有しない同形の二次曲線からなる。 In one aspect shown in FIG. 3, the curve appearing by cutting the convex lens curved surface of the high diffusion surface 33 in parallel with the yz plane consists of a quadratic curve of the same shape having no y displacement in a continuous section on the x coordinate. ..

 図3に示す一態様において高拡散面33の凸レンズ曲面の対称軸はz軸に平行である又は一致する。凸レンズ曲面の対称軸は凸レンズ曲面の頂点を通る。図に示す態様と異なる態様において凸レンズ曲面の対称軸は高拡散面33それ自体と交差しない。 In one aspect shown in FIG. 3, the axis of symmetry of the convex lens curved surface of the high diffusion surface 33 is parallel to or coincides with the z-axis. The axis of symmetry of the convex lens surface passes through the vertices of the convex lens surface. In a mode different from the mode shown in the figure, the axis of symmetry of the convex lens curved surface does not intersect the high diffusion surface 33 itself.

 図3に示すy座標上の連続する区間において、x-z平面に平行な断面における前記凸レンズ曲面のサグ量Z(X)は、同一の曲線で表される。サグ量Z(X)を表す曲線は下記の数式Ix又は数式IIxで表される。 In the continuous section on the y coordinate shown in FIG. 3, the sag amount Z (X) of the convex lens curved surface in the cross section parallel to the xz plane is represented by the same curve. The curve representing the sag amount Z (X) is represented by the following formula Ix or formula IIx.


数式Ix:

Figure JPOXMLDOC01-appb-M000017

Formula Ix:
Figure JPOXMLDOC01-appb-M000017


数式IIx:

Figure JPOXMLDOC01-appb-M000018

Formula IIx:
Figure JPOXMLDOC01-appb-M000018

B:x-z平面に平行な面における、前記高拡散面のレンズ曲率
J:コーニック定数
X:x-z平面に平行な面における、前記高拡散面のために再設定したx座標
B: Lens curvature of the high diffusion plane in a plane parallel to the xz plane J: Conic constant X: x coordinates reset for the high diffusion plane in a plane parallel to the xz plane

 図3に示す一態様において高拡散面33の凸レンズ曲面をx-z平面に平行に切断して現れる曲線は、y座標上の連続する区間において、x変位を有しない同形の二次曲線からなる。 In one aspect shown in FIG. 3, the curve appearing by cutting the convex lens curved surface of the high diffusion surface 33 in parallel with the xz plane consists of a quadratic curve of the same shape having no x displacement in a continuous section on the y coordinate. ..

 図3に示す一態様において、高拡散面33の凸レンズ曲面は回転対称な曲面ではない。凸レンズ曲面の一態様において、y-z平面に平行な断面における曲線と、x-z平面に平行な断面における曲線とは、これら曲線を表す数式の種類並びに曲率及びコーニック定数の少なくともいずれかが一致しない。これらの要素はスクリーンに求められる配光特性に合わせて適宜変更できる。 In one aspect shown in FIG. 3, the convex lens curved surface of the high diffusion surface 33 is not a rotationally symmetric curved surface. In one aspect of the convex lens curved surface, the curve in the cross section parallel to the yz plane and the curve in the cross section parallel to the xx plane match at least one of the type of formula representing these curves, the curvature, and the conic constant. do not do. These elements can be appropriately changed according to the light distribution characteristics required for the screen.

 図3に示す一態様において、y軸方向に配列された凸レンズ体31の一群において、各凸レンズ体31の高拡散面33は、互いに同一の凸レンズ曲面を有している。一態様においてx軸方向に配列された凸レンズ体31の一群において、各凸レンズ体31の高拡散面33は、互いに同一の凸レンズ曲面を有している。 In one aspect shown in FIG. 3, in a group of convex lens bodies 31 arranged in the y-axis direction, the high diffusion surface 33 of each convex lens body 31 has the same convex lens curved surface as each other. In one group of convex lens bodies 31 arranged in the x-axis direction in one embodiment, the high diffusion surfaces 33 of each convex lens body 31 have the same convex lens curved surface as each other.

<高拡散面の斜度> <Inclination of high diffusion surface>

 図4は凸面鏡アレイからなる散乱層30の、任意のx座標におけるy-z平面に平行な断面を示す。図2に示す反射膜Rfは図4中において省略されている。凸レンズ体31は、x軸に対して平行に配列されている。映像光Imはy-z平面とx-z平面に分解して考える。図4に示す映像光Imはy-z平面に平行な成分を示す。 FIG. 4 shows a cross section of the scattering layer 30 composed of the convex mirror array, parallel to the yz plane at an arbitrary x coordinate. The reflective film Rf shown in FIG. 2 is omitted in FIG. The convex lens bodies 31 are arranged parallel to the x-axis. The image light Im is considered by being decomposed into an yz plane and an xx plane. The image light Im shown in FIG. 4 shows a component parallel to the yz plane.

 図4において紙面が映像光Imの入射面である。図は高拡散面33を入射面にて切断して現れる曲線を表している。かかる曲線と透過型スクリーンの延在面とのなす角、すなわちx-y平面と平行な面に対する高拡散面33の斜度αはy座標に沿って変化する。αは-y方向のとき0°、+z方向のとき90°とする。0≦α≦90°。 In FIG. 4, the paper surface is the incident surface of the image light Im. The figure shows a curve that appears by cutting the high diffusion surface 33 at the incident surface. The angle formed by such a curve and the extending surface of the transmissive screen, that is, the slope α of the high diffusion surface 33 with respect to the surface parallel to the xy plane changes along the y coordinate. α is 0 ° in the −y direction and 90 ° in the + z direction. 0 ≤ α ≤ 90 °.

 図4において、角度θは第1層内を進行する映像光Imがz軸に対してなす角度である。一態様において角度θは図2に示す第1層37の背面側の界面にて映像光Imが屈折した時の屈折角である。 In FIG. 4, the angle θ is the angle formed by the image light Im traveling in the first layer with respect to the z-axis. In one aspect, the angle θ is the refraction angle when the image light Im is refracted at the interface on the back surface side of the first layer 37 shown in FIG.

 図4において映像光Imは高拡散面33で反射してz軸に対する角度が180°-θ-2αとなる方向に進行する。光が進行するにつれてy座標が小さくなる方向を表す角度を正の値とする。光が進行するにつれてy座標が大きくなる方向を表す角度を負の値とする。図4は映像光Imが低拡散面36を透過し、第2層38内部において、高拡散面33に入射し、更に反射する光路を示している。図4に示す態様とは異なる態様において、映像光Imが第1層37内部において、高拡散面33に入射し、更に反射し、その後低拡散面36を透過する光路も考えられる。 In FIG. 4, the image light Im is reflected by the high diffusion surface 33 and travels in the direction in which the angle with respect to the z-axis is 180 ° -θ-2α. A positive value is an angle indicating a direction in which the y coordinate decreases as the light travels. A negative value is an angle representing the direction in which the y coordinate increases as the light travels. FIG. 4 shows an optical path in which the image light Im passes through the low diffusion surface 36, enters the high diffusion surface 33 inside the second layer 38, and is further reflected. In a mode different from the mode shown in FIG. 4, an optical path in which the image light Im is incident on the high diffusion surface 33 inside the first layer 37, is further reflected, and then passes through the low diffusion surface 36 is also conceivable.

 図4において、映像光Imに含まれる波長の光に対する、凸レンズ体31の屈折率をnとする。高拡散面33で反射して生じた散乱光が、図2に示す第2層の正面側の界面で全反射しない条件は、反射した光の当該界面に対する入射角がsin-1(1/n)以下にならないことである。ただし高拡散面33を反射面とした時に入射面上を進行する一部の散乱光Scについてのみ考えた場合を表す。 In FIG. 4, the refractive index of the convex lens body 31 with respect to the light having the wavelength included in the image light Im is defined as n. Under the condition that the scattered light generated by the reflection on the high diffusion surface 33 is not totally reflected at the interface on the front side of the second layer shown in FIG. 2, the incident angle of the reflected light with respect to the interface is sin -1 (1 / n). ) It should not be less than the following. However, when the high diffusion surface 33 is used as the reflection surface, only a part of the scattered light Sc traveling on the incident surface is considered.

 屈折率nを1.5とすると、180°-θ-2αは-40°以上40°以下が好ましい。また、斜度αは形状作製の都合上、0°以上90°未満である。そのため斜度αの範囲は、θが0°以上40°未満の時には数式IIIを満たし、θが40°以上90°未満の時には数式IVで表される。 Assuming that the refractive index n is 1.5, 180 ° -θ-2α is preferably −40 ° or more and 40 ° or less. Further, the slope α is 0 ° or more and less than 90 ° for the convenience of shape fabrication. Therefore, the range of the slope α satisfies the formula III when θ is 0 ° or more and less than 40 °, and is expressed by the formula IV when θ is 40 ° or more and less than 90 °.

数式III:

Figure JPOXMLDOC01-appb-M000019

数式IV:
Figure JPOXMLDOC01-appb-M000020
Formula III:
Figure JPOXMLDOC01-appb-M000019

Formula IV:
Figure JPOXMLDOC01-appb-M000020

<凸レンズ体間の接続面> <Connecting surface between convex lens bodies>

 図5は凸面鏡アレイからなる散乱層30の、任意のx座標におけるy-z平面に平行な断面を示す。図2に示す反射膜Rfは図5中において省略されている。凸レンズ体31は、x軸に対して平行に配列されている。一態様において、隣り合う凸レンズ体31間の境界付近の領域43を形成すべきかどうかを考える。領域43は高拡散面33の斜度αが0に近い。そのため、領域43における散乱光Scの方向180°-θ-2αは40°以上180°以下になる場合がある。この時、散乱光Scはスクリーン25の正面側に出射しないため、観察者Obが視認する映像光の明るさには寄与しない。 FIG. 5 shows a cross section of the scattering layer 30 composed of the convex mirror array, parallel to the yz plane at an arbitrary x coordinate. The reflective film Rf shown in FIG. 2 is omitted in FIG. The convex lens bodies 31 are arranged parallel to the x-axis. In one aspect, consider whether a region 43 near the boundary between adjacent convex lens bodies 31 should be formed. In the region 43, the slope α of the high diffusion surface 33 is close to zero. Therefore, the direction 180 ° −θ-2α of the scattered light Sc in the region 43 may be 40 ° or more and 180 ° or less. At this time, since the scattered light Sc is not emitted to the front side of the screen 25, it does not contribute to the brightness of the image light visually recognized by the observer Ob.

 そこで図5に示す高拡散面33に領域43を形成せず、代わりにy軸方向に互いに隣り合う凸レンズ体31の間の平坦面42を設ける。平坦面42は第1層37と第2層38との間の界面である。一態様において平坦面42は基材32の正面側の表面である。環境光Abは平坦面42を透過する。平坦面42があった場合、散乱層30を透過する環境光Abの透過率は増大する。一方で、凸レンズ体31の1個当たりの散乱光Scの輝度は減らない。 Therefore, the region 43 is not formed on the high diffusion surface 33 shown in FIG. 5, and instead, a flat surface 42 between the convex lens bodies 31 adjacent to each other in the y-axis direction is provided. The flat surface 42 is the interface between the first layer 37 and the second layer 38. In one aspect, the flat surface 42 is the front surface of the substrate 32. The ambient light Ab passes through the flat surface 42. When there is a flat surface 42, the transmittance of the ambient light Ab transmitted through the scattering layer 30 increases. On the other hand, the brightness of the scattered light Sc per convex lens body 31 does not decrease.

 図5に示す態様と異なる態様において、平坦面42の大きさは領域43をx-y平面上に投影した面積を超える。他の態様において平坦面42の大きさは領域43をx-y平面上に投影した面積に満たない。より大きな平坦面42は、スクリーンを透過する環境光Abをより増やす。したがってスクリーンの透明度が高まる。より小さな平坦面42は、散乱光Scをより増やす。したがってスクリーンに投影された映像の輝度が大きくなる。 In a mode different from the mode shown in FIG. 5, the size of the flat surface 42 exceeds the area projected on the xy plane of the region 43. In another aspect, the size of the flat surface 42 is less than the area of the region 43 projected onto the xy plane. The larger flat surface 42 increases the ambient light Ab through the screen. Therefore, the transparency of the screen is increased. The smaller flat surface 42 increases the scattered light Sc more. Therefore, the brightness of the image projected on the screen is increased.

 図5に示す一態様において、平坦面42上に反射膜を形成しない。かかる平坦面42は、スクリーンを透過する環境光Abをより増やす。したがってスクリーンの透明度が高まる。かかる平坦面42は、映像光Imの迷光を減らす。したがってスクリーンに投影された映像の画質を向上する。 In one aspect shown in FIG. 5, a reflective film is not formed on the flat surface 42. The flat surface 42 further increases the ambient light Ab transmitted through the screen. Therefore, the transparency of the screen is increased. The flat surface 42 reduces the stray light of the image light Im. Therefore, the image quality of the image projected on the screen is improved.

 図5に示す一態様において、スクリーンの透明度はJIS K7136:2000に準拠して計測される所定のヘーズ値を有する。ヘーズ値は好ましくは0%超、40%未満である。ヘーズ値は好ましくは35%、30%、25%、20%、15%、10%及び5%のいずれかである。 In one aspect shown in FIG. 5, the transparency of the screen has a predetermined haze value measured in accordance with JIS K7136: 2000. The haze value is preferably more than 0% and less than 40%. The haze value is preferably any of 35%, 30%, 25%, 20%, 15%, 10% and 5%.

<低拡散面の斜度> <Inclination of low diffusion surface>

 図6は凸面鏡アレイからなる散乱層30の断面を示す。図2に示す反射膜Rfは図6中において省略されている。凸レンズ体31は、y軸に対して平行に配列されている。 FIG. 6 shows a cross section of the scattering layer 30 made of a convex mirror array. The reflective film Rf shown in FIG. 2 is omitted in FIG. The convex lens bodies 31 are arranged parallel to the y-axis.

 図6に示す一態様において、映像光Imの一部は、低拡散面36で反射して高拡散面33まで進行することなく散乱層30の背面側に戻る。この反射の時に映像光Imが拡散する場合、観察者は散乱層30の背面側からも映像を視認できる。また低拡散面36で反射した光が迷光として観察者Obに視認されるのを防ぐことが出来る。 In one aspect shown in FIG. 6, a part of the image light Im is reflected by the low diffusion surface 36 and returns to the back surface side of the scattering layer 30 without proceeding to the high diffusion surface 33. When the image light Im is diffused at the time of this reflection, the observer can visually recognize the image from the back side of the scattering layer 30 as well. Further, it is possible to prevent the light reflected by the low diffusion surface 36 from being visually recognized by the observer Ob as stray light.

 図6に示す一態様において低拡散面36は平坦である。透過型スクリーン内のいずれかのx座標において、低拡散面36を反射面とした時の映像光Imの入射面はy-z平面に平行である。 In one aspect shown in FIG. 6, the low diffusion surface 36 is flat. At any x coordinate in the transmissive screen, the incident surface of the image light Im when the low diffusion surface 36 is used as the reflecting surface is parallel to the yz plane.

 図6において紙面が映像光Imの入射面である。図は低拡散面36を入射面にて切断して現れる直線を表している。かかる直線と透過型スクリーンの延在面とのなす角を斜度βとする。斜度βは、x-y平面と平行な面に対する低拡散面36の傾きである。斜度βと、角度θとの和は実質的に90°である。一態様において映像光Imと低拡散面36とは実質的に直交する。 In FIG. 6, the paper surface is the incident surface of the image light Im. The figure shows a straight line appearing by cutting the low diffusion surface 36 at the incident surface. The angle formed by the straight line and the extending surface of the transmissive screen is defined as the slope β. The slope β is the slope of the low diffusion surface 36 with respect to the surface parallel to the xy plane. The sum of the slope β and the angle θ is substantially 90 °. In one aspect, the image light Im and the low diffusion surface 36 are substantially orthogonal to each other.

 図6に示す一態様において映像光Imは映像光源に再帰する。散乱層30の背面側の観察者が視認できるような映像はスクリーンに生じない。かかる低拡散面36はプライバシー保護やセキュリティ管理に役立つ。 In one aspect shown in FIG. 6, the image light Im recurses to the image light source. No image on the screen is visible to the observer on the back side of the scattering layer 30. The low diffusion surface 36 is useful for privacy protection and security management.

 図6に示す一態様において、低拡散面36上に反射膜を形成しない。かかる低拡散面36は、スクリーンを透過する環境光Abをより増やす。したがってスクリーンの透明度が高まる。かかる低拡散面36は、映像光Imの迷光を減らす。したがってスクリーンに投影された映像の画質を向上する。 In one aspect shown in FIG. 6, a reflective film is not formed on the low diffusion surface 36. The low diffusion surface 36 further increases the ambient light Ab transmitted through the screen. Therefore, the transparency of the screen is increased. The low diffusion surface 36 reduces the stray light of the image light Im. Therefore, the image quality of the image projected on the screen is improved.

<z変位モザイク> <Z displacement mosaic>

 図7は、スクリーン25をy-z平面に平行な平面で切断した断面を示す。図3を引用して上記説明したように凸レンズ体31は、x軸に対して平行に配列されており、またy軸に対して平行に配列されている。x軸方向及びy軸方向に周期的に配列された凸レンズ体31の一群において、各凸レンズ体31の高拡散面33は、互いに同一の凸レンズ曲面を有している。 FIG. 7 shows a cross section of the screen 25 cut in a plane parallel to the yz plane. As described above with reference to FIG. 3, the convex lens bodies 31 are arranged parallel to the x-axis and parallel to the y-axis. In a group of convex lens bodies 31 periodically arranged in the x-axis direction and the y-axis direction, the high diffusion surface 33 of each convex lens body 31 has the same convex lens curved surface as each other.

 図7に示す一態様において各凸レンズ体31の間で、高拡散面33のz変位にモザイクが生じている。したがって高拡散面33で反射した光は、x-y平面上で隣り合う凸レンズ体31の間で相異なる位相を有することになる、すなわち位相差を有することになる。 In one aspect shown in FIG. 7, a mosaic is generated in the z-displacement of the high diffusion surface 33 between the convex lens bodies 31. Therefore, the light reflected by the high diffusion surface 33 will have different phases between the convex lens bodies 31 adjacent to each other on the xy plane, that is, will have a phase difference.

 図7に示す一態様においてz変位は0からSmaxまでの範囲でランダムに決まる。一態様においてSmaxは数式Vで表される。周期的に配列されている凸レンズ体31から回折光が生じる。回折光の回折ピークは輝度ムラ又は色割れとして観察者Obに視認される。z変位モザイクは凸レンズ体31の間で散乱光Scの光路差を発生するため、これらの輝度ムラ又は色割れを抑制する。凸レンズ体31の間での散乱光Scの光路差を最大で映像光の1波長又は2波長とすることが好ましい。 In one aspect shown in FIG. 7, the z displacement is randomly determined in the range from 0 to S max . In one aspect, S max is represented by the formula V. Diffracted light is generated from the convex lens bodies 31 that are arranged periodically. The diffraction peak of the diffracted light is visually recognized by the observer Ob as uneven brightness or color cracking. Since the z-displacement mosaic causes an optical path difference of scattered light Sc between the convex lens bodies 31, these uneven brightness or color cracking are suppressed. It is preferable that the optical path difference of the scattered light Sc between the convex lens bodies 31 is one wavelength or two wavelengths of the image light at the maximum.

数式V:

Figure JPOXMLDOC01-appb-M000021
Formula V:
Figure JPOXMLDOC01-appb-M000021

m:1又は2
λ:映像光の波長
n:波長λにおける凸レンズ体31の屈折率
m: 1 or 2
λ: Wavelength of video light n: Refractive index of convex lens body 31 at wavelength λ

<用途> <Use>

 スクリーンの用途の一態様は乗り物又は構造物の窓である。窓はスクリーンを有する。乗り物又は構造物は、映像光を窓に投射する投影機を備える。一態様において構造物は、ビルのように複数の材料や部材などから構成され、基礎などにより重量を支えられた構造で造作されたものである。一態様において乗り物は車両である。他の態様においてスクリーンは、透明な扉、ショーケース及び透明なパーティションのいずれかを構成する材料である。 One aspect of screen use is the window of a vehicle or structure. The window has a screen. The vehicle or structure comprises a projector that projects the image light onto the window. In one aspect, the structure is composed of a plurality of materials and members like a building, and is constructed with a structure in which the weight is supported by a foundation or the like. In one aspect, the vehicle is a vehicle. In other embodiments, the screen is a material that constitutes either a transparent door, a showcase or a transparent partition.

 一態様においてスクリーンは車両の前にいる観察者に対してその車両の行き先を表示する。一態様において映像光源を車両内部の天井付近に設置する。斜め下方に向けて映像光を照射する。他の態様においてスクリーンはショーケースの前にいる観察者に対してショーケース内の商品の説明を表示する。他の態様においてスクリーンはその前にいる観察者に対してその他の伝達事項を表示する。他の態様においてスクリーンは観察者がスクリーンの背面側の景色を視認しにくくなる表示を行う。係る表示はセキュリティ管理及びプライバシー保護のいずれかに適するものである。 In one aspect, the screen displays the destination of the vehicle to the observer in front of the vehicle. In one embodiment, the image light source is installed near the ceiling inside the vehicle. The image light is emitted diagonally downward. In another aspect, the screen displays a description of the goods in the showcase to the observer in front of the showcase. In other embodiments, the screen displays other communications to the observer in front of it. In another aspect, the screen provides a display that makes it difficult for the observer to see the scenery on the back side of the screen. Such display is suitable for either security management or privacy protection.

<配光特性の設計> <Design of light distribution characteristics>

 図2及び図8を参照しつつ、配光特性の設計に用いる球座標系を説明する。図2において縦の配光方向を偏角Vで定義する。V=0°を+z方向とする。V=+90°を+y方向とする。V=-90°を-y方向とする。ピッチPyは凸レンズ体31がx軸に平行に連続して並ぶ時の間隔を示す。以下ピッチPyについては図2を参照のこと。 The spherical coordinate system used for designing the light distribution characteristics will be described with reference to FIGS. 2 and 8. In FIG. 2, the vertical light distribution direction is defined by the declination V. Let V = 0 ° be the + z direction. Let V = + 90 ° be the + y direction. Let V = -90 ° be the -y direction. The pitch Py indicates the interval when the convex lens bodies 31 are continuously arranged in parallel with the x-axis. See FIG. 2 for pitch Python below.

 図8はx-z平面と平行な平面におけるスクリーン25の断面図である。横の配光方向を偏角Hで定義する。H=0°を+z方向とする。V=H=0°はz軸上の正の向きを表す。H=90°を+x方向とする。H=-90°を-x方向とする。ピッチPxは凸レンズ体31がx軸に平行に連続して並ぶ時の間隔を示す。以下ピッチPxについては図8を参照のこと。 FIG. 8 is a cross-sectional view of the screen 25 in a plane parallel to the xz plane. The horizontal light distribution direction is defined by the declination H. Let H = 0 ° be the + z direction. V = H = 0 ° represents a positive orientation on the z-axis. Let H = 90 ° be the + x direction. Let H = -90 ° be the -x direction. The pitch Px indicates the interval when the convex lens bodies 31 are continuously arranged in parallel with the x-axis. See FIG. 8 for the pitch Px below.

 図3を用いて上記説明したようにx方向とy方向とに直交するように凸レンズ体31が配列されている。凸レンズ体31の凸レンズ面のサグ量はZ(Y)及びZ(X)の和である。Z(Y)は下記数式Iy及びIIyのいずれかで表される。Z(X)は下記数式Ix及びIIxのいずれかで表される。 As described above with reference to FIG. 3, the convex lens bodies 31 are arranged so as to be orthogonal to the x direction and the y direction. The sag amount of the convex lens surface of the convex lens body 31 is the sum of Z (Y) and Z (X). Z (Y) is represented by any of the following mathematical formulas Iy and IIy. Z (X) is represented by any of the following mathematical formulas Ix and IIx.


数式Iy:

Figure JPOXMLDOC01-appb-M000022

Formula Iy:
Figure JPOXMLDOC01-appb-M000022


数式IIy:

Figure JPOXMLDOC01-appb-M000023

Formula IIy:
Figure JPOXMLDOC01-appb-M000023

C:y-z平面に平行な面における、前記高拡散面のレンズ曲率
K:コーニック定数
Y:y-z平面に平行な面における、前記高拡散面のために再設定したy座標
C: Lens curvature of the high diffusion surface in a plane parallel to the yz plane K: Conic constant Y: y coordinate reset for the high diffusion surface in a plane parallel to the yz plane

数式Ix:

Figure JPOXMLDOC01-appb-M000024
Formula Ix:
Figure JPOXMLDOC01-appb-M000024


数式IIx:

Figure JPOXMLDOC01-appb-M000025

Formula IIx:
Figure JPOXMLDOC01-appb-M000025

B:x-z平面に平行な面における、前記高拡散面のレンズ曲率
J:コーニック定数
X:x-z平面に平行な面における、前記高拡散面のために再設定したx座標
B: Lens curvature of the high diffusion plane in a plane parallel to the xz plane J: Conic constant X: x coordinates reset for the high diffusion plane in a plane parallel to the xz plane

 以下の各例で使用するスクリーンの第1層及び第2層の屈折率nは1.50とする。 The refractive index n of the first layer and the second layer of the screen used in each of the following examples is 1.50.

<例W1:非対称凸レンズ体> <Example W1: Asymmetric convex lens body>

 図9は例W1に係るスクリーンの備える凸レンズ体の斜視図である。凸レンズ体のx-z平面に平行な断面上に表れる凸レンズ曲面のなす曲線において、曲率0.071μm-1、曲率半径14μm、コーニック定数K=-0.25、ピッチPx=30μmである。凸レンズ面の対称軸のx座標が凸レンズ体のx-y平面に対する投影中心のx座標と一致する。凸レンズ曲面のなす曲線の斜度の最大値は70.8°である。 FIG. 9 is a perspective view of a convex lens body included in the screen according to Example W1. In the curve formed by the curved surface of the convex lens appearing on the cross section parallel to the xz plane of the convex lens body, the curvature is 0.071 μm -1 , the radius of curvature is 14 μm, the conic constant K = −0.25, and the pitch Px = 30 μm. The x-coordinate of the axis of symmetry of the convex lens surface coincides with the x-coordinate of the projection center with respect to the xy plane of the convex lens body. The maximum value of the slope of the curve formed by the curved surface of the convex lens is 70.8 °.

 図9に示す凸レンズ体のy-z平面に平行な断面上で凸レンズ曲面のなす曲線において、周期20μm、曲率0.167μm-1、曲率半径6μm、コーニック定数K=-1である。なお、凸レンズ面の対称軸のy座標は、凸レンズ体のx-y平面に対する投影中心に対してy方向に-5μmずれている。凸レンズ曲面のなす曲線の斜度の最大値は68.2°である。 In the curve formed by the convex lens curved surface on the cross section parallel to the yz plane of the convex lens body shown in FIG. 9, the period is 20 μm, the curvature is 0.167 μm -1 , the radius of curvature is 6 μm, and the conic constant K = -1. The y-coordinate of the axis of symmetry of the convex lens surface is deviated by −5 μm in the y direction with respect to the projection center of the convex lens body with respect to the xy plane. The maximum value of the slope of the curve formed by the curved surface of the convex lens is 68.2 °.

 図9に示す凸レンズ体31において、高拡散面33と背中合わせになっているの低拡散面はx-z平面に平行な平坦面である。また高拡散面33は70%の透過率及び30%の反射率を有する。例として無機酸化物膜を反射膜として高拡散面33上に形成することでこのような高拡散面33を得られる。 In the convex lens body 31 shown in FIG. 9, the low diffusion surface back to back with the high diffusion surface 33 is a flat surface parallel to the xx plane. The high diffusion surface 33 also has a transmittance of 70% and a reflectance of 30%. As an example, such a high diffusion surface 33 can be obtained by forming an inorganic oxide film as a reflection film on the high diffusion surface 33.

 図2に示す一態様において、映像光Imはスクリーン25の延在面に対して、入射角75°で入射する。図2及び図8に即すと、(H,V)=(180°,105°)の方向から原点、(H,V)=(0°,0°)に向かう向きを中心にして拡散する映像光を照射する。 In one aspect shown in FIG. 2, the image light Im is incident on the extending surface of the screen 25 at an incident angle of 75 °. According to FIGS. 2 and 8, diffusion is centered on the direction from the direction of (H, V) = (180 °, 105 °) to the origin and (H, V) = (0 °, 0 °). Irradiate video light.

 図2及び図8に示すように凸レンズ体31で+Z方向に反射する散乱光Scの配光を、サイバネット社の光線追跡ソフトLightToolsを用いて計算する。図10に参考となる等照度グラフを示す。色の濃い部分が明るい。色の濃さは、特許図面に適するように調整されているため、正確な照度を表していない点に留意する。 As shown in FIGS. 2 and 8, the light distribution of the scattered light Sc reflected by the convex lens body 31 in the + Z direction is calculated using the ray tracing software LightTools of Cybernet. FIG. 10 shows an isoilluminance graph for reference. The dark areas are bright. It should be noted that the color intensity is adjusted to suit the patent drawings and does not represent the exact illuminance.

 図10において、凸レンズ体で反射せずにスクリーン内を直進する映像光の進行方向は(H,V)=(0°,-75°)である。凸レンズ曲面で反射した映像光の拡散する範囲(H=-35°~+35°,V=-50°~-5°)を破線で示す。破線内にいる観察者は散乱した映像光を視認するが、スクリーン内を直進する光を視認しない。 In FIG. 10, the traveling direction of the image light traveling straight through the screen without being reflected by the convex lens body is (H, V) = (0 °, −75 °). The diffused range of the image light reflected by the curved surface of the convex lens (H = −35 ° to + 35 °, V = −50 ° to −5 °) is indicated by a broken line. The observer inside the broken line sees the scattered video light, but does not see the light traveling straight through the screen.

<例W2:対称軸の調整> <Example W2: Adjustment of axis of symmetry>

 図3は例W2に係るスクリーンの備える凸レンズ体の斜視図である。例W2では、y-z平面に平行な断面における凸レンズ曲面の曲線の対称軸のy座標が、凸レンズ体のx-y平面に対する投影中心に対してy方向に-12μmずれている。それ以外の点について例W2のスクリーンは例W1に示すスクリーンに準ずる。図3に示すように、その凸レンズ曲面は、図9に示した凸レンズ曲面よりも+Y方向に大きく偏っている。 FIG. 3 is a perspective view of a convex lens body included in the screen according to Example W2. In Example W2, the y coordinate of the axis of symmetry of the curve of the convex lens curved surface in the cross section parallel to the yz plane is deviated by -12 μm in the y direction with respect to the projection center of the convex lens body with respect to the xy plane. Regarding other points, the screen of Example W2 conforms to the screen shown in Example W1. As shown in FIG. 3, the convex lens curved surface is more biased in the + Y direction than the convex lens curved surface shown in FIG.

 図11は+Z方向に散乱する光の配光を示す等照度グラフである。凸レンズ曲面で反射した映像光の拡散する範囲(H=-40°~+40°,V=-50°~+20°)を破線で示す。その範囲は図10に示したものよりも大きくなっている。例W2のスクリーンは、例W1より広い範囲において観察者が映像を視認できる。 FIG. 11 is an isoilluminance graph showing the distribution of light scattered in the + Z direction. The diffusion range (H = -40 ° to + 40 °, V = -50 ° to + 20 °) of the image light reflected by the curved surface of the convex lens is indicated by a broken line. The range is larger than that shown in FIG. The screen of Example W2 allows the observer to visually recognize the image in a wider range than that of Example W1.

<例R1:対称軸の調整> <Example R1: Adjustment of axis of symmetry>

 例R1では、y-z平面に平行な断面における凸レンズ曲面の曲線の対称軸のy座標が、凸レンズ体のx-y平面に対する投影中心のy座標と一致する。+Z方向に反射する光の配光を算出した。それ以外の点について例R1のスクリーンは例W1に示すスクリーンに準ずる。 In Example R1, the y-coordinate of the axis of symmetry of the curve of the convex lens curved surface in the cross section parallel to the yz plane coincides with the y-coordinate of the projection center of the convex lens body with respect to the xy plane. The light distribution of the light reflected in the + Z direction was calculated. Other points The screen of Example R1 conforms to the screen shown in Example W1.

 図12は例R1に係るスクリーンの備える凸レンズ体の斜視図である。図13は+Z方向に散乱する光の配光を示す等照度グラフである。凸レンズ曲面で反射した映像光の拡散する範囲(H=-25°~+25°,V=-60°~-35°)を破線で示す。その範囲は図10に示したものよりも小さくなっている。例R1のスクリーンは、例W1より、観察者が映像を視認できる範囲が狭い。 FIG. 12 is a perspective view of a convex lens body included in the screen according to Example R1. FIG. 13 is an isoilluminance graph showing the distribution of light scattered in the + Z direction. The diffusion range (H = -25 ° to + 25 °, V = -60 ° to -35 °) of the image light reflected by the curved surface of the convex lens is indicated by a broken line. The range is smaller than that shown in FIG. The screen of Example R1 has a narrower range in which the observer can visually recognize the image than that of Example W1.

<例W3及び例W4:透明度の調整> <Example W3 and Example W4: Adjustment of transparency>

 スクリーンの透明度の調整について以下に述べる。透明度の指標として、スクリーンに対して垂直に入射する光に対するヘーズを測定する。JISK7136:2000によれば、ヘーズは、透過光のうち、前方散乱によって入射光の方向から0.044rad(2.5°)以上それた光の割合を百分率で表したものである。 The adjustment of screen transparency is described below. As an index of transparency, the haze for light incident perpendicular to the screen is measured. According to JISK7136: 2000, Haze represents the percentage of transmitted light that deviates by 0.044 rad (2.5 °) or more from the direction of incident light due to forward scattering.

 上記例W2のスクリーンのヘーズは33.5%であった。次に例W3及びW4において図5に示すようにy方向において隣接する凸レンズ体31の間にスクリーンの延在面と平行な平坦面42を設けた。それ以外の点について例W3及びW4のスクリーンは例W2に示すスクリーンに準ずる。例W3において平坦面の最も狭い部分の幅は10μmである。例W4において平坦面の最も狭い部分の幅は20μmである。平坦面が大きくなるほどヘーズが低下することでスクリーンの透明性が向上する。 The haze of the screen of the above example W2 was 33.5%. Next, in Examples W3 and W4, as shown in FIG. 5, a flat surface 42 parallel to the extending surface of the screen was provided between the convex lens bodies 31 adjacent to each other in the y direction. Other points The screens of Examples W3 and W4 conform to the screens shown in Example W2. In Example W3, the width of the narrowest portion of the flat surface is 10 μm. In Example W4, the width of the narrowest portion of the flat surface is 20 μm. The larger the flat surface, the lower the haze and the more transparent the screen.

Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026

<例W5:反射膜形成個所の限定> <Example W5: Limitation of reflective film formation location>

 例W5では反射膜を図3に示す高拡散面33のみに形成する。高拡散面33の背面、すなわち-Y方向に位置する低拡散面には反射膜を形成しない。それ以外の点について例W5のスクリーンは例W4に示すスクリーンに準ずる。 In Example W5, the reflective film is formed only on the high diffusion surface 33 shown in FIG. A reflective film is not formed on the back surface of the high diffusion surface 33, that is, the low diffusion surface located in the −Y direction. Regarding other points, the screen of Example W5 conforms to the screen shown in Example W4.

 図14は+Z方向に散乱する光の配光を示す等照度グラフである。例W2と異なり、偏角V+30°以上では暗くなる。グラフはスクリーンの正面以外からは映像が見えなくなることを示す。ヘーズは9.6%である。スクリーンの透明性が一層向上する。 FIG. 14 is an isoilluminance graph showing the distribution of light scattered in the + Z direction. Unlike Example W2, it becomes dark when the declination angle is V + 30 ° or more. The graph shows that the image cannot be seen except in front of the screen. The haze is 9.6%. The transparency of the screen is further improved.

<例W6、例W7及び例R2:反射率の調整> <Example W6, Example W7 and Example R2: Adjustment of reflectance>

 例W6、例W7及び例R2ではスクリーンの反射膜の反射率を調整する。+Z方向に反射する光の配光を算出する。映像光は3300Lmのプロジェクタから供給する。スクリーン上の投影サイズは40インチとする。 In Example W6, Example W7 and Example R2, the reflectance of the reflective film of the screen is adjusted. Calculate the light distribution of the light reflected in the + Z direction. Video light is supplied from a 3300 Lm projector. The projected size on the screen is 40 inches.

 上記例W2のスクリーンの高拡散面の反射率Rは30%である。例W2において(H,V)=(0,+10°)における拡散光の輝度は3.6cd/mである。H及びVについては図2及び図8参照。例W6のスクリーンの高拡散面の反射率Rは50%である。例W7のスクリーンの高拡散面の反射率Rは70%である。例R2のスクリーンの高拡散面の反射率は10%である。各例の輝度を表2に示す。それ以外の点について、これらの例のスクリーンは例W2に示すスクリーンに準ずる。高拡散面の反射率Rと透過率τの積が大きいほど、拡散光の輝度が向上する。したがって投影される映像が明るくなる。 The reflectance R of the high diffusion surface of the screen of the above example W2 is 30%. In Example W2, the brightness of the diffused light at (H, V) = (0, + 10 °) is 3.6 cd / m 2 . See FIGS. 2 and 8 for H and V. The reflectance R of the high diffusion surface of the screen of Example W6 is 50%. The reflectance R of the high diffusion surface of the screen of Example W7 is 70%. The reflectance of the high diffusion surface of the screen of Example R2 is 10%. The brightness of each example is shown in Table 2. Other than that, the screens of these examples are similar to the screens shown in Example W2. The larger the product of the reflectance R and the transmittance τ on the high diffusion surface, the higher the brightness of the diffused light. Therefore, the projected image becomes brighter.

Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027

<例W8:断面形状の調整> <Example W8: Adjustment of cross-sectional shape>

 図15は例W8に係るスクリーンの備える凸レンズ体の斜視図である。凸レンズ体のx-z平面に平行な断面上に表れる凸レンズ曲面のなす曲線において、曲率0.067μm-1、曲率半径15μm、コーニック定数K=-0.5である。凸レンズ面の対称軸のx座標が凸レンズ体のx-y平面に対する投影中心のx座標と一致する。凸レンズ曲面のなす曲線の斜度の最大値は54.7°である。それ以外の点について例W8のスクリーンは例W1に示すスクリーンに準ずる。 FIG. 15 is a perspective view of a convex lens body included in the screen according to Example W8. In the curve formed by the convex lens curved surface appearing on the cross section parallel to the xx plane of the convex lens body, the curvature is 0.067 μm -1 , the radius of curvature is 15 μm, and the conic constant K = −0.5. The x-coordinate of the axis of symmetry of the convex lens surface coincides with the x-coordinate of the projection center with respect to the xy plane of the convex lens body. The maximum value of the slope of the curve formed by the curved surface of the convex lens is 54.7 °. Regarding other points, the screen of Example W8 conforms to the screen shown in Example W1.

 図15に示す凸レンズ体のy-z平面に平行な断面上で凸レンズ曲面のなす曲線は、周期24μm、曲率0.067μm-1、曲率半径14.9μm、コーニック定数K=-1の放物線である。凸レンズ曲面のなす曲線の斜度の最大値は75.0°である。 The curve formed by the convex lens curved surface on the cross section parallel to the yz plane of the convex lens body shown in FIG. 15 is a parabola having a period of 24 μm, a curvature of 0.067 μm -1 , a radius of curvature of 14.9 μm, and a conic constant K = -1. .. The maximum value of the slope of the curve formed by the curved surface of the convex lens is 75.0 °.

 図16は+Z方向に散乱する光の配光を示す等照度グラフである。凸レンズ曲面で反射した映像光の拡散する範囲(H=-40°~+40°,V=-50°~+10°)を破線で示す。破線内にいる観察者は散乱した映像光を視認するが、スクリーン内を直進する光を視認しない。 FIG. 16 is an isoilluminance graph showing the light distribution of light scattered in the + Z direction. The diffusion range (H = -40 ° to + 40 °, V = -50 ° to + 10 °) of the image light reflected by the curved surface of the convex lens is indicated by a broken line. The observer inside the broken line sees the scattered video light, but does not see the light traveling straight through the screen.

<例W9:透明度の調整> <Example W9: Adjustment of transparency>

 図17は例W9に係るスクリーンの備える凸レンズ体の斜視図である。例W9では、図6に示すように平坦な低拡散面36を設けた。それ以外の点について例W9のスクリーンは例W8に示すスクリーンに準ずる。例W9において低拡散面36の斜度は40.1°である。進行する映像光は低拡散面36に直交する。 FIG. 17 is a perspective view of a convex lens body included in the screen according to Example W9. In Example W9, a flat low diffusion surface 36 is provided as shown in FIG. Regarding other points, the screen of Example W9 conforms to the screen shown in Example W8. In Example W9, the slope of the low diffusion surface 36 is 40.1 °. The traveling video light is orthogonal to the low diffusion surface 36.

 図16は+Z方向に散乱する光の配光を示す等照度グラフである。(H,V)=(0°、+75°)付近に反射していた強い光が減少する。したがって、この方向から映像を盗み見ることができなくなる。 FIG. 16 is an isoilluminance graph showing the light distribution of light scattered in the + Z direction. The strong light reflected near (H, V) = (0 °, + 75 °) is reduced. Therefore, it becomes impossible to eavesdrop on the image from this direction.

<例W10、例W11及び例R3:z変位モザイク> <Example W10, Example W11 and Example R3: z displacement mosaic>

 図7に示すように高拡散面33にz変位モザイクを設けたスクリーンを作製する。y-z平面に平行な断面を入射面とした時の映像光Imの屈折角θ=40°である。斜度α=70°である。下記数式Vよりm=1の時、z変位の最大値Smax=1.42μmである。これを例W10のスクリーンとした。またm=2の時、Smax=2.85μmである。これを例W10のスクリーンとした。それ以外の点について各例のスクリーンは例W2に示すスクリーンに準ずる。例R3のスクリーンは例W2のスクリーンと同一とした。 As shown in FIG. 7, a screen having a z-displacement mosaic on the high diffusion surface 33 is produced. The refraction angle θ = 40 ° of the image light Im when the cross section parallel to the yz plane is used as the incident surface. The slope α = 70 °. From the following mathematical formula V, when m = 1, the maximum value of z displacement S max = 1.42 μm. This was used as the screen of Example W10. When m = 2, S max = 2.85 μm. This was used as the screen of Example W10. Other than that, the screen of each example conforms to the screen shown in Example W2. The screen of Example R3 was the same as the screen of Example W2.

数式V:

Figure JPOXMLDOC01-appb-M000028
Formula V:
Figure JPOXMLDOC01-appb-M000028

m:1又は2
λ:映像光の波長
n:波長λにおける凸レンズ体31の屈折率
α:高拡散面33の任意の高さにおける斜度
θ:映像光Imの角度θ、θ<90°
m: 1 or 2
λ: Wavelength n of image light: Refraction coefficient α of convex lens body 31 at wavelength λ: Inclination θ at arbitrary height of high diffusion surface 33: Angle θ of image light Im, θ <90 °

 図7に示すように観察者おObは+Z方向から映像を視認する。映像光に乗せて白一色の画像を投影する。例W10及び例W11において、映像中に色割れがなかった。例R3において、白一色の映像中に虹色の模様が混ざった。 As shown in FIG. 7, the observer Ob visually recognizes the image from the + Z direction. A solid white image is projected on the image light. In Example W10 and Example W11, there was no color cracking in the image. In Example R3, a rainbow-colored pattern was mixed in the white-colored image.

Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029

 +は投影された白一色の映像に虹色の模様が混ざらないことを示す。-は投影された白一色の映像に虹色の模様が混ざることを示す。 + Indicates that the projected white image does not mix with the rainbow-colored pattern. -Indicates that a rainbow-colored pattern is mixed in the projected white-colored image.

 本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 The present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the spirit.

 この出願は、2021年1月14日に出願された日本出願特願2021-3917を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2021-3917 filed on January 14, 2021, and incorporates all of its disclosures herein.

25 スクリーン、 27-28 板材、 29 映像光源、 30 散乱層、 31 凸レンズ体、 32 基材、 33 高拡散面、 34 中心軸、 35 対称軸、 36 低拡散面、 37 第1層、 38 第2層、 39 凹レンズ体、 40 散乱層、 42 平坦面、 43 領域、 Ab 環境光、 H 偏角、 Im 映像光、 Ob 観察者、 Px ピッチ、 Py ピッチ、 Rf 反射膜、 Sc 散乱光、 Smax z変位の最大値、 Sx 区間、 Tm 透過光、 V 偏角、 α 斜度、 β 斜度、 θ z軸と映像光とのなす角 25 screen, 27-28 plate material, 29 image light source, 30 scattering layer, 31 convex lens body, 32 base material, 33 high diffusion surface, 34 central axis, 35 symmetry axis, 36 low diffusion surface, 37 first layer, 38 second Layer, 39 concave lens body, 40 scattering layer, 42 flat surface, 43 regions, Ab ambient light, H deflection angle, Im image light, Ob observer, Px pitch, Py pitch, Rf reflective film, Sc scattered light, S max z Maximum value of displacement, Sx interval, Tm transmitted light, V deflection angle, α slope, β slope, θ The angle between the z axis and the image light

Claims (14)

マイクロミラーアレイが包埋されてなる透過型スクリーンであって、
前記透過型スクリーンは、背面側の第1層と正面側の第2層とを備え、
前記第1層は、前記透過型スクリーンの正面側にレンズ曲面を向けているレンズ体のアレイを備え、
前記レンズ体は、前記レンズ曲面からなる高拡散面と、前記レンズ曲面よりも曲率の小さな低拡散面とが背中合わせになった非対称構造を有し、
 少なくとも前記高拡散面上には、入射した光の一部を透過し、一部を反射する反射膜が形成されることで前記マイクロミラーアレイが形成され、
 前記第2層は、前記透過型スクリーンの背面側に向かって前記レンズ体の前記アレイを覆う反転形状のアレイを備え、
 前記透過型スクリーンの背面側から斜めに投射される映像光は、前記第1層の背面側の界面で屈折し、さらに前記高拡散面で反射し、さらに前記第2層の正面側の界面で屈折するとともに前記透過型スクリーンの正面側に向かって出射する、
 透過型スクリーン。
A transmissive screen in which a micromirror array is embedded.
The transmissive screen includes a first layer on the back side and a second layer on the front side.
The first layer includes an array of lens bodies with the curved surface of the lens facing the front side of the transmissive screen.
The lens body has an asymmetric structure in which a high diffusion surface formed of the lens curved surface and a low diffusion surface having a curvature smaller than that of the lens curved surface are back-to-back.
The micromirror array is formed by forming a reflective film that transmits a part of the incident light and reflects a part of the incident light on at least the high diffusion surface.
The second layer includes an inverted array that covers the array of the lens body toward the back side of the transmissive screen.
The image light obliquely projected from the back side of the transmissive screen is refracted at the interface on the back side of the first layer, further reflected on the highly diffused surface, and further at the interface on the front side of the second layer. Refracts and emits toward the front side of the transmissive screen.
Transparent screen.
 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、
 前記レンズ体は、x軸に対して平行に配列されており、
 x軸方向に配列された前記レンズ体の群において、
y-z平面に平行な断面における前記高拡散面のサグ量Z(Y)は、
同一の曲線で表されるとともに、数式Iy又は数式IIyで表される、
 請求項1に記載の透過型スクリーン。

数式Iy:
Figure JPOXMLDOC01-appb-M000001

数式IIy:
Figure JPOXMLDOC01-appb-M000002

C:y-z平面に平行な面における、前記高拡散面のレンズ曲率
K:コーニック定数
Y:y-z平面に平行な面における、前記高拡散面のために再設定したy座標
When an orthogonal coordinate system consisting of an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the plane is set,
The lens bodies are arranged parallel to the x-axis.
In the group of lens bodies arranged in the x-axis direction,
The sag amount Z (Y) of the high diffusion surface in the cross section parallel to the yz plane is
It is represented by the same curve and is represented by the formula Iy or the formula IIy.
The transmissive screen according to claim 1.

Formula Iy:
Figure JPOXMLDOC01-appb-M000001

Formula IIy:
Figure JPOXMLDOC01-appb-M000002

C: Lens curvature of the high diffusion surface in a plane parallel to the yz plane K: Conic constant Y: y coordinate reset for the high diffusion surface in a plane parallel to the yz plane
 前記レンズ体は、y軸に対して平行に配列されており、
 y軸方向に配列された前記レンズ体の群において、
 x-z平面に平行な断面におけるサグ量Z(X)は、
 同一の曲線で表されるとともに、数式Ix又は数式IIxで表される、
 請求項2に記載の透過型スクリーン。

数式Ix:
Figure JPOXMLDOC01-appb-M000003

数式IIx:
Figure JPOXMLDOC01-appb-M000004

B:x-z平面に平行な面における、前記高拡散面のレンズ曲率
J:コーニック定数
X:x-z平面に平行な面における、前記高拡散面のために再設定したx座標
The lens bodies are arranged parallel to the y-axis.
In the group of lens bodies arranged in the y-axis direction,
The sag amount Z (X) in the cross section parallel to the xz plane is
It is represented by the same curve and is represented by the formula Ix or the formula IIx.
The transmissive screen according to claim 2.

Formula Ix:
Figure JPOXMLDOC01-appb-M000003

Formula IIx:
Figure JPOXMLDOC01-appb-M000004

B: Lens curvature of the high diffusion plane in a plane parallel to the xz plane J: Conic constant X: x coordinates reset for the high diffusion plane in a plane parallel to the xz plane
 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、
 前記レンズ体は、x軸に対して平行に配列されており、
 x軸方向に配列した前記レンズ体の群において、
 y-z平面に平行な面にて前記高拡散面を切断して現れる曲線の、前記透過型スクリーンの前記延在面に対する斜度をα、
 前記第1層の背面側の界面で屈折した前記映像光の、y-z平面に平行な面における前記映像光と前記z軸とのなす角をθとすると、
θが0°以上40°未満の時にαは数式IIIを満たし、
θが40°以上90°未満の時にαは数式IVを満たす、
 請求項1~3のいずれかに記載の透過型スクリーン。

数式III:
Figure JPOXMLDOC01-appb-M000005

数式IV:
Figure JPOXMLDOC01-appb-M000006
θ:y-z平面において、第1層内を進行する映像光Imがz軸に対してなす角度
α:y-z平面において、前記高拡散面の任意の高さにおける斜度
When an orthogonal coordinate system consisting of an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the plane is set,
The lens bodies are arranged parallel to the x-axis.
In the group of lens bodies arranged in the x-axis direction,
The slope of the curve appearing by cutting the high diffusion surface on a plane parallel to the yz plane with respect to the extending surface of the transmissive screen is α,
Let θ be the angle between the image light and the z-axis on the plane parallel to the yz plane of the image light refracted at the interface on the back surface side of the first layer.
When θ is greater than or equal to 0 ° and less than 40 °, α satisfies Equation III.
When θ is 40 ° or more and less than 90 °, α satisfies Equation IV.
The transmissive screen according to any one of claims 1 to 3.

Formula III:
Figure JPOXMLDOC01-appb-M000005

Formula IV:
Figure JPOXMLDOC01-appb-M000006
In the θ: yz plane, the angle formed by the image light Im traveling in the first layer with respect to the z axis α: In the yz plane, the slope at an arbitrary height of the high diffusion surface.
 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、
 前記レンズ体は、x軸に対して平行に配列されており、
 y軸方向に互いに隣り合う前記レンズ体の間に、x-y平面に平行な平坦面が形成されることを特徴とする、
 請求項1~4のいずれかに記載の透過型スクリーン。
When an orthogonal coordinate system consisting of an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the plane is set,
The lens bodies are arranged parallel to the x-axis.
A flat surface parallel to the xy plane is formed between the lens bodies adjacent to each other in the y-axis direction.
The transmissive screen according to any one of claims 1 to 4.
 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、
 前記レンズ体は、x軸に対して平行に配列されており、
 前記低拡散面は平坦であり、
 y-z平面に平行な断面にて前記低拡散面を切断して現れる直線と前記映像光とが略直交することを特徴とする、
 請求項1~5のいずれかに記載の透過型スクリーン。
When an orthogonal coordinate system consisting of an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the plane is set,
The lens bodies are arranged parallel to the x-axis.
The low diffusion surface is flat and
It is characterized in that a straight line appearing by cutting the low diffusion surface in a cross section parallel to the yz plane and the image light are substantially orthogonal to each other.
The transmissive screen according to any one of claims 1 to 5.
 前記透過型スクリーンの延在面に平行なx-y平面と、これに直交するz軸とからなる直交座標系を設定した時、
 前記レンズ体は、x軸に対して平行に配列されているとともに、y軸に対して平行に配列されており、
 x軸方向に配列された前記レンズ体の群において、前記高拡散面をy-z平面に平行な断面で切断して現れる曲線は同一であり、
 y軸方向に配列された前記レンズ体の群において、前記高拡散面をx-z平面に平行な断面で切断して現れる曲線は同一であり、
 前記高拡散面はz軸方向の変位にモザイクが生じており、
前記高拡散面で反射した光がx-y平面上で隣り合う前記レンズ体の間で位相差を生じることを特徴とする、
 請求項1~6のいずれかに記載の透過型スクリーン。
When an orthogonal coordinate system consisting of an xy plane parallel to the extending surface of the transmissive screen and a z-axis orthogonal to the plane is set,
The lens bodies are arranged parallel to the x-axis and parallel to the y-axis.
In the group of the lens bodies arranged in the x-axis direction, the curves appearing by cutting the high diffusion surface in a cross section parallel to the yz plane are the same.
In the group of the lens bodies arranged in the y-axis direction, the curves appearing by cutting the high diffusion surface in a cross section parallel to the xz plane are the same.
The high diffusion surface has a mosaic in the displacement in the z-axis direction.
The light reflected by the high diffusion surface causes a phase difference between the lens bodies adjacent to each other on the xy plane.
The transmissive screen according to any one of claims 1 to 6.
 前記高拡散面のz軸方向に生じる変位に関して、
前記変位は0から数式Vで表されるSmaxまでの範囲でランダムに決まる、
 請求項7に記載の透過型スクリーン。

数式V:
Figure JPOXMLDOC01-appb-M000007
m:1又は2
λ:映像光の波長
n:レンズ体の波長λにおける屈折率
α:前記高拡散面をy-z平面にて切断して現れる曲線において、前記透過型スクリーンの前記延在面に対する前記高拡散面の任意の高さにおける斜度α
θ:y-z平面において、第1層内を進行する映像光Imがz軸に対してなす角度
Regarding the displacement of the high diffusion surface in the z-axis direction
The displacement is randomly determined in the range from 0 to S max represented by the formula V.
The transmissive screen according to claim 7.

Formula V:
Figure JPOXMLDOC01-appb-M000007
m: 1 or 2
λ: Wavelength n of image light: Refractive index α at wavelength λ of the lens body: In a curve appearing by cutting the high diffusion surface in the yz plane, the high diffusion surface with respect to the extending surface of the transmission screen. Inclination α at any height of
θ: The angle formed by the image light Im traveling in the first layer with respect to the z-axis in the yz plane.
 前記高拡散面の反射率が前記低拡散面の反射率よりも高いことを特徴とする、
 請求項1~8のいずれかに記載の透過型スクリーン。
It is characterized in that the reflectance of the high diffusion surface is higher than the reflectance of the low diffusion surface.
The transmissive screen according to any one of claims 1 to 8.
 前記反射膜の反射率をR(%)、透過率をτ(%)としたとき、
Rとτとの積が10(%)以上25(%)以下である、
 請求項1~9のいずれかに記載の透過型スクリーン。
When the reflectance of the reflective film is R (%) and the transmittance is τ (%),
The product of R and τ is 10 (%) or more and 25 (%) or less,
The transmissive screen according to any one of claims 1 to 9.
 JIS K7136:2000に準拠して計測されるヘーズ値が40%未満である、
 請求項1~10のいずれかに記載の透過型スクリーン。
The haze value measured according to JIS K7136: 2000 is less than 40%.
The transmissive screen according to any one of claims 1 to 10.
 前記第1層は、凸レンズ体である前記レンズ体のアレイからなるとともに、前記反射膜よりも透明であり、
 前記第2層は、前記凸レンズ体を覆う凹レンズ体のアレイからなるとともに、前記反射膜よりも透明である、
 請求項1~11のいずれかに記載の透過型スクリーン。
The first layer is composed of an array of the lens bodies which are convex lens bodies, and is more transparent than the reflective film.
The second layer is composed of an array of concave lens bodies that cover the convex lens body, and is more transparent than the reflective film.
The transmissive screen according to any one of claims 1 to 11.
 前記第1層と前記第2層とは、屈折率が等しい、又は同一の材質からなる、
 請求項1~12のいずれかに記載の透過型スクリーン。
The first layer and the second layer are made of materials having the same or the same refractive index.
The transmissive screen according to any one of claims 1 to 12.
 請求項1~13のいずれかに記載の透過型スクリーンを有する窓と、
 前記映像光を前記窓に投射する投影機と、を備える、
 乗り物又は構造物。
A window having a transmissive screen according to any one of claims 1 to 13.
A projector that projects the image light onto the window.
Vehicle or structure.
PCT/JP2022/001003 2021-01-14 2022-01-13 Transmissive screen Ceased WO2022154060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022575633A JPWO2022154060A1 (en) 2021-01-14 2022-01-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-003917 2021-01-14
JP2021003917 2021-01-14

Publications (1)

Publication Number Publication Date
WO2022154060A1 true WO2022154060A1 (en) 2022-07-21

Family

ID=82448497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001003 Ceased WO2022154060A1 (en) 2021-01-14 2022-01-13 Transmissive screen

Country Status (2)

Country Link
JP (1) JPWO2022154060A1 (en)
WO (1) WO2022154060A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708435A (en) * 1986-10-30 1987-11-24 Mitsubishi Rayon Co., Ltd. Rear projection screen
JP2005292679A (en) * 2004-04-05 2005-10-20 Aterio Design Kk Micromirror screen
JP2006162830A (en) * 2004-12-06 2006-06-22 Seiko Epson Corp Screen and image display device
JP2010539525A (en) * 2007-09-10 2010-12-16 マイクロビジョン,インク. Embedded numerical aperture expander with permeable characteristics
JP2013088580A (en) * 2011-10-17 2013-05-13 Arisawa Mfg Co Ltd Transmissive screen and rear projection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708435A (en) * 1986-10-30 1987-11-24 Mitsubishi Rayon Co., Ltd. Rear projection screen
JP2005292679A (en) * 2004-04-05 2005-10-20 Aterio Design Kk Micromirror screen
JP2006162830A (en) * 2004-12-06 2006-06-22 Seiko Epson Corp Screen and image display device
JP2010539525A (en) * 2007-09-10 2010-12-16 マイクロビジョン,インク. Embedded numerical aperture expander with permeable characteristics
JP2013088580A (en) * 2011-10-17 2013-05-13 Arisawa Mfg Co Ltd Transmissive screen and rear projection device

Also Published As

Publication number Publication date
JPWO2022154060A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US7686463B2 (en) Viewing-angle control sheet
TWI581049B (en) Projection screen
EP3553588A1 (en) System for use in imageing in air
KR102255145B1 (en) Semi-transmissive reflective sheet, light guide plate, and display device
CN100449401C (en) Transmissive screen and projection display device
JP6717051B2 (en) Screen, video display
US10330943B2 (en) Image display device
US7990614B2 (en) Projection screen
JP2016018195A (en) Picture display system and picture display method
JP2018120008A (en) Screen, video display device
JP2021177252A (en) Screen and video display system
JP2004170862A (en) Fresnel lens
WO2020233528A1 (en) Head-up display device and motor vehicle
US20230011557A1 (en) Display device
US11480864B2 (en) Reflection-type transparent screen, and image display system
US20240319429A1 (en) Light guide and display screen using such light guide
WO2022154060A1 (en) Transmissive screen
CN116564181A (en) Backlight module and display device
JP7322511B2 (en) Transmissive screen, image display device
WO2022153988A1 (en) Reflective screen
JP2020134677A (en) Reflective screen, optical member, image display device
TWI807671B (en) Light source module and electrophoretic display device
JP7001132B2 (en) Transmissive screen, rear projection display device
JP2014022226A (en) Light guide plate
JP7487549B2 (en) Reflective screen, image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739465

Country of ref document: EP

Kind code of ref document: A1