WO2024237257A1 - Molybdenum target and method for producing same - Google Patents
Molybdenum target and method for producing same Download PDFInfo
- Publication number
- WO2024237257A1 WO2024237257A1 PCT/JP2024/017842 JP2024017842W WO2024237257A1 WO 2024237257 A1 WO2024237257 A1 WO 2024237257A1 JP 2024017842 W JP2024017842 W JP 2024017842W WO 2024237257 A1 WO2024237257 A1 WO 2024237257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- molybdenum
- ave
- content
- size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/04—Alloys based on tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
Definitions
- the present invention relates to a molybdenum target formed from a sintered body of molybdenum powder and a method for manufacturing the same.
- tungsten which has heat resistance and low resistance properties, has been widely used as a wiring material or electrode material.
- Tungsten films are generally formed by the sputtering method.
- argon ions generated by plasma discharge are collided with a tungsten target, knocking out tungsten atoms from the target surface and depositing the tungsten atoms on a substrate placed opposite the target.
- a major problem in the process is that particles generated from the target surface adhere to the substrate and reduce the yield. For this reason, it is essential that the tungsten target has extremely low particle generation, fine and uniform crystal grains, and a high relative density.
- molybdenum films have attracted attention as they may be able to achieve sufficiently low electrical resistance values.
- they are also known to have a problem in that they generate a high rate of particles during sputtering, which reduces material yields.
- a molybdenum sputtering target capable of effectively reducing particles during sputtering has been proposed, which has a molybdenum content of 99.99% by mass or more, a relative density of 98% or more, and an average crystal grain size of 400 ⁇ m or less.
- the method for producing the sputtering target includes the steps of preparing molybdenum powder, hot pressing the molybdenum powder under a load at a temperature of 1350°C to 1500°C, and hot isostatic pressing the compact obtained by the hot pressing at a temperature of 1300°C to 1850°C (see Patent Document 1).
- Patent Document 1 cannot sufficiently reduce the generation of particles from the molybdenum target.
- particles generated from the molybdenum target have a significant effect on yield, and therefore there is a demand for further suppression of particle generation.
- targets manufactured using the above-mentioned manufacturing method have a relative density of sintered bodies that reaches just under 100%, but pores are inevitably present and the size and distribution of these pores are not controlled, making it impossible to suppress particle generation and resulting in reduced yields.
- the objective of the present invention is to provide a molybdenum target and a manufacturing method thereof that suppresses the generation of pores, which are the cause of particle generation, and controls the size and distribution with high precision.
- a first aspect of the present invention is a molybdenum target formed of a sintered body of molybdenum powder, the molybdenum target having a relative density of 99% or more, an oxygen content of 25 ppm or less, a carbon content of 30 ppm or less, a tungsten content of 10 ppm to 100 ppm, a molybdenum content excluding the oxygen content, the carbon content, and the tungsten content of 99.999 mass% or more, and having, in an observation area of 0.15 mm2 , 20 or less pores having a size of 0.01 ⁇ m2 or more and less than 0.2 ⁇ m2 , 5 or less pores having a size of 0.2 ⁇ m2 or more and less than 1.8 ⁇ m2, and 1 or less pores having a size of 1.8 ⁇ m2 or more .
- a second aspect of the present invention is the molybdenum target of the first aspect, in which the average grain size d Ave calculated based on the equivalent circle diameter is 20 ⁇ m or more and 100 ⁇ m or less, and the ratio (3 ⁇ /d Ave ) of the standard deviation 3 ⁇ of the grain size calculated based on the equivalent circle diameter to the average grain size d Ave is 1.2 or less.
- the third aspect of the present invention is a molybdenum target according to the second aspect, in which the average aspect ratio of the grain size is less than 1.2.
- a fourth aspect of the present invention is the molybdenum target according to any one of the first to third aspects, wherein the average Vickers hardness is 180 or less, and the ratio of the standard deviation 3 ⁇ of the Vickers hardness to the average Vickers hardness H Ave (3 ⁇ /H Ave ) is 0.07 or less.
- a fifth aspect of the present invention is a method for producing a molybdenum target, comprising the steps of: using a molybdenum powder having an average particle size D Ave of 2.5 to 4.0 ⁇ m, a median diameter D50 of 2.0 to 3.5, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less, as determined by a laser diffraction/scattering method; hot pressing the molybdenum powder at a temperature of 1400° C. to 1500° C.; and then sintering the molybdenum powder by hot isostatic pressing at a temperature of 1500° C. to 1600° C.
- the sixth aspect of the present invention is the method for producing a molybdenum target according to the fifth aspect, in which the molybdenum powder has a tungsten content of 10 ppm to 100 ppm, and a molybdenum content excluding the oxygen content, carbon content, and tungsten content is 99.999 mass% or more.
- the seventh aspect of the present invention is the method for producing a molybdenum target according to the fifth or sixth aspect, in which the hot pressing is performed under high vacuum at a holding temperature of 1400 to 1500°C for a holding time of 360 to 600 minutes.
- the present invention makes it possible to realize a molybdenum target and a manufacturing method thereof that suppresses the generation of pores, which are the cause of particle generation, and controls the size and distribution of the pores with high precision.
- FIG. 1 is a graph showing the relationship between the number of pores of 0.01 to 0.2 ⁇ m2 and the number of particles in the examples of the present invention and the comparative examples.
- FIG. 1 is a graph showing the relationship between the number of pores of 0.2 to 1.8 ⁇ m2 and the number of particles in the examples and comparative examples of the present invention.
- FIG. 1 is a diagram showing the relationship between the number of pores having a size of 1.8 ⁇ m 2 or more and the number of particles in an embodiment of the present invention and a comparative example.
- the molybdenum target of the present invention has a molybdenum purity (content) of 5N (99.999% by mass) or more, a relative density of 99% or more, an oxygen content of 25 ppm or less, a carbon content of 30 ppm or less, a tungsten content of 10 ppm to 100 ppm, and in an observation area of 0.15 mm2 , there are 20 or less pores having a size of 0.01 ⁇ m2 or more and less than 0.2 ⁇ m2 , 5 or less pores having a size of 0.2 ⁇ m2 or more and less than 1.8 ⁇ m2, and 1 or less pores having a size of 1.8 ⁇ m2 or more.
- the 5N purity of molybdenum means that the molybdenum content excluding the oxygen content, carbon content, and tungsten content is 99.999% by mass or more.
- the molybdenum target In order to form a molybdenum film with low resistivity, it is necessary to suppress impurities contained in the molybdenum film, and therefore it is essential to highly purify the molybdenum target. Specifically, it is necessary for the molybdenum target to have a purity of 99.999 mass % (5N) or more.
- Gas components such as carbon and oxygen contained in the molybdenum target adversely affect the resistivity of the molybdenum film. These gas components are incorporated into the molybdenum film during film formation, and the resistivity of the molybdenum film tends to increase as the content of these gas components increases. Therefore, the carbon content of the molybdenum target is preferably 30 mass ppm or less, and the oxygen content is preferably 25 mass ppm or less.
- the reason for setting the tungsten content in this range is as follows. Normally, the tungsten content is reduced to an unavoidable level, but in the present invention, the tungsten content is set within a predetermined range. If the tungsten content is too low, grain growth is likely to occur during sintering, the crystal grain size becomes large, and large pores are likely to be formed. On the other hand, if the tungsten content is too high, sinterability becomes poor, and it tends to be difficult to achieve high density.
- the average crystal grain size d Ave calculated based on the circle-equivalent diameter is 20 ⁇ m or more and 100 ⁇ m or less.
- the reason for setting such an average value of the crystal grain size is as follows.
- the smaller the average grain size of the molybdenum target the smaller the difference in the amount of erosion caused by the orientation difference of each crystal grain on the target surface can be, so that the number of abnormal discharges caused by unevenness is reduced and the generation of particles during film formation can be suppressed.
- the ratio (3 ⁇ /d Ave ) of the standard deviation 3 ⁇ of the particle diameter calculated based on the equivalent circle diameter to the average particle diameter d Ave is 1.2 or less. This ratio is calculated by dividing the standard deviation 3 ⁇ by the average particle diameter.
- the aspect ratio of the particle size is less than 1.2. This aspect ratio is the value obtained by dividing the major axis of the particle image by the minor axis to determine the "particle size calculated based on the circle equivalent diameter,” and was determined using the image analysis software "Image-j.”
- the ratio of the standard deviation 3 ⁇ of the grain size to the average grain size d Ave (3 ⁇ /d Ave ) is preferably 1.2 or less for the following reasons. There is a correlation between the variation in crystal grain size and the number and size of pores. The smaller the variation in crystal grain size, the fewer the number of pores in the target and the smaller their size. Therefore, within the above range, the generation of particles during film formation can be suppressed.
- the aspect ratio of the grain size is preferably less than 1.2 because it provides a stable deposition rate that does not adversely affect production, and the deposition rate is unlikely to change even when the target is replaced.
- the relative density of the molybdenum target is preferably 99% or more. If the relative density of the target is 99% or more, the amount of gas components contained in the target is small, so that when a film is formed, the increase in the resistivity of the film can be suppressed. In addition, the higher the relative density of the target, the fewer the number of pores, so that the number of abnormal discharges caused by the unevenness of the target surface is reduced, and the generation of particles during film formation can be suppressed.
- the average Vickers hardness of the molybdenum target is preferably 160 or more and 180 or less, and more preferably 165-175.
- the reason why the average value of the Vickers hardness is preferably within the above range is as follows. There is a correlation between the average Vickers hardness and the number and size of pores in a target. The higher the average Vickers hardness, the fewer the number and smaller the size of pores in the target, making it possible to suppress particle generation during film formation.
- the ratio (3 ⁇ /H Ave ) of the standard deviation 3 ⁇ of the Vickers hardness to the average value H Ave of the Vickers hardness is preferably 0.07 or less.
- the calculation method was to divide the standard deviation 3 ⁇ by the average value of the Vickers hardness.
- the molybdenum target of the present invention has, in an observation area of 0.15 mm2 , 20 or less pores having a size of 0.01 ⁇ m2 or more and less than 0.2 ⁇ m2 , 5 or less pores having a size of 0.2 ⁇ m2 or more and less than 1.8 ⁇ m2, and 1 or less pores having a size of 1.8 ⁇ m2 or more .
- a molybdenum target with extremely few coarse pores and suppressed pore localization in the surface and thickness directions of the molybdenum target has not been realized until now, but it can be realized by having the relative density, hardness, and crystal grain size characteristics described above.
- the molybdenum target of the present invention with extremely few coarse pores and suppressed pore localization in the surface and thickness directions of the molybdenum target can be realized by the manufacturing method described below.
- the molybdenum target of the present invention can be produced by using molybdenum powder having an average particle size D Ave of 2.5 to 4.0 ⁇ m and a median diameter D50 of 2.0 to 3.5, which are obtained by a laser diffraction/scattering method, hot pressing at a temperature of 1400° C. to 1500° C. (HP process), and then sintering by hot isostatic pressing at a temperature of 1500° C. to 1600° C. (HIP process).
- a second key point of the method for producing a sputtering target of the present invention is to use molybdenum powder having a ratio of median diameter D90 to average particle diameter D Ave (D90/D Ave ) of 1.7 or less, preferably 1.5 or less.
- the third point of the method for producing a sputtering target of the present invention is to use tungsten powder having a ratio (D95/D Ave ) of the median diameter D95 to the average particle diameter D Ave of 2.0 or less, preferably 1.8 or less.
- a molybdenum target with extremely small pores and few pores can be realized by using a molybdenum powder having a particle size in a predetermined range and a very narrow particle size distribution range, i.e., a small variation in particle size from the average particle size.
- the characteristic of such a narrow particle size distribution is defined as a value obtained by dividing the median diameter D90 by the average particle size D Ave obtained by the laser diffraction/scattering method or a value obtained by dividing the median diameter D95 by the average particle size D Ave obtained by the laser diffraction/scattering method being equal to or less than a predetermined value. Note that a powder having a wide particle size distribution outside this range cannot achieve the effects of the present invention.
- the molybdenum powder used in the present invention has a tungsten content of 10 ppm to 100 ppm, and a molybdenum content excluding the oxygen content, carbon content, and tungsten content of 99.999 mass% or more.
- the oxygen content affects the oxygen content of the molybdenum target, so it is preferable to set the oxygen content of the raw material powder to, for example, 3000 mass ppm or less. This increases the amount of oxide sublimation, which may damage the hot press equipment.
- the sputtering target of the present invention can be manufactured by hot pressing the above-mentioned molybdenum powder at a temperature of 1400°C or higher and 1500°C or lower, and then sintering it by hot isostatic pressing at a temperature of 1500°C or higher and 1600°C or lower.
- Vacuum hot pressing in a high vacuum region promotes degassing and sintering, and allows for a high-density sintered body to be obtained while reducing the amount of oxygen contained in the molybdenum target. If the oxygen content of the molybdenum powder is high, the number of oxides in the molybdenum target increases, and the frequency of particle generation increases. In addition, sintering is inhibited by a thick surface oxide film, making it impossible to obtain a high-density sintered body.
- high vacuum refers to 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa or less, and more preferably 1 ⁇ 10 ⁇ 4 Pa or less.
- the carbon content in the molybdenum target is preferably 30 ppm by mass or less, and the oxygen content is preferably 25 ppm by mass or less.
- oxygen concentration can be achieved by vacuum hot pressing.
- a sintered body having a relative density of 95% or more is produced.
- the HP temperature for producing a sintered body having such characteristics is preferably 1400°C or more and 1500°C or less. If the HP temperature is too low, the density does not rise to a level at which HIP treatment is possible, and if it is too high, coarse pores are formed locally due to rapid grain growth, which is not preferable. If the HP pressure is too low, the density does not rise to a level at which HIP treatment is possible. If it is too high, the HP device will wear out rapidly. For example, the pressure during HP treatment is 39.2 MPa (400 kg/ cm2 ) or more and 44.1 MPa (450 kg/ cm2 ) or less.
- the HP holding time in this process is 360 minutes or more and 600 minutes or less. If the HP holding time is too short, the density does not rise to a level at which HIP treatment is possible, and if it is too long, productivity will decrease.
- it is essential to control the powder particle size and particle size distribution, set the HP temperature to 1400° C. or higher and 1500° C. or lower, and set the HP holding time to 360 minutes or higher and 600 minutes or lower. This makes it possible to prevent the pores in the sintered body from becoming coarse and to uniformly disperse fine pores in the sintered body.
- Hot isostatic pressing is applied to the sintered body that has been subjected to HP treatment to reduce the pores in the sintered body and increase its density.
- the HIP temperature is 1500°C or more and 1600°C or less.
- the processing temperature is low, so it is difficult to obtain a high relative density of 99% or more within a processing time suitable for mass production.
- a molybdenum powder with a tungsten content in a predetermined range is used, a sintered body with a relative density of 99% or more cannot be obtained at a temperature lower than 1500°C.
- the high processing temperature leads to rapid coarsening of the crystal grains, and coarse pores are formed locally, which is not preferable.
- the pressure is not particularly limited, and is, for example, 100 to 200 MPa, and is 176.4 MPa (1800 kg/ cm2 ) in this embodiment.
- the above manufacturing method makes it possible to obtain a molybdenum target having the characteristics of the present invention.
- the presence of pores in a sputtering target is strongly correlated with the size of the raw material powder and its particle size distribution, the relative density of the sintered body, the size and distribution of the target's crystal grain size, and the size and distribution of hardness.
- the finer the raw material powder is and the narrower the range of its particle size distribution the higher the relative density of the sintered body is, and the smaller the variation in crystal grain size and hardness is, the more significantly the occurrence of pores is reduced and their size becomes extremely small.
- the present invention has found that by optimizing the size and particle size distribution of the raw material powder, the hot pressing conditions, and the hot isostatic pressing conditions, it is possible to increase the relative density of the sintered body and suppress the variation in crystal grain size and hardness, thereby manufacturing a molybdenum target of the present invention with very few coarse pores and almost no localization of pores.
- the raw material powder is hot pressed at a temperature of 1400°C or higher and 1500°C or lower, and then sintered by hot isostatic pressing at a temperature of 1500°C or higher and 1600°C or lower.
- a sputtering target having small and few pores.
- the method for manufacturing a molybdenum target of the present invention can efficiently and stably manufacture a molybdenum target having a relative density of 99% or more, a Vickers hardness of 180 or less, a ratio of the standard deviation 3 ⁇ of Vickers hardness to the average Vickers hardness H Ave (3 ⁇ /H Ave ) of 0.07 or less, an average grain size of 20 ⁇ m or more and 100 ⁇ m or less, and a ratio of the standard deviation 3 ⁇ of the average grain size to the average grain size H Ave (3 ⁇ /H Ave ) of 1.2 or less.
- the sintered body produced as described above is processed into a predetermined target shape in the processing step.
- a predetermined target shape There are no particular limitations on the processing method, but typically mechanical processing methods such as grinding and cutting are applied.
- the processed size and shape are determined according to the target specifications, and the target is processed into a circular or rectangular shape, for example.
- the processed sintered body is bonded to a backing plate to form a sputtering cathode.
- the present invention will be described below with reference to examples and comparative examples.
- the average particle size and particle size distribution of the molybdenum powder were determined using a particle size distribution measuring device "LS13320" manufactured by Microtrackbell.
- Examples 1 to 4 As shown in Table 1, a molybdenum powder having a tungsten content of 10 ppm to 100 ppm, a molybdenum content excluding tungsten and gas contents of 99.999 mass% or more (purity 5N), an average particle size D Ave obtained by a laser diffraction/scattering method of 2.5 to 4.0 ⁇ m, a median diameter D50 of 2.0 to 3.5, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less was used, and the powder was hot pressed at a temperature shown in Table 1, that is, a temperature of 1400° C.
- the obtained molybdenum sintered body was finished into a predetermined target shape (diameter 440 mm, thickness 6 mm) by grinding using a lathe.
- the obtained molybdenum sintered body was finished into a predetermined target shape (diameter 440 mm, thickness 6 mm) by grinding with a lathe.
- the obtained molybdenum sintered body was finished into a predetermined target shape (diameter 440 mm, thickness 6 mm) by grinding with a lathe.
- a molybdenum powder having an average particle size D Ave obtained by a laser diffraction/scattering method greater than 4.0 ⁇ m, a median diameter D50 of 2.0 to 3.5 ⁇ m, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or more was used, hot pressed at the temperature shown in Table 1, and then subjected to HIP to obtain a molybdenum sintered body.
- the obtained molybdenum sintered body was ground on a lathe to a predetermined target shape (diameter 440 mm, thickness 6 mm).
- the obtained molybdenum sintered body was finished into a predetermined target shape (diameter 440 mm, thickness 6 mm) by grinding with a lathe.
- films were formed as follows, the resistivity of the films was measured as follows, and particles were evaluated as follows.
- Example 1 to 4 and Comparative Examples 1 to 13 are shown in Table 3, and the relationship between the number of pores of a given size and the number of particles is shown in Figures 1 to 3. Note that resistivity of 11 ⁇ cm or less was marked as O, and that exceeding 11 ⁇ cm was marked as X. If the resistivity is 11 ⁇ cm or less, low-resistance LSI wiring can be formed, making it possible to realize a device with low power consumption.
- the film thickness distribution was evaluated as 0 if it was 2% or less, and 0 if it was more than 2%. If the film thickness distribution is 2% or less, devices with little variation in performance and quality can be produced stably.
- the obtained molybdenum target was bonded to an aluminum alloy backing plate with an In-based brazing material to form a sputtering cathode.
- the sputtering cathode was assembled in an ULVAC sputtering device "ENTRON (registered trademark)" to form a molybdenum thin film with a thickness of 10 nm on a semiconductor wafer with a diameter of 300 mm.
- the sputtering conditions were as follows: ultimate pressure: 1 ⁇ 10 ⁇ 5 Pa, discharge method: DC, power: 4 kW, gas source: Ar, gas flow rate: 150 sccm, film formation temperature: 200° C., sputtering time: 5 seconds, and distance between the target and the wafer: 60 mm.
- the film thickness was measured at nine points on the molybdenum thin film on the wafer using a TECHNORAYS S-MAT2300, and the sheet resistance was measured using a KLATencor OmniMap RS100 to calculate the resistivity ( ⁇ cm) of the thin film, and the average value was used as the resistivity of the molybdenum thin film.
- a molybdenum powder having a tungsten content of 10 ppm to 100 ppm, a molybdenum content excluding tungsten and gas content of 99.999 mass% or more (purity 5N), an average particle size D Ave obtained by a laser diffraction/scattering method of 2.5 to 4.0 ⁇ m, a median diameter D50 of 2.0 to 3.5, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less was used, and the powder was hot pressed at a temperature of 1400° C.
- the obtained molybdenum sintered body has a relative density of 99% or more, and a molybdenum target can be obtained in which, in an observation area of 0.15 mm2 , there are 20 or less pores with a size of 0.01 ⁇ m2 or more and less than 0.2 ⁇ m2 , 5 or less pores with a size of 0.2 ⁇ m2 or more and less than 1.8 ⁇ m2, and 1 or less pores with a size of 1.8 ⁇ m2 or more.
- a molybdenum target it is possible to suppress the generation of particles, and it becomes possible to stably form a high-quality molybdenum thin film.
- the hot pressing temperature is low at 1500°C or less, so the carbon content of the target is sufficiently low, making it possible to form a thin film with a sufficiently low resistivity of 11 ⁇ cm or less.
- Comparative Example 1 the powder was too fine and contained a large amount of oxygen, so that the density rose sharply during HP and oxides were trapped, while in Comparative Example 2, the density was insufficient because HIP was not performed.
- Comparative Examples 3 and 4 the tungsten content and oxygen content were high, resulting in high resistivity.
- the raw powder was too fine, resulting in a sudden increase in density during HP, and the HP temperature was low, resulting in oxides remaining without sublimation.
- Comparative Example 3 abnormal grain growth occurred due to the high HIP temperature, and in Comparative Example 4, the density was low due to the low HIP temperature.
- Comparative Examples 5 and 6 the tungsten content and oxygen content were high, resulting in high resistivity.
- the powder was too fine and the oxygen content was high, resulting in a sudden increase in density during HP, leading to oxide trapping.
- the density was low due to the low HIP temperature.
- the oxygen content was high, resulting in a high resistivity, and the raw material powder was too fine, resulting in a sudden increase in density during HP, causing some oxides to remain.
- the oxygen content was high, so the resistivity was high, and the raw powder was too fine, so the density rose sharply during HP, leaving some oxides behind.
- the HIP temperature was high, so abnormal grain growth occurred, and the aspect ratio became large.
- the raw material powder was coarse, resulting in insufficient density.
- Comparative Example 11 the particle size was insufficient, resulting in uneven particle size and a large aspect ratio, resulting in insufficient density.
- Comparative Example 12 the high HIP temperature caused abnormal grain growth, resulting in a large aspect ratio, and the raw material powder was coarse, resulting in insufficient density.
- Comparative Example 13 the amount of carbon diffusion was large due to the high HP temperature. Also, due to insufficient adjustment of the raw material particle size distribution, the particle size was uneven, the aspect ratio was large, and the powder was coarse, resulting in insufficient density.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、モリブデン粉末の焼結体で形成されたモリブデンターゲットおよびその製造方法に関する。 The present invention relates to a molybdenum target formed from a sintered body of molybdenum powder and a method for manufacturing the same.
近年、半導体装置の製造分野においては、配線材料あるいは電極材料として、耐熱性および低抵抗特性を有するタングステンが広く用いられている。タングステン膜は、一般的にスパッタリング法で形成されている。タングステン膜のスパッタリングは、プラズマ放電により生成されたアルゴンイオンをタングステンターゲットに衝突させることで、ターゲット表面からタングステン原子を叩き出し、ターゲットに対向して配置された基板上にタングステン原子を堆積させる。このとき、ターゲット表面から発生したパーティクルが基板上に付着し歩留りを低下させることがプロセス上の大きな問題として知られている。このため、タングステンターゲットにおいても、パーティクル発生が極めて少なく、結晶粒が微細かつ均一で、相対密度の高いタングステンターゲットが不可欠となっている。 In recent years, in the field of semiconductor device manufacturing, tungsten, which has heat resistance and low resistance properties, has been widely used as a wiring material or electrode material. Tungsten films are generally formed by the sputtering method. In tungsten film sputtering, argon ions generated by plasma discharge are collided with a tungsten target, knocking out tungsten atoms from the target surface and depositing the tungsten atoms on a substrate placed opposite the target. At this time, it is known that a major problem in the process is that particles generated from the target surface adhere to the substrate and reduce the yield. For this reason, it is essential that the tungsten target has extremely low particle generation, fine and uniform crystal grains, and a high relative density.
しかしながら、高純度のタングステン膜が形成できたとしても、将来的な更なる低抵抗の要求に対応できない懸念がある。それ故に、タングステンに代わる有望な材料を見出すことが必要である。
これに関して、モリブデン膜は十分に低い電気抵抗値を実現できる可能性があるとして注目されているが、スパッタリング時にパーティクルの発生率が高く、それにより、材料歩留まりが低下するという問題があることも知られている。
However, even if a high-purity tungsten film can be formed, there is a concern that it may not be able to meet the future demand for even lower resistance. Therefore, it is necessary to find a promising material to replace tungsten.
In this regard, molybdenum films have attracted attention as they may be able to achieve sufficiently low electrical resistance values. However, they are also known to have a problem in that they generate a high rate of particles during sputtering, which reduces material yields.
そこで、スパッタリング時のパーティクルを有効に低減することができるモリブデンスパッタリングターゲットとして、モリブデンの含有量が99.99質量%以上であり、相対密度が98%以上であり、平均結晶粒径が400μm以下であるもの、また、モリブデン粉末を準備する工程と、前記モリブデン粉末に対し、1350℃~1500℃の温度で荷重を作用させてホットプレスを行う工程と、前記ホットプレスにより得られる成形体に対し、1300℃~1850℃の温度で熱間等方圧加圧を行う工程とを含むスパッタリングターゲットの製造方法が提案されている(特許文献1参照)。 Therefore, a molybdenum sputtering target capable of effectively reducing particles during sputtering has been proposed, which has a molybdenum content of 99.99% by mass or more, a relative density of 98% or more, and an average crystal grain size of 400 μm or less. The method for producing the sputtering target includes the steps of preparing molybdenum powder, hot pressing the molybdenum powder under a load at a temperature of 1350°C to 1500°C, and hot isostatic pressing the compact obtained by the hot pressing at a temperature of 1300°C to 1850°C (see Patent Document 1).
しかしながら、特許文献1の手法によっても、モリブデンターゲットから発生するパーティクルの発生が十分に低減できないことがわかった。
特に、モリブデンを用いた配線等の微細化が進むと、モリブデンターゲットから発生するパーティクルが歩留まりに大きく影響を与えることになるので、パーティクルの発生をさらに抑制することが要望されている。
However, it has been found that even the technique disclosed in Patent Document 1 cannot sufficiently reduce the generation of particles from the molybdenum target.
In particular, as wiring and the like using molybdenum becomes finer, particles generated from the molybdenum target have a significant effect on yield, and therefore there is a demand for further suppression of particle generation.
そこで、モリブデンターゲットをスパッタリングして成膜する際のパーティクルの要因を研究した結果、上述した製造方法で製造したターゲットは、焼結体の相対密度が100%弱まで達するが、どうしてもポアが存在し、また、その大きさ、分布状態が制御されていないため、パーティクル発生が抑制できず、歩留まり低下の原因となることを知見した。 As a result of researching the causes of particles that occur when forming a film by sputtering a molybdenum target, it was discovered that targets manufactured using the above-mentioned manufacturing method have a relative density of sintered bodies that reaches just under 100%, but pores are inevitably present and the size and distribution of these pores are not controlled, making it impossible to suppress particle generation and resulting in reduced yields.
よって、歩留まりを向上させるためには、パーティクルの発生が限りなく少ないモリブデンターゲットが必要であり、そのモリブデンターゲットを得ることができる製造方法が必要となる。 Therefore, to improve yields, a molybdenum target that generates as few particles as possible is required, and a manufacturing method that can obtain such a molybdenum target is required.
本発明は、このような事情に鑑み、パーティクルの発生原因であるポアの生成を抑え、そのサイズと分布を高精度に制御したモリブデンターゲット及びその製造方法を提供することを課題とする。 In light of these circumstances, the objective of the present invention is to provide a molybdenum target and a manufacturing method thereof that suppresses the generation of pores, which are the cause of particle generation, and controls the size and distribution with high precision.
上記目的を達成するため、本発明の第1の態様は、モリブデン粉末の焼結体で形成されたモリブデンターゲットであって、相対密度が99%以上であり、酸素含有量が25ppm以下であり、炭素含有量が30ppm以下であり、タングステン含有量が10ppm~100ppmであり、前記酸素含有量、前記炭素含有量および前記タングステン含有量を除いたモリブデン含有量が99.999質量%以上であり、0.15mm2の観察領域において、0.01μm2以上0.2μm2未満の大きさのポアが20個以下であり、0.2μm2以上1.8μm2未満の大きさのポアが5個以下であり、1.8μm2以上の大きさのポアが1個以下であるモリブデンターゲットである。 In order to achieve the above object, a first aspect of the present invention is a molybdenum target formed of a sintered body of molybdenum powder, the molybdenum target having a relative density of 99% or more, an oxygen content of 25 ppm or less, a carbon content of 30 ppm or less, a tungsten content of 10 ppm to 100 ppm, a molybdenum content excluding the oxygen content, the carbon content, and the tungsten content of 99.999 mass% or more, and having, in an observation area of 0.15 mm2 , 20 or less pores having a size of 0.01 μm2 or more and less than 0.2 μm2 , 5 or less pores having a size of 0.2 μm2 or more and less than 1.8 μm2, and 1 or less pores having a size of 1.8 μm2 or more .
本発明の第2の態様は、円相当径で計算した平均粒径dAveが20μm以上100μm以下であり、円相当径で計算した粒径の標準偏差3σと平均粒径dAveとの比(3σ/dAve)が1.2以下である第1の態様のモリブデンターゲットである。 A second aspect of the present invention is the molybdenum target of the first aspect, in which the average grain size d Ave calculated based on the equivalent circle diameter is 20 μm or more and 100 μm or less, and the ratio (3σ/d Ave ) of the standard deviation 3σ of the grain size calculated based on the equivalent circle diameter to the average grain size d Ave is 1.2 or less.
本発明の第3の態様は、粒径の縦横のアスペクト比の平均値が1.2未満である第2の態様のモリブデンターゲットである。 The third aspect of the present invention is a molybdenum target according to the second aspect, in which the average aspect ratio of the grain size is less than 1.2.
本発明の第4の態様は、ビッカース硬度の平均値が180以下であり、ビッカース硬度の標準偏差3σとビッカース硬度の平均値HAveとの比(3σ/HAve)が0.07以下である第1~3の態様のモリブデンターゲットである。 A fourth aspect of the present invention is the molybdenum target according to any one of the first to third aspects, wherein the average Vickers hardness is 180 or less, and the ratio of the standard deviation 3σ of the Vickers hardness to the average Vickers hardness H Ave (3σ/H Ave ) is 0.07 or less.
本発明の第5の態様は、レーザー回折・散乱法で得られる平均粒径DAveが2.5~4.0μm、メディアン径D50が2.0~3.5であり、メディアン径D90と前記平均粒径DAveとの比(D90/DAve)が1.7以下であり、メディアン径D95と前記平均粒径DAveとの比(D95/DAve)が2.0以下であるモリブデン粉末を用い、1400℃以上1500℃以下の温度でホットプレスし、その後、1500℃以上1600℃以下で熱間等方圧プレス法により焼結するモリブデンターゲットの製造方法である。 A fifth aspect of the present invention is a method for producing a molybdenum target, comprising the steps of: using a molybdenum powder having an average particle size D Ave of 2.5 to 4.0 μm, a median diameter D50 of 2.0 to 3.5, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less, as determined by a laser diffraction/scattering method; hot pressing the molybdenum powder at a temperature of 1400° C. to 1500° C.; and then sintering the molybdenum powder by hot isostatic pressing at a temperature of 1500° C. to 1600° C.
本発明の第6の態様は、前記モリブデン粉末は、タングステン含有量が10ppm~100ppmであり、酸素含有量、炭素含有量および前記タングステン含有量を除いたモリブデン含有量が99.999質量%以上であるものである第5の態様のモリブデンターゲットの製造方法である。 The sixth aspect of the present invention is the method for producing a molybdenum target according to the fifth aspect, in which the molybdenum powder has a tungsten content of 10 ppm to 100 ppm, and a molybdenum content excluding the oxygen content, carbon content, and tungsten content is 99.999 mass% or more.
本発明の第7の態様は、前記ホットプレスは、高真空下、保持温度1400~1500℃で保持時間360~600分間の条件で行う第5又は第6の態様のモリブデンターゲットの製造方法である。 The seventh aspect of the present invention is the method for producing a molybdenum target according to the fifth or sixth aspect, in which the hot pressing is performed under high vacuum at a holding temperature of 1400 to 1500°C for a holding time of 360 to 600 minutes.
本発明によれば、パーティクルの発生原因であるポアの生成を抑え、そのサイズと分布を高精度に制御したモリブデンターゲット及びその製造方法を実現することができる。 The present invention makes it possible to realize a molybdenum target and a manufacturing method thereof that suppresses the generation of pores, which are the cause of particle generation, and controls the size and distribution of the pores with high precision.
本発明のモリブデンターゲットは、モリブデンの純度(含有量)が5N(99.999質量%)以上であり、相対密度が99%以上であり、酸素含有量が25ppm以下であり、炭素含有量が30ppm以下であり、タングステン含有量が10ppm~100ppmであり、0.15mm2の観察領域において、0.01μm2以上0.2μm2未満の大きさのポアが20個以下であり、0.2μm2以上1.8μm2未満の大きさのポアが5個以下であり、1.8μm2以上の大きさのポアが1個以下であるものである。なお、モリブデンの純度5Nは、酸素含有量、炭素含有量およびタングステン含有量を除いたモリブデン含有量が99.999質量%以上であることである。 The molybdenum target of the present invention has a molybdenum purity (content) of 5N (99.999% by mass) or more, a relative density of 99% or more, an oxygen content of 25 ppm or less, a carbon content of 30 ppm or less, a tungsten content of 10 ppm to 100 ppm, and in an observation area of 0.15 mm2 , there are 20 or less pores having a size of 0.01 μm2 or more and less than 0.2 μm2 , 5 or less pores having a size of 0.2 μm2 or more and less than 1.8 μm2, and 1 or less pores having a size of 1.8 μm2 or more. The 5N purity of molybdenum means that the molybdenum content excluding the oxygen content, carbon content, and tungsten content is 99.999% by mass or more.
(純度)
比抵抗の低いモリブデン膜を形成するには、モリブデン膜に含まれる不純物を抑える必要があり、そのためモリブデンターゲットの高純度化が不可欠である。具体的には99.999質量%(5N)以上の純度を有することが必要である。
(purity)
In order to form a molybdenum film with low resistivity, it is necessary to suppress impurities contained in the molybdenum film, and therefore it is essential to highly purify the molybdenum target. Specifically, it is necessary for the molybdenum target to have a purity of 99.999 mass % (5N) or more.
(ガス成分)
モリブデンターゲット中に含まれる炭素及び酸素などのガス成分は、モリブデン膜の比抵抗に悪影響を及ぼす。これらのガス成分は、成膜時にモリブデン膜に取り込まれるため、その含有量が多くなるにつれ、モリブデン膜の比抵抗が増加する傾向にある。そのため、モリブデンターゲットに含まれる炭素は、30質量ppm以下であることが好ましく、また、酸素は25質量ppm以下であることが好ましい。
(Gas components)
Gas components such as carbon and oxygen contained in the molybdenum target adversely affect the resistivity of the molybdenum film. These gas components are incorporated into the molybdenum film during film formation, and the resistivity of the molybdenum film tends to increase as the content of these gas components increases. Therefore, the carbon content of the molybdenum target is preferably 30 mass ppm or less, and the oxygen content is preferably 25 mass ppm or less.
(タングステン含有量)
本発明のモリブデンターゲットは、タングステン含有量が10ppm~100ppmであり、好ましくは、20ppm~50ppmである。
(Tungsten content)
The molybdenum target of the present invention has a tungsten content of 10 ppm to 100 ppm, preferably 20 ppm to 50 ppm.
このようなタングステン含有量とするのは、以下の理由による。
本来であれば、タングステン含有量も不可避含有量まで低減させるものであるが、本発明では、タングステン含有量を所定範囲に設定している。タングステン含有量が低すぎると、焼結時に粒成長が起こり易く、結晶粒径が大きくなり、大きなポアが形成され易くなり、一方、タングステン含有量が高すぎると、焼結性が悪くなり、高密度になり難くなる傾向となる。
The reason for setting the tungsten content in this range is as follows.
Normally, the tungsten content is reduced to an unavoidable level, but in the present invention, the tungsten content is set within a predetermined range. If the tungsten content is too low, grain growth is likely to occur during sintering, the crystal grain size becomes large, and large pores are likely to be formed. On the other hand, if the tungsten content is too high, sinterability becomes poor, and it tends to be difficult to achieve high density.
(結晶粒径)
本発明のモリブデンターゲットは、円相当径で計算した結晶粒径の平均値dAveが20μm以上、100μm以下である。
(Crystal Grain Size)
In the molybdenum target of the present invention, the average crystal grain size d Ave calculated based on the circle-equivalent diameter is 20 μm or more and 100 μm or less.
このような結晶粒径の平均値(平均粒径)とするのは、以下の理由による。
モリブデンターゲットの平均粒径が小さいほど、ターゲット表面に存在する各結晶粒の方位差に起因するエロージョン量の差を小さくすることができるため、凹凸に起因する異常放電回数が少なくなり、成膜中のパーティクル発生を抑制することができる。
The reason for setting such an average value of the crystal grain size (average grain size) is as follows.
The smaller the average grain size of the molybdenum target, the smaller the difference in the amount of erosion caused by the orientation difference of each crystal grain on the target surface can be, so that the number of abnormal discharges caused by unevenness is reduced and the generation of particles during film formation can be suppressed.
一方、平均粒径が小さくなりすぎると、成膜レートが遅くなりすぎてしまうため、生産性が低下してしまう。 On the other hand, if the average particle size is too small, the film formation rate becomes too slow, resulting in reduced productivity.
また、円相当径で計算した粒径の標準偏差3σと平均粒径dAveとの比(3σ/dAve)が1.2以下である。この比は標準偏差3σを平均粒径で除して求めたものである。
また、粒径の縦横のアスペクト比が1.2未満である。このアスペクト比は「円相当径で計算した粒径」を求める粒子画像の長径を短径で割った値であり、画像解析ソフト「Image-j」を用いて求めた。
The ratio (3σ/d Ave ) of the standard deviation 3σ of the particle diameter calculated based on the equivalent circle diameter to the average particle diameter d Ave is 1.2 or less. This ratio is calculated by dividing the standard deviation 3σ by the average particle diameter.
The aspect ratio of the particle size is less than 1.2. This aspect ratio is the value obtained by dividing the major axis of the particle image by the minor axis to determine the "particle size calculated based on the circle equivalent diameter," and was determined using the image analysis software "Image-j."
粒径の標準偏差3σと平均粒径dAveとの比(3σ/dAve)が1.2以下が好ましいのは、以下の理由による。
結晶粒径のばらつきとポアの個数、サイズは相関があり、結晶粒径のばらつきが小さいほどターゲット中のポアの数が少なく、そのサイズが小さくなるため、上記範囲であれば成膜中のパーティクル発生を抑制することができる。
また、粒径の縦横のアスペクト比が1.2未満が好ましいのは、生産に悪影響を及ぼさない程度の安定した成膜レートを得られ、ターゲットを交換しても成膜レートが変わりにくいという理由である。
The ratio of the standard deviation 3σ of the grain size to the average grain size d Ave (3σ/d Ave ) is preferably 1.2 or less for the following reasons.
There is a correlation between the variation in crystal grain size and the number and size of pores. The smaller the variation in crystal grain size, the fewer the number of pores in the target and the smaller their size. Therefore, within the above range, the generation of particles during film formation can be suppressed.
The aspect ratio of the grain size is preferably less than 1.2 because it provides a stable deposition rate that does not adversely affect production, and the deposition rate is unlikely to change even when the target is replaced.
(相対密度)
モリブデンターゲットの相対密度は、99%以上とすることが好ましい。ターゲットの相対密度が99%以上であれば、ターゲット中に含まれるガス成分が少ないため、膜を形成した際に、膜の比抵抗の上昇を抑えることができる。また、ターゲットの相対密度が高いほど、ポアの数が少なくなるため、ターゲット表面の凹凸に起因する異常放電回数が少なくなり、成膜中のパーティクル発生を抑制することができる。
(Relative Density)
The relative density of the molybdenum target is preferably 99% or more. If the relative density of the target is 99% or more, the amount of gas components contained in the target is small, so that when a film is formed, the increase in the resistivity of the film can be suppressed. In addition, the higher the relative density of the target, the fewer the number of pores, so that the number of abnormal discharges caused by the unevenness of the target surface is reduced, and the generation of particles during film formation can be suppressed.
(ビッカース硬度)
モリブデンターゲットのビッカース硬度の平均値は、160以上180以下であるのが好ましく、より好ましくは、ビッカース硬度の平均値が165~175である。
(Vickers hardness)
The average Vickers hardness of the molybdenum target is preferably 160 or more and 180 or less, and more preferably 165-175.
ビッカース硬度の平均値が上記範囲であることが好ましいのは、以下の理由による。
ビッカース硬度の平均値とターゲット中のポアの個数、大きさには相関があり、ビッカース硬度の平均値が高いほどターゲット中のポアの数が少なく、そのサイズが小さいため、成膜中のパーティクル発生を抑制することができる。
The reason why the average value of the Vickers hardness is preferably within the above range is as follows.
There is a correlation between the average Vickers hardness and the number and size of pores in a target. The higher the average Vickers hardness, the fewer the number and smaller the size of pores in the target, making it possible to suppress particle generation during film formation.
一方で、ビッカース硬度の平均値が非常に大きい場合、適切な熱処理条件が施されておらず、モリブデンの内部ひずみが取り除けていない可能性が高い。この内部ひずみが起点となり、ターゲット加工時やスパッタリングによる成膜時の熱応力によって割れてしまう可能性がある。 On the other hand, if the average Vickers hardness is very high, it is highly likely that the appropriate heat treatment conditions were not applied and that internal strain in the molybdenum has not been removed. This internal strain can become the starting point for cracks caused by thermal stress during target processing or deposition by sputtering.
また、ビッカース硬度の標準偏差3σとビッカース硬度の平均値HAveとの比(3σ/HAve)が0.07以下であるのが好ましい。計算方法は標準偏差3σをビッカース硬度の平均値で除して求めた。 The ratio (3σ/H Ave ) of the standard deviation 3σ of the Vickers hardness to the average value H Ave of the Vickers hardness is preferably 0.07 or less. The calculation method was to divide the standard deviation 3σ by the average value of the Vickers hardness.
ビッカース硬度の標準偏差の3倍(3σ)とビッカース硬度の平均値との比が上述した範囲が好ましいのは、以下の理由による。 The reason why the above-mentioned range of the ratio of three times the standard deviation of Vickers hardness (3σ) to the average value of Vickers hardness is preferable is as follows.
ビッカース硬度のばらつきとポアの個数、サイズは相関があり、ビッカース硬度のばらつきが小さいほどターゲット中のポアの数が少なく、そのサイズが小さくなるため、成膜中のパーティクル発生を抑制することができる。 There is a correlation between the variation in Vickers hardness and the number and size of pores. The smaller the variation in Vickers hardness, the fewer the number of pores in the target and the smaller their size, which makes it possible to suppress particle generation during film formation.
(ポア)
本発明のモリブデンターゲットは、0.15mm2の観察領域において、0.01μm2以上0.2μm2未満の大きさのポアが20個以下であり、0.2μm2以上1.8μm2未満の大きさのポアが5個以下であり、1.8μm2以上の大きさのポアが1個以下である。
(Poa)
The molybdenum target of the present invention has, in an observation area of 0.15 mm2 , 20 or less pores having a size of 0.01 μm2 or more and less than 0.2 μm2 , 5 or less pores having a size of 0.2 μm2 or more and less than 1.8 μm2, and 1 or less pores having a size of 1.8 μm2 or more .
本発明の大きさと存在数が上述した範囲とした理由は以下の通りである。
ポアの大きさと存在数を制御することによって、ポアに電界が集中し、局所的な溶解と飛散によって発生するパーティクルを抑制することができ、歩留まりを向上することができる。また、パーティクルの発生数がターゲットのライフエンドまで連続して少ないため、安定した生産を実現できる。
The reasons for setting the size and number of the particles in the above-mentioned ranges in the present invention are as follows.
By controlling the size and number of pores, the electric field is concentrated in the pores, which suppresses the generation of particles due to localized dissolution and scattering, improving yield. In addition, the number of particles generated remains low until the end of the target's life, realizing stable production.
このように粗大なポアが極めて少なく、モリブデンターゲットの面方向と厚み方向でポアの局在化が抑えられたモリブデンターゲットは、今まで実現されていなかったが、上述したような相対密度、硬度及び結晶粒径の特性を有することで、実現されるものである。また、粗大なポアが極めて少なく、モリブデンターゲットの面方向と厚み方向でポアの局在化が抑えられた本発明のモリブデンターゲットは、後述する製造方法によって実現されるものである。 A molybdenum target with extremely few coarse pores and suppressed pore localization in the surface and thickness directions of the molybdenum target has not been realized until now, but it can be realized by having the relative density, hardness, and crystal grain size characteristics described above. In addition, the molybdenum target of the present invention with extremely few coarse pores and suppressed pore localization in the surface and thickness directions of the molybdenum target can be realized by the manufacturing method described below.
以上説明した本発明のモリブデンターゲットは、上述したように、ポアが小さく且つ少ないものであるので、このモリブデンターゲットを用いることでパーティクルの発生量を大幅に低減でき、高品質なモリブデン膜を安定して成膜することが可能となる。 As described above, the molybdenum target of the present invention has small and few pores, so by using this molybdenum target, the amount of particles generated can be significantly reduced, making it possible to stably form a high-quality molybdenum film.
本発明のモリブデンターゲットを製造する一実施形態に係るモリブデンターゲットの製造方法を説明する。 This section describes a method for manufacturing a molybdenum target according to one embodiment of the present invention.
本発明のモリブデンターゲットは、レーザー回折・散乱法で得られる平均粒径DAveが2.5~4.0μm、メディアン径D50が2.0~3.5のモリブデン粉末を用いて、1400℃以上1500℃以下の温度でホットプレスし(HP工程)、その後、1500℃以上1600℃以下で熱間等方圧プレス法により焼結する(HIP工程)ことで製造することができる。 The molybdenum target of the present invention can be produced by using molybdenum powder having an average particle size D Ave of 2.5 to 4.0 μm and a median diameter D50 of 2.0 to 3.5, which are obtained by a laser diffraction/scattering method, hot pressing at a temperature of 1400° C. to 1500° C. (HP process), and then sintering by hot isostatic pressing at a temperature of 1500° C. to 1600° C. (HIP process).
本発明のスパッタリングターゲットの製造方法は、レーザー回折・散乱法で得られる平均粒径DAveが2.5~4.0μm、好ましくは、2.8~3.7μm、メディアン径D50が2.0~3.5、好ましくは、2.2~3.3μmであるモリブデン粉末を用いるのが第1のポイントとなる。 The first point of the method for producing a sputtering target of the present invention is to use a molybdenum powder having an average particle size D Ave of 2.5 to 4.0 μm, preferably 2.8 to 3.7 μm, and a median diameter D50 of 2.0 to 3.5, preferably 2.2 to 3.3 μm, as measured by a laser diffraction/scattering method.
また、本発明のスパッタリングターゲットの製造方法は、メディアン径D90と平均粒径DAveとの比(D90/DAve)が1.7以下、好ましくは1.5以下のモリブデン粉末を用いるのが第2のポイントとなる。 A second key point of the method for producing a sputtering target of the present invention is to use molybdenum powder having a ratio of median diameter D90 to average particle diameter D Ave (D90/D Ave ) of 1.7 or less, preferably 1.5 or less.
また、本発明のスパッタリングターゲットの製造方法は、メディアン径D95と平均粒径DAveと比(D95/DAve)が2.0以下、好ましくは1.8以下のタングステン粉末を用いるのが第3のポイントとなる。 The third point of the method for producing a sputtering target of the present invention is to use tungsten powder having a ratio (D95/D Ave ) of the median diameter D95 to the average particle diameter D Ave of 2.0 or less, preferably 1.8 or less.
このように、本発明では、粒径が所定の範囲の粉末であって、粒度分布の範囲が極めて狭い、すなわち、平均粒径からの粒度のばらつきが小さいモリブデン粉末を用いることにより、ポアが極めて小さく、且つ少ないモリブデンターゲットを実現することができる。本発明では、このような粒度分布が狭い特徴を、メディアン径D90をレーザー回折・散乱法で得られる平均粒径DAveで除した値やメディアン径D95をレーザー回折・散乱法で得られる平均粒径DAveで除した値が所定値以下であるとして規定した。なお、この範囲を外れる粒度分布が広い粉末は、本発明の効果を奏することができない。 In this way, in the present invention, a molybdenum target with extremely small pores and few pores can be realized by using a molybdenum powder having a particle size in a predetermined range and a very narrow particle size distribution range, i.e., a small variation in particle size from the average particle size. In the present invention, the characteristic of such a narrow particle size distribution is defined as a value obtained by dividing the median diameter D90 by the average particle size D Ave obtained by the laser diffraction/scattering method or a value obtained by dividing the median diameter D95 by the average particle size D Ave obtained by the laser diffraction/scattering method being equal to or less than a predetermined value. Note that a powder having a wide particle size distribution outside this range cannot achieve the effects of the present invention.
また、粉末の平均粒径が大きすぎると、所定の密度の焼結体が得られず、小さいとホットプレス(HP)時に密度急上昇して酸化物がトラップされてしまうので、所定の範囲とする必要がある。 Also, if the average particle size of the powder is too large, a sintered body with the specified density cannot be obtained, and if it is too small, the density will rise sharply during hot pressing (HP) and oxides will be trapped, so it is necessary to keep it within a specified range.
本発明で用いるモリブデン粉末は、タングステン含有量が10ppm~100ppmであり、酸素含有量、炭素含有量およびタングステン含有量を除いたモリブデン含有量が99.999質量%以上である。 The molybdenum powder used in the present invention has a tungsten content of 10 ppm to 100 ppm, and a molybdenum content excluding the oxygen content, carbon content, and tungsten content of 99.999 mass% or more.
なお、酸素含有量は、モリブデンターゲットの酸素含有量に影響を及ぼすため、原料粉末の酸素含有量は例えば3000質量ppm以下とするのが好ましい。酸化物の昇華量が多くなり、ホットプレス装置にダメージを与える可能性がある。 The oxygen content affects the oxygen content of the molybdenum target, so it is preferable to set the oxygen content of the raw material powder to, for example, 3000 mass ppm or less. This increases the amount of oxide sublimation, which may damage the hot press equipment.
本発明のスパッタリングターゲットは、上述したモリブデン粉末を1400℃以上1500℃以下の温度でホットプレスし、その後、1500℃以上1600℃以下で熱間等方圧プレス法により焼結することで製造することができる。 The sputtering target of the present invention can be manufactured by hot pressing the above-mentioned molybdenum powder at a temperature of 1400°C or higher and 1500°C or lower, and then sintering it by hot isostatic pressing at a temperature of 1500°C or higher and 1600°C or lower.
高真空領域での真空ホットプレスにより、脱ガスと焼結を促進し、モリブデンターゲットに含まれる酸素の量を低減させながら高密度焼結体を得ることができる。モリブデン粉末の酸素含有量が多い場合、モリブデンターゲット中の酸化物の数が多くなり、パーティクルの発生頻度が増加する。また、厚い表面酸化膜によって焼結が阻害され、高密度焼結体を得ることができない。 Vacuum hot pressing in a high vacuum region promotes degassing and sintering, and allows for a high-density sintered body to be obtained while reducing the amount of oxygen contained in the molybdenum target. If the oxygen content of the molybdenum powder is high, the number of oxides in the molybdenum target increases, and the frequency of particle generation increases. In addition, sintering is inhibited by a thick surface oxide film, making it impossible to obtain a high-density sintered body.
ここで、高真空とは、1×10-2Pa以下、好ましくは、1×10-3Pa以下、さらに好ましくは、1×10-4Pa以下をいう。 Here, high vacuum refers to 1×10 −2 Pa or less, preferably 1×10 −3 Pa or less, and more preferably 1×10 −4 Pa or less.
また、上述したとおり、モリブデンターゲット中に含まれる炭素及び酸素などのガス成分は、モリブデン膜の比抵抗に悪影響を及ぼすので、モリブデンターゲット中の炭素含有量は、30質量ppm以下が好ましく、また、酸素含有量は25質量ppm以下が好ましい。 As mentioned above, gas components such as carbon and oxygen contained in the molybdenum target adversely affect the resistivity of the molybdenum film, so the carbon content in the molybdenum target is preferably 30 ppm by mass or less, and the oxygen content is preferably 25 ppm by mass or less.
酸素濃度に関しては、上述したとおり、真空ホットプレスにより達成できる。 As mentioned above, oxygen concentration can be achieved by vacuum hot pressing.
一方、炭素濃度に関しては、ホットプレスの際、ホットプレス装置を構成するグラファイト製の部材からモリブデン焼結体に炭素が拡散し、炭素含有量増加の原因となる。そのため、ホットプレス温度は低いほど好ましく、1500℃以下であれば安定して30質量ppm以下、好適には20質量ppm以下を達成できる。 On the other hand, with regard to carbon concentration, during hot pressing, carbon diffuses from the graphite components that make up the hot pressing device into the molybdenum sintered body, causing an increase in the carbon content. Therefore, the lower the hot pressing temperature, the better, and at 1500°C or less, a stable carbon concentration of 30 ppm by mass or less, and preferably 20 ppm by mass or less, can be achieved.
HP工程では、95%以上の相対密度を有する焼結体が作製される。このような特性を有する焼結体を作製するためのHP温度は1400℃以上1500℃以下であることが好ましい。HP温度が低すぎるとHIP処理が可能な密度まで上がらず、高すぎると急激な粒成長によって粗大なポアが局所的に形成されるため好ましくない。HPによる圧力は低すぎるとHIP処理が可能な密度まで上がらない。高すぎるとHP装置の消耗が激しくなる。例えば、HP処理時の圧力は39.2MPa(400kg/cm2)以上44.1MPa(450kg/cm2)以下である。本工程におけるHPの保持時間は、360分以上600分以下である。HPの保持時間が短すぎるとHIP処理が可能な密度まで上がらず、長すぎても生産性の低下を招く。本発明において、粉末粒径と粒度分布を制御し、HP温度を1400℃以上1500℃以下、HPの保持時間を360分以上600分以下とすることが肝要である。これにより、焼結体中のポアの粗大化を抑え、微細なポアを焼結体中に均一に分散させることができる。 In the HP process, a sintered body having a relative density of 95% or more is produced. The HP temperature for producing a sintered body having such characteristics is preferably 1400°C or more and 1500°C or less. If the HP temperature is too low, the density does not rise to a level at which HIP treatment is possible, and if it is too high, coarse pores are formed locally due to rapid grain growth, which is not preferable. If the HP pressure is too low, the density does not rise to a level at which HIP treatment is possible. If it is too high, the HP device will wear out rapidly. For example, the pressure during HP treatment is 39.2 MPa (400 kg/ cm2 ) or more and 44.1 MPa (450 kg/ cm2 ) or less. The HP holding time in this process is 360 minutes or more and 600 minutes or less. If the HP holding time is too short, the density does not rise to a level at which HIP treatment is possible, and if it is too long, productivity will decrease. In the present invention, it is essential to control the powder particle size and particle size distribution, set the HP temperature to 1400° C. or higher and 1500° C. or lower, and set the HP holding time to 360 minutes or higher and 600 minutes or lower. This makes it possible to prevent the pores in the sintered body from becoming coarse and to uniformly disperse fine pores in the sintered body.
HP処理を行った焼結体について、焼結体中のポアを減少させ、高密度化させるために熱間等方圧プレス法(HIP)が適用される。 Hot isostatic pressing (HIP) is applied to the sintered body that has been subjected to HP treatment to reduce the pores in the sintered body and increase its density.
HIP温度は、1500℃以上1600℃以下である。HIP温度が1500℃未満の場合、処理温度が低いため、量産に適した処理時間内で99%以上の高い相対密度を得ることが難しい。特に、本発明では、タングステン含有量が所定範囲のモリブデン粉末を用いているので、1500℃より低温では相対密度99%以上の焼結体を得ることができない。また、HIP温度が1600℃を超えると、処理温度が高いため、結晶粒の急激な粗大化を招き、粗大なポアが局所的に形成されるため好ましくない。圧力は特に限定されず、例えば100以上200MPa以下とされ、本実施形態では176.4MPa(1800kg/cm2)である。 The HIP temperature is 1500°C or more and 1600°C or less. When the HIP temperature is less than 1500°C, the processing temperature is low, so it is difficult to obtain a high relative density of 99% or more within a processing time suitable for mass production. In particular, in the present invention, since a molybdenum powder with a tungsten content in a predetermined range is used, a sintered body with a relative density of 99% or more cannot be obtained at a temperature lower than 1500°C. In addition, when the HIP temperature exceeds 1600°C, the high processing temperature leads to rapid coarsening of the crystal grains, and coarse pores are formed locally, which is not preferable. The pressure is not particularly limited, and is, for example, 100 to 200 MPa, and is 176.4 MPa (1800 kg/ cm2 ) in this embodiment.
以上の製造方法によれば、本願発明の特徴を有するモリブデンターゲットを得ることができる。特に、モリブデンターゲット中におけるポアの数を少なく、そのサイズを小さくし、その局在化を抑制することができる。したがって、本実施形態のスパッタリングターゲットを用いることで、成膜時におけるパーティクル発生を少なくすることが可能となり、高品質なモリブデン膜を安定して形成することが可能となる。 The above manufacturing method makes it possible to obtain a molybdenum target having the characteristics of the present invention. In particular, it is possible to reduce the number of pores in the molybdenum target, reduce their size, and suppress their localization. Therefore, by using the sputtering target of this embodiment, it is possible to reduce particle generation during film formation, and it is possible to stably form a high-quality molybdenum film.
スパッタリングターゲット中におけるポアの存在は、原料粉末の大きさとその粒度分布、焼結体の相対密度、ターゲットの結晶粒径の大きさと分布、硬度の大きさと分布に強い相関を有しており、原料粉末の大きさが細かく、その粒度分布の範囲が狭いほど、焼結体の相対密度が高いほど、結晶粒径のばらつき、硬度のばらつきが小さいほど、ポアの発生は極めて低減し、その大きさが非常に小さくなる。 The presence of pores in a sputtering target is strongly correlated with the size of the raw material powder and its particle size distribution, the relative density of the sintered body, the size and distribution of the target's crystal grain size, and the size and distribution of hardness. The finer the raw material powder is and the narrower the range of its particle size distribution, the higher the relative density of the sintered body is, and the smaller the variation in crystal grain size and hardness is, the more significantly the occurrence of pores is reduced and their size becomes extremely small.
一方、結晶粒径が微細であっても、ばらつきが大きいと、粗大なポアの生成が抑えられない。本発明は、原料粉末の大きさと粒度分布、ホットプレス条件、熱間等方圧プレス条件の最適化によって、焼結体の相対密度を高め、結晶粒径のばらつき、硬度のばらつきを抑制した結果、粗大なポアが非常に少なく、ポアの局在化がほとんどない本発明のモリブデンターゲットを製造できることを見いだした。 On the other hand, even if the crystal grain size is fine, if there is a large variation, the formation of coarse pores cannot be suppressed. The present invention has found that by optimizing the size and particle size distribution of the raw material powder, the hot pressing conditions, and the hot isostatic pressing conditions, it is possible to increase the relative density of the sintered body and suppress the variation in crystal grain size and hardness, thereby manufacturing a molybdenum target of the present invention with very few coarse pores and almost no localization of pores.
すなわち、本実施形態のモリブデンターゲットの製造方法において、原料粉末は、1400℃以上1500℃以下の温度でホットプレスし、その後、1500℃以上1600℃以下で熱間等方圧プレス法により焼結する。 In other words, in the method for manufacturing a molybdenum target of this embodiment, the raw material powder is hot pressed at a temperature of 1400°C or higher and 1500°C or lower, and then sintered by hot isostatic pressing at a temperature of 1500°C or higher and 1600°C or lower.
上記モリブデンターゲットの製造方法によれば、ポアが小さく且つ少ないスパッタリングターゲットを得ることができる。例えば、上記製造方法によれば、0.15mm2の観察領域において、0.01μm2以上0.2μm2未満の大きさのポアが20個以下であり、0.2μm2以上1.8μm2未満の大きさのポアが5個以下であり、1.8μm2以上の大きさのポアが1個以下であるモリブデンターゲットを安定して製造することができる。 According to the above-mentioned method for producing a molybdenum target, it is possible to obtain a sputtering target having small and few pores. For example, according to the above-mentioned method, it is possible to stably produce a molybdenum target having 20 or less pores having a size of 0.01 μm2 or more and less than 0.2 μm2 , 5 or less pores having a size of 0.2 μm2 or more and less than 1.8 μm2, and 1 or less pores having a size of 1.8 μm2 or more in an observation area of 0.15 mm2 .
本発明のモリブデンターゲットの製造方法では、相対密度が99%以上であり、ビッカース硬度が180以下、ビッカース硬度の標準偏差3σとビッカース硬度の平均値HAveの比(3σ/HAve)が0.07以下、平均粒径が20μm以上100μm以下、平均粒径の標準偏差3σと平均粒径HAveとの比(3σ/HAve)が1.2以下であるモリブデンターゲットを効率的に安定して製造することができる。 The method for manufacturing a molybdenum target of the present invention can efficiently and stably manufacture a molybdenum target having a relative density of 99% or more, a Vickers hardness of 180 or less, a ratio of the standard deviation 3σ of Vickers hardness to the average Vickers hardness H Ave (3σ/H Ave ) of 0.07 or less, an average grain size of 20 μm or more and 100 μm or less, and a ratio of the standard deviation 3σ of the average grain size to the average grain size H Ave (3σ/H Ave ) of 1.2 or less.
これにより、ポアが小さく且つ少ないモリブデンターゲットを製造することができ、このモリブデンターゲットを用いることでパーティクルの発生量を大幅に低減でき、高品質なモリブデン膜を安定して成膜することが可能となる。 This makes it possible to manufacture a molybdenum target with small and few pores. By using this molybdenum target, the amount of particles generated can be significantly reduced, making it possible to stably form a high-quality molybdenum film.
以上のように作製された焼結体は、加工工程において所定のターゲット形状に加工される。加工方法は特に限定されないが、典型的には、研削、切削等の機械加工法が適用される。加工サイズおよび形状は、ターゲットの仕様に応じて定まり、例えば円形、矩形状に加工される。加工された焼結体は、バッキングプレートに接合されることで、スパッタリングカソードが構成される。 The sintered body produced as described above is processed into a predetermined target shape in the processing step. There are no particular limitations on the processing method, but typically mechanical processing methods such as grinding and cutting are applied. The processed size and shape are determined according to the target specifications, and the target is processed into a circular or rectangular shape, for example. The processed sintered body is bonded to a backing plate to form a sputtering cathode.
以下、実施例、比較例を参照して本発明を説明する。
なお、モリブデン粉末の平均粒径および粒度分布は、マイクロトラックベル社製粒度分布測定装置「LS13320」を用いて求めた。
The present invention will be described below with reference to examples and comparative examples.
The average particle size and particle size distribution of the molybdenum powder were determined using a particle size distribution measuring device "LS13320" manufactured by Microtrackbell.
(実施例1-4)
表1に示すように、タングステン含有量が10ppm~100ppmであり、タングステン及びガス含有量を除いたモリブデン含有量が99.999質量%以上(純度5N)、レーザー回折・散乱法で得られる平均粒径DAveが2.5~4.0μm、メディアン径D50が2.0~3.5であり、メディアン径D90と前記平均粒径DAveとの比(D90/DAve)が1.7以下であり、メディアン径D95と前記平均粒径DAveとの比(D95/DAve)が2.0以下であるモリブデン粉末を用い、粉末を、表1に示す温度、1400℃以上1500℃以下の温度でホットプレスし、その後、表1に示す1500℃以上1600℃以下の温度でHIPすることでモリブデン焼結体を得た。得られたモリブデン焼結体を旋盤による研削加工によって所定のターゲット形状(直径440mm、厚み6mm)に仕上げた。
(Examples 1 to 4)
As shown in Table 1, a molybdenum powder having a tungsten content of 10 ppm to 100 ppm, a molybdenum content excluding tungsten and gas contents of 99.999 mass% or more (purity 5N), an average particle size D Ave obtained by a laser diffraction/scattering method of 2.5 to 4.0 μm, a median diameter D50 of 2.0 to 3.5, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less was used, and the powder was hot pressed at a temperature shown in Table 1, that is, a temperature of 1400° C. or more and 1500° C. or less, and then HIPed at a temperature shown in Table 1 of 1500° C. or more and 1600° C. or less to obtain a molybdenum sintered body. The obtained molybdenum sintered body was finished into a predetermined target shape (diameter 440 mm, thickness 6 mm) by grinding using a lathe.
(比較例1)
表1に示すように、レーザー回折・散乱法で得られる平均粒径DAveが2.5μmより小さく、メディアン径D50が2.0μmより小さく、メディアン径D90と前記平均粒径DAveとの比(D90/DAve)が1.7以下であり、メディアン径D95と前記平均粒径DAveとの比(D95/DAve)が2.0以下であるモリブデン粉末を用い、表1に示す温度でホットプレスし、モリブデン焼結体を得た。モリブデン粉末の粒径は小さすぎたせいか、密度が急上昇し、酸化物が多量トラップしてしまった。
(Comparative Example 1)
As shown in Table 1, molybdenum powder having an average particle size D Ave smaller than 2.5 μm, a median diameter D50 smaller than 2.0 μm, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less, obtained by laser diffraction/scattering method, was used and hot pressed at the temperature shown in Table 1 to obtain a molybdenum sintered body. Perhaps because the particle size of the molybdenum powder was too small, the density rose sharply and a large amount of oxide was trapped.
(比較例2)
表1に示すように、レーザー回折・散乱法で得られる平均粒径DAveが2.5~4.0μm、メディアン径D50が2.0~3.5であり、メディアン径D90と前記平均粒径DAveとの比(D90/DAve)が1.7以下であり、メディアン径D95と前記平均粒径DAveとの比(D95/DAve)が2.0以下であるモリブデン粉末を用い、モリブデン粉末を用い、表1に示す温度でホットプレスすることでモリブデン焼結体を得た。HIPを行わなかったので、十分な密度の焼結体は得られなかった。
(Comparative Example 2)
As shown in Table 1, a molybdenum powder having an average particle size D Ave of 2.5 to 4.0 μm, a median diameter D50 of 2.0 to 3.5, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less, obtained by a laser diffraction/scattering method, was used and hot pressed at the temperature shown in Table 1 to obtain a molybdenum sintered body. Since HIP was not performed, a sintered body with sufficient density was not obtained.
(比較例3-8)
表1に示すように、レーザー回折・散乱法で得られる平均粒径DAveが2.5μmより小さく、メディアン径D50が2.0μmより小さく、メディアン径D90と前記平均粒径DAveとの比(D90/DAve)が1.7以下であり、メディアン径D95と前記平均粒径DAveとの比(D95/DAve)が2.0以下であるモリブデン粉末を用い、表1に示す温度でホットプレスし、その後、HIPすることでモリブデン焼結体を得た。得られたモリブデン焼結体を旋盤による研削加工によって所定のターゲット形状(直径440mm、厚み6mm)に仕上げた。
(Comparative Example 3-8)
As shown in Table 1, a molybdenum powder having an average particle size D Ave smaller than 2.5 μm, a median diameter D50 smaller than 2.0 μm, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less, was used and hot pressed at the temperature shown in Table 1, followed by HIP to obtain a molybdenum sintered body. The obtained molybdenum sintered body was finished into a predetermined target shape (diameter 440 mm, thickness 6 mm) by grinding with a lathe.
(比較例9)
表1に示すように、レーザー回折・散乱法で得られる平均粒径DAveが2.5~4.0μm、メディアン径D50が2.0~3.5μmであり、メディアン径D90と前記平均粒径DAveとの比(D90/DAve)が1.7以上であり、メディアン径D95と前記平均粒径DAveとの比(D95/DAve)が2.0以上であるモリブデン粉末を用い、表1に示す温度でホットプレスし、その後、HIPすることでモリブデン焼結体を得た。得られたモリブデン焼結体を旋盤による研削加工によって所定のターゲット形状(直径440mm、厚み6mm)に仕上げた。
(Comparative Example 9)
As shown in Table 1, a molybdenum powder having an average particle size D Ave of 2.5 to 4.0 μm, a median diameter D50 of 2.0 to 3.5 μm, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or more, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or more obtained by a laser diffraction/scattering method was used, hot pressed at the temperature shown in Table 1, and then subjected to HIP to obtain a molybdenum sintered body. The obtained molybdenum sintered body was finished into a predetermined target shape (diameter 440 mm, thickness 6 mm) by grinding with a lathe.
(比較例10)
表1に示すように、レーザー回折・散乱法で得られる平均粒径DAveが4.0μmより大きく、メディアン径D50が2.0~3.5μmであり、メディアン径D90と前記平均粒径DAveとの比(D90/DAve)が1.7以下であり、メディアン径D95と前記平均粒径DAveとの比(D95/DAve)が2.0以上であるモリブデン粉末を用い、表1に示す温度でホットプレスし、その後、HIPすることでモリブデン焼結体を得た。得られたモリブデン焼結体を旋盤による研削加工によって所定のターゲット形状(直径440mm、厚み6mm)に仕上げた。
(Comparative Example 10)
As shown in Table 1, a molybdenum powder having an average particle size D Ave obtained by a laser diffraction/scattering method greater than 4.0 μm, a median diameter D50 of 2.0 to 3.5 μm, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or more was used, hot pressed at the temperature shown in Table 1, and then subjected to HIP to obtain a molybdenum sintered body. The obtained molybdenum sintered body was ground on a lathe to a predetermined target shape (diameter 440 mm, thickness 6 mm).
(比較例11-13)
表1に示すように、レーザー回折・散乱法で得られる平均粒径DAveが4.0μmより大きく、メディアン径D50が3.5μmより大きく、メディアン径D90と前記平均粒径DAveとの比(D90/DAve)が1.7以上であり、メディアン径D95と前記平均粒径DAveとの比(D95/DAve)が2.0以上であるモリブデン粉末を用い、表1に示す温度でホットプレスし、その後、HIPすることでモリブデン焼結体を得た。得られたモリブデン焼結体を旋盤による研削加工によって所定のターゲット形状(直径440mm、厚み6mm)に仕上げた。
(Comparative Examples 11 to 13)
As shown in Table 1, a molybdenum powder having an average particle size D Ave of more than 4.0 μm, a median diameter D50 of more than 3.5 μm, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or more, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or more obtained by a laser diffraction/scattering method was used, hot pressed at the temperature shown in Table 1, and then subjected to HIP to obtain a molybdenum sintered body. The obtained molybdenum sintered body was finished into a predetermined target shape (diameter 440 mm, thickness 6 mm) by grinding with a lathe.
(実施例、比較例)
得られたターゲットについて、相対密度、ビッカース硬度、結晶粒径、タングステン含有量、酸素含有量、炭素含有量、ポアの測定を下記の手順に従い行った。結果は、表2、表3に示す。
(Examples and Comparative Examples)
The relative density, Vickers hardness, crystal grain size, tungsten content, oxygen content, carbon content, and pores of the obtained targets were measured according to the following procedures. The results are shown in Tables 2 and 3.
(相対密度)
得られたモリブデンターゲットの中心部、端部、中心部と端部を結んだ直線の半分の位置から、それぞれ10×10×6mmtのサンプルを採取し、それぞれのサンプルについて、その断面を研磨し、エッチング後、アルキメデス法を用いて、比重を算出し、モリブデンの理論密度(10.23g/cm3)を用いて算出した。各サンプルの相対密度を足し、サンプル数で除して得られた値を本発明にかかるモリブデンターゲットの相対密度とした。
(Relative Density)
Samples of 10 × 10 × 6 mmt were taken from the center, end, and halfway along the line connecting the center and end of the obtained molybdenum target, and the cross section of each sample was polished and etched, after which the specific gravity was calculated using the Archimedes method and the theoretical density of molybdenum (10.23 g/ cm3 ). The relative densities of each sample were added together and divided by the number of samples to obtain a value that was determined as the relative density of the molybdenum target according to the present invention.
(ビッカース硬度)
得られたモリブデンターゲットの中心部、端部、中心部と端部を結んだ直線の半分の位置から、それぞれ10×10×6mmtのサンプルを採取し、それぞれのサンプルについて、その断面を研磨後、ミツトヨ社製ビッカース硬度測定器「HM-200」によって、荷重:1kg、荷重時間:15秒、ターゲットの深さ方向に1mm間隔、3回ずつの硬度測定を行い、得られた値について平均値を算出した。それぞれのサンプルについて算出した平均値を足し、サンプル数で除した値を本発明に係るモリブデンターゲットの硬度とした。さらに、モリブデンターゲットの標準偏差は、それぞれのサンプルから求めた標準偏差を足し、サンプル数で除して得られた値を本発明に係る標準偏差とした。
(Vickers hardness)
Samples of 10 x 10 x 6 mmt were taken from the center, end, and halfway along the line connecting the center and end of the obtained molybdenum target, and the cross section of each sample was polished, and then hardness measurements were performed three times at 1 mm intervals in the depth direction of the target using a Mitutoyo Vickers hardness tester "HM-200" under a load of 1 kg and a load time of 15 seconds, using a Mitutoyo Vickers hardness tester "HM-200". The average value of the obtained values was calculated by adding up the average values calculated for each sample and dividing the result by the number of samples, which was taken as the hardness of the molybdenum target according to the present invention. Furthermore, the standard deviation of the molybdenum target was calculated by adding up the standard deviations calculated from each sample and dividing the result by the number of samples, which was taken as the standard deviation according to the present invention.
(結晶粒径)
得られたモリブデンターゲットの中心部、端部、中心部と端部を結んだ直線の半分の位置から、それぞれ10×10×6mmtのサンプルを採取し、それぞれのサンプルについて、その断面を研磨、エッチング後、キーエンス社製光学顕微鏡「デジタルマイクロスコープVHX-6000」を用いて、ターゲットの深さ方向に1mm間隔で撮影した画像について、画像解析ソフト「Image-j」を用いて円相当径を求め、平均値を算出した。それぞれの試験片について算出した平均値を足し、サンプル数で除した値を本発明にかかるモリブデンターゲットの平均粒径とした。さらに、モリブデンターゲットの標準偏差は、それぞれのサンプルから求めた標準偏差を足し、サンプル数で除して得られた値を本発明に係る標準偏差とした。
(Crystal Grain Size)
Samples of 10 x 10 x 6 mmt were taken from the center, end, and half of the line connecting the center and end of the obtained molybdenum target, and the cross section of each sample was polished and etched. Images were taken at 1 mm intervals in the depth direction of the target using an optical microscope "Digital Microscope VHX-6000" manufactured by Keyence Corporation, and the circle equivalent diameter was determined using image analysis software "Image-j" to calculate the average value. The average values calculated for each test piece were added together and divided by the number of samples to obtain the average grain size of the molybdenum target according to the present invention. Furthermore, the standard deviation of the molybdenum target was determined by adding the standard deviations obtained from each sample and dividing the result by the number of samples to obtain the standard deviation according to the present invention.
(酸素含有量)
モリブデン焼結体をターゲット形状に加工する際、分析サンプルを採取して、成形体の酸素含有量を測定した。酸素含有量の分析には、LECO社製分析装置「TC-600」を使用した。
(Oxygen Content)
When the molybdenum sintered body was processed into a target shape, an analysis sample was taken and the oxygen content of the compact was measured. The oxygen content was analyzed using an analyzer "TC-600" manufactured by LECO Corporation.
(炭素含有量)
モリブデン焼結体をターゲット形状に加工する際、分析サンプルを採取して、成形体の炭素含有量を測定した。炭素含有量の分析には、堀場製作所社製分析装置「EMIA-320V」を使用した。
(Carbon Content)
When the molybdenum sintered body was processed into a target shape, an analysis sample was taken and the carbon content of the compact was measured. The carbon content was analyzed using an analyzer "EMIA-320V" manufactured by Horiba, Ltd.
(ポア)
得られたスパッタリングターゲットの中心部、端部、中心部と端部を結んだ直線の半分の位置から、それぞれ10×10×6mmtのサンプルを採取し、それぞれのサンプルについて、その断面を研磨後、日立ハイテクノロジーズ社製電子顕微鏡「TM4000Plus」を用いて、ターゲットの深さ方向に1mm間隔で、2枚ずつSEM画像を撮影した。撮影したSEM画像について、画像解析ソフト「Image-j」を用いてポアの面積を求め、各サンプルにおけるポアの大きさと数を算出した。それぞれのサンプルについて求めたポアの大きさと個数を足し、サンプル数で除した値を本発明に係るモリブデンターゲットのポアの大きさと個数とした。
(Poa)
Samples of 10 x 10 x 6 mmt were taken from the center, end, and halfway along the line connecting the center and end of the obtained sputtering target, and after polishing the cross section of each sample, two SEM images were taken at 1 mm intervals in the depth direction of the target using an electron microscope "TM4000Plus" manufactured by Hitachi High-Technologies Corporation. The pore area of the taken SEM images was determined using image analysis software "Image-j", and the size and number of pores in each sample were calculated. The size and number of pores determined for each sample were added together and divided by the number of samples to determine the size and number of pores of the molybdenum target according to the present invention.
また、得られた実施例、比較例のターゲットを用いて以下の通り成膜し、膜の比抵抗を以下の通り測定するとともに、パーティクルを以下の通り評価した。 Furthermore, using the obtained targets of the examples and comparative examples, films were formed as follows, the resistivity of the films was measured as follows, and particles were evaluated as follows.
実施例1~4および比較例1~13の結果を表3に、また、所定の大きさのポアの数とパーティクルの数との関係を図1~図3に示した。なお、比抵抗は11μΩ・cm以下を○、11μΩ・cmを超えたものを×とした。比抵抗が11μΩ・cm以下であれば、低抵抗なLSI配線を成膜できるので、消費電力の低いデバイスを実現することができる。
なお、膜厚分布は2%以下を○、2%を超えたものを×とした。膜厚分布が2%以下であれば、性能・品質のバラつきが少ないデバイスを安定して生産することができる。
The results of Examples 1 to 4 and Comparative Examples 1 to 13 are shown in Table 3, and the relationship between the number of pores of a given size and the number of particles is shown in Figures 1 to 3. Note that resistivity of 11 μΩ cm or less was marked as O, and that exceeding 11 μΩ cm was marked as X. If the resistivity is 11 μΩ cm or less, low-resistance LSI wiring can be formed, making it possible to realize a device with low power consumption.
The film thickness distribution was evaluated as 0 if it was 2% or less, and 0 if it was more than 2%. If the film thickness distribution is 2% or less, devices with little variation in performance and quality can be produced stably.
(比抵抗測定)
得られたモリブデンターゲットをアルミニウム合金製バッキングプレートにIn系ロウ材でボンディングし、スパッタリングカソードを構成した。そのスパッタリングカソードをアルバック社製スパッタリング装置「ENTRON/エントロン(登録商標)」に組付け、直径300mmの半導体ウェーハ上に厚み10nmのモリブデン薄膜を形成した。スパッタ条件は、到達圧力:1×10-5Pa、放電方式:DC、電力:4kW、ガス原料:Ar、ガス流量:150sccm、成膜温度:200℃、スパッタ時間:5秒、ターゲットとウェーハの距離:60mmとした。
(Resistivity measurement)
The obtained molybdenum target was bonded to an aluminum alloy backing plate with an In-based brazing material to form a sputtering cathode. The sputtering cathode was assembled in an ULVAC sputtering device "ENTRON (registered trademark)" to form a molybdenum thin film with a thickness of 10 nm on a semiconductor wafer with a diameter of 300 mm. The sputtering conditions were as follows: ultimate pressure: 1×10 −5 Pa, discharge method: DC, power: 4 kW, gas source: Ar, gas flow rate: 150 sccm, film formation temperature: 200° C., sputtering time: 5 seconds, and distance between the target and the wafer: 60 mm.
ウェーハ上のモリブデン薄膜の9点について、TECHNORAYS社製「S-MAT2300」を用いて膜厚を測定すると共に、KLATencor社製「OmniMap RS100」を用いてシート抵抗を測定して、薄膜の比抵抗(μΩ・cm)を算出し、その平均値をモリブデン薄膜の比抵抗とした。 The film thickness was measured at nine points on the molybdenum thin film on the wafer using a TECHNORAYS S-MAT2300, and the sheet resistance was measured using a KLATencor OmniMap RS100 to calculate the resistivity (μΩ·cm) of the thin film, and the average value was used as the resistivity of the molybdenum thin film.
(パーティクルの測定)
比抵抗測定に供した厚み10nmのモリブデン薄膜について、TOPCON社製表面検査装置「WM-10」を用いて、直径300mmの半導体ウェーハ上のモリブデン薄膜の表面を検査し、0.065μm以上の大きさのパーティクルの個数を測定した。パーティクルの個数は、70685mm2当たりの個数となり、20個以下のものが好ましいと判断され、15個以下のものがより好ましいと判断される。
(Particle measurement)
For the 10 nm thick molybdenum thin film used for resistivity measurement, the surface of the molybdenum thin film on a semiconductor wafer with a diameter of 300 mm was inspected using a surface inspection device "WM-10" manufactured by TOPCON Corporation, and the number of particles with a size of 0.065 μm or more was measured. The number of particles was the number per 70,685 mm2 , and it was determined that 20 or less was preferable, and 15 or less was more preferable.
(膜厚分布の測定)
ウェーハ上のモリブデン薄膜の49点について、TECHNORAYS社製「S-MAT2300」を用いて膜厚を測定し、以下の計算式を用いて算出した。
膜厚分布(%) = (最大値-最小値)/(最大値+最小値)×100
(Measurement of film thickness distribution)
The film thickness of the molybdenum thin film on the wafer was measured at 49 points using a TECHNORAYS S-MAT2300, and the film thickness was calculated using the following formula.
Film thickness distribution (%) = (maximum value - minimum value) / (maximum value + minimum value) x 100
実施例1~4に示すように、タングステン含有量が10ppm~100ppmであり、タングステン及びガス含有量を除いたモリブデン含有量が99.999質量%以上(純度5N)、レーザー回折・散乱法で得られる平均粒径DAveが2.5~4.0μm、メディアン径D50が2.0~3.5であり、メディアン径D90と前記平均粒径DAveとの比(D90/DAve)が1.7以下であり、メディアン径D95と前記平均粒径DAveとの比(D95/DAve)が2.0以下であるモリブデン粉末を用い、粉末を1400℃以上1500℃以下の温度でホットプレスし、その後、1500℃以上1600℃以下の温度でHIPすることで、モリブデン焼結体を得た。得られたモリブデン焼結体は、相対密度が99%以上であり、0.15mm2の観察領域において、0.01μm2以上0.2μm2未満の大きさのポアが20個以下であり、0.2μm2以上1.8μm2未満の大きさのポアが5個以下であり、1.8μm2以上の大きさのポアが1個以下であるモリブデンターゲットを得ることができる。このようなモリブデンターゲットを用いることで、パーティクルの発生を抑制することができ、高品質なモリブデン薄膜を安定して製膜することが可能になる。 As shown in Examples 1 to 4, a molybdenum powder having a tungsten content of 10 ppm to 100 ppm, a molybdenum content excluding tungsten and gas content of 99.999 mass% or more (purity 5N), an average particle size D Ave obtained by a laser diffraction/scattering method of 2.5 to 4.0 μm, a median diameter D50 of 2.0 to 3.5, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less was used, and the powder was hot pressed at a temperature of 1400° C. to 1500° C., and then HIPed at a temperature of 1500° C. to 1600° C., thereby obtaining a molybdenum sintered body. The obtained molybdenum sintered body has a relative density of 99% or more, and a molybdenum target can be obtained in which, in an observation area of 0.15 mm2 , there are 20 or less pores with a size of 0.01 μm2 or more and less than 0.2 μm2 , 5 or less pores with a size of 0.2 μm2 or more and less than 1.8 μm2, and 1 or less pores with a size of 1.8 μm2 or more. By using such a molybdenum target, it is possible to suppress the generation of particles, and it becomes possible to stably form a high-quality molybdenum thin film.
また、実施例1~4では、ホットプレス温度が1500℃以下と低いので、ターゲットの炭素含有量が十分に低く、比抵抗が11μΩ・cm以下と十分に低い薄膜を成膜することができる。 In addition, in Examples 1 to 4, the hot pressing temperature is low at 1500°C or less, so the carbon content of the target is sufficiently low, making it possible to form a thin film with a sufficiently low resistivity of 11 μΩ·cm or less.
比較例1では、粉末が細か過ぎ、酸素含有量が多いため、HP時に密度が急上昇し酸化物がトラップされることになった。また、比較例2では、HIPを実施していないため、密度不足であった。
比較例3、4では、タングステン含有量及び酸素含有量が高いため、比抵抗が高いものとなった。また、原料粉末が細か過ぎるためHP時に密度が急上昇し、さらにHP温度が低いため酸化物が昇華せずに残存した。また、比較例3では、HIP温度が高いので異常粒成長が生じ、比較例4では、HIP温度が低いため低密度であった。
比較例5、6では、タングステン含有量及び酸素含有量が高いため、比抵抗が高いものとなった。また粉末が細か過ぎ且つ酸素含有量が多いため、HP時に密度急上昇し酸化物がトラップした。また、HIP温度が低いため低密度であった。
比較例7では、酸素含有量が高いため、比抵抗が高いものとなり、原料粉末が細か過ぎるためHP時に密度急上昇して酸化物が一部残存した。
比較例8では、酸素含有量が高いため、比抵抗が高いものとなり、原料粉末が細か過ぎるためHP時に密度急上昇して酸化物が一部残存した。また、HIP温度が高いため、異常粒成長が生じ、アスペクト比が大きくなった。
比較例9~11では、原料粉末が粗いため、密度不足となった。また、比較例11では、粒度調整不足のため、粒径がバラつき且つアスペクト比が大きく、密度不足となった。
比較例12では、HIP温度が高いので、異常粒成長が生じ、アスペクト比が大きくなった。また、原料粉末が粗いため密度不足となった。
比較例13では、HP温度が高いため、炭素拡散量が多くなった。また、原料粒度分布調整不足のため、粒径がバラつき且つアスペクト比が大きく、粉末も粗いため密度不足となった。
In Comparative Example 1, the powder was too fine and contained a large amount of oxygen, so that the density rose sharply during HP and oxides were trapped, while in Comparative Example 2, the density was insufficient because HIP was not performed.
In Comparative Examples 3 and 4, the tungsten content and oxygen content were high, resulting in high resistivity. In addition, the raw powder was too fine, resulting in a sudden increase in density during HP, and the HP temperature was low, resulting in oxides remaining without sublimation. In Comparative Example 3, abnormal grain growth occurred due to the high HIP temperature, and in Comparative Example 4, the density was low due to the low HIP temperature.
In Comparative Examples 5 and 6, the tungsten content and oxygen content were high, resulting in high resistivity. In addition, the powder was too fine and the oxygen content was high, resulting in a sudden increase in density during HP, leading to oxide trapping. In addition, the density was low due to the low HIP temperature.
In Comparative Example 7, the oxygen content was high, resulting in a high resistivity, and the raw material powder was too fine, resulting in a sudden increase in density during HP, causing some oxides to remain.
In Comparative Example 8, the oxygen content was high, so the resistivity was high, and the raw powder was too fine, so the density rose sharply during HP, leaving some oxides behind. Also, the HIP temperature was high, so abnormal grain growth occurred, and the aspect ratio became large.
In Comparative Examples 9 to 11, the raw material powder was coarse, resulting in insufficient density. In Comparative Example 11, the particle size was insufficient, resulting in uneven particle size and a large aspect ratio, resulting in insufficient density.
In Comparative Example 12, the high HIP temperature caused abnormal grain growth, resulting in a large aspect ratio, and the raw material powder was coarse, resulting in insufficient density.
In Comparative Example 13, the amount of carbon diffusion was large due to the high HP temperature. Also, due to insufficient adjustment of the raw material particle size distribution, the particle size was uneven, the aspect ratio was large, and the powder was coarse, resulting in insufficient density.
Claims (7)
相対密度が99%以上であり、
酸素含有量が25ppm以下であり、炭素含有量が30ppm以下であり、
タングステン含有量が10ppm~100ppmであり、
前記酸素含有量、前記炭素含有量および前記タングステン含有量を除いたモリブデン含有量が99.999質量%以上であり、
0.15mm2の観察領域において、0.01μm2以上0.2μm2未満の大きさのポアが20個以下であり、0.2μm2以上1.8μm2未満の大きさのポアが5個以下であり、1.8μm2以上の大きさのポアが1個以下であるモリブデンターゲット。 A molybdenum target formed of a sintered body of molybdenum powder,
The relative density is 99% or more,
The oxygen content is 25 ppm or less, and the carbon content is 30 ppm or less,
The tungsten content is 10 ppm to 100 ppm;
The molybdenum content excluding the oxygen content, the carbon content, and the tungsten content is 99.999% by mass or more,
A molybdenum target having, in an observation area of 0.15 mm2 , 20 or less pores having a size of 0.01 μm2 or more and less than 0.2 μm2 , 5 or less pores having a size of 0.2 μm2 or more and less than 1.8 μm2 , and 1 or less pores having a size of 1.8 μm2 or more .
円相当径で計算した粒径の標準偏差3σと平均粒径dAveとの比(3σ/dAve)が1.2以下である請求項1記載のモリブデンターゲット。 The average particle diameter d Ave calculated based on the circle equivalent diameter is 20 μm or more and 100 μm or less,
2. The molybdenum target according to claim 1, wherein the ratio (3σ/d Ave ) of the standard deviation 3σ of grain size calculated based on the equivalent circle diameter to the average grain size d Ave is 1.2 or less.
ビッカース硬度の標準偏差3σとビッカース硬度の平均値HAveとの比(3σ/HAve)が0.07以下である請求項1~3のいずれか一項記載のモリブデンターゲット。 The average Vickers hardness is 180 or less,
4. The molybdenum target according to claim 1, wherein the ratio (3σ/H Ave ) of the standard deviation 3σ of Vickers hardness to the average value H Ave of Vickers hardness is 0.07 or less.
1400℃以上1500℃以下の温度でホットプレスし、その後、1500℃以上1600℃以下で熱間等方圧プレス法により焼結するモリブデンターゲットの製造方法。 a molybdenum powder having an average particle size D Ave of 2.5 to 4.0 μm, a median diameter D50 of 2.0 to 3.5, a ratio of the median diameter D90 to the average particle size D Ave (D90/D Ave ) of 1.7 or less, and a ratio of the median diameter D95 to the average particle size D Ave (D95/D Ave ) of 2.0 or less, as measured by a laser diffraction/scattering method;
A method for manufacturing a molybdenum target, comprising hot pressing at a temperature of 1400° C. to 1500° C., and then sintering by hot isostatic pressing at a temperature of 1500° C. to 1600° C.
酸素含有量、炭素含有量および前記タングステン含有量を除いたモリブデン含有量が99.999質量%以上であるものである請求項5記載のモリブデンターゲットの製造方法。 The molybdenum powder has a tungsten content of 10 ppm to 100 ppm;
The method for producing a molybdenum target according to claim 5, wherein the molybdenum content excluding the oxygen content, the carbon content and the tungsten content is 99.999 mass % or more.
7. The method for producing a molybdenum target according to claim 5, wherein the hot pressing is carried out under high vacuum at a holding temperature of 1400 to 1500° C. for a holding time of 360 to 600 minutes.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023080476A JP7394249B1 (en) | 2023-05-15 | 2023-05-15 | Molybdenum target and its manufacturing method |
| JP2023-080476 | 2023-05-15 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024237257A1 true WO2024237257A1 (en) | 2024-11-21 |
Family
ID=89023229
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/017842 Pending WO2024237257A1 (en) | 2023-05-15 | 2024-05-14 | Molybdenum target and method for producing same |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP7394249B1 (en) |
| TW (1) | TW202507030A (en) |
| WO (1) | WO2024237257A1 (en) |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11240720A (en) * | 1998-02-27 | 1999-09-07 | Mitsubishi Research Institute Inc | Dense sintered body of ferroelectric oxide and method for producing the same |
| JP2000234167A (en) * | 1999-02-10 | 2000-08-29 | Tokyo Tungsten Co Ltd | Molybdenum sputtering target material and its production |
| JP2000319774A (en) * | 1999-04-28 | 2000-11-21 | Tokyo Tungsten Co Ltd | Sputtering target material |
| JP2003342720A (en) * | 2002-05-20 | 2003-12-03 | Nippon Steel Corp | Method for producing molybdenum target for sputtering and molybdenum target |
| JP2005344136A (en) * | 2004-05-31 | 2005-12-15 | Hitachi Metals Ltd | METHOD FOR PRODUCING INTEGRALLY SINTERED Mo BASED TARGET MATERIAL, AND INTEGRALLY SINTERED Mo BASED TARGET MATERIAL |
| JP2007113033A (en) * | 2005-10-18 | 2007-05-10 | Hitachi Metals Ltd | METHOD FOR PRODUCING Mo TARGET MATERIAL, AND Mo TARGET MATERIAL |
| JP2008088503A (en) * | 2006-10-02 | 2008-04-17 | Hitachi Metals Ltd | Mo SPUTTERING TARGET MATERIAL |
| WO2009107763A1 (en) * | 2008-02-29 | 2009-09-03 | 新日鉄マテリアルズ株式会社 | Metallic sputtering target material |
| JP2011132563A (en) * | 2009-12-22 | 2011-07-07 | Toshiba Corp | Mo SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR |
| WO2014192650A1 (en) * | 2013-05-27 | 2014-12-04 | 住友金属鉱山株式会社 | Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target |
| WO2019176962A1 (en) * | 2018-03-13 | 2019-09-19 | Jx金属株式会社 | Sputtering target and method for producing sputtering target |
-
2023
- 2023-05-15 JP JP2023080476A patent/JP7394249B1/en active Active
-
2024
- 2024-05-14 WO PCT/JP2024/017842 patent/WO2024237257A1/en active Pending
- 2024-05-15 TW TW113117841A patent/TW202507030A/en unknown
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11240720A (en) * | 1998-02-27 | 1999-09-07 | Mitsubishi Research Institute Inc | Dense sintered body of ferroelectric oxide and method for producing the same |
| JP2000234167A (en) * | 1999-02-10 | 2000-08-29 | Tokyo Tungsten Co Ltd | Molybdenum sputtering target material and its production |
| JP2000319774A (en) * | 1999-04-28 | 2000-11-21 | Tokyo Tungsten Co Ltd | Sputtering target material |
| JP2003342720A (en) * | 2002-05-20 | 2003-12-03 | Nippon Steel Corp | Method for producing molybdenum target for sputtering and molybdenum target |
| JP2005344136A (en) * | 2004-05-31 | 2005-12-15 | Hitachi Metals Ltd | METHOD FOR PRODUCING INTEGRALLY SINTERED Mo BASED TARGET MATERIAL, AND INTEGRALLY SINTERED Mo BASED TARGET MATERIAL |
| JP2007113033A (en) * | 2005-10-18 | 2007-05-10 | Hitachi Metals Ltd | METHOD FOR PRODUCING Mo TARGET MATERIAL, AND Mo TARGET MATERIAL |
| JP2008088503A (en) * | 2006-10-02 | 2008-04-17 | Hitachi Metals Ltd | Mo SPUTTERING TARGET MATERIAL |
| WO2009107763A1 (en) * | 2008-02-29 | 2009-09-03 | 新日鉄マテリアルズ株式会社 | Metallic sputtering target material |
| JP2011132563A (en) * | 2009-12-22 | 2011-07-07 | Toshiba Corp | Mo SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR |
| WO2014192650A1 (en) * | 2013-05-27 | 2014-12-04 | 住友金属鉱山株式会社 | Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target |
| WO2019176962A1 (en) * | 2018-03-13 | 2019-09-19 | Jx金属株式会社 | Sputtering target and method for producing sputtering target |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2024164771A (en) | 2024-11-27 |
| JP7394249B1 (en) | 2023-12-07 |
| TW202507030A (en) | 2025-02-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5675577B2 (en) | Tungsten sputtering target and manufacturing method thereof | |
| CN101687709B (en) | Sintered silicon wafer | |
| WO2013038668A1 (en) | Mo-w target and method for manufacturing same | |
| JP7701511B2 (en) | Tungsten Sputtering Target | |
| WO2018173450A1 (en) | Tungsten silicide target and method of manufacturing same | |
| JP5969493B2 (en) | Sputtering target and manufacturing method thereof | |
| WO2019187329A1 (en) | Tungsten silicide target member and method for manufacturing same, and method for manufacturing tungsten silicide film | |
| JP7174476B2 (en) | tungsten target | |
| JP2003049264A (en) | Tungsten sputtering target and method for manufacturing the same | |
| WO2021241522A1 (en) | METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD | |
| JP7394249B1 (en) | Molybdenum target and its manufacturing method | |
| JP7278463B1 (en) | Tungsten target and manufacturing method thereof | |
| JP7108046B2 (en) | magnesium oxide sputtering target | |
| TWI891773B (en) | Yttrium ingot, yttrium sputtering target using the same, and method for producing yttrium oxide film | |
| CN115516127B (en) | Yttrium ingot and sputtering target using the same | |
| JP2001303243A (en) | Sputtering target, method for manufacturing the same, and electronic component | |
| JP7739744B2 (en) | Yttrium ingot and sputtering target using same | |
| JP7573792B2 (en) | Au sputtering target | |
| TW201835360A (en) | Al2o3 sputtering target and method for producing same | |
| JP2021181611A (en) | Yttrium ingot, and sputtering target using the same | |
| CN106795622A (en) | Sputtering target and its manufacture method comprising Al Te Cu Zr based alloys |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24807209 Country of ref document: EP Kind code of ref document: A1 |