[go: up one dir, main page]

WO2024157934A1 - Production method, film formation method, and film-forming material - Google Patents

Production method, film formation method, and film-forming material Download PDF

Info

Publication number
WO2024157934A1
WO2024157934A1 PCT/JP2024/001661 JP2024001661W WO2024157934A1 WO 2024157934 A1 WO2024157934 A1 WO 2024157934A1 JP 2024001661 W JP2024001661 W JP 2024001661W WO 2024157934 A1 WO2024157934 A1 WO 2024157934A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium
film
bis
chloride
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/001661
Other languages
French (fr)
Japanese (ja)
Inventor
英明 町田
真人 石川
弘 須藤
義治 長谷川
陽一郎 沼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAS-PHASE GROWTH Ltd
Original Assignee
GAS-PHASE GROWTH Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023018604A external-priority patent/JP2024104710A/en
Application filed by GAS-PHASE GROWTH Ltd filed Critical GAS-PHASE GROWTH Ltd
Publication of WO2024157934A1 publication Critical patent/WO2024157934A1/en
Anticipated expiration legal-status Critical
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C257/00Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
    • C07C257/10Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
    • C07C257/14Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present invention relates to film formation technology.
  • Ruthenium-based films e.g., films of metallic ruthenium, ruthenium alloy, ruthenium oxide, or ruthenium nitride. These films will be simply referred to as ruthenium films (Ru films) below) are in demand in a variety of fields. For example, they are used as conductive materials, magnetic materials, or catalytic materials. In recent years, Ru films have been attracting particular attention as an LSI wiring material.
  • CVD method chemical vapor deposition method
  • ALD method atomic layer deposition method
  • oxygen reactant
  • the incubation time is long.
  • ALD method there are many incubation cycles (for example, at least 500 cycles or more).
  • the thickness of the thin film of the wiring used in recent LSI is thin (for example, several nm).
  • the incubation time is long (there are many incubation cycles), it is difficult to grasp the time when the deposition of the film started. Therefore, it is difficult to control the film thickness. This is particularly difficult when forming a thin film (for example, several nm).
  • a trivalent amidinate complex ⁇ Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 3 ⁇ has been proposed.
  • This amidinate complex has a large molecular weight.
  • the sublimation temperature is reported to be 85° C./0.05 torr.
  • the vapor pressure is too low for practical use.
  • the trivalent amidinate complex is a solid. Therefore, it is difficult to use.
  • the problem that the present invention aims to solve is to solve the above problems. For example, it is to provide a film formation technology that does not use oxygen (reactant) (or is not in an oxidizing atmosphere). And/or it is to provide a film formation technology with a short incubation time (or with few incubation cycles). Alternatively, it is to provide a liquid (at 25°C (1 atm)) raw material used for film formation. In other words, it is to provide a technology that allows a stable supply of raw material (for example, is less likely to solidify and become clogged during transportation (midway through piping)) and can form a high-quality ruthenium film.
  • the present invention relates to A method for producing Ru[R 1 -N-C(R 3 )-N-R 2 ] 2 (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms, and R 1 , R 2 and R 3 may be the same or different), comprising the steps of:
  • the present invention relates to A method for producing Ru[R 1 -N-C(R 3 )-N-R 2 ] 2 (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms, and R 1 , R 2 and R 3 may be the same or different), comprising the steps of:
  • the present invention proposes the above method, in which the divalent ruthenium complex is preferably a divalent ruthenium chloride complex.
  • the present invention proposes the above-mentioned method, in which the divalent ruthenium complex is preferably one or more selected from the group consisting of ruthenium(II) chloride/1,5-cyclooctadiene complex, bis[(benzene)ruthenium(II)] chloride, bis[(mesitylene)ruthenium(II)] chloride, and (p-cymene)ruthenium(II) chloride dimer.
  • the divalent ruthenium complex is preferably one or more selected from the group consisting of ruthenium(II) chloride/1,5-cyclooctadiene complex, bis[(benzene)ruthenium(II)] chloride, bis[(mesitylene)ruthenium(II)] chloride, and (p-cymene)ruthenium(II) chloride dimer.
  • the present invention relates to 1.
  • a method for forming a ruthenium-based film comprising the steps of: Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 2 is supplied into the deposition chamber;
  • a method is proposed in which a ruthenium-based film is formed on a substrate in the deposition chamber by ALD or CVD.
  • the present invention relates to 1.
  • a method for forming a ruthenium-based film comprising the steps of: Ru[i-C 3 H 7 -N-C(C 2 H 5 )-N-i-C 3 H 7 ] 2 is supplied into the deposition chamber;
  • a method is proposed in which a ruthenium-based film is formed on a substrate in the deposition chamber by ALD or CVD.
  • the present invention relates to 1.
  • a method for forming a ruthenium-based film comprising the steps of: Ru[i-C 3 H 7 -N-C(n-C 3 H 7 )-N-i-C 3 H 7 ] 2 is supplied into the film formation chamber;
  • a method is proposed in which a ruthenium-based film is formed on a substrate in the deposition chamber by ALD or CVD.
  • the present invention relates to A material for forming a ruthenium-based film, A material having the structure Ru[iC 3 H 7 —N—C(CH 3 )—N—iC 3 H 7 ] 2 is proposed.
  • the present invention relates to A material for forming a ruthenium-based film, A material having the structure Ru[iC 3 H 7 —N—C(C 2 H 5 )—N—iC 3 H 7 ] 2 is proposed.
  • the present invention relates to A material for forming a ruthenium-based film, A material having the formula Ru[iC 3 H 7 —N—C(nC 3 H 7 )—N—iC 3 H 7 ] 2 is proposed.
  • the present invention relates to A material for forming a ruthenium-based film, A material having Ru[iC 3 H 7 --N--C(R 3 )--N--C 3 H 7 ] 2 (R 3 is an alkyl group having 1 to 5 carbon atoms) is proposed.
  • the ruthenium-based film-forming material of the present invention was a liquid (under 25°C (1 atm)). Its boiling point was, for example, 96°C to 120°C/0.1 torr. Its vapor pressure was high. Therefore, a high-quality ruthenium film could be stably and easily formed by the CVD method (or the ALD method).
  • the ruthenium-based film-forming materials of the present invention were easily synthesized.
  • the first invention is a manufacturing method.
  • the method is a manufacturing method of Ru[R 1 -N-C(R 3 )-N-R 2 ] 2 (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms. R 1 , R 2 and R 3 may be the same or different).
  • the method is a manufacturing method of Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 2 , Ru[i-C 3 H 7 -N-C(C 2 H 5 )-N-i-C 3 H 7 ] 2 , or Ru[i-C 3 H 7 -N-C(n-C 3 H 7 )-N-i-C 3 H 7 ] 2 .
  • the method is a method of reacting Li[R 1 -N-C(R 3 )-N-R 2 ] (R 1 , R 2 , and R 3 are alkyl groups having 1 to 5 carbon atoms.
  • R 1 , R 2 , and R 3 may be the same or different.) with a divalent ruthenium complex.
  • a reaction product of R 1 -N ⁇ C ⁇ N-R 2 and R 3 Li (R 1 , R 2 , and R 3 are alkyl groups having 1 to 5 carbon atoms. R 1 , R 2 , and R 3 may be the same or different.
  • R 1 and R 2 are, for example, isopropyl groups.
  • R 3 is, for example, a methyl group, an ethyl group, or an n-propyl group) is reacted with a divalent ruthenium complex. The reaction was carried out, for example, by mixing.
  • the divalent ruthenium complex is preferably a divalent ruthenium chloride complex.
  • it is a complex selected from the group consisting of ruthenium chloride (II)-1,5-cyclooctadiene complex, bis[(benzene)ruthenium chloride (II)], bis[(mesitylene)ruthenium chloride (II)], and (p-cymene)ruthenium chloride (II) dimer. It is any one of these. Basically, it is any one of these, but two or more of these may be used.
  • the second invention is a material for forming a ruthenium-based film.
  • the material is Ru[i-C 3 H 7 -N-C(R 3 )-N-i-C 3 H 7 ] 2 (R 3 is an alkyl group having 1 to 5 carbon atoms).
  • R 3 is preferably a straight-chain alkyl group. Among them, it is an alkyl group having 1 to 3 carbon atoms.
  • Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 2 is particularly preferable.
  • Ru[i-C 3 H 7 -N-C(C 2 H 5 )-N-i-C 3 H 7 ] 2 is preferable.
  • Ru[i-C 3 H 7 -N-C(n-C 3 H 7 )-N-i-C 3 H 7 ] 2.
  • Most preferred from the viewpoint of film formability was Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 2
  • from the viewpoint of productivity was Ru[i-C 3 H 7 -N-C(n-C 3 H 7 )-N-i-C 3 H 7 ] 2.
  • the ruthenium-based film forming material may contain the compound in solution.
  • the third invention is a method for forming a ruthenium-based film.
  • the method includes a step of supplying the compound into a film-forming chamber.
  • a ruthenium-based film is formed on a substrate in the film-forming chamber by ALD or CVD.
  • R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' may be independently selected from hydrogen, alkyl, aryl, alkenyl, alkynyl, trialkylsilyl, or fluoroalkyl groups, or other non-metallic atoms or groups.
  • R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently selected from hydrogen, alkyl, aryl, alkenyl , alkynyl, trialkylsilyl, or fluoroalkyl groups, or other non-metallic atoms or groups.
  • the metal(II) amidinate is a cobalt amidinate.
  • the cobalt amidinate includes cobalt(II) bis(N,N'-diisopropylacetamidinate) corresponding to the general formula where R 1 , R 2 , R 1 ', and R 2 ' are isopropyl groups, and R 3 and R 3 ' are methyl groups.”
  • R 1 , R 2 , R 3 , R 1 ', R 2 ' and R 3 ' in the above general formula are hydrogen, alkyl, aryl, alkenyl, alkynyl, trialkylsilyl or fluoroalkyl groups or other nonmetallic atoms or groups.
  • R 1 , R 2 , R 3 , R 1 ', R 2 ' and R 3 ' in the above general formula are hydrogen, alkyl, aryl, alkenyl, alkynyl, trialkylsilyl or fluoroalkyl groups or other nonmetallic atoms or groups.
  • the above compound proposed by the present invention is not specifically disclosed.
  • the method for producing the above compound proposed by the present invention is not disclosed.
  • bis(N,N'-ditertiarybutylacetamidinate)ruthenium is a compound contained in the above general formula disclosed in the above patent document (WO2004/046417A2). However, this compound was a solid (below 25°C). The sublimation temperature was 130°C. It did not satisfy the physical properties of the above compound proposed by the present invention. Therefore, it was not suitable as a film forming material for a Ru film.
  • Bis(N-ethyl-N'-tertiarybutylacetamidinate)ruthenium is also a compound contained in the above general formula disclosed in the above patent document (WO2004/046417A2). However, this compound was a solid (at 25°C).
  • this compound contained in the general formula disclosed in the above patent document (WO2004/046417A2) was also not suitable as a film-forming material for a Ru film.
  • a compound suitable as a Ru film-forming material was disclosed in the above patent document (WO2004/046417A2).
  • the compound proposed by the present invention has properties significantly different from those of the compounds disclosed in the above-mentioned known documents, and therefore the inventors are convinced that the compound proposed by the present invention is not self-evident, and of course, that it could not have been easily invented from the above-mentioned known documents.
  • reaction mixture was slowly dripped into a cooled (-40°C) suspension of (p-cymene)ruthenium(II) chloride dimer (28.8 g) suspended in tetrahydrofuran (350 ml). The temperature was then gradually returned to room temperature. Stirring (4 hours) was carried out. The solvent was distilled off. The remaining oil was then dissolved in n-hexane (450 ml). Insoluble matter was removed (filtered). The solvent was distilled off again. A dark brown liquid was then obtained by distillation under reduced pressure (0.1 torr). This substance was bis(N,N'-diisopropylacetamidinate)ruthenium. The boiling point was 96°C.
  • the obtained bis(N,N'-diisopropylacetamidinate)ruthenium was hydrolyzed. Solvent extraction was carried out in an alkaline state. High-purity N,N'-diisopropylacetamidine was obtained. Component analysis revealed that the ruthenium contained in the obtained bis(N,N'-diisopropylacetamidinate)ruthenium was 26-26.5%. This demonstrated that the obtained dark brown liquid was divalent bis(N,N'-diisopropylacetamidinate)ruthenium.
  • Comparative Example 2 The procedure was the same as in Comparative Example 1. Bis(N-ethyl-N'-tertiarybutylacetamidinate)ruthenium was obtained. This compound was a solid (25°C (1 atm)). The sublimation temperature was 130°C.
  • the reaction mixture was slowly dripped into a suspension [a suspension of ruthenium trichloride-tridimethylsulfur adduct (30 g) in tetrahydrofuran (150 ml)]. The temperature was then gradually returned to room temperature. Stirring was carried out for 4 hours. The solvent was distilled off. The remaining oily matter was then dissolved in n-hexane (1000 ml). Insoluble matter was removed (filtered). The solvent was distilled off again. Sublimation was carried out under reduced pressure (0.1 torr). The temperature of the oil bath was raised to 150°C. However, nothing could be collected. Tris(N,N'-diisopropylpropionamidinate)ruthenium was not obtained.
  • Example 2 Bis[(benzene)ruthenium(II)chloride] was used instead of (p-cymene)ruthenium(II)chloride dimer. The procedure was the same as in Example 1. The results were the same as in Example 1.
  • Example 3 instead of (p-cymene)ruthenium(II) chloride dimer, bis[(mesitylene)ruthenium(II)] chloride was used. The procedure was the same as in Example 1. The results were the same as in Example 1.
  • Example 4 instead of (p-cymene)ruthenium(II) chloride dimer, ruthenium(II) chloride ⁇ 1,5-cyclooctadiene complex was used. The procedure was similar to that of Example 1. The results were the same as those of Example 1.
  • reaction mixture was slowly dripped into a suspension [(p-cymene)ruthenium(II) chloride dimer (31.8 g) suspended in tetrahydrofuran (400 ml)] that had been cooled (-40°C). The temperature was then gradually returned to room temperature. Stirring (4 hours) was carried out. The solvent was distilled off. The remaining oily matter was then dissolved in n-hexane (500 ml). Insoluble matter was removed (filtered). The solvent was distilled off again. A dark brown liquid was then obtained by distillation under reduced pressure (0.1 torr). This substance was bis(N,N'-diisopropylpropionamidinate)ruthenium. The boiling point was 115°C.
  • the obtained bis(N,N'-diisopropylpropionamidinate)ruthenium was hydrolyzed. Solvent extraction was carried out in an alkaline state. High-purity N,N'-diisopropylpropionamidine was obtained. The amount of ruthenium contained in the obtained bis(N,N'-diisopropylpropionamidinate)ruthenium was 24.5 to 24.7% by component analysis. This revealed that the obtained dark brown liquid was divalent bis(N,N'-diisopropylpropionamidinate)ruthenium.
  • reaction mixture was slowly added dropwise to a suspension of (p-cymene)ruthenium(II) chloride dimer (31.5 g) suspended in tetrahydrofuran (300 ml) that had been cooled (-40°C). The temperature was then gradually returned to room temperature. Stirring was carried out (4 hours). The solvent was distilled off. The remaining oil was then dissolved in n-hexane (450 ml). Insoluble matter was removed (filtered). The solvent was distilled off again. A dark brown liquid was then obtained by distillation under reduced pressure (0.1 torr). This substance was bis(N,N'-diisopropylbutanamidinate)ruthenium. The boiling point was 120°C.
  • the obtained bis(N,N'-diisopropylbutanamidinate)ruthenium was hydrolyzed. Solvent extraction was carried out in an alkaline state. High-purity N,N'-diisopropylbutanamidine was obtained. The amount of ruthenium contained in the obtained bis(N,N'-diisopropylbutanamidinate)ruthenium was 22.9 to 23.2% by component analysis. This revealed that the obtained dark brown liquid was divalent bis(N,N'-diisopropylbutanamidinate)ruthenium.
  • FIG. 1 is a schematic diagram of a film forming apparatus, in which 1 denotes a source container, 2 denotes a heater, 3 denotes a decomposition reactor, 4 denotes a substrate, 5 denotes a flow rate controller, 6 denotes a shower head, 7 denotes a carrier gas (argon), and 8 denotes a reaction gas (ammonia, hydrogen).
  • the apparatus used was that shown in Figure 1.
  • a ruthenium-based film was deposited by CVD.
  • Bis(N,N'-diisopropylacetamidinate)ruthenium was placed in the source container 1.
  • Ar gas carrier gas
  • carrier gas Ar gas
  • the vaporized bis(N,N'-diisopropylacetamidinate)ruthenium was introduced into the decomposition reactor 3 together with Ar.
  • Ammonia and hydrogen reaction gas were also introduced into the decomposition reactor 3.
  • the source container 1 and piping were heated (90-95°C). At this time, the system was evacuated to a vacuum.
  • the substrate 4 was heated (300°C). As a result, a film was formed on the substrate 4. The same procedure was repeated. Thin films of 20 nm thickness were produced almost simultaneously each time. There was almost no incubation time. The film was examined by XPS and confirmed to be a ruthenium film.
  • Oxygen was introduced into the decomposition reactor 3 instead of ammonia and hydrogen. As a result, a ruthenium film was formed. However, it took 20 minutes for the film formation to start (long incubation time). The same thing happened again. The time required for deposition to start was not constant. For example, it varied from 17 to 25 minutes. It was not possible to create a 20 nm thick thin film every time.
  • Example 8 Bis(N,N'-diisopropylpropionamidinate)ruthenium was used instead of bis(N,N'-diisopropylacetamidinate)ruthenium.
  • the raw material container 1 and piping were heated to 105 to 110° C. The same procedure as in Example 7 was followed. The same procedure was repeated. Thin films of 20 nm thickness were produced almost simultaneously each time. There was almost no incubation time. The film was examined by XPS and confirmed to be a ruthenium film.
  • Example 10 The apparatus used was that shown in Figure 1. Ruthenium-based films were deposited by ALD. Bis(N,N'-diisopropylacetamidinate)ruthenium was placed in the raw material container 1. Ar gas (carrier gas) was bubbled at a rate of 10 ml/min. The evaporated bis(N,N'-diisopropylacetamidinate)ruthenium was introduced into the decomposition reactor 3 together with Ar for 20 seconds. The system was evacuated to a vacuum. The decomposition reactor was evacuated to a vacuum for 20 seconds. After this, ammonia and hydrogen (reaction gas) were introduced into the decomposition reactor 3 for 20 seconds. The decomposition reactor was evacuated to a vacuum for 20 seconds.
  • bis(ethylcyclopentadienyl)ruthenium was again introduced into the decomposition reactor 3 together with the bubbling gas and argon gas for 20 seconds. This operation was repeated 200 times.
  • the source container 1 and piping were heated (110-115°C).
  • the substrate 4 was heated (275°C). However, no film was formed on the substrate 4.
  • oxygen was introduced into the decomposition reactor 3.
  • the ALD cycle was repeated 1000 times before film formation was observed. It turns out that many incubation cycles are required.
  • tris(N,N'-diisopropylacetamidinate)ruthenium was again introduced into the decomposition reactor 3 together with the bubbling gas and argon gas for 20 seconds. This operation was repeated 200 times.
  • the source container 1 and piping were heated (105-110° C.).
  • the substrate 4 was heated (220° C.).
  • a film was formed on the substrate 4.
  • the film thickness in this case was only about 20% of the film thickness when bis(N,N'-diisopropylacetamidinate)ruthenium was used.
  • the same process was repeated, but sometimes the pipes became clogged during the film formation (during the transport route).
  • Example 11 Bis(N,N'-diisopropylacetamidinate)ruthenium was used instead of bis(N,N'-diisopropylpropionamidinate). The experiment was carried out in accordance with Example 10. The source container 1 and the piping were heated (105 to 110°C). As a result, a film was formed on the substrate 4 in the same manner. The film was examined by XPS and confirmed to be a ruthenium film.
  • Example 12 Bis(N,N'-diisopropylbutaneamidinate)ruthenium was used instead of bis(N,N'-diisopropylacetamidinate)ruthenium.
  • the experiment was carried out in accordance with Example 10.
  • the source container 1 and the piping were heated (110 to 115°C).
  • a film was formed on the substrate 4 in the same manner.
  • the film was examined by XPS and confirmed to be a ruthenium film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a technique that enables the stable supply of starting materials (without a tendency toward solidification and blockage during transport (in pipes)), and enables the formation of high-quality ruthenium. This material is for forming a ruthenium film, the material comprising Ru[i-C 3H7-N-C(n-C3H7)-N-i-C3H7]2.

Description

製造方法、膜形成方法、及び膜形成材料Manufacturing method, film forming method, and film forming material

 本発明は膜形成技術に関する。 The present invention relates to film formation technology.

 ルテニウム系膜(例えば、金属ルテニウム、ルテニウム合金、酸化ルテニウム、又は窒化ルテニウム等の膜。これ等の膜は、以下では、単に、ルテニウム膜(Ru膜)とも称される。)は、様々な分野で求められている。例えば、導電性材料、磁性材料、或いは触媒材料として使用されている。Ru膜は、近年では、特に、LSI配線材料として注目されている。 Ruthenium-based films (e.g., films of metallic ruthenium, ruthenium alloy, ruthenium oxide, or ruthenium nitride. These films will be simply referred to as ruthenium films (Ru films) below) are in demand in a variety of fields. For example, they are used as conductive materials, magnetic materials, or catalytic materials. In recent years, Ru films have been attracting particular attention as an LSI wiring material.

 Ru膜の成膜には次の方法が提案されている。
 シクロペンタジエニル系ルテニウム錯体(例えば、ビスエチルシクロペンタジエニルルテニウム)を用いた化学気相成長方法(CVD法)あるいは原子層制御成長方法(ALD法)である。
 シクロペンタジエニル系ルテニウム錯体をCVD法(或いはALD法)で用いる場合、酸素(反応剤)が必用であった。従って、基板が酸素を嫌う基板の場合、前記化合物の使用は好ましくなかった。更に、CVD法においては、インキュベーション時間が長い。ALD法においては、インキュベーションサイクルが多い(例えば、少なくとも500サイクル以上)。近年のLSIに用いられる配線の薄膜の厚さは薄い(例えば、数nm)。インキュベーション時間が長い(インキュベーションサイクルが多い)場合、膜の堆積が何時の時点で始まったかの把握が困難である。従って、膜厚の制御が困難である。特に、薄い(例えば、数nm)膜の成膜の場合は困難である。
The following methods have been proposed for forming a Ru film.
This is a chemical vapor deposition method (CVD method) using a cyclopentadienyl-based ruthenium complex (for example, bisethylcyclopentadienyl ruthenium) or an atomic layer deposition method (ALD method).
When using a cyclopentadienyl-based ruthenium complex in the CVD method (or the ALD method), oxygen (reactant) is required. Therefore, when the substrate is one that does not like oxygen, the use of the compound is not preferable. Furthermore, in the CVD method, the incubation time is long. In the ALD method, there are many incubation cycles (for example, at least 500 cycles or more). The thickness of the thin film of the wiring used in recent LSI is thin (for example, several nm). When the incubation time is long (there are many incubation cycles), it is difficult to grasp the time when the deposition of the film started. Therefore, it is difficult to control the film thickness. This is particularly difficult when forming a thin film (for example, several nm).

 シクロペンタジエニル系ルテニウム錯体以外にも提案されている。例えば、2個のカルボニル基と1個のアミジネート基とが、ルテニウムに、結合した化合物である。或いは、Ru{μ2-η3-N(t-Bu)-C(H)-C(i-Pr)}(CO)である。しかし、何れも、酸素(反応剤)が必用であった。 Other than the cyclopentadienyl-based ruthenium complex, other compounds have also been proposed. For example, there is a compound in which two carbonyl groups and one amidinate group are bonded to ruthenium. Another example is Ru2 {μ2-η3-N(t-Bu)-C(H)-C(i-Pr)}(CO) 6 . However, all of these require oxygen (a reactant).

 インキュベーション時間が無く又は少なく(インキュベーションサイクルが無く又は少なく)、かつ、酸素(反応剤)を使わない成膜技術が求められている。この為には、前記化合物(前記シクロペンタジエニル系ルテニウム錯体、前記カルボニル系ルテニウム錯体)とは異なったタイプの化合物が求められた。 There is a demand for a film formation technology that requires no or little incubation time (no or little incubation cycle) and does not use oxygen (a reactant). For this purpose, a different type of compound from the above compounds (the above cyclopentadienyl-based ruthenium complexes and the above carbonyl-based ruthenium complexes) is required.

 3価のアミジネート錯体{Ru〔i-C-N-C(CH)-N-i-C}が提案されている。このアミジネート錯体は分子量が大きい。昇華温度が85℃/0.05torrと報告されている。実際の使用には蒸気圧が低すぎた。前記3価のアミジネート錯体は固体であった。従って、使い難かった。 A trivalent amidinate complex {Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 3 } has been proposed. This amidinate complex has a large molecular weight. The sublimation temperature is reported to be 85° C./0.05 torr. The vapor pressure is too low for practical use. The trivalent amidinate complex is a solid. Therefore, it is difficult to use.

Huazhi Li, Titta Aaltonen, Zhengwen Li, Booyong S. Lim4 and Roy G. Gordon, Synthesis and Characterization of Ruthenium Amidinate Complexes as Precursors for Vapor Deposition, The Open Inorganic Chemistry Journal, 2008, 2, 11-17.Huazhi Li, Titta Aaltonen, Zhengwen Li, Booyong S. Lim4 and Roy G. Gordon, Synthesis and Characterization of Ruthenium Amidinate Complexes as Precursors for Vapor Deposition, The Open Inorganic Chemistry Journal, 2008, 2, 11-17. Hye-Mi Kim, Jung-Hoon Lee, Seung-Hwan Lee, Ryosuke Harada, Toshiyuki Shigetomi, Seungjoon Lee, Tomohiro Tsugawa, Bonggeun Shong, and Jin-Seong Park, “Area-Selective Atomic Layer Deposition of Ruthenium Using a Novel Ru Precursor and H2O as a Reactant”, Chem. Mater. 2021, 33, 12, 4353-4361.Hye-Mi Kim, Jung-Hoon Lee, Seung-Hwan Lee, Ryosuke Harada, Toshiyuki Shigetomi, Seungjoon Lee, Tomohiro Tsugawa, Bonggeun Shong, and Jin-Seong Park, “Area-Selective Atomic Layer Deposition of Ruthenium Using a Novel Ru Precursor and “H2O as a Reactant”, Chem. Mater. 2021, 33, 12, 4353-4361.

WO2004/046417A2WO2004/046417A2

 本発明が解決しようとする課題は、前記の問題点を解決することである。例えば、酸素(反応剤)を用いない(若しくは、酸化性の雰囲気下ではない)成膜技術を提供することである。及び/又は、インキュベーション時間が短い(又は、インキュベーションサイクルが少ない)成膜技術を提供することである。或いは、成膜に使用される原料として液体(25℃(1気圧)下)の原料を提供することである。すなわち、原料の安定供給が可能(例えば、輸送中(配管途中)での固化閉塞が起き難い)で、高品質なルテニウム膜を形成できる技術を提供することである。 The problem that the present invention aims to solve is to solve the above problems. For example, it is to provide a film formation technology that does not use oxygen (reactant) (or is not in an oxidizing atmosphere). And/or it is to provide a film formation technology with a short incubation time (or with few incubation cycles). Alternatively, it is to provide a liquid (at 25°C (1 atm)) raw material used for film formation. In other words, it is to provide a technology that allows a stable supply of raw material (for example, is less likely to solidify and become clogged during transportation (midway through piping)) and can form a high-quality ruthenium film.

 本発明は、
 Ru[R-N-C(R)-N-R(R,R,Rは炭素数が1~5のアルキル基。R,R,Rは同一でも異なっていても良い。)の製造方法であって、
 Li[R-N-C(R)-N-R](R,R,Rは炭素数が1~5のアルキル基。R,R,Rは同一でも異なっていても良い。)と、2価のルテニウム錯体とを反応させる
方法を提案する。
The present invention relates to
A method for producing Ru[R 1 -N-C(R 3 )-N-R 2 ] 2 (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms, and R 1 , R 2 and R 3 may be the same or different), comprising the steps of:
We propose a method of reacting Li[R 1 -N-C(R 3 )-N-R 2 ] (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms; R 1 , R 2 and R 3 may be the same or different) with a divalent ruthenium complex.

 本発明は、
 Ru[R-N-C(R)-N-R(R,R,Rは炭素数が1~5のアルキル基。R,R,Rは同一でも異なっていても良い。)の製造方法であって、
 R-N=C=N-R(R,Rは炭素数が1~5のアルキル基。R,Rは同一でも異なっていても良い。)とRLi(Rは炭素数が1~5のアルキル基。)との反応物と、2価のルテニウム錯体とを、反応させる
方法を提案する。
The present invention relates to
A method for producing Ru[R 1 -N-C(R 3 )-N-R 2 ] 2 (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms, and R 1 , R 2 and R 3 may be the same or different), comprising the steps of:
We propose a method of reacting a reactant of R 1 -N=C=N-R 2 (R 1 and R 2 are alkyl groups having 1 to 5 carbon atoms; R 1 and R 2 may be the same or different) with R 3 Li (R 3 is an alkyl group having 1 to 5 carbon atoms) with a divalent ruthenium complex.

 本発明は、前記方法であって、前記2価のルテニウム錯体が、好ましくは、2価の塩化ルテニウム錯体である方法を提案する。 The present invention proposes the above method, in which the divalent ruthenium complex is preferably a divalent ruthenium chloride complex.

 本発明は、前記方法であって、前記2価のルテニウム錯体が、好ましくは、塩化ルテニウム(II)・1,5-シクロオクタジエン錯体、 ビス[(ベンゼン)塩化ルテニウム(II)]、ビス[(メシチレン)塩化ルテニウム(II)]、(p-シメン)塩化ルテニウム(II)ダイマーの群の中から選ばれる一種又は二種以上である方法を提案する。 The present invention proposes the above-mentioned method, in which the divalent ruthenium complex is preferably one or more selected from the group consisting of ruthenium(II) chloride/1,5-cyclooctadiene complex, bis[(benzene)ruthenium(II)] chloride, bis[(mesitylene)ruthenium(II)] chloride, and (p-cymene)ruthenium(II) chloride dimer.

 本発明は、
 ルテニウム系膜が形成される方法であって、
 Ru〔i-C-N-C(CH)-N-i-Cが成膜室内に供給され、
 ルテニウム系膜が、ALD法またはCVD法により、前記成膜室内の基板上に形成される
方法を提案する。
The present invention relates to
1. A method for forming a ruthenium-based film, comprising the steps of:
Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 2 is supplied into the deposition chamber;
A method is proposed in which a ruthenium-based film is formed on a substrate in the deposition chamber by ALD or CVD.

 本発明は、
 ルテニウム系膜が形成される方法であって、
 Ru〔i-C-N-C(C)-N-i-Cが成膜室内に供給され、
 ルテニウム系膜が、ALD法またはCVD法により、前記成膜室内の基板上に形成される
方法を提案する。
The present invention relates to
1. A method for forming a ruthenium-based film, comprising the steps of:
Ru[i-C 3 H 7 -N-C(C 2 H 5 )-N-i-C 3 H 7 ] 2 is supplied into the deposition chamber;
A method is proposed in which a ruthenium-based film is formed on a substrate in the deposition chamber by ALD or CVD.

 本発明は、
 ルテニウム系膜が形成される方法であって、
 Ru〔i-C-N-C(n-C)-N-i-Cが成膜室内に供給され、
 ルテニウム系膜が、ALD法またはCVD法により、前記成膜室内の基板上に形成される
方法を提案する。
The present invention relates to
1. A method for forming a ruthenium-based film, comprising the steps of:
Ru[i-C 3 H 7 -N-C(n-C 3 H 7 )-N-i-C 3 H 7 ] 2 is supplied into the film formation chamber;
A method is proposed in which a ruthenium-based film is formed on a substrate in the deposition chamber by ALD or CVD.

 本発明は、
 ルテニウム系膜を形成する為の材料であって、
 Ru〔i-C-N-C(CH)-N-i-Cを具備する
材料を提案する。
The present invention relates to
A material for forming a ruthenium-based film,
A material having the structure Ru[iC 3 H 7 —N—C(CH 3 )—N—iC 3 H 7 ] 2 is proposed.

 本発明は、
 ルテニウム系膜を形成する為の材料であって、
 Ru〔i-C-N-C(C)-N-i-Cを具備する
材料を提案する。
The present invention relates to
A material for forming a ruthenium-based film,
A material having the structure Ru[iC 3 H 7 —N—C(C 2 H 5 )—N—iC 3 H 7 ] 2 is proposed.

 本発明は、
 ルテニウム系膜を形成する為の材料であって、
 Ru〔i-C-N-C(n-C)-N-i-Cを具備する
材料を提案する。
The present invention relates to
A material for forming a ruthenium-based film,
A material having the formula Ru[iC 3 H 7 —N—C(nC 3 H 7 )—N—iC 3 H 7 ] 2 is proposed.

 本発明は、
 ルテニウム系膜を形成する為の材料であって、
 Ru〔i-C-N-C(R)-N-i-C(Rは炭素数が1~5のアルキル基。)を具備する
材料を提案する。
The present invention relates to
A material for forming a ruthenium-based film,
A material having Ru[iC 3 H 7 --N--C(R 3 )--N--C 3 H 7 ] 2 (R 3 is an alkyl group having 1 to 5 carbon atoms) is proposed.

 本発明のルテニウム系膜形成材料は液体(25℃(1気圧)下)であった。沸点が、例えば、96℃~120℃/0.1torrであった。蒸気圧は高い。従って、CVD法(又はALD法)によって、高品質なルテニウム膜が安定して簡単に形成できた。
 本発明のルテニウム系膜形成材料は簡単に合成できた。
The ruthenium-based film-forming material of the present invention was a liquid (under 25°C (1 atm)). Its boiling point was, for example, 96°C to 120°C/0.1 torr. Its vapor pressure was high. Therefore, a high-quality ruthenium film could be stably and easily formed by the CVD method (or the ALD method).
The ruthenium-based film-forming materials of the present invention were easily synthesized.

成膜装置の概略図Schematic diagram of the deposition device

 第1の本発明は製造方法である。前記方法は、Ru[R-N-C(R)-N-R(R,R,Rは炭素数が1~5のアルキル基。R,R,Rは同一でも異なっていても良い。)の製造方法である。例えば、Ru〔i-C-N-C(CH)-N-i-C,Ru〔i-C-N-C(C)-N-i-C,或いはRu〔i-C-N-C(n-C)-N-i-Cの製造方法である。前記方法は、Li[R-N-C(R)-N-R](R,R,Rは炭素数が1~5のアルキル基。R,R,Rは同一でも異なっていても良い。)と、2価のルテニウム錯体とを反応させる方法である。例えば、R-N=C=N-RとRLi(R,R,Rは炭素数が1~5のアルキル基。R,R,Rは同一でも異なっていても良い。R,Rは、例えばイソプロビル基である。Rは、例えばメチル基、エチル基、或いはnプロピル基である。)との反応物と、2価のルテニウム錯体とを、反応させる方法である。反応は、例えば混合する事で行われた。 The first invention is a manufacturing method. The method is a manufacturing method of Ru[R 1 -N-C(R 3 )-N-R 2 ] 2 (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms. R 1 , R 2 and R 3 may be the same or different). For example, the method is a manufacturing method of Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 2 , Ru[i-C 3 H 7 -N-C(C 2 H 5 )-N-i-C 3 H 7 ] 2 , or Ru[i-C 3 H 7 -N-C(n-C 3 H 7 )-N-i-C 3 H 7 ] 2 . The method is a method of reacting Li[R 1 -N-C(R 3 )-N-R 2 ] (R 1 , R 2 , and R 3 are alkyl groups having 1 to 5 carbon atoms. R 1 , R 2 , and R 3 may be the same or different.) with a divalent ruthenium complex. For example, a reaction product of R 1 -N═C═N-R 2 and R 3 Li (R 1 , R 2 , and R 3 are alkyl groups having 1 to 5 carbon atoms. R 1 , R 2 , and R 3 may be the same or different. R 1 and R 2 are, for example, isopropyl groups. R 3 is, for example, a methyl group, an ethyl group, or an n-propyl group) is reacted with a divalent ruthenium complex. The reaction was carried out, for example, by mixing.

 前記2価のルテニウム錯体は、好ましくは、2価の塩化ルテニウム錯体である。例えば、塩化ルテニウム(II)・1,5-シクロオクタジエン錯体、 ビス[(ベンゼン)塩化ルテニウム(II)]、ビス[(メシチレン)塩化ルテニウム(II)]、(p-シメン)塩化ルテニウム(II)ダイマーの群の中から選ばれる錯体である。何れか一種である。基本的には、何れか一種であるが、二種以上が用いられても良い。 The divalent ruthenium complex is preferably a divalent ruthenium chloride complex. For example, it is a complex selected from the group consisting of ruthenium chloride (II)-1,5-cyclooctadiene complex, bis[(benzene)ruthenium chloride (II)], bis[(mesitylene)ruthenium chloride (II)], and (p-cymene)ruthenium chloride (II) dimer. It is any one of these. Basically, it is any one of these, but two or more of these may be used.

 第2の本発明はルテニウム系膜を形成する為の材料である。前記材料は、Ru〔i-C-N-C(R)-N-i-C(Rは炭素数が1~5のアルキル基。)である。前記Rは、好ましくは、直鎖状のアルキル基であった。中でも、炭素数が1~3のアルキル基であった。前記化合物の中でも、特に、好ましくは、Ru〔i-C-N-C(CH)-N-i-Cであった。或いは、Ru〔i-C-N-C(C)-N-i-Cであった。又は、Ru〔i-C-N-C(n-C)-N-i-Cであった。最も好ましいのは、成膜性の観点からはRu〔i-C-N-C(CH)-N-i-C、生産性の観点からはRu〔i-C-N-C(n-C)-N-i-Cであった。前記ルテニウム系膜形成材料は前記化合物が溶液中に含まれる場合も有る。 The second invention is a material for forming a ruthenium-based film. The material is Ru[i-C 3 H 7 -N-C(R 3 )-N-i-C 3 H 7 ] 2 (R 3 is an alkyl group having 1 to 5 carbon atoms). R 3 is preferably a straight-chain alkyl group. Among them, it is an alkyl group having 1 to 3 carbon atoms. Among the above compounds, Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 2 is particularly preferable. Or, Ru[i-C 3 H 7 -N-C(C 2 H 5 )-N-i-C 3 H 7 ] 2 is preferable. Or, Ru[i-C 3 H 7 -N-C(n-C 3 H 7 )-N-i-C 3 H 7 ] 2. Most preferred from the viewpoint of film formability was Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 2 , and from the viewpoint of productivity was Ru[i-C 3 H 7 -N-C(n-C 3 H 7 )-N-i-C 3 H 7 ] 2. The ruthenium-based film forming material may contain the compound in solution.

 第3の本発明はルテニウム系膜を形成する方法である。前記方法は、前記化合物が成膜室内に供給される工程を具備する。ALD法またはCVD法により、前記成膜室内の基板上にルテニウム系膜が形成される。 The third invention is a method for forming a ruthenium-based film. The method includes a step of supplying the compound into a film-forming chamber. A ruthenium-based film is formed on a substrate in the film-forming chamber by ALD or CVD.

 前記特許文献(WO2004/046417A2)には次の開示が有る。
「二価の金属先駆物質には、揮発性の金属(II)ビス-アミジナート[M(II)(AMD)]x、(式中、x=1,2)が含まれる。これらの化合物は、以下の単量体構造を有してよい。
 式中、R,R,R,R’,R’及びR’は、1個以上の非金属原子からなる基である。一以上の実施態様では、この構造の二量体、例えば[M(II)(AMD]が用いられてもよい。幾つかの実施態様では、R,R,R,R’,R’及びR’は、水素、アルキル、アリール、アルケニル、アルキニル、トリアルキルシリルもしくはフルオロアルキル基又は他の非金属原子もしくは基から独立して選ばれてよい。いくつかの実施態様では、R,R,R,R’,R’及びR’は、それぞれ独立して、1~4個の炭素原子を有するアルキルもしくはフルオロアルキルもしくはシリルアルキル基である。好適な二価金属には、コバルト、鉄、ニッケル、マンガン、ルテニウム、亜鉛、チタン、バナジウム、クロム、ユーロピウム、マグネシウム及びカルシウムが含まれる。一以上の実施態様では、当該金属(II)アミジナートは、コバルトアミジナートである。当該コバルトアミジナートには、一般式におけるイソプロピル基としてR,R,R’及びR’を、メチル基としてR及びR’を採る場合に相当するコバルト(II)ビス(N,N’-ジイソプロピルアセトアミジナート)が含まれる。」
The above-mentioned patent document (WO2004/046417A2) discloses the following.
"Divalent metal precursors include volatile metal(II) bis-amidinates [M(II)(AMD) 2 ] x , where x=1, 2. These compounds may have the following monomeric structures:
wherein R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' are a group consisting of one or more non-metallic atoms. In one or more embodiments, a dimer of this structure may be used, such as [M(II)(AMD 2 ] 2. In some embodiments, R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' may be independently selected from hydrogen, alkyl, aryl, alkenyl, alkynyl, trialkylsilyl, or fluoroalkyl groups, or other non-metallic atoms or groups. In some embodiments, R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently selected from hydrogen, alkyl, aryl, alkenyl , alkynyl, trialkylsilyl, or fluoroalkyl groups, or other non-metallic atoms or groups. are each independently an alkyl, fluoroalkyl, or silylalkyl group having 1 to 4 carbon atoms. Suitable divalent metals include cobalt, iron, nickel, manganese, ruthenium, zinc, titanium, vanadium, chromium, europium, magnesium, and calcium. In one or more embodiments, the metal(II) amidinate is a cobalt amidinate. The cobalt amidinate includes cobalt(II) bis(N,N'-diisopropylacetamidinate) corresponding to the general formula where R 1 , R 2 , R 1 ', and R 2 ' are isopropyl groups, and R 3 and R 3 ' are methyl groups."

 しかし、前記特許文献にあっては、本発明が提案した上記化合物の具体的開示が無い。MがRuの場合には、上記一般式におけるR,R,R,R’,R’及びR’として、水素、アルキル、アリール、アルケニル、アルキニル、トリアルキルシリルもしくはフルオロアルキル基又は他の非金属原子もしくは基が挙げられている。しかし、本発明が提案した上記化合物の具体的開示は無い。しかも、本発明が提案した上記化合物の製造方法も開示されていない。 However, the above patent document does not specifically disclose the above compound proposed by the present invention. When M is Ru, R 1 , R 2 , R 3 , R 1 ', R 2 ' and R 3 ' in the above general formula are hydrogen, alkyl, aryl, alkenyl, alkynyl, trialkylsilyl or fluoroalkyl groups or other nonmetallic atoms or groups. However, the above compound proposed by the present invention is not specifically disclosed. Moreover, the method for producing the above compound proposed by the present invention is not disclosed.

 因みに、ビス(N,N’-ジターシャリーブチルアセトアミジネート)ルテニウムは前記特許文献(WO2004/046417A2)に開示の上記一般式に含まれている化合物である。しかし、この化合物は固体(25℃下)であった。昇華温度は130℃であった。本発明が提案した上記化合物の物性を満たしていない。よって、Ru膜の成膜材料としては適していなかった。
 ビス(N-エチル-N’-ターシャリーブチルアセトアミジネート)ルテニウムも前記特許文献(WO2004/046417A2)に開示の上記一般式に含まれている化合物である。しかし、この化合物は固体(25℃下)であった。本発明が提案した上記化合物の物性を満たしていない。よって、前記特許文献(WO200/046417A2)に開示の一般式に含まれる斯の化合物もRu膜の成膜材料としては適していなかった。すなわち、Ru膜成膜材料として好適な化合物が前記特許文献(WO2004/046417A2)に開示されていたとは到底に言えない。
 ビス(N,N’-ジイソプロピル-2-メチルプロピオンアミジネート)ルテニウムも前記特許文献(WO2004/046417A2)に開示の上記一般式に含まれている化合物である。しかし、この化合物は固体(25℃下)であった。本発明が提案した上記化合物の物性を満たしていない。よって、前記特許文献(WO2004/046417A2)に開示の一般式に含まれる斯の化合物もRu膜の成膜材料としては適していなかった。すなわち、Ru膜成膜材料として好適な化合物が前記特許文献(WO2004/046417A2)に開示されていたとは到底に言えない。
 本発明が提案した前記化合物は前記公知文献に開示の化合物とは物性が大きく異なっている事から、本発明者は本発明が提案した前記化合物は自明では無いと確信している。勿論、前記公知文献から容易に発明できたものでも無いと確信している。
Incidentally, bis(N,N'-ditertiarybutylacetamidinate)ruthenium is a compound contained in the above general formula disclosed in the above patent document (WO2004/046417A2). However, this compound was a solid (below 25°C). The sublimation temperature was 130°C. It did not satisfy the physical properties of the above compound proposed by the present invention. Therefore, it was not suitable as a film forming material for a Ru film.
Bis(N-ethyl-N'-tertiarybutylacetamidinate)ruthenium is also a compound contained in the above general formula disclosed in the above patent document (WO2004/046417A2). However, this compound was a solid (at 25°C). It does not satisfy the physical properties of the above compound proposed by the present invention. Therefore, this compound contained in the general formula disclosed in the above patent document (WO200/046417A2) was also not suitable as a film-forming material for a Ru film. In other words, it cannot be said that a compound suitable as a Ru film-forming material was disclosed in the above patent document (WO2004/046417A2).
Bis(N,N'-diisopropyl-2-methylpropionamidinate)ruthenium is also a compound contained in the above general formula disclosed in the above patent document (WO2004/046417A2). However, this compound was a solid (at 25°C). It does not satisfy the physical properties of the above compound proposed by the present invention. Therefore, this compound contained in the general formula disclosed in the above patent document (WO2004/046417A2) was also not suitable as a film-forming material for a Ru film. In other words, it cannot be said that a compound suitable as a Ru film-forming material was disclosed in the above patent document (WO2004/046417A2).
The compound proposed by the present invention has properties significantly different from those of the compounds disclosed in the above-mentioned known documents, and therefore the inventors are convinced that the compound proposed by the present invention is not self-evident, and of course, that it could not have been easily invented from the above-mentioned known documents.

 以下、具体的な実施例が挙げられる。但し、本発明は以下の実施例にのみ限定されない。本発明の特長が大きく損なわれない限り、各種の変形例や応用例も本発明に含まれる。 Specific examples are given below. However, the present invention is not limited to the following examples. Various modifications and applications are also included in the present invention as long as the features of the present invention are not significantly impaired.

  [実施例1]
 〔ビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムの合成〕
 反応は全て不活性ガス雰囲気下で行われた。N,N’-ジイソプロピルカルボジミド(25g)がジエチルエーテル(200ml)に溶解した。-30℃に冷却された。この溶液にメチルリチウム(0.197mol)のエーテル溶液が、ゆっくり、滴下された。この後で4時間の撹拌(室温下)が行われた。この反応混合液が、冷却(-40℃)された懸濁液[(p-シメン)塩化ルテニウム(II)ダイマー(28.8g)がテトラヒドロフラン(350ml)に懸濁された液]に、ゆっくり、滴下された。この後、徐々に、室温に戻された。撹拌(4時間)が行われた。溶媒が留去された。この後、残った油状物がn-ヘキサン(450ml)に溶解された。不溶物が除去(濾過)された。再び溶媒が留去された。この後、減圧(0.1torr)蒸留によって、濃茶色液体が得られた。この物質はビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムであった。沸点は96℃であった。得られたビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムが加水分解された。アルカリ状態にて溶媒抽出が行われた。高純度のN,N’-ジイソプロピルアセトアミジンが得られた。得られたビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムに含まれるルテニウムは、成分分析によって、26~26.5%であった。この事より、得られた濃茶色液体が2価のビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムである事が判った。
[Example 1]
[Synthesis of bis(N,N'-diisopropylacetamidinate)ruthenium]
All reactions were carried out under an inert gas atmosphere. N,N'-diisopropylcarbodiimide (25 g) was dissolved in diethyl ether (200 ml). The solution was cooled to -30°C. An ether solution of methyllithium (0.197 mol) was slowly dripped into the solution. Stirring (at room temperature) was then carried out for 4 hours. The reaction mixture was slowly dripped into a cooled (-40°C) suspension of (p-cymene)ruthenium(II) chloride dimer (28.8 g) suspended in tetrahydrofuran (350 ml). The temperature was then gradually returned to room temperature. Stirring (4 hours) was carried out. The solvent was distilled off. The remaining oil was then dissolved in n-hexane (450 ml). Insoluble matter was removed (filtered). The solvent was distilled off again. A dark brown liquid was then obtained by distillation under reduced pressure (0.1 torr). This substance was bis(N,N'-diisopropylacetamidinate)ruthenium. The boiling point was 96°C. The obtained bis(N,N'-diisopropylacetamidinate)ruthenium was hydrolyzed. Solvent extraction was carried out in an alkaline state. High-purity N,N'-diisopropylacetamidine was obtained. Component analysis revealed that the ruthenium contained in the obtained bis(N,N'-diisopropylacetamidinate)ruthenium was 26-26.5%. This demonstrated that the obtained dark brown liquid was divalent bis(N,N'-diisopropylacetamidinate)ruthenium.

  [比較例1]
 〔ビス(N,N’-ジターシャリーブチルアセトアミジネート)ルテニウムの合成〕
 反応は全て不活性ガス雰囲気下で行われた。N,N’-ジターシャリーブチルカルボジミド(30g)がジエチルエーテル(200ml)に溶解した。冷却(-30℃)された。この溶液にメチルリチウム(0.197mol)のエーテル溶液が、ゆっくり、滴下された。この後で4時間の撹拌(室温下)が行われた。この反応混合液が、冷却(-40℃)された懸濁液[(p-シメン)塩化ルテニウム(II)ダイマー(28.8g)がテトラヒドロフラン(350ml)に懸濁された液]に、ゆっくり、滴下された。この後、徐々に、室温に戻された。4時間の撹拌が行われた。溶媒が留去された。この後、残った油状物がn-ヘキサン(450ml)に溶解された。不溶物が除去(濾過)された。再び溶媒が留去された。この後、減圧(0.1torr)昇華によって、ビス(N,N’-ジターシャリーブチルアセトアミジネート)ルテニウムが得られた。この化合物は固体(25℃(1気圧))であった。昇華温度は130℃であった。
[Comparative Example 1]
[Synthesis of bis(N,N'-ditertiarybutylacetamidinate)ruthenium]
All reactions were carried out under an inert gas atmosphere. N,N'-ditertiarybutylcarbodiimide (30 g) was dissolved in diethyl ether (200 ml). The solution was cooled (-30°C). An ether solution of methyllithium (0.197 mol) was slowly added dropwise to this solution. Stirring (at room temperature) was then carried out for 4 hours. This reaction mixture was slowly added dropwise to a suspension of (p-cymene)ruthenium(II) chloride dimer (28.8 g) in tetrahydrofuran (350 ml) that had been cooled (-40°C). The temperature was then gradually returned to room temperature. Stirring was carried out for 4 hours. The solvent was distilled off. The remaining oil was then dissolved in n-hexane (450 ml). Insoluble matter was removed (filtered). The solvent was distilled off again. Then, bis(N,N'-ditertiarybutylacetamidinate)ruthenium was obtained by sublimation under reduced pressure (0.1 torr). This compound was a solid (25°C (1 atm)). The sublimation temperature was 130°C.

  [比較例2]
 比較例1と同様に行われた。ビス(N-エチル-N’-ターシャリーブチルアセトアミジネート)ルテニウムが得られた。この化合物は固体(25℃(1気圧))であった。昇華温度は130℃であった。
[Comparative Example 2]
The procedure was the same as in Comparative Example 1. Bis(N-ethyl-N'-tertiarybutylacetamidinate)ruthenium was obtained. This compound was a solid (25°C (1 atm)). The sublimation temperature was 130°C.

  [比較例3]
 〔トリス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムの合成〕
 反応は全て不活性ガス雰囲気下で行われた。N,N’-ジイソプロピルカルボジミド(45g)がジエチルエーテル(400ml)に溶解した。冷却(-30℃)された。この溶液にエチルリチウム(0.353mol)のエーテル溶液が、ゆっくり、滴下された。この後で4時間の撹拌(室温下)が行われた。この反応混合液が、懸濁液[三塩化ルテニウム・三ジメチルイオウアダクト(30g)がテトラヒドロフラン(150ml)に懸濁された液]に、ゆっくり、滴下された。この後、徐々に、室温に戻された。4時間の撹拌が行われた。溶媒が留去された。この後、残った油状物がn-ヘキサン(1000ml)に溶解された。不溶物が除去(濾過)された。再び溶媒が留去された。減圧(0.1torr)昇華が行われた。オイルバスの温度が150℃まで上昇した。しかし、何も採取出来なかった。トリス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムは得られなかった。
[Comparative Example 3]
[Synthesis of tris(N,N'-diisopropylpropionamidinate)ruthenium]
All reactions were carried out under an inert gas atmosphere. N,N'-diisopropylcarbodiimide (45 g) was dissolved in diethyl ether (400 ml). The mixture was cooled (-30°C). An ether solution of ethyllithium (0.353 mol) was slowly dripped into the solution. Stirring was then carried out for 4 hours (at room temperature). The reaction mixture was slowly dripped into a suspension [a suspension of ruthenium trichloride-tridimethylsulfur adduct (30 g) in tetrahydrofuran (150 ml)]. The temperature was then gradually returned to room temperature. Stirring was carried out for 4 hours. The solvent was distilled off. The remaining oily matter was then dissolved in n-hexane (1000 ml). Insoluble matter was removed (filtered). The solvent was distilled off again. Sublimation was carried out under reduced pressure (0.1 torr). The temperature of the oil bath was raised to 150°C. However, nothing could be collected. Tris(N,N'-diisopropylpropionamidinate)ruthenium was not obtained.

  [実施例2]
 (p-シメン)塩化ルテニウム(II)ダイマーの代わりにビス[(ベンゼン)塩化ルテニウム(II)]が用いられた。実施例1に準じて行われた。その結果は実施例1と同様であった。
[Example 2]
Bis[(benzene)ruthenium(II)chloride] was used instead of (p-cymene)ruthenium(II)chloride dimer. The procedure was the same as in Example 1. The results were the same as in Example 1.

  [実施例3]
 (p-シメン)塩化ルテニウム(II)ダイマーの代わりにビス[(メシチレン)塩化ルテニウム(II)]が用いられた。実施例1に準じて行われた。その結果は実施例1と同様であった。
[Example 3]
Instead of (p-cymene)ruthenium(II) chloride dimer, bis[(mesitylene)ruthenium(II)] chloride was used. The procedure was the same as in Example 1. The results were the same as in Example 1.

  [実施例4]
 (p-シメン)塩化ルテニウム(II)ダイマーの代わりに塩化ルテニウム(II)・1,5-シクロオクタジエン錯体が用いられた。実施例1に準じて行われた。その結果は実施例1と同様であった。
[Example 4]
Instead of (p-cymene)ruthenium(II) chloride dimer, ruthenium(II) chloride·1,5-cyclooctadiene complex was used. The procedure was similar to that of Example 1. The results were the same as those of Example 1.

  [実施例5]
 〔ビス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムの合成〕
 反応は全て不活性ガス雰囲気下で行われた。N,N’-ジイソプロピルカルボジミド(31.5g)がジエチルエーテル(200ml)に溶解した。冷却(-30℃)された。この溶液にエチルリチウム(0.25mol)のエーテル溶液が、ゆっくり、滴下された。この後で4時間の撹拌(室温下)が行われた。この反応混合液が、冷却(-40℃)された懸濁液[(p-シメン)塩化ルテニウム(II)ダイマー(31.8g)がテトラヒドロフラン(400ml)に懸濁された液]に、ゆっくり、滴下された。この後、徐々に、室温に戻された。撹拌(4時間)が行われた。溶媒が留去された。この後、残った油状物がn-ヘキサン(500ml)に溶解された。不溶物が除去(濾過)された。再び溶媒が留去された。この後、減圧(0.1torr)蒸留によって、濃茶色液体が得られた。この物質はビス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムであった。沸点は115℃であった。得られたビス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムが加水分解された。アルカリ状態にて溶媒抽出が行われた。高純度のN,N’-ジイソプロピルプロピオンアミジンが得られた。得られたビス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムに含まれるルテニウムは、成分分析によって、24.5~24.7%であった。この事より、得られた濃茶色液体が2価のビス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムである事が判った。
 上記(p-シメン)塩化ルテニウム(II)ダイマーの代わりに、ビス[(ベンゼン)塩化ルテニウム(II)]、ビス[(メシチレン)塩化ルテニウム(II)]、塩化ルテニウム(II)・1,5-シクロオクタジエン錯体が用いられた。同様に行われた。ビス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムが得られた。
[Example 5]
[Synthesis of bis(N,N'-diisopropylpropionamidinate)ruthenium]
All reactions were carried out under an inert gas atmosphere. N,N'-diisopropylcarbodiimide (31.5 g) was dissolved in diethyl ether (200 ml). The solution was cooled (-30°C). An ether solution of ethyllithium (0.25 mol) was slowly dripped into the solution. Stirring (at room temperature) was then carried out for 4 hours. The reaction mixture was slowly dripped into a suspension [(p-cymene)ruthenium(II) chloride dimer (31.8 g) suspended in tetrahydrofuran (400 ml)] that had been cooled (-40°C). The temperature was then gradually returned to room temperature. Stirring (4 hours) was carried out. The solvent was distilled off. The remaining oily matter was then dissolved in n-hexane (500 ml). Insoluble matter was removed (filtered). The solvent was distilled off again. A dark brown liquid was then obtained by distillation under reduced pressure (0.1 torr). This substance was bis(N,N'-diisopropylpropionamidinate)ruthenium. The boiling point was 115°C. The obtained bis(N,N'-diisopropylpropionamidinate)ruthenium was hydrolyzed. Solvent extraction was carried out in an alkaline state. High-purity N,N'-diisopropylpropionamidine was obtained. The amount of ruthenium contained in the obtained bis(N,N'-diisopropylpropionamidinate)ruthenium was 24.5 to 24.7% by component analysis. This revealed that the obtained dark brown liquid was divalent bis(N,N'-diisopropylpropionamidinate)ruthenium.
Instead of the (p-cymene)ruthenium(II) chloride dimer, bis[(benzene)ruthenium(II)] chloride, bis[(mesitylene)ruthenium(II)] chloride, and ruthenium(II) chloride 1,5-cyclooctadiene complex were used. The procedure was carried out in the same manner. Bis(N,N'-diisopropylpropionamidinate)ruthenium was obtained.

  [実施例6]
 〔ビス(N,N’-ジイソプロピルブタンアミジネート)ルテニウムの合成〕
 反応はすべて不活性ガス雰囲気下で行われた。N,N’-ジイソプロピルカルボジミド(33.2g)がジエチルエーテル(200ml)に溶解した。冷却(-30℃)された。この溶液にn-プロピルリチウム(0.252mol)のエーテル溶液が、ゆっくり、滴下された。この後で撹拌(室温下、4時間)が行われた。この反応混合液が、冷却(-40℃)された懸濁液[(p-シメン)塩化ルテニウム(II)ダイマー(31.5g)がテトラヒドロフラン(300ml)に懸濁された液]に、ゆっくり、滴下された。この後、徐々に、室温に戻された。撹拌(4時間)が行われた。溶媒が留去された。この後、残った油状物がn-ヘキサン(450ml)に溶解された。不溶物が除去(濾過)された。再び溶媒が留去された。この後、減圧(0.1torr)蒸留によって、濃茶色液体が得られた。この物質はビス(N,N’-ジイソプロピルブタンアミジネート)ルテニウムであった。沸点は120℃であった。得られたビス(N,N’-ジイソプロピルブタンアミジネート)ルテニウムが加水分解された。アルカリ状態にて溶媒抽出が行われた。高純度のN,N’-ジイソプロピルブタンアミジンが得られた。得られたビス(N,N’-ジイソプロピルブタンアミジネート)ルテニウムに含まれるルテニウムは、成分分析によって、22.9~23.2%であった。この事より、得られた濃茶色液体が2価のビス(N,N’-ジイソプロピルブタンアミジネート)ルテニウムである事が判った。
 上記(p-シメン)塩化ルテニウム(II)ダイマーの代わりに、ビス[(ベンゼン)塩化ルテニウム(II)]、ビス[(メシチレン)塩化ルテニウム(II)]、塩化ルテニウム(II)・1,5-シクロオクタジエン錯体が用いられた。同様に行われた。ビス(N,N’-ジイソプロピルブタンアミジネート)ルテニウムが得られた。
[Example 6]
[Synthesis of bis(N,N'-diisopropylbutanamidinato)ruthenium]
All reactions were carried out under an inert gas atmosphere. N,N'-diisopropylcarbodiimide (33.2 g) was dissolved in diethyl ether (200 ml). The solution was cooled (-30°C). An ether solution of n-propyllithium (0.252 mol) was slowly added dropwise to the solution. Stirring was then carried out (room temperature, 4 hours). The reaction mixture was slowly added dropwise to a suspension of (p-cymene)ruthenium(II) chloride dimer (31.5 g) suspended in tetrahydrofuran (300 ml) that had been cooled (-40°C). The temperature was then gradually returned to room temperature. Stirring was carried out (4 hours). The solvent was distilled off. The remaining oil was then dissolved in n-hexane (450 ml). Insoluble matter was removed (filtered). The solvent was distilled off again. A dark brown liquid was then obtained by distillation under reduced pressure (0.1 torr). This substance was bis(N,N'-diisopropylbutanamidinate)ruthenium. The boiling point was 120°C. The obtained bis(N,N'-diisopropylbutanamidinate)ruthenium was hydrolyzed. Solvent extraction was carried out in an alkaline state. High-purity N,N'-diisopropylbutanamidine was obtained. The amount of ruthenium contained in the obtained bis(N,N'-diisopropylbutanamidinate)ruthenium was 22.9 to 23.2% by component analysis. This revealed that the obtained dark brown liquid was divalent bis(N,N'-diisopropylbutanamidinate)ruthenium.
Instead of the (p-cymene)ruthenium(II) chloride dimer, bis[(benzene)ruthenium(II)] chloride, bis[(mesitylene)ruthenium(II)] chloride, and ruthenium(II) chloride·1,5-cyclooctadiene complex were used. The procedure was carried out in the same manner. Bis(N,N'-diisopropylbutanamidinato)ruthenium was obtained.

  [実施例7]
 〔ルテニウム系薄膜の形成〕
 図1は成膜装置の概略図である。図1中、1は原料容器、2は加熱器、3は分解反応炉、4は基板、5は流量制御器、6はシャワーヘッド、7はキャリアガス(アルゴン)、8は反応ガス(アンモニア、水素)である。
 図1の装置が用いられた。ルテニウム系膜が、CVD法により、成膜された。
 原料容器1内にビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムが入れられた。Arガス(キャリアガス)が10ml/分の割合でバブリングされた。揮発したビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムが、Arと共に、分解反応炉3内に導かれた。アンモニアと水素(反応ガス)も分解反応炉3内に導かれた。原料容器1及び配管は加温(90~95℃)されている。この時、系内は真空に排気されている。基板4は加熱(300℃)されている。その結果、基板4上に膜が形成された。
 同じ事が繰り返して行われた。20nm厚の薄膜がほぼ同時間で毎回作成できた。インキュベーション時間は殆ど認められなかった。
 前記膜は、XPSで調べた結果、ルテニウム膜であることが確認された。
[Example 7]
[Formation of Ruthenium-Based Thin Films]
Fig. 1 is a schematic diagram of a film forming apparatus, in which 1 denotes a source container, 2 denotes a heater, 3 denotes a decomposition reactor, 4 denotes a substrate, 5 denotes a flow rate controller, 6 denotes a shower head, 7 denotes a carrier gas (argon), and 8 denotes a reaction gas (ammonia, hydrogen).
The apparatus used was that shown in Figure 1. A ruthenium-based film was deposited by CVD.
Bis(N,N'-diisopropylacetamidinate)ruthenium was placed in the source container 1. Ar gas (carrier gas) was bubbled at a rate of 10 ml/min. The vaporized bis(N,N'-diisopropylacetamidinate)ruthenium was introduced into the decomposition reactor 3 together with Ar. Ammonia and hydrogen (reaction gas) were also introduced into the decomposition reactor 3. The source container 1 and piping were heated (90-95°C). At this time, the system was evacuated to a vacuum. The substrate 4 was heated (300°C). As a result, a film was formed on the substrate 4.
The same procedure was repeated. Thin films of 20 nm thickness were produced almost simultaneously each time. There was almost no incubation time.
The film was examined by XPS and confirmed to be a ruthenium film.

  [比較例4]
 図1の装置が用いられ、実施例7に準じて、行われた。
 原料容器1内にビス(エチルシクロペンタジエニル)ルテニウムが入れられた。Arガス(キャリアガス)が10ml/分の割合でバブリングされた。揮発したビス(エチルシクロペンタジエニル)ルテニウムが、Arと共に、分解反応炉3内に導かれた。アンモニアと水素(反応ガス)も分解反応炉3内に導かれた。原料容器1及び配管は110~115℃に加温されている。この時、系内は真空に排気されている。基板4は300℃に加熱されている。基板4上に膜は形成できなかった。
 アンモニアと水素の代わりに酸素が分解反応炉3内に導入された。その結果、ルテニウム膜が形成された。しかし、成膜が開始されるまでに20分を要した(インキュベーション時間が長い)。
 同じ事が繰り返された。成膜が開始されるまでに必要な時間は一定ではなかった。例えば、17分~25分と変動した。20nm厚の薄膜を毎回作成する事は出来なかった。
[Comparative Example 4]
The apparatus shown in FIG. 1 was used, and the experiment was carried out in accordance with Example 7.
Bis(ethylcyclopentadienyl)ruthenium was placed in the source container 1. Ar gas (carrier gas) was bubbled at a rate of 10 ml/min. The vaporized bis(ethylcyclopentadienyl)ruthenium was introduced into the decomposition reactor 3 together with Ar. Ammonia and hydrogen (reaction gases) were also introduced into the decomposition reactor 3. The source container 1 and piping were heated to 110-115°C. At this time, the system was evacuated to a vacuum. The substrate 4 was heated to 300°C. No film was formed on the substrate 4.
Oxygen was introduced into the decomposition reactor 3 instead of ammonia and hydrogen. As a result, a ruthenium film was formed. However, it took 20 minutes for the film formation to start (long incubation time).
The same thing happened again. The time required for deposition to start was not constant. For example, it varied from 17 to 25 minutes. It was not possible to create a 20 nm thick thin film every time.

  [実施例8]
 ビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムの代わりに、ビス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムが用いられた。原料容器1及び配管が105~110℃に加温された。実施例7に準じて行われた。
 同じ事が繰り返して行われた。20nm厚の薄膜がほぼ同時間で毎回作成できた。インキュベーション時間は殆ど認められなかった。
 前記膜は、XPSで調べた結果、ルテニウム膜であることが確認された。
[Example 8]
Bis(N,N'-diisopropylpropionamidinate)ruthenium was used instead of bis(N,N'-diisopropylacetamidinate)ruthenium. The raw material container 1 and piping were heated to 105 to 110° C. The same procedure as in Example 7 was followed.
The same procedure was repeated. Thin films of 20 nm thickness were produced almost simultaneously each time. There was almost no incubation time.
The film was examined by XPS and confirmed to be a ruthenium film.

  [実施例9]
 ビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムの代わりに、ビス(N,N’-ジイソプロピルブタンアミジネート)ルテニウムが用いられた。原料容器1及び配管が110~115℃に加温された。実施例7に準じて行われた。
 同じ事が繰り返して行われた。20nm厚の薄膜がほぼ同時間で毎回作成できた。インキュベーション時間は殆ど認められなかった。
 前記膜は、XPSで調べた結果、ルテニウム膜であることが確認された。
[Example 9]
Bis(N,N'-diisopropylbutaneamidinate)ruthenium was used instead of bis(N,N'-diisopropylacetamidinate)ruthenium. The raw material container 1 and piping were heated to 110-115° C. The same procedure as in Example 7 was followed.
The same procedure was repeated. Thin films of 20 nm thickness were produced almost simultaneously each time. There was almost no incubation time.
The film was examined by XPS and confirmed to be a ruthenium film.

  [実施例10]
 図1の装置が用いられた。ルテニウム系膜が、ALD法により、成膜された。
 原料容器1内にビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムが入れられた。Arガス(キャリアガス)が10ml/分の割合でバブリングされた。揮発したビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムが、Arと共に、分解反応炉3内に20秒間に亘って導かれた。系内は真空に排気されている。分解反応炉内が20秒間に亘って真空に排気された。この後、アンモニアと水素(反応ガス)が分解反応炉3内に20秒間に亘って導入された。分解反応炉内が20秒間に亘って真空に排気された。この後、再び、ビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムが、バブリングガス及びアルゴンガスと共に、分解反応炉3内に20秒間に亘って導かれた。この操作が200回繰り返された。原料容器1及び配管は加温(90~95℃)されていた。基板4は加熱(220℃)されていた。その結果、基板4上に膜が形成された。
 前記膜は、XPSで調べた結果、ルテニウム膜であることが確認された。
[Example 10]
The apparatus used was that shown in Figure 1. Ruthenium-based films were deposited by ALD.
Bis(N,N'-diisopropylacetamidinate)ruthenium was placed in the raw material container 1. Ar gas (carrier gas) was bubbled at a rate of 10 ml/min. The evaporated bis(N,N'-diisopropylacetamidinate)ruthenium was introduced into the decomposition reactor 3 together with Ar for 20 seconds. The system was evacuated to a vacuum. The decomposition reactor was evacuated to a vacuum for 20 seconds. After this, ammonia and hydrogen (reaction gas) were introduced into the decomposition reactor 3 for 20 seconds. The decomposition reactor was evacuated to a vacuum for 20 seconds. After this, bis(N,N'-diisopropylacetamidinate)ruthenium was again introduced into the decomposition reactor 3 together with the bubbling gas and argon gas for 20 seconds. This operation was repeated 200 times. The raw material container 1 and piping were heated (90-95°C). The substrate 4 was heated (220° C.). As a result, a film was formed on the substrate 4.
The film was examined by XPS and confirmed to be a ruthenium film.

  [比較例6]
 図1の装置が用いられた。ルテニウム系膜が、ALD法により、成膜された。
 原料容器1内にビス(エチルシクロペンタジエニル)ルテニウムが入れられた。Arガス(キャリアガス)が10ml/分の割合でバブリングされた。揮発したビス(エチルシクロペンタジエニル)ルテニウムが、Arと共に、分解反応炉3内に20秒間に亘って導かれた。系内は真空に排気されている。分解反応炉内が20秒間に亘って真空に排気された。この後、アンモニアと水素(反応ガス)が分解反応炉3内に20秒間に亘って導入された。分解反応炉内が20秒間に亘って真空に排気された。この後、再び、ビス(エチルシクロペンタジエニル)ルテニウムが、バブリングガス及びアルゴンガスと共に、分解反応炉3内に20秒間に亘って導かれた。この操作が200回繰り返された。原料容器1及び配管は加温(110~115℃)されていた。基板4は加熱(275℃)されていた。しかし、基板4上に膜は形成できなかった。アンモニアと水素の代わりに酸素が分解反応炉3内に導入された。ALDサイクルが1000回繰り返されて、やっと、成膜が観測された。多くのインキュベーションサイクルが必用な事が判る。
[Comparative Example 6]
The apparatus used was that shown in Figure 1. Ruthenium-based films were deposited by ALD.
Bis(ethylcyclopentadienyl)ruthenium was placed in the source container 1. Ar gas (carrier gas) was bubbled at a rate of 10 ml/min. The volatilized bis(ethylcyclopentadienyl)ruthenium was introduced into the decomposition reactor 3 together with Ar for 20 seconds. The system was evacuated to a vacuum. The decomposition reactor was evacuated to a vacuum for 20 seconds. After this, ammonia and hydrogen (reaction gas) were introduced into the decomposition reactor 3 for 20 seconds. The decomposition reactor was evacuated to a vacuum for 20 seconds. After this, bis(ethylcyclopentadienyl)ruthenium was again introduced into the decomposition reactor 3 together with the bubbling gas and argon gas for 20 seconds. This operation was repeated 200 times. The source container 1 and piping were heated (110-115°C). The substrate 4 was heated (275°C). However, no film was formed on the substrate 4. Instead of ammonia and hydrogen, oxygen was introduced into the decomposition reactor 3. The ALD cycle was repeated 1000 times before film formation was observed. It turns out that many incubation cycles are required.

  [比較例7]
 図1の装置が用いられた。ルテニウム系膜が、ALD法により、成膜された。
 原料容器1内にトリス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムが入れられた。Arガス(キャリアガス)が10ml/分の割合で導入された。昇華したトリス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムは、Arと共に、分解反応炉3内に20秒間に亘って導かれた。系内は真空に排気されていた。分解反応炉内が20秒間に亘って真空に排気された。この後、アンモニアと水素(反応ガス)が分解反応炉3内に20秒間に亘って導かれた。分解反応炉内が20秒間に亘って真空に排気された。この後、再び、トリス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムが、バブリングガス及び゛アルゴンガスと共に、分解反応炉3内に20秒間に亘って導かれた。この操作が200回繰り返された。原料容器1及び配管は加温(105~110℃)されていた。基板4は加熱(220℃)されていた。基板4上に膜が形成された。しかし、この場合の膜厚は、ビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムが用いられた場合の膜厚の約20%に過ぎなかった。
 同じ事が繰り返して行われたが、時には、成膜途中(輸送径路中)において、配管の閉塞が起きた事も有った。
[Comparative Example 7]
The apparatus used was that shown in Figure 1. Ruthenium-based films were deposited by ALD.
Tris(N,N'-diisopropylacetamidinate)ruthenium was placed in the raw material container 1. Ar gas (carrier gas) was introduced at a rate of 10 ml/min. The sublimated tris(N,N'-diisopropylacetamidinate)ruthenium was introduced into the decomposition reactor 3 together with Ar for 20 seconds. The system was evacuated to a vacuum. The decomposition reactor was evacuated to a vacuum for 20 seconds. After this, ammonia and hydrogen (reaction gas) were introduced into the decomposition reactor 3 for 20 seconds. The decomposition reactor was evacuated to a vacuum for 20 seconds. After this, tris(N,N'-diisopropylacetamidinate)ruthenium was again introduced into the decomposition reactor 3 together with the bubbling gas and argon gas for 20 seconds. This operation was repeated 200 times. The source container 1 and piping were heated (105-110° C.). The substrate 4 was heated (220° C.). A film was formed on the substrate 4. However, the film thickness in this case was only about 20% of the film thickness when bis(N,N'-diisopropylacetamidinate)ruthenium was used.
The same process was repeated, but sometimes the pipes became clogged during the film formation (during the transport route).

  [実施例11]
 ビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムの代わりに、ビス(N,N’-ジイソプロピルプロピオンアミジネート)ルテニウムが用いられた。実施例10に準じて行われた。原料容器1及び配管は加温(105~110℃)されていた。その結果、基板4上に膜が同様に形成された。
 前記膜は、XPSで調べた結果、ルテニウム膜であることが確認された。
[Example 11]
Bis(N,N'-diisopropylacetamidinate)ruthenium was used instead of bis(N,N'-diisopropylpropionamidinate). The experiment was carried out in accordance with Example 10. The source container 1 and the piping were heated (105 to 110°C). As a result, a film was formed on the substrate 4 in the same manner.
The film was examined by XPS and confirmed to be a ruthenium film.

  [実施例12]
 ビス(N,N’-ジイソプロピルアセトアミジネート)ルテニウムの代わりに、ビス(N,N’-ジイソプロピルブタンアミジネート)ルテニウムが用いられた。実施例10に準じて行われた。原料容器1及び配管は加温(110~115℃)されていた。その結果、基板4上に膜が同様に形成された。
 前記膜は、XPSで調べた結果、ルテニウム膜であることが確認された。
[Example 12]
Bis(N,N'-diisopropylbutaneamidinate)ruthenium was used instead of bis(N,N'-diisopropylacetamidinate)ruthenium. The experiment was carried out in accordance with Example 10. The source container 1 and the piping were heated (110 to 115°C). As a result, a film was formed on the substrate 4 in the same manner.
The film was examined by XPS and confirmed to be a ruthenium film.

1  原料容器
2  加熱器
3  分解反応炉
4  基板
5  流量制御器
6  シャワーヘッド
7  キャリアガス(アルゴン)
8  反応ガス(アンモニア、水素)
 
 
1 Raw material container 2 Heater 3 Decomposition reactor 4 Substrate 5 Flow rate controller 6 Shower head 7 Carrier gas (argon)
8 Reactive gas (ammonia, hydrogen)

Claims (10)

 Ru[R-N-C(R)-N-R(R,R,Rは炭素数が1~5のアルキル基。R,R,Rは同一でも異なっていても良い。)の製造方法であって、
 Li[R-N-C(R)-N-R](R,R,Rは炭素数が1~5のアルキル基。R,R,Rは同一でも異なっていても良い。)と、2価のルテニウム錯体とを反応させる
方法。
A method for producing Ru[R 1 -N-C(R 3 )-N-R 2 ] 2 (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms, and R 1 , R 2 and R 3 may be the same or different), comprising the steps of:
A method of reacting Li[R 1 -N-C(R 3 )-N-R 2 ] (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms. R 1 , R 2 and R 3 may be the same or different) with a divalent ruthenium complex.
 R-N=C=N-RとRLi(R,R,Rは炭素数が1~5のアルキル基。R,R,Rは同一でも異なっていても良い。))との反応物と、2価のルテニウム錯体とを、反応させる
請求項1の方法。
The method according to claim 1, which comprises reacting a reaction product of R 1 -N=C=N-R 2 with R 3 Li (R 1 , R 2 and R 3 are alkyl groups having 1 to 5 carbon atoms, and R 1 , R 2 and R 3 may be the same or different) with a divalent ruthenium complex.
 前記2価のルテニウム錯体が2価の塩化ルテニウム錯体である
請求項1又は請求項2の方法。
3. The method of claim 1 or claim 2, wherein the divalent ruthenium complex is a divalent ruthenium chloride complex.
 前記2価のルテニウム錯体が、塩化ルテニウム(II)・1,5-シクロオクタジエン錯体、 ビス[(ベンゼン)塩化ルテニウム(II)]、ビス[(メシチレン)塩化ルテニウム(II)]、(p-シメン)塩化ルテニウム(II)ダイマーの群の中から選ばれる一種又は二種以上である
請求項1又は請求項2の方法。
The method according to claim 1 or 2, wherein the divalent ruthenium complex is one or more selected from the group consisting of ruthenium(II) chloride.1,5-cyclooctadiene complex, bis[(benzene)ruthenium(II)] chloride, bis[(mesitylene)ruthenium(II)] chloride and (p-cymene)ruthenium(II) chloride dimer.
 ルテニウム系膜が形成される方法であって、
 Ru〔i-C-N-C(CH)-N-i-Cが成膜室内に供給され、
 ルテニウム系膜が、ALD法またはCVD法により、前記成膜室内の基板上に形成される
方法。
1. A method for forming a ruthenium-based film, comprising the steps of:
Ru[i-C 3 H 7 -N-C(CH 3 )-N-i-C 3 H 7 ] 2 is supplied into the deposition chamber;
A ruthenium-based film is formed on a substrate in the deposition chamber by ALD or CVD.
 ルテニウム系膜が形成される方法であって、
 Ru〔i-C-N-C(C)-N-i-Cが成膜室内に供給され、
 ルテニウム系膜が、ALD法またはCVD法により、前記成膜室内の基板上に形成される
方法。
1. A method for forming a ruthenium-based film, comprising the steps of:
Ru[i-C 3 H 7 -N-C(C 2 H 5 )-N-i-C 3 H 7 ] 2 is supplied into the deposition chamber;
A ruthenium-based film is formed on a substrate in the deposition chamber by ALD or CVD.
 ルテニウム系膜が形成される方法であって、
 Ru〔i-C-N-C(n-C)-N-i-Cが成膜室内に供給され、
 ルテニウム系膜が、ALD法またはCVD法により、前記成膜室内の基板上に形成される
方法。
1. A method for forming a ruthenium-based film, comprising the steps of:
Ru[i-C 3 H 7 -N-C(n-C 3 H 7 )-N-i-C 3 H 7 ] 2 is supplied into the film formation chamber;
A ruthenium-based film is formed on a substrate in the deposition chamber by ALD or CVD.
 ルテニウム系膜を形成する為の材料であって、
 Ru〔i-C-N-C(CH)-N-i-Cを具備する
材料。
A material for forming a ruthenium-based film,
A material comprising Ru[i-C 3 H 7 —N—C(CH 3 )—N—i-C 3 H 7 ] 2 .
 ルテニウム系膜を形成する為の材料であって、
 Ru〔i-C3H7-N-C(C2H5)-N-i-C3H7〕2を具備する
材料。
A material for forming a ruthenium-based film,
A material comprising Ru[i-C3H7-N-C(C2H5)-N-i-C3H7]2.
 ルテニウム系膜を形成する為の材料であって、
 Ru〔i-C3H7-N-C(n-C3H7)-N-i-C3H7〕2を具備する
材料。
 
 
A material for forming a ruthenium-based film,
A material comprising Ru[i-C3H7-N-C(n-C3H7)-N-i-C3H7]2.

PCT/JP2024/001661 2023-01-24 2024-01-22 Production method, film formation method, and film-forming material Pending WO2024157934A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-008959 2023-01-24
JP2023008959 2023-01-24
JP2023018604A JP2024104710A (en) 2023-01-24 2023-02-09 Film-forming material and manufacturing method
JP2023-018604 2023-02-09

Publications (1)

Publication Number Publication Date
WO2024157934A1 true WO2024157934A1 (en) 2024-08-02

Family

ID=91970696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001661 Pending WO2024157934A1 (en) 2023-01-24 2024-01-22 Production method, film formation method, and film-forming material

Country Status (1)

Country Link
WO (1) WO2024157934A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037161A (en) * 2004-07-27 2006-02-09 Jsr Corp Chemical vapor deposition material and chemical vapor deposition method
JP2006511716A (en) * 2002-11-15 2006-04-06 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Atomic layer deposition using metal amidinates.
JP2008536800A (en) * 2005-02-10 2008-09-11 プラクスエア・テクノロジー・インコーポレイテッド Process for producing organometallic compounds
JP2022068761A (en) * 2020-10-22 2022-05-10 気相成長株式会社 Method for Producing Aminated Metal Complex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511716A (en) * 2002-11-15 2006-04-06 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Atomic layer deposition using metal amidinates.
JP2006037161A (en) * 2004-07-27 2006-02-09 Jsr Corp Chemical vapor deposition material and chemical vapor deposition method
JP2008536800A (en) * 2005-02-10 2008-09-11 プラクスエア・テクノロジー・インコーポレイテッド Process for producing organometallic compounds
JP2022068761A (en) * 2020-10-22 2022-05-10 気相成長株式会社 Method for Producing Aminated Metal Complex

Similar Documents

Publication Publication Date Title
TWI630200B (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
KR100988973B1 (en) Metal Complexes of Tridentate Betapyketoiminate
JP5492079B2 (en) Method for forming metal-containing thin films by chemical phase growth
JP5528338B2 (en) Organometallic precursors for chemical phase growth processes
US20060135803A1 (en) Chemical vapor deposition precursors for deposition of tantalum-based materials
TWI516628B (en) A cobalt-based film forming method, a cobalt-based film forming material, and a novel compound
JP2007031431A (en) Tantalum and niobium compounds and their use in chemical vapor deposition (CVD)
TWI734684B (en) Organometallic compounds useful for chemical phase deposition
JP2021507123A (en) Method of forming a metal-containing film
JP2008088160A (en) Tantalum and niobium compounds and use of said compounds for chemical vapor deposition (CVD)
JP7161767B2 (en) FORMING MATERIAL, FORMING METHOD, AND NOVEL COMPOUND
WO2024157934A1 (en) Production method, film formation method, and film-forming material
JP6452090B2 (en) Iron-based film forming material and iron-based film forming method
JP2024104710A (en) Film-forming material and manufacturing method
JP7332211B2 (en) Novel compound and manufacturing method
CN112384639A (en) Method for forming metal or semi-metal containing film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24746611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE