WO2024241779A1 - Electric motor - Google Patents
Electric motor Download PDFInfo
- Publication number
- WO2024241779A1 WO2024241779A1 PCT/JP2024/015356 JP2024015356W WO2024241779A1 WO 2024241779 A1 WO2024241779 A1 WO 2024241779A1 JP 2024015356 W JP2024015356 W JP 2024015356W WO 2024241779 A1 WO2024241779 A1 WO 2024241779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- stator
- electric motor
- split cores
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
Definitions
- This disclosure relates to electric motors.
- Patent Document 1 electric motors equipped with a stator made up of multiple split cores are known (for example, see Patent Document 1).
- the electric motor of Patent Document 1 is equipped with a stator and a rotor, and the stator is made up of multiple split cores joined by welding.
- the multiple split cores are joined at their contact points by laser welding along the axial direction of the stator.
- the heat of laser welding can reduce the precision of the inner surface of the stator (i.e., the inner surface of the teeth portion of the stator). If the precision of the inner surface of the stator decreases, the cogging torque of the motor increases. In such a situation, one of the objectives of this disclosure is to reduce the cogging torque of the motor.
- the electric motor includes a stator formed by welding a plurality of split cores together, and a rotor disposed opposite the stator.
- a region from the axial end of the stator to the end of the closest continuous weld is defined as a first region, and a region other than the first region, including the axial center of the stator, is defined as a second region, and in at least one of the multiple joints between the plurality of split cores, the proportion of welds in the second region is smaller than the proportion of welds in the first region.
- the motor disclosed herein can reduce the cogging torque of the motor.
- FIG. 1 is a perspective view of an electric motor according to an embodiment of the present disclosure.
- FIG. 1 is a side view of an electric motor according to an embodiment of the present disclosure.
- 1 is a cross-sectional perspective view of an electric motor according to an embodiment of the present disclosure.
- FIG. 1 is a front view of an electric motor according to an embodiment of the present disclosure.
- FIG. 2 is a perspective view of a stator according to an embodiment of the present disclosure.
- 1 is a perspective view showing an arrangement of a plurality of split cores constituting a stator according to an embodiment of the present disclosure before being joined together.
- 11 is a perspective view showing the arrangement of the split cores after being joined together in a stator according to an embodiment of the present disclosure.
- FIG. 1 is a side view of an electric motor according to an embodiment of the present disclosure.
- 1 is a cross-sectional perspective view of an electric motor according to an embodiment of the present disclosure.
- FIG. 1 is a front view of an electric motor according to an
- FIG. 1 is a perspective view showing a stator and a frame when the stator according to an embodiment of the present disclosure is inserted into the frame and the stator is shrink-fitted.
- FIG. 2 is a side view of a stator according to an embodiment of the present disclosure.
- FIG. 11 is a side view of a stator according to a first modified example of an embodiment of the present disclosure.
- FIG. 11 is a side view of a stator according to a second modified example of the embodiment of the present disclosure.
- the electric motor according to the present disclosure is a device that converts electrical energy into mechanical energy (particularly, rotational energy) and may be, for example, an inner rotor type three-phase synchronous motor.
- the electric motor according to the present disclosure includes a stator and a rotor.
- Fig. 1 is a perspective view of the electric motor 10 according to an embodiment of the present disclosure (hereinafter referred to as the present embodiment).
- Fig. 2 is a side view of the electric motor 10 according to the present embodiment.
- Fig. 3 is a cross-sectional perspective view of the electric motor 10 according to the present embodiment.
- Fig. 4 is a front view of the electric motor 10 according to the present embodiment.
- the electric motor 10 of this embodiment is an inner rotor type three-phase synchronous motor, but is not limited to this.
- the electric motor 10 includes a stator 20, a rotor 30, a housing 40, and a shaft 50.
- the electric motor 10 further includes a bearing 60.
- the housing 40 includes an upper plate 40a, a frame 40b, and a bottom plate 40c.
- the housing 40 When viewed from the direction along the axis 50, the housing 40 has a top plate 40a and a bottom plate 40c each having a rectangular shape with four corners cut out.
- the top plate 40a has a circular hole 40d in its center.
- the axis 50 passes through hole 40d.
- the bottom plate 40c has a hole 40e in its center. Note that the shapes of holes 40d and 40e are not limited to circles, and may be oval, rectangular, hexagonal, etc. Also, hole 40e does not have to be present, and does not have to pass through the bottom plate 40c.
- the stator 20 is fixed to the frame 40b, and the rotor 30 is fixed to the shaft 50, and rotates integrally with the shaft 50.
- the shaft 50 has a cylindrical shape with a step.
- the bearing 60 is a part having a cylindrical shape, and is attached to the shaft 50 so that the shaft 50 can rotate.
- the shaft 50 is also attached to the housing 40 via the bearing 60.
- the "bottom plate” is also called an "end plate.” In FIG. 2, the various parts built into the housing 40 are indicated by dashed lines.
- FIG. 3 is a cross-sectional perspective view of the electric motor 10 shown in FIG. 2, cut along a plane perpendicular to the shaft 50 and including the line segment III-III. Note that the illustration of the bottom plate 40c is omitted in FIG. 3.
- FIG. 4 shows a front view of the electric motor 10 shown in FIG. 1 with the top plate 40a removed. Note that the bearing 60 is omitted in FIG. 4.
- the direction parallel to the rotation axis of the rotor 30 of the electric motor 10 is the Z axis
- the direction perpendicular to one side surface 40f of the rectangular frame 40b is the X axis
- the direction perpendicular to the X and Z axes is the Y axis.
- the X, Y, and Z axes form an orthogonal coordinate system.
- the rotation axis of the rotor 30 and the center of the shaft 50 are coincident. In other words, the center of the shaft 50 is parallel to the Z axis.
- “top” and “bottom” are not limited to “top” and “bottom” in the vertical direction, but are used in a relative sense.
- Figure 2 is a side view seen from the positive direction of the X-axis.
- Figure 4 is a front view seen from the positive direction of the Z-axis.
- the stator 20 is shrink-fitted to the frame 40b.
- the top plate 40a, the frame 40b, and the bottom plate 40c are made of aluminum or an aluminum alloy.
- Rotor 30 The rotor 30 is disposed opposite the stator 20. In this embodiment, the rotor 30 is disposed inside the stator 20, but is not limited to this.
- the rotor 30 has a rotor core 31 and a plurality of permanent magnets 32 (ten in this example) embedded in the rotor core 31 and arranged in a spoke shape.
- the rotor core 31 is made of a plurality of laminated electromagnetic steel plates.
- Each permanent magnet 32 is made of a rare earth sintered magnet.
- the rotor core 31 may be made of a powder magnetic core, in addition to being made of multiple laminated electromagnetic steel plates.
- the rotor 30 may have a rare earth magnet.
- Rare earth magnets generally have a high residual magnetic flux density, and a motor 10 using a rotor 30 having such a magnet can obtain a high magnetic flux density.
- the rare earth magnet may be, for example, a neodymium magnet, but is not limited to this.
- the rotor 30 has multiple permanent magnets 32 arranged in a spoke shape.
- a spoke rotor In an electric motor 10 using a rotor 30 having multiple permanent magnets 32 arranged in a spoke shape (hereinafter also referred to as a spoke rotor), a high magnetic flux density can be obtained.
- the effects of the invention according to the present disclosure can be exerted strongly.
- the number of multiple permanent magnets 32 is not particularly limited, and may be, for example, 8 or more and 12 or less.
- FIG. 5 is a perspective view of the stator 20 according to this embodiment.
- the stator 20 is formed by combining a plurality of split cores 21 (12 in this embodiment).
- Each split core 21 is formed of a plurality of laminated electromagnetic steel sheets.
- Each split core 21 has a yoke portion 21a and a teeth portion 21b protruding from the yoke portion 21a.
- Each split core 21 may be formed of a powder magnetic core in addition to being formed of a plurality of laminated electromagnetic steel sheets.
- the stator 20 has an outer peripheral surface 20a on its outer periphery and an inner peripheral surface 20b on its inner periphery.
- the central axis of the stator 20 coincides with the central axis of the rotor 30 and is parallel to the Z axis.
- the edge in the Z axis positive direction is referred to as a first edge 20c
- the edge in the Z axis negative direction is referred to as a second edge 20d.
- FIG. 6 is a perspective view showing the arrangement of the split cores 21 constituting the stator 20 according to this embodiment before being joined.
- FIG. 7 is a perspective view showing the arrangement of the split cores 21 in the stator 20 according to this embodiment after the split cores 21 are joined.
- FIG. 8 is a perspective view showing the stator 20 and the frame 40b when the stator 20 according to this embodiment is inserted into the frame 40b and the stator 20 is shrink-fitted.
- the XYZ orthogonal coordinate system is defined so that the central axis of the stator 20 is parallel to the Z axis.
- multiple (12 in this embodiment) split cores 21 are arranged in a circular ring shape.
- the circumferential ends of the multiple split cores 21 are irradiated with laser light, and the split cores 21 are joined by laser welding to obtain the stator 20 shown in FIG. 7.
- the number of split cores 21 is not particularly limited and may be, for example, 8 or more and 16 or less.
- Each split core 21 may have a yoke portion 21a and teeth portions 21b protruding from the yoke portion 21a.
- stator 20 shown in FIG. 7 After obtaining the stator 20 shown in FIG. 7, the stator 20 is inserted into the frame 40b and shrink-fitted as shown in FIG. 8, and the stator 20 is fixed to the frame 40b.
- FIG. 9 is a side view of the stator 20 of this embodiment, showing the welded portions 22 of the multiple split cores 21.
- Fig. 9 is a side view as viewed from the positive direction of the X-axis.
- the region from both ends of the stator 20 along the Z axis, i.e., the first edge 20c or the second edge 20d, to the end of the closest continuous weld 22 along the Z axis direction is defined as the first region R1
- the region other than the first region R1 including the central portion of the stator 20 along the Z axis direction is defined as the second region R2.
- continuous weld 22 refers to a weld 22 formed across three or more electromagnetic steel sheets in the axial direction when the stator 20 is composed of electromagnetic steel sheets.
- spot weld a weld formed across two or less electromagnetic steel sheets in the axial direction.
- spot welds are not included in continuous welds. For example, if the weld 22 closest to the axial end of the stator is a spot weld, that spot weld is not taken into consideration in the definition of the first region.
- the second region is given priority.
- the "axial center of the stator” may be included in the "region from the axial end of the stator 20 to the end of the closest continuous weld 22." In such a case, priority is given to the region including the "axial center of the stator" being the second region R2, and this region is treated as the second region R2.
- the proportion of welded portions in the second region R2 is smaller than the proportion of welded portions 22 in the first region R1.
- the second region R2 does not include welded portions 22. Note that, in at least one of the multiple joints J, it is sufficient that the proportion of welded portions in the second region R2 is smaller than the proportion of welded portions 22 in the first region R1.
- the first regions R1 are located near both ends of the stator 20 in the Z-axis direction.
- the welds 22 of each first region R1 extend along the Z-axis direction of the stator 20.
- the ratio of the length of each first region R1 to the length of the second region R2 may be, for example, 1/4 or more, 1/2 or less, or may be approximately 1/3.
- the ratio of the axial lengths of one first region R1, the second region R2, and the other first region R1 is 1:3:1.
- the welded portion of the first region R1 may extend along the axial direction of the stator. Since the boundary between adjacent split cores extends along the axial direction of the stator, this configuration allows the entire welded portion to contribute to the bonding of adjacent split cores. Therefore, the bonding strength between multiple split cores can be effectively increased.
- the welded portion of the first region R1 may extend in a direction that intersects with the axial direction of the stator.
- the first regions R1 may be disposed near both ends of the stator in the axial direction. With this configuration, the bonding strength between the multiple split cores can be easily ensured in the two first regions R1.
- the first region R1 may be located only near one axial end of the stator. With this configuration, since there is only one first region R1, the time required to perform welding can be reduced.
- Fig. 10 is a side view of the stator 20 according to the first modification of the electric motor 10 of the present embodiment, and is a diagram showing the welded portions 22 of the multiple split cores 21.
- Fig. 10 is a side view as viewed from the positive direction of the X-axis.
- the first region R1 is disposed only in the vicinity of the first edge 20c of the stator 20.
- the other configurations are the same as those of the above embodiment.
- the second region R2 does not have to include the welded portion 22.
- the proportion of the welded portion 22 in the second region R2 is 0%, and the cogging torque of the electric motor 10 can be further reduced.
- the second region R2 may include the welded portion 22.
- Fig. 11 is a side view of the stator 20 of this embodiment, showing the welded portions 22 of the multiple split cores 21.
- Fig. 11 is a side view as viewed from the positive direction of the X-axis.
- the stator 20 according to the second modified example of the electric motor 10 of this embodiment has welds 22 formed in the second region R2 as well.
- the proportion of welds 22 in the second region R2 is smaller than the proportion of welds 22 in the first region R1.
- the "proportion of welds 22" will be explained later.
- the rest of the configuration is the same as in the above-mentioned embodiment 1.
- the electric motor 10 includes a frame 40b into which the stator 20 is shrink-fitted.
- the outer peripheral surface of the stator 20 is subjected to a compressive force by the inner peripheral surface of the frame 40b, which contracts.
- This improves the roundness of the outer peripheral surface 20a of the stator 20, and therefore the precision of the inner peripheral surface 20b of the stator 20.
- This effect is particularly useful in the second region R2, where the proportion of welded portions 22 is small.
- the improved precision of the inner peripheral surface of the stator can further reduce the cogging torque of the motor.
- the frame 40b may be made of aluminum or an aluminum alloy, for example.
- the “roundness of the outer peripheral surface 20a of the stator 20" refers to the degree to which, for a cylindrical surface including the outer peripheral surface 20a of the stator 20, the axis of the cylindrical surface coincides with the central axis of the stator, and the circle formed by cutting the cylindrical surface along a plane perpendicular to the central axis of the stator 20 is close to being a perfect circle.
- the "accuracy of the inner peripheral surface 20b of the stator 20" refers to the degree to which, for a cylindrical surface including the inner peripheral surface 20b of the stator 20, the axis of the cylindrical surface coincides with the central axis of the stator 20, and the circle formed by cutting the cylindrical surface along a plane perpendicular to the central axis of the stator 20 is close to being a perfect circle.
- the ratio of the welded portion 22 in the second region R2 is smaller than the ratio of the welded portion 22 in the first region R1.
- the “ratio of the welded portion 22" refers to the ratio of the length of the welded portion to the length of each region in the axial direction of the stator 20 (if multiple welded portions exist, the total length of each welded portion).
- the ratio of the welded portion 22 in the first region R1 refers to the ratio of the length of the welded portion 22 to the entire length of each of the first regions R1 in the positive direction of the Z axis or the negative direction of the Z axis, measured along the Z axis direction.
- the ratio of the welded portion 22 in the second region R2 refers to the ratio of the length of the welded portion 22 to the entire length of the second region R2, measured along the Z axis direction. For example, if the length of the first region R1 is 100 mm and the length of the welded portion 22 in the first region R1 is 50 mm, in the axial direction of the stator 20, the ratio of the welded portion 22 in the first region R1 is 50%.
- the second region R2 is a region including the axial center of the stator 20, i.e., a region where the magnetic flux density is relatively high in the axial direction of the stator 20.
- the first region R1 which is a region including the axial end of the stator 20, has a lower magnetic flux density than the second region R2. This difference in magnetic flux density occurs because of the presence of magnetic flux leakage at the axial end of the motor 10.
- the second region R2 which is a region where the magnetic flux density is relatively high, the cogging torque of the motor 10 can be reduced.
- the bonding strength between the multiple split cores 21 can be sufficiently ensured by welding in the first region R1.
- the ratio of the axial dimension of the second region R2 to the axial dimension of the first region R1 between the multiple joints J may be the same or different.
- the ratio of the welded portion 22 in the first region R1 between the multiple joints J may be the same or different.
- the ratio of the welded portion 22 in the second region R2 between the multiple joints J may be the same or different.
- the ratio of the welded portion 22 in the second region R2 to the ratio of the welded portion 22 in the first region R1 between the multiple joints J may be the same or different.
- the joint J means the boundary at the joint between the split cores 21, and is a different concept from the welded portion 22.
- the "multiple joints J between the multiple split cores 21" can also be rephrased as “multiple boundary portions between the multiple split cores 21".
- the proportion of welded portions 22 in the second region R2 may be smaller than the proportion of welded portions 22 in the first region R1. In this case, the above-mentioned cogging torque reduction effect can be further enhanced.
- the cogging torque of the electric motor 10 can be reduced by reducing the proportion of the welded portion 22 in the region of high magnetic flux density (second region R2).
- the electric motor 10 disclosed herein can be used, for example, in small electric motors for toys and models, as well as in electric motors for driving automobiles and trains, and can also be used in large electric motors such as those used in factories and power plants.
- a stator formed by welding a plurality of split cores together; a rotor disposed opposite the stator; A region from an axial end of the stator to an end of a continuous weld closest thereto is defined as a first region, and a region other than the first region including an axial center portion of the stator is defined as a second region, an electric motor, in which, in at least one of a plurality of joints between the plurality of split cores, a proportion of the weld in the second region is smaller than a proportion of the weld in the first region.
- the electric motor of the present disclosure can be used, for example, as a small electric motor for toys or models, as an electric motor for driving automobiles or trains, and also as a large electric motor for use in factories or power plants. In this way, the electric motor of the present disclosure is industrially useful.
- Motor 20 Stator 20a: Outer circumferential surface 20b: Inner circumferential surface 20c: First edge 20d: Second edge 21: Split core 21a: Yoke portion 21b: Teeth portion 22: Welded portion 30: Rotor 31: Rotor core 32: Permanent magnet 40: Housing 40a: Top plate 40b: Frame 40c: Bottom plate 40d, 40e: Hole 50: Shaft 60: Bearing J: Joint portion R1: First region R2: Second region
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
本開示は、電動機に関する。 This disclosure relates to electric motors.
従来、複数の分割コアからなる固定子を備える電動機が知られている(例えば、特許文献1)。特許文献1の電動機は、固定子および回転子を備え、当該固定子は、複数の分割コアが溶接により結合されてなる。複数の分割コアは、互いに接する部位において、固定子の軸方向に沿ったレーザ溶接によって結合される。 Conventionally, electric motors equipped with a stator made up of multiple split cores are known (for example, see Patent Document 1). The electric motor of Patent Document 1 is equipped with a stator and a rotor, and the stator is made up of multiple split cores joined by welding. The multiple split cores are joined at their contact points by laser welding along the axial direction of the stator.
しかしながら、複数の分割コアを精度良く組み立てたとしても、レーザ溶接の熱によって固定子の内周面(すなわち、固定子が有するティース部の内周面)の精度は低下し得る。固定子の内周面の精度が低下すると、電動機のコギングトルクが増大する。このような状況において、本開示は、電動機のコギングトルクを低減することを目的の1つとする。 However, even if multiple split cores are assembled with high precision, the heat of laser welding can reduce the precision of the inner surface of the stator (i.e., the inner surface of the teeth portion of the stator). If the precision of the inner surface of the stator decreases, the cogging torque of the motor increases. In such a situation, one of the objectives of this disclosure is to reduce the cogging torque of the motor.
本開示に係る一側面は、電動機に関する。当該電動機は、複数の分割コアが溶接により結合されてなる固定子と、前記固定子と対向して配置される回転子と、を備える。前記固定子の軸方向端からこれに最も近い連続した溶接部の終端までの領域を第1領域とし、かつ前記固定子の軸方向中央部を含む前記第1領域以外の領域を第2領域として、前記複数の分割コアの間の複数の結合部の少なくとも1つにおいて、前記第2領域における溶接部の割合は、前記第1領域における溶接部の割合よりも小さい。 One aspect of the present disclosure relates to an electric motor. The electric motor includes a stator formed by welding a plurality of split cores together, and a rotor disposed opposite the stator. A region from the axial end of the stator to the end of the closest continuous weld is defined as a first region, and a region other than the first region, including the axial center of the stator, is defined as a second region, and in at least one of the multiple joints between the plurality of split cores, the proportion of welds in the second region is smaller than the proportion of welds in the first region.
本開示の電動機によれば、電動機のコギングトルクを低減することができる。 The motor disclosed herein can reduce the cogging torque of the motor.
本開示に係る電動機の実施形態について例を挙げて以下に説明する。しかしながら、本開示は以下に説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。 Embodiments of electric motors according to the present disclosure are described below using examples. However, the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be given as examples, but other numerical values and materials may be applied as long as the effects of the present disclosure are obtained.
本開示に係る電動機は、電気的エネルギーを機械的エネルギー(特に、回転エネルギー)に変換する装置であって、例えば、インナーロータ型の三相同期電動機であってもよい。本開示に係る電動機は、固定子と、回転子とを備える。 The electric motor according to the present disclosure is a device that converts electrical energy into mechanical energy (particularly, rotational energy) and may be, for example, an inner rotor type three-phase synchronous motor. The electric motor according to the present disclosure includes a stator and a rotor.
以下では、本開示に係る電動機について、図面を参照して具体的に説明する。以下で説明する電動機の構成要素のうち、本開示に係る電動機に必須ではない構成要素は省略してもよい。なお、以下で示す図は模式的なものであり、実際の部材の形状や数を正確に反映するものではない。 Below, the electric motor according to the present disclosure will be specifically described with reference to the drawings. Among the components of the electric motor described below, those components that are not essential to the electric motor according to the present disclosure may be omitted. Note that the drawings shown below are schematic and do not accurately reflect the shape or number of actual components.
《実施形態》
(1)電動機10
本開示の実施形態にかかる電動機10について、図1~図4を用いて説明する。図1は、本開示の実施形態(以下、本実施形態という)にかかる電動機10の斜視図である。図2は、本実施形態にかかる電動機10の側面図である。図3は、本実施形態にかかる電動機10の断面斜視図である。図4は、本実施形態に係る電動機10の正面図である。
<<Embodiment>>
(1)
An
本実施形態の電動機10は、インナーロータ型の三相同期電動機であるが、これに限られるものではない。図1~図4に示すように、電動機10は、固定子20と、回転子30と、筐体40と、軸50と、を備える。図2に示すように、電動機10は、軸受60をさらに備える。筐体40は、上板40aと、フレーム40bと、底板40cと、を備える。
The
筐体40は、軸50に沿う方向から見て、上板40aおよび底板40cが、それぞれ4つの角部を切り欠いた矩形の形状を有する。上板40aにはその中央部に円形の穴40dを有する。軸50は、穴40dを貫通している。底板40cにはその中央部に穴40eを有する。なお、穴40dおよび穴40eの形状は、円に限らず、楕円や矩形、六角形等でもよい。また、穴40eは、なくてもよいし、底板40cを貫通していなくてもよい。
When viewed from the direction along the
固定子20はフレーム40bに固定され、回転子30は軸50に固定され、軸50と一体になって回転する。軸50は段差を備えた円柱形状を有する。軸受60は円筒状の形状を有する部品であり、軸50が回動可能なように、軸50に取り付けられている。また、軸50は、軸受60を介して筐体40に取り付けられている。なお、「底板」は「エンドプレート」とも呼ばれる。なお、図2において、筐体40に内蔵される各部品は、破線にて示されている。
The
図3は、図2に示す電動機10を、軸50に垂直で、かつ線分III-IIIを含む平面で切った断面斜視図である。なお、図3においては底板40cの記載を省略している。
FIG. 3 is a cross-sectional perspective view of the
図4は、図1に示す電動機10について、上板40aを外したときの正面図を示す。なお、図4において軸受60の記載を省略している。
FIG. 4 shows a front view of the
図1~図4および以下に示す図において、電動機10が有する回転子30の回転軸に平行な方向をZ軸とし、直方体形状を有するフレーム40bの一つの側面40fに垂直な方向をX軸とし、X軸およびZ軸に垂直な方向をY軸とする。X軸、Y軸およびZ軸にて直交座標系を構成する。なお、回転子30の回転軸と軸50の中心は一致している。すなわち、軸50の中心は、Z軸に平行である。なお、「上」、「底」は、鉛直方向の「上」「底」に限定されるものではなく、相対的な意味で用いられる。
In Figures 1 to 4 and the figures shown below, the direction parallel to the rotation axis of the
上記のようにX軸、Y軸およびZ軸を定義したので、図2はX軸の正の方向からみたときの側面図となる。また、図4はZ軸の正の方向からみたときの正面図となる。 With the X-axis, Y-axis, and Z-axis defined as above, Figure 2 is a side view seen from the positive direction of the X-axis. Also, Figure 4 is a front view seen from the positive direction of the Z-axis.
図2~図4に示すように、固定子20は、フレーム40bに焼き嵌めされている。なお、上板40a、フレーム40bおよび底板40cは、アルミニウムまたはアルミニウム合金で構成される。
As shown in Figures 2 to 4, the
(2)回転子30
回転子30は、固定子20と対向して配置される。本実施形態の回転子30は、固定子20の内側に配置されるが、これに限られるものではない。回転子30は、回転子コア31と、回転子コア31に埋設され、スポーク状に配置された複数(この例では、10個)の永久磁石32とを有する。回転子コア31は、積層された複数の電磁鋼板で構成される。各永久磁石32は、希土類焼結磁石で構成される。
(2)
The
なお、回転子コア31は、積層された複数の電磁鋼板で構成される以外に、圧粉磁心で構成されてもよい。
In addition, the
回転子30は、希土類磁石を有してもよい。希土類磁石は、一般に残留磁束密度が高く、これを有する回転子30を用いた電動機10では、高い磁束密度が得られる。このような高磁束密度の電動機10に対しては、本開示に係る発明の効果を強く発揮することが可能である。希土類磁石は、例えば、ネオジム磁石であってもよいが、これに限られるものではない。
The
回転子30は、スポーク状に配置された複数の永久磁石32を有している。スポーク状に配置された複数の永久磁石32を有する回転子30(以下、スポークロータともいう。)を用いた電動機10では、高い磁束密度を得ることができる。このようなスポークロータを備える電動機10に対しては、本開示に係る発明の効果を強く発揮することが可能である。複数の永久磁石32の数は特に限定されず、例えば、8つ以上、12個以下であってもよい。
The
(3)固定子20
次に、固定子20について説明する。図5は、本実施形態にかかる固定子20の斜視図である。固定子20は、複数(本実施形態では、12個)の分割コア21が結合されることによって構成される。各分割コア21は、積層された複数の電磁鋼板で構成される。各分割コア21は、ヨーク部21aと、ヨーク部21aから突出するティース部21bとを有する。なお、各分割コア21は、積層された複数の電磁鋼板で構成される以外に、圧粉磁心で構成されてもよい。固定子20は、その外周に外周面20aと、内周に内周面20bとを有する。また、固定子20の中心軸は、回転子30の中心軸と一致し、Z軸と平行である。固定子20の外周面において、Z軸正方向の端縁を第一縁20cといい、Z軸負方向の端縁を第二縁20dという。
(3)
Next, the
(4)固定子20の製造方法および固定子20をフレーム40bに固定する方法
本実施形態にかかる固定子20の製造方法、および固定子20をフレーム40bに固定する方法を説明する。図6は、本実施形態にかかる固定子20を構成する複数の分割コア21の、結合前の配置を示す斜視図である。図7は、本実施形態にかかる固定子20における分割コア21を結合した後の分割コア21の配置を示す斜視図である。図8は、本実施形態にかかる固定子20をフレーム40bに挿入して固定子20を焼き嵌めしたときの固定子20とフレーム40bとを示す斜視図である。なお、図6~図8において、固定子20の中心軸がZ軸と平行になるようにXYZ直交座標を定義している。
(4) Method of manufacturing the
図6に示すように、複数(本実施形態では、12個)の分割コア21を円環状に配置する。次に、複数の分割コア21の周方向の端部にレーザ光を照射し、レーザ溶接をして分割コア21を結合させることにより、図7に示す固定子20が得られる。
As shown in FIG. 6, multiple (12 in this embodiment) split
なお、分割コア21の数は特に限定されず、例えば、8つ以上、16個以下であってもよい。各分割コア21は、ヨーク部21aと、ヨーク部21aから突出するティース部21bとを有してもよい。
The number of
図7に示す固定子20を得た後、図8に示すように、固定子20をフレーム40bに挿入して固定子20を焼き嵌めし。固定子20をフレーム40bに固定する。
After obtaining the
(5)固定子20の溶接部22
本実施形態の電動機10にかかる固定子20について、複数の分割コア21の溶接部22について説明する。図9は、本実施形態の固定子20の側面図であり、複数の分割コア21の溶接部22を示す図である。なお、図9は、X軸の正の方向から見たときの側面図である。
(5) Welded
Regarding the
図9に示すように、固定子20のZ軸に沿った両端すなわち第一縁20cまたは第二縁20dからZ軸方向に沿って最も近い連続した溶接部22の終端までの領域を第1領域R1とし、かつ固定子20のZ軸方向に沿った中央部を含む第1領域R1以外の領域を第2領域R2とする。
As shown in FIG. 9, the region from both ends of the
ここで、「連続した溶接部22」とは、固定子20が電磁鋼板で構成される場合、軸方向において3枚以上の電磁鋼板にわたって形成された溶接部22のことをいう。これに対し、本明細書では、軸方向において2枚以下の電磁鋼板にわたって形成される溶接部を「点溶接部」と称し、点溶接部は、連続した溶接部に含めないこととする。例えば、固定子の軸方向端に最も近い溶接部22が点溶接部である場合、第1領域の定義において当該点溶接部は考慮に入れない。
Here, "
なお、上述の定義において、第1領域R1と第2領域R2とが互いに重複する場合、第2領域を優先するものとする。すなわち、各溶接部22の長さや配置によっては、「固定子20の軸方向端からこれに最も近い連続した溶接部22の終端までの領域」内に「固定子の軸方向中央部」が含まれる場合がある。このような場合、「固定子の軸方向中央部」を含む領域が第2領域R2であることを優先し、当該領域を第2領域R2として扱うものとする。
In the above definition, if the first region R1 and the second region R2 overlap each other, the second region is given priority. In other words, depending on the length and arrangement of each
複数の分割コア21の間の複数の結合部(境界部)Jの全てにおいて、第2領域R2における溶接部の割合は、第1領域R1における溶接部22の割合よりも小さい。本実施形態では、第2領域R2が、溶接部22を含まない。なお、複数の結合部Jのうち少なくとも1つにおいて、第2領域R2における溶接部の割合が、第1領域R1における溶接部22の割合よりも小さければよい。
In all of the multiple joints (boundaries) J between the
第1領域R1は、固定子20のZ軸方向に沿った両端に近い位置に配置される。各第1領域R1の溶接部22は、固定子20のZ軸方向に沿って延びている。
The first regions R1 are located near both ends of the
固定子20の軸方向において、第2領域R2の長さに対する各第1領域R1の長さの比率は、例えば、1/4以上、1/2以下であってもよく、約1/3であってもよい。例えば、当該比率が1/3である場合、一方の第1領域R1、第2領域R2、および他方の第1領域R1の軸方向長さの比率は、1:3:1である。
In the axial direction of the
第1領域R1の溶接部は、固定子の軸方向に沿って延びていてもよい。隣り合う分割コア同士の境界が固定子の軸方向に沿って延びているため、この構成によると、溶接部の全体が隣り合う分割コア同士の結合に寄与する。したがって、複数の分割コア同士の結合強度を効果的に高めることができる。なお、第1領域R1の溶接部は、固定子の軸方向と交差する方向に延びていてもよい。 The welded portion of the first region R1 may extend along the axial direction of the stator. Since the boundary between adjacent split cores extends along the axial direction of the stator, this configuration allows the entire welded portion to contribute to the bonding of adjacent split cores. Therefore, the bonding strength between multiple split cores can be effectively increased. The welded portion of the first region R1 may extend in a direction that intersects with the axial direction of the stator.
第1領域R1は、固定子の軸方向の両端の近傍に配置されてもよい。この構成によると、2つの第1領域R1において、複数の分割コア同士の結合強度を容易に確保することができる。 The first regions R1 may be disposed near both ends of the stator in the axial direction. With this configuration, the bonding strength between the multiple split cores can be easily ensured in the two first regions R1.
第1領域R1は、固定子の軸方向一端の近傍のみに配置されてもよい。この構成によると、第1領域R1が1つのみなので、溶接を行うのに要する時間を短縮することができる。 The first region R1 may be located only near one axial end of the stator. With this configuration, since there is only one first region R1, the time required to perform welding can be reduced.
(6)第一変形例
本開示の実施形態にかかる電動機10が備える固定子20の第一変形例について説明する。図10は、本実施形態の電動機10の、第一変形例に係る固定子20の側面図であり、複数の分割コア21の溶接部22を示す図である。図10は、X軸の正の方向から見たときの側面図である。
(6) First Modification A first modification of the
本実施形態の電動機10の第一変形例にかかる固定子20は、図10に示すように、第1領域R1が、固定子20の第一縁20cの近傍のみに配置される。その他の構成は、上記実施形態と同様である。
As shown in FIG. 10, in the
すなわち、第2領域R2は、溶接部22を含まなくてもよい。この場合、第2領域R2における溶接部22の割合は、0%であり、電動機10のコギングトルクをより一層低減することができる。なお、第2領域R2は、溶接部22を含んでもよい。
In other words, the second region R2 does not have to include the welded
(6)第二変形例
本開示の実施形態にかかる電動機10が備える固定子20の第二変形例について説明する。図11は、本実施形態の固定子20の側面図であり、複数の分割コア21の溶接部22を示す図である。図11は、X軸の正の方向から見たときの側面図である。
(6) Second Modification A second modification of the
本実施形態の電動機10の第二変形例にかかる固定子20は、図11に示すように、第2領域R2にも溶接部22が形成される。ここで、第2領域R2における溶接部22の割合は、第1領域R1における溶接部22の割合よりも小さい。「溶接部22の割合」については、後程説明する。その他の構成は、上記実施形態1と同様である。
As shown in FIG. 11, the
(7)本開示にかかる電動機10が奏する効果等
以下、本開示にかかる電動機10が奏する効果等について説明する。
(7) Effects and Other Advantages of the
電動機10は、固定子20が焼き嵌めされるフレーム40bを備えている。焼き嵌めにより、固定子20の外周面は、収縮するフレーム40bの内周面によって圧縮力を受ける。これにより、固定子20の外周面20aの真円度が向上し、それに伴って固定子20の内周面20bの精度も向上する。この効果は、溶接部22の割合が少ない第2領域R2において特に有用である。そして、固定子の内周面の精度向上により、電動機のコギングトルクがより一層低減され得る。フレーム40bは、例えば、アルミニウムまたはアルミニウム合金で構成されてもよい。
The
なお、「固定子20の外周面20aの真円度」とは、固定子20の外周面20aを含む円筒面について、円筒面の軸が固定子の中心軸と一致し、かつその円筒面を固定子20の中心軸に垂直な面で切ってできる円が真円に近い度合いをいう。また、「固定子20の内周面20bの精度」とは、固定子20の内周面20bを含む円筒面について、円筒面の軸が固定子20の中心軸と一致し、かつ円筒面を固定子20の中心軸に垂直な面で切ってできる円が真円に近い度合いをいう。
The "roundness of the outer
本開示に係る電動機10の特徴として、複数の分割コア21の間の複数の結合部Jの少なくとも1つにおいて、第2領域R2における溶接部22の割合は、第1領域R1における溶接部22の割合よりも小さい。ここで、「溶接部22の割合」とは、固定子20の軸方向において、各領域の長さに対する溶接部の長さ(複数の溶接部が存在する場合、各溶接部の長さの合計)の比率のことをいう。すなわち、第1領域R1における溶接部22の割合とは、Z軸方向に沿って測定した、Z軸正方向またはZ軸負方向にある第1領域R1のそれぞれの全体の長さに対する溶接部22の長さの割合のことである。第2領域R2における溶接部22の割合とは、Z軸方向に沿って測定した、第2領域R2全体の長さに対する溶接部22の長さの割合のことである。例えば、固定子20の軸方向において、第1領域R1の長さが100mmであり、かつ第1領域R1における溶接部22の長さが50mmであれば、第1領域R1における溶接部22の割合は50%である。
As a feature of the
このような構成によると、第2領域R2において、固定子20の内周面20bの精度に対するレーザ溶接時の熱の影響が抑制される。第2領域R2は、固定子20の軸方向中央部を含む領域、すなわち固定子20の軸方向において相対的に磁束密度が高い領域である。逆に言えば、固定子20の軸方向端を含む領域である第1領域R1は、第2領域R2に比べて磁束密度が低い。このような磁束密度の高低差は、電動機10の軸方向端において磁束漏れが存在するために生じる。相対的に磁束密度が高い領域である第2領域R2において固定子20の内周面20bの精度が高く維持されるので、電動機10のコギングトルクを低減することができる。一方、第1領域R1における溶接により、複数の分割コア21同士の結合強度は十分に確保され得る。
With this configuration, the effect of heat during laser welding on the accuracy of the inner
なお、複数の分割コア21が存在するため、分割コア21同士の結合部Jも複数存在する。ここで、複数の結合部Jの間において、第1領域R1の軸方向寸法に対する第2領域R2の軸方向寸法の比率は、互いに同じであってもよいし異なってもよい。また、複数の結合部Jの間において、第1領域R1における溶接部22の割合は、互いに同じであってもよいし異なってもよい。同様に、複数の結合部Jの間において、第2領域R2における溶接部22の割合は、互いに同じであってもよいし異なってもよい。さらに、複数の結合部Jの間において、第1領域R1における溶接部22の割合に対する第2領域R2における溶接部22の割合の比率は、互いに同じであってもよいし異なってもよい。なお、本明細書において、結合部Jとは、分割コア21同士の結合における境界を意味し、溶接部22とは異なる概念である。その意味で、「複数の分割コア21の間の複数の結合部J」は、「複数の分割コア21の間の複数の境界部」と言い替えることもできる。
Note that since there are multiple
複数の結合部Jの全てにおいて、第2領域R2における溶接部22の割合は、第1領域R1における溶接部22の割合よりも小さくてもよい。この場合、上述のコギングトルク低減効果をより一層高めることができる。
In all of the multiple joints J, the proportion of welded
以上のように、本開示によれば、磁束密度の高い領域(第2領域R2)における溶接部22の割合を小さくすることで、電動機10のコギングトルクを低減することができる。
As described above, according to the present disclosure, the cogging torque of the
なお、本開示の電動機10は、例えば玩具や模型用の小型の電動機にも適用できるし、自動車や列車の駆動用の電動機にも適用でき、また工場や発電所用の電動機といった大型の電動機にも適用できる。
The
《付記》
以上の実施形態の記載により、下記の技術が開示される。
Additional Notes
The above description of the embodiments discloses the following techniques.
(技術1)
複数の分割コアが溶接により結合されてなる固定子と、
前記固定子と対向して配置される回転子と、を備え、
前記固定子の軸方向端からこれに最も近い連続した溶接部の終端までの領域を第1領域とし、かつ前記固定子の軸方向中央部を含む前記第1領域以外の領域を第2領域として、
前記複数の分割コアの間の複数の結合部の少なくとも1つにおいて、前記第2領域における溶接部の割合は、前記第1領域における溶接部の割合よりも小さい、電動機。
(Technique 1)
a stator formed by welding a plurality of split cores together;
a rotor disposed opposite the stator;
A region from an axial end of the stator to an end of a continuous weld closest thereto is defined as a first region, and a region other than the first region including an axial center portion of the stator is defined as a second region,
an electric motor, in which, in at least one of a plurality of joints between the plurality of split cores, a proportion of the weld in the second region is smaller than a proportion of the weld in the first region.
(技術2)
前記複数の結合部の全てにおいて、前記第2領域における溶接部の割合は、前記第1領域における溶接部の割合よりも小さい、技術1に記載の電動機。
(Technique 2)
The electric motor according to claim 1, wherein in all of the plurality of joints, a proportion of the welded portion in the second region is smaller than a proportion of the welded portion in the first region.
(技術3)
前記第2領域は、溶接部を含まない、技術1または2に記載の電動機。
(Technique 3)
The electric motor according to claim 1 or 2, wherein the second region does not include a welded portion.
(技術4)
前記回転子は、希土類磁石を有する、技術1~3のいずれか1つに記載の電動機。
(Technique 4)
The electric motor according to any one of claims 1 to 3, wherein the rotor has a rare earth magnet.
(技術5)
前記回転子は、スポーク状に配置された複数の永久磁石を有する、技術1~4のいずれか1つに記載の電動機。
(Technique 5)
The electric motor according to any one of claims 1 to 4, wherein the rotor has a plurality of permanent magnets arranged in a spoke shape.
(技術6)
前記固定子が焼き嵌めされるフレームをさらに備える、技術1~5のいずれか1つに記載の電動機。
(Technique 6)
The electric motor according to any one of claims 1 to 5, further comprising a frame to which the stator is shrink-fitted.
(技術7)
前記第1領域の前記溶接部は、前記固定子の軸方向に沿って延びている、技術1~6のいずれか1つに記載の電動機。
(Technique 7)
The electric motor according to any one of techniques 1 to 6, wherein the welded portion in the first region extends along the axial direction of the stator.
(技術8)
前記第1領域は、前記固定子の軸方向両端側に配置される、技術1~7のいずれか1つに記載の電動機。
(Technique 8)
The electric motor according to any one of claims 1 to 7, wherein the first region is arranged on both axial ends of the stator.
(技術9)
前記第1領域は、前記固定子の軸方向一端側のみに配置される、技術1~7のいずれか1つに記載の電動機。
(Technique 9)
The electric motor according to any one of claims 1 to 7, wherein the first region is disposed only on one axial end side of the stator.
本開示の電動機は、例えば玩具や模型用の小型の電動機にも適用できるし、自動車や列車の駆動用の電動機にも適用でき、また工場や発電所用の電動機といった大型の電動機にも適用できる。このように、本開示の電動機は、産業上有用である。 The electric motor of the present disclosure can be used, for example, as a small electric motor for toys or models, as an electric motor for driving automobiles or trains, and also as a large electric motor for use in factories or power plants. In this way, the electric motor of the present disclosure is industrially useful.
10:電動機
20:固定子
20a:外周面
20b:内周面
20c:第一縁
20d:第二縁
21:分割コア
21a:ヨーク部
21b:ティース部
22:溶接部
30:回転子
31:回転子コア
32:永久磁石
40:筐体
40a:上板
40b:フレーム
40c:底板
40d、40e:穴
50:軸
60:軸受
J:結合部
R1:第1領域
R2:第2領域
10: Motor 20:
Claims (9)
前記固定子と対向して配置される回転子と、を備え、
前記固定子の軸方向端からこれに最も近い連続した溶接部の終端までの領域を第1領域とし、かつ前記固定子の軸方向中央部を含む前記第1領域以外の領域を第2領域として、
前記複数の分割コアの間の複数の結合部の少なくとも1つにおいて、前記第2領域における溶接部の割合は、前記第1領域における溶接部の割合よりも小さい、電動機。 a stator formed by welding a plurality of split cores together;
a rotor disposed opposite the stator;
A region from an axial end of the stator to an end of a continuous weld closest thereto is defined as a first region, and a region other than the first region including an axial center portion of the stator is defined as a second region,
an electric motor, in which, in at least one of a plurality of joints between the plurality of split cores, a proportion of the weld in the second region is smaller than a proportion of the weld in the first region.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023-086459 | 2023-05-25 | ||
| JP2023086459 | 2023-05-25 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024241779A1 true WO2024241779A1 (en) | 2024-11-28 |
Family
ID=93589996
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/015356 Pending WO2024241779A1 (en) | 2023-05-25 | 2024-04-18 | Electric motor |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024241779A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102012200101A1 (en) * | 2012-01-05 | 2013-07-11 | Robert Bosch Gmbh | Stator component for inner runner motor in e.g. window lifter drive of motor car, has stator segments connected by welds, and stator tooth metal sheets of stator segments made two different materials, where one of materials is weldable |
| WO2018225296A1 (en) * | 2017-06-05 | 2018-12-13 | 株式会社Top | Rotor and rotary machine |
| JP2019201460A (en) * | 2018-05-15 | 2019-11-21 | 三菱電機株式会社 | Rotary electric machine |
| WO2020021702A1 (en) * | 2018-07-27 | 2020-01-30 | 三菱電機株式会社 | Stator, electric motor, compressor and air conditioning apparatus |
-
2024
- 2024-04-18 WO PCT/JP2024/015356 patent/WO2024241779A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102012200101A1 (en) * | 2012-01-05 | 2013-07-11 | Robert Bosch Gmbh | Stator component for inner runner motor in e.g. window lifter drive of motor car, has stator segments connected by welds, and stator tooth metal sheets of stator segments made two different materials, where one of materials is weldable |
| WO2018225296A1 (en) * | 2017-06-05 | 2018-12-13 | 株式会社Top | Rotor and rotary machine |
| JP2019201460A (en) * | 2018-05-15 | 2019-11-21 | 三菱電機株式会社 | Rotary electric machine |
| WO2020021702A1 (en) * | 2018-07-27 | 2020-01-30 | 三菱電機株式会社 | Stator, electric motor, compressor and air conditioning apparatus |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5046051B2 (en) | Axial gap type motor | |
| EP2549623B1 (en) | Rotor and method of manufacturing the rotor | |
| JP5108236B2 (en) | Rotor for motor | |
| CN101978584A (en) | Axial gap type motor and method of manufacturing rotor of motor | |
| CN111418131A (en) | Stator core and method for manufacturing stator core | |
| US12368363B2 (en) | Magnetic-geared motor and magnetic gear | |
| WO2011042984A1 (en) | Rotor and method for manufacturing same | |
| JP2010154610A (en) | Axial gap motor | |
| JP6630690B2 (en) | Rotating electric machine rotor | |
| JPWO2015174145A1 (en) | Permanent magnet embedded rotary electric machine | |
| JP2004180383A (en) | Stator and manufacturing method thereof | |
| JP4671250B1 (en) | Rotor for axial gap type motor and manufacturing method thereof | |
| JP5582383B2 (en) | Embedded magnet rotor | |
| JP2010119167A (en) | Axial gap motor, and method of manufacturing rotor thereof | |
| JP2014050218A (en) | Multi-gap type rotary electric machine | |
| WO2024241779A1 (en) | Electric motor | |
| CN211351843U (en) | Stator and rotating electrical machines | |
| JP5317621B2 (en) | Axial gap type motor | |
| JP2000184643A (en) | Outer rotor of wheel-in motor | |
| JP2010093928A (en) | Axial gap type motor | |
| JP5293313B2 (en) | Stator iron core | |
| JP2010017010A (en) | Axial gap motor | |
| JPH06253479A (en) | Stator core | |
| JP4305978B2 (en) | Rotating electric machine stator and rotating electric machine | |
| JP6745212B2 (en) | Rotor and reluctance rotating electric machine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24810787 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2025521877 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2025521877 Country of ref document: JP |