WO2024197604A1 - 一种基于帧结构的通信方法和通信装置 - Google Patents
一种基于帧结构的通信方法和通信装置 Download PDFInfo
- Publication number
- WO2024197604A1 WO2024197604A1 PCT/CN2023/084515 CN2023084515W WO2024197604A1 WO 2024197604 A1 WO2024197604 A1 WO 2024197604A1 CN 2023084515 W CN2023084515 W CN 2023084515W WO 2024197604 A1 WO2024197604 A1 WO 2024197604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- resource
- frame structure
- reference signal
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the embodiments of the present application relate to the field of communication technology, and more specifically, to a communication method and a communication device based on a frame structure.
- the relevant standards of the new radio (NR) system define a frame structure for flexible configuration of uplink and downlink.
- DL downlink transmission
- UP uplink transmission
- the concept of sub-band full-duplex is proposed in the relevant standards of 5.5G.
- the concept of frequency division is superimposed, that is, the two-dimensional frame structure.
- the two-dimensional frame structure can reduce the air interface delay in the communication process, thereby realizing 0ms uplink and downlink transmission under time division duplexing (TDD).
- TDD time division duplexing
- the capabilities of network devices and terminal devices are enhanced in the 6G communication system, the number of antennas between network devices and terminal devices increases, and the communication mode between terminal devices and network devices adopts beam pairs. Therefore, how to further improve the flexible configuration of uplink and downlink between devices and reduce air interface delay needs further research.
- the embodiment of the present application provides a communication method and a communication device based on a frame structure.
- the communication method can reduce the transmission delay between a terminal device and a network device in a multi-beam scenario, realize zero-delay data transmission, and improve communication performance.
- a communication method based on a frame structure is provided.
- the method can be executed by a terminal device itself, or by a network device itself, or by a chip, circuit or module in the terminal device or the network device.
- the present application does not limit this. Unless there is ambiguity in the context, the present application is described in terms of the first device.
- the method includes:
- the first device receives first information, where the first information is used to determine time domain information, frequency domain information, beam domain information, and sending and receiving indication information in a first frame structure; the first device transmits a signal on the first frame structure according to the first information.
- the first device determines a first frame structure according to the received first information, and transmits a signal on the first frame structure.
- the first frame structure is a three-dimensional frame structure determined from the time domain, frequency domain and beam domain. In the scenario where the device uses beam pair communication, it can achieve zero-delay reception and transmission, improve transmission efficiency, and ensure communication performance.
- the beam domain information includes one or more of the following:
- Beam pair identification information reference signal resource identification information
- quasi-co-site QCL indication information quasi-co-site QCL indication information
- the reference signal includes a first reference signal and/or a second reference signal.
- the beam domain information is determined according to the resource identification information of the reference signal, wherein the beam domain information includes the resource identification information of the first reference signal and/or the resource identification information of the second reference signal.
- the resource identification information of the first reference signal includes resource identification information of a reference signal of a transmitted signal
- the resource identification information of the second reference signal includes resource identification information of a reference signal of a received signal
- the QCL indication information is used to indicate beam information used to transmit signals on time domain resources and frequency domain resources.
- the QCL indication information includes a QCL type
- the parameters in the QCL type include spatial transmission parameters and spatial reception parameters
- the spatial transmission parameters are used to indicate the beam information of the transmitted signal
- the spatial reception parameters are used to indicate the beam information of the received signal.
- the beam information used to transmit the signal includes identification information of a reference signal corresponding to the transmit beam and/or receive beam.
- the first frame structure is configured for time domain resources and/or frequency domain resources, or the first frame structure is configured for beam information and/or beam identification information in beam domain information.
- the first device sends trigger information to the second device, where the trigger information is used to trigger the second device to switch or activate the second frame structure, and the trigger information includes information for identifying the first device.
- the first device can trigger the switching or activation of the frame structure through the trigger information, thereby meeting the real-time needs of the first device and improving communication efficiency.
- the trigger information includes one or more of the following:
- the trigger information may further include a reference signal, which may be used as a demodulation reference signal for data to reduce pilot overhead.
- the trigger information also includes a second frame structure.
- the first device can be pre-configured with multiple frame structures.
- the first device selects the frame structure that needs to be switched (for example, the second frame structure) from the pre-configured multiple frame structures according to its actual needs, and indicates it to the second device through trigger information, thereby indicating the frame structure that the first device needs to switch to, thereby improving the service performance of the network.
- a communication method based on a frame structure is provided.
- the method can be executed by the terminal device itself, or by the network device itself, or by a chip, circuit or module in the terminal device or the network device.
- the present application does not limit this. Unless there is ambiguity in the context, the present application is described in terms of the second device.
- the method includes:
- the second device determines a first frame structure, where the first frame structure is used to transmit a signal; the second device sends first information, where the first information is used to determine time domain information, frequency domain information, beam domain information, and sending and receiving indication information of the first frame structure.
- the second device determines the first frame structure, it sends the first information to the first device, and the first information device transmits the signal on the first frame structure according to the received first information.
- the first frame structure is a three-dimensional frame structure determined from the time domain, frequency domain and beam domain. In the communication scenario, it can achieve zero-delay reception and transmission, improve transmission efficiency and ensure communication performance.
- the beam domain information includes one or more of the following: identification information of the beam pair, resource identification information of the reference signal, and quasi-co-site QCL indication information.
- the reference signal includes a first reference signal and/or a second reference signal
- the beam domain information is determined based on resource identification information of the reference signal, wherein the beam domain information includes resource identification information of the first reference signal and/or resource identification information of the second reference signal.
- the resource identification information of the first reference signal includes resource identification information of a reference signal of a transmitted signal
- the resource identification information of the second reference signal includes resource identification information of a reference signal of a received signal
- the QCL indication information is used to indicate beam information used to transmit signals on time domain resources and frequency domain resources.
- the QCL indication information includes a QCL type
- the parameters in the QCL type include spatial transmission parameters and spatial reception parameters
- the spatial transmission parameters are used to indicate the beam information of the transmitted signal
- the spatial reception parameters are used to indicate the beam information of the received signal.
- the beam information used to transmit the signal includes identification information of a reference signal corresponding to the transmit beam and/or receive beam.
- the first frame structure is configured for time domain resources and/or frequency domain resources, or the first frame structure is configured for beam information and/or beam identification information in the beam domain.
- the second device receives trigger information from the first device, where the trigger information is used to trigger the second device to switch or activate the second frame structure, and the trigger information includes information for identifying the first device.
- the first device can trigger the switching or activation of the frame structure through the trigger information, thereby meeting the real-time needs of the first device and improving communication efficiency.
- the trigger information includes one or more of the following:
- the trigger information may further include a reference signal, which may be used as a demodulation reference signal for data to reduce pilot overhead.
- the trigger information also includes a second frame structure.
- the first device can be pre-configured with multiple frame structures.
- the first device selects the frame structure that needs to be switched (for example, the second frame structure) from the pre-configured multiple frame structures according to its actual needs, and indicates it to the second device through trigger information, thereby indicating the frame structure that the first device needs to switch to, thereby improving the service performance of the network.
- a communication device based on a frame structure
- the device comprising: a transceiver unit for receiving first information, the first information being used to determine time domain information, frequency domain information, beam domain information and transceiver indication information in a first frame structure; and the transceiver unit is further used to transmit a signal on the first frame structure according to the first information.
- the beam domain information includes one or more of the following:
- Beam pair identification information reference signal resource identification information
- quasi-co-site QCL indication information quasi-co-site QCL indication information
- the reference signal includes a first reference signal and/or a second reference signal.
- the beam domain information is determined according to the resource identification information of the reference signal, wherein the beam domain information includes the resource identification information of the first reference signal and/or the resource identification information of the second reference signal.
- the resource identification information of the first reference signal includes resource identification information of the reference signal of the transmitted signal
- the resource identification information of the second reference signal includes resource identification information of the reference signal of the received signal
- the QCL indication information is used to indicate beam information used to transmit signals on time domain resources and frequency domain resources.
- the QCL indication information includes a QCL type
- the parameters in the QCL type include spatial transmission parameters and spatial reception parameters
- the spatial transmission parameters are used to indicate the beam information of the transmitted signal
- the spatial reception parameters are used to indicate the beam information of the received signal.
- the beam information used to transmit the signal includes identification information of a reference signal corresponding to the transmit beam and/or receive beam.
- the first frame structure is configured for time domain resources and/or frequency domain resources, or the first frame structure is configured for beam information and/or beam identification information in beam domain information.
- the transceiver unit is further used to send trigger information to the second device, where the trigger information is used to trigger the second device to switch or activate the second frame structure, and the trigger information includes information for identifying the first device.
- the trigger information includes one or more of the following:
- the trigger information also includes a second frame structure.
- a communication device based on a frame structure
- the device comprising: a processing unit, used to determine a first frame structure, the first frame structure being used to transmit a signal; a transceiver unit, used to send first information, the first information being used to determine time domain information, frequency domain information, beam domain information and transceiver indication information of the first frame structure.
- the beam domain information includes one or more of the following: identification information of the beam pair, resource identification information of the reference signal, and quasi-co-site QCL indication information.
- the reference signal includes a first reference signal and/or a second reference signal
- the beam domain information is determined based on resource identification information of the reference signal, wherein the beam domain information includes resource identification information of the first reference signal and/or resource identification information of the second reference signal.
- the resource identification information of the first reference signal includes the resource identification information of the reference signal of the transmitted signal
- the resource identification information of the second reference signal includes the resource identification information of the reference signal of the received signal
- the QCL indication information is used to indicate beam information used to transmit signals on time domain resources and frequency domain resources.
- the QCL indication information includes a QCL type
- the parameters in the QCL type include spatial transmission parameters and spatial reception parameters
- the spatial transmission parameters are used to indicate the beam information of the transmitted signal
- the spatial reception parameters are used to indicate the beam information of the received signal.
- the beam information used to transmit the signal includes identification information of a reference signal corresponding to the transmit beam and/or receive beam.
- the first frame structure is configured for time domain resources and/or frequency domain resources, or the first frame structure is configured for beam information and/or beam identification information in the beam domain.
- the transceiver unit is further used to receive trigger information from the first device, the trigger information is used to trigger the second device to switch or activate the second frame structure, and the trigger information includes information for identifying the first device.
- the trigger information includes one or more of the following:
- the trigger information also includes a second frame structure.
- a communication device comprising a unit for executing each step of the communication method in the first aspect and its implementation method.
- the communication device is a communication chip, which may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
- the communication apparatus is a communication device (eg, a first device, etc.), and the communication chip may include a transmitter for sending information and a receiver for receiving information or data.
- the communication chip may include a transmitter for sending information and a receiver for receiving information or data.
- a communication device comprising a unit for executing each step of the communication method in the above-mentioned second aspect and its implementation method.
- the communication device is a communication chip, which may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
- the communication apparatus is a communication device (eg, a second device, etc.), and the communication chip may include a transmitter for sending information and a receiver for receiving information or data.
- a communication device including a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device executes the communication method in the above-mentioned first aspect or second aspect and its various implementation methods.
- the number of the processors is one or more, and the number of the memories is one or more.
- the memory may be integrated with the processor, or the memory may be provided separately from the processor.
- the communication device also includes a transmitter (transmitter) and a receiver (receiver).
- a computer program product comprising: a computer program (also referred to as code, or instruction), which, when executed, enables a computer to execute the communication method in the above-mentioned first aspect or second aspect and its various implementation methods.
- a computer program also referred to as code, or instruction
- a computer-readable medium which stores a computer program (also referred to as code, or instruction) which, when executed on a computer, enables the computer to execute the communication method in the first aspect or the second aspect and its various implementation methods.
- a computer program also referred to as code, or instruction
- a communication system comprising: at least one device described in any one of the third aspect and at least one device described in any one of the fourth aspect.
- a chip system comprising a memory and a processor, wherein the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that a communication device equipped with the chip system executes the communication method in the above-mentioned first aspect or second aspect and its various implementation methods.
- the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
- FIG1 is a schematic diagram of a system architecture provided by the present application.
- FIG2 is a schematic diagram of another system architecture provided by the present application.
- FIG3 is a schematic diagram of another system architecture provided by the present application.
- FIG. 4 is a schematic diagram of another system architecture provided by the present application.
- FIG5 is a schematic diagram of a system architecture scenario provided in an embodiment of the present application.
- FIG6 is a schematic diagram of a frame structure provided in an embodiment of the present application.
- FIG. 7 is a schematic diagram of a multi-beam communication scenario provided in an embodiment of the present application.
- FIG8 is a flow chart of a communication method provided in an embodiment of the present application.
- FIG. 9 is a schematic diagram of another frame structure provided in an embodiment of the present application.
- FIG. 10 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
- FIG. 11 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- WiMAX Worldwide Interoperability for Microwave Access
- 5G fifth generation
- NR new radio
- the present application can be applied to satellite communication systems.
- the satellite system architecture may include a satellite base station and a terminal type network element.
- the satellite base station provides communication services for the terminal device, which may include a smart phone, a smart watch, a tablet computer and other devices.
- the satellite base station transmits downlink data to the terminal device, where the downlink data can be encoded using channel coding, and the channel-coded data is transmitted to the terminal after constellation modulation; the terminal device transmits uplink data to the satellite base station, and the uplink data can also be encoded using channel coding, and the encoded data is transmitted to the satellite base station after constellation modulation.
- the satellite base station can also communicate with the ground base station.
- the satellite can be used as a base station or a terminal device.
- the satellite may refer to a drone, a hot air balloon, a low-orbit satellite, a medium-orbit satellite, a high-orbit satellite, etc.
- a satellite may also refer to a non-ground base station or non-ground equipment, etc.
- the present application can be applied to satellite inter-satellite link communication systems.
- the satellite inter-satellite link communication system can be divided into two parts: acquisition pointing tracking (APT) subsystem and communication subsystem.
- the communication subsystem is mainly responsible for the transmission of inter-satellite information
- the communication subsystem is the main body of the inter-satellite communication system
- the APT system is mainly responsible for the capture, alignment and tracking between satellites.
- the direction of the incoming wave of the incident signal can be determined for capture, and the direction of the transmitted wave can be adjusted to aim at the receiving direction for alignment.
- ATP is constantly used to adjust the alignment and capture for tracking.
- APT In order to minimize the attenuation and interference effects in the channel, while requiring high confidentiality and transmission rate, APT must be adjusted in real time to continuously adapt to changes.
- the current APT systems are all optical systems.
- the disadvantage is that optical alignment is difficult and requires mechanical adjustment of the direction.
- Most of the existing communication subsystems are optical communication systems, and some microwave band systems also use a single high-gain antenna.
- the existing APT system and communication subsystem are independent systems.
- the disadvantages are that optical communication is easily affected by vibration and the rate is unstable; the millimeter wave frequency is low, the communication capacity is low, and the antenna needs to be mechanically adjusted.
- the present application can be applied to a cellular communication system.
- the present application can be applied to wireless communication systems such as 5G systems and satellite communications.
- the wireless communication system is usually composed of cells, each cell contains a base station, and the base station can provide communication services to multiple mobile stations (MS).
- the base station can include a baseband unit (baseband unit, BBU) and a remote radio unit (remote radio unit, RRU).
- BBU baseband unit
- RRU remote radio unit
- the BBU and RRU can be placed in different places, for example: the RRU is remote and placed in an area with high traffic volume, and the BBU is placed in a central computer room.
- the BBU and RRU can also be placed in the same computer room.
- the BBU and RRU can also be different components under a rack.
- wireless communication systems mentioned in the present application include but are not limited to: Narrow Band-Internet of Things (NB-IoT), Global System for Mobile Communications (GSM), Enhanced Data rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 (CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE) and the three major application scenarios of the next generation 5G mobile communication system, namely eMBB, URLLC and eMTC.
- NB-IoT Narrow Band-Internet of Things
- GSM Global System for Mobile Communications
- EDGE Enhanced Data rate for GSM Evolution
- WCDMA Wideband Code Division Multiple Access
- CDMA2000 Code Division Multiple Access 2000
- TD-SCDMA Time Division-Synchronization Code Division Multiple Access
- LTE Long Term Evolution
- This application can be applied to Internet of Things communication systems.
- FIG 4 shows a typical application scenario of wireless screen projection in the Internet of Things.
- the terminal device such as a smartphone
- the smartphone establishes a network connection with the TV.
- the smartphone transmits the content to be projected to the TV to the TV device.
- the TV device receives the content transmitted by the smartphone, it displays the content on the display screen.
- This application can be applied to integrated access and backhaul (IAB).
- IAB can include IAB parent node (IAB Doner), IAB node (IAB node) and terminal device.
- IAB Doner IAB parent node
- IAB node IAB node
- terminal device IAB node
- the link between IAB Doner and IAB node is backhaul link
- the link between terminal device and IAB node is access link.
- the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
- the terminal device may also be a cellular phone, a cordless phone, a smart phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a vehicle-mounted mobile device, a wearable device, a wireless communication module/chip in a smart factory, a wireless communication module/chip in a smart grid, a wireless communication module/chip in various devices, a terminal device in a 5G network, or a terminal device in a future evolving Public Land Mobile Network (PLMN), etc., and the embodiments of the present application are not limited to this.
- PLMN Public Land
- the network device in the embodiments of the present application can be a device for communicating with a terminal device.
- the network device can be a base station (Base Transceiver Station, BTS) in a Global System of Mobile communication (GSM) system or a Code Division Multiple Access (CDMA), or a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station (Evolutional NodeB, eNB or eNodeB) in an LTE system, or a communication chip/module in a base station, a communication chip/module in a satellite, or a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, a network device in a 5G network, or a network device in a future evolved PLMN network, etc., and the embodiments of the present application are not limited.
- BTS Base Transceiver Station
- the relevant standards of the NR system define the frame structure of flexible configuration of uplink and downlink, among which it is mainly proposed to define the one-dimensional frame structure separately on the same carrier through time division multiplexing method.
- FIG6 (1) shows a schematic diagram of a one-dimensional frame structure. As shown in FIG6 (1), on the same carrier, it is divided into multiple time units, each time unit is used for uplink transmission or downlink transmission. Among them, “D” represents a downlink time unit, “U” represents an uplink time unit, and “F” represents a flexible time unit.
- the two-dimensional frame structure adds the concept of frequency division to the concept of time division in the one-dimensional frame structure.
- the frequency division resources on the same time slot are divided into multiple (for example, 2 or more), that is, different frequency domain resources at the same time can have different uplink and downlink configurations.
- the network device can allocate different frequency division resources to different devices for use.
- UE#1 and UE#2 can use different frequency division resources on the same time division resource.
- network equipment can support full-duplex
- terminal equipment can support half-duplex or full-duplex.
- the number of antennas between network equipment and terminal equipment continues to increase, and the network equipment and terminal equipment generally communicate in a beam pair communication mode. As shown in Figure 7, the base station and the terminal equipment communicate through a beam pair.
- the present application proposes a communication method based on a frame structure, which can improve the flexible configuration of uplink and downlink, reduce communication transmission delay, and improve communication performance in the scenario of multi-beam communication.
- FIG8 is a flow chart of a communication method provided in an embodiment of the present application.
- Device #1 determines a first frame structure.
- the first frame structure is a frame structure used to transmit signals.
- the first frame structure is mainly used for information exchange between device #1 and device #2.
- the transmission signal is taken as an example.
- the first frame structure can also be used to transmit data, messages, etc., which is not specifically limited in this application.
- the first frame structure can be used to transmit a reference signal, a perception signal, etc.
- transmission in this application may refer to sending and/or receiving.
- downlink “D” can be replaced by receiving “R”
- uplink “U” can be replaced by sending “T” to indicate whether the terminal is sending or receiving.
- downlink indicates that the terminal is receiving
- uplink indicates that the terminal is sending, etc.
- device #1 and device #2 in Figure 8 can be understood as terminal devices; when the present application is applied to a cellular system, device #1 in Figure 8 is a network device and device #2 is a terminal device.
- the examples in this application mainly take the cellular system as an example to provide a detailed introduction to the frame structure-based communication method provided in this application, and do not have any limiting effect on the method provided in the embodiments of this application.
- Device #1 sends first information to device #2.
- device #2 receives the first information sent from device #1.
- device #1 sends first information to device #2.
- the first information is used to determine time domain information, frequency domain information, beam domain information, and sending and receiving indication information of the first frame structure.
- the first frame structure may be a three-dimensional frame structure, which divides the frame structure used for transmitting signals between device #1 and device #2 from the time domain, frequency domain and beam domain.
- the time domain information in the first frame structure may refer to time units such as symbols, time slots, micro time slots, subframes, etc.
- the time domain information may be used to indicate the second symbol, the fourth symbol, the seventh symbol, or the time domain information may also be used to indicate the first time slot, the second time slot, etc. This application does not make any specific limitations on this.
- the frequency domain information in the first frame structure may refer to a resource block (RB), a resource block group (RBG), a sub-band, etc.
- the frequency domain information may refer to the frequency domain resource indication information of the first RB, the first RBG, the second RBG, or a sub-band.
- the beam domain information of the first frame structure may refer to at least one of a transmitting beam and a receiving beam.
- the beam domain information may also be used to indicate relevant information of a beam pair, such as identification information of the beam pair, and the like.
- the sending and receiving indication may be used to indicate sending, or may be used to indicate receiving, or may indicate sending and receiving at the same time.
- the sending and receiving indication information is used to indicate device #1 to send and device #2 to receive.
- the beam domain information may include one or more of the following: beam pair identification information, reference signal resource identification information, and quasi co-location (QCL) indication information.
- beam pair identification information may include one or more of the following: beam pair identification information, reference signal resource identification information, and quasi co-location (QCL) indication information.
- QCL quasi co-location
- the resource identification information of the reference signal may include resource identification information of a first reference signal and/or a second reference signal, wherein the first reference signal may be used to indicate identification information of a reference signal corresponding to a transmitted signal, and the second reference signal may be used to indicate identification information of a reference signal corresponding to a received signal.
- the first reference signal may be a CSI-RS
- the second reference signal may be an SRS
- the first reference signal may be an SRS
- the second reference signal may be a CSI-RS
- the first reference signal may be an SRS
- the second reference signal may be an SRS
- the first reference signal may be another reference signal
- the second reference signal may be another reference signal, etc. This application does not make any further references to this. limited.
- the resource identification information of the first reference signal may be the resource identification information of the reference signal configured or sent by device #1 (e.g., CSI-RS resource identification information), and the resource identification information of the second reference signal may be the resource identification information of the reference signal configured or sent by device #2 (e.g., SRS resource identification information).
- device #1 e.g., CSI-RS resource identification information
- device #2 e.g., SRS resource identification information
- Device #2 transmits a signal on a first frame structure according to the first information.
- device #2 After receiving the first information from device #1, device #2 determines a first frame structure according to the first information, and transmits a signal on the first frame structure.
- the transmission signal involved in the present application can be used to represent a sending signal, or a receiving signal, or both a sending signal and a receiving signal, and the present application does not make any specific limitation on this.
- device #2 determines, based on the first information, the corresponding time domain resources, frequency domain resources, and beam domain resources in the first frame structure, and transmits the signal at the corresponding frame structure position according to the transceiver indication information.
- the transceiver indication information For a specific example of how to transmit the signal on the first frame structure according to the first information, please refer to the subsequent examples, which will not be repeated here.
- the above steps 801 to 803 mainly introduce that device #1 configures the first frame structure and sends the first information to device #2, and the device #2 transmits the signal on the first frame structure.
- the current device #2 is used to receive the signal sent from device #1 on the first frame structure.
- the device #2 can send trigger information to device #1 to trigger the frame structure switching, for example, switching the first frame structure to the second frame structure, so that device #2 can send a signal to device #1 on the corresponding time-frequency resource.
- the method can also include the following steps:
- device #2 sends trigger information to device #1.
- device #1 receives the trigger information sent from device #2.
- the trigger information is used to trigger device #1 to switch or activate the second frame structure, and the trigger information includes information for identifying device #2. After receiving the trigger information, device #1 determines that the trigger information is sent by device #2 to device #1 based on the information for identifying device #2 included in the trigger information.
- the trigger information may include identification information of device #2.
- the trigger information may also include one or more of the following: demodulation reference signal (DMRS) trigger, uplink sounding reference signal (SRS) trigger, physical random access channel (PRACH) signal trigger, uplink control information (UCI) trigger, and scheduling request (SR) trigger.
- DMRS demodulation reference signal
- SRS uplink sounding reference signal
- PRACH physical random access channel
- UCI uplink control information
- SR scheduling request
- device #2 is pre-configured with multiple frame structures by device #1 or the system, and device #2 selects a frame structure (e.g., the second frame structure) to be switched from the pre-configured multiple frame structures according to its own needs, and indicates it to device #1 through trigger information. That is, the trigger information may also include the second frame structure.
- a frame structure e.g., the second frame structure
- the second frame structure is different from the first frame structure in one or more of the time domain information, frequency domain information, beam domain information and sending and receiving indication information.
- Device #1 switches or triggers the second frame structure according to the trigger information.
- device #1 After device #1 receives the trigger information sent by device #2, device #1 switches the first frame structure to the second frame structure according to the trigger information, and indicates the second frame structure to device #2.
- device #2 triggers the change of the frame structure through the trigger information, thereby meeting the real-time requirements of device #2 and reducing the transmission delay in the TDD scenario.
- the trigger information may also include reference
- the reference signal can be used as a demodulation reference signal for data to reduce pilot overhead.
- the transmission of beam-level pilots and/or data can achieve spatial separation, thereby reducing interference.
- the beam of device #1 corresponds to the configured three-dimensional frame structure, which can include beam pair information, and the beam separation on the device side achieves the technical effect of reducing interference.
- device #1 may send second information to device #2, where the second information is used to determine time domain information, frequency domain information, beam domain information and sending and receiving indication information of the second frame structure.
- the method may further comprise the steps of:
- Device #1 sends second information to device #2.
- device #2 receives the second information sent from device #1.
- the second frame structure determined by device #1 may be the same as or different from the second frame structure triggered by device #2.
- device #1 may consider the service conditions of multiple users and thus select the frame structure of device #2.
- device #2 may have the right to suggest a frame structure to device #1, and device #1 may also have the right to indicate a determined frame structure to device #2.
- device #2 determines to transmit a signal on a first frame structure according to the first information.
- the first frame structure includes information in the time domain, frequency domain, and beam domain, which solves the problem of large communication delay in the communication between devices using beam pairs, further realizes zero-delay transmission or reception, and improves communication efficiency.
- a specific implementation manner in which device #2 transmits a signal on the first frame structure according to the first information may include:
- Method 1 the beam domain information in the first frame structure includes beam pair identification information.
- the first frame structure is configured for time domain resources and frequency domain resources.
- the beam domain information is determined by the identification information of the beam pair, and the first frame structure configured by device #1 for device #2 for the time domain resources and the frequency domain resources is at least one row or at least one column as shown in Table 1-1:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #2 sends a signal.
- t1 to t8 can be integers, indicating the transmit beam identifier of the signal
- r1 to r8 can be integers, indicating the receive beam identifier of the signal.
- one or more beam pair identification information and one or more sending and receiving indication information can be configured for one time-frequency resource.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #2 sends a signal.
- an indication is sent; or, on the T2 time domain resource and the F1 frequency domain resource, corresponding to transmit beam 6 and receive beam 5, an indication is sent.
- an indication is received; or, on the T1 time domain resource and the F2 frequency domain resource, corresponding to transmit beam 2 and receive beam 3, an indication is received.
- device #2 after receiving the first information sent from device #1, device #2 determines the first structure according to the first information and transmits the signal on the first frame structure. For example, on T1 time domain resources and F1 frequency domain resources, device #2 receives the signal sent by device #1 through transmit beam 1 through receive beam 1; or on T1 time domain resources and F2 frequency domain resources, device #2 sends a signal to device #1 through transmit beam 5, and device #1 receives the signal sent by device #2 through transmit beam 5 through receive beam 4.
- the beam domain information is determined by the identification information of the beam pair, and the first frame structure configured by device #1 for device #2 for the time domain resources and the frequency domain resources is at least one row or at least one column shown in Table 2-1:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #2 sends a signal.
- t1 to t8 can be integers, indicating the transmit beam identifier of the signal
- r1 to r8 can be integers, indicating the receive beam identifier of the signal.
- one or more beam pair identification information and one or more sending and receiving indication information can be configured for one time-frequency resource.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #2 sends a signal.
- an indication is received; or, on the T2 time domain resource and the F1 frequency domain resource, corresponding to transmit beam 6 and receive beam 5, an indication is sent.
- an indication is sent; or, on the T1 time domain resource and the F2 frequency domain resource, corresponding to transmit beam 1 and receive beam 1, an indication is received.
- the first frame structure is configured for beam information and/or beam identification information in the beam domain information.
- beam pair 1 includes beam 1 of the network device and beam 1 of the terminal device
- beam pair 2 includes beam 2 of the network device and beam 2 of the terminal device, and so on.
- the network device and the terminal device can communicate through the beam pair, for example, the network device and the terminal device communicate through beam pair 1, wherein the network device can send a signal to the terminal device through beam 1, and the terminal device can receive a signal from the network device through beam 1; or, the terminal device sends a signal to the network device through beam 1, and the network device receives a signal from the terminal device through beam 1; or, while the terminal device sends a signal to the network device through beam 1, the terminal device can also receive a signal sent from the network device through beam 1; or, while the network device sends a signal to the terminal device through beam 1, the network device can also receive a signal sent from the terminal device through beam 1.
- the beam domain information is determined by identification information of the beam pair, and the first frame structure configured by device #1 for device #2 according to the beam domain information is at least one row as shown in Table 3-1:
- T11-Tn2 represent time domain resource information
- F11-Fn2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #2 sends a signal.
- n can be an integer, indicating a beam pair identifier.
- one or more time-frequency resource information and one or more sending and receiving indication information can be configured for a beam pair.
- the frame structure indication for a beam pair may be as follows:
- reception is performed on time domain resource T11 and frequency domain resource F11, and transmission is performed on time domain resource T12 and frequency domain resource F12.
- reception is performed on time domain resource T21 and frequency domain resource F21.
- reception is performed on time domain resource T51 and frequency domain resource F51, and transmission is performed on time domain resource T52 and frequency domain resource F52.
- Beam pair 6 of device #2 is transmitted on time domain resource T61 and frequency domain resource F61.
- the beam domain information of the first frame structure includes resource identification information of the reference signal.
- the beam domain information in the first frame structure includes resource identification information of the first reference signal or the second reference signal.
- device #1 determines a transmit beam and/or a receive beam in a first frame structure according to CSI-RS resource identification information or SRS resource identification information.
- Example 1 Assuming that the first reference signal is a CSI-RS signal and the second reference signal is an SRS signal, device #1 can configure the resource identification information of the CSI-RS and the transceiver indication information, and device #2 can further determine the beam for receiving and/or transmitting the signal according to the resource identification information of the CSI-RS.
- the resource identification information of the CSI-RS may include a CSI-RS resource set identifier (CSI-RS resource set ID) and/or a CSI-RS resource identifier (CSI-RS resource ID).
- a CSI-RS resource set may include one or more CSI-RS resources.
- the resource identification information of the CSI-RS configured by device #1 and the reception indication information are as follows:
- device #2 determines the corresponding receiving beam according to the measurement beam pair before receiving the first information. For example, device #2 further determines the corresponding receiving beam through the previous beam pair measurement tracking.
- device #1 when device #1 transmits a signal, it further indicates the CSI-RS resource set ID where the signal is located and the CSI-RS resource ID in the set, and device #2 determines the QCL or beam information of the transmitted signal and then receives the signal.
- Example 2 Assuming that the first reference signal is a CSI-RS signal and the second reference signal is an SRS signal, device #1 can configure the resource identification information of the SRS and the transceiver indication information, and device #2 can further determine the beam for receiving and/or transmitting the signal according to the resource identification information of the SRS.
- the resource identification information of the SRS may include an SRS resource set identifier (SRS resource set ID) and/or an SRS resource identifier (SRS resource ID).
- SRS resource set may include one or more SRS resources.
- the resource identification information of the SRS configured by device #1 and the sending indication information are as follows:
- device #1 determines the corresponding transmission beam according to the measurement beam pair before determining the first frame structure. For example, device #1 further determines the corresponding transmit beam through the previous beam pair measurement tracking.
- device #1 schedules device #2 to send a signal, it further indicates the SRS resource set ID where the signal is located and the SRS resource ID in the set, and device #2 determines the QCL or beam information of the transmitted signal and then sends the signal.
- the beam domain information includes resource identification information of the first reference signal or resource identification information of the second reference signal.
- the specific expression form of the first frame structure is shown in the following example:
- the beam domain information is determined by the identification information of the reference signal, and the first frame structure configured by device #1 for device #2 for the time domain resources and the frequency domain resources is at least one row or at least one column as shown in Table 4-1:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #2 sends a signal.
- i1 to i4 can be integers, representing the resource set identifier of the CSI-RS
- j1 to j4 can be integers, representing the resource set identifier of the SRS.
- one or more CSI-RS resource identification information, or one or more SRS resource identification information, and one or more sending and receiving indication information can be configured for a time-frequency resource.
- Table 4-1 takes the CSI-RS resource identification information as the CSI-RS resource set identification and the SRS resource identification information as the SRS resource set identification as an example for illustration. For further example, at least one row or at least one column as shown in Table 4-2:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- an indication is received; or, on T1 time domain resources and F1 frequency domain resources, corresponding to CSI-RS resource identifier ID2, an indication is received.
- an indication is sent; or, on T1 time domain resources and F2 frequency domain resources, corresponding to SRS resource identifier ID2, an indication is sent.
- an indication is sent; or, on T2 time domain resources and F1 frequency domain resources, corresponding to SRS resource identifier ID2, an indication is sent.
- an indication is received on T2 time domain resources and F2 frequency domain resources, corresponding to CSI-RS resource identifier ID1
- device #2 after receiving the first information sent by device #1, device #2 determines the first frame structure according to the first information and transmits the signal on the first frame structure.
- device #2 receives the signal sent from device #1 through CSI-RS resource identifier ID1 on the beam corresponding to CSI-RS resource identifier ID1; or in the T1 time domain resources and F2 frequency domain resources, device #2 sends a signal to device #1 on the beam corresponding to SRS resource identifier ID1, and device #1 receives the signal sent from device #2 through the beam corresponding to SRS resource identifier ID1.
- the beam domain information is determined by identification information of the reference signal
- the first frame structure configured by device #1 for device #2 for time domain resources and frequency domain resources is at least one row or at least one column as shown in Table 5-1:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #2 sends a signal.
- i1 to i3 can be integers, representing the resource set identifier of the CSI-RS
- j1 to j3 can be integers, representing the resource set identifier of the SRS.
- One or more CSI-RS resource identification information, or one or more SRS resource identification information, and one or more sending and receiving indication information may be configured for one time-frequency resource.
- Table 5-1 takes the CSI-RS resource identification information as the CSI-RS resource set identification and the SRS resource identification information as the SRS resource set identification as an example for illustration.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- beam pair 1 includes beam 1 of device #1 and beam 1 of device #2
- beam pair 2 includes beam 2 of device #1 and beam 2 of device #2
- Device #1 and device #2 can communicate through the beam pair, such as communicating through beam pair 1, including device #1 sending a signal using beam 1 and device #2 receiving a signal using beam 1, and/or device #2 sending a signal using beam 1 and device #1 receiving a signal using beam 1.
- beam pair 1 can correspond to CSI-RS resource identifier ID1 and/or SRS resource identifier ID1;
- beam pair 2 can correspond to To correspond to CSI-RS resource identifier ID2 and/or SRS resource identifier ID2;
- beam pair 6 can correspond to CSI-RS resource identifier ID6 and/or SRS resource identifier ID6; ..., and so on.
- the frame structure indication for the beam pair is as follows:
- the beam domain information is determined by identification information of the reference signal, and the first frame structure configured by device #1 for device #2 with respect to the beam domain information is as shown in at least one row in Table 6-1:
- T11-Tn2 represent time domain resource information
- F11-Fn2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #2 sends a signal.
- n can be an integer, indicating a beam pair identifier.
- one or more time-frequency resource information and one or more sending and receiving indication information can be configured for a beam pair.
- reception is performed on time domain resource T11 and frequency domain resource F11, and transmission is performed on time domain resource T12 and frequency domain resource F12.
- reception is performed on time domain resource T21 and frequency domain resource F21.
- reception is performed on time domain resource T51 and frequency domain resource F51, and transmission is performed on time domain resource T52 and frequency domain resource F52.
- Beam pair 6 (CSI-RS resource identifier ID6 and/or SRS resource identifier ID6) of device #2 is transmitted on time domain resource T61 and frequency domain resource F61.
- the beam domain information in the first frame structure includes resource identification information of the first reference signal and the second reference signal.
- device #1 determines the transmit beam and/or receive beam in the first frame structure according to the CSI-RS resource identification information and the SRS resource identification information.
- Example 3 assuming that the first reference signal is a CSI-RS signal and the second reference signal is an SRS signal.
- Device #1 can configure the resource identification information of the CSI-RS and the resource identification information of the SRS, as well as the sending and receiving indication information, and device #2 can further determine the beam domain information in the first frame structure according to the resource identification information of the CSI-RS and the resource identification information of the SRS.
- the resource identification information of the CSI-RS may include a CSI-RS resource set identifier (CSI-RS resource set ID) and/or a CSI-RS resource identifier (CSI-RS resource ID).
- a CSI-RS resource set may include one or more CSI-RS resources.
- the resource identification information of the SRS may include an SRS resource set identifier (SRS resource set ID) and/or an SRS resource identifier (SRS resource ID).
- SRS resource set may include one or more SRS resources.
- the CSI-RS resource identification information and SRS resource identification information configured by device #1, as well as the reception indication signal are as follows:
- device #1 when device #1 transmits a signal, it receives the signal by indicating the CSI-RS resource set ID where the signal is sent by device #1 and the CSI-RS resource ID in the set, as well as the SRS resource ID corresponding to the reception in the SRS resource set ID corresponding to device #2.
- the resource identification information of the CSI-RS and the resource identification information of the SRS configured by device #1, as well as the reception indication signal are as follows:
- device #2 determines the QCL or beam information of the sent signal, thereby sending the signal.
- the beam domain information includes resource identification information of the first reference signal and resource identification information of the second reference signal.
- the specific expression form of the first frame structure is shown in the following example:
- the beam domain information is determined by the identification information of the reference signal, and the first frame structure configured by device #1 for device #2 for the time domain resources and the frequency domain resources is at least one row or at least one column as shown in Table 7-1:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- i1 to i4 can be integers, representing the resource set identifier of CSI-RS
- j1 to j4 can be integers, representing the resource set identifier of SRS.
- One or more CSI-RS resource identification information, or one or more SRS resource identification information, and one or more sending and receiving indication information may be configured for one time-frequency resource.
- Table 7-1 takes the CSI-RS resource identification information as the CSI-RS resource set identification and the SRS resource identification information as the SRS resource set identification as an example for illustration.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- the CSI-RS resource identifier ID1 and the SRS resource identifier ID1 are received on the T1 time domain resource and the F1 frequency domain resource.
- the SRS resource identifier ID1 is sent.
- the SRS resource identifier ID2 is sent.
- the CSI-RS resource identifier ID1 and the SRS resource identifier ID1 are received on the T2 time domain resource and the F2 frequency domain resource.
- device #2 after receiving the first information sent from device #1, device #2 determines the first frame structure according to the first information and transmits the signal on the first frame structure. For example, on the T1 time domain resource and the F1 frequency domain resource, device #2 receives the signal sent from device #1 through the CSI-RS resource identifier ID1 on the beam corresponding to the SRS resource identifier ID1.
- beam pair 1 includes beam 1 of device #1 and beam 1 of device #2
- beam pair 2 includes beam 2 of device #1 and beam 2 of device #2
- Device #1 and device #2 can communicate through the beam pair, such as communicating through beam pair 1, including device #1 sending a signal using beam 1 and device #2 receiving a signal using beam 1, and/or device #2 sending a signal using beam 1 and device #1 receiving a signal using beam 1.
- beam pair 1 can correspond to CSI-RS resource identifier ID1 and/or SRS resource identifier ID1;
- beam pair 2 can correspond to CSI-RS resource identifier ID2 and/or SRS resource identifier ID2;
- beam pair 6 can correspond to CSI-RS resource identifier ID6 and/or SRS resource identifier ID6;... and so on.
- the first frame structure indication for the beam pair can be as follows:
- the beam domain information is determined by identification information of the reference signal, and the first frame structure configured by device #1 for device #2 with respect to the beam domain information is as shown in at least one row in Table 8-1:
- T11 ⁇ Tn2 represent time domain resource information
- F11 ⁇ Fn2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #2 sends a signal.
- n can be an integer, indicating a beam pair identifier.
- i1 ⁇ in can be an integer, indicating a resource set identifier of a CSI-RS
- j1 ⁇ jn can be an integer, indicating a resource set identifier of an SRS.
- one or more time-frequency resource information and one or more sending and receiving indication information can be configured for a beam pair.
- reception is performed on time domain resource T11 and frequency domain resource F11, and transmission is performed on time domain resource T12 and frequency domain resource F12.
- reception is performed on time domain resource T21 and frequency domain resource F21.
- reception is performed on time domain resource T51 and frequency domain resource F51, and transmission is performed on time domain resource T52 and frequency domain resource F52.
- Beam pair 6 (CSI-RS resource identifier ID6 and/or SRS resource identifier ID6) of device #2 is transmitted on time domain resource T61 and frequency domain resource F61.
- the beam domain information of the first frame structure includes QCL indication information.
- the QCL indication information is used to indicate beam information used to transmit signals on time domain resources and frequency domain resources.
- the QCL indication information may include a QCL type, such as QCL type E.
- the parameters in the QCL type include a spatial transmission parameter and a spatial reception parameter.
- the spatial transmission parameter is used to indicate the transmission
- the beam information of the signal the spatial reception parameter is used to indicate the beam information of the received signal.
- the QCL indication information includes a QCL type, such as QCL type E: ⁇ Spatial Tx parameter, Spatial Rx parameter ⁇ .
- the QCL type indicates an identifier of a reference signal corresponding to a transmit beam and an identifier of a reference signal corresponding to a receive beam.
- the transceiver space parameter of the transmission signal is the same as the transceiver space parameter of the reference signal pair.
- the configuration of QCL can be ⁇ CSI-RS resource ID, SRS resource ID ⁇ , ⁇ SSB ID, CSI-RS resource ID ⁇ , ⁇ SSB ID, SRS resource ID ⁇ , ⁇ CSI-RS resource ID, SRS resource set ID ⁇ , ⁇ CSI-RS resource set ID, SRS resource ID ⁇ , ⁇ CSI-RS resource set ID, SRS resource set ID ⁇ , ⁇ SSB ID, CSI-RS resource set ID ⁇ , or ⁇ SSB ID, SRS resource set ID ⁇ , etc.
- the order of the two IDs is not limited.
- the configuration method of the first frame structure may include the following:
- the first frame structure is configured for time domain resources and frequency domain resources, as shown in at least one row or at least one column in Table 9-1, Table 9-2, Table 10-1 and Table 10-2:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- q21 to q24 can be integers, indicating QCL information identifiers
- i1 to i4 can be integers, indicating CSI-RS resource identifiers
- j1 to j4 can be integers, indicating SRS resource identifiers.
- One or more QCL information and one or more receiving and sending indication information may be configured for one time-frequency resource.
- Table 9-1 takes the QCL information as ⁇ CSI-RS resource identifier, SRS resource identifier ⁇ as an example for illustration.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- the corresponding QCL information is ⁇ CSI-RS resource ID 1, SRS resource ID 1 ⁇ , which indicates a receive indication.
- the corresponding QCL information is ⁇ CSI-RS resource ID 5, SRS resource ID 5 ⁇ , which indicates a send indication.
- the corresponding QCL information is ⁇ CSI-RS resource ID 2, SRS resource ID 2 ⁇ , which indicates a send indication.
- the corresponding QCL information is ⁇ CSI-RS resource ID 6, SRS resource ID6 ⁇ , receiving indication.
- device #2 after receiving the first information sent from device #1, device #2 determines the first frame structure according to the first information and transmits the signal on the first frame structure. For example, on the T1 time domain resource and the F1 frequency domain resource, device #2 receives the signal sent from device #1 on the beam whose corresponding QCL information is ⁇ CSI-RS resource ID 1, SRS resource ID 1 ⁇ .
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- q11 to q14 can be integers, indicating QCL information identifiers
- i1 to i4 can be integers, indicating CSI-RS resource identifiers
- j1 to j4 can be integers, indicating SRS resource identifiers.
- One or more QCL information and one or more receiving and sending indication information may be configured for one time-frequency resource.
- Table 10-1 takes the QCL information as ⁇ CSI-RS resource identifier, SRS resource identifier ⁇ as an example for illustration.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- the corresponding QCL information is ⁇ SRS resource ID 7, SRS resource ID 7 ⁇ , and the sending indication is given.
- the corresponding QCL information is ⁇ CSI-RS resource ID 3, SRS resource ID 3 ⁇ , and the receiving indication is given.
- the corresponding QCL information is ⁇ CSI-RS resource ID 8, SRS resource ID 8 ⁇ , and the receiving indication is given.
- the corresponding QCL information is ⁇ SRS resource ID 4, CSI-RS resource ID4 ⁇ , and the sending indication is given.
- device #2 after device #2 receives the first information sent from device #1, it determines the first frame structure according to the first information and transmits the signal on the first frame structure. For example, on the T1 time domain resource and the F1 frequency domain resource, device #2 sends a signal to device #1 on the beam whose corresponding QCL information is ⁇ SRS resource ID 7, SRS resource ID 7 ⁇ .
- Configuration method 1 Indication of the frame structure for the QCL group
- device #1 may have multiple antenna panels, one antenna panel for each QCL group, or one group of beam information for each QCL group.
- device #2 has two QCL groups, QCL group 1 and QCL group 2.
- the configuration of the frame structure for QCL group 1 may be as shown in at least one row or at least one column in Table 11-1:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- 1-q1 to 1-q4 can be integers, indicating the QCL information identifier of QCL group 1
- i1 to i4 can be integers, indicating the resource identifier of CSI-RS
- j1 to j4 can be integers, indicating the resource identifier of SRS.
- One or more QCL information and one or more receiving and sending indication information may be configured for one time-frequency resource.
- Table 11-1 takes the QCL information as ⁇ CSI-RS resource identifier, SRS resource identifier ⁇ as an example for illustration.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- the corresponding QCL information is ⁇ CSI-RS resource ID 1, SRS resource ID 1 ⁇ , which is a receiving indication.
- the corresponding QCL information is ⁇ CSI-RS resource ID 2, SRS resource ID 2 ⁇ , which is a sending indication.
- the corresponding QCL information is ⁇ CSI-RS resource ID 3, SRS resource ID 3 ⁇ , which is a receiving indication.
- the corresponding QCL information is ⁇ CSI-RS resource ID 4, SRS resource ID 4 ⁇ , which is a sending indication.
- the configuration of the frame structure for QCL group 2 may be as shown in at least one row or at least one column in Table 12-1:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- 2-q1 to 2-q4 can be integers, indicating the QCL information identifier of QCL group 2
- i1 to i4 can be integers, indicating the resource identifier of CSI-RS
- j1 to j4 can be integers, indicating the resource identifier of SRS.
- One or more QCL information and one or more receiving and sending indication information may be configured for one time-frequency resource.
- Table 12-1 takes the QCL information as ⁇ CSI-RS resource identifier, SRS resource identifier ⁇ as an example for illustration.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- the corresponding QCL information is ⁇ CSI-RS resource ID 7, SRS resource ID 7 ⁇ , and the sending indication is given.
- the corresponding QCL information is ⁇ CSI-RS resource ID 8, SRS resource ID 8 ⁇ , and the receiving indication is given.
- the corresponding QCL information is ⁇ CSI-RS resource ID 5, SRS resource ID 5 ⁇ , and the sending indication is given.
- the corresponding QCL information is ⁇ CSI-RS resource ID 6, SRS resource ID 6 ⁇ , and the receiving indication is given.
- Device #1 indicates the first frame structure corresponding to the QCL configuration through the QCL configuration and the QCL configuration identification information.
- the QCL configuration is as follows:
- QCL type E configure 1: ⁇ Spatial Tx parameter,Spatial Rx parameter ⁇
- QCL ID1-1 ⁇ CSI-RS resource ID 1,SRS resource ID 1 ⁇ ;
- QCL ID 1-2 ⁇ SRS resource ID 2, CSI-RS resource ID 2 ⁇ ;
- QCL ID 1-3 ⁇ SRS resource ID 3, CSI-RS resource ID 3 ⁇ ;
- QCL ID 1-4 ⁇ SRS resource ID 4, CSI-RS resource ID 4 ⁇ .
- QCL type E configure 2: ⁇ Spatial Tx parameter, Spatial Rx parameter ⁇
- QCL ID 2-1 ⁇ CSI-RS resource ID 5,SRS resource ID 5 ⁇ ;
- QCL ID 2-2 ⁇ CSI-RS resource ID 6,SRS resource ID 6 ⁇ ;
- QCL ID 2-3 ⁇ CSI-RS resource ID 7,SRS resource ID 7 ⁇ ;
- QCL ID 2-4 ⁇ CSI-RS resource ID 8,SRS resource ID 8 ⁇ .
- the first frame structure corresponding to the QCL configuration indicated by device #1 is as shown in at least one row or at least one column of Table 13-1, Table 13-2, Table 14-1, Table 14-2, Table 15-1, and Table 15-2:
- an example of the configuration of the first frame structure corresponding to QCL type E configure 1 is shown in at least one row or at least one column as shown in Table 13-1:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- q1 to q4 can be integers, representing QCL information identifiers.
- one or more QCL information and one or more sending and receiving indication information can be configured for one time-frequency resource.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- the corresponding QCL information is QCL ID 1-1, receiving indication.
- the corresponding QCL information is QCL ID 1-2, sending indication.
- the corresponding QCL information is QCL ID 1-3, receiving indication.
- the corresponding QCL information is QCL ID 1-4, sending indication.
- an example of the configuration of the first frame structure corresponding to QCL type E configure 21 is shown in at least one row or at least one column as shown in Table 14-1:
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- q1 to q4 can be integers, representing QCL information identifiers.
- one or more QCL information and one or more sending and receiving indication information can be configured for one time-frequency resource.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- the corresponding QCL information is QCL ID 2-3, sending indication.
- the corresponding QCL information is QCL ID 2-4, receiving indication.
- the corresponding QCL information is QCL ID 2-1, sending indication.
- the corresponding QCL information is QCL ID 2-2, receiving indication.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives signals
- T is used to indicate that device #1 sends signals.
- 1-q1 ⁇ 1-q4 can be integers, indicating QCL group 1
- 2-q1 ⁇ 2-q4 can take values of integers, representing the QCL information identifier of QCL group 2.
- one or more QCL information and one or more sending and receiving indication information can be configured for one time-frequency resource.
- T1 and T2 represent time domain resource information
- F1 and F2 represent frequency domain resource information
- R is used to indicate that device #2 receives a signal
- T is used to indicate that device #1 sends a signal.
- the corresponding QCL information is QCL ID 1-1, receiving indication; the corresponding QCL information is QCL ID 2-3, sending indication.
- the corresponding QCL information is QCL ID 1-2, sending indication; the corresponding QCL information is QCL ID 2-4, receiving indication.
- the corresponding QCL information is QCL ID 2-1, sending indication; the corresponding QCL information is QCL ID 1-3, receiving indication.
- the corresponding QCL information is QCL ID 1-4, sending indication; the corresponding QCL information is QCL ID 2-4, receiving indication.
- the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example.
- each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
- the above integrated module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical functional division. There may be other division methods in actual implementation. The following is an example of dividing each functional module corresponding to each function.
- Fig. 10 is a schematic block diagram of a communication device 1000 provided in the present application. Any device involved in any method in Fig. 5 to Fig. 9 above, such as a terminal device and a network device, can be implemented by the communication device shown in Fig. 10 .
- the communication device 1000 may be a physical device, a component of a physical device (eg, an integrated circuit, a chip, etc.), or a functional module in a physical device.
- the communication device 1000 includes: one or more processors 1013.
- an interface can be called in the processor 1013 to implement the receiving and sending functions.
- the interface can be a logical interface or a physical interface, which is not limited.
- the interface can be a transceiver circuit, an input-output interface, or an interface circuit.
- the transceiver circuit, input-output interface, or interface circuit used to implement the receiving and sending functions can be separate or integrated.
- the above-mentioned transceiver circuit or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit or interface circuit can be used for transmitting or delivering signals.
- the interface may be implemented by a transceiver.
- the communication device 1000 may further include a transceiver 1030.
- the transceiver 1030 may also be referred to as a transceiver unit, a transceiver, a transceiver circuit, etc., for implementing a transceiver function.
- the communication device 1000 may further include a memory 1020.
- the embodiment of the present application does not specifically limit the specific deployment location of the memory 1020.
- the memory may be integrated into the processor or may be independent of the processor.
- the device 1000 may have a processing function, and the memory may be deployed in other locations (e.g., a cloud system).
- the processor 1010 , the memory 1020 , and the transceiver 1030 communicate with each other through internal connection paths to transfer control and/or data signals.
- the device 1000 may further include other devices, such as an input device, an output device, a battery, etc.
- the memory 1020 may store execution instructions for executing the method of the embodiment of the present application.
- the processor 1010 may execute the instructions stored in the memory 1020 in combination with other hardware (e.g., the transceiver 1030) to complete the steps of the method execution shown below.
- other hardware e.g., the transceiver 1030
- the method disclosed in the embodiment of the present application can be applied to the processor 1010, or implemented by the processor 1010.
- the processor 1010 may be an integrated circuit chip with signal processing capabilities.
- each step of the method can be completed by the hardware integrated logic circuit in the processor or the instructions in the form of software.
- the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
- the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
- the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor for execution, or a combination of hardware and software modules in the decoding processor for execution.
- the software module can be located in a mature storage medium in the field such as random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory or electrically erasable programmable memory, register, etc.
- RAM random access memory
- ROM read-only memory
- programmable read-only memory or electrically erasable programmable memory, register, etc.
- the storage medium is located in the memory, and the processor reads the instructions in the memory and completes the steps of the above method in combination with its hardware.
- RAM random access memory
- static RAM static random access memory
- dynamic RAM dynamic random access memory
- DRAM dynamic random access memory
- synchronous dynamic random access memory synchronous DRAM, SDRAM
- double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
- enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
- serial link DRAM SLDRAM
- direct memory bus random access memory direct rambus RAM, DR RAM
- Fig. 11 is a schematic block diagram of a communication device 1100 provided in the present application.
- the device 1100 includes a transceiver unit 1120, which can be used to implement corresponding communication functions.
- the transceiver unit 1120 can also be called a communication interface or a communication unit.
- the communication device 1100 may be a general-purpose computer device or a chip in a general-purpose computer device, which is not limited in the present embodiment.
- the device includes a processing unit 1110 and a transceiver unit 1120 .
- the communication device 1100 may be any device involved in the present application, and may implement the functions that the device can implement. It should be understood that the device 1100 may be a physical device, a component of a physical device (e.g., an integrated circuit, a chip, etc.), or a functional module in a physical device.
- the apparatus 1100 may be the first device (eg, a network device) in the above method embodiment, or may be a chip for implementing the function of the second device (eg, a terminal device) in the above method embodiment.
- the device 1100 also includes a storage unit, which can be used to store instructions and/or data.
- the processing unit 1110 can read the instructions and/or data in the storage unit so that the device implements the actions of different terminal devices in the aforementioned method embodiments, for example, controlling the actions of a network element or a terminal device.
- the device 1100 can be used to execute the actions performed by the control network element or terminal device in the above method embodiments.
- the device 1100 can be the first device or the second device, or a component of the control network element or the terminal device.
- the transceiver unit 1120 is used to execute the transceiver related operations of the first device or the second device in the above method embodiments
- the processing unit 1110 is used to execute the processing related operations of the first device or the second device in the above method embodiments.
- the device 1100 may further include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
- a storage unit which may be used to store instructions or data
- the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
- the communication device 1100 is presented in the form of functional modules.
- integrated circuit refers to an application specific integrated circuit ASIC, a circuit, a processor and a memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions.
- the device 1100 can take the form shown in Figure 11.
- the processing unit 1110 can be implemented by the processor 1010 shown in Figure 10.
- the computer device shown in Figure 10 includes a memory 1000
- the processing unit 1110 can be implemented by the processor 1010 and the memory 1000.
- the transceiver unit 1120 can be implemented by the transceiver 1030 shown in Figure 10.
- the transceiver 1030 includes a receiving function and a sending function.
- the processor is implemented by executing a computer program stored in the memory.
- the function and/or implementation process of the transceiver unit 1120 can also be implemented by pins or circuits.
- the memory may be a storage unit within the chip, such as a register, a cache, etc., the storage unit may also be a storage unit within the device located outside the chip, such as the memory 1020 shown in FIG. 10 , or it may be a storage unit deployed in other systems or devices and not within the computer device.
- computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, or tapes, etc.), optical disks (e.g., compact discs (CDs), digital versatile discs (DVDs), etc.), smart cards, and flash memory devices (e.g., erasable programmable read-only memory (EPROM), cards, sticks, or key drives, etc.).
- the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
- the term "machine-readable medium" may include, but is not limited to, various other media capable of storing, containing, and/or carrying instructions and/or data.
- the present application also provides a computer program product, which includes: a computer program or a set of instructions, when the computer program or a set of instructions is run on a computer, the computer executes the method of any one of the embodiments shown in Figures 8-9.
- the present application also provides a computer-readable storage medium, which stores a program or a set of instructions.
- the program or a set of instructions is run on a computer, the computer executes the method of any one of the embodiments shown in Figures 8-9.
- the present application also provides a communication system, which includes the aforementioned device or equipment.
- a component can be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program and/or a computer.
- applications running on a computing device and a computing device can be components.
- One or more components may reside in a process and/or an execution thread, and a component may be located on a computer and/or distributed between two or more computers.
- these components may be executed from various computer-readable media having various data structures stored thereon.
- Components may communicate through local and/or remote processes based on signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
- signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
- the protocol described in this application may refer to a communication protocol or specification, such as a 3GPP communication protocol.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
- Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
- the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种基于帧结构的通信方法和通信装置。该方法包括:第一设备接收第一信息,第一信息用于确定第一帧结构中的时域信息、频域信息、波束域信息和收发指示信息;第一设备根据第一信息,在第一帧结构上传输信号。该第一帧结构是一种从时域、频域和波束域确定的三维帧结构,在设备使用波束对通信的场景下,能够实现零时延的接收和发送,提高传输效率,保证通信性能。
Description
本申请实施例涉及通信技术领域,更具体地,涉及一种基于帧结构的通信方法和通信装置。
在第五代(5th generation,5G)通信系统中,例如,新无线(new radio,NR)系统的相关标准中定义了灵活配置上下行的帧结构。其中,在同一个载波上,通过时分划分的方法定义了下行传输(down linke,DL)和上行传输(up linke,UP),即一维帧结构。
随着无线通信技术的发展,在5.5G的相关标准中提出了子带全双工的概念。在一维时分划分的帧结构基础上,叠加了频分的概念,即二维帧结构。其中,该二维帧结构相较于一维的帧结构可以降低通信过程中的空口时延,从而实现时分双工(Time Division Duplexing,TDD)下0ms的上下行传输。
随着第六代(6th generation,6G)通信系统的发展,在6G通信系统中,网络设备和终端设备的能力的增强,网络设备与终端设备之间的天线个数增多,而终端设备与网络设备之间采用波束对的通信方式。因此,如何进一步地提高设备之间的上下行的灵活配置,降低空口时延需要进一步地进行研究。
发明内容
本申请实施例提供一种基于帧结构的通信方法和通信装置。该通信方法能够实现在多波束场景下,减小终端设备与网络设备之间的传输时延,实现零时延的数据传输,提高通信性能。
第一方面,提供了一种基于帧结构的通信方法,该方法可以由终端设备本身执行,或者由网络设备本身执行,或者,也可以由终端设备或者网络设备中的芯片、电路或者模块执行,本申请对此不作限定,在不引起上下文歧义的情况下,本申请均以第一设备进行描述。
该方法包括:
第一设备接收第一信息,第一信息用于确定第一帧结构中的时域信息、频域信息、波束域信息和收发指示信息;第一设备根据第一信息,在第一帧结构上传输信号。
根据本申请提供的方法,第一设备根据接收到的第一信息,确定第一帧结构,并在该第一帧结构上传输信号。该第一帧结构是一种从时域、频域和波束域确定的三维帧结构,在设备使用波束对通信的场景下,能够实现零时延的接收和发送,提高传输效率,保证通信性能。
结合第一方面,在一些可能实现方式中,波束域信息包括以下一项或者多项:
波束对的标识信息、参考信号的资源标识信息、准共址QCL指示信息。
结合第一方面,在一些可能实现方式中,参考信号包括第一参考信号和/或第二参考
信号,波束域信息是根据参考信号的资源标识信息确定的,其中,波束域信息包括第一参考信号的资源标识信息和/或第二参考信号的资源标识信息。
结合第一方面,在一些可能实现方式中,第一参考信号的资源标识信息包括发送信号的参考信号的资源标识信息,第二参考信号的资源标识信息包括接收信号的参考信号的资源标识信息。
结合第一方面,在一些可能实现方式中,当波束域信息包括QCL指示信息时,QCL指示信息用于指示在时域资源和频域资源上,用于传输信号的波束信息。
结合第一方面,在一些可能实现方式中,QCL指示信息包括QCL类型,QCL类型中的参数包括空间发送参数和空间接收参数,空间发送参数用于指示发送信号的波束信息,空间接收参数用于指示接收信号的波束信息。
结合第一方面,在一些可能实现方式中,用于传输信号的波束信息包括发送波束和/或接收波束对应的参考信号的标识信息。
结合第一方面,在一些可能实现方式中,第一帧结构是针对时域资源和/或频域资源配置的,或者,第一帧结构是针对波束域信息中的波束信息和/或波束标识信息配置的。
结合第一方面,在一些可能实现方式中,第一设备向第二设备发送触发信息,触发信息用于触发第二设备切换或者激活第二帧结构,触发信息包括用于识别第一设备的信息。
基于上述技术方案,第一设备可以通过触发信息触发帧结构的切换或者激活,从而满足第一设备的实时需求,提高通信效率。
结合第一方面,在一些可能实现方式中,触发信息包括以下一项或者多项:
解调参考信号DMRS触发、上行探测参考信号SRS触发、物理随机接入信号PRACH触发、上行控制信息UCI触发、调度请求SR触发。
基于上述技术方案,触发信息中还可以包括参考信号,该参考信号可以作为数据的解调参考信号,减小导频开销。
结合第一方面,在一些可能实现方式中,触发信息还包括第二帧结构。
基于上述技术方案,第一设备可以被预先配置了多个帧结构,第一设备根据自身的实际需求,从预配置的多个帧结构中选择需要切换的帧结构(例如第二帧结构),并通过触发信息指示给第二设备,向第二设备指示第一设备需要切换的帧结构,从而提升网络的服务性能。
第二方面,提供了一种基于帧结构的通信方法,该方法可以由终端设备本身执行,或者由网络设备本身执行,或者,也可以由终端设备或者网络设备中的芯片、电路或者模块执行,本申请对此不作限定,在不引起上下文歧义的情况下,本申请均以第二设备进行描述。
该方法包括:
第二设备确定第一帧结构,第一帧结构用于传输信号;第二设备发送第一信息,第一信息用于确定第一帧结构的时域信息、频域信息、波束域信息和收发指示信息。
根据本申请提供的方法,根据本身提供的方法,第二设备确定第一帧结构之后,向第一设备发送第一信息,该第一信息设备根据接收到的第一信息,并在该第一帧结构上传输信号。该第一帧结构是一种从时域、频域和波束域确定的三维帧结构,在设备使用波束对
通信的场景下,能够实现零时延的接收和发送,提高传输效率,保证通信性能。
结合第二方面,在一些可能实现方式中,波束域信息包括以下一项或者多项:波束对的标识信息、参考信号的资源标识信息、准共址QCL指示信息。
结合第二方面,在一些可能实现方式中,参考信号包括第一参考信号和/或第二参考信号,波束域信息是根据参考信号的资源标识信息确定的,其中,波束域信息包括第一参考信号的资源标识信息和/或第二参考信号的资源标识信息。
结合第二方面,在一些可能实现方式中,第一参考信号的资源标识信息包括发送信号的参考信号的资源标识信息,第二参考信号的资源标识信息包括接收信号的参考信号的资源标识信息。
结合第二方面,在一些可能实现方式中,当波束域信息包括QCL指示信息时,QCL指示信息用于指示在时域资源和频域资源上,用于传输信号的波束信息。
结合第二方面,在一些可能实现方式中,QCL指示信息包括QCL类型,QCL类型中的参数包括空间发送参数和空间接收参数,空间发送参数用于指示发送信号的波束信息,空间接收参数用于指示接收信号的波束信息。
结合第二方面,在一些可能实现方式中,用于传输信号的波束信息包括发送波束和/或接收波束对应的参考信号的标识信息。
结合第二方面,在一些可能实现方式中,第一帧结构是针对时域资源和/或频域资源配置的,或者,第一帧结构是针对波束域中的波束信息和/或波束标识信息配置的。
结合第二方面,在一些可能实现方式中,第二设备接收来自第一设备的触发信息,触发信息用于触发第二设备切换或者激活第二帧结构,触发信息包括用于识别第一设备的信息。
基于上述技术方案,第一设备可以通过触发信息触发帧结构的切换或者激活,从而满足第一设备的实时需求,提高通信效率。
结合第二方面,在一些可能实现方式中,触发信息包括以下一项或者多项:
解调参考信号DMRS触发、上行探测参考信号SRS触发、物理随机接入信号PRACH触发、上行控制信息UCI触发、调度请求SR触发。
基于上述技术方案,触发信息中还可以包括参考信号,该参考信号可以作为数据的解调参考信号,减小导频开销。
结合第二方面,在一些可能实现方式中,触发信息还包括第二帧结构。
基于上述技术方案,第一设备可以被预先配置了多个帧结构,第一设备根据自身的实际需求,从预配置的多个帧结构中选择需要切换的帧结构(例如第二帧结构),并通过触发信息指示给第二设备,向第二设备指示第一设备需要切换的帧结构,从而提升网络的服务性能。
第三方面,提供一种基于帧结构的通信装置,该装置包括:收发单元,用于接收第一信息,第一信息用于确定第一帧结构中的时域信息、频域信息、波束域信息和收发指示信息;收发单元,还用于根据第一信息,在第一帧结构上传输信号。
结合第三方面,在一些可能实现方式中,波束域信息包括以下一项或者多项:
波束对的标识信息、参考信号的资源标识信息、准共址QCL指示信息。
结合第三方面,在一些可能实现方式中,参考信号包括第一参考信号和/或第二参考信
号,波束域信息是根据参考信号的资源标识信息确定的,其中,波束域信息包括第一参考信号的资源标识信息和/或第二参考信号的资源标识信息。
结合第三方面,在一些可能实现方式中,第一参考信号的资源标识信息包括发送信号的参考信号的资源标识信息,第二参考信号的资源标识信息包括接收信号的参考信号的资源标识信息。
结合第三方面,在一些可能实现方式中,当波束域信息包括QCL指示信息时,QCL指示信息用于指示在时域资源和频域资源上,用于传输信号的波束信息。
结合第三方面,在一些可能实现方式中,QCL指示信息包括QCL类型,QCL类型中的参数包括空间发送参数和空间接收参数,空间发送参数用于指示发送信号的波束信息,空间接收参数用于指示接收信号的波束信息。
结合第三方面,在一些可能实现方式中,用于传输信号的波束信息包括发送波束和/或接收波束对应的参考信号的标识信息。
结合第三方面,在一些可能实现方式中,第一帧结构是针对时域资源和/或频域资源配置的,或者,第一帧结构是针对波束域信息中的波束信息和/或波束标识信息配置的。
结合第三方面,在一些可能实现方式中,收发单元,还用于向第二设备发送触发信息,触发信息用于触发第二设备切换或者激活第二帧结构,触发信息包括用于识别第一设备的信息。
结合第三方面,在一些可能实现方式中,触发信息包括以下一项或者多项:
解调参考信号DMRS触发、上行探测参考信号SRS触发、物理随机接入信号PRACH触发、上行控制信息UCI触发、调度请求SR触发。
结合第三方面,在一些可能实现方式中,触发信息还包括第二帧结构。
第四方面,提供一种基于帧结构的通信装置,该装置包括:处理单元,用于确定第一帧结构,第一帧结构用于传输信号;收发单元,用于发送第一信息,第一信息用于确定第一帧结构的时域信息、频域信息、波束域信息和收发指示信息。
结合第四方面,在一些可能实现方式中,波束域信息包括以下一项或者多项:波束对的标识信息、参考信号的资源标识信息、准共址QCL指示信息。
结合第四方面,在一些可能实现方式中,参考信号包括第一参考信号和/或第二参考信号,波束域信息是根据参考信号的资源标识信息确定的,其中,波束域信息包括第一参考信号的资源标识信息和/或第二参考信号的资源标识信息。
结合第四方面,在一些可能实现方式中,第一参考信号的资源标识信息包括发送信号的参考信号的资源标识信息,第二参考信号的资源标识信息包括接收信号的参考信号的资源标识信息。
结合第四方面,在一些可能实现方式中,当波束域信息包括QCL指示信息时,QCL指示信息用于指示在时域资源和频域资源上,用于传输信号的波束信息。
结合第四方面,在一些可能实现方式中,QCL指示信息包括QCL类型,QCL类型中的参数包括空间发送参数和空间接收参数,空间发送参数用于指示发送信号的波束信息,空间接收参数用于指示接收信号的波束信息。
结合第四方面,在一些可能实现方式中,用于传输信号的波束信息包括发送波束和/或接收波束对应的参考信号的标识信息。
结合第四方面,在一些可能实现方式中,第一帧结构是针对时域资源和/或频域资源配置的,或者,第一帧结构是针对波束域中的波束信息和/或波束标识信息配置的。
结合第四方面,在一些可能实现方式中,收发单元,还用于接收来自第一设备的触发信息,触发信息用于触发第二设备切换或者激活第二帧结构,触发信息包括用于识别第一设备的信息。
结合第四方面,在一些可能实现方式中,触发信息包括以下一项或者多项:
解调参考信号DMRS触发、上行探测参考信号SRS触发、物理随机接入信号PRACH触发、上行控制信息UCI触发、调度请求SR触发。
结合第四方面,在一些可能实现方式中,触发信息还包括第二帧结构。
第五方面,提供了一种通信装置,包括用于执行上述第一方面及其实现方式中的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,该通信芯片可以包括用于发送信息或数据的输入电路或接口,以及用于接收信息或数据的输出电路或接口。
在另一种设计中,所述通信装置为通信设备(例如,第一设备等),通信芯片可以包括用于发送信息的发射机,以及用于接收信息或数据的接收机。
第六方面,提供了一种通信装置,包括用于执行上述第二方面及其实现方式中的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,该通信芯片可以包括用于发送信息或数据的输入电路或接口,以及用于接收信息或数据的输出电路或接口。
在另一种设计中,所述通信装置为通信设备(例如,第二设备等),通信芯片可以包括用于发送信息的发射机,以及用于接收信息或数据的接收机。
第七方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行上述第一方面或第二方面及其各实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信设备还包括,发射机(发射器)和接收机(接收器)。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面及其各实现方式中的通信方法。
第九方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面及其各实现方式中的通信方法。
第十方面,提供了一种通信系统,该系统包括:至少一个第三方面中任一项所述的装置和第四方面中任一项所述的装置。
第十一方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面或第二方面及其各实现方式中的通信方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
图1是本申请提供的一种系统架构示意图。
图2是本申请提供的另一种系统架构示意图。
图3是本申请提供的另一种系统架构示意图。
图4是本申请提供的另一种系统架构示意图。
图5是本申请实施例提供的一种系统架构场景示意图。
图6是本申请实施例提供的一种帧结构示意图。
图7是本申请实施例提供的一种多波束通信的场景示意图。
图8是本申请实施例提供的一种通信方法的流程性示意图。
图9是本申请实施例提供的另一种帧结构示意图。
图10是本申请实施例提供的一种通信装置的结构示意图。
图11是本申请实施例提供的一种通信装置的结构示意图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、第五代(5th Generation,5G)系统或新无线(New Radio,NR)以及未来通信系统等。
下面将结合具体地示例,详细地介绍本申请实施例可以适用的系统架构。
系统架构一
本申请可以应用于卫星通信系统。
如图1所示,卫星系统架构可以包括卫星基站以及终端类型的网元。其中,该卫星基站为终端设备提供通信服务,该终端设备可以包括智能手机、智能手表、平板电脑等设备。
应理解,卫星基站向终端设备传输下行数据,其中该下行数据可以采用信道编码进行编码,信道编码后的数据经过星座调制之后传输给终端这杯;终端设备向卫星基站传输上行数据,上行数据也可以采用信道编码进行编码,编码后的数据经过星座调制后传输给卫星基站。卫星基站也可以与地面基站进行通信。卫星即可作为基站,也可作为终端设备。
还应理解,该卫星可以是指无人机,热气球,低轨卫星,中轨卫星,高轨卫星等。卫星也可以是指非地面基站或非地面设备等。
系统结构二
本申请可以应用于卫星星间链路通信系统。
如图2所示,卫星星间链路通信系统可以分为:捕获瞄准跟踪(acquisition pointing tracking,APT)子系统和通信子系统两大部分。其中,通信子系统主要负责星间信息的传输,通信子系统是星间通信系统的主体;APT系统主要负责卫星之间的捕获、对准和跟踪。其中,能够确定入射信号的来波方向,为捕获,调整发射波瞄准接收方向,为对准。在整个通信过程中,不断ATP调整对准和捕获,为跟踪。为了尽量减少信道中的衰减和干扰影响,同时要求具有较高的保密性和传输率,必须实时的调整APT来不断适应变化。
应理解,目前的APT系统均为光学系统,缺点在于光学对准难度大,需要机械调整指向。现有的通信子系统,多数为光通信系统,也有部分微波波段的系统,多采用单个高增益天线。现有的APT系统和通信子系统为独立的系统。缺点在于光通信容易受震动等影响,速率不稳定;毫米波频率低,通信容量低,天线需要机械调整指向。
系统架构三
本申请可以应用于蜂窝通信系统。
如图3所示,本申请可以应用于5G系统、卫星通信等无线通信系统中。其中,无线通信系统通常由小区组成,每个小区包含一个基站,基站可以向多个移动台(mobile station,MS)提供通信服务。其中基站可以包含基带单元(baseband unit,BBU)和远端射频单元(remote radio unit,RRU)。其中BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于高话务量的区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。
应理解,本申请方案提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,简称:WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及下一代5G移动通信系统的三大应用场景eMBB,URLLC和eMTC。
系统架构四
本申请可以应用于物联网通信系统。
如图4是一种典型的物联网无线投屏的应用场景。终端设备(例如智能手机)与电视建立网络连接,智能手机将需要投屏到电视上显示的内容传输给电视设备,电视设备接收到智能手机传输的内容之后,将该内容在显示屏上进行显示。
系统架构五
本申请可以应用于接入回传一体化(integrated access and backhaul,IAB)。
如图5所示,IAB可以包括IAB父节点(IAB Doner),IAB节点(IAB node)和终端设备。IAB Doner和IAB node之间的链路为回传链路(backhaul link),终端设备和IAB node之间的链路为接入链路(access link)。
应理解,上述主要对本申请可以使用的五种系统架构进行了举例说明。当然本申请还可以适用于其他系统架构,此处不在一一列举。
还应理解,本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、智能手机、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、车载移动设备、可穿戴设备,智能工厂中的无线通信模块/芯片,智能电网中的无线通信模块/芯片、各种设备中无线通信模块/芯片等5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
还应理解,本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可是基站中的通信芯片/模块,卫星中的通信芯片/模块,还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
目前,在NR系统的相关标准中定义了灵活配置上下行的帧结构。其中,主要提出了在同一个载波上,通过时分复用的方法分别定义一维帧结构。
作为一种示例,图6中(1)示出了一维帧结构的示意性图。如图6中(1)所示,在同一个载波上,划分成多个时间单元,每个时间单元用于上行传输或者下行传输。其中,“D”表示下行的时间单元,“U”表示上行的时间单元,“F”表示灵活的时间单元。
基于TDD场景中的子带全双工的概念,在图6中(1)所示的一维帧结构的基础上,提出了如图6中(2)所示的二维帧结构。
应理解,该二维帧结构是在一维帧结构中的时分概念上增加了频分概念。如图6中(2)所示,将同一时隙上的频分资源划分为多个(例如2个或者2个以上),即同一时刻不同的频域资源可以有不同的上下行配置。在该场景下,网络设备可以分别将不同的频分资源分配给不同的设备进行使用。如图6中(2)所示,UE#1和UE#2在同一时分资源上可以使用不同的频分资源。
随着通信技术的发展,网络设备和终端设备的能力增强。例如,网络设备可以支持全双工,终端设备可以支持半双工或者全双工。例如,在6G通信系统中,网络设备和终端设备之间的天线个数不断增加,网络设备与终端设备之间一般采用波束对的通信方式进行通信,如图7所示,基站与终端设备之间通过波束对进行通信。
目前,本领域技术人员并没有提出针对在多波束通信的场景下,如何提高设备之间上下行的灵活配置,并降低空口时延的问题相关的技术方案。
本申请基于上述技术问题,提出了一种基于帧结构的通信方法,能够在多波束通信的场景下,提高上下行的灵活配置,降低通信传输时延,提高通信性能。
图8是本申请实施例提供的一种通信方法的流程性示意图。
801,设备#1确定第一帧结构。
其中,第一帧结构是用于传输信号的帧结构。
应理解,该第一帧结构主要用于设备#1与设备#2之间的信息交互。其中,本申请中以传输信号为例,当然,该第一帧结构还以用于传输数据、消息等等,对此本申请不做具体限定。例如,该第一帧结构可以用于传输参考信号、或者感知信号等等。
应理解,本申请中的传输可以是指发送和/或接收。本申请中的下行“D”可以用接收“R”代替,上行“U”可以用发送“T”代替,用于指示终端是发送或接收。比如下行指示终端接收,上行指示终端发送等。
还应理解,当本申请提供的基于帧结构的通信方法可以应用于上述介绍的任意场景/系统中。
其中,当本申请应用于D2D场景时,图8中的设备#1和设备#2均可以理解为终端设备;当本申请应用于蜂窝系统时,图8中的设备#1为网络设备,设备#2为终端设备。
本申请中的示例,主要以蜂窝系统为例,对本申请提供的基于帧结构的通信方法进行详细介绍,并不对本申请实施例提供的方法具有任何限定作用。
802,设备#1向设备#2发送第一信息。
相应地,设备#2接收来自设备#1发送的第一信息。
具体地,设备#1确定第一帧结构之后,设备#1向设备#2发送第一信息。该第一信息用于确定该第一帧结构的时域信息、频域信息、波束域信息和收发指示信息。
应理解,该第一帧结构可以是一种三维帧结构,该第一帧结构从时域、频域和波束域将设备#1和设备#2之间用于传输信号的帧结构进行了划分。
其中,该第一帧结构中的时域信息可以是指符号、时隙、微时隙、子帧等时间单元,例如,时域信息可以用于指示第2符号、第4符号、第7符号,或者时域信息还可以用于指示第1时隙、第2时隙等等,对此本申请不做具体限定。
其中,该第一帧结构中的频域信息可以是指资源块(resource block,RB)、资源块组(resource block group,RBG)、子频段等等。例如,频域信息可以是指第1RB,第1RBG,第2RBG或者一个子频段的频域资源指示信息。
其中,该第一帧结构的波束域信息可以是指发送波束,接收波束中的至少一个。或者,该波束域信息还可以用于指示波束对的相关信息,例如波束对的标识信息等等。
其中,该收发指示,可以用于指示发送,或者可以用于指示接收,或者还可以同时指示发送和接收。例如,收发指示信息用于指示设备#1进行发送,设备#2进行接收。
在一种可能实现的方式中,该波束域信息可以包括以下一项或者多项:波束对的标识信息、参考信号的资源标识信息、准共址(quasi co-location,QCL)指示信息。
应理解,该参考信号的资源标识信息可以包括第一参考信号和/或第二参考信号的资源标识信息,其中,该第一参考信号可以用于指示发送信号对应的参考信号的标识信息,该第二参考信号可以用于指示接收信号对应的参考信号的标识信息。
作为一种示例,第一参考信号可以是CSI-RS,第二参考信号可以是SRS。或者,第一参考信号可以是SRS,第二参考信号可以是CSI-RS。或者,第一参考信号可以是CSI-RS,第二参考信号可以是CSI-RS。或者,第一参考信号可以是SRS,第二参考信号可以是SRS。或者,第一参考信号是其他参考信号,第二参考信号是其他参考信号等,本申请对此不做
限定。
作为一种示例,第一参考信号的资源标识信息可以是设备#1配置或发送的参考信号的资源标识信息(例如,CSI-RS资源标识信息),第二参考信号的资源标识信息可以是设备#2配置或发送的参考信号的资源标识信息(例如,SRS资源标识信息)。
803,设备#2根据第一信息,在第一帧结构上传输信号。
具体地,设备#2接收到来自设备#1的第一信息之后,根据第一信息确定第一帧结构,并在该第一帧结构上传输信号。
应理解,本申请中涉及的传输信号,可以用于表示发送信号,或者接收信号,或者即发送信号又接收信号,本申请对此不做具体限定。
还应理解,设备#2根据第一信息,确定在第一帧结构中对应的时域资源、频域资源以及波束域资源上,根据收发指示信息在对应的帧结构位置上传输信号。其中,如何根据第一信息,在第一帧结构上传输信号的具体示例,请参见后续举例,此处不再赘述。
其中,上述步骤801至步骤803中主要介绍了设备#1配置第一帧结构,并向设备#2发送第一信息,该设备#2在该第一帧结构上传输信号。假设,当前设备#2在第一帧结构上用于接收来自设备#1发送的信号,此时设备#2有信号需要向设备#1发送时,则该设备#2可以向设备#1发送触发信息,触发帧结构切换,例如将第一帧结构切换为第二帧结构,使得在相应的时频资源上设备#2能够向设备#1发送信号。如图8所示的方法,该方法还可以包括如下步骤:
804,设备#2向设备#1发送触发信息。
相应地,设备#1接收来自设备#2发送的触发信息。
其中,该触发信息用于触发设备#1切换或者激活第二帧结构,该触发信息包括用于识别设备#2的信息。设备#1接收到触发信息之后,根据触发信息中包括的用于识别设备#2的信息,确定该触发信息是由设备#2发送给设备#1的。
作为一种示例,该触发信息可以包括设备#2的身份标识信息。
在一种可能实现的方式中,该触发信息还可以包括以下一项或者多项:解调参考信号(demodulation reference signal,DMRS)触发、上行探测参考信号(sounding reference symbol,SRS)触发、物理随机接入信道(physiacal random access channel,PRACH)信号触发、上行控制信息(uplink control information,UCI)触发、调度请求(scheduling request,SR)触发。
在另一种可能实现的方式中,设备#2被设备#1或者系统预先配置了多个帧结构,设备#2根据自身的需求,从预配置的多个帧结构中选择需要切换的帧结构(例如第二帧结构),并通过触发信息指示给设备#1。即,该触发信息还可以包括第二帧结构。
应理解,该第二帧结构与第一帧结构的时域信息、频域信息、波束域信息以及收发指示信息中的一个或者多个不同。
805,设备#1根据触发信息,切换或者触发第二帧结构。
具体地,设备#1接收到来自设备#2发送的触发信息之后,设备#1根据触发信息将第一帧结构切换为第二帧结构,并将第二帧结构指示给设备#2。
应理解,在上述步骤804和805中,设备#2通过触发信息触发帧结构的变化,从而满足设备#2的实时需求,降低TDD场景下的传输时延。其中,触发信息中还可以包括参考
信号,该参考信号可以作为数据的解调参考信号,减小导频开销。
进一步地,波束级导频和/或数据的传输,可以实现空域分离,从而降低干扰。其中,设备#1的波束与配置的三维帧结构相对应,该帧结构中可以包括波束对信息,设备侧波束分离,达到降低干扰的技术效果。
可选的,设备#1确定第二帧结构之后,设备#1可以向设备#2发送第二信息,第二信息用于确定该第二帧结构的时域信息、频域信息、波束域信息和收发指示信息。
该方法还可以包括如下步骤:
806,设备#1向设备#2发送第二信息。
相应地,设备#2接收来自设备#1发送的第二信息。
可选的,设备#1确定的第二帧结构可以与设备#2触发的第二帧结构相同或者不同。比如,设备#1会考虑多用户的业务的情况,从而选择得到设备#2的帧结构。
在一种可能实现的方式中,设备#2可以具有向设备#1建议帧结构的权利,设备#1也可以将具有确定帧结构指示给设备#2的权利。
根据上述图8所示的方法,设备#2接收到来自设备#1的第一信息之后,并根据第一信息确定在第一帧结构上传输信号。其中,该第一帧结构包括时域、频域以及波束域的信息,解决了设备之间采用波束对的方式通信中通信时延较大的问题,进一步地实现了零时延的发送或者接收,提高通信效率。
其中,上述图8中的步骤803,设备#2根据第一信息,在第一帧结构上传输信号的具体实现方式可以包括一种:
方式一:第一帧结构中的波束域信息包括波束对标识信息。
在一种可能实现的方式中,该第一帧结构是针对时域资源、频域资源配置的。
作为一种示例,波束域信息通过波束对的标识信息确定,设备#1针对时域资源和频域资源为设备#2配置的第一帧结构,如表1-1中所示的至少一行或至少一列:
表1-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#2发送信号。其中,t1~t8可以取值为整数,表示信号的发送波束标识;r1~r8可以取值为整数,表示信号的接收波束标识。
其中,针对一个时频资源可以配置一个或多个波束对的标识信息,以及,一个或多个收发指示信息。
进一步举例,如表格1-2中所示的至少一行或至少一列:
表1-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#2发送信号。
根据上述表1-2所示,在T1时域资源和F1频域资源上,对应发送波束1和接收波束1,接收指示;或者,在T1时域资源和F1频域资源上,对应发送波束2,和接收波束2,接收指示。在T1时域资源和F2频域资源上,对应发送波束5和接收波束4,发送指示;或者,在T1时域资源和F2频域资源上,对应发送波束6,和接收波束5,发送指示。在T2时域资源和F1频域资源上,对应发送波束7和接收波束6,发送指示;或者,在T2时域资源和F1频域资源上,对应发送波束6,和接收波束5,发送指示。在T2时域资源和F2频域资源上,对应发送波束1和接收波束1,接收指示;或者,在T1时域资源和F2频域资源上,对应发送波束2,和接收波束3,接收指示。
应理解,基于上述表1-2中的示例,设备#2接收到来自设备#1发送的第一信息之后,根据第一信息确定第一结构,在第一帧结构上传输信号。例如,在T1时域资源和F1频域资源上,设备#2通过接收波束1上接收来自设备#1通过发送波束1发送的信号;或者在T1时域资源和F2频域资源上,设备#2通过发送波束5向设备#1发送信号,设备#1通过接收波束4接收来自设备#2通过发送波束5发送的信号。
作为另一种示例,波束域信息通过波束对的标识信息确定,设备#1针对时域资源和频域资源为设备#2配置的第一帧结构,如表2-1中所示的至少一行或至少一列:
表2-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#2发送信号。其中,t1~t8可以取值为整数,表示信号的发送波束标识;r1~r8可以取值为整数,表示信号的接收波束标识。
其中,针对一个时频资源可以配置一个或多个波束对的标识信息,以及,一个或多个收发指示信息。
进一步举例,如表格2-2中所示的至少一行或至少一列:
表2-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#2发送信号。
根据上述表2-2所示,在T1时域资源和F1频域资源上,对应发送波束1和接收波束1,接收指示;或者,在T1时域资源和F1频域资源上,对应发送波束5,和接收波束4,发送指示。在T1时域资源和F2频域资源上,对应发送波束2和接收波束3,接收指示;或者,在T1时域资源和F2频域资源上,对应发送波束7,和接收波束6,发送指示。在T2时域资源和F1频域资源上,对应发送波束2和接收波束3,接收指示;或者,在T2时域资源和F1频域资源上,对应发送波束6,和接收波束5,发送指示。在T2时域资源和F2频域资源上,对应发送波束7,和接收波束6,发送指示;或者,在T1时域资源和F2频域资源上,对应发送波束1,和接收波束1,接收指示。
在另一种可能实现的方式中,该第一帧结构是针对波束域信息中的波束信息配置的和/或波束标识信息配置的。
示例性的,在网络设备与终端设备的波束对配对情况下,假设波束对1包括网络设备的波束1和终端设备的波束1,波束对2包括网络设备的波束2和终端设备的波束2,以此类推。网络设备与终端设备可以通过波束对进行通信,例如网络设备与终端设备之间通过波束对1进行通信,其中,网络设备可以通过波束1向终端设备发送信号,终端设备可以通过波束1接收来自网络设备的信号;或者,终端设备通过波束1向网络设备发送信号,网络设备通过波束1接收来自终端设备的信号;或者,终端设备通过波束1向网络设备发送信号的同时,终端设备还可以通过波束1接收来自网络设备发送的信号;或者,网络设备通过波束1向终端设备发送信号的同时,网络设备还可以通过波束1接收来自终端设备发送的信号。
作为一种示例,波束域信息通过波束对的标识信息确定,设备#1针对波束域信息为设备#2配置的第一帧结构,如表3-1中所示的至少一行:
表3-1
其中,T11~Tn2表示时域资源信息,F11~Fn2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#2发送信号。其中,n可以取值为整数,表示波束对标识。
其中,针对一个波束对可以配置一个或多个时频资源信息,以及,一个或多个收发指示信息。
进一步举例,如表格3-2中所示的至少一行:
表3-2
其中,如图9所示的一种帧结构示意图,针对波束对下的帧结构指示可以如下所示:
针对设备#2的波束对1,在时域资源T11,频域资源F11上进行接收,在时域资源T12,频域资源F12上进行发送。
针对设备#2的波束对2,在时域资源T21,频域资源F21上进行接收。
针对设备#2的波束对5,在时域资源T51,频域资源F51上进行接收,在时域资源T52,频域资源F52上进行发送。
针对设备#2的波束对6,在时域资源T61,频域资源F61上进行发送。
方式二:第一帧结构的波束域信息包括参考信号的资源标识信息。
在一种可能实现的方式中,该第一帧结构中的波束域信息包括第一参考信号或者第二参考信号的资源标识信息。
作为一种示例,假设第一参考信号为CSI-RS信号,第二参考信号为SRS信号。设备#1根据CSI-RS资源标识信息或者SRS资源标识信息确定第一帧结构中的发送波束和/或接收波束。
示例一,假设第一参考信号为CSI-RS信号,第二参考信号为SRS信号。设备#1可以配置CSI-RS的资源标识信息,以及收发指示信息,设备#2可以根据CSI-RS的资源标识信息,进一步地确定接收和/或发送信号的波束。
其中,CSI-RS的资源标识信息可以包括CSI-RS资源集合标识(CSI-RS resource set ID),和/或,CSI-RS资源标识(CSI-RS resource ID)。其中,一个CSI-RS资源集合中可以包括一个或多个CSI-RS资源。
例如,设备#1配置的CSI-RS的资源标识信息,以及接收指示信息如下:
1)CSI-RS resource set ID1,和/或,CSI-RS resource ID a1,R
2)CSI-RS resource set ID2,和/或,CSI-RS resource ID b1,R
应理解,设备#2根据接收到第一信息之前的测量波束对的情况,确定对应的接收波束。例如,设备#2通过前期的波束对测量跟踪,进一步地确定对应的接收波束。
还应理解,设备#1传输信号时进一步指示信号所在的CSI-RS resource set ID以及set中的CSI-RS resource ID,设备#2确定发送信号的QCL或波束信息,进而接收信号。
示例二,假设第一参考信号为CSI-RS信号,第二参考信号为SRS信号。设备#1可以配置SRS的资源标识信息,以及收发指示信息,设备#2可以根据SRS的资源标识信息,进一步地确定接收和/或发送信号的波束。
其中,SRS的资源标识信息可以包括SRS资源集合标识(SRS resource set ID),和/或,SRS资源标识(SRS resource ID)。其中,一个SRS资源集合中可以包括一个或多个SRS资源。
例如,设备#1配置的SRS的资源标识信息,以及发送指示信息如下:
1)SRS resource set ID1,和/或,SRS resource ID a1,T
2)SRS resource set ID2,和/或,SRS resource ID b1,T
应理解,设备#1根据确定第一帧结构之前的测量波束对的情况,确定对应的发送波
束。例如,设备#1通过前期的波束对测量跟踪,进一步地确定对应的发送波束。
还应理解,设备#1调度设备#2发送信号时,进一步指示信号所在的SRS resource set ID以及set中的SRS resource ID,设备#2确定发送信号的QCL或波束信息,进而发送信号。
基于上述示例一和示例二中,该波束域信息包括第一参考信号的资源标识信息或者第二参考信号的资源标识信息。该第一帧结构具体的表现形式如下示例所示:
作为一种示例,波束域信息通过参考信号的标识信息确定,设备#1针对时域资源和频域资源为设备#2配置的第一帧结构,如表4-1中所示的至少一行或至少一列:
表4-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#2发送信号。其中,i1~i4可以取值为整数,表示CSI-RS的资源集合标识,j1~j4可以取值为整数,表示SRS的资源集合标识。
其中,针对一个时频资源可以配置一个或多个CSI-RS资源标识信息,或,一个或多个SRS资源标识信息,以及,一个或多个收发指示信息。表格4-1中以CSI-RS资源标识信息为CSI-RS资源集合标识,以SRS资源标识信息为SRS资源集合标识为例进行举例说明。进一步举例,如表格4-2中所示的至少一行或至少一列:
表4-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表4-2所示,在T1时域资源和F1频域资源上,对应CSI-RS资源标识ID1,接收指示;或者,在T1时域资源和F1频域资源上,对应CSI-RS资源标识ID2,接收指示。在T1时域资源和F2频域资源上,对应SRS资源标识ID1,发送指示;或者,在T1时域资源和F2频域资源上,对应SRS资源标识ID2,发送指示。在T2时域资源和F1频域资源上,对应SRS资源标识ID1,发送指示;或者,在T2时域资源和F1频域资源上,对应SRS资源标识ID2,发送指示。在T2时域资源和F2频域资源上,对应CSI-RS资源标识ID1,接收指示。
应理解,基于上述表4-2中的示例,设备#2接收到来自设备#1发送的第一信息之后,根据第一信息确定第一帧结构,并在第一帧结构上传输信号。例如,在T1时域资源和F1
频域资源上,设备#2在对应CSI-RS资源标识ID1的波束上接收来自设备#1通过CSI-RS资源标识ID1发送的信号;或者在T1时域资源和F2频域资源上,设备#2在SRS资源标识ID1对应的波束上向设备#1发送信号,设备#1通过SRS资源标识ID1对应的波束接收来自设备#2发送的信号。
作为另一种示例,波束域信息通过参考信号的标识信息确定,设备#1针对时域资源和频域资源为设备#2配置的第一帧结构,如表5-1中所示的至少一行或至少一列:
表5-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#2发送信号。其中,i1~i3可以取值为整数,表示CSI-RS的资源集合标识,j1~j3可以取值为整数,表示SRS的资源集合标识。
其中,针对一个时频资源可以配置一个或多个CSI-RS资源标识信息,或,一个或多个SRS资源标识信息,以及,一个或多个收发指示信息。表格5-1中以CSI-RS资源标识信息为CSI-RS资源集合标识,以SRS资源标识信息为SRS资源集合标识为例进行举例说明。
进一步举例,如表格5-2中所示的至少一行或至少一列:
表5-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表5-2所示,在T1时域资源和F1频域资源上,对应CSI-RS资源标识ID1,接收指示;或者,在T1时域资源和F1频域资源上,对应SRS资源标识ID1,发送指示。在T1时域资源和F2频域资源上,对应SRS资源标识ID2,发送指示。在T2时域资源和F1频域资源上,对应SRS资源标识ID2,接收指示;或者,在T2时域资源和F1频域资源上,对应SRS资源标识ID2,发送指示。在T2时域资源和F2频域资源上,对应CSI-RS资源标识ID2,接收指示。
作为又一种示例,在设备#1和设备#2的波束对配对情况下,波束对1包括设备#1的波束1和设备#2的波束1,波束对2包括设备#1的波束2和设备#2的波束2,以此类推。设备#1和设备#2可以通过波束对进行通信,比如通过波束对1通信,包括设备#1用波束1发送信号,设备#2用波束1接收信号,和/或,设备#2用波束1发送信号,设备#1用波束1接收信号。
其中,波束对1可以对应CSI-RS资源标识ID1和/或SRS资源标识ID1;波束对2可
以对应CSI-RS资源标识ID2和/或SRS资源标识ID2;波束对6可以对应CSI-RS资源标识ID6和/或SRS资源标识ID6;…,以此类推。
针对波束对下的帧结构指示,如下所示:
作为一种示例,波束域信息通过参考信号的标识信息确定,设备#1针对波束域信息为设备#2配置的第一帧结构,如表6-1中所示的至少一行:
表6-1
其中,T11~Tn2表示时域资源信息,F11~Fn2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#2发送信号。其中,n可以取值为整数,表示波束对标识。
其中,针对一个波束对可以配置一个或多个时频资源信息,以及,一个或多个收发指示信息。
进一步举例,如表格6-2中所示的至少一行:
表6-2
针对设备#2的波束对1(CSI-RS资源标识ID1,和/或,SRS资源标识ID1),在时域资源T11,频域资源F11上进行接收,在时域资源T12,频域资源F12上进行发送。
针对设备#2的波束对2(CSI-RS资源标识ID2,和/或,SRS资源标识ID2),在时域资源T21,频域资源F21上进行接收。
针对设备#2的波束对5(CSI-RS资源标识ID5,和/或,SRS资源标识ID5),在时域资源T51,频域资源F51上进行接收,在时域资源T52,频域资源F52上进行发送。
针对设备#2的波束对6(CSI-RS资源标识ID6,和/或,SRS资源标识ID6),在时域资源T61,频域资源F61上进行发送。
在一种可能实现的方式中,该第一帧结构中的波束域信息包括第一参考信号和第二参考信号的资源标识信息。
作为一种示例,假设第一参考信号为CSI-RS信号,第二参考信号为SRS信号。设备#1根据CSI-RS资源标识信息和SRS资源标识信息确定,第一帧结构中的发送波束和/或接收波束。
示例三,假设第一参考信号为CSI-RS信号,第二参考信号为SRS信号。设备#1可以配置CSI-RS的资源标识信息和SRS的资源标识信息,以及收发指示信息,设备#2可以根据CSI-RS的资源标识信息和SRS的资源标识信息,进一步地确定第一帧结构中的波束域信息。
其中,CSI-RS的资源标识信息可以包括CSI-RS资源集合标识(CSI-RS resource set ID),和/或,CSI-RS资源标识(CSI-RS resource ID)。其中,一个CSI-RS资源集合中可以包括一个或多个CSI-RS资源。
其中,SRS的资源标识信息可以包括SRS资源集合标识(SRS resource set ID),和/或,SRS资源标识(SRS resource ID)。其中,一个SRS资源集合中可以包括一个或多个SRS资源。
例如,设备#1配置的CSI-RS的资源标识信息和SRS的资源标识信息,以及接收指示信如下:
1)CSI-RS resource set ID1,SRS resource set ID1,R
2)CSI-RS resource set ID2,SRS resource set ID2,R
应理解,设备#1传输信号时,通过指示设备#1发送信号所在的CSI-RS resource set ID以及set中的CSI-RS resource ID,以及设备#2对应的SRS resource set ID中的接收对应的SRS resource ID,从而接收信号。
又例如,设备#1配置的CSI-RS的资源标识信息和SRS的资源标识信息,以及接收指示信如下:
1)CSI-RS resource set ID1,SRS resource set ID1,T(CSI-RS resource set ID可以忽略)
2)CSI-RS resource set ID2,SRS resource set ID2,T(CSI-RS resource set ID可以忽略)
应理解,设备#1调度设备#2发送信号时,并指示设备#2发送信号所在的SRS resource set ID以及set中的SRS resource ID,设备#2确定发送信号的QCL或波束信息,从而发送信号。
基于示例三,该波束域信息包括第一参考信号的资源标识信息和第二参考信号的资源标识信息。该第一帧结构具体的表现形式如下示例所示:
作为一种示例,波束域信息通过参考信号的标识信息确定,设备#1针对时域资源和频域资源为设备#2配置的第一帧结构,如表7-1中所示的至少一行或至少一列:
表7-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。其中,i1~i4可以取值为整数,表示CSI-RS的资源集合标识,j1~j4可以取值为整数,表示SRS的资源集合标识。
其中,针对一个时频资源可以配置一个或多个CSI-RS资源标识信息,或,一个或多个SRS资源标识信息,以及,一个或多个收发指示信息。表格7-1中以CSI-RS资源标识信息为CSI-RS资源集合标识,以SRS资源标识信息为SRS资源集合标识为例进行举例说明。
进一步举例,如表格7-2中所示的至少一行或至少一列:
表7-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表5所示,在T1时域资源和F1频域资源上,对应CSI-RS资源标识ID1和SRS资源标识ID1,接收指示。在T1时域资源和F2频域资源上,对应SRS资源标识ID1,发送指示。在T2时域资源和F1频域资源上,对应SRS资源标识ID2,发送指示。在T2时域资源和F2频域资源上,对应CSI-RS资源标识ID1和SRS资源标识ID1,接收指示。
应理解,基于上述表7-2中的示例,设备#2接收到来自设备#1发送的第一信息之后,根据第一信息确定第一帧结构,并在第一帧结构上传输信号。例如,在T1时域资源和F1频域资源上,设备#2在对应SRS资源标识ID1对应的波束上接收来自设备#1通过CSI-RS资源标识ID1发送的信号。
作为另一种示例,在设备#1和设备#2的波束对配对情况下,波束对1包括设备#1的波束1和设备#2的波束1,波束对2包括设备#1的波束2和设备#2的波束2,以此类推。设备#1和设备#2可以通过波束对进行通信,比如通过波束对1通信,包括设备#1用波束1发送信号,设备#2用波束1接收信号,和/或,设备#2用波束1发送信号,设备#1用波束1接收信号。
其中,波束对1可以对应CSI-RS资源标识ID1和/或SRS资源标识ID1;波束对2可以对应CSI-RS资源标识ID2和/或SRS资源标识ID2;波束对6可以对应CSI-RS资源标识ID6和/或SRS资源标识ID6;…,以此类推。
针对波束对下的第一帧结构指示,可以如下所示:
作为一种示例,波束域信息通过参考信号的标识信息确定,设备#1针对波束域信息为设备#2配置的第一帧结构,如表8-1中所示的至少一行:
表8-1
其中,T11~Tn2表示时域资源信息,F11~Fn2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#2发送信号。其中,n可以取值为整数,表示波束对标识。其中,i1~in可以取值为整数,表示CSI-RS的资源集合标识,j1~jn可以取值为整数,表示SRS的资源集合标识。
其中,针对一个波束对可以配置一个或多个时频资源信息,以及,一个或多个收发指示信息。
进一步举例,如表格8-2中所示的至少一行:
表8-2
针对设备#2的波束对1(CSI-RS资源标识ID1,和/或,SRS资源标识ID1),在时域资源T11,频域资源F11上进行接收,在时域资源T12,频域资源F12上进行发送。
针对设备#2的波束对2(CSI-RS资源标识ID2,和/或,SRS资源标识ID2),在时域资源T21,频域资源F21上进行接收。
针对设备#2的波束对5(CSI-RS资源标识ID5,和/或,SRS资源标识ID5),在时域资源T51,频域资源F51上进行接收,在时域资源T52,频域资源F52上进行发送。
针对设备#2的波束对6(CSI-RS资源标识ID6,和/或,SRS资源标识ID6),在时域资源T61,频域资源F61上进行发送。
方式三:第一帧结构的波束域信息包括QCL指示信息。
应理解,该QCL指示信息用于指示在时域资源和频域资源上,用于传输信号的波束信息。
在一种可能实现的方式中,该QCL指示信息可以包括QCL类型,例如QCL type E。该QCL类型中的参数包括空间发送参数和空间接收参数,该空间发送参数用于指示发送
信号的波束信息,该空间接收参数用于指示接收信号的波束信息。
作为一种示例,QCL指示信息包括QCL类型,例如QCL type E:{Spatial Tx parameter,Spatial Rx parameter}。该QCL类型会指示发送波束对应的参考信号的标识和接收波束对应的参考信号标识。
可选地,该传输信号的收发空间参数与该参考信号对的收发空间参数相同。
比如,QCL的配置可以为{CSI-RS resource ID,SRS resource ID},{SSB ID,CSI-RS resource ID},{SSB ID,SRS resource ID},{CSI-RS resource ID,SRS resource set ID},{CSI-RS resource set ID,SRS resource ID},{CSI-RS resource set ID,SRS resource set ID},{SSB ID,CSI-RS resource set ID},或者,{SSB ID,SRS resource set ID}等。其中,两个ID的先后顺序不限定。其中,该第一帧结构的配置方法可以包括以下几种
方式:
配置方式一:第一帧结构是针对时域资源、频域资源配置的,如表9-1,表9-2,表10-1和表10-2所示中的至少一行或至少一列:
表9-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。其中,q21~q24可以取值为整数,表示QCL信息标识,i1~i4可以取值为整数,表示CSI-RS的资源标识,j1~j4可以取值为整数,表示SRS的资源标识。
其中,针对一个时频资源可以配置一个或多个QCL信息,以及,一个或多个收发指示信息。表格9-1中以QCL信息为{CSI-RS资源标识,SRS资源标识}为例进行举例说明。
进一步举例,如表格9-2中所示的至少一行或至少一列:
表9-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表9-2所示,在T1时域资源和F1频域资源上,对应的QCL信息为{CSI-RS resource ID 1,SRS resource ID 1},接收指示。在T1时域资源和F2频域资源上,对应的QCL信息为{CSI-RS resource ID 5,SRS resource ID 5},发送指示。在T2时域资源和F1频域资源上,对应的QCL信息为{CSI-RS resource ID 2,SRS resource ID 2},发送指示。在
T2时域资源和F2频域资源上,对应的QCL信息为{CSI-RS resource ID 6,SRS resource ID6},接收指示。
应理解,基于上述表9-2中的示例,设备#2接收到来自设备#1发送的第一信息之后,根据第一信息确定第一帧结构,并在第一帧结构上传输信号。例如,在T1时域资源和F1频域资源上,设备#2在对应的QCL信息为{CSI-RS resource ID 1,SRS resource ID 1}的波束上,接收来自设备#1发送的信号。
表10-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。其中,q11~q14可以取值为整数,表示QCL信息标识,i1~i4可以取值为整数,表示CSI-RS的资源标识,j1~j4可以取值为整数,表示SRS的资源标识。
其中,针对一个时频资源可以配置一个或多个QCL信息,以及,一个或多个收发指示信息。表格10-1中以QCL信息为{CSI-RS资源标识,SRS资源标识}为例进行举例说明。
进一步举例,如表格10-2中所示的至少一行或至少一列:
表10-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表7所示,在T1时域资源和F1频域资源上,对应的QCL信息为{SRS resource ID 7,SRS resource ID 7},发送指示。在T1时域资源和F2频域资源上,对应的QCL信息为{CSI-RS resource ID 3,SRS resource ID 3},接收指示。在T2时域资源和F1频域资源上,对应的QCL信息为{CSI-RS resource ID 8,SRS resource ID 8},接收指示。在T2时域资源和F2频域资源上,对应的QCL信息为{SRS resource ID 4,CSI-RS resource ID4},发送指示。
应理解,基于上述表10-2中的示例,设备#2接收到来自设备#1发送的第一信息之后,根据第一信息确定第一帧结构,并在第一帧结构上传输信号。例如,在T1时域资源和F1频域资源上,设备#2在对应的QCL信息为{SRS resource ID 7,SRS resource ID 7}的波束上,向设备#1发送信号。
配置方式一:针对QCL组的帧结构的指示
应理解,设备#1可以由多个天线面板,每个QCL组对应的一个天线面板,或者每个QCL组对应一组波束信息。比如,设备#2有2个QCL组,QCL组1和QCL组2。
如表11-1,表11-2,表12-1和表12所示中的至少一行或至少一列:
比如针对QCL组1的帧结构的配置可以如表11-1中所示的至少一行或至少一列:
表11-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。其中,1-q1~1-q4可以取值为整数,表示QCL组1的QCL信息标识,i1~i4可以取值为整数,表示CSI-RS的资源标识,j1~j4可以取值为整数,表示SRS的资源标识。
其中,针对一个时频资源可以配置一个或多个QCL信息,以及,一个或多个收发指示信息。表格11-1中以QCL信息为{CSI-RS资源标识,SRS资源标识}为例进行举例说明。
进一步举例,如表格11-2中所示的至少一行或至少一列:
表11-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表8所示,在QCL1帧结构配置下,在T1时域资源和F1频域资源上,对应的QCL信息为{CSI-RS resource ID 1,SRS resource ID 1},接收指示。在QCL1帧结构配置下,在T2时域资源和F1频域资源上,对应的QCL信息为{CSI-RS resource ID 2,SRS resource ID 2},发送指示。在QCL1帧结构配置下,在T1时域资源和F2频域资源上,对应的QCL信息为{CSI-RS resource ID 3,SRS resource ID 3},接收指示。在QCL1帧结构配置下,在T2时域资源和F2频域资源上,对应的QCL信息为{CSI-RS resource ID 4,SRS resource ID4},发送指示。
比如针对QCL组2的帧结构的配置可以如表12-1中所示的至少一行或至少一列:
表12-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。其中,2-q1~2-q4可以取值为整数,表示QCL组2的QCL信息标识,i1~i4可以取值为整数,表示CSI-RS的资源标识,j1~j4可以取值为整数,表示SRS的资源标识。
其中,针对一个时频资源可以配置一个或多个QCL信息,以及,一个或多个收发指示信息。表格12-1中以QCL信息为{CSI-RS资源标识,SRS资源标识}为例进行举例说明。
进一步举例,比如表格12-2所示的至少一行或至少一列:
表12-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表12-2所示,在QCL2帧结构配置下,在T1时域资源和F1频域资源上,对应的QCL信息为{CSI-RS resource ID 7,SRS resource ID 7},发送指示。在QCL2帧结构配置下,在T2时域资源和F1频域资源上,对应的QCL信息为{CSI-RS resource ID 8,SRS resource ID 8},接收指示。在QCL2帧结构配置下,在T1时域资源和F2频域资源上,对应的QCL信息为{CSI-RS resource ID 5,SRS resource ID 5},发送指示。在QCL2帧结构配置下,在T2时域资源和F2频域资源上,对应的QCL信息为{CSI-RS resource ID 6,SRS resource ID6},接收指示。
配置方法三:设备#1通过QCL配置以及QCL配置标识信息指示QCL配置对应的第一帧结构。
例如,QCL配置如下:
QCL type E configure 1:{Spatial Tx parameter,Spatial Rx parameter}
QCL ID1-1:{CSI-RS resource ID 1,SRS resource ID 1};
QCL ID 1-2:{SRS resource ID 2,CSI-RS resource ID 2};
QCL ID 1-3:{SRS resource ID 3,CSI-RS resource ID 3};
QCL ID 1-4:{SRS resource ID 4,CSI-RS resource ID 4}。
QCL type E configure 2:{Spatial Tx parameter,Spatial Rx parameter}
QCL ID 2-1:{CSI-RS resource ID 5,SRS resource ID 5};
QCL ID 2-2:{CSI-RS resource ID 6,SRS resource ID 6};
QCL ID 2-3:{CSI-RS resource ID 7,SRS resource ID 7};
QCL ID 2-4:{CSI-RS resource ID 8,SRS resource ID 8}。
设备#1指示QCL配置对应的第一帧结构的示例如表13-1、表13-2、表14-1、表14-2、表15-1和表15-2中所示的至少一行或至少一列:
比如针对QCL type E configure 1对应的第一帧结构的配置的示例如表13-1中所示的至少一行或至少一列:
表13-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。其中,q1~q4可以取值为整数,表示QCL信息标识。
其中,针对一个时频资源可以配置一个或多个QCL信息,以及,一个或多个收发指示信息。
进一步举例,如表格13-2中所示的至少一行或至少一列:
表13-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表13-2所示,在QCL配置1帧结构配置下,在T1时域资源和F1频域资源上,对应的QCL信息为QCL ID 1-1,接收指示。在QCL配置1帧结构配置下,在T2时域资源和F1频域资源上,对应的QCL信息为QCL ID 1-2,发送指示。在QCL配置1帧结构配置下,在T1时域资源和F2频域资源上,对应的QCL信息为QCL ID 1-3,接收指示。在QCL配置1帧结构配置下,在T2时域资源和F2频域资源上,对应的QCL信息为QCL ID 1-4,发送指示。
比如针对QCL type E configure 21对应的第一帧结构的配置的示例如表14-1中所示的至少一行或至少一列:
表14-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。其中,q1~q4可以取值为整数,表示QCL信息标识。
其中,针对一个时频资源可以配置一个或多个QCL信息,以及,一个或多个收发指示信息。
进一步举例,如表格14-2中所示的至少一行或至少一列:
表14-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表14-2所示,在QCL配置2帧结构配置下,在T1时域资源和F1频域资源上,对应的QCL信息为QCL ID 2-3,发送指示。在QCL配置2帧结构配置下,在T2时域资源和F1频域资源上,对应的QCL信息为QCL ID 2-4,接收指示。在QCL配置2帧结构配置下,在T1时域资源和F2频域资源上,对应的QCL信息为QCL ID 2-1,发送指示。在QCL配置2帧结构配置下,在T2时域资源和F2频域资源上,对应的QCL信息为QCL ID 2-2,接收指示。
比如针对QCL type E对应的第一帧结构的配置的示例如表15-1中所示的至少一行或至少一列:
表15-1
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。其中,1-q1~1-q4可以取值为整数,表示QCL组
1的QCL信息标识,2-q1~2-q4可以取值为整数,表示QCL组2的QCL信息标识。
其中,针对一个时频资源可以配置一个或多个QCL信息,以及,一个或多个收发指示信息。
进一步举例,如表格15-2中所示的至少一行或至少一列:
表15-2
其中,T1和T2表示时域资源信息,F1和F2表示频域资源信息,R用于指示设备#2接收信号,T用于指示设备#1发送信号。
根据上述表15-2所示,在QCL帧结构配置下,在T1时域资源和F1频域资源上,对应的QCL信息为QCL ID 1-1,接收指示;对应的QCL信息为QCL ID 2-3,发送指示。在QCL帧结构配置下,在T2时域资源和F1频域资源上,对应的QCL信息为QCL ID 1-2,发送指示;对应的QCL信息为QCL ID 2-4,接收指示。在QCL帧结构配置下,在T1时域资源和F2频域资源上,对应的QCL信息为QCL ID 2-1,发送指示;对应的QCL信息为QCL ID 1-3,接收指示。在QCL帧结构配置下,在T2时域资源和F2频域资源上,对应的QCL信息为QCL ID 1-4,发送指示;对应的QCL信息为QCL ID 2-4,接收指示。
基于上述方式一、方式二和方式三所示的关于第一帧结构的不同配置方式,进一步地说明了第一帧结构中的时域信息、频域信息和波束域信息之间可能存在的配置方式。通过一种三维帧结构的通信方法,实现设备之间零时延的传输信号,动态切换波束信息,动态切换发送指示或者接收指示,从而提高传输效率,保证通信性能。
上面结合图8-图9详细介绍了本申请实施例提供的通信方法,下面结合图10-图11详细介绍本申请实施例提供的通信装置。
以下,结合图10和图11详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图10是本申请提供的通信设备1000的一例示意性框图。上述图5至图9中任一方法所涉及的任一设备,如终端设备和网络设备等都可以由图10所示的通信设备来实现。
应理解,通信设备1000可以是实体设备,也可以是实体设备的部件(例如,集成电路,芯片等等),还可以是实体设备中的功能模块。
如图10所示,该通信设备1000包括:一个或多个处理器1013。可选地,处理器1013中可以调用接口实现接收和发送功能。所述接口可以是逻辑接口或物理接口,对此不作限定。例如,接口可以是收发电路,输入输出接口,或是接口电路。用于实现接收和发送功能的收发电路、输入输出接口或接口电路可以是分开的,也可以集成在一起。上述收发电路或接口电路可以用于代码/数据的读写,或者,上述收发电路或接口电路可以用于信号的传输或传递。
可选地,接口可以通过收发器实现。可选地,该通信设备1000还可以包括收发器1030。所述收发器1030还可以称为收发单元、收发机、收发电路等,用于实现收发功能。
可选地,该通信设备1000还可以包括存储器1020。本申请实施例对存储器1020的具体部署位置不作具体限定,该存储器可以集成于处理器中,也可以是独立于处理器之外。对于该设备1000不包括存储器的情形,该设备1000具备处理功能即可,存储器可以部署在其他位置(如,云系统)。
处理器1010、存储器1020和收发器1030之间通过内部连接通路互相通信,传递控制和/或数据信号。
可以理解的是,尽管并未示出,设备1000还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器1020可以存储用于执行本申请实施例的方法的执行指令。处理器1010可以执行存储器1020中存储的指令结合其他硬件(例如收发器1030)完成下文所示方法执行的步骤,具体工作过程和有益效果可以参见上文方法实施例中的描述。
本申请实施例揭示的方法可以应用于处理器1010中,或者由处理器1010实现。处理器1010可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可以理解,存储器1020可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以
是随机存取存储器RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图11是本申请提供的一种通信装置1100的示意性框图。该装置1100包括收发单元1120,收发单元1120可以用于实现相应的通信功能。收发单元1120还可以称为通信接口或通信单元。
可选地,该装置1100还可以包括处理单元1110,处理单元1110可以用于进行数据处理。
可选地,该通信装置1100的具体形态可以是通用计算机设备或通用计算机设备中的芯片,本申请实施例对此不作限定。如图11所示,该装置包括处理单元1110和收发单元1120。
具体而言,通信装置1100可以是本申请涉及的任一设备,并且可以实现该设备所能实现的功能。应理解,该装置1100可以是实体设备,也可以是实体设备的部件(例如,集成电路,芯片等等),还可以是实体设备中的功能模块。
在一种可能的设计中,该装置1100可以是上文方法实施例中的第一设备(如,网络设备),也可以是用于实现上文方法实施例中第二设备(如,终端设备)的功能的芯片。
可选地,该装置1100还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1110可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中不同的终端设备的动作,例如,控制网元或终端设备的动作。
该装置1100可以用于执行上文各个方法实施例中控制网元或终端设备所执行的动作,这时,该装置1100可以为第一设备或者第二设备,或者控制网元或终端设备的组成部件,收发单元1120用于执行上文方法实施例中第一设备或者第二设备的收发相关的操作,处理单元1110用于执行上文方法实施例中第一设备或者第二设备的处理相关的操作。
应理解,该装置1100可以用于执行上文各个方法实施例中第一设备或者第二设备所执行的动作,这时,该装置1100中的收发单元1120可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图10中示出的通信接口1030,该装置1100中的处理单元1110可通过至少一个处理器实现,例如可对应于图10中示出的处理器1010。
可选地,装置1100还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
另外,在本申请中,通信装置1100是以功能模块的形式来呈现。这里的“模块”可
以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到装置1100可以采用图11所示的形式。处理单元1110可以通过图10所示的处理器1010来实现。可选地,如果图10所示的计算机设备包括存储器1000,处理单元1110可以通过处理器1010和存储器1000来实现。收发单元1120可以通过图10所示的收发器1030来实现。所述收发器1030包括接收功能和发送功能。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置1100是芯片时,那么收发单元1120的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器可以为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是装置内的位于所述芯片外部的存储单元,如图10所的存储器1020,或者,也可以是部署在其他系统或设备中的存储单元,不在所述计算机设备内。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种其它介质。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序或一组指令,当该计算机程序或一组指令在计算机上运行时,使得该计算机执行图8-图9所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序或一组指令,当该程序或一组指令在计算机上运行时,使得该计算机执行图8-图9所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,其包括前述的装置或设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请实施例中引入编号“第一”、“第二”等只是为了区分不同的对象,
比如,区分不同的“信息”,或,“设备”,或,“单元”,对具体对象以及不同对象间的对应关系的理解应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请中所述的协议可以是指通信协议或者说规范,例如3GPP通信协议。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (27)
- 一种基于帧结构的通信方法,其特征在于,包括:第一设备接收第一信息,所述第一信息用于确定第一帧结构中的时域信息、频域信息、波束域信息和收发指示信息;所述第一设备根据所述第一信息,在所述第一帧结构上传输信号。
- 根据权利要求1所述的方法,其特征在于,所述波束域信息包括以下一项或者多项:波束对的标识信息、参考信号的资源标识信息、准共址QCL指示信息。
- 根据权利要求2所述的方法,其特征在于,所述参考信号包括第一参考信号和/或第二参考信号,所述波束域信息是根据所述参考信号的资源标识信息确定的,其中,所述波束域信息包括所述第一参考信号的资源标识信息和/或所述第二参考信号的资源标识信息。
- 根据权利要求3所述的方法,其特征在于,所述第一参考信号的资源标识信息包括发送所述信号的参考信号的资源标识信息,所述第二参考信号的资源标识信息包括接收所述信号的参考信号的资源标识信息。
- 根据权利要求2至4中任一项所述的方法,其特征在于,当所述波束域信息包括所述QCL指示信息时,所述QCL指示信息用于指示在所述时域资源和所述频域资源上,用于传输所述信号的波束信息。
- 根据权利要求5所述的方法,其特征在于,所述QCL指示信息包括QCL类型,所述QCL类型中的参数包括空间发送参数和空间接收参数,所述空间发送参数用于指示发送信号的波束信息,所述空间接收参数用于指示接收信号的波束信息。
- 根据权利要求5或6所述的方法,其特征在于,所述用于传输信号的波束信息包括发送波束和/或接收波束对应的参考信号的标识信息。
- 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一帧结构是针对所述时域资源和/或所述频域资源配置的,或者,所述第一帧结构是针对所述波束域信息中的波束信息和/或波束标识信息配置的。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:所述第一设备向第二设备发送触发信息,所述触发信息用于触发所述第二设备切换或者激活第二帧结构,所述触发信息包括用于识别所述第一设备的信息。
- 根据权利要求9所述的方法,其特征在于,所述触发信息包括以下一项或者多项:解调参考信号DMRS触发、上行探测参考信号SRS触发、物理随机接入信号PRACH触发、上行控制信息UCI触发、调度请求SR触发。
- 根据权利要求9或10所述的方法,其特征在于,所述触发信息还包括所述第二帧结构。
- 一种基于帧结构的通信方法,其特征在于,包括:第二设备确定第一帧结构,所述第一帧结构用于传输信号;所述第二设备发送第一信息,所述第一信息用于确定所述第一帧结构的时域信息、频域信息、波束域信息和收发指示信息。
- 根据权利要求12所述的方法,其特征在于,所述波束域信息包括以下一项或者多项:波束对的标识信息、参考信号的资源标识信息、准共址QCL指示信息。
- 根据权利要求13所述的方法,其特征在于,所述参考信号包括第一参考信号和/或第二参考信号,所述波束域信息是根据所述参考信号的资源标识信息确定的,其中,所述波束域信息包括所述第一参考信号的资源标识信息和/或所述第二参考信号的资源标识信息。
- 根据权利要求14所述的方法,其特征在于,所述参考信号的资源标识信息包括发送所述信号对应的参考信号的资源标识信息和/或接收所述信号对应的参考信号的资源标识信息。
- 根据权利要求13至15中任一项所述的方法,其特征在于,当所述波束域信息包括所述QCL指示信息时,所述QCL指示信息用于指示在所述时域资源和所述频域资源上,用于传输信号的波束信息。
- 根据权利要求16所述的方法,其特征在于,所述QCL指示信息包括QCL类型,所述QCL类型中的参数包括空间发送参数和空间接收参数,所述空间发送参数用于指示发送信号的波束信息,所述空间接收参数用于指示接收信号的波束信息。
- 根据权利要求16或17所述的方法,其特征在于,所述用于传输信号的波束信息包括发送波束和/或接收波束对应的参考信号的标识信息。
- 根据权利要求12至18中任一项所述的方法,其特征在于,所述第一帧结构是针对所述时域资源和/或所述频域资源配置的,或者,所述第一帧结构是针对所述波束域中的波束信息和/或波束标识信息配置的。
- 根据权利要求12至19中任一项所述的方法,其特征在于,所述方法还包括:所述第二设备接收来自第一设备的触发信息,所述触发信息用于触发所述第二设备切换或者激活第二帧结构,所述触发信息包括用于识别所述第一设备的信息。
- 根据权利要求20所述的方法,其特征在于,所述触发信息包括以下一项或者多项:解调参考信号DMRS触发、上行探测参考信号SRS触发、物理随机接入信号PRACH触发、上行控制信息UCI触发、调度请求SR触发。
- 根据权利要求20或21所述的方法,其特征在于,所述触发信息还包括所述第二帧结构。
- 一种基于帧结构的通信装置,其特征在于,包括:处理器和存储器;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至11中任一项所述的方法,或执行权利要求12至22中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至11 中任一项所述的方法,或执行权利要求12至22中任一项所述的方法。
- 一种芯片系统,其特征在于,包括:处理器,用于存储器中调用并运行计算机程序,使得安装有所述芯片系统的设备执行如权利要求1至11中任一项所述的方法,或执行权利要求12至22中任一项所述的方法。
- 一种通信系统,其特征在于,包括终端设备和网络设备,其中,所述终端设备用于执行权利要求1至11中任一项所述的方法,所述网络设备用于执行权利要求12至22中任一项所述的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至11中任一项所述的方法的计算机程序或者指令,或者,执行权利要求12至22中任一项所述的方法的计算机程序或者指令。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2023/084515 WO2024197604A1 (zh) | 2023-03-28 | 2023-03-28 | 一种基于帧结构的通信方法和通信装置 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2023/084515 WO2024197604A1 (zh) | 2023-03-28 | 2023-03-28 | 一种基于帧结构的通信方法和通信装置 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024197604A1 true WO2024197604A1 (zh) | 2024-10-03 |
Family
ID=92907328
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2023/084515 Pending WO2024197604A1 (zh) | 2023-03-28 | 2023-03-28 | 一种基于帧结构的通信方法和通信装置 |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024197604A1 (zh) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107889220A (zh) * | 2016-09-29 | 2018-04-06 | 华为技术有限公司 | 通信方法、基站和终端设备 |
| CN108282879A (zh) * | 2017-01-06 | 2018-07-13 | 中兴通讯股份有限公司 | 数据传输方法及装置 |
| CN110089185A (zh) * | 2016-12-20 | 2019-08-02 | Oppo广东移动通信有限公司 | 用于传输数据的方法、终端设备和网络设备 |
| CN113472502A (zh) * | 2017-03-16 | 2021-10-01 | 华为技术有限公司 | 一种传输方向的配置方法、设备及系统 |
| CN115038164A (zh) * | 2021-03-04 | 2022-09-09 | 华为技术有限公司 | 通信方法和通信装置 |
-
2023
- 2023-03-28 WO PCT/CN2023/084515 patent/WO2024197604A1/zh active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107889220A (zh) * | 2016-09-29 | 2018-04-06 | 华为技术有限公司 | 通信方法、基站和终端设备 |
| CN110089185A (zh) * | 2016-12-20 | 2019-08-02 | Oppo广东移动通信有限公司 | 用于传输数据的方法、终端设备和网络设备 |
| CN108282879A (zh) * | 2017-01-06 | 2018-07-13 | 中兴通讯股份有限公司 | 数据传输方法及装置 |
| CN113472502A (zh) * | 2017-03-16 | 2021-10-01 | 华为技术有限公司 | 一种传输方向的配置方法、设备及系统 |
| CN115038164A (zh) * | 2021-03-04 | 2022-09-09 | 华为技术有限公司 | 通信方法和通信装置 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110831020B (zh) | 检测dci的方法、配置pdcch的方法和通信装置 | |
| WO2022007967A1 (zh) | 一种参考信号资源的配置方法和装置 | |
| CN111436089A (zh) | 通信的方法和装置 | |
| CN115606298A (zh) | Tci状态指示和应用的方法及设备 | |
| CN118055479A (zh) | 确定上行链路信号的空间关系和功率控制参数的无线通信方法 | |
| CN111436129A (zh) | 数据传输方法和通信装置 | |
| WO2022056885A1 (zh) | 一种通信方法和装置 | |
| WO2022218063A1 (zh) | 一种随机接入的方法、通信装置及通信系统 | |
| WO2024093447A1 (en) | Preparation procedure for ltm | |
| WO2024197604A1 (zh) | 一种基于帧结构的通信方法和通信装置 | |
| US12355481B2 (en) | Radio frequency integrated circuit and communication device including the integrated circuit | |
| KR20220135792A (ko) | 데이터 보호를 위한 nas 메시지 이용 방법 및 장치 | |
| CN111147114B (zh) | 波束训练的方法和装置 | |
| WO2025035791A1 (en) | Invalidation of sbfd symbol | |
| WO2025060447A1 (en) | Rach occasion group for preamble repetitions | |
| US20250112743A1 (en) | Wireless communication method, terminal device, and network device | |
| CN118019113B (zh) | 通信方法、通信装置、计算机可读存储介质及相关系统 | |
| WO2025166560A1 (en) | Prach transmission | |
| WO2024234729A1 (en) | Pusch transmission | |
| WO2024156202A1 (en) | Multi-trp based downlink transmission | |
| KR20250138048A (ko) | 제어 신호에 기반하여 장치의 상태를 관리하기 위한 장치 및 방법 | |
| WO2024146307A1 (zh) | 一种中继的通信方法及装置 | |
| WO2024169239A1 (zh) | 一种通信方法及装置 | |
| WO2025097445A1 (zh) | 通信方法、装置、设备及存储介质 | |
| WO2025086143A1 (zh) | 通信方法及装置、终端设备、网络设备 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23929203 Country of ref document: EP Kind code of ref document: A1 |