[go: up one dir, main page]

WO2024202136A1 - Epoxy resin composition, electronic component, semiconductor device, and semiconductor device manufacturing method - Google Patents

Epoxy resin composition, electronic component, semiconductor device, and semiconductor device manufacturing method Download PDF

Info

Publication number
WO2024202136A1
WO2024202136A1 PCT/JP2023/035949 JP2023035949W WO2024202136A1 WO 2024202136 A1 WO2024202136 A1 WO 2024202136A1 JP 2023035949 W JP2023035949 W JP 2023035949W WO 2024202136 A1 WO2024202136 A1 WO 2024202136A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
elastomer
composition according
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2023/035949
Other languages
French (fr)
Japanese (ja)
Inventor
裕 齊藤
貴之 大江
剛 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to CN202380092949.6A priority Critical patent/CN120641488A/en
Publication of WO2024202136A1 publication Critical patent/WO2024202136A1/en
Anticipated expiration legal-status Critical
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an epoxy resin composition, an electronic component, a semiconductor device, and a method for manufacturing a semiconductor device.
  • Wafer-level chip size packaging technology involves a process of encapsulating semiconductor elements with an encapsulant.
  • One encapsulation method suitable for wafer-level chip size packaging technology is compression molding.
  • Compression molding is a method in which a liquid encapsulant called liquid compression molding material is poured into the gap below the semiconductor element and the encapsulant is then hardened.
  • Patent Documents 1 and 2 propose a composition containing an epoxy resin, a hardener, and a filler.
  • a rewiring layer is formed on the portion of the hardened encapsulant that corresponds to the circuit surface of the semiconductor element.
  • the surface of the hardened encapsulant is polished using a method such as chemical mechanical polishing (CMP) to flatten the surface of the hardened encapsulant.
  • CMP chemical mechanical polishing
  • the present invention aims to provide an epoxy resin composition that can suppress the formation of small holes when the surface of a cured product is polished, an electronic component that uses the epoxy resin composition, and a semiconductor device that uses the epoxy resin composition and a method for manufacturing the same.
  • An epoxy resin composition comprising an epoxy resin, a curing accelerator, a filler, and an elastomer,
  • the elastomer is at least one selected from a solid elastomer and a liquid elastomer,
  • the solid elastomer is an epoxy resin composition having a structure having no double bond in the main chain.
  • An electronic part comprising a support and a cured product of the epoxy resin composition according to any one of (1) to (11).
  • a method for producing a semiconductor device comprising the steps of: filling a gap between a support and a semiconductor element disposed on the support with the epoxy resin composition according to any one of (1) to (11); curing the epoxy resin composition; and polishing the cured product of the epoxy resin composition.
  • the present invention provides an epoxy resin composition that can suppress the formation of small holes when the surface of a cured product is polished, an electronic component that uses the epoxy resin composition, and a semiconductor device that uses the epoxy resin composition and a method for manufacturing the same.
  • FIG. 1 is an SEM image of the surface of the cured epoxy resin material after the second polishing in Example 1.
  • FIG. 2 is an SEM image of the surface of the cured epoxy resin material after the second polishing in Comparative Example 1.
  • Epoxy resin composition contains an epoxy resin, a curing accelerator, a filler, and an elastomer, and preferably further contains a curing agent, and further contains other components as necessary.
  • the epoxy resin is not particularly limited as long as it is any of various epoxy resins generally used for semiconductor encapsulation and can be appropriately selected depending on the purpose, and examples thereof include aliphatic epoxy resins, aromatic epoxy resins, etc. These may be used alone or in combination of two types.
  • the aliphatic epoxy resin is contained in order to impart flexibility to the cured product of the epoxy resin composition (hereinafter also simply referred to as "cured product"), and examples thereof include monofunctional aliphatic epoxy resins, difunctional aliphatic epoxy resins, polyfunctional aliphatic epoxy resins, etc. These may be used alone or in combination of two or more.
  • Monofunctional aliphatic epoxy resins are compounds that have one epoxy group in the molecule, and examples include alkyl alcohol glycidyl ethers such as butyl glycidyl ether and 2-ethylhexyl glycidyl ether; and alkenyl alcohol glycidyl ethers such as vinyl glycidyl ether and allyl glycidyl ether.
  • Difunctional aliphatic epoxy resins are compounds that have two epoxy groups in the molecule, such as alkylene glycol diglycidyl ether, poly(alkylene glycol) diglycidyl ether, and alkenylene glycol diglycidyl ether.
  • the polyfunctional aliphatic epoxy resin is a compound having three or more epoxy groups in the molecule, and examples thereof include polyglycidyl ethers of trifunctional or higher alcohols such as trimethylolpropane triglycidyl ether, pentaerythritol (tri- or tetra-)glycidyl ether, and dipentaerythritol (tri-, tetra-, penta- or hexa-)glycidyl ether, pentaerythritol, and dipentaerythritol.
  • the upper limit of the number of epoxy groups is not particularly limited and can be appropriately selected depending on the purpose, but it is preferably 5 or less.
  • multifunctional epoxy resins are preferred from the standpoint of reliability (thermal cycle resistance) and other factors.
  • the number average molecular weight of the aliphatic epoxy resin is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 200 to 2,000 from the viewpoint of imparting flexibility to the cured product of the epoxy resin composition.
  • the number average molecular weight of the aliphatic epoxy resin can be measured by a general method for measuring number average molecular weight.
  • the aliphatic epoxy resin may be a synthetic product or a commercially available product.
  • Examples of commercially available products include Epogosey PT (general grade) (manufactured by Yokkaichi Synthetic Co., Ltd.), YX7400 (manufactured by Mitsubishi Chemical Corporation), SR-8EGS (manufactured by Sakamoto Pharmaceutical Co., Ltd.), and PG-207GS (manufactured by Nippon Steel Chemical & Material Co., Ltd.).
  • aromatic epoxy resins include glycidyl ethers of phenols, glycidyl ether esters of hydroxycarboxylic acids, monoglycidyl esters or polyglycidyl esters of carboxylic acids, glycidylamine type epoxy resins, aminophenol type epoxy resins, epoxy resins having a naphthalene skeleton, novolac resins, etc. These may be used alone or in combination of two or more.
  • Examples of glycidyl ethers of phenols include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, catechol, and resorcinol.
  • the glycidyl ethers of phenols may be synthesized or commercially available.
  • Examples of commercially available products include YDF8170 (manufactured by Nippon Steel Chemical & Material Co., Ltd.), YDF870GS (manufactured by Nippon Steel Chemical & Material Co., Ltd.), EXA-850CRP (manufactured by DIC Corporation), EXA-835LV (manufactured by DIC Corporation), and EP4005 (manufactured by ADEKA Corporation).
  • Examples of glycidyl ether esters of hydroxycarboxylic acids include p-hydroxybenzoic acid.
  • the glycidyl ether esters of hydroxycarboxylic acids may be either synthesized or commercially available.
  • monoglycidyl esters or polyglycidyl esters of carboxylic acids examples include benzoic acid, phthalic acid, and terephthalic acid.
  • the monoglycidyl esters or polyglycidyl esters of carboxylic acids may be either synthesized or commercially available.
  • Examples of glycidylamine type epoxy resins include diglycidyl aniline, diglycidyl toluidine, and tetraglycidyl-m-xylylenediamine.
  • the glycidylamine type epoxy resin may be a synthetic product or a commercially available product. Examples of commercially available products include EP3980S (manufactured by ADEKA Corporation) and ZX1059 (manufactured by Nippon Steel Chemical & Material Co., Ltd.).
  • aminophenol type epoxy resins examples include triglycidyl-p-aminophenol.
  • the aminophenol type epoxy resins may be synthetic or commercially available.
  • commercially available products include jER630 and jER630LSD (both manufactured by Mitsubishi Chemical Corporation) and EP3950L (manufactured by ADEKA Corporation).
  • Epoxy resins having a naphthalene skeleton include, for example, glycidyl esters of naphthol and glycidyl ether esters of ⁇ -hydroxynaphthoic acid.
  • the epoxy resins having a naphthalene skeleton may be synthesized or commercially available products. Examples of commercially available products include HP4032, HP4032D, and HP4032SS (all manufactured by DIC Corporation).
  • Novolac resins include, for example, compounds obtained by converting phenols such as phenol, catechol, and resorcinol into novolacs.
  • the novolac resin may be a synthetic product or a commercially available product.
  • An example of a commercially available product is jER152 (manufactured by Mitsubishi Chemical Corporation).
  • the epoxy resin is a mixture of an aliphatic epoxy resin and an aromatic epoxy resin, in order to improve the curing properties while maintaining the hardness of the cured epoxy resin.
  • the curing accelerator is contained in order to accelerate the crosslinking reaction between the epoxy resins and increase the curing rate of the epoxy resin.
  • the curing accelerator is homopolymerized with the epoxy resin. That is, the curing accelerator does not remain in the crosslinked structure formed by the epoxy resin.
  • the curing accelerator is not particularly limited as long as it can cure the epoxy resin, and can be appropriately selected depending on the purpose. From the viewpoint of reliability (thermal cycle resistance), however, a heterocyclic compound containing a nitrogen atom is preferable.
  • Heterocyclic compounds containing nitrogen atoms examples include imidazole derivatives and microencapsulated heterocyclic compounds containing a nitrogen atom.
  • imidazole derivative examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-imidazole, 2-phenylimidazole, 1-benzyl-2-phenylimidazole, benzimidazole, 2,4-diamino-6-[2'-methylimidazolyl-(1')]ethyl-s-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, and 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole.
  • the imidazole derivative may be a commercially available product or may be appropriately synthesized.
  • Examples of commercially available products include 2P4MZ (2-phenyl-4-methylimidazole), 2MZA (2,4-diamino-6-[2'-methylimidazolyl-(1')]ethyl-s-triazine, 2-phenyl-4-methylimidazole) (both manufactured by Shikoku Chemical Industry Co., Ltd.).
  • the microencapsulated nitrogen-containing heterocyclic compound may be a commercially available product or may be appropriately synthesized.
  • Commercially available products include, for example, Novacure HX3941HP, Novacure HXA3042HP, Novacure HXA3922HP, Novacure HXA3792, Novacure HX3748, Novacure HX3721, Novacure HX3722, Novacure HX3088, Novacure HX3741, Novacure HX3742, Novacure HX3613 (all manufactured by Asahi Kasei Corporation), Amicure PN-23J, Amicure PN-40J (all manufactured by Ajinomoto Fine-Techno Co., Ltd.), and Fujicure FXR-1121 (manufactured by Fuji Kasei Kogyo Co., Ltd.). These may be used alone or in combination of two or more types.
  • the nitrogen-containing heterocyclic compounds are preferably 2-phenyl-4-methylimidazole and 2,4-diamino-6-[2'-methylimidazolyl-(1')]ethyl-s-triazine in terms of reactivity and storage stability.
  • the content of the nitrogen-containing heterocyclic compound is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 2.0% by mass to 8.0% by mass, and more preferably 2.5% by mass to 6.0% by mass, based on the epoxy resin composition excluding the filler described below.
  • the content of the nitrogen-containing heterocyclic compound is 2.0% by mass or more, the curing time of the epoxy resin composition can be shortened, and the productivity of electronic component devices is improved.
  • the content of the nitrogen-containing heterocyclic compound is 8.0% by mass or less, the storage stability of the epoxy resin composition is improved.
  • the content of the microencapsulated nitrogen-containing heterocyclic compound is preferably 3% by mass to 25% by mass, more preferably 5% by mass to 20% by mass, based on the epoxy resin composition excluding the filler as the active ingredient (heterocyclic compound containing nitrogen).
  • the content of the microencapsulated nitrogen-containing heterocyclic compound is 3% by mass or more, the curing time of the epoxy resin composition can be accelerated, and the productivity of the electronic component device can be improved.
  • the content of the microencapsulated nitrogen-containing heterocyclic compound is 25% by mass or less, the viscosity does not increase and the workability can be prevented from decreasing.
  • the filler is contained in the epoxy resin composition in order to adjust the properties of the cured product (mainly the linear expansion coefficient, elastic modulus, and water absorption).
  • the filler is not particularly limited and can be selected appropriately depending on the purpose.
  • the filler include silica such as fused silica and crystalline silica; calcium carbonate, clay, alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate. These may be used alone or in combination of two or more. Among these, silica filler and alumina filler are preferred because they can increase the loading amount.
  • the filler may be a synthetic product or a commercially available product.
  • Examples of commercially available products include silica fillers such as SE101G-SMO (manufactured by Admatechs Co., Ltd.), SE605G-SMG (manufactured by Admatechs Co., Ltd.), and STW7010-20 (manufactured by Nippon Steel Chemical & Material Co., Ltd.), and alumina fillers such as AG2051-SXM (manufactured by Admatechs Co., Ltd.).
  • silica fillers such as SE101G-SMO (manufactured by Admatechs Co., Ltd.), SE605G-SMG (manufactured by Admatechs Co., Ltd.), and STW7010-20 (manufactured by Nippon Steel Chemical & Material Co., Ltd.)
  • alumina fillers such as AG2051-SXM (manufactured by Admatechs Co., Ltd.
  • the filler may be surface-treated.
  • the surface treatment agent there are no particular limitations on the surface treatment agent, and it can be selected appropriately depending on the purpose.
  • a silane coupling agent can be used.
  • silane coupling agent there are no particular limitations on the silane coupling agent, and it can be selected appropriately depending on the purpose. Examples include epoxy, methacrylic, amino, vinyl, glycidoxy, and mercapto types. Commercially available products include KBM403, KBE403, KBM503, and KBM573 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the volume average particle size of the filler is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 0.1 ⁇ m to 15.0 ⁇ m, and more preferably 0.3 ⁇ m to 10.0 ⁇ m.
  • the volume average particle size refers to a particle size at which the volume cumulative particle size distribution measured by laser diffraction method is 50%.
  • the shape of the filler is not particularly limited and can be selected appropriately depending on the purpose. Examples include spherical, irregular, and flaky shapes.
  • the filler content is preferably 73.0% by mass to 87.5% by mass, and more preferably 75.0% by mass to 85.0% by mass, from the viewpoint of reducing the linear expansion coefficient of the cured product of the epoxy resin composition and workability. If the filler content is 73.0% by mass or less, the linear expansion coefficient of the cured product of the epoxy resin composition will be high, and warping may become significant. If the filler content is 87.5% by mass or more, the viscosity of the epoxy resin composition will be high, which may reduce workability.
  • the elastomer is contained in order to impart injectability to the epoxy resin composition and to improve the adhesive strength of the cured product of the epoxy resin composition.
  • the elastomer is at least one selected from a solid elastomer having a structure without a double bond in the main chain and a liquid elastomer, from the viewpoint of suppressing the generation of small holes when the surface of the cured product is polished. These may be used alone or in combination of two kinds.
  • the first is the falling off of the elastomer portion present in the cured product of the epoxy resin composition.
  • cured products of elastomers have high abrasion resistance.
  • the elastomer portion in the cured product of the epoxy resin composition is polished together with the epoxy resin and filler, etc., and falls off from the surface of the cured product of the epoxy resin composition. This fallen elastomer portion becomes a small hole.
  • the second is the falling off of the filler present in the cured product of the epoxy resin composition.
  • the filler falls off without being polished, similar to the elastomer portion described above.
  • the third is damage to the polished surface of the cured product of the epoxy resin composition.
  • the surface of the cured product of the epoxy resin composition is not polished, but a physical impact is applied, resulting in small holes. Therefore, in the present embodiment, an elastomer having low abrasion resistance is used, which is believed to be able to suppress the generation of small holes when the surface of the cured product is polished.
  • a solid elastomer is an elastomer that is solid at room temperature (25°C) and has a structure that does not have a double bond in the main chain.
  • An example of an elastomer that does not have a double bond in the main chain is silicone. Silicone has a siloxane bond and has low surface abrasion resistance due to polishing, etc., so that it can suppress small holes that occur when the surface of the cured product is polished and flattened.
  • the solid elastomer is preferably a core-shell type elastomer, which means that the outside of the core is covered with a material different from that of the core.
  • the core-shell type elastomer used in the embodiments is preferably an elastomer using a silicone resin for the core and an acrylic copolymer for the shell, since it exhibits a low elastic modulus within the temperature range in which the epoxy resin composition is used and can reduce the shrinkage stress of the epoxy resin composition.
  • the components of the epoxy resin composition may be mixed together at the same time, but it is preferable to disperse the elastomer in the epoxy resin before mixing, i.e., to carry out master batch processing and then mix it with other epoxy resin composition components to produce the epoxy resin composition.
  • the liquid elastomer is also called a liquid elastomer, and is an elastomer that is liquid at room temperature (25° C.).
  • the liquid elastomer is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a copolymer of butadiene and acrylonitrile (butadiene-acrylonitrile copolymer).
  • the elastomer content is preferably 5.0% by mass or more, more preferably 5.0% by mass to 20.0% by mass, and even more preferably 8.0% by mass to 17.0% by mass, based on the components excluding the filler from the epoxy resin composition. If the elastomer content falls within this range, the adhesive strength can be improved and a decrease in workability due to high viscosity can be prevented.
  • the curing agent is contained in order to cure the epoxy resin.
  • the curing agent undergoes addition polymerization with the epoxy resin. That is, the curing agent enters into the crosslinked structure formed by the epoxy resin.
  • the curing agent is not particularly limited as long as it can cure the epoxy resin, and can be appropriately selected according to the purpose, and examples thereof include phenol-based curing agents, amine-based curing agents, and acid anhydride-based curing agents. These may be used alone or in combination of two or more.
  • the content of the curing agent is not particularly limited and can be appropriately selected depending on the purpose, but the stoichiometric equivalent ratio with the epoxy resin (curing agent equivalent/epoxy group equivalent) is preferably 0.01 to 1.00, more preferably 0.01 to 0.50, and even more preferably 0.08 to 0.30.
  • the content of the curing agent is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 0.5% by mass to 2.0% by mass, and more preferably 0.5% by mass to 1.0% by mass.
  • the other components are not particularly limited as long as they are those used in ordinary epoxy resin compositions and can be appropriately selected depending on the purpose, and examples thereof include colorants such as coupling agents, dyes, pigments, and carbon black; silicone oils; surfactants; antioxidants; conventionally known flame retardants such as antimony oxides such as antimony trioxide, antimony tetraoxide, and antimony pentoxide, and brominated epoxy resins; ion trapping agents; leveling agents; antifoaming agents; reactive diluents, etc. These may be used alone or in combination of two or more.
  • the content of other ingredients is not particularly limited and can be selected appropriately depending on the purpose.
  • the viscosity of the epoxy resin composition at 25° C. is preferably 1,000 Pa ⁇ s or less, more preferably 700 Pa ⁇ s or less, and even more preferably 500 Pa ⁇ s or less. From the viewpoint of handling, the viscosity of the epoxy resin composition at 25° C. is preferably 150 Pa ⁇ s or more. In this specification, the viscosity is measured using an HB-DV type viscometer at a rotation speed of 10 rpm.
  • the viscosity of the epoxy resin composition in the embodiment at 120° C. is preferably 0.5 Pa ⁇ s to 40.0 Pa ⁇ s.
  • the viscosity at 120° C. can be measured by a rheometer.
  • the number of small holes per given area after the surface of the cured product is polished by the first polishing and the second polishing is 10 or less.
  • the small holes referred to here are holes with a diameter of 0.05 ⁇ m to 0.5 ⁇ m among the holes on the surface of the cured material after polishing.
  • the diameter refers to the maximum length of a line connecting two points on the periphery of the small hole, and the same applies when the hole is elliptical rather than circular.
  • the depth of the holes is set to 0.03 ⁇ m to 0.3 ⁇ m.
  • the first polishing is performed by roughly polishing (grinding) the surface of the cured product. Specifically, it is performed using waterproof abrasive paper. Examples of the abrasive grain size of the abrasive paper include #600, #800, and #1200. Examples of the polishing conditions when forming a polished surface by the first polishing include the following conditions.
  • the surface of the cured product is polished using a Struers automatic polishing machine (Tegramin-20, manufactured by Struers) under the following conditions.
  • Abrasive material Water-resistant abrasive paper #600 Polishing time: 3 minutes.
  • the rotation speed and polishing load were as follows. Rotation speed: 150 rpm Polishing load: 10N
  • the second polishing is performed by a liquid containing an abrasive after the first polishing.
  • the liquid containing an abrasive may be, for example, a liquid in which abrasive grains are dispersed in water.
  • the liquid containing an abrasive may also be an abrasive slurry.
  • the second polishing is chemical mechanical polishing (CMP), that is, polishing by a polishing pad and a polishing slurry.
  • CMP chemical mechanical polishing
  • the polishing conditions when forming a polished surface by the second polishing include, for example, the following conditions.
  • Step 1 Polishing material Diamond slurry (Engis Japan Co., Ltd., 6-PC, 6 ⁇ slurry (particle size range: 4 ⁇ m to 8 ⁇ m)) Polishing time: 6 minutes
  • Step 2 Polishing material Diamond slurry (Engis Japan Co., Ltd., 1-PC, 1 ⁇ slurry (particle size range: 0 ⁇ m to 2 ⁇ m)) Polishing time: 3 minutes
  • Step 3 Polishing member Diamond slurry (Master prep, manufactured by BUEHLER, average particle size 0.05 ⁇ m) Polishing time: 2 minutes.
  • the rotation speed and polishing load in steps 1 to 3 are as follows. Rotation speed: 150 rpm Polishing load: 10N
  • the arithmetic mean roughness Ra of the polished surface of the cured product after the second polishing is preferably 500 nm or less, more preferably 300 nm or less, and even more preferably 100 nm or less.
  • There is no particular lower limit for the arithmetic mean roughness Ra of the polished surface and examples include 10 nm or more, 20 nm or more, etc.
  • the arithmetic surface roughness Ra of the polished surface can be calculated, for example, by measuring the surface of the cured epoxy resin composition after the second polishing using a confocal scanning electron microscope (OPTELICS H1200, manufactured by Lasertec Corporation) and using the method specified in JIS B 0601:2001.
  • OTELICS H1200 manufactured by Lasertec Corporation
  • the number of small holes on the surface of the cured epoxy resin composition polished by the first polishing and the second polishing can be measured by observing the surface with a scanning electron microscope (SEM) at a magnification of 5,000 times.
  • the predetermined area in the above refers to one visual field in SEM observation, and is about 3.9 ⁇ m2 .
  • the shading of the image obtained is determined according to the electron density, i.e., the shading in the SEM image is determined according to the type of compound.
  • the method for producing the epoxy resin composition according to the embodiment is not particularly limited and can be appropriately selected depending on the purpose.
  • the method includes mixing and stirring the above-mentioned components.
  • the epoxy resin is in a solid state, it is preferable to liquefy and fluidize it by heating or the like before mixing.
  • the components may be mixed simultaneously, or some of the components may be mixed first and the remaining components may be mixed later. If it is difficult to uniformly disperse the filler in the epoxy resin, the epoxy resin and filler may be mixed first and the remaining components may be mixed later.
  • the equipment used for mixing and stirring is not particularly limited and can be selected appropriately depending on the purpose. Examples include roll mills, ball mills, planetary mixers, bead mills, Henschel mixers, and Raikai machines equipped with a stirrer and a heater.
  • the epoxy resin composition according to the embodiment is an epoxy resin composition that can suppress the generation of small holes when the surface of a cured product is polished, and therefore can be suitably used as a liquid compression molding material.
  • the electronic component according to this embodiment has a support and a cured product of the above-mentioned epoxy resin composition.
  • the electronic component may be, for example, one in which a semiconductor element and a support are sealed with an epoxy resin composition.
  • the support is not particularly limited as long as it is capable of fixing a semiconductor element, and can be appropriately selected depending on the purpose.
  • a substrate and the like can be mentioned.
  • the substrate is not particularly limited and can be appropriately selected depending on the purpose.
  • the substrate include a lead frame, a pre-wired tape carrier, a wiring board, glass, and a silicon wafer.
  • the size, shape and material of the substrate are not particularly limited as long as they are commonly used as substrates, and can be appropriately selected depending on the purpose.
  • the semiconductor element is not particularly limited and can be appropriately selected depending on the purpose.
  • Examples of the semiconductor element include active elements such as semiconductor chips, transistors, diodes, and thyristors; and passive elements such as capacitors, resistors, resistor arrays, coils, and switches. There are no particular limitations on the size, shape, and material of the semiconductor element, so long as they are used as ordinary semiconductor elements, and they can be appropriately selected depending on the purpose.
  • the cured epoxy resin composition is provided between the support and the semiconductor element.
  • the thickness of the cured product of the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose.
  • the thickness is from 10 ⁇ m to 800 ⁇ m.
  • the shape of the cured product of the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose.
  • the semiconductor device (semiconductor package) according to this embodiment includes the above-mentioned electronic components, and further includes other members as necessary.
  • the other members are not particularly limited and can be appropriately selected depending on the purpose.
  • the method for manufacturing a semiconductor device includes a step of filling with an epoxy resin composition, a step of curing the epoxy resin composition, and a step of polishing the cured product of the epoxy resin composition, and may further include other steps as necessary.
  • the step of filling the epoxy resin composition is a step of filling the gap between the support and the semiconductor element disposed on the support with the epoxy resin composition.
  • the method of filling the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a dispense method, a casting method, a printing method, and the like.
  • the amount of the epoxy resin composition to be filled is not particularly limited and can be appropriately selected depending on the purpose. For example, the amount is such that the thickness of the cured product of the epoxy resin composition is 10 ⁇ m or more and 800 ⁇ m or less.
  • the step of curing the epoxy resin composition is a step of curing the epoxy resin composition between the support and the semiconductor element.
  • the method for curing the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose. Examples of the method include a method in which a support, an epoxy resin composition, and a semiconductor element are heated and cured while being compressed under reduced pressure (compression molding), a method in which a dispensed epoxy resin composition is heated and cured in a dryer, and a method in which a stencil-printed epoxy resin composition is heated and cured in a dryer.
  • the step of polishing the cured product of the epoxy resin composition is a step of polishing the surface of the obtained cured product of the epoxy resin composition to make the surface of the cured product flat.
  • the polishing method is not particularly limited and can be appropriately selected depending on the purpose. For example, the above-mentioned first polishing method and second polishing method can be mentioned.
  • the other steps are not particularly limited and can be appropriately selected depending on the purpose. For example, there are a step of disposing a semiconductor element on a support, a step of forming a rewiring layer, and the like.
  • Epoxy resin compositions were prepared according to the formulations shown in Tables 1 to 4.
  • the epoxy resin, curing accelerator, filler, elastomer, curing agent, and coupling agent were weighed, dispersed in a ceramic triple roll mill (manufactured by Inoue Seisakusho Co., Ltd.), and made into a paste to prepare the epoxy resin composition. Unless otherwise specified, the values in the tables represent parts by mass.
  • the epoxy resins used in the examples and comparative examples are as follows.
  • Bisphenol F type epoxy resin (YDF8170, epoxy equivalent 158 g/eq., manufactured by Nippon Steel Chemical & Material Co., Ltd.)
  • Aminophenol type epoxy resin (jER 630, epoxy equivalent 98 g/eq., manufactured by Mitsubishi Chemical Corporation)
  • Aliphatic epoxy resin (Epogose PT (general grade), epoxy equivalent 435 g/eq., manufactured by Yokkaichi Synthetic Co., Ltd.)
  • the curing accelerators used in the examples and comparative examples are as follows.
  • Imidazole compound (2P4MHZ, manufactured by Shikoku Chemical Industries Co., Ltd.)
  • the fillers used in the examples and comparative examples are as follows.
  • Silica filler 1 SE605G-SMG, surface treated with 3-methacryloxypropyltrimethoxysilane, average particle size 1.8 ⁇ m, top cut diameter 5 ⁇ m, manufactured by Admatechs Co., Ltd.
  • Silica filler 2 SE101G-SMO, surface treated with 3-methacryloxypropyltrimethoxysilane, average particle size 0.3 ⁇ m, top cut diameter 1 ⁇ m, manufactured by Admatechs Co., Ltd.
  • the elastomers used in the examples and comparative examples are as follows. Silicone rubber (core-shell type) (core-shell type silicone rubber particles, MX-965, manufactured by Kaneka Corporation, elastomer component 25%) Silicone composite powder (KMP605, manufactured by Shin-Etsu Chemical Co., Ltd., 100% elastomer component) - Butadiene-acrylonitrile copolymer (carboxyl-terminated butadiene-acrylonitrile copolymer, CTBN1008SP, manufactured by Chori GLEX Co., Ltd., elastomer component 100%) Butadiene rubber (core-shell type) (core-shell type butadiene rubber particles, MX-137, manufactured by Kaneka Corporation, elastomer component 33%) Polybutyl acrylate rubber (core-shell type) (core-shell type polybutyl acrylate rubber particles, ALBIDURE EP XP powder, manufactured by EVONIK, elastomer component 100%) Silicone-acrylic
  • the curing agents used in the examples and comparative examples are as follows. Phenol-based hardener (MEH-8005, hydroxyl equivalent 139 g/eq. to 143 g/eq., manufactured by Meiwa Kasei Co., Ltd.) Amine-based hardener (ETHACURE 100 PLUS, manufactured by Albemarle) ⁇ Acid anhydride curing agent (HN-2200, manufactured by Showa Denko Materials Co., Ltd.)
  • Coupling agent (3-isocyanatepropyltriethoxysilane, KBE-9007, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the obtained epoxy resin composition was measured and evaluated for viscosity, hot viscosity, adhesive strength, number of holes on the surface after polishing, and surface roughness. The measurement and evaluation results are shown in Tables 1 to 4.
  • HB-DV HB-DV type viscometer
  • Viscosity is 1,000 Pa ⁇ s or less
  • B Viscosity is more than 1,000 Pa ⁇ s
  • the hot viscosity at 120°C was measured using a rheometer (MARSIII, manufactured by HAAKE Corporation).
  • Each epoxy resin composition (0.3 mL ⁇ 0.1 mL) was placed on a plate heated to 120°C, and measurement was started with a measurement frequency of 10 Hz, a strain amount of 0.5, a gap of 0.5 mm, and a measurement frequency of 1 second. The hot viscosity after 40 seconds was measured, and this was taken as the measurement result of the hot viscosity at 120°C.
  • ⁇ Adhesive strength> Each epoxy resin composition was attached to a 10 mm square silicon chip using a mold so as to form a truncated cone shape with a bottom diameter of 5 mm, a top diameter of 3 mm, and a height of 6 mm, and then cured for 2 hours at 150° C. to prepare a test specimen.
  • the resin portion of the test specimen was peeled off with a bond tester (Dage 4000, manufactured by Nordson Advanced Technologies) to measure the shear bond strength.
  • the adhesive strength was evaluated based on the shear adhesive strength value and the following evaluation criteria.
  • B Shear adhesive strength is 6 MPa or more and less than 8 MPa.
  • C Shear adhesive strength is less than 6 MPa.
  • Each epoxy resin composition was compression molded onto a 12-inch silicon wafer to a thickness of 300 ⁇ m. The wafer was then cut into approximately 50 individual pieces, and the surface of the cured epoxy resin composition on each individual silicon wafer was polished by the first polishing method and then by the second polishing method.
  • the first polishing method was polishing with a waterproof abrasive paper (#600) using a polishing machine (Tegramin-20, manufactured by Struers).
  • the polishing time was 3 minutes, the rotation speed was 150 rpm, and the polishing load was 10 N.
  • the second polishing method was carried out using a polishing machine (Tegramin-20, manufactured by Struers) in the order of steps 1 to 3 shown below.
  • Step 1 Polishing material Diamond slurry (Engis Japan Co., Ltd., 6-PC, 6 ⁇ slurry (particle size range: 4 ⁇ m to 8 ⁇ m)) Polishing time: 6 minutes
  • Step 2 Polishing material Diamond slurry (Engis Japan Co., Ltd., 1-PC, 1 ⁇ slurry (particle size range: 0 ⁇ m to 2 ⁇ m)) Polishing time: 3 minutes
  • Step 3 Polishing member Diamond slurry (Master prep, manufactured by BUEHLER, average particle size 0.05 ⁇ m) Polishing time: 2 minutes
  • the rotation speed and polishing load in steps 1 to 3 were as follows. Rotation speed: 150 rpm Polishing load: 10N
  • the polished surface of the cured epoxy resin composition was observed with a SEM (MERLIN, manufactured by ZEISS) at a magnification of 50,000 times, the number of holes with diameters of 0.05 ⁇ m to 0.50 ⁇ m present in one field of view was counted, and the surface condition after polishing was evaluated based on the following evaluation criteria.
  • the SEM image of Example 1 is shown in FIG. 1, and the SEM image of Comparative Example 1 is shown in FIG. 2.
  • the area of one field of view in 50,000x SEM observation is approximately 3.9 ⁇ m2 .
  • B The number of holes of 0.05 ⁇ m to 0.50 ⁇ m on the polished surface is 10 or more.
  • Ra surface roughness
  • the surface of the cured epoxy resin composition after the second polishing was measured using a confocal scanning electron microscope (OPTELICS H1200, manufactured by Lasertec Corporation), and Ra was calculated according to the method specified in JIS B 0601:2001.
  • the measurement conditions were as follows: scan width was 100 ⁇ m, scan type was area, light source was Blue, cutoff value was 1/5, object lens was x100, contact lens was x14, digital zoom was x1, and Z pitch was 10 nm.
  • the Ra value was measured at three locations and the average value was calculated.
  • the epoxy resin compositions of the Examples were all rated as "A" for the number of pores on the polished surface. These epoxy resin compositions were epoxy resin compositions that could suppress the generation of small pores when the surface of a cured product was polished.
  • Comparative Examples 1 to 4 in which a solid elastomer having a double bond in the main chain was used as the elastomer, the number of pores on the surface after polishing was all rated as "B.” From these results, it became clear that an epoxy resin composition containing a solid elastomer or liquid elastomer having no double bond in the main chain as the elastomer can suppress the generation of small pores when the surface of the cured product is polished.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

To provide: an epoxy resin composition capable of suppressing small pores generated when the surface of a cured product thereof is polished; an electronic component using the epoxy resin composition; a semiconductor device using the epoxy resin composition; and a method for manufacturing the semiconductor device. The epoxy resin composition contains an epoxy resin, a curing accelerator, a filler, and an elastomer. The elastomer is at least one selected from a solid elastomer and a liquid elastomer. The solid elastomer has a structure in which a double bond is not included in the main chain.

Description

エポキシ樹脂組成物、電子部品、半導体装置、半導体装置の製造方法Epoxy resin composition, electronic component, semiconductor device, and method for manufacturing semiconductor device

 本発明は、エポキシ樹脂組成物、電子部品、半導体装置、及び半導体装置の製造方法に関する。 The present invention relates to an epoxy resin composition, an electronic component, a semiconductor device, and a method for manufacturing a semiconductor device.

 パソコン、スマートフォンなど、半導体素子が実装される半導体装置は、小型化、及び高機能化が急速に進行している。それに伴い、半導体素子の実装方法について改良が進んでいる。そのうちの一つに、パッケージの作製方法の改良がある。
 従来、パッケージは、半導体素子を個片化してから作製されていたため、パッケージの大きさは必ず半導体素子より大きくなる。このため、従来のパッケージの作製方法により得られたパッケージは、小型の半導体装置には搭載できなかった。
 そこで、半導体素子を個片化する前のウェハーの状態でパッケージを作製する技術(以下、ウェハーレベルチップサイズパッケージ技術)が用いられるようになっている。
Semiconductor devices in which semiconductor elements are mounted, such as personal computers and smartphones, are rapidly becoming smaller and more functional. Accordingly, improvements have been made to the methods of mounting semiconductor elements. One of these improvements is the improvement of the package manufacturing method.
Conventionally, packages were produced after semiconductor elements were separated into individual pieces, so the size of the package was always larger than the semiconductor element, and therefore the package obtained by the conventional package production method could not be mounted on a small semiconductor device.
Therefore, a technology for producing packages in the wafer state before the semiconductor elements are diced (hereinafter referred to as wafer level chip size packaging technology) has come to be used.

 ウェハーレベルチップサイズパッケージ技術においては、半導体素子を封止材により封止する工程がある。ウェハーレベルチップサイズパッケージ技術に適した封止方法として、圧縮成形がある。圧縮成形は、半導体素子の下部の空隙に液状コンプレッションモールド材と呼ばれる液状の封止材を入れ、封止材を硬化させる方法である。 Wafer-level chip size packaging technology involves a process of encapsulating semiconductor elements with an encapsulant. One encapsulation method suitable for wafer-level chip size packaging technology is compression molding. Compression molding is a method in which a liquid encapsulant called liquid compression molding material is poured into the gap below the semiconductor element and the encapsulant is then hardened.

 このような液状の封止材として、例えば、特許文献1及び2には、エポキシ樹脂、硬化剤、フィラーを含有する組成物が提案されている。 As such a liquid sealing material, for example, Patent Documents 1 and 2 propose a composition containing an epoxy resin, a hardener, and a filler.

国際公開第2018/221681号パンフレットInternational Publication No. 2018/221681 特開2015-105304号公報JP 2015-105304 A

 ウェハーレベルチップサイズパッケージ技術では、封止材により封止を行った後に、封止材の硬化物のうち半導体素子の回路面に相当する部分に再配線層を形成する。ここで、再配線層を形成する前に、封止材の硬化物表面に対して化学的研磨(CMP:Chemical Mechanical Polishing)法などによる研磨処理を行い、硬化物表面を平坦にする。 In wafer-level chip-size packaging technology, after sealing with an encapsulant, a rewiring layer is formed on the portion of the hardened encapsulant that corresponds to the circuit surface of the semiconductor element. Before forming the rewiring layer, the surface of the hardened encapsulant is polished using a method such as chemical mechanical polishing (CMP) to flatten the surface of the hardened encapsulant.

 しかしながら、CMP法を用いて封止材の硬化物表面を研磨した場合、硬化物表面に小孔が発生することがある。このような小孔は、再配線層の厚みを均一にする際に影響を与える可能性がある。再配線層の厚みが均一でない場合、再配線層と半導体素子の回路面又ははんだボールとの接触が不良となる。その結果、半導体素子を半導体装置に実装した際に、半導体素子とその他の半導体素子などとの電気的な接続が均一とはならず、半導体装置に不具合が発生する可能性がある。 However, when the cured surface of the encapsulant is polished using the CMP method, small holes may occur on the cured surface. Such small holes may affect the uniformity of the thickness of the redistribution layer. If the thickness of the redistribution layer is not uniform, the contact between the redistribution layer and the circuit surface or solder balls of the semiconductor element will be poor. As a result, when the semiconductor element is mounted on a semiconductor device, the electrical connection between the semiconductor element and other semiconductor elements will not be uniform, and this may cause defects in the semiconductor device.

 本発明は、硬化物表面を研磨した場合に発生する小孔を抑制できるエポキシ樹脂組成物、当該エポキシ樹脂組成物を用いた電子部品、並びに当該エポキシ樹脂組成物を用いた半導体装置及びその製造方法の提供を目的とする。 The present invention aims to provide an epoxy resin composition that can suppress the formation of small holes when the surface of a cured product is polished, an electronic component that uses the epoxy resin composition, and a semiconductor device that uses the epoxy resin composition and a method for manufacturing the same.

 前記目的を達成するため、本発明の一実施形態は、以下のとおりである。
 (1) エポキシ樹脂、硬化促進剤、フィラー、及びエラストマーを含有するエポキシ樹脂組成物であって、
 前記エラストマーが、固体エラストマー、及び液体エラストマーから選択される少なくとも1種であり、
 前記固体エラストマーが、主鎖に二重結合を有さない構造であるエポキシ樹脂組成物である。
 (2) エポキシ樹脂組成物の硬化物表面を、粗く研磨する第一の研磨及び研磨剤を含有する液体により研磨する第二の研磨にて研磨した後に、硬化物表面に存在する直径0.05μm~0.5μmの孔の数が、所定面積あたり10個以下である前記(1)に記載のエポキシ樹脂組成物である。
 (3) エラストマーの含有量が、前記エポキシ樹脂組成物から前記フィラーを除いた成分に対して、5.0質量%以上である前記(1)又は(2)に記載のエポキシ樹脂組成物である。
 (4) 固体エラストマーが、コアシェル型である前記(1)から(3)のいずれか一つに記載のエポキシ樹脂組成物である。
 (5) エラストマーの含有量が、前記エポキシ樹脂組成物から前記フィラーを除いた成分に対して、5.0質量%~20.0質量%である前記(1)から(4)のいずれか一つに記載のエポキシ樹脂組成物である。
 (6) フィラーの含有量が、73.0質量%~87.5質量%である前記(1)から(5)のいずれか一つに記載のエポキシ樹脂組成物である。
 (7) 120℃での粘度が、0.5Pa・s~40.0Pa・sである前記(1)から(6)のいずれか一つに記載のエポキシ樹脂組成物である。
 (8) 硬化促進剤が、窒素原子を含有する複素環化合物である前記(1)から(7)のいずれか一つに記載のエポキシ樹脂組成物である。
 (9) フェノール系硬化剤、アミン系硬化剤、及び酸無水物系硬化剤から選択される少なくとも1種の硬化剤を含有する前記(1)から(8)のいずれか一つに記載のエポキシ樹脂組成物である。
 (10) エポキシ樹脂が、脂肪族エポキシ樹脂、及び芳香族エポキシ樹脂から選択される少なくとも1種である前記(1)から(9)のいずれか一つに記載のエポキシ樹脂組成物である。
 (11) 液状コンプレッションモールド材として用いられる前記(1)から(10)のいずれか一つに記載のエポキシ樹脂組成物である。
 (12) 支持体と、前記(1)から(11)のいずれか一つに記載のエポキシ樹脂組成物の硬化物を有する電子部品である。
 (13) 前記(12)に記載の電子部品を有する半導体装置である。
 (14) 支持体と、前記支持体に配されている半導体素子との間の空隙を前記(1)から(11)のいずれか一つに記載のエポキシ樹脂組成物により充填する工程、前記エポキシ樹脂組成物を硬化させる工程、及び前記エポキシ樹脂組成物の硬化物を研磨する工程を有することを特徴とする半導体装置の製造方法である。
In order to achieve the above object, one embodiment of the present invention is as follows.
(1) An epoxy resin composition comprising an epoxy resin, a curing accelerator, a filler, and an elastomer,
The elastomer is at least one selected from a solid elastomer and a liquid elastomer,
The solid elastomer is an epoxy resin composition having a structure having no double bond in the main chain.
(2) The epoxy resin composition according to (1) above, wherein after the surface of a cured product of the epoxy resin composition is polished by a first polishing step in which the surface is roughly polished and a second polishing step in which the surface is polished with a liquid containing an abrasive, the number of holes having a diameter of 0.05 μm to 0.5 μm present on the surface of the cured product is 10 or less per given area.
(3) The epoxy resin composition according to (1) or (2), wherein the content of the elastomer is 5.0 mass% or more based on the components excluding the filler from the epoxy resin composition.
(4) The epoxy resin composition according to any one of (1) to (3), wherein the solid elastomer is a core-shell type.
(5) The epoxy resin composition according to any one of (1) to (4), wherein the content of the elastomer is 5.0% by mass to 20.0% by mass, based on the components excluding the filler from the epoxy resin composition.
(6) The epoxy resin composition according to any one of (1) to (5), wherein the filler content is 73.0% by mass to 87.5% by mass.
(7) The epoxy resin composition according to any one of (1) to (6), wherein the viscosity at 120° C. is 0.5 Pa·s to 40.0 Pa·s.
(8) The epoxy resin composition according to any one of (1) to (7), wherein the curing accelerator is a heterocyclic compound containing a nitrogen atom.
(9) The epoxy resin composition according to any one of (1) to (8), further comprising at least one curing agent selected from the group consisting of a phenol-based curing agent, an amine-based curing agent, and an acid anhydride-based curing agent.
(10) The epoxy resin composition according to any one of (1) to (9), wherein the epoxy resin is at least one selected from the group consisting of an aliphatic epoxy resin and an aromatic epoxy resin.
(11) The epoxy resin composition according to any one of (1) to (10), which is used as a liquid compression molding material.
(12) An electronic part comprising a support and a cured product of the epoxy resin composition according to any one of (1) to (11).
(13) A semiconductor device having the electronic component according to (12).
(14) A method for producing a semiconductor device, comprising the steps of: filling a gap between a support and a semiconductor element disposed on the support with the epoxy resin composition according to any one of (1) to (11); curing the epoxy resin composition; and polishing the cured product of the epoxy resin composition.

 本発明によれば、硬化物表面を研磨した場合に発生する小孔を抑制できるエポキシ樹脂組成物、当該エポキシ樹脂組成物を用いた電子部品、並びに当該エポキシ樹脂組成物を用いた半導体装置及びその製造方法を提供することができる。 The present invention provides an epoxy resin composition that can suppress the formation of small holes when the surface of a cured product is polished, an electronic component that uses the epoxy resin composition, and a semiconductor device that uses the epoxy resin composition and a method for manufacturing the same.

図1は、実施例1の第二の研磨後のエポキシ樹脂硬化物表面のSEM画像である。FIG. 1 is an SEM image of the surface of the cured epoxy resin material after the second polishing in Example 1. 図2は、比較例1の第二の研磨後のエポキシ樹脂硬化物表面のSEM画像である。FIG. 2 is an SEM image of the surface of the cured epoxy resin material after the second polishing in Comparative Example 1.

(エポキシ樹脂組成物)
 実施形態に係るエポキシ樹脂組成物は、エポキシ樹脂、硬化促進剤、フィラー、及びエラストマーを含有し、硬化剤を更に含有することが好ましく、更に必要に応じてその他の成分を含有する。
(Epoxy resin composition)
The epoxy resin composition according to the embodiment contains an epoxy resin, a curing accelerator, a filler, and an elastomer, and preferably further contains a curing agent, and further contains other components as necessary.

<エポキシ樹脂>
 エポキシ樹脂は、一般的に半導体封止用として使用される各種のエポキシ樹脂であれば、特に制限はなく、目的に応じて適宜選択でき、例えば、脂肪族エポキシ樹脂、芳香族エポキシ樹脂などが挙げられる。これらは、1種単独で使用しても、2種を併用してもよい。
<Epoxy resin>
The epoxy resin is not particularly limited as long as it is any of various epoxy resins generally used for semiconductor encapsulation and can be appropriately selected depending on the purpose, and examples thereof include aliphatic epoxy resins, aromatic epoxy resins, etc. These may be used alone or in combination of two types.

<<脂肪族エポキシ樹脂>>
 脂肪族エポキシ樹脂は、エポキシ樹脂組成物の硬化物(以下、単に「硬化物」とも称する)に柔軟性を付与するために含有され、例えば、単官能脂肪族エポキシ樹脂、二官能脂肪族エポキシ樹脂、多官能脂肪族エポキシ樹脂などが挙げられる。これらは、1種単独で使用しても、2種以上を併用してもよい。
<<Aliphatic epoxy resin>>
The aliphatic epoxy resin is contained in order to impart flexibility to the cured product of the epoxy resin composition (hereinafter also simply referred to as "cured product"), and examples thereof include monofunctional aliphatic epoxy resins, difunctional aliphatic epoxy resins, polyfunctional aliphatic epoxy resins, etc. These may be used alone or in combination of two or more.

 単官能脂肪族エポキシ樹脂は、分子内にエポキシ基を1つ有する化合物であり、例えば、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル等のアルキルアルコールグリシジルエーテル;ビニルグリシジルエーテル、アリルグリシジルエーテル等のアルケニルアルコールグリシジルエーテルなどが挙げられる。 Monofunctional aliphatic epoxy resins are compounds that have one epoxy group in the molecule, and examples include alkyl alcohol glycidyl ethers such as butyl glycidyl ether and 2-ethylhexyl glycidyl ether; and alkenyl alcohol glycidyl ethers such as vinyl glycidyl ether and allyl glycidyl ether.

 二官能脂肪族エポキシ樹脂は、分子内にエポキシ基を2つ有する化合物であり、例えば、アルキレングリコールジグリシジルエーテル、ポリ(アルキレングリコール)ジグリシジルエーテル、アルケニレングリコールジグリシジルエーテルなどが挙げられる。 Difunctional aliphatic epoxy resins are compounds that have two epoxy groups in the molecule, such as alkylene glycol diglycidyl ether, poly(alkylene glycol) diglycidyl ether, and alkenylene glycol diglycidyl ether.

 多官能脂肪族エポキシ樹脂は、分子内にエポキシ基を3つ以上有する化合物であり、例えば、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトール(トリ又はテトラ)グリシジルエーテル、ジペンタエリスリトール(トリ、テトラ、ペンタ又はヘキサ)グリシジルエーテルのトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の三官能以上のアルコールのポリグリシジルエーテルなどが挙げられる。
 なお、エポキシ基の数の上限は、特に制限はなく、目的に応じて適宜選択できるが、5以下が好ましい。
The polyfunctional aliphatic epoxy resin is a compound having three or more epoxy groups in the molecule, and examples thereof include polyglycidyl ethers of trifunctional or higher alcohols such as trimethylolpropane triglycidyl ether, pentaerythritol (tri- or tetra-)glycidyl ether, and dipentaerythritol (tri-, tetra-, penta- or hexa-)glycidyl ether, pentaerythritol, and dipentaerythritol.
The upper limit of the number of epoxy groups is not particularly limited and can be appropriately selected depending on the purpose, but it is preferably 5 or less.

 これらの中でも、信頼性(耐サーマルサイクル性)などの観点から、多官能のエポキシ樹脂が好ましい。 Among these, multifunctional epoxy resins are preferred from the standpoint of reliability (thermal cycle resistance) and other factors.

 脂肪族エポキシ樹脂の数平均分子量は、特に制限はなく、目的に応じて適宜選択できるが、エポキシ樹脂組成物の硬化物の柔軟性を付与する点から、200~2,000が好ましい。
 脂肪族エポキシ樹脂の数平均分子量の測定方法としては、一般的な数平均分子量の測定方法を用いることができる。
The number average molecular weight of the aliphatic epoxy resin is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 200 to 2,000 from the viewpoint of imparting flexibility to the cured product of the epoxy resin composition.
The number average molecular weight of the aliphatic epoxy resin can be measured by a general method for measuring number average molecular weight.

 脂肪族エポキシ樹脂は、合成したものを用いても、市販品を用いてもよい。市販品としては、例えば、エポゴーセーPT(一般グレード)(四日市合成株式会社製)、YX7400(三菱ケミカル株式会社製)、SR―8EGS(阪本薬品工業株式会社製)、PG―207GS(日鉄ケミカル&マテリアル株式会社製)などが挙げられる。 The aliphatic epoxy resin may be a synthetic product or a commercially available product. Examples of commercially available products include Epogosey PT (general grade) (manufactured by Yokkaichi Synthetic Co., Ltd.), YX7400 (manufactured by Mitsubishi Chemical Corporation), SR-8EGS (manufactured by Sakamoto Pharmaceutical Co., Ltd.), and PG-207GS (manufactured by Nippon Steel Chemical & Material Co., Ltd.).

<<芳香族エポキシ樹脂>>
 芳香族エポキシ樹脂は、例えば、フェノール類のグリシジルエーテル、ヒドロキシカルボン酸のグリシジルエーテルエステル、カルボン酸のモノグリシジルエステル又はポリグリシジルエステル、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ノボラック樹脂などが挙げられる。これらは、1種単独で使用しても、2種以上を併用してもよい。
<<Aromatic epoxy resin>>
Examples of aromatic epoxy resins include glycidyl ethers of phenols, glycidyl ether esters of hydroxycarboxylic acids, monoglycidyl esters or polyglycidyl esters of carboxylic acids, glycidylamine type epoxy resins, aminophenol type epoxy resins, epoxy resins having a naphthalene skeleton, novolac resins, etc. These may be used alone or in combination of two or more.

 フェノール類のグリシジルエーテルは、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、カテコール、レゾルシノールなどが挙げられる。フェノール類のグリシジルエーテルは、合成したものを用いても、市販品を用いてもよい。市販品としては、例えば、YDF8170(日鉄ケミカル&マテリアル株式会社製)、YDF870GS(日鉄ケミカル&マテリアル株式会社製)、EXA-850CRP(DIC株式会社製)、EXA-835LV(DIC株式会社製)、EP4005(株式会社ADEKA製)などが挙げられる。 Examples of glycidyl ethers of phenols include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, catechol, and resorcinol. The glycidyl ethers of phenols may be synthesized or commercially available. Examples of commercially available products include YDF8170 (manufactured by Nippon Steel Chemical & Material Co., Ltd.), YDF870GS (manufactured by Nippon Steel Chemical & Material Co., Ltd.), EXA-850CRP (manufactured by DIC Corporation), EXA-835LV (manufactured by DIC Corporation), and EP4005 (manufactured by ADEKA Corporation).

 ヒドロキシカルボン酸のグリシジルエーテルエステルは、例えば、p-ヒドロキシ安息香酸等などが挙げられる。ヒドロキシカルボン酸のグリシジルエーテルエステルは、合成したものを用いても、市販品を用いてもよい。 Examples of glycidyl ether esters of hydroxycarboxylic acids include p-hydroxybenzoic acid. The glycidyl ether esters of hydroxycarboxylic acids may be either synthesized or commercially available.

 カルボン酸のモノグリシジルエステル又はポリグリシジルエステルは、例えば、安息香酸、フタル酸、テレフタル酸などが挙げられる。カルボン酸のモノグリシジルエステル又はポリグリシジルエステルは、合成したものを用いても、市販品を用いてもよい。 Examples of monoglycidyl esters or polyglycidyl esters of carboxylic acids include benzoic acid, phthalic acid, and terephthalic acid. The monoglycidyl esters or polyglycidyl esters of carboxylic acids may be either synthesized or commercially available.

 グリシジルアミン型エポキシ樹脂は、例えば、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジル-m-キシリレンジアミンなどが挙げられる。グリシジルアミン型エポキシ樹脂は、合成したものを用いても、市販品を用いてもよい。市販品としては、例えば、EP3980S(株式会社ADEKA製)、ZX1059(日鉄ケミカル&マテリアル株式会社製)などが挙げられる。 Examples of glycidylamine type epoxy resins include diglycidyl aniline, diglycidyl toluidine, and tetraglycidyl-m-xylylenediamine. The glycidylamine type epoxy resin may be a synthetic product or a commercially available product. Examples of commercially available products include EP3980S (manufactured by ADEKA Corporation) and ZX1059 (manufactured by Nippon Steel Chemical & Material Co., Ltd.).

 アミノフェノール型エポキシ樹脂は、例えば、トリグリシジル-p-アミノフェノールなどが挙げられる。アミノフェノール型エポキシ樹脂は、合成したものを用いても、市販品を用いてもよい。市販品としては、例えば、jER630、jER630LSD(以上、三菱ケミカル株式会社製)、EP3950L(株式会社ADEKA製)がある。 Examples of aminophenol type epoxy resins include triglycidyl-p-aminophenol. The aminophenol type epoxy resins may be synthetic or commercially available. Examples of commercially available products include jER630 and jER630LSD (both manufactured by Mitsubishi Chemical Corporation) and EP3950L (manufactured by ADEKA Corporation).

 ナフタレン骨格を有するエポキシ樹脂は、例えば、ナフトールのグリシジルエステル、β-ヒドロキシナフトエ酸のグリシジルエーテルエステルなどが挙げられる。ナフタレン骨格を有するエポキシ樹脂は、合成したものを用いても、市販品を用いてもよい。市販品としては、例えば、HP4032、HP4032D、HP4032SS(以上、DIC株式会社製)などが挙げられる。 Epoxy resins having a naphthalene skeleton include, for example, glycidyl esters of naphthol and glycidyl ether esters of β-hydroxynaphthoic acid. The epoxy resins having a naphthalene skeleton may be synthesized or commercially available products. Examples of commercially available products include HP4032, HP4032D, and HP4032SS (all manufactured by DIC Corporation).

 ノボラック樹脂は、例えば、フェノール、カテコール、レゾルシノール等のフェノール類をノボラック化した化合物などが挙げられる。ノボラック樹脂は、合成したものを用いても、市販品を用いてもよい。市販品としては、例えば、jER152(三菱ケミカル株式会社製)などが挙げられる。 Novolac resins include, for example, compounds obtained by converting phenols such as phenol, catechol, and resorcinol into novolacs. The novolac resin may be a synthetic product or a commercially available product. An example of a commercially available product is jER152 (manufactured by Mitsubishi Chemical Corporation).

 これらの中でもエポキシ樹脂は、エポキシ樹脂の硬化物の固さを保ちつつ、硬化性を向上させる点で、脂肪族エポキシ樹脂と芳香族エポキシ樹脂の混合物であることが好ましい。 Among these, it is preferable that the epoxy resin is a mixture of an aliphatic epoxy resin and an aromatic epoxy resin, in order to improve the curing properties while maintaining the hardness of the cured epoxy resin.

 脂肪族エポキシ樹脂と芳香族エポキシ樹脂との割合(質量比)は、特に制限はなく、目的に応じて適宜選択できるが、脂肪族エポキシ樹脂:芳香族エポキシ樹脂=20質量%~40質量%:60質量%~80質量%が好ましい。 The ratio (mass ratio) of aliphatic epoxy resin to aromatic epoxy resin is not particularly limited and can be selected appropriately depending on the purpose, but aliphatic epoxy resin: aromatic epoxy resin = 20% to 40% by mass: 60% to 80% by mass is preferred.

<硬化促進剤>
 硬化促進剤は、エポキシ樹脂とエポキシ樹脂との架橋反応を促進させ、エポキシ樹脂の硬化速度を上昇させるために含有される。エポキシ樹脂組成物の硬化にあたり、硬化促進剤は、エポキシ樹脂と単重合する。即ち、硬化促進剤は、エポキシ樹脂が形成する架橋構造内に残らない。
 硬化促進剤は、エポキシ樹脂を硬化させることができれば、特に制限はなく、目的に応じて適宜選択することができるが、信頼性(耐サーマルサイクル性)の点から、窒素原子を含有する複素環化合物が好ましい。
<Curing accelerator>
The curing accelerator is contained in order to accelerate the crosslinking reaction between the epoxy resins and increase the curing rate of the epoxy resin. When the epoxy resin composition is cured, the curing accelerator is homopolymerized with the epoxy resin. That is, the curing accelerator does not remain in the crosslinked structure formed by the epoxy resin.
The curing accelerator is not particularly limited as long as it can cure the epoxy resin, and can be appropriately selected depending on the purpose. From the viewpoint of reliability (thermal cycle resistance), however, a heterocyclic compound containing a nitrogen atom is preferable.

<<窒素原子を含有する複素環化合物>>
 窒素原子を含有する複素環化合物は、例えば、イミダゾール誘導体、マイクロカプセル化された窒素原子を含有する複素環化合物などが挙げられる。
<<Heterocyclic compounds containing nitrogen atoms>>
Examples of the heterocyclic compound containing a nitrogen atom include imidazole derivatives and microencapsulated heterocyclic compounds containing a nitrogen atom.

 イミダゾール誘導体は、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-イミダゾール、2-フェニルイミダゾール、1-ベンジル-2-フェニルイミダゾール、ベンゾイミダゾール、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンゾイミダゾールが挙げられる。これらは、1種単独で使用しても、2種以上を併用してもよい。
 イミダゾール誘導体は、市販品を用いても、適宜合成したものを用いてもよい。市販品は、例えば、2P4MZ(2-フェニル-4-メチルイミダゾール)、2MZA(2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2-フェニル-4-メチルイミダゾール)(いずれも四国化成工業株式会社製)などが挙げられる。
Examples of the imidazole derivative include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-imidazole, 2-phenylimidazole, 1-benzyl-2-phenylimidazole, benzimidazole, 2,4-diamino-6-[2'-methylimidazolyl-(1')]ethyl-s-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, and 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole. These may be used alone or in combination of two or more.
The imidazole derivative may be a commercially available product or may be appropriately synthesized. Examples of commercially available products include 2P4MZ (2-phenyl-4-methylimidazole), 2MZA (2,4-diamino-6-[2'-methylimidazolyl-(1')]ethyl-s-triazine, 2-phenyl-4-methylimidazole) (both manufactured by Shikoku Chemical Industry Co., Ltd.).

 マイクロカプセル化された窒素を含有する複素環化合物は、市販品を用いても、適宜合成したものを用いてもよい。市販品は、例えば、ノバキュアHX3941HP、ノバキュアHXA3042HP、ノバキュアHXA3922HP、ノバキュアHXA3792、ノバキュアHX3748、ノバキュアHX3721、ノバキュアHX3722、ノバキュアHX3088、ノバキュアHX3741、ノバキュアHX3742、ノバキュアHX3613(いずれも旭化成株式会社製)、アミキュアPN-23J、アミキュアPN-40J(いずれも味の素ファインテクノ株式会社製)、フジキュアFXR-1121(富士化成工業株式会社製)が挙げられる。これらは、1種単独で使用しても、2種以上を併用してもよい。 The microencapsulated nitrogen-containing heterocyclic compound may be a commercially available product or may be appropriately synthesized. Commercially available products include, for example, Novacure HX3941HP, Novacure HXA3042HP, Novacure HXA3922HP, Novacure HXA3792, Novacure HX3748, Novacure HX3721, Novacure HX3722, Novacure HX3088, Novacure HX3741, Novacure HX3742, Novacure HX3613 (all manufactured by Asahi Kasei Corporation), Amicure PN-23J, Amicure PN-40J (all manufactured by Ajinomoto Fine-Techno Co., Ltd.), and Fujicure FXR-1121 (manufactured by Fuji Kasei Kogyo Co., Ltd.). These may be used alone or in combination of two or more types.

 窒素を含有する複素環化合物は、これらの中でも、反応性、保存安定性の点から、2-フェニル-4-メチルイミダゾール、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]エチル-s-トリアジンが好ましい。 Among these, the nitrogen-containing heterocyclic compounds are preferably 2-phenyl-4-methylimidazole and 2,4-diamino-6-[2'-methylimidazolyl-(1')]ethyl-s-triazine in terms of reactivity and storage stability.

 窒素を含有する複素環化合物の含有量は、特に制限はなく、目的に応じて適宜選択できるが、後述のフィラーを除いたエポキシ樹脂組成物に対し、2.0質量%~8.0質量%が好ましく、2.5質量%~6.0質量%がより好ましい。窒素を含有する複素環化合物の含有量が、2.0質量%以上であると、エポキシ樹脂組成物の硬化時間を早めることができ、電子部品装置の生産性が向上する。窒素を含有する複素環化合物の含有量が、8.0質量%以下であると、エポキシ樹脂組成物の保存安定性が向上する。
 マイクロカプセル化された窒素を含有する複素環化合物の含有量は、有効成分(窒素を含有する複素環化合物)がフィラーを除いたエポキシ樹脂組成物に対し、3質量%~25質量%が好ましく、5質量%~20質量%がより好ましい。マイクロカプセル化された窒素を含有する複素環化合物の含有量が、3質量%以上であると、エポキシ樹脂組成物の硬化時間を早めることができ、電子部品装置の生産性が向上する。マイクロカプセル化された窒素を含有する複素環化合物の含有量が、25質量%以下であると、高粘度化せず作業性の低下を防ぐことができる。
The content of the nitrogen-containing heterocyclic compound is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 2.0% by mass to 8.0% by mass, and more preferably 2.5% by mass to 6.0% by mass, based on the epoxy resin composition excluding the filler described below. When the content of the nitrogen-containing heterocyclic compound is 2.0% by mass or more, the curing time of the epoxy resin composition can be shortened, and the productivity of electronic component devices is improved. When the content of the nitrogen-containing heterocyclic compound is 8.0% by mass or less, the storage stability of the epoxy resin composition is improved.
The content of the microencapsulated nitrogen-containing heterocyclic compound is preferably 3% by mass to 25% by mass, more preferably 5% by mass to 20% by mass, based on the epoxy resin composition excluding the filler as the active ingredient (heterocyclic compound containing nitrogen). When the content of the microencapsulated nitrogen-containing heterocyclic compound is 3% by mass or more, the curing time of the epoxy resin composition can be accelerated, and the productivity of the electronic component device can be improved. When the content of the microencapsulated nitrogen-containing heterocyclic compound is 25% by mass or less, the viscosity does not increase and the workability can be prevented from decreasing.

<フィラー>
 フィラーは、エポキシ樹脂組成物の硬化物特性(主に線膨張係数、弾性率、吸水率)を調整するために含有される。
<Filler>
The filler is contained in the epoxy resin composition in order to adjust the properties of the cured product (mainly the linear expansion coefficient, elastic modulus, and water absorption).

 フィラーは、特に制限はなく、目的に応じて適宜選択でき、例えば、溶融シリカ、結晶シリカ等のシリカ;炭酸カルシウム、クレー、アルミナ、窒化珪素、炭化珪素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミニウム、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、充填量を高くできる点から、シリカフィラー、及びアルミナフィラーが好ましい。フィラーは、合成したものを用いても、市販品を用いてもよい。市販品としては、例えば、シリカフィラーとして、SE101G-SMO(アドマテックス株式会社製)、SE605G-SMG(アドマテックス株式会社製)、STW7010-20(日鉄ケミカル&マテリアル株式会社製)、アルミナフィラーとして、AG2051-SXM(アドマテックス株式会社製)などが挙げられる。 The filler is not particularly limited and can be selected appropriately depending on the purpose. Examples of the filler include silica such as fused silica and crystalline silica; calcium carbonate, clay, alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate. These may be used alone or in combination of two or more. Among these, silica filler and alumina filler are preferred because they can increase the loading amount. The filler may be a synthetic product or a commercially available product. Examples of commercially available products include silica fillers such as SE101G-SMO (manufactured by Admatechs Co., Ltd.), SE605G-SMG (manufactured by Admatechs Co., Ltd.), and STW7010-20 (manufactured by Nippon Steel Chemical & Material Co., Ltd.), and alumina fillers such as AG2051-SXM (manufactured by Admatechs Co., Ltd.).

 フィラーは、表面処理が施されたものであってもよい。表面処理剤は、特に制限はなく、目的に応じて適宜選択でき、例えば、シランカップリング剤などが挙げられる。 The filler may be surface-treated. There are no particular limitations on the surface treatment agent, and it can be selected appropriately depending on the purpose. For example, a silane coupling agent can be used.

 シランカップリング剤は、特に制限がなく、目的に応じて適宜選択でき、例えば、エポキシ系、メタクリル系、アミノ系、ビニル系、グリシドキシ系、メルカプト系などが挙げられる。市販品としては、例えば、KBM403、KBE403、KBM503、KBM573(以上、信越化学工業株式会社製)などが挙げられる。 There are no particular limitations on the silane coupling agent, and it can be selected appropriately depending on the purpose. Examples include epoxy, methacrylic, amino, vinyl, glycidoxy, and mercapto types. Commercially available products include KBM403, KBE403, KBM503, and KBM573 (all manufactured by Shin-Etsu Chemical Co., Ltd.).

 フィラーの体積平均粒径は、特に制限はなく、目的に応じて適宜選択できるが、0.1μm~15.0μmが好ましく、0.3μm~10.0μmがより好ましい。
 本実施形態において、体積平均粒径は、レーザー回折法を用いて測定される体積累積粒度分布が50%となる粒子径をいう。
The volume average particle size of the filler is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 0.1 μm to 15.0 μm, and more preferably 0.3 μm to 10.0 μm.
In the present embodiment, the volume average particle size refers to a particle size at which the volume cumulative particle size distribution measured by laser diffraction method is 50%.

 フィラーの形状は、特に制限はなく、目的に応じて適宜選択でき、例えば、球状、不定形、りん片状などが挙げられる。 The shape of the filler is not particularly limited and can be selected appropriately depending on the purpose. Examples include spherical, irregular, and flaky shapes.

 フィラーの含有量は、エポキシ樹脂組成物の硬化物の線膨張係数の低減、及び作業性点から、73.0質量%~87.5質量%が好ましく、75.0質量%~85.0質量%がより好ましい。フィラーの含有量が、73.0質量%以下であると、エポキシ樹脂組成物の硬化物の線膨張係数が高くなり反りが大きくなることがある。また、フィラーの含有量が、87.5質量%以上であると、エポキシ樹脂組成物の粘度が高くなることによって作業性が低下することがある。 The filler content is preferably 73.0% by mass to 87.5% by mass, and more preferably 75.0% by mass to 85.0% by mass, from the viewpoint of reducing the linear expansion coefficient of the cured product of the epoxy resin composition and workability. If the filler content is 73.0% by mass or less, the linear expansion coefficient of the cured product of the epoxy resin composition will be high, and warping may become significant. If the filler content is 87.5% by mass or more, the viscosity of the epoxy resin composition will be high, which may reduce workability.

<エラストマー>
 エラストマーは、エポキシ樹脂組成物に注入性を付与し、かつエポキシ樹脂組成物の硬化物の接着強度を向上させるために含有される。
 エラストマーは、硬化物表面を研磨した場合に発生する小孔を抑制する点から、主鎖に二重結合を有さない構造である固体エラストマー、及び液体エラストマーから選択される少なくとも1種である。これらは、1種単独でも、2種を併用してもよい。
<Elastomer>
The elastomer is contained in order to impart injectability to the epoxy resin composition and to improve the adhesive strength of the cured product of the epoxy resin composition.
The elastomer is at least one selected from a solid elastomer having a structure without a double bond in the main chain and a liquid elastomer, from the viewpoint of suppressing the generation of small holes when the surface of the cured product is polished. These may be used alone or in combination of two kinds.

 エラストマーを含有する従来のエポキシ樹脂組成物の硬化物表面を研磨すると、小孔が発生することがある。この原因としては、主に3つの理由が考えられる。1つ目は、エポキシ樹脂組成物の硬化物中に存在しているエラストマー部分の脱落である。一般的にエラストマーの硬化物は、耐摩耗性が高い。このため、エポキシ樹脂組成物の硬化物を研磨すると、エポキシ樹脂組成物の硬化物中のエラストマーの部分が、エポキシ樹脂やフィラーなどの部分とともに研磨され、エポキシ樹脂組成物の硬化物表面から脱落する。この脱落したエラストマー部分が小孔となる。2つ目は、エポキシ樹脂組成物の硬化物中に存在しているフィラーの脱落である。研磨条件によっては、先に述べたエラストマー部分と同様に、フィラーが研磨されることなく脱落する。3つ目は、エポキシ樹脂組成物の硬化物の研磨面へのダメージである。研磨条件によっては、エポキシ樹脂組成物の硬化物表面を研磨するのではなく、物理的な衝撃が与えられ、小孔となる。
 そこで、本実施形態においては、エラストマー中において、耐摩耗性が低いエラストマーを用いる。このようなエラストマーを用いることで、硬化物表面を研磨した場合に発生する小孔を抑制できると考えられる。
When the surface of a cured product of a conventional epoxy resin composition containing an elastomer is polished, small holes may be generated. There are three main reasons for this. The first is the falling off of the elastomer portion present in the cured product of the epoxy resin composition. In general, cured products of elastomers have high abrasion resistance. For this reason, when the cured product of the epoxy resin composition is polished, the elastomer portion in the cured product of the epoxy resin composition is polished together with the epoxy resin and filler, etc., and falls off from the surface of the cured product of the epoxy resin composition. This fallen elastomer portion becomes a small hole. The second is the falling off of the filler present in the cured product of the epoxy resin composition. Depending on the polishing conditions, the filler falls off without being polished, similar to the elastomer portion described above. The third is damage to the polished surface of the cured product of the epoxy resin composition. Depending on the polishing conditions, the surface of the cured product of the epoxy resin composition is not polished, but a physical impact is applied, resulting in small holes.
Therefore, in the present embodiment, an elastomer having low abrasion resistance is used, which is believed to be able to suppress the generation of small holes when the surface of the cured product is polished.

<<固体エラストマー>>
 固体エラストマーは、常温(25℃)において固体であるエラストマーであり、主鎖に二重結合を有さない構造である。主鎖に二重結合を有さない構造のエラストマーとは、例えば、シリコーンなどが挙げられる。シリコーンはシロキサン結合を有しており、研磨などによる表面の耐摩耗性が低いことで硬化物表面を研磨した平坦化する場合に発生する小孔を抑制できる。
<<Solid elastomer>>
A solid elastomer is an elastomer that is solid at room temperature (25°C) and has a structure that does not have a double bond in the main chain. An example of an elastomer that does not have a double bond in the main chain is silicone. Silicone has a siloxane bond and has low surface abrasion resistance due to polishing, etc., so that it can suppress small holes that occur when the surface of the cured product is polished and flattened.

 固体エラストマーは、エポキシ樹脂に対する相溶性の点から、コアシェル型のエラストマーが好ましい。コアシェル型とは、コア(核)の外側にコアとは異なる材質で被った型のことを指す。
 実施形態において用いられるコアシェル型のエラストマーは、エポキシ樹脂組成物を使用する温度領域内において低い弾性率を示し、エポキシ樹脂組成物の収縮応力を低減させることができる点から、コアにシリコーン樹脂、シェルにアクリル共重合体を用いたエラストマーが好ましい。
From the viewpoint of compatibility with epoxy resins, the solid elastomer is preferably a core-shell type elastomer, which means that the outside of the core is covered with a material different from that of the core.
The core-shell type elastomer used in the embodiments is preferably an elastomer using a silicone resin for the core and an acrylic copolymer for the shell, since it exhibits a low elastic modulus within the temperature range in which the epoxy resin composition is used and can reduce the shrinkage stress of the epoxy resin composition.

 コアシェル型のエラストマーを用いてエポキシ樹脂組成物を製造する際には、エポキシ樹脂組成物の各成分を混合する際に同時に混合してもよいが、あらかじめエポキシ樹脂に分散させてから混合する、マスターバッチ処理を行った後に、他のエポキシ樹脂組成物の成分と混合させて、エポキシ樹脂組成物を製造することが好ましい。 When producing an epoxy resin composition using a core-shell type elastomer, the components of the epoxy resin composition may be mixed together at the same time, but it is preferable to disperse the elastomer in the epoxy resin before mixing, i.e., to carry out master batch processing and then mix it with other epoxy resin composition components to produce the epoxy resin composition.

<<液体エラストマー>>
 液体エラストマーは、液状エラストマーとも称され、常温(25℃)において液体であるエラストマーである。液体エラストマーは、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブタジエンとアクリロニトリルとの共重合体(ブタジエン・アクリロニトリル共重合体)などが挙げられる。
<<Liquid elastomer>>
The liquid elastomer is also called a liquid elastomer, and is an elastomer that is liquid at room temperature (25° C.). The liquid elastomer is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a copolymer of butadiene and acrylonitrile (butadiene-acrylonitrile copolymer).

 エラストマーの含有量は、エポキシ樹脂組成物からフィラーを除いた成分に対して、5.0質量%以上が好ましく、5.0質量%以~20.0質量%がより好ましく、8.0質量%~17.0質量%が更に好ましい。エラストマーの含有量が、この範囲に含まれると、接着強度を向上させることができ、かつ高粘度のために作業性が低下することを防止できる。 The elastomer content is preferably 5.0% by mass or more, more preferably 5.0% by mass to 20.0% by mass, and even more preferably 8.0% by mass to 17.0% by mass, based on the components excluding the filler from the epoxy resin composition. If the elastomer content falls within this range, the adhesive strength can be improved and a decrease in workability due to high viscosity can be prevented.

<硬化剤>
 硬化剤は、エポキシ樹脂を硬化させるために含有される。エポキシ樹脂組成物の硬化にあたり、硬化剤は、エポキシ樹脂に付加重合する。即ち、硬化剤は、エポキシ樹脂が形成する架橋構造内に入る。
 硬化剤は、エポキシ樹脂を硬化させることができれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノール系硬化剤、アミン系硬化剤、及び酸無水物系硬化剤などが挙げられる。これらは、1種単独で使用しても、2種以上を併用してもよい。
<Curing Agent>
The curing agent is contained in order to cure the epoxy resin. When the epoxy resin composition is cured, the curing agent undergoes addition polymerization with the epoxy resin. That is, the curing agent enters into the crosslinked structure formed by the epoxy resin.
The curing agent is not particularly limited as long as it can cure the epoxy resin, and can be appropriately selected according to the purpose, and examples thereof include phenol-based curing agents, amine-based curing agents, and acid anhydride-based curing agents. These may be used alone or in combination of two or more.

 硬化剤の含有量は、特に制限はなく、目的応じて適宜選択できるが、エポキシ樹脂との化学量論上の当量比(硬化剤当量/エポキシ基当量)が0.01~1.00となることが好ましく、当量比が0.01~0.50となることがより好ましく、当量比が0.08~0.30となることが更に好ましい。
 硬化剤の含有量は、特に制限はなく、目的応じて適宜選択できるが、0.5質量%~2.0質量%が好ましく、0.5質量%~1.0質量%がより好ましい。
The content of the curing agent is not particularly limited and can be appropriately selected depending on the purpose, but the stoichiometric equivalent ratio with the epoxy resin (curing agent equivalent/epoxy group equivalent) is preferably 0.01 to 1.00, more preferably 0.01 to 0.50, and even more preferably 0.08 to 0.30.
The content of the curing agent is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 0.5% by mass to 2.0% by mass, and more preferably 0.5% by mass to 1.0% by mass.

<その他の成分>
 その他の成分としては、通常のエポキシ樹脂組成物に用いられるものであれば、特に制限はなく、目的に応じて適宜選択でき、例えば、カップリング剤、染料、顔料、カーボンブラック等の着色剤;シリコーンオイル;界面活性剤;酸化防止剤;三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等の酸化アンチモン、ブロム化エポキシ樹脂等の従来公知の難燃剤;イオントラップ剤;レベリング剤;消泡剤;反応性希釈剤などが挙げられる。これらは、1種単独でも、2種以上を併用してもよい。
<Other ingredients>
The other components are not particularly limited as long as they are those used in ordinary epoxy resin compositions and can be appropriately selected depending on the purpose, and examples thereof include colorants such as coupling agents, dyes, pigments, and carbon black; silicone oils; surfactants; antioxidants; conventionally known flame retardants such as antimony oxides such as antimony trioxide, antimony tetraoxide, and antimony pentoxide, and brominated epoxy resins; ion trapping agents; leveling agents; antifoaming agents; reactive diluents, etc. These may be used alone or in combination of two or more.

 その他の成分の含有量は、特に制限はなく、目的応じて適宜選択できる。 The content of other ingredients is not particularly limited and can be selected appropriately depending on the purpose.

<エポキシ樹脂組成物の物性>
<<粘度>>
 実施態形態おけるエポキシ樹脂組成物の25℃における粘度は、1,000Pa・s以下が好ましく、700Pa・s以下がより好ましく、500Pa・s以下が更に好ましい。また、取り扱いの観点から、エポキシ樹脂組成物の25℃における粘度は、150Pa・s以上が好ましい。
 本明細書において、粘度は、HB-DV型粘度計を用いて、回転数10rpmで測定して測定する。
<Physical Properties of Epoxy Resin Composition>
<<Viscosity>>
In the embodiment, the viscosity of the epoxy resin composition at 25° C. is preferably 1,000 Pa·s or less, more preferably 700 Pa·s or less, and even more preferably 500 Pa·s or less. From the viewpoint of handling, the viscosity of the epoxy resin composition at 25° C. is preferably 150 Pa·s or more.
In this specification, the viscosity is measured using an HB-DV type viscometer at a rotation speed of 10 rpm.

<<熱時粘度(120℃での粘度)>>
 実施形態におけるエポキシ樹脂組成物の120℃における粘度は、0.5Pa・s~40.0Pa・sが好ましい。
 120℃における粘度は、レオメーターにより測定できる。
<<Hot Viscosity (at 120°C)>>
The viscosity of the epoxy resin composition in the embodiment at 120° C. is preferably 0.5 Pa·s to 40.0 Pa·s.
The viscosity at 120° C. can be measured by a rheometer.

<エポキシ樹脂組成物の硬化物の物性>
 実施形態に係るエポキシ樹脂組成物の硬化物は、硬化物表面を第一の研磨及び第二の研磨により研磨した後の小孔の数が、所定面積あたり10個以下である。
 ここでの小孔とは、研磨後の硬化物表面にある孔のうち、直径0.05μm~0.5μmの孔である。直径とは小孔の外周の二点を結んだ線の最大長さを示しており、孔が真円形ではなく楕円形である場合も同様である。
 また、孔の深さは、0.03μm~0.3μmとする。
<Physical Properties of Cured Epoxy Resin Composition>
In the cured product of the epoxy resin composition according to the embodiment, the number of small holes per given area after the surface of the cured product is polished by the first polishing and the second polishing is 10 or less.
The small holes referred to here are holes with a diameter of 0.05 μm to 0.5 μm among the holes on the surface of the cured material after polishing. The diameter refers to the maximum length of a line connecting two points on the periphery of the small hole, and the same applies when the hole is elliptical rather than circular.
The depth of the holes is set to 0.03 μm to 0.3 μm.

<<第一の研磨>>
 第一の研磨は、硬化物表面を粗く研磨(グラインディング)することにより行われる。具体的には、耐水研磨紙により行われる。研磨紙の砥粒粒度は、例えば、#600、#800、#1200などが挙げられる。第一の研磨によって研磨面を形成する際の研磨条件は、一例として以下の条件が挙げられる。
 硬化物表面を、ストルアス自動研磨装置(テグラミン-20、struers社製)を用いて、以下の条件にて研磨処理を行う。
  研磨用部材:耐水研磨紙 #600
  研磨時間:3分間
   なお、回転数及び研磨荷重は以下の通りである。
  回転数:150rpm
  研磨荷重:10N
<<First Polishing>>
The first polishing is performed by roughly polishing (grinding) the surface of the cured product. Specifically, it is performed using waterproof abrasive paper. Examples of the abrasive grain size of the abrasive paper include #600, #800, and #1200. Examples of the polishing conditions when forming a polished surface by the first polishing include the following conditions.
The surface of the cured product is polished using a Struers automatic polishing machine (Tegramin-20, manufactured by Struers) under the following conditions.
Abrasive material: Water-resistant abrasive paper #600
Polishing time: 3 minutes. The rotation speed and polishing load were as follows.
Rotation speed: 150 rpm
Polishing load: 10N

<<第二の研磨>>
 第二の研磨は、第一の研磨の後、研磨剤を含有する液体により行われる。研磨剤を含有する液体は、例えば、砥粒を水に分散させたものが挙げられる。また、研磨剤を含有する液体は、研磨剤スラリーであってもよい。第二の研磨は、具体的には、化学的機械研磨(CMP)、即ち、研磨パッドと研磨スラリーとによるポリッシングである。第二の研磨によって研磨面を形成する際の研磨条件は、一例として以下の条件が挙げられる。
 硬化物表面を、ストルアス自動研磨装置(テグラミン-20、struers社製)を用いて、ステップ1からステップ3の順に以下の条件にて研磨処理を行う。
 ステップ1
  研磨用部材:ダイヤモンドスラリー(日本エンギス株式会社製、6-PC、6μスラリー(粒径レンジ:4μm~8μm))
  研磨時間:6分間
 ステップ2
  研磨用部材:ダイヤモンドスラリー(日本エンギス株式会社製、1-PC、1μスラリー(粒径レンジ:0μm~2μm))
  研磨時間:3分間
 ステップ3
  研磨用部材:ダイヤモンドスラリー(BUEHLER社製、Master prep、平均粒径0.05μm)
  研磨時間:2分間
 なお、ステップ1~3における回転数及び研磨荷重は以下の通りである。
  回転数:150rpm
  研磨荷重:10N
<<Second Polishing>>
The second polishing is performed by a liquid containing an abrasive after the first polishing. The liquid containing an abrasive may be, for example, a liquid in which abrasive grains are dispersed in water. The liquid containing an abrasive may also be an abrasive slurry. Specifically, the second polishing is chemical mechanical polishing (CMP), that is, polishing by a polishing pad and a polishing slurry. The polishing conditions when forming a polished surface by the second polishing include, for example, the following conditions.
The surface of the cured product is polished using a Struers automatic polishing machine (Tegramin-20, manufactured by Struers) in the following order of steps 1 to 3 under the following conditions.
Step 1
Polishing material: Diamond slurry (Engis Japan Co., Ltd., 6-PC, 6μ slurry (particle size range: 4μm to 8μm))
Polishing time: 6 minutes Step 2
Polishing material: Diamond slurry (Engis Japan Co., Ltd., 1-PC, 1μ slurry (particle size range: 0μm to 2μm))
Polishing time: 3 minutes Step 3
Polishing member: Diamond slurry (Master prep, manufactured by BUEHLER, average particle size 0.05 μm)
Polishing time: 2 minutes. The rotation speed and polishing load in steps 1 to 3 are as follows.
Rotation speed: 150 rpm
Polishing load: 10N

 第二の研磨をした後の硬化物の研磨面の算術平均粗さRaは、500nm以下が好ましく、300nm以下がより好ましく、100nm以下が更に好ましい。研磨面の算術平均粗さRaの下限は、特段制限は無く、例えば、10nm以上、20nm以上などが挙げられる。 The arithmetic mean roughness Ra of the polished surface of the cured product after the second polishing is preferably 500 nm or less, more preferably 300 nm or less, and even more preferably 100 nm or less. There is no particular lower limit for the arithmetic mean roughness Ra of the polished surface, and examples include 10 nm or more, 20 nm or more, etc.

 研磨面の算術表面粗さRaは、例えば、第二の研磨後のエポキシ樹脂組成物の硬化物表面を、共焦点走査電子顕微鏡(OPTELICS H1200、レーザーテック株式会社製)を用いて測定し、JIS B 0601:2001に定められた方法により算出できる。 The arithmetic surface roughness Ra of the polished surface can be calculated, for example, by measuring the surface of the cured epoxy resin composition after the second polishing using a confocal scanning electron microscope (OPTELICS H1200, manufactured by Lasertec Corporation) and using the method specified in JIS B 0601:2001.

 第一の研磨及び第二の研磨により研磨したエポキシ樹脂組成物の硬化物表面における小孔の数は、走査電子顕微鏡(SEM)により、5,000倍の倍率にて観察することで計測できる。上記における所定面積とは、SEM観察における一視野のことを指し、約3.9μmである。
 なお、SEM観察においては、電子密度の高さに応じて、得られる画像の濃淡が決まる。即ち、化合物の種類によってSEM画像中の濃淡が決定される。
The number of small holes on the surface of the cured epoxy resin composition polished by the first polishing and the second polishing can be measured by observing the surface with a scanning electron microscope (SEM) at a magnification of 5,000 times. The predetermined area in the above refers to one visual field in SEM observation, and is about 3.9 μm2 .
In SEM observation, the shading of the image obtained is determined according to the electron density, i.e., the shading in the SEM image is determined according to the type of compound.

<エポキシ樹脂組成物の製造方法>
 実施形態に係るエポキシ樹脂組成物の製造方法は、特に制限はなく、目的に応じて適宜選択でき、例えば、上記の成分を混合撹拌する方法が挙げられる。
 なお、上記エポキシ樹脂が固形の場合には、加熱などにより液状化、及び流動化した後に混合することが好ましい。
<Method of producing epoxy resin composition>
The method for producing the epoxy resin composition according to the embodiment is not particularly limited and can be appropriately selected depending on the purpose. For example, the method includes mixing and stirring the above-mentioned components.
When the epoxy resin is in a solid state, it is preferable to liquefy and fluidize it by heating or the like before mixing.

 各成分を同時に混合しても、一部成分を先に混合し、残りの成分を後から混合してもよい。エポキシ樹脂に対し、フィラーを均一に分散させることが困難な場合は、エポキシ樹脂と、フィラーとを先に混合し、残りの成分を後から混合してもよい。 The components may be mixed simultaneously, or some of the components may be mixed first and the remaining components may be mixed later. If it is difficult to uniformly disperse the filler in the epoxy resin, the epoxy resin and filler may be mixed first and the remaining components may be mixed later.

 混合撹拌に用いられる装置は、特に制限はなく、目的に応じて適宜選択でき、例えば、ロールミル、ボールミル、プラネタリーミキサー、ビーズミル、ヘンシェルミキサー、撹拌装置及び加熱装置を備えたライカイ機などが挙げられる。 The equipment used for mixing and stirring is not particularly limited and can be selected appropriately depending on the purpose. Examples include roll mills, ball mills, planetary mixers, bead mills, Henschel mixers, and Raikai machines equipped with a stirrer and a heater.

<エポキシ樹脂組成物の用途>
 実施形態に係るエポキシ樹脂組成物は、硬化物表面を研磨した場合に発生する小孔を抑制できるエポキシ樹脂組成物であるため、液状コンプレッションモールド材として好適に用いることができる。
<Uses of epoxy resin composition>
The epoxy resin composition according to the embodiment is an epoxy resin composition that can suppress the generation of small holes when the surface of a cured product is polished, and therefore can be suitably used as a liquid compression molding material.

(電子部品)
 本実施形態に係る電子部品は、支持体と、上述のエポキシ樹脂組成物の硬化物とを有する。
 電子部品は、例えば、半導体素子と、支持体とをエポキシ樹脂組成物により封止させたものなどが挙げられる。
(Electronic Components)
The electronic component according to this embodiment has a support and a cured product of the above-mentioned epoxy resin composition.
The electronic component may be, for example, one in which a semiconductor element and a support are sealed with an epoxy resin composition.

<支持体>
 支持体は、半導体素子を固定できるものであれば、特に制限はなく、目的に応じて適宜選択でき、例えば、基板などが挙げられる。
<Support>
The support is not particularly limited as long as it is capable of fixing a semiconductor element, and can be appropriately selected depending on the purpose. For example, a substrate and the like can be mentioned.

<<基板>>
 基板は、特に制限はなく、目的に応じて適宜選択でき、例えば、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウェハーなどが挙げられる。
 基板の大きさ、形状、材質については、通常の基板として用いられるものであれば、特に制限はなく、目的に応じて適宜選択できる。
<<Substrate>>
The substrate is not particularly limited and can be appropriately selected depending on the purpose. Examples of the substrate include a lead frame, a pre-wired tape carrier, a wiring board, glass, and a silicon wafer.
The size, shape and material of the substrate are not particularly limited as long as they are commonly used as substrates, and can be appropriately selected depending on the purpose.

<半導体素子>
 半導体素子は、特に制限はなく、目的に応じて適宜選択でき、例えば、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子;コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などが挙げられる。
 半導体素子の大きさ、形状、材質については、通常の半導体素子として用いられるものであれば、特に制限はなく、目的に応じて適宜選択できる。
<Semiconductor element>
The semiconductor element is not particularly limited and can be appropriately selected depending on the purpose. Examples of the semiconductor element include active elements such as semiconductor chips, transistors, diodes, and thyristors; and passive elements such as capacitors, resistors, resistor arrays, coils, and switches.
There are no particular limitations on the size, shape, and material of the semiconductor element, so long as they are used as ordinary semiconductor elements, and they can be appropriately selected depending on the purpose.

 エポキシ樹脂組成物の硬化物は、支持体と半導体素子との間に設けられる。
 エポキシ樹脂組成物の硬化物の厚みとしては、特に制限はなく、目的に応じて適宜選択でき、例えば、10μm以上800μm以下が挙げられる。
 エポキシ樹脂組成物の硬化物の形状は、特に制限はなく、目的に応じて適宜選択できる。
The cured epoxy resin composition is provided between the support and the semiconductor element.
The thickness of the cured product of the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness is from 10 μm to 800 μm.
The shape of the cured product of the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose.

(半導体装置)
 本実施形態に係る半導体装置(半導体パッケージ)は、上述の電子部品を有し、更に必要に応じてその他の部材を有する。
 その他の部材は、特に制限はなく、目的に応じて適宜選択できる。
(Semiconductor device)
The semiconductor device (semiconductor package) according to this embodiment includes the above-mentioned electronic components, and further includes other members as necessary.
The other members are not particularly limited and can be appropriately selected depending on the purpose.

(半導体装置の製造方法)
 本実施形態に係る半導体装置の製造方法は、エポキシ樹脂組成物を充填する工程、エポキシ樹脂組成物を硬化する工程、及びエポキシ樹脂組成物の硬化物を研磨する工程を有し、更に必要に応じてその他の工程を有する。
(Method of manufacturing a semiconductor device)
The method for manufacturing a semiconductor device according to this embodiment includes a step of filling with an epoxy resin composition, a step of curing the epoxy resin composition, and a step of polishing the cured product of the epoxy resin composition, and may further include other steps as necessary.

<エポキシ樹脂組成物を充填する工程>
 エポキシ樹脂組成物を充填する工程は、支持体と支持体上に配されている半導体素子との間の空隙にエポキシ樹脂組成物を充填する工程である。エポキシ樹脂組成物を充填する方法としては、特に制限はなく、目的に応じて適宜選択でき、例えば、ディスペンス方式、注型方式、印刷方式などが挙げられる。
 エポキシ樹脂組成物を充填する量は、特に制限はなく、目的に応じて適宜選択でき、例えば、エポキシ樹脂組成物の硬化物の厚みが10μm以上800μm以下となるような量が挙げられる。
<Step of filling epoxy resin composition>
The step of filling the epoxy resin composition is a step of filling the gap between the support and the semiconductor element disposed on the support with the epoxy resin composition. The method of filling the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a dispense method, a casting method, a printing method, and the like.
The amount of the epoxy resin composition to be filled is not particularly limited and can be appropriately selected depending on the purpose. For example, the amount is such that the thickness of the cured product of the epoxy resin composition is 10 μm or more and 800 μm or less.

<エポキシ樹脂組成物を硬化する工程>
 エポキシ樹脂組成物を硬化する工程は、支持体上と半導体素子との間のエポキシ樹脂組成物を硬化させる工程である。
 エポキシ樹脂組成物を硬化させる方法は、特に制限はなく、目的に応じて適宜選択でき、例えば、支持体、エポキシ樹脂組成物、及び半導体素子を減圧して圧縮しながら加熱硬化する方法(圧縮成形)、ディスペンスしたエポキシ樹脂組成物を乾燥機で加熱硬化する方法、孔版印刷したエポキシ樹脂組成物を乾燥機で加熱硬化する方法が挙げられる。
<Step of curing the epoxy resin composition>
The step of curing the epoxy resin composition is a step of curing the epoxy resin composition between the support and the semiconductor element.
The method for curing the epoxy resin composition is not particularly limited and can be appropriately selected depending on the purpose. Examples of the method include a method in which a support, an epoxy resin composition, and a semiconductor element are heated and cured while being compressed under reduced pressure (compression molding), a method in which a dispensed epoxy resin composition is heated and cured in a dryer, and a method in which a stencil-printed epoxy resin composition is heated and cured in a dryer.

<エポキシ樹脂組成物の硬化物を研磨する工程>
 エポキシ樹脂組成物の硬化物を研磨する工程は、得られたエポキシ樹脂組成物の硬化物表面を研磨し、硬化物表面を平坦にする工程である。
 研磨する方法は、特に制限はなく、目的に応じて適宜選択でき、例えば、前述の第一の研磨方法、第二の研磨方法などが挙げられる。
<Step of polishing the cured epoxy resin composition>
The step of polishing the cured product of the epoxy resin composition is a step of polishing the surface of the obtained cured product of the epoxy resin composition to make the surface of the cured product flat.
The polishing method is not particularly limited and can be appropriately selected depending on the purpose. For example, the above-mentioned first polishing method and second polishing method can be mentioned.

<その他の工程>
 その他の工程としては、特に制限はなく、目的に応じて適宜選択でき、例えば、支持体上に半導体素子を配する工程、再配線層形成工程などが挙げられる。
<Other processes>
The other steps are not particularly limited and can be appropriately selected depending on the purpose. For example, there are a step of disposing a semiconductor element on a support, a step of forming a rewiring layer, and the like.

(実施例1~13、比較例1~4)
 表1~4に記載の配合において、エポキシ樹脂組成物を作製した。エポキシ樹脂、硬化促進剤、フィラー、エラストマー、硬化剤、及びカップリング剤を計量し、セラミック3本ロールミル(株式会社井上製作所製)により分散し、ペースト化し、エポキシ樹脂組成物を作製した。
 なお、表中の数値は断りのない限り、質量部を表す。
(Examples 1 to 13, Comparative Examples 1 to 4)
Epoxy resin compositions were prepared according to the formulations shown in Tables 1 to 4. The epoxy resin, curing accelerator, filler, elastomer, curing agent, and coupling agent were weighed, dispersed in a ceramic triple roll mill (manufactured by Inoue Seisakusho Co., Ltd.), and made into a paste to prepare the epoxy resin composition.
Unless otherwise specified, the values in the tables represent parts by mass.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 実施例及び比較例において用いたエポキシ樹脂は、下記のとおりである。
・ビスフェノールF型エポキシ樹脂(YDF8170、エポキシ当量158g/eq.、日鉄ケミカル&マテリアル株式会社製)
・アミノフェノール型エポキシ樹脂(jER 630、エポキシ当量98g/eq.、三菱ケミカル株式会社製)
・脂肪族エポキシ樹脂(エポゴーセーPT(一般グレード)、エポキシ当量435g/eq.、四日市合成社製)
The epoxy resins used in the examples and comparative examples are as follows.
Bisphenol F type epoxy resin (YDF8170, epoxy equivalent 158 g/eq., manufactured by Nippon Steel Chemical & Material Co., Ltd.)
Aminophenol type epoxy resin (jER 630, epoxy equivalent 98 g/eq., manufactured by Mitsubishi Chemical Corporation)
Aliphatic epoxy resin (Epogose PT (general grade), epoxy equivalent 435 g/eq., manufactured by Yokkaichi Synthetic Co., Ltd.)

 実施例及び比較例において用いた硬化促進剤は、下記のとおりである。
・2-フェニル-4-メチルイミダゾール(2P4MZ、四国化成工業株式会社製)
・2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(2MZA、四国化成工業株式会社製)
・イミダゾール化合物(2P4MHZ、四国化成工業株式会社製)
The curing accelerators used in the examples and comparative examples are as follows.
2-Phenyl-4-methylimidazole (2P4MZ, manufactured by Shikoku Chemical Industries Co., Ltd.)
2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine (2MZA, manufactured by Shikoku Chemical Industry Co., Ltd.)
Imidazole compound (2P4MHZ, manufactured by Shikoku Chemical Industries Co., Ltd.)

 実施例及び比較例において用いたフィラーは、下記のとおりである。
・シリカフィラー1(SE605G-SMG、3-メタクリロキシプロピルトリメトキシシラン表面処理、平均粒径1.8μm、トップカット径5μm、株式会社アドマテックス製)
・シリカフィラー2(SE101G-SMO、3-メタクリロキシプロピルトリメトキシシラン表面処理、平均粒径0.3μm、トップカット径1μm、株式会社アドマテックス製)
The fillers used in the examples and comparative examples are as follows.
Silica filler 1 (SE605G-SMG, surface treated with 3-methacryloxypropyltrimethoxysilane, average particle size 1.8 μm, top cut diameter 5 μm, manufactured by Admatechs Co., Ltd.)
Silica filler 2 (SE101G-SMO, surface treated with 3-methacryloxypropyltrimethoxysilane, average particle size 0.3 μm, top cut diameter 1 μm, manufactured by Admatechs Co., Ltd.)

 実施例及び比較例において用いたエラストマーは、下記のとおりである。
・シリコーン系ゴム(コアシェル型)(コアシェル型シリコーン系ゴム粒子、MX―965、株式会社カネカ製、エラストマー成分25%)
・シリコーン複合パウダー(KMP605、信越化学工業株式会社製、エラストマー成分100%)
・ブタジエン・アクリロニトリル共重合体(カルボキシル基末端ブタジエン・アクリロニトリル共重合体、CTBN1008SP、蝶理GLEX社製、エラストマー成分100%)
・ブタジエン系ゴム(コアシェル型)(コアシェル型ブタジエン系ゴム粒子、MX-137、株式会社カネカ製、エラストマー成分33%)
・ポリブチルアクリレート系ゴム(コアシェル型)(コアシェル型ポリブチルアクリレート系ゴム粒子、ALBIDURE EP XP powder、EVONIK社製、エラストマー成分100%)
・シリコーン・アクリル複合ゴム(メタブレンS-2501、三菱ケミカル株式会社製、エラストマー成分100%)
・アクリルゴム(コアシェル型)(コアシェル型アクリルゴム粒子、スタフィロイドAC3355、アイカ工業株式会社製、エラストマー成分100%)
The elastomers used in the examples and comparative examples are as follows.
Silicone rubber (core-shell type) (core-shell type silicone rubber particles, MX-965, manufactured by Kaneka Corporation, elastomer component 25%)
Silicone composite powder (KMP605, manufactured by Shin-Etsu Chemical Co., Ltd., 100% elastomer component)
- Butadiene-acrylonitrile copolymer (carboxyl-terminated butadiene-acrylonitrile copolymer, CTBN1008SP, manufactured by Chori GLEX Co., Ltd., elastomer component 100%)
Butadiene rubber (core-shell type) (core-shell type butadiene rubber particles, MX-137, manufactured by Kaneka Corporation, elastomer component 33%)
Polybutyl acrylate rubber (core-shell type) (core-shell type polybutyl acrylate rubber particles, ALBIDURE EP XP powder, manufactured by EVONIK, elastomer component 100%)
Silicone-acrylic composite rubber (Metablen S-2501, manufactured by Mitsubishi Chemical Corporation, 100% elastomer component)
Acrylic rubber (core-shell type) (core-shell type acrylic rubber particles, Staphyloid AC3355, manufactured by Aica Kogyo Co., Ltd., elastomer component 100%)

 実施例及び比較例において用いた硬化剤は、下記のとおりである。
・フェノール系硬化剤(MEH-8005、水酸基当量139g/eq.~143g/eq.、明和化成株式会社製)
・アミン系硬化剤(ETHACURE100PLUS、アルベマール社製)
・酸無水物系硬化剤(HN-2200、昭和電工マテリアルズ株式会社製)
The curing agents used in the examples and comparative examples are as follows.
Phenol-based hardener (MEH-8005, hydroxyl equivalent 139 g/eq. to 143 g/eq., manufactured by Meiwa Kasei Co., Ltd.)
Amine-based hardener (ETHACURE 100 PLUS, manufactured by Albemarle)
・Acid anhydride curing agent (HN-2200, manufactured by Showa Denko Materials Co., Ltd.)

 実施例及び比較例において用いたその他の成分は、下記のとおりである。
・カップリング剤(3-イソシアネートプロピルトリエトキシシラン、KBE-9007、信越化学工業株式会社製)
Other components used in the examples and comparative examples are as follows.
Coupling agent (3-isocyanatepropyltriethoxysilane, KBE-9007, manufactured by Shin-Etsu Chemical Co., Ltd.)

 得られたエポキシ樹脂組成物について、粘度、熱時粘度、接着強度、研磨後の表面の孔の数、及び表面粗さを測定し、評価した。測定結果及び評価結果は、表1~4に併記した。 The obtained epoxy resin composition was measured and evaluated for viscosity, hot viscosity, adhesive strength, number of holes on the surface after polishing, and surface roughness. The measurement and evaluation results are shown in Tables 1 to 4.

<粘度、熱時粘度>
 HB-DV型粘度計(HB-DV1、ブルックフィールド社製)を用いて、液温25℃、10rpm又は5rpmにおいて、調製直後の各エポキシ樹脂組成物の粘度を測定し、下記評価基準に基づき、評価した。
-評価基準-
 A:粘度が、1,000Pa・s以下
 B:粘度が、1,000Pa・s超
 また、レオメーター(MARSIII、HAAKE社製)を用いて、120℃における熱時粘度を測定した。120℃に加熱されたプレート上に各エポキシ樹脂組成物(0.3mL±0.1mL)を投入し、測定周波数10Hz、ひずみ量0.5、ギャップ0.5mm、測定頻度1秒間で測定を開始し、40秒間後の熱時粘度を測定し、120℃における熱時粘度の測定結果とした。
<Viscosity, hot viscosity>
Using an HB-DV type viscometer (HB-DV1, manufactured by Brookfield Instruments), the viscosity of each epoxy resin composition immediately after preparation was measured at a liquid temperature of 25° C. and at 10 rpm or 5 rpm, and evaluated based on the following evaluation criteria.
-Evaluation criteria-
A: Viscosity is 1,000 Pa·s or less B: Viscosity is more than 1,000 Pa·s Furthermore, the hot viscosity at 120°C was measured using a rheometer (MARSIII, manufactured by HAAKE Corporation). Each epoxy resin composition (0.3 mL±0.1 mL) was placed on a plate heated to 120°C, and measurement was started with a measurement frequency of 10 Hz, a strain amount of 0.5, a gap of 0.5 mm, and a measurement frequency of 1 second. The hot viscosity after 40 seconds was measured, and this was taken as the measurement result of the hot viscosity at 120°C.

<接着強度>
 10mm角のシリコンチップ上に、各エポキシ樹脂組成物を底面の直径5mm、上面の直径3mm、高さ6mmの円すい台形状になるように型を用いて接着させ、150℃、2時間硬化させて試験片を作成した。この試験片の樹脂部分をボンドテスター(Dage 4000、ノードソン アドバンスドテクノロジー社製)によってはじき、せん断接着強度を測定した。
 せん断接着強度の値から、以下の評価基準に基づき、接着強度を評価した。
-評価基準-
 A:せん断接着強度が、8MPa以上
 B:せん断接着強度が、6MPa以上8MPa未満
 C:せん断接着強度が、6MPa未満
<Adhesive strength>
Each epoxy resin composition was attached to a 10 mm square silicon chip using a mold so as to form a truncated cone shape with a bottom diameter of 5 mm, a top diameter of 3 mm, and a height of 6 mm, and then cured for 2 hours at 150° C. to prepare a test specimen. The resin portion of the test specimen was peeled off with a bond tester (Dage 4000, manufactured by Nordson Advanced Technologies) to measure the shear bond strength.
The adhesive strength was evaluated based on the shear adhesive strength value and the following evaluation criteria.
-Evaluation criteria-
A: Shear adhesive strength is 8 MPa or more. B: Shear adhesive strength is 6 MPa or more and less than 8 MPa. C: Shear adhesive strength is less than 6 MPa.

<研磨後の表面の孔の数>
 12インチのシリコンウェハー上に、厚みが300μmとなるように、各エポキシ樹脂組成物をコンプレッションモールド(圧縮成形)した。その後、約50個分に個片化し、個片化したシリコンウェハー上のエポキシ樹脂組成物の硬化物表面を第一の研磨方法による研磨の後、第二の研磨方法により研磨した。
<Number of holes on the surface after polishing>
Each epoxy resin composition was compression molded onto a 12-inch silicon wafer to a thickness of 300 μm. The wafer was then cut into approximately 50 individual pieces, and the surface of the cured epoxy resin composition on each individual silicon wafer was polished by the first polishing method and then by the second polishing method.

 第一の研磨方法は、研磨装置(テグラミン-20、struers社製)を用いた、耐水研磨紙(#600)による研磨である。その際の研磨時間は、3分間、回転数は、150rpm、研磨荷重は、10Nにて行った。
 第二の研磨方法は、研磨装置(テグラミン-20、struers社製)を用いて、以下に示すステップ1からステップ3の順に行った研磨である。
 ステップ1
  研磨用部材:ダイヤモンドスラリー(日本エンギス株式会社製、6-PC、6μスラリー(粒径レンジ:4μm~8μm))
  研磨時間:6分間
 ステップ2
  研磨用部材:ダイヤモンドスラリー(日本エンギス株式会社製、1-PC、1μスラリー(粒径レンジ:0μm~2μm))
  研磨時間:3分間
 ステップ3
  研磨用部材:ダイヤモンドスラリー(BUEHLER社製、Master prep、平均粒径0.05μm)
  研磨時間:2分間
 なお、ステップ1~3における回転数及び研磨荷重は以下の通りとした。
  回転数:150rpm
  研磨荷重:10N
The first polishing method was polishing with a waterproof abrasive paper (#600) using a polishing machine (Tegramin-20, manufactured by Struers). The polishing time was 3 minutes, the rotation speed was 150 rpm, and the polishing load was 10 N.
The second polishing method was carried out using a polishing machine (Tegramin-20, manufactured by Struers) in the order of steps 1 to 3 shown below.
Step 1
Polishing material: Diamond slurry (Engis Japan Co., Ltd., 6-PC, 6μ slurry (particle size range: 4μm to 8μm))
Polishing time: 6 minutes Step 2
Polishing material: Diamond slurry (Engis Japan Co., Ltd., 1-PC, 1μ slurry (particle size range: 0μm to 2μm))
Polishing time: 3 minutes Step 3
Polishing member: Diamond slurry (Master prep, manufactured by BUEHLER, average particle size 0.05 μm)
Polishing time: 2 minutes The rotation speed and polishing load in steps 1 to 3 were as follows.
Rotation speed: 150 rpm
Polishing load: 10N

 研磨後のエポキシ樹脂組成物の硬化物表面を倍率50,000倍にてSEM観察(MERLIN、ZEISS社製)し、一視野中に存在する直径0.05μm~0.50μmの孔の数を数え、以下の評価基準に基づき、研磨後の表面状態を評価した。また、実施例1のSEM観察の画像を図1に、比較例1のSEM画像を図2に示した。
 なお、50,000倍のSEM観察における一視野の面積は、約3.9μmである。
-評価基準-
 A:研磨面における0.05μm~0.50μmの孔の数が9個以下
 B:研磨面における0.05μm~0.50μmの孔の数が10個以上
The polished surface of the cured epoxy resin composition was observed with a SEM (MERLIN, manufactured by ZEISS) at a magnification of 50,000 times, the number of holes with diameters of 0.05 μm to 0.50 μm present in one field of view was counted, and the surface condition after polishing was evaluated based on the following evaluation criteria. The SEM image of Example 1 is shown in FIG. 1, and the SEM image of Comparative Example 1 is shown in FIG. 2.
The area of one field of view in 50,000x SEM observation is approximately 3.9 μm2 .
-Evaluation criteria-
A: The number of holes of 0.05 μm to 0.50 μm on the polished surface is 9 or less. B: The number of holes of 0.05 μm to 0.50 μm on the polished surface is 10 or more.

<表面粗さ(Ra)の測定>
 第二の研磨後のエポキシ樹脂組成物の硬化物表面を、共焦点走査電子顕微鏡(OPTELICS H1200、レーザーテック株式会社製)を用いて測定し、JIS B 0601:2001に定められた方法によりRaを算出した。
 測定条件は、次の通りとした。スキャン幅は、100μm、スキャンタイプは、エリアとし、Light sourceは、Blue、カットオフ値は、1/5、オブジェクトレンズは、x100、コンタクトレンズは、x14、デジタルズームは、x1、Zピッチは、10nmの設定とした。なお、Ra値は、3箇所測定し、その平均値とした。
<Measurement of surface roughness (Ra)>
The surface of the cured epoxy resin composition after the second polishing was measured using a confocal scanning electron microscope (OPTELICS H1200, manufactured by Lasertec Corporation), and Ra was calculated according to the method specified in JIS B 0601:2001.
The measurement conditions were as follows: scan width was 100 μm, scan type was area, light source was Blue, cutoff value was 1/5, object lens was x100, contact lens was x14, digital zoom was x1, and Z pitch was 10 nm. The Ra value was measured at three locations and the average value was calculated.

 表1~4に示したように、実施例のエポキシ樹脂組成物は、いずれも研磨後の表面の孔の数の評価が「A」であった。これらのエポキシ樹脂組成物は、硬化物表面を研磨した場合に発生する小孔を抑制できるエポキシ樹脂組成物であった。
 一方、エラストマーとして主鎖に二重結合を有する固体エラストマーを用いた比較例1~4は、いずれも研磨後の表面の孔の数の評価が「B」であった。これらのことから、エラストマーとして主鎖に二重結合を有しない固体エラストマー又は液体エラストマーを含有するエポキシ樹脂組成物は、硬化物表面を研磨した場合に発生する小孔を抑制できることが明らかになった。
As shown in Tables 1 to 4, the epoxy resin compositions of the Examples were all rated as "A" for the number of pores on the polished surface. These epoxy resin compositions were epoxy resin compositions that could suppress the generation of small pores when the surface of a cured product was polished.
On the other hand, in Comparative Examples 1 to 4, in which a solid elastomer having a double bond in the main chain was used as the elastomer, the number of pores on the surface after polishing was all rated as "B." From these results, it became clear that an epoxy resin composition containing a solid elastomer or liquid elastomer having no double bond in the main chain as the elastomer can suppress the generation of small pores when the surface of the cured product is polished.

 本発明の実施形態及び実施例を説明したが、これらは例として提示したものであり、発明の範囲を限定することは意図していない。実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments and examples of the present invention have been described, these are presented as examples and are not intended to limit the scope of the invention. The embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. The embodiments and their modifications are included in the scope of the invention and its equivalents as described in the claims, as well as in the scope and gist of the invention.

Claims (14)

 エポキシ樹脂、硬化促進剤、フィラー、及びエラストマーを含有するエポキシ樹脂組成物であって、
 前記エラストマーが、固体エラストマー、及び液体エラストマーから選択される少なくとも1種であり、
 前記固体エラストマーが、主鎖に二重結合を有さない構造であることを特徴とするエポキシ樹脂組成物。
An epoxy resin composition comprising an epoxy resin, a curing accelerator, a filler, and an elastomer,
The elastomer is at least one selected from a solid elastomer and a liquid elastomer,
Epoxy resin composition, characterized in that the solid elastomer has a structure having no double bond in the main chain.
 前記エポキシ樹脂組成物の硬化物表面を、粗く研磨する第一の研磨及び研磨剤を含有する液体により研磨する第二の研磨にて研磨した後に、硬化物表面に存在する直径0.05μm~0.5μmの孔の数が、所定面積あたり10個以下である請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, in which the number of holes having a diameter of 0.05 μm to 0.5 μm present on the surface of the cured product is 10 or less per given area after the surface of the cured product is polished by a first polishing step in which the surface is roughly polished and a second polishing step in which the surface is polished by a liquid containing an abrasive.  前記エラストマーの含有量が、前記エポキシ樹脂組成物から前記フィラーを除いた成分に対して、5.0質量%以上である請求項1又は2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the content of the elastomer is 5.0 mass% or more based on the components of the epoxy resin composition excluding the filler.  前記固体エラストマーが、コアシェル型である請求項1から3のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein the solid elastomer is a core-shell type.  前記エラストマーの含有量が、前記エポキシ樹脂組成物から前記フィラーを除いた成分に対して、5.0質量%~20.0質量%である請求項1から4のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4, wherein the content of the elastomer is 5.0% by mass to 20.0% by mass based on the components of the epoxy resin composition excluding the filler.  前記フィラーの含有量が、73.0質量%~87.5質量%である請求項1から5のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 5, wherein the filler content is 73.0% by mass to 87.5% by mass.  120℃での粘度が、0.5Pa・s~40.0Pa・sである請求項1から6のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 6, having a viscosity at 120°C of 0.5 Pa·s to 40.0 Pa·s.  前記硬化促進剤が、窒素原子を含有する複素環化合物である請求項1から7のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 7, wherein the curing accelerator is a heterocyclic compound containing a nitrogen atom.  フェノール系硬化剤、アミン系硬化剤、及び酸無水物系硬化剤から選択される少なくとも1種の硬化剤を含有する請求項1から8のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 8, which contains at least one curing agent selected from a phenol-based curing agent, an amine-based curing agent, and an acid anhydride-based curing agent.  前記エポキシ樹脂が、脂肪族エポキシ樹脂、及び芳香族エポキシ樹脂から選択される少なくとも1種である請求項1から9のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 9, wherein the epoxy resin is at least one selected from an aliphatic epoxy resin and an aromatic epoxy resin.  液状コンプレッションモールド材として用いられる請求項1から10のいずれか一項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 10, which is used as a liquid compression molding material.  支持体と、
 請求項1から11のいずれか一項に記載のエポキシ樹脂組成物の硬化物と、を有する電子部品。
A support;
An electronic part comprising a cured product of the epoxy resin composition according to any one of claims 1 to 11.
 請求項12に記載の電子部品を有する半導体装置。 A semiconductor device having the electronic component according to claim 12.  支持体と、前記支持体に配されている半導体素子との間の空隙を請求項1から11のいずれか一項に記載のエポキシ樹脂組成物により充填する工程、前記エポキシ樹脂組成物を硬化させる工程、及び前記エポキシ樹脂組成物の硬化物を研磨する工程を有することを特徴とする半導体装置の製造方法。 A method for manufacturing a semiconductor device, comprising the steps of filling a gap between a support and a semiconductor element disposed on the support with the epoxy resin composition according to any one of claims 1 to 11, curing the epoxy resin composition, and polishing the cured product of the epoxy resin composition.
PCT/JP2023/035949 2023-03-28 2023-10-02 Epoxy resin composition, electronic component, semiconductor device, and semiconductor device manufacturing method Pending WO2024202136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380092949.6A CN120641488A (en) 2023-03-28 2023-10-02 Epoxy resin composition, electronic component, semiconductor device, and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-052250 2023-03-28
JP2023052250 2023-03-28

Publications (1)

Publication Number Publication Date
WO2024202136A1 true WO2024202136A1 (en) 2024-10-03

Family

ID=92903763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035949 Pending WO2024202136A1 (en) 2023-03-28 2023-10-02 Epoxy resin composition, electronic component, semiconductor device, and semiconductor device manufacturing method

Country Status (3)

Country Link
CN (1) CN120641488A (en)
TW (1) TW202440783A (en)
WO (1) WO2024202136A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233452A (en) * 2010-04-30 2011-11-17 Namics Corp Conductive paste for external electrode, and multilayered ceramic electronic part with external electrode formed by conductive paste
JP2014019823A (en) * 2012-07-20 2014-02-03 Namics Corp Liquid encapsulation material, and electronic component using the same
WO2016136741A1 (en) * 2015-02-26 2016-09-01 日立化成株式会社 Sealing film and electronic component device using same
WO2017022721A1 (en) * 2015-08-03 2017-02-09 日立化成株式会社 Epoxy resin composition, film-shaped epoxy resin composition, and electronic device
JP2017145357A (en) * 2016-02-19 2017-08-24 ナミックス株式会社 Liquid epoxy resin composition, semiconductor sealing agent, and semiconductor device
JP2018024774A (en) * 2016-08-10 2018-02-15 味の素株式会社 Resin composition
WO2020111244A1 (en) * 2018-11-30 2020-06-04 日立化成株式会社 Underfill material, semiconductor package and method for producing semiconductor package
JP2021183675A (en) * 2020-05-22 2021-12-02 住友ベークライト株式会社 Thermosetting resin composition, semiconductor encapsulant, heat-conductive sheet, and electronic device
WO2023047702A1 (en) * 2021-09-22 2023-03-30 ナミックス株式会社 Liquid compression molding material, electronic component, semiconductor device and method for producing semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233452A (en) * 2010-04-30 2011-11-17 Namics Corp Conductive paste for external electrode, and multilayered ceramic electronic part with external electrode formed by conductive paste
JP2014019823A (en) * 2012-07-20 2014-02-03 Namics Corp Liquid encapsulation material, and electronic component using the same
WO2016136741A1 (en) * 2015-02-26 2016-09-01 日立化成株式会社 Sealing film and electronic component device using same
WO2017022721A1 (en) * 2015-08-03 2017-02-09 日立化成株式会社 Epoxy resin composition, film-shaped epoxy resin composition, and electronic device
JP2017145357A (en) * 2016-02-19 2017-08-24 ナミックス株式会社 Liquid epoxy resin composition, semiconductor sealing agent, and semiconductor device
JP2018024774A (en) * 2016-08-10 2018-02-15 味の素株式会社 Resin composition
WO2020111244A1 (en) * 2018-11-30 2020-06-04 日立化成株式会社 Underfill material, semiconductor package and method for producing semiconductor package
JP2021183675A (en) * 2020-05-22 2021-12-02 住友ベークライト株式会社 Thermosetting resin composition, semiconductor encapsulant, heat-conductive sheet, and electronic device
WO2023047702A1 (en) * 2021-09-22 2023-03-30 ナミックス株式会社 Liquid compression molding material, electronic component, semiconductor device and method for producing semiconductor device

Also Published As

Publication number Publication date
TW202440783A (en) 2024-10-16
CN120641488A (en) 2025-09-12

Similar Documents

Publication Publication Date Title
JP7531557B2 (en) Liquid resin composition for sealing and electronic component device
JP7531558B2 (en) Liquid resin composition for compression molding and electronic component device
JP5574237B2 (en) Epoxy resin composition for sealing electronic parts
JP4965715B1 (en) Epoxy resin composition and semiconductor sealing material using the same
JP2009097014A (en) Liquid resin composition for sealing, electronic component device and wafer level chip size package
JP2009097013A (en) Liquid resin composition for sealing, electronic component device and wafer level chip-size package
TW201723073A (en) Liquid epoxy resin composition
JP7687499B2 (en) Underfill material, electronic component device, and method for manufacturing electronic component device
JPWO2015104917A1 (en) Liquid epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP7337462B2 (en) epoxy resin composition
WO2024202136A1 (en) Epoxy resin composition, electronic component, semiconductor device, and semiconductor device manufacturing method
WO2023062877A1 (en) Liquid sealing agent, electronic component and method for producing same, and semiconductor device
JP7606797B1 (en) Liquid compression molding material, electronic component, semiconductor device, and method for manufacturing electronic component
JP2022060062A (en) Epoxy resin composition and electronic component device
JP7683185B2 (en) Epoxy resin composition and electronic component device
TWI898612B (en) Liquid resin composition for compression molding and electronic component device
WO2024247416A1 (en) Liquid compression molding material, electronic component, and semiconductor device
JP2025149837A (en) Liquid compression molding material, electronic component, semiconductor device, and method for manufacturing electronic component
WO2025004453A1 (en) Liquid compression molding material, electronic component, semiconductor device, and method for manufacturing electronic component
WO2025203722A1 (en) Liquid compression molding material, electronic component, semiconductor device, and method for manufacturing electronic component
WO2024075342A1 (en) Epoxy resin composition, semiconductor device, and method for producing semiconductor device
WO2024134951A1 (en) Epoxy resin composition, cured product, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23930767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2025509673

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202380092949.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 202380092949.6

Country of ref document: CN