[go: up one dir, main page]

WO2024154388A1 - Coil component and filter circuit - Google Patents

Coil component and filter circuit Download PDF

Info

Publication number
WO2024154388A1
WO2024154388A1 PCT/JP2023/034862 JP2023034862W WO2024154388A1 WO 2024154388 A1 WO2024154388 A1 WO 2024154388A1 JP 2023034862 W JP2023034862 W JP 2023034862W WO 2024154388 A1 WO2024154388 A1 WO 2024154388A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
lead wire
lead
coil component
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2023/034862
Other languages
French (fr)
Japanese (ja)
Inventor
淳 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2024571614A priority Critical patent/JPWO2024154388A1/ja
Publication of WO2024154388A1 publication Critical patent/WO2024154388A1/en
Anticipated expiration legal-status Critical
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/075Ladder networks, e.g. electric wave filters

Definitions

  • This disclosure relates to a coil component and a filter circuit that implements the coil component.
  • Filter circuits used for noise suppression include, for example, EMI (Electro-Magnetic Interference) removal filters, which allow necessary components of the current flowing through a conductor to pass through, while removing unnecessary components.
  • EMI Electro-Magnetic Interference
  • filter circuits use capacitors, which are capacitance elements, it is known that the noise suppression effect is reduced by the equivalent series inductance (ESL), which is the parasitic inductance of the capacitor.
  • ESL equivalent series inductance
  • Patent Document 2 discloses a coil component with four terminals as an example of a coil component.
  • the objective of this disclosure is to provide a coil component with high heat dissipation performance and a filter circuit that implements the coil component.
  • the coil component includes a housing having a pair of first and second main surfaces facing each other and four side surfaces connecting the first and second main surfaces, a first coil disposed inside the housing and disposed substantially parallel to the first main surfaces, and a second coil disposed inside the housing such that an opening of the first coil overlaps with an opening when viewed from the direction of the first main surfaces.
  • the coil component includes a first lead wire and a second lead wire respectively connected to ends of the first coil, and a third lead wire and a fourth lead wire respectively connected to ends of the second coil.
  • the second lead wire and the fourth lead wire are electrically connected.
  • the area of at least one of the second lead wire and the fourth lead wire is larger than the area of the first lead wire and the third lead wire.
  • the coil component includes a housing having a pair of first and second main surfaces facing each other and four side surfaces connecting the first and second main surfaces, a first coil disposed inside the housing and disposed substantially parallel to the first main surfaces, and a second coil disposed inside the housing such that an opening of the first coil overlaps with an opening when viewed from the direction of the first main surfaces.
  • the coil component includes a first lead wire and a second lead wire respectively connected to ends of the first coil, and a third lead wire and a fourth lead wire respectively connected to ends of the second coil.
  • the second lead wire and the fourth lead wire are electrically connected.
  • the distance between the first lead wire and the third lead wire is closer than the distance between the second lead wire and the fourth lead wire.
  • a filter circuit includes the coil component described above and a capacitor connected to the coil component.
  • the second and fourth drawers are electrically connected, and the area of at least one of the second and fourth drawers is larger than the area of the first and third drawers, thereby improving heat dissipation performance.
  • FIG. 2 is a perspective view of a coil component according to the first embodiment.
  • FIG. 2 is a diagram showing the coil component according to the first embodiment turned upside down.
  • 1 is a circuit diagram of a filter circuit including a coil component according to a first embodiment
  • FIG. 11 is a perspective view of a coil component according to a second embodiment.
  • FIG. 11 is an exploded view of a coil according to a second embodiment.
  • FIG. 11 is a perspective view of a coil component according to a third embodiment.
  • FIG. 13 is a perspective view of a coil component according to a fourth embodiment.
  • FIG. 13 is an exploded view of a coil according to a fourth embodiment.
  • FIG. 13 is a perspective view of a coil component according to a fifth embodiment.
  • FIG. 13 is an exploded view of a coil according to a fifth embodiment.
  • FIG. 13 is a perspective view of a coil component according to a sixth embodiment.
  • Fig. 1A is a perspective view of the coil component 1 according to the first embodiment.
  • Fig. 1B is a view of the coil component according to the first embodiment turned upside down.
  • Fig. 2 is a circuit diagram of a filter circuit 100 including the coil component 1 according to the first embodiment.
  • the X-axis direction is the left-right direction of the coil component 1
  • the Y-axis direction is the front-rear direction of the coil component 1
  • the Z-axis direction is the up-down direction of the coil component 1.
  • Coil component 1 is, for example, a transformer coil mounted in a filter circuit 100 used to reduce noise in power lines. As described below, coil component 1 magnetically couples two coils in order to cancel the parasitic inductance of a capacitor mounted in the filter circuit. Furthermore, coil component 1 employs a structure in which the terminals of the two coils are used to form a third coil.
  • the coil component 1 includes a coil portion 2a (first coil) and a coil portion 3a (second coil) in a housing 4.
  • the coil portion 2a is also referred to as coil L1
  • the coil portion 3a is also referred to as coil L2.
  • the coils L1 and L2 are formed from a metal plate, for example, copper or an alloy of copper and other metals.
  • the coils L1 and L2 formed from the metal plate are covered with an insulating material (not shown).
  • the insulating material covering the coils L1 and L2 is a resin such as polyimide imide or epoxy. Note that the insulating material does not need to cover all surfaces of the coils L1 and L2.
  • the coil may be formed from multiple layers.
  • the coil portion 2a has one end connected to a lead wire 2b (first lead wire) and the other end connected to a lead wire 2d (second lead wire). Furthermore, the lead wire 2b includes an electrode 2c that functions as an electrode, and the lead wire 2d includes an electrode 2e that functions as an electrode.
  • the coil portion 2a and the lead wires 2b and 2d are formed as a single first conductor 2. Note that the lead wires 2b and 2d are also terminals extending from one end of the coil portion 2a, and are therefore also referred to as terminals 2b and 2d.
  • the coil portion 3a has one end connected to a lead wire 3b (third lead wire) and the other end connected to a lead wire 3d (fourth lead wire). Furthermore, the lead wire 3b includes an electrode 3c that functions as an electrode, and the lead wire 3d includes an electrode 3e that functions as an electrode.
  • the coil portion 3a and the lead wires 3b and 3d are formed as a single second conductor 3.
  • the lead wires 3b and 3d are also terminals extending from one end of the coil portion 3a, and are therefore also referred to as terminals 3b and 3d.
  • the first conductor 2 including the coil L1 and the second conductor 3 including the coil L2 are formed by bending a pattern punched out from a single metal plate.
  • the bent portion between the coil L1 (coil portion 2a) and the lead wires 2b, 2d, and the bent portion between the electrodes 2c, 2e and the other areas of the lead wires 2b, 2d are formed by bending, and therefore have a substantially right-angle structure with a radius of curvature.
  • the bent portion between the coil L2 (coil portion 3a) and the lead wires 3b, 3d, and the bent portion between the electrodes 3c, 3e and the other areas of the lead wires 3b, 3d are formed by bending, and therefore have a substantially right-angle structure with a radius of curvature. In this way, an arc with a certain radius is formed at the bent portion.
  • the first conductor 2 and the second conductor 3 may be formed of one or more wires, and the wires may be bent in the same manner to form an arc with a certain radius at the bent portion.
  • Coils L1 and L2 are arranged so that their openings overlap.
  • Figure 1A shows an example in which the openings almost overlap, but as long as the openings are within the range of magnetic field coupling, they may be offset from each other, and it is sufficient that at least 50% of one opening overlaps.
  • Coils L1 and L2 generate a magnetic field in coil L1 when a current flows from electrode 2c of first conductor 2 in the direction indicated by the arrow (clockwise), and a magnetic field in the same direction as the magnetic field of coil L1 is generated in coil L2 when a current flows from electrode 2e to coil L2 from electrode 3e of second conductor 3.
  • Coils L1 and L2 are electrically connected by connecting the small gap between electrodes 2e and 3e with a connecting member (not shown), but electrodes 2e and 3e may also be connected by a mounting board without using a connecting member.
  • Coil component 1 becomes a third coil L3 by flowing a current in the direction indicated by the arrow (counterclockwise) through the opening formed by coil portion 2a (coil L1), coil portion 3a (coil L2), lead wire 2d, electrode 2e, connection member 5, electrode 3e, and lead wire 3d, generating a magnetic field.
  • the housing 4 is made of a molded resin for fixing the coils L1 and L2.
  • the molded resin is made of one of epoxy resins with added silica filler, silicone resin, liquid crystal polymer, or various resins mixed with metal magnetic material.
  • a rectangular parallelepiped shape is shown in FIG. 1A, as long as the second main surface, which is the mounting surface, and the coil surface are approximately parallel, the side surfaces may be inclined, and for example, the shape may be a trapezoid in which the area of the second main surface is larger than that of the first main surface.
  • the filter circuit 100 is, for example, an EMI removal filter, and is a third-order T-type LC filter circuit.
  • the electrode 2c is connected to a power source (not shown), and the electrode 3c is connected to a circuit (not shown) such as a DC/DC converter or a power supply module.
  • the filter circuit 100 passes necessary components of the current flowing from the power source to the circuit and removes unnecessary components. Specifically, a direct current is passed through the filter circuit 100, and high-frequency noise contained in the direct current is dropped to GND through the capacitor C1.
  • the capacitor C1 which is a capacitance element, has an equivalent series inductance ESL (La), which prevents high-frequency noise from passing through, and the noise removal performance is deteriorated.
  • This filter circuit 100 uses a negative inductance generated in series in the capacitor C1 due to the mutual inductance generated by the magnetic coupling of the two coils to cancel the ESL (La) of the capacitor, thereby maintaining high noise removal performance.
  • the filter circuit 100 will be described using a third-order T-type LC filter circuit, but coil components of a similar configuration can also be applied to a fifth-order T-type LC filter circuit or a higher-order T-type LC filter circuit.
  • the filter circuit 100 includes a coil component 1 and a capacitor C1.
  • the coil component 1 includes electrodes 2c, 3c, an intermediate terminal T (electrodes 2e, 3e, connecting member), a coil L1, and a coil L2.
  • the capacitor C1 has one end connected to the intermediate terminal T and the other end connected to the GND wiring.
  • the capacitor C1 may be a multilayer ceramic capacitor mainly made of BaTiO 3 (barium titanate), a multilayer ceramic capacitor mainly made of other materials, or another type of capacitor such as an aluminum electrolytic capacitor.
  • the capacitor C1 has an inductor La as a parasitic inductance (equivalent series inductance (ESL)), and is equivalent to a circuit configuration in which the inductor La is connected in series to the capacitor C1a.
  • the capacitor C1 may also be equivalent to a circuit configuration in which a parasitic resistance (equivalent series resistance (ESR)) is connected in series to the inductor La and the capacitor C1a.
  • coils L1 and L2 are connected to the intermediate terminal T. Coils L1 and L2 are magnetically coupled and have mutual inductance. A negative inductance component of the same magnitude as the mutual inductance is generated between the intermediate terminal T and the capacitor C1. This negative inductance component can be used to cancel out the parasitic inductance (inductor La) of the capacitor C1, making the parasitic inductance component of the capacitor C1 appear smaller.
  • the filter circuit 100 which is composed of the capacitor C1, coil L1, and coil L2, can cancel out the parasitic inductance of the capacitor C1 with the negative inductance component due to the mutual inductance between coils L1 and L2, thereby suppressing the decrease in the noise suppression effect in the high frequency band caused by the parasitic inductance of the capacitor C1 and improving the noise suppression effect of the filter circuit 100.
  • coil component 1 instead of simply drawing out wiring from intermediate terminal T connecting coils L1 and L2 and connecting it to capacitor C1, as shown in FIG. 1A, a coil (coil L3) is formed using terminals 2d, 3d, and connecting members and connected to capacitor C1. Specifically, of terminals 2d and 3d, electrodes 2e and 3e on the second main surface are electrically connected to wiring on the board, and connected to capacitor C1 which is electrically connected to the same wiring.
  • coil L3 itself, which is connected to capacitor C1 is also coupled as part of coils L1 and L2, and therefore contributes to the negative inductance component due to the mutual inductance between coils L1 and L2, and does not reduce the negative inductance component.
  • the intermediate terminal T that connects coils L1 and L2 is a coil (coil L3) that is composed of terminals 2d, 3d, and connecting member 5, so the three coils L1 to L3 have a positive coupling coefficient.
  • coil component 1 electrodes 2c and 3c are connected to the power line. Heat generated from the coil near electrodes 2c and 3c connected to the power line is dissipated through the power line. In contrast, when coil component 1 is used as a filter circuit, heat generated from the coil near electrodes 2e and 3e connected to the capacitor is not properly dissipated like the power line because it is connected to wiring that does not have sufficient heat dissipation measures, unlike the power line which has heat dissipation measures.
  • the connecting member between electrode 2e and electrode 3e may be on the board to be mounted, not on coil component 1.
  • the shortest distance of the drawers is defined as the shortest distance in the direction in which each drawer extends (Y-axis direction in the figure) on the second main surface.
  • the drawers are spaced apart and opposed to each other in the Y-axis direction, but they may also be opposed to each other in the X-axis direction. In this case, the shortest distance in the extension direction of the drawers is also compared.
  • Fig. 3A is a perspective view of a coil component 1A according to the second embodiment.
  • Fig. 3B is an exploded view of the coil according to the second embodiment. Note that in the coil component 1A shown in the second embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.
  • the first conductor 2 has wires 2b and 2d drawn from the coil L1 out the rear surface of the housing 4, with wire 2b being arranged on the rear surface of the housing 4 and wire 2d being arranged from the rear surface to the right side of the housing 4.
  • the second conductor 3 has wires 3b and 3d drawn from the coil L2 out the front surface of the housing 4, with wire 3b being arranged on the front surface of the housing 4 and wire 3d being arranged from the front surface to the right side of the housing 4.
  • the area of the lead wires 2d and 3d is larger than that of the lead wires 2b and 3b.
  • the area of the lead wires extending from the bent portion connected to the coil portion 2a or 3a to the second main surface when viewed in the thickness direction of the coil is the area of the lead wire. This allows the area for dissipating heat generated by the lead wires 2d and 3d to be large, thereby improving the heat dissipation performance of the coil component 1A.
  • the cross-sectional area of the end portion of the lead wires 2d and 3d facing the second main surface is larger than the cross-sectional area of the end portion of the lead wires 2d and 3d facing the second main surface. This increases the area of connection between the lead wires 2d and 3d and the mounting board, improving the heat dissipation performance.
  • the length in the extension direction may be changed, or the area may be changed by changing the width of the coil.
  • the first conductor 2 is configured such that the lead wires 2b and 2d expand after the coil is closed at the lead wires 2b and 2d.
  • the second conductor 3 is configured such that the lead wires 3b and 3d expand after the coil is closed at the lead wires 3b and 3d. This allows the coil component 1A to reduce the effects of parasitic inductance and parasitic capacitance of the electrode portion caused by the lead wires 2b and 2d, and the lead wires 3b and 3d being too close to each other.
  • the positions of lead wires 2b, 2d, 3b, and 3d can be arranged as shown in FIG. 3A, which allows for improved freedom of wiring on the substrate on which it is mounted, and also allows for a larger area of the electrodes formed on the side of the housing, improving heat dissipation.
  • the electrodes extending from lead wires 2b, 2d, 3b, and 3d may be arranged on the underside. Any of the multiple electrodes may be arranged on the underside and any may be arranged on the side. Note that, although the diagram shows them at right angles as a schematic diagram, the bent portion has an arc shape because it is formed by bending.
  • Fig. 4 is a perspective view of a coil component 1B according to the third embodiment. Note that in the coil component 1B shown in the third embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.
  • the first conductor 2 has lead wire 2b from coil L1 drawn out from the rear surface of the housing 4, with the end of lead wire 2b located on the rear surface, lead wire 2d drawn out from the right side surface of the housing 4, with the end of lead wire 2d located on the right side surface of the housing 4.
  • the second conductor 3 has lead wire 3b from coil L2 drawn out from the front surface of the housing 4, with the end of lead wire 3b located on the front surface of the housing 4, lead wire 3d drawn out from the right side surface of the housing 4, with the end of lead wire 3d located on the right side surface of the housing 4.
  • the area of the lead wires 2d, 3d is larger than the area of the lead wires 2b, 3b. This allows a larger area for heat generated in the lead wires 2d and 3d to dissipate, improving the heat dissipation performance of the coil component 1B. Furthermore, the cross-sectional area of the ends of the lead wires 2d, 3d facing the second main surface is larger than the cross-sectional area of the ends of the lead wires 2d, 3d facing the second main surface. This increases the area of connection between the lead wires 2d and 3d and the mounting board, improving heat dissipation.
  • the first conductor 2 is configured such that the lead wires 2b and 2d expand after the coil is closed at the lead wires 2b and 2d.
  • the second conductor 3 is configured such that the lead wires 3b and 3d expand after the coil is closed at the lead wires 3b and 3d. This allows the coil component 1A to reduce the effects of parasitic inductance and parasitic capacitance of the electrode portion caused by the lead wires 2b and 2d, and the lead wires 3b and 3d being too close to each other.
  • the positions of lead wires 2b, 2d, 3b, and 3d can be arranged as shown in FIG. 4, improving the degree of freedom of wiring on the substrate on which it is mounted.
  • the electrodes extending from lead wires 2b, 2d, 3b, and 3d may be arranged on the underside. Any of the multiple electrodes may be arranged on the underside and any of the electrodes may be arranged on the side. Note that, although the diagram shows them at right angles as a schematic diagram, the bent portion has an arc shape because it is formed by bending.
  • Fig. 5A is a perspective view of a coil component 1C according to the fourth embodiment.
  • Fig. 5B is an exploded view of the coil according to the fourth embodiment. Note that in the coil component 1C shown in the fourth embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.
  • the first conductor 2 has wires 2b and 2d drawn from the coil L1 out the left side of the housing 4, wire 2b arranged from the left side to the rear of the housing 4, and wire 2d arranged from the left side to the front of the housing 4.
  • the second conductor 3 has wires 3b and 3d drawn from the coil L2 out the right side of the housing 4, wire 3b arranged from the right side to the rear of the housing 4, and wire 3d arranged from the right side to the front of the housing 4.
  • most of the wires 2b, 2d, 3b, and 3d are embedded inside the housing 4, and only the portions of the wires near the ends that reach the second main surface are exposed from the housing 4.
  • the area of the lead wires 2d, 3d is larger than the area of the lead wires 2b, 3b. This allows a larger area for heat generated in the lead wires 2d and 3d to dissipate, improving the heat dissipation performance of the coil component 1C.
  • the cross-sectional area of the ends of the lead wires 2d, 3d is larger than the cross-sectional area of the ends of the lead wires 2b, 3b. This increases the area of connection between the lead wires 2d and 3d and the mounting board, improving heat dissipation.
  • the first conductor 2 is configured such that the lead wires 2b and 2d expand after the coil is closed at the lead wires 2b and 2d.
  • the second conductor 3 is configured such that the lead wires 3b and 3d expand after the coil is closed at the lead wires 3b and 3d. This allows the coil component 1A to reduce the effects of parasitic inductance and parasitic capacitance of the electrode portion caused by the lead wires 2b and 2d, and the lead wires 3b and 3d being too close to each other.
  • the positions of lead wires 2b, 2d, 3b, and 3d can be arranged as shown in FIG. 5A, improving the degree of freedom of wiring on the substrate on which it is mounted.
  • the electrodes extending from lead wires 2b, 2d, 3b, and 3d may be arranged on the underside. Any one of the multiple electrodes may be arranged on the underside and any one on the side. Note that, although the diagram shows them at right angles as a schematic diagram, the bent portion has an arc shape because it is formed by bending.
  • Fig. 6A is a perspective view of a coil component 1D according to the fifth embodiment.
  • Fig. 6B is an exploded view of the coil according to the second embodiment. Note that in the coil component 1D shown in the fifth embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.
  • the first conductor 2 has lead wire 2b from coil L1 drawn out from the rear surface of the housing 4 and lead wire 2b is arranged on the rear surface of the housing 4, lead wire 2d drawn out from the left side surface of the housing 4 and lead wire 2d is arranged on the left side surface of the housing 4.
  • the second conductor 3 has lead wire 3b drawn out from coil L2 from the right side surface of the housing 4 and lead wire 3b is arranged on the right side surface of the housing 4, lead wire 3d drawn out from the front surface of the housing 4 and lead wire 3d is arranged on the front surface of the housing 4.
  • the area of the lead wires 2d, 3d is larger than the area of the lead wires 2b, 3b. This allows a larger area for heat generated in the lead wires 2d and 3d to dissipate, improving the heat dissipation performance of the coil component 1D.
  • the cross-sectional area of the ends of the lead wires 2d, 3d is larger than the cross-sectional area of the ends of the lead wires 2b, 3b. This increases the area of connection between the lead wires 2d and 3d and the mounting board, improving heat dissipation.
  • by forming one terminal on each side as shown in Figure 6A it is possible to accommodate miniaturization and the width of the terminals can also be made wider.
  • the first conductor 2 is configured such that the lead wires 2b and 2d expand after the coil is closed at the lead wires 2b and 2d.
  • the second conductor 3 is configured such that the lead wires 3b and 3d expand after the coil is closed at the lead wires 3b and 3d. This allows the coil component 1A to reduce the effects of parasitic inductance and parasitic capacitance of the electrode portion caused by the lead wires 2b and 2d, and the lead wires 3b and 3d being too close to each other.
  • the positions of lead wires 2b, 2d, 3b, and 3d can be arranged as shown in FIG. 6A, improving the degree of freedom of wiring on the substrate on which it is mounted.
  • the electrodes extending from lead wires 2b, 2d, 3b, and 3d may be arranged on the underside. Any one of the multiple electrodes may be arranged on the underside and any one on the side. Note that, although the diagram shows a schematic diagram with a right angle, the bent portion has an arc shape because it is formed by bending.
  • Fig. 7 is a perspective view of a coil component 1E according to the sixth embodiment. Note that in the coil component 1E shown in the sixth embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.
  • connection member 5 is disposed, which electrically connects electrodes 2e and 3e.
  • Connection member 5 is T-shaped with its tip extending from electrodes 2e and 3e toward the left side surface of housing 4.
  • the area of electrodes 2e and 3e is the same as that of electrodes 2c and 3c, but the connecting member 5 provides a larger area for dissipating heat generated by electrodes 2e and 3e. This improves the heat dissipation performance of coil component 1E.
  • the area of at least one of the electrodes 2e, 3e, and the connecting member 5 may be larger than the area of the electrodes 2c and 3c.
  • Coils L1 and L2 may not be a single metal plate, but may have a multi-layer structure in which multiple layers are stacked to form a coil component.
  • the housing 4 has been described as having a rectangular parallelepiped shape.
  • the housing 4 may have any shape, for example, a cylindrical shape.
  • the coil component of the present disclosure includes a housing having a pair of first and second main surfaces facing each other and four side surfaces connecting the first and second main surfaces, a first coil disposed inside the housing and disposed substantially parallel to the first main surface, and a second coil disposed inside the housing such that an opening of the first coil overlaps an opening of the second coil when viewed from the direction of the first main surface.
  • the coil component includes a first lead wire and a second lead wire connected to ends of the first coil, respectively, and a third lead wire and a fourth lead wire connected to ends of the second coil, respectively.
  • the second lead wire and the fourth lead wire are electrically connected. At least one of the second lead wire and the fourth lead wire has an area larger than the areas of the first lead wire and the third lead wire.
  • the second and fourth drawers are electrically connected, and the area of at least one of the second and fourth drawers is larger than the area of the first and third drawers, thereby improving heat dissipation performance.
  • the coil component of the present disclosure includes a housing having a pair of first and second main surfaces facing each other and four side surfaces connecting the first and second main surfaces, a first coil disposed inside the housing and disposed substantially parallel to the first main surfaces, and a second coil disposed inside the housing such that an opening of the first coil overlaps with an opening when viewed from the direction of the first main surfaces.
  • the coil component includes a first lead wire and a second lead wire respectively connected to ends of the first coil, and a third lead wire and a fourth lead wire respectively connected to ends of the second coil. The shortest distance between the first lead wire and the third lead wire is farther than the shortest distance between the second lead wire and the fourth lead wire.
  • the coil component disclosed herein can improve the heat dissipation performance of the coil component by shortening the heat generating area between the second and fourth drawers while ensuring a sufficient distance between the first and third drawers to prevent a short circuit when mounted on a board.
  • the shortest distance between the first and third drawers is at a position on the second main surface or on the side closest to the second main surface
  • the shortest distance between the second and fourth drawers is at a position on the second main surface or on the side closest to the second main surface. This improves the heat dissipation performance at a position close to the second main surface.
  • connection member disposed on the second main surface and electrically connecting the second lead wire and the fourth lead wire. This allows heat to be dissipated in the connection member, thereby improving the heat dissipation performance of the coil component.
  • the filter circuit of the present disclosure includes a coil component according to any one of (1) to (12) and a capacitor electrically connected to the second and fourth lead wires. This makes it possible to provide a filter circuit that incorporates a coil component with high heat dissipation performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A coil component (1) according to the present disclosure comprises: a housing (4) including a first main surface and a second main surface that face each other and that form a pair, and four side surfaces that link the first main surface and the second main surface; a coil (L1) that is disposed inside of the housing (4); and a coil (L2) that is disposed inside of the housing (4). The coil component (1) includes a lead-out line (2b) and a lead-out line (2d) which are respectively connected to the end sections of the coil (L1), and a lead-out line (3b) and a lead-out line (3d) which are respectively connected to the end sections of the coil (L2). The lead-out line (2d) and the lead-out line (3d) are electrically connected. The area of at least one among the lead-out line (2d) and the lead-out line (3d) is larger than the area of the lead-out line (2b) and the lead-out line (3b).

Description

コイル部品、およびフィルタ回路Coil components and filter circuits

 本開示は、コイル部品、および当該コイル部品を実装するフィルタ回路に関する。 This disclosure relates to a coil component and a filter circuit that implements the coil component.

 電子機器では、フィルタ回路を用いたノイズ対策がよく行われる。ノイズ対策に用いるフィルタ回路には、例えばEMI(Electro-Magnetic Interference)除去フィルタなどがあり、導体を流れる電流のうち必要な成分を通して不要な成分を除去する。また、フィルタ回路は、キャパシタンス素子であるコンデンサを用いるため、当該コンデンサの寄生インダクタンスである等価直列インダクタンス(ESL:Equivalent Series Inductance)によりノイズ抑制効果が低下することが知られている。 In electronic devices, noise is often suppressed using filter circuits. Filter circuits used for noise suppression include, for example, EMI (Electro-Magnetic Interference) removal filters, which allow necessary components of the current flowing through a conductor to pass through, while removing unnecessary components. In addition, since filter circuits use capacitors, which are capacitance elements, it is known that the noise suppression effect is reduced by the equivalent series inductance (ESL), which is the parasitic inductance of the capacitor.

 コンデンサの等価直列インダクタンスESLを、二つのコイルを磁気結合することで生じる負のインダクタンスで打ち消し、フィルタ回路のノイズ抑制効果を広帯域化する技術が知られている(例えば、特開2001-160728号公報:特許文献1)。また、従来、金属板を折り曲げてコイルを形成するコイル部品があった。特開2004-296630号公報(特許文献2)には、コイル部品の一例として端子を4つ有するコイル部品が開示されている。 A technology is known that cancels the equivalent series inductance ESL of a capacitor with the negative inductance generated by magnetically coupling two coils, thereby broadening the bandwidth of the noise suppression effect of a filter circuit (for example, JP 2001-160728 A: Patent Document 1). Also, conventionally, there have been coil components in which a coil is formed by bending a metal plate. JP 2004-296630 A (Patent Document 2) discloses a coil component with four terminals as an example of a coil component.

特開2001-160728号公報JP 2001-160728 A 特開2004-296630号公報JP 2004-296630 A

 特許文献2のコイル部品をフィルタ回路として使用する場合、電源ラインと接続される端子から発生する熱は、放熱性が考慮された電源経路を通して基板側に放熱される。しかし、コンデンサをつなぐ端子から延びる配線は放熱性が考慮されていないことから、コイル部品から発生する熱は、電源経路と直接接続される端子と比較してコンデンサをつなぐ端子からは適切に放熱されない。このため、コンデンサをつなぐ端子は、高熱になりやすい。このような高熱の端子を基板上において接続すると、配線を構成する銅箔が薄いためさらに温度の上昇が懸念される。温度の上昇は、コイル部品の直流抵抗成分の増加につながり、フィルタ回路の性能の低下に繋がる。 When the coil component of Patent Document 2 is used as a filter circuit, heat generated from the terminals connected to the power line is dissipated to the board side through a power path that takes heat dissipation into consideration. However, because heat dissipation is not taken into consideration for the wiring extending from the terminals connecting the capacitors, heat generated from the coil component is not dissipated properly from the terminals connecting the capacitors compared to terminals directly connected to the power path. For this reason, the terminals connecting the capacitors are prone to becoming very hot. When such hot terminals are connected to a board, there is a concern that the temperature will rise further because the copper foil that makes up the wiring is thin. The rise in temperature leads to an increase in the DC resistance component of the coil component, leading to a decrease in the performance of the filter circuit.

 そこで、本開示の目的は、放熱性能の高いコイル部品、および当該コイル部品を実装するフィルタ回路を提供することである。 The objective of this disclosure is to provide a coil component with high heat dissipation performance and a filter circuit that implements the coil component.

 本開示の一形態に係るコイル部品は、互いに対向する1対の第1主面および第2主面と、第1主面と第2主面との間を結ぶ4つの側面とを有する筐体と、筐体の内部に配置され、第1主面と略平行に配置される第1コイルと、第1主面の方向から視て、第1コイルの開口と開口が重なるように筐体の内部に配置される第2コイルと、を備える。第1コイルの端部にそれぞれ接続される第1引き出し線および第2引き出し線と、第2コイルの端部にそれぞれ接続される第3引き出し線および第4引き出し線と、を含む。第2引き出し線と第4引き出し線とは電気的に接続される。第2引き出し線または第4引き出し線のうち少なくとも一方の面積が、第1引き出し線および第3引き出し線の面積よりも大きい。 The coil component according to one embodiment of the present disclosure includes a housing having a pair of first and second main surfaces facing each other and four side surfaces connecting the first and second main surfaces, a first coil disposed inside the housing and disposed substantially parallel to the first main surfaces, and a second coil disposed inside the housing such that an opening of the first coil overlaps with an opening when viewed from the direction of the first main surfaces. The coil component includes a first lead wire and a second lead wire respectively connected to ends of the first coil, and a third lead wire and a fourth lead wire respectively connected to ends of the second coil. The second lead wire and the fourth lead wire are electrically connected. The area of at least one of the second lead wire and the fourth lead wire is larger than the area of the first lead wire and the third lead wire.

 本開示の一形態に係るコイル部品は、互いに対向する1対の第1主面および第2主面と、第1主面と第2主面との間を結ぶ4つの側面とを有する筐体と、筐体の内部に配置され、第1主面と略平行に配置される第1コイルと、第1主面の方向から視て、第1コイルの開口と開口が重なるように筐体の内部に配置される第2コイルと、を備える。第1コイルの端部にそれぞれ接続される第1引き出し線および第2引き出し線と、第2コイルの端部にそれぞれ接続される第3引き出し線および第4引き出し線と、を含む。第2引き出し線と第4引き出し線とは電気的に接続される。第1引き出し線と第3引き出し線との距離は、第2引き出し線と第4引き出し線との距離よりも近い。 The coil component according to one embodiment of the present disclosure includes a housing having a pair of first and second main surfaces facing each other and four side surfaces connecting the first and second main surfaces, a first coil disposed inside the housing and disposed substantially parallel to the first main surfaces, and a second coil disposed inside the housing such that an opening of the first coil overlaps with an opening when viewed from the direction of the first main surfaces. The coil component includes a first lead wire and a second lead wire respectively connected to ends of the first coil, and a third lead wire and a fourth lead wire respectively connected to ends of the second coil. The second lead wire and the fourth lead wire are electrically connected. The distance between the first lead wire and the third lead wire is closer than the distance between the second lead wire and the fourth lead wire.

 本開示の一形態に係るフィルタ回路は、上記のコイル部品と、コイル部品と接続するコンデンサと、を備える。 A filter circuit according to one embodiment of the present disclosure includes the coil component described above and a capacitor connected to the coil component.

 本開示の一形態によれば、第2引き出し線と第4引き出し線とは電気的に接続され、第2引き出し線または第4引き出し線のうち少なくとも一方の面積が、第1引き出し線および第3引き出し線の面積よりも大きいため、放熱性能を高めることができる。 According to one embodiment of the present disclosure, the second and fourth drawers are electrically connected, and the area of at least one of the second and fourth drawers is larger than the area of the first and third drawers, thereby improving heat dissipation performance.

実施の形態1に係るコイル部品の斜視図である。FIG. 2 is a perspective view of a coil component according to the first embodiment. 実施の形態1に係るコイル部品を裏返した図である。FIG. 2 is a diagram showing the coil component according to the first embodiment turned upside down. 実施の形態1に係るコイル部品を含むフィルタ回路の回路図である。1 is a circuit diagram of a filter circuit including a coil component according to a first embodiment; 実施の形態2に係るコイル部品の斜視図である。FIG. 11 is a perspective view of a coil component according to a second embodiment. 実施の形態2に係るコイルの分解図である。FIG. 11 is an exploded view of a coil according to a second embodiment. 実施の形態3に係るコイル部品の斜視図である。FIG. 11 is a perspective view of a coil component according to a third embodiment. 実施の形態4に係るコイル部品の斜視図である。FIG. 13 is a perspective view of a coil component according to a fourth embodiment. 実施の形態4に係るコイルの分解図である。FIG. 13 is an exploded view of a coil according to a fourth embodiment. 実施の形態5に係るコイル部品の斜視図である。FIG. 13 is a perspective view of a coil component according to a fifth embodiment. 実施の形態5に係るコイルの分解図である。FIG. 13 is an exploded view of a coil according to a fifth embodiment. 実施の形態6に係るコイル部品の斜視図である。FIG. 13 is a perspective view of a coil component according to a sixth embodiment.

 <実施の形態1>
 以下に、実施の形態1に係るコイル部品について説明する。図1Aは、実施の形態1に係るコイル部品1の斜視図である。図1Bは、実施の形態1に係るコイル部品を裏返した図である。図2は、実施の形態1に係るコイル部品1を含むフィルタ回路100の回路図である。図1Aに示すようにX軸、Y軸、Z軸を規定した場合、X軸方向がコイル部品1の左右方向、Y軸方向がコイル部品1の前後方向、Z軸方向がコイル部品1の上下方向とする。
<First embodiment>
The coil component according to the first embodiment will be described below. Fig. 1A is a perspective view of the coil component 1 according to the first embodiment. Fig. 1B is a view of the coil component according to the first embodiment turned upside down. Fig. 2 is a circuit diagram of a filter circuit 100 including the coil component 1 according to the first embodiment. When the X-axis, Y-axis, and Z-axis are defined as shown in Fig. 1A, the X-axis direction is the left-right direction of the coil component 1, the Y-axis direction is the front-rear direction of the coil component 1, and the Z-axis direction is the up-down direction of the coil component 1.

 コイル部品1は、例えば、電源ラインのノイズ対策に用いられるフィルタ回路100に実装されるトランスコイルである。後述するように、フィルタ回路に実装されるコンデンサの寄生インダクタンスをキャンセルするためにコイル部品1は、2つのコイルを磁気結合させている。さらに、コイル部品1は、2つのコイルの端子を利用して3つ目のコイルを構成する構造を採用している。 Coil component 1 is, for example, a transformer coil mounted in a filter circuit 100 used to reduce noise in power lines. As described below, coil component 1 magnetically couples two coils in order to cancel the parasitic inductance of a capacitor mounted in the filter circuit. Furthermore, coil component 1 employs a structure in which the terminals of the two coils are used to form a third coil.

 コイル部品1は、筐体4にコイル部2a(第1コイル)とコイル部3a(第2コイル)とを含んでいる。以下、コイル部2aをコイルL1、コイル部3aをコイルL2とも称する。コイルL1およびコイルL2は、たとえば銅もしくは銅に他の金属を混ぜた合金の金属板から形成されている。金属板から形成されたコイルL1およびコイルL2は、図示しない絶縁体材料で覆われている。具体的に、コイルL1およびコイルL2を覆う絶縁体材料は、ポリミドイミド、エポキシ等の樹脂である。なお、絶縁体材料は、コイルL1およびコイルL2をすべての面を覆っている必要はない。コイルL1とコイルL2との接触を防止するために、コイルL1とコイルL2とが対向する面に少なくとも絶縁体材料が設けてあればよい。また、本開示では1巻きのコイルを図示しているが、複数層から形成されるコイルであってもよい。 The coil component 1 includes a coil portion 2a (first coil) and a coil portion 3a (second coil) in a housing 4. Hereinafter, the coil portion 2a is also referred to as coil L1, and the coil portion 3a is also referred to as coil L2. The coils L1 and L2 are formed from a metal plate, for example, copper or an alloy of copper and other metals. The coils L1 and L2 formed from the metal plate are covered with an insulating material (not shown). Specifically, the insulating material covering the coils L1 and L2 is a resin such as polyimide imide or epoxy. Note that the insulating material does not need to cover all surfaces of the coils L1 and L2. In order to prevent contact between the coils L1 and L2, it is sufficient that at least the insulating material is provided on the surfaces where the coils L1 and L2 face each other. In addition, although a coil with one turn is illustrated in this disclosure, the coil may be formed from multiple layers.

 コイル部2aは、一端に引き出し線2b(第1引き出し線)が接続され、他端に引き出し線2d(第2引き出し線)が接続されている。さらに、引き出し線2bは、電極として機能する電極2cを含み、引き出し線2dは、電極として機能する電極2eを含んでいる。コイル部2aおよび引き出し線2b,2dは、1つの第1導体2として形成される。なお、引き出し線2b,2dは、コイル部2aの一端から延びる端子でもあるため、端子2b,2dとも称する。 The coil portion 2a has one end connected to a lead wire 2b (first lead wire) and the other end connected to a lead wire 2d (second lead wire). Furthermore, the lead wire 2b includes an electrode 2c that functions as an electrode, and the lead wire 2d includes an electrode 2e that functions as an electrode. The coil portion 2a and the lead wires 2b and 2d are formed as a single first conductor 2. Note that the lead wires 2b and 2d are also terminals extending from one end of the coil portion 2a, and are therefore also referred to as terminals 2b and 2d.

 コイル部3aは、一端に引き出し線3b(第3引き出し線)が接続され、他端に引き出し線3d(第4引き出し線)が接続されている。さらに、引き出し線3bは、電極として機能する電極3cを含み、引き出し線3dは、電極として機能する電極3eを含んでいる。コイル部3aおよび引き出し線3b,3dは、1つの第2導体3として形成される。なお、引き出し線3b,3dは、コイル部3aの一端から延びる端子でもあるため、端子3b,3dとも称する。 The coil portion 3a has one end connected to a lead wire 3b (third lead wire) and the other end connected to a lead wire 3d (fourth lead wire). Furthermore, the lead wire 3b includes an electrode 3c that functions as an electrode, and the lead wire 3d includes an electrode 3e that functions as an electrode. The coil portion 3a and the lead wires 3b and 3d are formed as a single second conductor 3. The lead wires 3b and 3d are also terminals extending from one end of the coil portion 3a, and are therefore also referred to as terminals 3b and 3d.

 コイルL1を含む第1導体2およびコイルL2を含む第2導体3は、一枚の金属板から抜き打ち加工によって、抜き出されたパターンを曲げて構成される。コイルL1(コイル部2a)と引き出し線2b,2dの間の曲げ部、および引き出し線2b,2dのうち電極2c,2eとそれ以外の領域の間の曲げ部は、曲げ加工で形成されるため、曲率半径を持った略直角構造となる。また、同様にコイルL2(コイル部3a)と引き出し線3b,3dの間の曲げ部、および引き出し線3b,3dのうち電極3c,3eとそれ以外の領域の間の曲げ部は、曲げ加工で形成されるため、曲率半径を持った略直角構造となる。このように、曲げ部には、一定の半径を持った円弧が形成される。また、第1導体2および第2導体3は、1本ないし複数本のワイヤで形成されていてもよく、同じようにワイヤを曲げ加工することで、曲げ部に一定の半径を持った円弧が形成されるようにしてもよい。 The first conductor 2 including the coil L1 and the second conductor 3 including the coil L2 are formed by bending a pattern punched out from a single metal plate. The bent portion between the coil L1 (coil portion 2a) and the lead wires 2b, 2d, and the bent portion between the electrodes 2c, 2e and the other areas of the lead wires 2b, 2d are formed by bending, and therefore have a substantially right-angle structure with a radius of curvature. Similarly, the bent portion between the coil L2 (coil portion 3a) and the lead wires 3b, 3d, and the bent portion between the electrodes 3c, 3e and the other areas of the lead wires 3b, 3d are formed by bending, and therefore have a substantially right-angle structure with a radius of curvature. In this way, an arc with a certain radius is formed at the bent portion. The first conductor 2 and the second conductor 3 may be formed of one or more wires, and the wires may be bent in the same manner to form an arc with a certain radius at the bent portion.

 コイルL1,L2は、それぞれの開口が重なるように配置されている。図1Aでは開口がほぼ重なる例を示したが、磁界結合する範囲であれば、それぞれの開口はずれていてもよく、1つの開口のうち50%以上が重なっていればよい。コイルL1、L2は、第1導体2の電極2cから矢印で示す向き(時計回り)の電流が流れることによってコイルL1に磁界が発生するとともに、電極2eから出た電流が第2導体3の電極3eからコイルL2に流れることにより、コイルL2にコイルL1の磁界と同じ向きの磁界が発生する。コイルL1,L2は、電極2eと電極3eとの間の僅かな隙間を図示しない接続部材により接続されることによって電気的に接続されるが、接続部材を使わず実装基板で電極2eと電極3eを接続してもよい。コイル部品1は、コイル部2a(コイルL1)、コイル部3a(コイルL2)に加え、引き出し線2d、電極2e、接続部材5、電極3e、引き出し線3dによって形成される開口部に矢印で示す向き(反時計回り)の電流が流れることによって第3のコイルL3となり、磁界が発生する。 Coils L1 and L2 are arranged so that their openings overlap. Figure 1A shows an example in which the openings almost overlap, but as long as the openings are within the range of magnetic field coupling, they may be offset from each other, and it is sufficient that at least 50% of one opening overlaps. Coils L1 and L2 generate a magnetic field in coil L1 when a current flows from electrode 2c of first conductor 2 in the direction indicated by the arrow (clockwise), and a magnetic field in the same direction as the magnetic field of coil L1 is generated in coil L2 when a current flows from electrode 2e to coil L2 from electrode 3e of second conductor 3. Coils L1 and L2 are electrically connected by connecting the small gap between electrodes 2e and 3e with a connecting member (not shown), but electrodes 2e and 3e may also be connected by a mounting board without using a connecting member. Coil component 1 becomes a third coil L3 by flowing a current in the direction indicated by the arrow (counterclockwise) through the opening formed by coil portion 2a (coil L1), coil portion 3a (coil L2), lead wire 2d, electrode 2e, connection member 5, electrode 3e, and lead wire 3d, generating a magnetic field.

 筐体4は、コイルL1,L2を固定するためのモールド樹脂で構成されている。具体的に、モールド樹脂は、シリカフィラーを加えたエポキシ樹脂、シリコーン樹脂、液晶ポリマー、あるいは金属磁性体を混入した各種樹脂などのうちの1つにより構成されている。図1Aでは直方体形状を表しているが、実装面となる第2主面とコイル面が略平行であれば、側面は傾斜していてもよく、例えば第1主面より第2主面の面積が広い台形であってもよい。 The housing 4 is made of a molded resin for fixing the coils L1 and L2. Specifically, the molded resin is made of one of epoxy resins with added silica filler, silicone resin, liquid crystal polymer, or various resins mixed with metal magnetic material. Although a rectangular parallelepiped shape is shown in FIG. 1A, as long as the second main surface, which is the mounting surface, and the coil surface are approximately parallel, the side surfaces may be inclined, and for example, the shape may be a trapezoid in which the area of the second main surface is larger than that of the first main surface.

 図2は、実施の形態1に係るコイル部品1を含むフィルタ回路100の回路図である。フィルタ回路100は、例えば、EMI除去フィルタであり、3次のT型LCフィルタ回路である。このフィルタ回路100は、電極2cを電源(図示せず)に接続し、電極3cをDC/DCコンバータや電源モジュールなどの回路(図示せず)に接続する。フィルタ回路100は、電源から回路に流れる電流のうち必要な成分を通して不要な成分を除去する。具体的には、フィルタ回路100に直流電流を通し、当該直流電流に含まれる高周波ノイズをコンデンサC1を通してGNDに落とす。キャパシタンス素子であるコンデンサC1は等価直列インダクタンスESL(La)を持つため、高周波ノイズの通過が阻害され、ノイズ除去性能が劣化する。このフィルタ回路100は、二つのコイルの磁気結合で生じる相互インダクタンスによってコンデンサC1に直列に発生する負のインダクタンスを用いて、コンデンサのESL(La)をキャンセルし、高いノイズ除去性能が維持される。 2 is a circuit diagram of a filter circuit 100 including the coil component 1 according to the first embodiment. The filter circuit 100 is, for example, an EMI removal filter, and is a third-order T-type LC filter circuit. In this filter circuit 100, the electrode 2c is connected to a power source (not shown), and the electrode 3c is connected to a circuit (not shown) such as a DC/DC converter or a power supply module. The filter circuit 100 passes necessary components of the current flowing from the power source to the circuit and removes unnecessary components. Specifically, a direct current is passed through the filter circuit 100, and high-frequency noise contained in the direct current is dropped to GND through the capacitor C1. The capacitor C1, which is a capacitance element, has an equivalent series inductance ESL (La), which prevents high-frequency noise from passing through, and the noise removal performance is deteriorated. This filter circuit 100 uses a negative inductance generated in series in the capacitor C1 due to the mutual inductance generated by the magnetic coupling of the two coils to cancel the ESL (La) of the capacitor, thereby maintaining high noise removal performance.

 なお、以下の実施の形態では、フィルタ回路100の構成として3次のT型LCフィルタ回路を用いて説明するが、5次のT型LCフィルタ回路や、より高次のT型LCフィルタ回路に対しても同様の構成のコイル部品を適用することができる。フィルタ回路100は、図2に示すように、コイル部品1と、コンデンサC1とを含む。コイル部品1は、電極2c,3c、中間端子T(電極2e,3e,接続部材)、コイルL1、およびコイルL2を備えている。 In the following embodiment, the filter circuit 100 will be described using a third-order T-type LC filter circuit, but coil components of a similar configuration can also be applied to a fifth-order T-type LC filter circuit or a higher-order T-type LC filter circuit. As shown in FIG. 2, the filter circuit 100 includes a coil component 1 and a capacitor C1. The coil component 1 includes electrodes 2c, 3c, an intermediate terminal T (electrodes 2e, 3e, connecting member), a coil L1, and a coil L2.

 コンデンサC1は、図2に示すように一方の端部を中間端子Tに接続し、他方の端部をGND配線に接続している。なお、コンデンサC1は、BaTiO(チタン酸バリウム)を主成分とした積層セラミックコンデンサだけでなく、他の材料を主成分とした積層セラミックコンデンサでも、積層セラミックコンデンサでない、例えばアルミ電解コンデンサなどの他の種類のコンデンサでもよい。コンデンサC1は、寄生インダクタンス(等価直列インダクタンス(ESL))としてインダクタLaを有しており、インダクタLaがキャパシタC1aに直列に接続された回路構成と等価である。なお、コンデンサC1は、さらに寄生抵抗(等価直列抵抗(ESR))がインダクタLaおよびキャパシタC1aに直列に接続された回路構成と等価であるとしてもよい。 As shown in FIG. 2, the capacitor C1 has one end connected to the intermediate terminal T and the other end connected to the GND wiring. The capacitor C1 may be a multilayer ceramic capacitor mainly made of BaTiO 3 (barium titanate), a multilayer ceramic capacitor mainly made of other materials, or another type of capacitor such as an aluminum electrolytic capacitor. The capacitor C1 has an inductor La as a parasitic inductance (equivalent series inductance (ESL)), and is equivalent to a circuit configuration in which the inductor La is connected in series to the capacitor C1a. The capacitor C1 may also be equivalent to a circuit configuration in which a parasitic resistance (equivalent series resistance (ESR)) is connected in series to the inductor La and the capacitor C1a.

 中間端子Tには、コンデンサC1の他にコイルL1およびコイルL2が接続されている。コイルL1とコイルL2とは磁気結合しており、相互インダクタンスを持つ。中間端子TとコンデンサC1の間には相互インダクタンスと同じ大きさの負のインダクタンス成分を生じている。この負のインダクタンス成分を用いて、コンデンサC1の寄生インダクタンス(インダクタLa)を打ち消すことができ、コンデンサC1の寄生インダクタンス成分を見かけ上小さくすることができる。つまり、コンデンサC1、コイルL1およびコイルL2で構成されるフィルタ回路100は、コイルL1とコイルL2との相互インダクタンスによる負のインダクタンス成分で、コンデンサC1の寄生インダクタンスを打ち消すことにより、コンデンサC1の寄生インダクタンスによる高周波帯のノイズ抑制効果の低下を抑制し、フィルタ回路100のノイズ抑制効果を向上させることができる。 In addition to the capacitor C1, coils L1 and L2 are connected to the intermediate terminal T. Coils L1 and L2 are magnetically coupled and have mutual inductance. A negative inductance component of the same magnitude as the mutual inductance is generated between the intermediate terminal T and the capacitor C1. This negative inductance component can be used to cancel out the parasitic inductance (inductor La) of the capacitor C1, making the parasitic inductance component of the capacitor C1 appear smaller. In other words, the filter circuit 100, which is composed of the capacitor C1, coil L1, and coil L2, can cancel out the parasitic inductance of the capacitor C1 with the negative inductance component due to the mutual inductance between coils L1 and L2, thereby suppressing the decrease in the noise suppression effect in the high frequency band caused by the parasitic inductance of the capacitor C1 and improving the noise suppression effect of the filter circuit 100.

 本願のようなコイルL3の構造を持たず、コイルL1とコイルL2とを直接繋ぐ部分を中間端子Tとする3端子のコイル部品の場合、中間端子Tから配線を引き出してコンデンサC1に接続することになるため、当該配線に正の寄生インダクタンスが生じることになる。当該コイル部品をフィルタ回路に用いる場合、当該配線に生じる正の寄生インダクタンスにより、コイルL1とコイルL2との相互インダクタンスによる負のインダクタンス成分の一部が打ち消され、コイル部品1としての負のインダクタンス成分が小さくなるため、コンデンサC1の寄生インダクタンスを十分に打ち消すことができずに、高周波帯のノイズ抑制効果を低下させる。 In the case of a three-terminal coil component that does not have the structure of coil L3 as in the present application and has intermediate terminal T as the part that directly connects coils L1 and L2, a wire is drawn from intermediate terminal T and connected to capacitor C1, resulting in positive parasitic inductance in the wire. When this coil component is used in a filter circuit, the positive parasitic inductance in the wire cancels out part of the negative inductance component due to the mutual inductance between coils L1 and L2, reducing the negative inductance component of coil component 1, and therefore the parasitic inductance of capacitor C1 cannot be sufficiently canceled out, reducing the noise suppression effect in the high frequency band.

 そこで、実施の形態1に係るコイル部品1では、コイルL1とコイルL2とを繋ぐ中間端子Tから単に配線を引き出してコンデンサC1に接続するのではなく、図1Aに示すように端子2d、端子3d、および接続部材でコイル(コイルL3)を構成してコンデンサC1に接続する。具体的には端子2d、端子3dのうち、第2主面の電極2eや電極3eで基板上の配線に電気的に接続され、同じ配線に電気的に接続されたコンデンサC1に接続する。コイル部品1では、コンデンサC1に接続するコイルL3自体もコイルL1およびコイルL2の一部として結合するので、コイルL1とコイルL2との相互インダクタンスによる負のインダクタンス成分に寄与し、当該負のインダクタンス成分を減らすことがない。 In view of this, in coil component 1 according to embodiment 1, instead of simply drawing out wiring from intermediate terminal T connecting coils L1 and L2 and connecting it to capacitor C1, as shown in FIG. 1A, a coil (coil L3) is formed using terminals 2d, 3d, and connecting members and connected to capacitor C1. Specifically, of terminals 2d and 3d, electrodes 2e and 3e on the second main surface are electrically connected to wiring on the board, and connected to capacitor C1 which is electrically connected to the same wiring. In coil component 1, coil L3 itself, which is connected to capacitor C1, is also coupled as part of coils L1 and L2, and therefore contributes to the negative inductance component due to the mutual inductance between coils L1 and L2, and does not reduce the negative inductance component.

 また、コイルL1とコイルL2とを繋ぐ部分を中間端子Tは、端子2d、端子3dおよび接続部材5で構成されるコイル(コイルL3)であるので、3つのコイルL1~コイルL3が正の結合係数を有する関係となっている。 In addition, the intermediate terminal T that connects coils L1 and L2 is a coil (coil L3) that is composed of terminals 2d, 3d, and connecting member 5, so the three coils L1 to L3 have a positive coupling coefficient.

 コイル部品1は、電極2c,3cが電源ラインに接続される。電源ラインと接続される電極2c,3c付近のコイルから発生する熱は、電源ラインを通して放熱される。それに対し、コイル部品1をフィルタ回路として用いた場合、コンデンサと接続される電極2e,3e付近のコイルから発生する熱は、放熱対策が施されている電源ラインとは異なり放熱対策の十分でない配線に接続されるため、電源ラインのように適切に放熱されない。 In coil component 1, electrodes 2c and 3c are connected to the power line. Heat generated from the coil near electrodes 2c and 3c connected to the power line is dissipated through the power line. In contrast, when coil component 1 is used as a filter circuit, heat generated from the coil near electrodes 2e and 3e connected to the capacitor is not properly dissipated like the power line because it is connected to wiring that does not have sufficient heat dissipation measures, unlike the power line which has heat dissipation measures.

 また、電極2cから電極2e、接続部材を経由して電極3eから電極3cへと数Aの大電流が流れるが、接続部材を印刷や塗布などで形成する場合、コイルL1やコイルL2を形成する金属板の抵抗値より接続部材の抵抗値が高くなり特に接続部材で発熱する。そこで、コイル部品1では、図1Bに示すように、電極2eと電極3eとの間の距離を電極2cと電極3cとの間の距離よりも近くしている。すなわち、引き出し線2bと引き出し線3bの間の最短距離に比べて、引き出し線2dと引き出し線3dの間の最短距離を短くすることで、電極2cと電極3cの間では基板実装時にショートしないための十分な距離を確保しつつ、電極2eと電極3eの間で発熱する領域を短くできるためコイル部品1の放熱性能を高めることができる。電極2eと電極3eの間の接続部材はコイル部品1でなく、実装する基板にあってもよい。電極2eと電極3eが電極2cと電極3cの間隔より短い距離で配置されていることで、電流が基板上を流れる距離が減り、導電性の高い第1導体2、第2導体3の金属を主に電流が流れることで、発熱の影響を抑制することができる。なお、本明細書中において、引き出し線の最短距離は第2主面において、各引き出し線が延伸する方向(図中Y軸方向)の最短距離と規定する。本明細書中では各引き出し線はY軸方向において離隔対向しているが、X軸方向において対向していてもよい。この場合も、引き出し線の延伸方向の最短距離を比較する。 Also, a large current of several amperes flows from electrode 2c to electrode 2e, and from electrode 3e to electrode 3c via the connecting member. However, when the connecting member is formed by printing or coating, the resistance value of the connecting member becomes higher than the resistance value of the metal plate forming coil L1 and coil L2, and heat is generated especially in the connecting member. Therefore, in coil component 1, as shown in FIG. 1B, the distance between electrode 2e and electrode 3e is made shorter than the distance between electrode 2c and electrode 3c. In other words, by shortening the shortest distance between lead wire 2d and lead wire 3d compared to the shortest distance between lead wire 2b and lead wire 3b, a sufficient distance is secured between electrode 2c and electrode 3c to prevent a short circuit when mounted on the board, and the heat dissipation performance of coil component 1 can be improved because the area where heat is generated between electrode 2e and electrode 3e can be shortened. The connecting member between electrode 2e and electrode 3e may be on the board to be mounted, not on coil component 1. By arranging electrodes 2e and 3e at a distance shorter than the distance between electrodes 2c and 3c, the distance over which the current flows on the substrate is reduced, and the current flows mainly through the highly conductive metals of the first conductor 2 and second conductor 3, suppressing the effects of heat generation. In this specification, the shortest distance of the drawers is defined as the shortest distance in the direction in which each drawer extends (Y-axis direction in the figure) on the second main surface. In this specification, the drawers are spaced apart and opposed to each other in the Y-axis direction, but they may also be opposed to each other in the X-axis direction. In this case, the shortest distance in the extension direction of the drawers is also compared.

 <実施の形態2>
 実施の形態2では、実施の形態1と比較し、コイルL1とコイルL2とにおいて引き出し線の引き出す位置を変更し、第2主面での電極部分がない構成について説明する。図3Aは、実施の形態2に係るコイル部品1Aの斜視図である。図3Bは、実施の形態2に係るコイルの分解図である。なお、実施の形態2に示すコイル部品1Aでは、実施の形態1に係るコイル部品1と同じ構成について同じ符号を用いて詳しい説明を繰返さない。
<Embodiment 2>
In the second embodiment, compared to the first embodiment, the positions at which the lead wires are drawn out are changed in the coils L1 and L2, and a configuration in which there is no electrode portion on the second main surface will be described. Fig. 3A is a perspective view of a coil component 1A according to the second embodiment. Fig. 3B is an exploded view of the coil according to the second embodiment. Note that in the coil component 1A shown in the second embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.

 第1導体2は、コイルL1から引き出し線2b,2dが筐体4の後面から引き出され、引き出し線2bが筐体4の後面に配置され、引き出し線2dが筐体4の後面から右側面にかけて配置される。第2導体3は、コイルL2から引き出し線3b,3dが筐体4の前面から引き出され、引き出し線3bが筐体4の前面に配置され、引き出し線3dが筐体4の前面から右側面にかけて配置される。 The first conductor 2 has wires 2b and 2d drawn from the coil L1 out the rear surface of the housing 4, with wire 2b being arranged on the rear surface of the housing 4 and wire 2d being arranged from the rear surface to the right side of the housing 4. The second conductor 3 has wires 3b and 3d drawn from the coil L2 out the front surface of the housing 4, with wire 3b being arranged on the front surface of the housing 4 and wire 3d being arranged from the front surface to the right side of the housing 4.

 引き出し線2d,3dの面積は、引き出し線2b,3bの面積よりも大きくなっている。具体的には、コイル部2aやコイル部3aに接続する曲げ部から第2主面にかけて伸びる引き出し線の、コイルの厚み方向から見た面積が引き出し線の面積である。これによって、引き出し線2dおよび引き出し線3dで発生する熱が放熱する面積を大きく取ることができるためコイル部品1Aの放熱性能を高めることができる。さらに、引き出し線2d、3dの第2主面に向いた端部の断面積は、引き出し線2d、3dの第2主面に向いた端部の断面積よりも大きくなっている。これによって、引き出し線2d、引き出し線3dの実装基板と接続する面積が広くなり放熱性を高めることができる。なお、本実施形態のように、延伸方向の長さを変化させてもよいし、コイルの幅を変化させることで面積を変化させてもよい。 The area of the lead wires 2d and 3d is larger than that of the lead wires 2b and 3b. Specifically, the area of the lead wires extending from the bent portion connected to the coil portion 2a or 3a to the second main surface when viewed in the thickness direction of the coil is the area of the lead wire. This allows the area for dissipating heat generated by the lead wires 2d and 3d to be large, thereby improving the heat dissipation performance of the coil component 1A. Furthermore, the cross-sectional area of the end portion of the lead wires 2d and 3d facing the second main surface is larger than the cross-sectional area of the end portion of the lead wires 2d and 3d facing the second main surface. This increases the area of connection between the lead wires 2d and 3d and the mounting board, improving the heat dissipation performance. Note that, as in this embodiment, the length in the extension direction may be changed, or the area may be changed by changing the width of the coil.

 第1導体2は、引き出し線2b,2dにおいてコイルが閉じられた後に引き出し線2b,2dが拡がる構成である。第2導体3は、引き出し線3b,3dにおいてコイルが閉じられた後に引き出し線3b,3dが拡がる構成である。これにより、コイル部品1Aは、引き出し線2bと引き出し線2dとの間、および引き出し線3bと引き出し線3dとの間が近すぎることにより生じる電極部の寄生インダクタンスや寄生キャパシタンスの影響を低減することができる。 The first conductor 2 is configured such that the lead wires 2b and 2d expand after the coil is closed at the lead wires 2b and 2d. The second conductor 3 is configured such that the lead wires 3b and 3d expand after the coil is closed at the lead wires 3b and 3d. This allows the coil component 1A to reduce the effects of parasitic inductance and parasitic capacitance of the electrode portion caused by the lead wires 2b and 2d, and the lead wires 3b and 3d being too close to each other.

 コイル部品1Aは、引き出し線2b,2d,3b,3dの位置を図3Aのように配置できるため、実装する基板等において配線の自由度を向上させることができるとともに、筐体の側面に形成される電極の面積を広げることができ、放熱性を向上させることができる。なお、実施の形態1のコイル部品1と同様に引き出し線2b,2d,3b,3dから延びる電極を下面側に配置する構成としてもよい。複数の電極のうちのいずれかが下面に配置されいずれかが側面に配置されるようにしてもよい。なお、図では模式図として直角で描かれているが、曲げ加工で形成されるため、曲げ部は円弧形状となっている。 In coil component 1A, the positions of lead wires 2b, 2d, 3b, and 3d can be arranged as shown in FIG. 3A, which allows for improved freedom of wiring on the substrate on which it is mounted, and also allows for a larger area of the electrodes formed on the side of the housing, improving heat dissipation. Note that, as with coil component 1 in embodiment 1, the electrodes extending from lead wires 2b, 2d, 3b, and 3d may be arranged on the underside. Any of the multiple electrodes may be arranged on the underside and any may be arranged on the side. Note that, although the diagram shows them at right angles as a schematic diagram, the bent portion has an arc shape because it is formed by bending.

 <実施の形態3>
 実施の形態3では、実施の形態1と比較し、コイルL1とコイルL2とにおいて引き出し線の引き出す位置を変更し、第2主面における電極部分がない構成について説明する。図4は、実施の形態3に係るコイル部品1Bの斜視図である。なお、実施の形態3に示すコイル部品1Bでは、実施の形態1に係るコイル部品1と同じ構成について同じ符号を用いて詳しい説明を繰返さない。
<Third embodiment>
In the third embodiment, the positions at which the lead wires are drawn out are changed between coil L1 and coil L2, and a configuration in which there is no electrode portion on the second main surface will be described, compared to the first embodiment. Fig. 4 is a perspective view of a coil component 1B according to the third embodiment. Note that in the coil component 1B shown in the third embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.

 第1導体2は、コイルL1より引き出し線2bが筐体4の後面から引き出され、引き出し線2bの端部が後面に配置され、引き出し線2dが筐体4の右側面から引き出され、引き出し線2dの端部が筐体4の右側面に配置される。第2導体3は、コイルL2より引き出し線3bが筐体4の前面から引き出され、引き出し線3bの端部が筐体4の前面に配置され、引き出し線3dが筐体4の右側面から引き出され、引き出し線3dの端部が筐体4の右側面に配置される。 The first conductor 2 has lead wire 2b from coil L1 drawn out from the rear surface of the housing 4, with the end of lead wire 2b located on the rear surface, lead wire 2d drawn out from the right side surface of the housing 4, with the end of lead wire 2d located on the right side surface of the housing 4. The second conductor 3 has lead wire 3b from coil L2 drawn out from the front surface of the housing 4, with the end of lead wire 3b located on the front surface of the housing 4, lead wire 3d drawn out from the right side surface of the housing 4, with the end of lead wire 3d located on the right side surface of the housing 4.

 引き出し線2d,3dの面積は、引き出し線2b,3bの面積よりも大きくなっている。これによって、引き出し線2dおよび引き出し線3dで発生する熱が放熱する面積を大きく取ることができるためコイル部品1Bの放熱性能を高めることができる。さらに、引き出し線2d、3dの第2主面に向いた端部の断面積は、引き出し線2d、3dの第2主面に向いた端部の断面積よりも大きくなっている。これによって、引き出し線2d、引き出し線3dの実装基板と接続する面積が広くなり放熱性を高めることができる。 The area of the lead wires 2d, 3d is larger than the area of the lead wires 2b, 3b. This allows a larger area for heat generated in the lead wires 2d and 3d to dissipate, improving the heat dissipation performance of the coil component 1B. Furthermore, the cross-sectional area of the ends of the lead wires 2d, 3d facing the second main surface is larger than the cross-sectional area of the ends of the lead wires 2d, 3d facing the second main surface. This increases the area of connection between the lead wires 2d and 3d and the mounting board, improving heat dissipation.

 第1導体2は、引き出し線2b,2dにおいてコイルが閉じられた後に引き出し線2b,2dが拡がる構成である。第2導体3は、引き出し線3b,3dにおいてコイルが閉じられた後に引き出し線3b,3dが拡がる構成である。これにより、コイル部品1Aは、引き出し線2bと引き出し線2dとの間、および引き出し線3bと引き出し線3dとの間が近すぎることにより生じる電極部の寄生インダクタンスや寄生キャパシタンスの影響を低減することができる。 The first conductor 2 is configured such that the lead wires 2b and 2d expand after the coil is closed at the lead wires 2b and 2d. The second conductor 3 is configured such that the lead wires 3b and 3d expand after the coil is closed at the lead wires 3b and 3d. This allows the coil component 1A to reduce the effects of parasitic inductance and parasitic capacitance of the electrode portion caused by the lead wires 2b and 2d, and the lead wires 3b and 3d being too close to each other.

 コイル部品1Bは、引き出し線2b,2d,3b,3dの位置を図4のように配置できるため、実装する基板等において配線の自由度を向上させることができる。なお、実施の形態1のコイル部品1と同様に引き出し線2b,2d,3b,3dから延びる電極を下面側に配置する構成としてもよい。複数の電極のうちのいずれかが下面に配置されいずれかが側面に配置されるようにしてもよい。なお、図では模式図として直角で描かれているが、曲げ加工で形成されるため、曲げ部は円弧形状となっている。 In coil component 1B, the positions of lead wires 2b, 2d, 3b, and 3d can be arranged as shown in FIG. 4, improving the degree of freedom of wiring on the substrate on which it is mounted. Note that, like coil component 1 in embodiment 1, the electrodes extending from lead wires 2b, 2d, 3b, and 3d may be arranged on the underside. Any of the multiple electrodes may be arranged on the underside and any of the electrodes may be arranged on the side. Note that, although the diagram shows them at right angles as a schematic diagram, the bent portion has an arc shape because it is formed by bending.

 <実施の形態4>
 実施の形態4では、実施の形態1と比較し、コイルL1とコイルL2とにおいて引き出し線の引き出す位置を変更し、第2主面での電極部分がない構成について説明する。図5Aは、実施の形態4に係るコイル部品1Cの斜視図である。図5Bは、実施の形態4に係るコイルの分解図である。なお、実施の形態4に示すコイル部品1Cでは、実施の形態1に係るコイル部品1と同じ構成について同じ符号を用いて詳しい説明を繰返さない。
<Fourth embodiment>
In the fourth embodiment, compared to the first embodiment, the positions at which the lead wires are drawn out are changed in the coils L1 and L2, and a configuration in which there is no electrode portion on the second main surface will be described. Fig. 5A is a perspective view of a coil component 1C according to the fourth embodiment. Fig. 5B is an exploded view of the coil according to the fourth embodiment. Note that in the coil component 1C shown in the fourth embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.

 第1導体2は、コイルL1から引き出し線2b,2dが筐体4の左側面から引き出され、引き出し線2bが筐体4の左側面から後面にかけて配置され、引き出し線2dが筐体4の左側面から前面にかけて配置される。第2導体3は、コイルL2から引き出し線3b,3dが筐体4の右側面から引き出され、引き出し線3bが筐体4の右側面から後面にかけて配置され、引き出し線3dが筐体4の右側面から前面にかけて配置される。実施の形態4では、引き出し線2b,2d,3b,3dの大部分が筐体4の内部に埋め込まれた配置となり、引き出し線の第2主面に到達する端部に近い部分のみが筐体4から露出している。 The first conductor 2 has wires 2b and 2d drawn from the coil L1 out the left side of the housing 4, wire 2b arranged from the left side to the rear of the housing 4, and wire 2d arranged from the left side to the front of the housing 4. The second conductor 3 has wires 3b and 3d drawn from the coil L2 out the right side of the housing 4, wire 3b arranged from the right side to the rear of the housing 4, and wire 3d arranged from the right side to the front of the housing 4. In the fourth embodiment, most of the wires 2b, 2d, 3b, and 3d are embedded inside the housing 4, and only the portions of the wires near the ends that reach the second main surface are exposed from the housing 4.

 引き出し線2d,3dの面積は、引き出し線2b,3bの面積よりも大きくなっている。これによって、引き出し線2dおよび引き出し線3dで発生する熱が放熱する面積を大きく取ることができるためコイル部品1Cの放熱性能を高めることができる。また、引き出し線2d、3dの端部の断面積は、引き出し線2b、3bの端部の断面積よりも大きくなっている。これによって、引き出し線2d、引き出し線3dの実装基板と接続する面積が広くなり放熱性を高めることができる。 The area of the lead wires 2d, 3d is larger than the area of the lead wires 2b, 3b. This allows a larger area for heat generated in the lead wires 2d and 3d to dissipate, improving the heat dissipation performance of the coil component 1C. In addition, the cross-sectional area of the ends of the lead wires 2d, 3d is larger than the cross-sectional area of the ends of the lead wires 2b, 3b. This increases the area of connection between the lead wires 2d and 3d and the mounting board, improving heat dissipation.

 第1導体2は、引き出し線2b,2dにおいてコイルが閉じられた後に引き出し線2b,2dが拡がる構成である。第2導体3は、引き出し線3b,3dにおいてコイルが閉じられた後に引き出し線3b,3dが拡がる構成である。これにより、コイル部品1Aは、引き出し線2bと引き出し線2dとの間、および引き出し線3bと引き出し線3dとの間が近すぎることにより生じる電極部の寄生インダクタンスや寄生キャパシタンスの影響を低減することができる。 The first conductor 2 is configured such that the lead wires 2b and 2d expand after the coil is closed at the lead wires 2b and 2d. The second conductor 3 is configured such that the lead wires 3b and 3d expand after the coil is closed at the lead wires 3b and 3d. This allows the coil component 1A to reduce the effects of parasitic inductance and parasitic capacitance of the electrode portion caused by the lead wires 2b and 2d, and the lead wires 3b and 3d being too close to each other.

 コイル部品1Cは、引き出し線2b,2d,3b,3dの位置を図5Aのように配置できるため、実装する基板等において配線の自由度を向上させることができる。なお、実施の形態1のコイル部品1と同様に引き出し線2b,2d,3b,3dから延びる電極を下面側に配置する構成としてもよい。複数の電極のうちのいずれかが下面に配置されいずれかが側面に配置されるようにしてもよい。なお、図では模式図として直角で描かれているが、曲げ加工で形成されるため、曲げ部は円弧形状となっている。 In coil component 1C, the positions of lead wires 2b, 2d, 3b, and 3d can be arranged as shown in FIG. 5A, improving the degree of freedom of wiring on the substrate on which it is mounted. Note that, like coil component 1 in embodiment 1, the electrodes extending from lead wires 2b, 2d, 3b, and 3d may be arranged on the underside. Any one of the multiple electrodes may be arranged on the underside and any one on the side. Note that, although the diagram shows them at right angles as a schematic diagram, the bent portion has an arc shape because it is formed by bending.

 <実施の形態5>
 実施の形態5では、実施の形態1と比較し、コイルL1とコイルL2とにおいて引き出し線の引き出す位置を変更し、第2主面での電極部分がない構成について説明する。図6Aは、実施の形態5に係るコイル部品1Dの斜視図である。図6Bは、実施の形態2に係るコイルの分解図である。なお、実施の形態5に示すコイル部品1Dでは、実施の形態1に係るコイル部品1と同じ構成について同じ符号を用いて詳しい説明を繰返さない。
<Fifth embodiment>
In the fifth embodiment, compared to the first embodiment, the positions at which the lead wires are drawn out are changed in the coils L1 and L2, and a configuration in which there is no electrode portion on the second main surface will be described. Fig. 6A is a perspective view of a coil component 1D according to the fifth embodiment. Fig. 6B is an exploded view of the coil according to the second embodiment. Note that in the coil component 1D shown in the fifth embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.

 第1導体2は、コイルL1から引き出し線2bが筐体4の後面から引き出され、引き出し線2bが筐体4の後面に配置され、引き出し線2dが筐体4の左側面から引き出され、引き出し線2dが筐体4の左側面に配置される。第2導体3は、コイルL2からは、引き出し線3bが筐体4の右側面から引き出され、引き出し線3bが筐体4の右側面に配置され、引き出し線3dが筐体4の前面から引き出され、引き出し線3dが筐体4の前面に配置される。 The first conductor 2 has lead wire 2b from coil L1 drawn out from the rear surface of the housing 4 and lead wire 2b is arranged on the rear surface of the housing 4, lead wire 2d drawn out from the left side surface of the housing 4 and lead wire 2d is arranged on the left side surface of the housing 4. The second conductor 3 has lead wire 3b drawn out from coil L2 from the right side surface of the housing 4 and lead wire 3b is arranged on the right side surface of the housing 4, lead wire 3d drawn out from the front surface of the housing 4 and lead wire 3d is arranged on the front surface of the housing 4.

 引き出し線2d,3dの面積は、引き出し線2b,3bの面積よりも大きくなっている。これによって、引き出し線2dおよび引き出し線3dで発生する熱が放熱する面積を大きく取ることができるためコイル部品1Dの放熱性能を高めることができる。また、引き出し線2d、3dの端部の断面積は、引き出し線2b、3bの端部の断面積よりも大きくなっている。これによって、引き出し線2d、引き出し線3dの実装基板と接続する面積が広くなり放熱性を高めることができる。さらに、図6Aのように端子を各側面に1つずつ形成することで小型化にも対応でき、端子の幅も広くとることが可能となる。 The area of the lead wires 2d, 3d is larger than the area of the lead wires 2b, 3b. This allows a larger area for heat generated in the lead wires 2d and 3d to dissipate, improving the heat dissipation performance of the coil component 1D. In addition, the cross-sectional area of the ends of the lead wires 2d, 3d is larger than the cross-sectional area of the ends of the lead wires 2b, 3b. This increases the area of connection between the lead wires 2d and 3d and the mounting board, improving heat dissipation. Furthermore, by forming one terminal on each side as shown in Figure 6A, it is possible to accommodate miniaturization and the width of the terminals can also be made wider.

 第1導体2は、引き出し線2b,2dにおいてコイルが閉じられた後に引き出し線2b,2dが拡がる構成である。第2導体3は、引き出し線3b,3dにおいてコイルが閉じられた後に引き出し線3b,3dが拡がる構成である。これにより、コイル部品1Aは、引き出し線2bと引き出し線2dとの間、および引き出し線3bと引き出し線3dとの間が近すぎることにより生じる電極部の寄生インダクタンスや寄生キャパシタンスの影響を低減することができる。 The first conductor 2 is configured such that the lead wires 2b and 2d expand after the coil is closed at the lead wires 2b and 2d. The second conductor 3 is configured such that the lead wires 3b and 3d expand after the coil is closed at the lead wires 3b and 3d. This allows the coil component 1A to reduce the effects of parasitic inductance and parasitic capacitance of the electrode portion caused by the lead wires 2b and 2d, and the lead wires 3b and 3d being too close to each other.

 コイル部品1Dは、引き出し線2b,2d,3b,3dの位置を図6Aのように配置できるため、実装する基板等において配線の自由度を向上させることができる。なお、実施の形態1のコイル部品1と同様に引き出し線2b,2d,3b,3dから延びる電極を下面側に配置する構成としてもよい。複数の電極のうちのいずれかが下面に配置されいずれかが側面に配置されるようにしてもよい。なお、図では模式図として直角で描かれているが、曲げ加工で形成されるため、曲げ部は円弧形状となっている。 In coil component 1D, the positions of lead wires 2b, 2d, 3b, and 3d can be arranged as shown in FIG. 6A, improving the degree of freedom of wiring on the substrate on which it is mounted. Note that, like coil component 1 in embodiment 1, the electrodes extending from lead wires 2b, 2d, 3b, and 3d may be arranged on the underside. Any one of the multiple electrodes may be arranged on the underside and any one on the side. Note that, although the diagram shows a schematic diagram with a right angle, the bent portion has an arc shape because it is formed by bending.

 <実施の形態6>
 実施の形態6では、実施の形態1と比較し、電極2e,3eの長さが電極2c,3cの長さと同じである構成について説明する。図7は、実施の形態6に係るコイル部品1Eの斜視図である。なお、実施の形態6に示すコイル部品1Eでは、実施の形態1に係るコイル部品1と同じ構成について同じ符号を用いて詳しい説明を繰返さない。
<Sixth embodiment>
In the sixth embodiment, a configuration in which the length of electrodes 2e, 3e is the same as that of electrodes 2c, 3c will be described in comparison with the first embodiment. Fig. 7 is a perspective view of a coil component 1E according to the sixth embodiment. Note that in the coil component 1E shown in the sixth embodiment, the same reference numerals are used for the same components as those in the coil component 1 according to the first embodiment, and detailed description thereof will not be repeated.

 コイル部品1Eは、第1導体2の電極2eの長さが第1導体2の電極2cの長さと同じであり、第2導体3の電極3eの長さが第2導体3の電極3cの長さと同じである。電極2eと電極3eとの間には、電極2eと電極3eとを電気的に接続する接続部材5が配置される。接続部材5は、電極2e,3eから先端が筐体4の左側面に向かって延びるT字型の形状である。 In coil component 1E, the length of electrode 2e of first conductor 2 is the same as the length of electrode 2c of first conductor 2, and the length of electrode 3e of second conductor 3 is the same as the length of electrode 3c of second conductor 3. Between electrodes 2e and 3e, a connection member 5 is disposed, which electrically connects electrodes 2e and 3e. Connection member 5 is T-shaped with its tip extending from electrodes 2e and 3e toward the left side surface of housing 4.

 電極2e,3eの面積は、電極2c,3cの面積と同じであるが、接続部材5により、電極2eおよび電極3eで発生する熱を放熱させることのできる面積を広く取っている。これによって、コイル部品1Eの放熱性能を高めることができる。 The area of electrodes 2e and 3e is the same as that of electrodes 2c and 3c, but the connecting member 5 provides a larger area for dissipating heat generated by electrodes 2e and 3e. This improves the heat dissipation performance of coil component 1E.

 <変形例>
 上述の実施の形態において、電極2e、電極3e、および接続部材5の少なくとも1つの面積が、電極2cおよび電極3cの面積よりも大きい構成としてもよい。
<Modification>
In the above-described embodiment, the area of at least one of the electrodes 2e, 3e, and the connecting member 5 may be larger than the area of the electrodes 2c and 3c.

 コイルL1,L2は、一枚の金属板ではなく、複数の階層を重ねることによってコイル部品を構成する多層構造であってもよい。 Coils L1 and L2 may not be a single metal plate, but may have a multi-layer structure in which multiple layers are stacked to form a coil component.

 上述の実施の形態において、筐体4は、直方体形状の場合を説明した。しかし、筐体4は、例えば円柱形状であってもよく、どのような形状であってもよい。 In the above embodiment, the housing 4 has been described as having a rectangular parallelepiped shape. However, the housing 4 may have any shape, for example, a cylindrical shape.

 <態様>
 (1)本開示のコイル部品は、互いに対向する1対の第1主面および第2主面と、第1主面と第2主面との間を結ぶ4つの側面とを有する筐体と、筐体の内部に配置され、前記第1主面と略平行に配置される第1コイルと、第1主面の方向から視て、第1コイルの開口と開口が重なるように筐体の内部に配置される第2コイルと、を備える。第1コイルの端部にそれぞれ接続される第1引き出し線および第2引き出し線と、第2コイルの端部にそれぞれ接続される第3引き出し線および第4引き出し線と、を含む。第2引き出し線と第4引き出し線とは電気的に接続される。第2引き出し線または第4引き出し線のうち少なくとも一方の面積が、第1引き出し線および第3引き出し線の面積よりも大きい。
<Aspects>
(1) The coil component of the present disclosure includes a housing having a pair of first and second main surfaces facing each other and four side surfaces connecting the first and second main surfaces, a first coil disposed inside the housing and disposed substantially parallel to the first main surface, and a second coil disposed inside the housing such that an opening of the first coil overlaps an opening of the second coil when viewed from the direction of the first main surface. The coil component includes a first lead wire and a second lead wire connected to ends of the first coil, respectively, and a third lead wire and a fourth lead wire connected to ends of the second coil, respectively. The second lead wire and the fourth lead wire are electrically connected. At least one of the second lead wire and the fourth lead wire has an area larger than the areas of the first lead wire and the third lead wire.

 本開示のコイル部品によれば、第2引き出し線と第4引き出し線とは電気的に接続され、第2引き出し線または第4引き出し線のうち少なくとも一方の面積が、第1引き出し線および第3引き出し線の面積よりも大きいため、放熱性能を高めることができる。 In the coil component disclosed herein, the second and fourth drawers are electrically connected, and the area of at least one of the second and fourth drawers is larger than the area of the first and third drawers, thereby improving heat dissipation performance.

 (2)本開示のコイル部品は、互いに対向する1対の第1主面および第2主面と、第1主面と第2主面との間を結ぶ4つの側面とを有する筐体と、筐体の内部に配置され、第1主面と略平行に配置される第1コイルと、第1主面の方向から視て、第1コイルの開口と開口が重なるように筐体の内部に配置される第2コイルと、を備える。第1コイルの端部にそれぞれ接続される第1引き出し線および第2引き出し線と、第2コイルの端部にそれぞれ接続される第3引き出し線および第4引き出し線と、を含む。第1引き出し線と第3引き出し線との最短距離は、第2引き出し線と第4引き出し線との最短距離よりも遠い。 (2) The coil component of the present disclosure includes a housing having a pair of first and second main surfaces facing each other and four side surfaces connecting the first and second main surfaces, a first coil disposed inside the housing and disposed substantially parallel to the first main surfaces, and a second coil disposed inside the housing such that an opening of the first coil overlaps with an opening when viewed from the direction of the first main surfaces. The coil component includes a first lead wire and a second lead wire respectively connected to ends of the first coil, and a third lead wire and a fourth lead wire respectively connected to ends of the second coil. The shortest distance between the first lead wire and the third lead wire is farther than the shortest distance between the second lead wire and the fourth lead wire.

 本開示のコイル部品によれば、第1引き出し線と第3引き出し線との間では基板実装時にショートしないための十分な距離を確保しつつ、第2引き出し線と第4引き出し線との間で発熱する領域を短くできるためコイル部品の放熱性能を高めることができる。 The coil component disclosed herein can improve the heat dissipation performance of the coil component by shortening the heat generating area between the second and fourth drawers while ensuring a sufficient distance between the first and third drawers to prevent a short circuit when mounted on a board.

 (3)(2)に記載のコイル部品であって、第1引き出し線と第3引き出し線との最短距離は、第2主面内もしくは側面の最も第2主面寄りの位置であり、第2引き出し線と第4引き出し線との最短距離は、第2主面内もしくは側面の最も第2主面寄りの位置である。これにより、第2主面に近い位置での放熱性能を高めることができる。 (3) In the coil component described in (2), the shortest distance between the first and third drawers is at a position on the second main surface or on the side closest to the second main surface, and the shortest distance between the second and fourth drawers is at a position on the second main surface or on the side closest to the second main surface. This improves the heat dissipation performance at a position close to the second main surface.

 (4)(1)~(3)のいずれかに記載のコイル部品であって、第1コイルおよび第2コイルは、金属板または金属ワイヤから形成されている。これにより、第1コイルおよび第2コイルを金属板または金属ワイヤから容易に成型することができる。 (4) A coil component according to any one of (1) to (3), wherein the first coil and the second coil are formed from a metal plate or a metal wire. This allows the first coil and the second coil to be easily molded from a metal plate or a metal wire.

 (5)(1)~(4)のいずれかに記載のコイル部品であって、第1コイルおよび第2コイルは、矩形状の開口を有する。これにより、第1コイルおよび第2コイルのインダクタンス値を大きく取ることができる。 (5) A coil component according to any one of (1) to (4), wherein the first coil and the second coil have a rectangular opening. This allows the inductance values of the first coil and the second coil to be large.

 (6)(1)~(5)のいずれかに記載のコイル部品であって、第2引き出し線および第4引き出し線の面積は、第1引き出し線および第3引き出し線の面積よりも大きい。これにより、第2引き出し線および第4引き出し線で発生する熱が放熱する面積を大きく取ることができるためコイル部品の放熱性能を高めることができる。 (6) A coil component according to any one of (1) to (5), wherein the area of the second and fourth drawers is greater than the area of the first and third drawers. This allows a larger area for dissipating heat generated in the second and fourth drawers, thereby improving the heat dissipation performance of the coil component.

 (7)(1)~(6)のいずれかに記載のコイル部品であって、第1引き出し線および第3引き出し線の第2主面における面積が、第2引き出し線および第4引き出し線の第2主面における面積よりも小さい。これにより、第2引き出し線および第4引き出し線で発生する熱が放熱する面積を大きく取ることができるためコイル部品の放熱性能を高めることができる。 (7) A coil component according to any one of (1) to (6), in which the area of the first and third drawers on the second main surface is smaller than the area of the second and fourth drawers on the second main surface. This allows a larger area for dissipating heat generated in the second and fourth drawers, thereby improving the heat dissipation performance of the coil component.

 (8)(1)に記載のコイル部品であって、第1引き出し線と第3引き出し線の第2主面における最短距離が、第2引き出し線と第4引き出し線の第2主面における最短距離より長い。これにより、第2引き出し線と第4引き出し線との間で発熱する領域を短くできるためコイル部品の放熱性能を高めることができる。 (8) The coil component according to (1), wherein the shortest distance between the first and third drawers on the second main surface is longer than the shortest distance between the second and fourth drawers on the second main surface. This shortens the area where heat is generated between the second and fourth drawers, thereby improving the heat dissipation performance of the coil component.

 (9)(1)~(8)のいずれかに記載のコイル部品であって、第1引き出し線、第2引き出し線、第3引き出し線、および第4引き出し線は、筐体の側面に配置される。これにより、引き出し線の配置の自由度を向上させることができる。 (9) A coil component according to any one of (1) to (8), in which the first lead wire, the second lead wire, the third lead wire, and the fourth lead wire are arranged on the side of the housing. This improves the degree of freedom in arranging the lead wires.

 (10)(1)~(9)のいずれかに記載のコイル部品であって、第2引き出し線および前記第4引き出し線は、同じ側面に配置される。これにより、引き出し線の配置の自由度を向上させることができる。 (10) A coil component according to any one of (1) to (9), in which the second lead wire and the fourth lead wire are arranged on the same side. This improves the degree of freedom in arranging the lead wires.

 (11)(1)~(10)のいずれかに記載のコイル部品であって、第2主面に配置され、前記第2引き出し線と前記第4引き出し線とを電気的に接続する接続部材をさらに備える。これにより、接続部材において放熱することができるためコイル部品の放熱性能を高めることができる。 (11) The coil component according to any one of (1) to (10), further comprising a connection member disposed on the second main surface and electrically connecting the second lead wire and the fourth lead wire. This allows heat to be dissipated in the connection member, thereby improving the heat dissipation performance of the coil component.

 (12)(11)に記載のコイル部品であって、接続部材の面積は、第1引き出し線および第3引き出し線の面積よりも大きい。これにより、接続部材において放熱することができるためコイル部品の放熱性能を高めることができる。 (12) The coil component according to (11), wherein the area of the connection member is larger than the areas of the first and third drawers. This allows heat to be dissipated in the connection member, thereby improving the heat dissipation performance of the coil component.

 (13)本開示のフィルタ回路は、(1)~(12)のいずれかに記載のコイル部品と、第2引き出し線および第4引き出し線と電気的に接続するコンデンサと、を備える。これにより、放熱性能の高いコイル部品を実装するフィルタ回路とすることができる。 (13) The filter circuit of the present disclosure includes a coil component according to any one of (1) to (12) and a capacitor electrically connected to the second and fourth lead wires. This makes it possible to provide a filter circuit that incorporates a coil component with high heat dissipation performance.

 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present disclosure is indicated by the claims, not by the above description, and is intended to include all modifications within the meaning and scope of the claims.

 1,1A,1B,1C,1D,1E コイル部品、2a,3a コイル部、2b,2d,3b,3d 引き出し線、2c,2e,3c,3e 電極、4 筐体、5 接続部材、L1,L2,L3 コイル、S1,S2 開口。 1, 1A, 1B, 1C, 1D, 1E coil components, 2a, 3a coil parts, 2b, 2d, 3b, 3d lead wires, 2c, 2e, 3c, 3e electrodes, 4 housing, 5 connecting member, L1, L2, L3 coils, S1, S2 openings.

Claims (13)

 互いに対向する1対の第1主面および第2主面と、前記第1主面と前記第2主面との間を結ぶ4つの側面とを有する筐体と、
 前記筐体の内部に配置され、前記第1主面と略平行に配置される第1コイルと、
 前記第1主面の方向から視て、前記第1コイルの開口と開口が重なるように前記筐体の内部に配置される第2コイルと、を備え、
 前記第1コイルの端部にそれぞれ接続される第1引き出し線および第2引き出し線と、
 前記第2コイルの端部にそれぞれ接続される第3引き出し線および第4引き出し線と、を含み、
 前記第2引き出し線と前記第4引き出し線とは電気的に接続され、
 前記第2引き出し線または前記第4引き出し線のうち少なくとも一方の面積が、前記第1引き出し線および前記第3引き出し線の面積よりも大きい、コイル部品。
a housing having a pair of first and second main surfaces opposed to each other and four side surfaces connecting the first and second main surfaces;
A first coil is disposed inside the housing and is disposed substantially parallel to the first main surface;
a second coil disposed inside the housing such that an opening of the first coil overlaps an opening of the second coil when viewed from the first main surface,
a first lead wire and a second lead wire respectively connected to ends of the first coil;
a third lead wire and a fourth lead wire respectively connected to ends of the second coil,
the second lead wire and the fourth lead wire are electrically connected to each other,
an area of at least one of the second lead wire and the fourth lead wire is larger than an area of the first lead wire and the third lead wire.
 互いに対向する1対の第1主面および第2主面と、前記第1主面と前記第2主面との間を結ぶ4つの側面とを有する筐体と、
 前記筐体の内部に配置され、前記第1主面と略平行に配置される第1コイルと、
 前記第1主面の方向から視て、前記第1コイルの開口と開口が重なるように前記筐体の内部に配置される第2コイルと、を備え、
 前記第1コイルの端部にそれぞれ接続される第1引き出し線および第2引き出し線と、
 前記第2コイルの端部にそれぞれ接続される第3引き出し線および第4引き出し線と、を含み、
 前記第1引き出し線と前記第3引き出し線との最短距離は、前記第2引き出し線と前記第4引き出し線との最短距離よりも遠い、コイル部品。
a housing having a pair of first and second main surfaces opposed to each other and four side surfaces connecting the first and second main surfaces;
A first coil is disposed inside the housing and is disposed substantially parallel to the first main surface;
a second coil disposed inside the housing such that an opening of the first coil overlaps an opening of the second coil when viewed from the first main surface,
a first lead wire and a second lead wire respectively connected to ends of the first coil;
a third lead wire and a fourth lead wire respectively connected to ends of the second coil,
a shortest distance between the first lead wire and the third lead wire is greater than a shortest distance between the second lead wire and the fourth lead wire.
 前記第1引き出し線と前記第3引き出し線との最短距離は、前記第2主面内もしくは前記側面の最も前記第2主面寄りの位置であり、前記第2引き出し線と前記第4引き出し線との最短距離は、前記第2主面内もしくは前記側面の最も前記第2主面寄りの位置である、請求項2に記載のコイル部品。 The coil component according to claim 2, wherein the shortest distance between the first and third drawers is at a position on the second main surface or on the side closest to the second main surface, and the shortest distance between the second and fourth drawers is at a position on the second main surface or on the side closest to the second main surface.  前記第1コイルおよび前記第2コイルは、金属板または金属ワイヤから形成されている、請求項1~請求項3のいずれか1項に記載のコイル部品。 The coil component according to any one of claims 1 to 3, wherein the first coil and the second coil are formed from a metal plate or a metal wire.  前記第1コイルおよび前記第2コイルは、矩形状の開口を有する、請求項1~請求項4のいずれか1項に記載のコイル部品。 The coil component according to any one of claims 1 to 4, wherein the first coil and the second coil have rectangular openings.  前記第2引き出し線および前記第4引き出し線の面積は、前記第1引き出し線および前記第3引き出し線の面積よりも大きい、請求項1~請求項5のいずれか1項に記載のコイル部品。 The coil component according to any one of claims 1 to 5, wherein the area of the second lead wire and the fourth lead wire is greater than the area of the first lead wire and the third lead wire.  前記第1引き出し線および前記第3引き出し線の前記第2主面における面積が、前記第2引き出し線および前記第4引き出し線の前記第2主面における面積よりも小さい、請求項1~請求項6のいずれか1項に記載のコイル部品。 The coil component according to any one of claims 1 to 6, wherein the area of the first and third drawer wires on the second main surface is smaller than the area of the second and fourth drawer wires on the second main surface.  前記第1引き出し線と前記第3引き出し線の前記第2主面における最短距離が、前記第2引き出し線と前記第4引き出し線の前記第2主面における最短距離より長い、請求項1に記載のコイル部品。 The coil component according to claim 1, wherein the shortest distance between the first and third drawers on the second main surface is longer than the shortest distance between the second and fourth drawers on the second main surface.  前記第1引き出し線、前記第2引き出し線、前記第3引き出し線、および前記第4引き出し線は、前記筐体の側面に配置される、請求項1~請求項8のいずれか1項に記載のコイル部品。 The coil component according to any one of claims 1 to 8, wherein the first lead-out wire, the second lead-out wire, the third lead-out wire, and the fourth lead-out wire are arranged on the side of the housing.  前記第2引き出し線および前記第4引き出し線は、同じ側面に配置される、請求項1~請求項9のいずれか1項に記載のコイル部品。 The coil component according to any one of claims 1 to 9, wherein the second lead wire and the fourth lead wire are arranged on the same side.  前記第2主面に配置され、前記第2引き出し線と前記第4引き出し線とを電気的に接続する接続部材をさらに備える、請求項1~請求項10のいずれか1項に記載のコイル部品。 The coil component according to any one of claims 1 to 10, further comprising a connection member disposed on the second main surface and electrically connecting the second draw-out wire and the fourth draw-out wire.  前記接続部材の面積は、前記第1引き出し線および前記第3引き出し線の面積よりも大きい、請求項11に記載のコイル部品。 The coil component according to claim 11, wherein the area of the connection member is greater than the areas of the first and third lead wires.  請求項1~請求項12のいずれか1項に記載の前記コイル部品と、
 前記第2引き出し線および前記第4引き出し線と電気的に接続するコンデンサと、を備える、フィルタ回路。
The coil component according to any one of claims 1 to 12,
a capacitor electrically connected to the second lead line and the fourth lead line.
PCT/JP2023/034862 2023-01-19 2023-09-26 Coil component and filter circuit Pending WO2024154388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024571614A JPWO2024154388A1 (en) 2023-01-19 2023-09-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023006741 2023-01-19
JP2023-006741 2023-01-19

Publications (1)

Publication Number Publication Date
WO2024154388A1 true WO2024154388A1 (en) 2024-07-25

Family

ID=91955544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034862 Pending WO2024154388A1 (en) 2023-01-19 2023-09-26 Coil component and filter circuit

Country Status (2)

Country Link
JP (1) JPWO2024154388A1 (en)
WO (1) WO2024154388A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526386A (en) * 2009-05-04 2012-10-25 クーパー テクノロジーズ カンパニー Magnetic component and manufacturing method thereof
WO2022070888A1 (en) * 2020-10-01 2022-04-07 株式会社村田製作所 Coil component, filter circuit containing same, and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526386A (en) * 2009-05-04 2012-10-25 クーパー テクノロジーズ カンパニー Magnetic component and manufacturing method thereof
WO2022070888A1 (en) * 2020-10-01 2022-04-07 株式会社村田製作所 Coil component, filter circuit containing same, and electronic device

Also Published As

Publication number Publication date
JPWO2024154388A1 (en) 2024-07-25

Similar Documents

Publication Publication Date Title
WO2007084658A1 (en) Low inductance capacitor
US12355416B2 (en) Coil component, filter circuit including the coil component, and electronic device
CN219164535U (en) Filter circuit and power supply device including the same
US20240428985A1 (en) Circuit device and filter circuit
JP6696071B2 (en) Output noise reduction device
WO2020066192A1 (en) Electronic control device
US10284164B2 (en) Circuit substrate, filter circuit, and capacitance element
US20240297631A1 (en) Circuit device
WO2024154388A1 (en) Coil component and filter circuit
JP7185894B2 (en) Output noise reduction device
US11870412B2 (en) Multilayer substrate, circuit device, and filter circuit substrate
JP7750436B2 (en) Coil components and filter circuits including them
WO2024154391A1 (en) Coil component and filter circuit
JP2024030719A (en) Electrical noise suppression circuit and brushed DC motor equipped with the same
WO2019215922A1 (en) Connector
WO2024166971A1 (en) Circuit device and circuit board
WO2025047045A1 (en) Coil component and circuit device including same
WO2024247619A1 (en) Coil component and filter circuit
WO2025083974A1 (en) Coil component and filter circuit
JP4379107B2 (en) Electronic components
WO2025062805A1 (en) Coil component and filter circuit
JP7130174B2 (en) filter circuit
US20250192746A1 (en) Filter circuit
JP7677863B2 (en) Capacitor Device
JP4985852B2 (en) Mounted electronic circuit module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917600

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024571614

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE