[go: up one dir, main page]

WO2025005078A1 - Method for diagnosing state of separating membrane module - Google Patents

Method for diagnosing state of separating membrane module Download PDF

Info

Publication number
WO2025005078A1
WO2025005078A1 PCT/JP2024/022961 JP2024022961W WO2025005078A1 WO 2025005078 A1 WO2025005078 A1 WO 2025005078A1 JP 2024022961 W JP2024022961 W JP 2024022961W WO 2025005078 A1 WO2025005078 A1 WO 2025005078A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
permeate
membrane module
deterioration
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/022961
Other languages
French (fr)
Japanese (ja)
Inventor
智宏 前田
雅英 谷口
一憲 富岡
宏治 中辻
真也 下田
貴夫 植手
清一 天宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of WO2025005078A1 publication Critical patent/WO2025005078A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks

Definitions

  • the present invention relates to a method for diagnosing the condition of a separation membrane module.
  • separation membranes with extremely high separation efficiency compared to conventional sand filtration and evaporation methods, such as microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and ion exchange membranes, are being applied to water treatment.
  • separation membranes especially reverse osmosis membranes, has attracted much attention in the technology of producing drinking water from seawater, which is the most familiar but cannot be used as is, so-called seawater desalination, and in the reuse technology of purifying sewage wastewater and regenerating treated water.
  • Seawater desalination has traditionally been practiced mainly using the evaporation method in the Middle East, where water resources are extremely scarce and heat resources from petroleum are abundant. Recently, technological advances in the reverse osmosis method have improved reliability and reduced costs, and reverse osmosis seawater desalination plants have been put into practical use in the Middle East.
  • reverse osmosis In the case of sewage and wastewater reuse, reverse osmosis is used in inland and coastal urban and industrial areas, areas with no water sources, and areas where discharge volumes are restricted due to wastewater regulations. In particular, Singapore deals with water shortages by treating sewage generated within the country and then using reverse osmosis to regenerate it to drinking water quality.
  • the reverse osmosis membrane process which is used in seawater desalinization and sewage wastewater reuse, is a method of producing desalinated water by applying a pressure greater than the osmotic pressure to water containing solutes such as salt, causing it to pass through a reverse osmosis membrane.
  • This technology can be used to produce drinking water from seawater or brackish water, for example, and has also been used to produce ultrapure water for industrial use, treat wastewater, and recover valuable materials.
  • a known method for investigating whether or not there is physical damage to a reverse osmosis membrane is to disassemble the reverse osmosis membrane element under investigation, extract a piece of membrane, and pressurize the skin layer side, which has a reverse osmosis function, with a dye solution (for example, a solution of Basic Violet 1 (manufactured by Tokyo Chemical Industry Co., Ltd.)) at a linear velocity of 0.1 to 0.2 cm/sec by cross-flow at an operating pressure of 1.5 MPa for 30 minutes or more, and then visually observe whether or not there is any dyed area on the evaluation membrane (Patent Document 1).
  • a dye solution for example, a solution of Basic Violet 1 (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Non-Patent Document 1 A method for investigating whether or not a reverse osmosis membrane has chemically deteriorated is known in which the reverse osmosis membrane element under investigation is disassembled, the membrane pieces are removed, and immersed in a solution containing a mixture of an alkaline aqueous solution and pyridine, and chemical deterioration, particularly oxidative deterioration, is identified based on the presence or absence of color change in the solution (Non-Patent Document 1).
  • Non-Patent Document 2 tests such as the PDT (Pressure Decay Test) (Non-Patent Document 2) and air leak tests are known for physical deterioration, as are bubble point tests (Non-Patent Document 3) as tests to check for deterioration in separation performance due to chemical deterioration, and at the laboratory level, the molecular weight cutoff test (Non-Patent Document 4).
  • the present invention was made in consideration of the above-mentioned conventional situation, and provides a method for diagnosing the condition of a separation membrane module that can diagnose the causes of performance degradation of the separation membrane module extremely simply and quickly.
  • a method for diagnosing the state of a separation membrane module having a permeate collection pipe having a plurality of water collection holes for obtaining permeate from water to be treated comprising the steps of: Test water containing two or more types of solutes is supplied to a separation membrane module, and the test water contains, as the two or more types of solutes, ionic substances with different valences or two or more types of substances with different molecular weights, or the two or more types of solutes are individually supplied to the separation membrane module by changing the valence or molecular weight of the one type of solute in test water containing the one type of solute; Permeate water is collected at at least two or more positions in the permeate collection pipe; By comparing the separation performances of the at least two types of solutes, which are calculated based on the difference between the solute concentration in the permeated water collected at each water collection position and the solute concentration due to the permeated water upstream of the
  • the permeate concentration indicator is an inorganic concentration measured by electrical conductivity, total dissolved solids concentration, TOC, refractive index, turbidity, absorbance, luminous intensity, chromaticity, IR spectrum, mass spectrometry spectrum, ion chromatography, or ICP emission mass spectrometry;
  • the method for diagnosing the state of a separation membrane module according to any one of (1) to (6), wherein the method for collecting permeate water at at least two or more positions in the permeate water collecting pipe is a method for measuring the permeate water quality by measuring the permeate water quality by collecting permeate water at different positions in the separation membrane module through a thin tube having an outer diameter smaller than the inner diameter of the permeate water collecting pipe.
  • a method for diagnosing the state of a separation membrane module according to any one of (1) to (7) in which the separation performance of the test water in a state before use of the separation membrane module is measured or predicted in advance, and the state of the separation membrane module is judged based on the deviation from the measured value.
  • the cause of performance degradation of the separation membrane module can be diagnosed very simply and quickly without dismantling the separation membrane module.
  • the diagnostic results it becomes possible to stably operate the separation membranes in the water treatment plant and obtain fresh water and clear water stably and inexpensively.
  • FIG. 1 is a partially exploded perspective view of a most typical spiral-wound reverse osmosis membrane element.
  • FIG. 2 is a side cross-sectional view of a reverse osmosis membrane module in which a spiral-type reverse osmosis membrane element is loaded into a pressure-resistant vessel.
  • FIG. 3 is a side cross-sectional view of a typical hollow fiber microfiltration membrane module.
  • FIG. 4 is a schematic diagram showing an example of a method for measuring local permeated water quality through a tube from a permeated water piping of a reverse osmosis membrane module.
  • FIG. 5 is a schematic diagram showing an example of a method for measuring local permeated water quality through a tube from a permeated water piping in a state where a plurality of reverse osmosis membrane modules are connected in series.
  • FIG. 6 is a schematic diagram of a reverse osmosis membrane element performance evaluation device equipped with a separation membrane module having two or more permeate intake ports.
  • FIG. 7 is an image diagram of a differential method for determining the rate of change in separation performance relative to the initial performance from the difference between the permeate concentration at the water sampling position n and the permeate concentration sampled at a water sampling position upstream (supply water side) of the water sampling position n.
  • FIG. 1 is a schematic diagram showing an example of a method for measuring local permeated water quality through a tube from a permeated water piping in a state where a plurality of reverse osmosis membrane modules are connected in series.
  • FIG. 6 is a schematic diagram of a reverse osmos
  • FIG. 8 is a graph showing the change in separation performance and the contribution rates of chemical deterioration and physical deterioration in Example 1.
  • FIG. 9 is a graph showing the distribution of the concentration of each ionic substance in the permeated water in the length direction of the permeated water collecting pipe in Example 2.
  • FIG. 10 is a graph showing the rate of change in separation performance in the length direction of the permeate collecting tube in Example 2 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the permeate collecting tube.
  • FIG. 11 is a graph (differential method) showing the rate of change in separation performance in the length direction of the permeate collecting tube in Example 2 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the permeate collecting tube.
  • FIG. 12 is a graph showing the change in separation performance and the contribution rates of chemical deterioration and physical deterioration in Example 3.
  • FIG. 13 is a graph showing the distribution of the concentration of each ionic substance in the permeated water in the length direction of the permeated water collecting pipe in Example 4.
  • FIG. 14 is a graph showing the rate of change in separation performance in the length direction of the permeate collecting tube in Example 4 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the permeate collecting tube.
  • FIG. 15 is a graph (differential method) showing the rate of change in separation performance in the length direction of the permeate collecting tube in Example 4 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the permeate collecting tube.
  • FIG. 16 is a graph showing the change in separation performance and the contribution rates of chemical deterioration and physical deterioration in Example 5.
  • FIG. 17 is a graph showing the distribution of the concentration of each ionic substance in the permeated water in the length direction of the permeated water collecting pipe in Example 6.
  • FIG. 18 is a graph showing the rate of change in separation performance in the length direction of the permeate collecting pipe in Example 6 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the collecting pipe.
  • FIG. 19 is a graph (differential method) showing the rate of change in separation performance in the length direction of the permeate collecting pipe in Example 6 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the collecting pipe.
  • FIG. 20 is a graph showing the change in separation performance and the contribution rates of chemical deterioration and physical deterioration in Example 7.
  • FIG. 21 is a graph showing the distribution of the concentration of each ionic substance in the permeated water in the length direction of the permeated water collecting pipe in Example 8.
  • FIG. 22 is a graph showing the rate of change in separation performance in the length direction of the permeate collecting pipe in Example 8 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the collecting pipe.
  • FIG. 23 is a graph (differential method) showing the rate of change in separation performance in the length direction of the permeate collecting pipe in Example 8 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the collecting pipe.
  • a diagnostic method is a method for diagnosing the state of a separation membrane module for obtaining permeate water from water to be treated, in which test water containing two or more types of solutes is supplied to the separation membrane module.
  • the test water contains, as the two or more types of solutes, ionic substances with different valences or two or more types of substances with different molecular weights, or two or more types of solutes are supplied individually to the separation membrane module by changing the valence or molecular weight of one type of solute in test water containing one type of solute.
  • test water supplied to the separation membrane module may be one type or two or more types.
  • the separation performance of the test water in a state before use of the separation membrane module is measured or predicted in advance, and a chemical deterioration profile in which the separation performance is deteriorated by contacting the separation membrane module with a chemical and a physical deterioration profile in which the separation performance is deteriorated by physically scratching the supply side of the separation membrane module are prepared in advance.
  • the separation performance of the test water before and after deterioration of the separation membrane module, the chemical deterioration profile, and the physical deterioration profile are compared to determine the degree of chemical deterioration and physical deterioration of the separation membrane module.
  • the separation performance of the first solute and the separation performance of the second solute are in a certain ratio based on the characteristics of the separation membrane.
  • This separation performance is generally expressed as a removal rate. For example, in the case of a reverse osmosis membrane module, as exemplified in the document "Toray TSW-LE Series Catalog", it is described that the NaCl removal rate is 99.6% and the boron removal rate is 90%.
  • the major factors that cause the separation performance deterioration of the separation membrane module are chemical deterioration and physical deterioration as described above, and the relationship between the separation performance deterioration due to each type of deterioration is different.
  • the chemical deterioration in this case may be, for example, the chemical deterioration that occurs when the separating functional layer of the reverse osmosis membrane comes into contact with a chemical agent and begins to deteriorate.
  • chemical deterioration refers to, for example, changes in the molecular chain arrangement of the polymer components of the separation functional layer, breakage, or loss of low molecular weight molecules, and there are no particular limitations on the form of chemical deterioration.
  • an oxidizing agent is often used in the pretreatment of the raw water supplied to the reverse osmosis membrane elements, and it is known that some of the oxidizing agent leaks into the reverse osmosis membrane elements, causing oxidative deterioration.
  • the oxidizing agent is not particularly limited to the oxidizing agent used in the pretreatment, but the main cause of chemical deterioration is often oxidative deterioration caused by hypochlorous acid used to disinfect the raw water and hypobromous acid generated by conversion of hypochlorous acid.
  • Non-Patent Document 5 Journal of Membrane Science, Vol. 183, 2000, pp. 259-267
  • the inventors of the present application have confirmed through intensive research that this relationship is similar for other solutes. That is, the change in the removal performance of the two solutes is in a certain relationship, and in many cases, the performance decreases in a linear relationship from the performance when new to a certain level.
  • the separation performance of the test water of the separation membrane module before chemical deterioration and physical deterioration occur is measured or predicted in advance, and the state of the separation membrane module is judged based on the deviation from that value, so that abnormalities can be detected and diagnosed.
  • the separation performance of two types of solutes before deterioration may be, for example, the performance when new, the initial performance when the plant is started up, the performance immediately after chemical cleaning, or the performance immediately after a long-term shutdown of the plant due to a problem or equipment maintenance, and may be set appropriately depending on the problem that occurs in the plant.
  • the separation performance before the Nth use may be measured in advance, and the state of the separation membrane module may be determined based on the deviation from the value of the state before use.
  • the separation performance immediately after the first use may be measured or predicted, and the state of the separation membrane module may be determined based on the deviation from the separation performance measured or predicted during the Nth use.
  • the degree of deterioration in the separation performance of monovalent ionic substances and divalent ionic substances can also be used to diagnose the early stage of chemical deterioration due to contact with chemicals (minor deterioration).
  • a normal new separation membrane module will have permeate concentrations of, for example, 100 mg/L and 0.5 mg/L, respectively, and if chemically deteriorated, the performance will decrease in a relationship of, for example, 150 mg/L and 0.75 mg/L.
  • the permeate concentration will be 132 mg/L and 0.505 mg/L, and the decrease in Na ion separation performance will be significant. In such cases, it can be determined that physical deterioration has occurred.
  • test water containing a mixture of two types of ions with different valences is used, but it is also possible to prepare two types of test water containing only one different solute, supply each test water separately to the separation membrane module, collect the permeate, and obtain two types of separation performance, after which the separation membrane module can be diagnosed.
  • the diagnostic method for a spiral reverse osmosis membrane element according to the second embodiment includes supplying a first treated water containing monovalent ionic substances to a spiral reverse osmosis membrane element equipped with a permeate collection pipe having a plurality of collection holes under pressure at a pressure equal to or greater than the osmotic pressure of the first treated water, separating the first treated water into a first concentrated water and a first permeate, sampling the first permeate at a plurality of positions within the permeate collection pipe from the supply water side to the concentrated water side, and, before or after sampling the first permeate, supplying a second treated water containing divalent ionic substances to a spiral reverse osmosis membrane element equipped with a permeate collection pipe having a plurality of collection holes under pressure at a pressure equal to or greater than the osmotic pressure of the second treated water.
  • the second treated water is pressurized and supplied to the reverse osmosis membrane element with a pressure force, the second treated water is separated into a second concentrated water and a second permeate, the second permeate is collected at multiple locations in the permeate collection pipe, and the concentration of the monovalent ionic substance in the first permeate is determined by measuring the water quality of the first permeate, and the concentration of the divalent ionic substance in the second permeate is determined by measuring the water quality of the second permeate, and the deterioration state of the reverse osmosis membrane element is diagnosed from changes in the concentration of the monovalent ionic substance and the concentration of the divalent ionic substance.
  • the rate of change in separation performance in the length direction within the reverse osmosis membrane element and the contribution rates of chemical deterioration and physical deterioration can be calculated, making the degree and location of chemical deterioration and physical deterioration of the separation membrane module clear, enabling more appropriate measures to be taken against problems.
  • the separation performance change rate relative to the initial performance is calculated from the difference between the concentration of the monovalent ionic substance and the concentration of the divalent ionic substance in the permeated water at the water collection position n in the permeated water collection pipe of the reverse osmosis membrane element and the concentration of the monovalent ionic substance and the divalent ionic substance resulting from the permeated water collected at the water collection position upstream (supply water side) of the water collection position n, and the contribution of chemical deterioration and physical deterioration at each water collection position can be determined by decomposing into two arrows representing the relationship between the change rate of monovalent ions and divalent ions in the case of chemical deterioration and the relationship between the change rate of monovalent ions and divalent ions in the case of physical deterioration.
  • the separation performance change rate in the length direction within the reverse osmosis membrane element and the contribution rate of chemical deterioration and physical deterioration can be calculated more accurately, the degree and the location of chemical deterioration and physical deterioration of the separation membrane module become clear, and more appropriate measures against troubles can be taken.
  • this method of analysis it is possible to more accurately identify the cause, location and extent of deterioration, particularly when localized physical deterioration such as membrane scratches, wrinkles, or leakage from the membrane edge or woven area occurs, without being affected by the performance upstream (supply water side) of the reverse osmosis membrane element.
  • the permeate concentration C p (n) of the collection hole (nth) at the water sampling position n can be calculated from the amount of solute material.
  • F(n) ⁇ C(n) F(n-1) ⁇ C(n-1)+F p (n) ⁇ C p (n) ...
  • F(1) Fp (1)
  • C p (n) (F (n) ⁇ C (n) - F (n-1) ⁇ C (n-1)) / F p (n) ...
  • C p (n) may be calculated by subtracting the permeate concentration at the nearest water sampling position (n-1th) in the water collection pipe from the permeate concentration at the nth water sampling position in the water collection pipe.
  • the concentration of monovalent ionic substances in the first treated water is preferably 50 to 70,000 mg/L, more preferably 500 to 35,000 mg/L.
  • the concentration of divalent ionic substances in the second treated water is preferably 50 to 10,000 mg/L, more preferably 50 to 4,000 mg/L.
  • the first treated water can be obtained, for example, by mixing a monovalent ionic substance with pure water.
  • the second treated water can be obtained, for example, by mixing a divalent ionic substance with pure water.
  • the reverse osmosis membrane element is as described above.
  • the pressure at which the mixed treated water is pressurized and supplied to the reverse osmosis membrane element is preferably 0.5 to 10 MPa, and more preferably 0.75 to 6 MPa.
  • the flow rate of the first treated water when separating the first treated water into the first concentrated water and the first permeate is preferably 50 to 1000 L/min, and more preferably 120 to 500 L/min, for example, when the reverse osmosis membrane element has an outer diameter of about 201 mm (about 8 inches).
  • the temperature of the first treated water at this time is preferably 5 to 45°C, and more preferably 20 to 35°C.
  • the pH of the first treated water at this time is preferably 2 to 11, and more preferably 6 to 8.5, since chemical deterioration occurs when the pH becomes close to a strong acid or strong alkali.
  • the flow rate of the second treated water when separating the second treated water into the second concentrated water and the second permeate is preferably 50 to 1000 L/min, and more preferably 120 to 500 L/min, for example, when the reverse osmosis membrane element has an outer diameter of about 201 mm (about 8 inches).
  • the temperature of the second treated water at this time is preferably 5 to 45°C, and more preferably 20 to 35°C.
  • the pH of the second treated water at this time is preferably 2 to 11, and more preferably 6 to 8.5, since chemical deterioration occurs when the pH becomes close to a strong acid or strong alkali.
  • the concentration of monovalent ionic substances in the first permeated water is determined by measuring the water quality of the first permeated water.
  • concentration of divalent ionic substances in the second permeated water is determined by measuring the water quality of the second permeated water.
  • water quality of the first permeate and the second permeate include, for example, the electrical conductivity, ion concentration, or total dissolved solids concentration of the first permeate and the second permeate.
  • the concentration of the monovalent ionic substance is a value determined from the electrical conductivity of the first permeated water
  • the concentration of the divalent ionic substance is a value determined from the electrical conductivity of the second permeated water.
  • the order in which the first treated water and the second treated water are pressurized and supplied is not limited, and either may be pressurized and supplied first.
  • the first treated water may be converted to water such as pure water and supplied to the reverse osmosis membrane element before the second treated water is pressurized and supplied, and the first treated water may be washed out.
  • Na a strong monovalent cationic substance
  • boron a weak trivalent anionic substance
  • ionic substances with different valences and it is also preferable for substances to have different molecular weights.
  • target components that have a large difference in removal performance or are easy to measure.
  • the two types of ions are the same type but with different valences. That is, for example, a monovalent cation and a divalent cation, or a monovalent anion and a divalent anion.
  • the monovalent ionic substance used in the present invention is not particularly limited, but is preferably completely dissociated and neutral when dissolved in water such as pure water.
  • water such as pure water.
  • Na and Mg, Cl and SO4 are very preferable because they are abundant in nature, easy to handle, and relatively low cost.
  • water treatment separation membranes for treating natural water such as seawater and river water, natural organic matter is generally weak anion, so the membrane surface is often negatively charged, and in that case, it is preferable to apply Na and Mg , which are cations.
  • sodium chloride is preferably used as the monovalent ionic substance.
  • the divalent ionic substance used in the present invention is not particularly limited, but is preferably used for the same reason as long as it is completely dissociated and neutral when dissolved in water such as pure water.
  • Magnesium sulfate is preferably used for the same reason. It is very preferable to select these simultaneously, because the cations and anions have different properties.
  • the concentrations in the test water are preferably set to conditions that make them easy to measure, but are not subject to any particular restrictions.
  • the concentration of monovalent ionic substances is preferably 50 to 70,000 mg/L, more preferably 500 to 35,000 mg/L, and the concentration of divalent ionic substances is preferably 50 to 10,000 mg/L, more preferably 500 to 4,000 mg/L.
  • the "at least two types of test water” basically have different solutes, but it is also possible to use the same solute and change the pH or temperature to create substantially different solutes.
  • the pH of a solute containing carbon dioxide is changed, it will dissociate, i.e., its valence will change, resulting in a solute with different properties.
  • Changing the temperature can also change the properties of solutes, particularly polymeric solutes, so this is an applicable method.
  • the membrane performance may also change, making it easier to determine chemical changes.
  • changes in membrane performance generally have no effect. However, care must be taken as changing the pH or temperature requires chemicals and thermal energy, as well as the time and effort required for this.
  • the test water contains only the components to be measured, as this increases analytical accuracy, but if it is desired to diagnose a separation membrane module that is in use (while the plant is operating), it is necessary to stop the supply of treated water and switch to test water, or to remove the separation membrane module from the facility and load it into a diagnostic device. If it is desired to carry out this diagnosis while the actual plant is operating, it is possible to use the treated water as the test water while the plant is in operation. However, since solutes other than the solutes to be compared and evaluated are often contained, it is necessary to be aware that this will affect analytical accuracy. If there are problems with the accuracy of the concentration analysis of the treated water and permeate during operation, one preferred method is to increase sensitivity by adding two types of solutes to be compared and evaluated in a pulsed manner to the treated water.
  • the permeability coefficient can be calculated simply as the permeation amount per membrane area, pressure and time, for example, as expressed in units of kg/ m2 /Pa/s. More precisely, however, it can be determined by a calculation method taking into account the osmotic pressure and concentration polarization shown in Non-Patent Document 6, "Journal of Membrane Science, Vol. 183, 2000, pp. 249-258," and further taking into account the temperature change of membrane performance.
  • J v Pure water permeation flux [m 3 /m 2 ⁇ s]
  • J s Solute permeation flux [kg/m 2 ⁇ s]
  • L p Pure water permeability coefficient [m 3 /m 2 ⁇ Pa ⁇ s]
  • P TDS permeability coefficient [m/s] ⁇ : Osmotic pressure [Pa] ⁇ : Osmotic pressure difference [Pa] ⁇ P: Operating pressure difference [Pa] C m : Supply water film surface concentration [kg/m 3 ]
  • C f Supply water bulk concentration [kg/m 3 ]
  • C p Permeated water concentration [kg/m 3 ] k: so
  • the solute mass transfer coefficient k is a value determined by the separation membrane module structure and the evaluation cell, but can be obtained as a function of the membrane surface flow rate Q [m 3 /s] or the membrane surface flow rate u [m/s] by the osmotic pressure method or flow rate change method shown in Non-Patent Document 5 (Journal of Membrane Science, Vol. 183, 2000, pp. 259-267).
  • the unknowns Lp , P, and Cm can be calculated from the above formula.
  • Lp and P can be calculated by fitting while integrating in the longitudinal direction of the membrane element, as shown in Reference 1, if the unknowns can be obtained as average values for the entire module.
  • the separation membrane module to which the present invention is applied can be used with a variety of separation membranes, including reverse osmosis membranes, nanofiltration membranes, ultrafiltration membranes, microfiltration membranes, ion exchange membranes, gas separation membranes, and filter cloths.
  • reverse osmosis membranes nanofiltration membranes
  • ultrafiltration membranes ultrafiltration membranes
  • microfiltration membranes ion exchange membranes
  • gas separation membranes gas separation membranes
  • filter cloths filter cloths.
  • microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes for water treatment which treat seawater or river water to produce drinking water or various types of water, is highly preferable, as it contributes to reducing water treatment costs.
  • the module shape is also not particularly limited, and may be a spiral type, hollow fiber type, or flat membrane parallel plate plate and frame type.
  • the materials that can be used for reverse osmosis and nanofiltration membranes include polymeric materials such as cellulose acetate polymers, polyamides, polyesters, polyimides, and vinyl polymers.
  • the membrane structure can be either an asymmetric membrane with a dense layer on at least one side of the membrane and gradually increasing micropores from the dense layer toward the inside of the membrane or the other side, or a composite membrane with a very thin functional layer made of a different material on top of the dense layer of the asymmetric membrane.
  • ultrafiltration membranes and precision filtration membranes include porous membranes such as polyacrylonitrile, polyimide, polyethersulfone, polyphenylene sulfide sulfone, polytetrafluoroethylene, polypropylene, and polyethylene.
  • the present invention can be applied as a highly permeable composite separation membrane.
  • FIG. 1 shows a partially exploded perspective view of an element used in the most typical reverse osmosis membrane module.
  • This spiral-type reverse osmosis membrane element generally consists of a reverse osmosis membrane unit including a reverse osmosis membrane 1, a permeate flow path material 2, and a treated water flow path material (net spacer) 3 wound in a spiral shape around a permeate collection pipe 4 with a collection hole, the outside of the reverse osmosis membrane unit is covered with a film or glass fiber impregnated with a hardening resin, etc., and a telescope prevention plate 5 is attached to at least one end of the fluid separation element.
  • net-like or mesh-like lattice flow path material for the treated water flow path material, net-like or mesh-like lattice flow path material, grooved sheets, corrugated sheets, etc. can be used.
  • permeate water flow path material net-like or mesh-like lattice flow path material, grooved sheets, corrugated sheets, etc. can be used.
  • the net or sheet may be independent of the separation membrane, or may be integrated by bonding or fusion.
  • the water 6 to be treated is supplied from the telescope prevention plate 5 and passes through the water flow path material 3 to the reverse osmosis membrane, where it is separated by membrane separation into permeate 7 and concentrated water 8.
  • the permeate 7 is collected inside the permeate collection pipe 4 through a hole in the side of the pipe, passes through the pipe, and is collected from the opening of the pipe.
  • This spiral element can be used by loading it into a pressure vessel 9 as shown in Figure 2.
  • the reverse osmosis membrane is a flat membrane
  • the type known as the spiral type mentioned above is common, and these elements can be placed in a cylindrical housing such as a pressure vessel and connected to pipes for feed water, permeate water, and concentrated water for use.
  • the pressure at which the mixed treated water is pressurized and supplied to the reverse osmosis membrane element is preferably 0.5 to 10 MPa, and more preferably 0.75 to 6 MPa.
  • the flow rate of the mixed treated water when separating the mixed treated water into the mixed retentate and the mixed permeate is preferably 50 to 1000 L/min, and more preferably 120 to 500 L/min, for example, when the reverse osmosis membrane element has an outer diameter of about 201 mm (about 8 inches).
  • the temperature of the mixed treated water in this case is preferably 5 to 45°C, and more preferably 20 to 35°C.
  • the pH of the mixed treated water in this case is preferably 2 to 11, and more preferably 6 to 8.5, since chemical deterioration occurs when the pH becomes close to a strong acid or strong alkali.
  • the permeate may be collected from the right side of the permeate collection pipe of the pressure vessel 9 (the concentrated water outlet side) as shown in FIG. 2, or from the left side of the permeate collection pipe (the feed water inlet side), which is sealed in FIG. 2.
  • the hollow fiber membrane module to which the present invention is applied generally has an opening that is airtightly sealed (potted) between the hollow fiber membranes and between the hollow fiber membranes and the module container. This allows the outside and inside of the hollow fiber membrane to be isolated by the hollow fiber membrane itself, and separation processing can be performed through the membrane.
  • the structure of the hollow fiber membrane module can be a "double-ended open type" in which both ends of the hollow fiber membrane are potted and then opened from both ends, a “single-ended open type” in which only one end is opened after both ends are potted, a "U-shaped” in which the hollow fiber membrane is U-shaped and only one end of the hollow fiber membrane is open, and a "comb-shaped” module in which the U-shaped portion is cut and each hollow fiber membrane is individually sealed.
  • the filtration direction there are cases where the raw water to be treated flows inside the hollow fiber membrane (internal pressure type) and cases where it flows outside (external pressure type), and the present invention can be applied to all of these.
  • test water and permeate concentration there are no particular restrictions on the measurement of test water and permeate concentration, and various measurement methods can be used, such as electrical conductivity, total dissolved solids concentration, TOC, refractive index, turbidity, absorbance, luminescence intensity, color, IR spectrum, mass spectrometry spectrum, ion chromatography, inorganic concentration by ICP optical emission mass spectrometry, pH, and radiation.
  • various measurement methods such as electrical conductivity, total dissolved solids concentration, TOC, refractive index, turbidity, absorbance, luminescence intensity, color, IR spectrum, mass spectrometry spectrum, ion chromatography, inorganic concentration by ICP optical emission mass spectrometry, pH, and radiation.
  • electrical conductivity for ionic substances and refractive index, absorbance, and luminescence intensity for polymers.
  • the relationship between the concentration of each ionic substance and electrical conductivity can be determined in advance using a conventionally known method. By determining the relationship between the concentration of each ionic substance and electrical conductivity in advance, electrical conductivity can be converted into concentration.
  • test water contains two or more types of solutes
  • multiple components can be measured at once by using a chromatograph or absorbance to resolve the retention time or wavelength, scanning, and then detecting and measuring with a detector. It is also a preferred method to connect two different detectors simultaneously to measure two different water quality indicators. In particular, these methods are highly preferred when measuring water quality online, in terms of the complexity of the measurement and the accuracy.
  • the separation performance of the entire separation membrane module is measured and diagnosed, but the method of the present invention can also be used to detect local abnormalities in the separation membrane module. In other words, by taking permeate water from at least two locations in the module and comparing the separation performance, it becomes possible to diagnose what type of abnormality has occurred and at what location inside the module.
  • a side cross-sectional view of an example using a spiral-type reverse osmosis membrane module is shown in Figure 4.
  • the mixed permeate is collected at multiple points in the permeate collection tube, and the separation performance of the collection points is obtained.
  • a thin tube 10 is passed through the permeate collection tube, one end of the tube 10 is fastened at a predetermined position in the permeate collection tube, and the mixed permeate at that position is collected from the other end of the tube 10.
  • the tube 10 is gradually moved to collect mixed permeate at multiple locations, and the concentrations of monovalent ionic substances and divalent ionic substances in the resulting mixed permeate are measured using techniques such as ion chromatography and titration.
  • the deterioration state of the separation membrane module can be diagnosed from the changes in the concentrations of monovalent ionic substances and divalent ionic substances.
  • the tube when using a tube to measure the electrical conductivity of each permeate, the tube is passed through the permeate collection pipe, one end of the tube is secured at a predetermined position in the permeate collection pipe, and the permeate at that position is sampled from the other end of the tube to measure the electrical conductivity.
  • a tube is passed through the permeate piping of the pressure vessel and the tip of the tube is fixed at a predetermined position, and permeate is collected at multiple locations, water should be collected from both ends of the permeate collection tube, the supply water side and the concentrated water side, and water should be collected at approximately equal intervals between them.
  • There is no particular limit to the width of the interval but when evaluating one reverse osmosis membrane element with a total length of about 1 m, an interval of about 5 cm is preferable.
  • the tube 10 is inserted from the downstream direction of the permeate collection tube, but it is also possible to insert the tube with the upstream side open.
  • Figure 4 shows the case where the present invention is applied to one membrane module, in the case of a spiral-type module, it is possible to connect multiple modules in series with the permeate collection tube, as exemplified in Figure 5, so that water can be collected and evaluated from multiple modules at once.
  • the electrical conductivity of each permeate can be measured by installing multiple electrical conductivity sensors at multiple locations in the permeate collection pipe.
  • raw water may occasionally get mixed in due to deterioration of the sealing material, such as an O-ring, that seals the outlet on one side of the permeate collection pipe, and the concentration of the divalent ionic substances may become high up to about 30 cm from the sealed end of the permeate collection pipe. Therefore, if an abnormality is confirmed in the concentration of the divalent ionic substances from 30 cm away from the sealed end of the permeate collection pipe to the other end of the permeate collection pipe, it can be determined that a problem with the sealing material has occurred.
  • the sealing material such as an O-ring
  • the separation membrane module has two or more permeate intake ports, in order to obtain more detailed information, a device such as that shown in FIG. 6 is applied, and as in Patent Document 2 "WO 2020/071507: Method for creating a water quality profile, method for inspecting a separation membrane module, and water treatment device", the separation membrane module has a structure that allows the permeate to be taken in from at least two locations, and the flow rate ratio of the permeate can be changed to obtain results similar to those of the second embodiment.
  • This method is highly preferable because it uses an online water quality detector to automatically and continuously obtain operating conditions and concentration indicators, calculate standard separation performance and solute permeability coefficients, and perform constant abnormality diagnosis, including the contribution rates of physical and chemical deterioration.
  • This method is a preferable embodiment because it makes it possible to detect abnormal positions without inserting tubes into the separation membrane module.
  • the deterioration diagnosis device (hereinafter sometimes simply referred to as the third embodiment) will be described using an example in which a spiral-type reverse osmosis membrane element is used as a separation membrane module, and test water containing a monovalent ionic substance and a divalent ionic substance is used as two different types of test water.
  • the deterioration diagnosis device for a reverse osmosis membrane element is a deterioration diagnosis device for a reverse osmosis membrane element having a separation membrane for separating treated water, which contains at least one of a first treated water containing monovalent ionic substances and a second treated water containing divalent ionic substances, into concentrated water and permeate water, and a water collection pipe for collecting the permeate water, and includes inputting into the computer the operating conditions of the reverse osmosis membrane element during operation, the water quality of the first permeate water containing the monovalent ionic substances, and the water quality of the second permeate water containing the divalent ionic substances, into the computer to diagnose the deterioration state of the reverse osmosis membrane element.
  • the data input means inputs the data, the operating conditions, the water quality of the first permeate, and the water quality of the second permeate into a computer, and the data on the performance of the reverse osmosis membrane element determined from the operating conditions, the water quality of the first permeate, and the water quality of the second permeate, and the data on the rate of change between the concentration of the monovalent ionic substance in the first permeate and the concentration of the divalent ionic substance in the second permeate are used to function as a deterioration diagnosis calculation means for diagnosing the occurrence or non-occurrence of deterioration of the reverse osmosis membrane element based on a predetermined deterioration diagnosis criterion for the reverse osmosis membrane element.
  • a computer having the above means is made to function to diagnose the deterioration state of a reverse osmosis membrane element.
  • the third embodiment can be recorded in a recording device such as a computer memory or a hard disk, and the form of recording is not particularly limited.
  • the computer has a data input means for extracting and inputting data relating to the operating conditions of the reverse osmosis membrane element during operation and the water quality of the first permeate and the water quality of the second permeate for each process, and the measured values for each process obtained by the data input means are recorded in the data recording means.
  • the data recorded in the data recording means is used to diagnose whether or not deterioration of the reverse osmosis membrane element has occurred based on predetermined deterioration diagnosis criteria for the reverse osmosis membrane element.
  • the data recorded in the data recording means may include, for example, the performance of the reverse osmosis membrane element determined from the operating conditions, the water quality of the first permeate, and the water quality of the second permeate, and data on the rate of change between the concentration of the monovalent ionic substance in the first permeate and the concentration of the divalent ionic substance in the second permeate.
  • the third embodiment makes it possible to diagnose the causes of performance degradation of a reverse osmosis membrane element extremely simply and quickly.
  • the diagnostic criteria for determining whether the main cause of deterioration of the reverse osmosis membrane element is chemical deterioration or physical deterioration are the same as in the first and second embodiments.
  • the third embodiment can be recorded on a computer-readable recording medium and used.
  • Example 1 Because a tendency for the quality of the produced water to deteriorate was observed at an ultrapure water production plant, a reverse osmosis membrane element in use was removed from a vessel and one reverse osmosis membrane element was loaded into a pressure vessel as shown in Figure 2, and its separation performance was measured using a performance evaluation device.
  • test water was dissolved in pure water to prepare test water with a concentration of 1500 mg/L.
  • the system was operated with a supply pressure of 1.5 MPa, a concentrated water flow rate of 80 L/min, a water temperature of 25°C, and a pH of 7 for the treated water, and permeated water was obtained from the pressure vessel.
  • Permeated water 7 was taken out and its electrical conductivity was measured, and the concentration was calculated from the relationship between sodium chloride and electrical conductivity.
  • test water was changed to pure water and supplied to the membrane element loaded in the pressure vessel, the sodium chloride was washed out, and magnesium sulfate was dissolved in the pure water to prepare a solution with a concentration of 2000 mg/L.
  • the system was operated with a supply pressure of 1.5 MPa, a concentrated water flow rate of 80 L/min, a water temperature of 25°C, and a pH of 7 for the treated water.
  • the electrical conductivity of the permeate containing magnesium sulfate in the permeate collection pipe was measured, and the concentration was calculated from the relationship between magnesium sulfate concentration and electrical conductivity.
  • the sodium chloride removal rate was 98.80% (transmittance 1.20%) and the magnesium sulfate removal rate was 99.93% (transmittance 0.07%).
  • the performance of this reverse osmosis membrane element as produced was 99.74% sodium chloride removal rate (transmittance 0.26%) and 99.97% magnesium sulfate removal rate (transmittance 0.03%).
  • the rates of decline in separation performance were 4.6 and 2.7 times the initial rates, respectively. As the rate of decline in magnesium sulfate separation performance was not large compared to the rate of decline in sodium chloride separation performance, at least indications were confirmed that chemical degradation was the main cause.
  • a relational expression (1) for the analyzed permeability of sodium chloride and magnesium sulfate was created based on the separation performance (permeability) of sodium chloride and magnesium sulfate created using a reverse osmosis membrane that had been forcibly chemically deteriorated by immersing it in hypochlorous acid in advance.
  • a relational expression (2) for the permeability of sodium chloride and magnesium sulfate was created, which was obtained by assuming that as the damage became larger, the supply water leaked and mixed in small amounts.
  • Example 2 The same reverse osmosis membrane element as in Example 1 was evaluated under the same conditions as in Example 1. However, since a tendency for the quality of the produced water to deteriorate was observed in an ultrapure water production plant, the reverse osmosis membrane element in use was removed from the vessel, and one reverse osmosis membrane element was loaded into a pressure vessel as shown in Figure 2, and the separation performance was measured using a performance evaluation device. However, as shown in Figure 4, the permeated water was passed through a tube from the permeated water piping of the pressure vessel, and the permeated water was sampled from the permeated water collection pipe of the reverse osmosis membrane element. The electrical conductivity of the permeated water sampled at multiple positions in the collection pipe from the feed water side to the concentrated water side was measured, and the sodium chloride concentration and magnesium sulfate concentration were calculated from the relationship between the concentration and electrical conductivity.
  • Example 3 At a pure water manufacturing plant where hot water sterilization is performed periodically, a tendency for the quality of the produced water to deteriorate was observed. Therefore, a reverse osmosis membrane element that was in use was removed from a vessel, and one reverse osmosis membrane element was loaded into a reverse osmosis membrane element evaluation device.
  • the sodium chloride and magnesium sulfate concentrations of the permeate were determined using the same method as in Example 1, and the sodium chloride removal rate was 98.50% (transmittance 1.50%) and the magnesium sulfate removal rate was 98.93% (transmittance 1.07%).
  • the performance of this reverse osmosis membrane element measured under the same conditions as production was 99.82% (transmittance 0.18%) for sodium chloride removal rate and 99.98% (transmittance 0.02%) for magnesium sulfate removal rate.
  • the rates of decline in separation performance were 8.4 and 59.2 times the initial values, respectively.
  • the rate of decline in sodium chloride separation performance was large, at least 5 times, and the rate of decline in magnesium sulfate separation performance was extremely large, confirming at least indications that physical deterioration was the main cause.
  • a relational equation (1) for the permeability of sodium chloride and magnesium sulfate was created based on the separation performance (permeability) of sodium chloride and magnesium sulfate created using a reverse osmosis membrane that had been forcibly chemically deteriorated by first immersing it in hypochlorous acid.
  • a relational equation (2) for the permeability of sodium chloride and magnesium sulfate was created, which was obtained by assuming that as the damage became larger, the supply water leaked and mixed in small amounts.
  • Example 4 The same reverse osmosis membrane element as in Example 3 was evaluated under the same conditions as in Example 2, and the permeated water was sampled from the permeated water collection pipe of the reverse osmosis membrane element.
  • the electrical conductivity of the permeated water sampled at multiple positions in the permeated water collection pipe from the feed water side to the concentrated water side was measured, and the sodium chloride concentration and magnesium sulfate concentration were calculated from the relationship between the concentration and electrical conductivity.
  • Example 5 During a periodic inspection of an ultrapure water production plant, a reverse osmosis membrane element in use was removed from the vessel, and the sodium chloride and magnesium sulfate concentrations of the permeate at multiple positions in the permeate collection pipe were determined in the same manner as in Example 1. As a result, the sodium chloride removal rate was 99.37% (transmittance 0.63%) and the magnesium sulfate removal rate was 99.93% (transmittance 0.07%).
  • this reverse osmosis membrane element as produced was a sodium chloride removal rate of 99.80% (transmittance 0.20%) and a magnesium sulfate removal rate of 99.98% (transmittance 0.02%), and the rates of decline in separation performance were 3.1 and 3.5 times the initial rates, respectively, and the rate of decline in magnesium sulfate separation performance was not significantly different from the rate of decline in sodium chloride separation performance, confirming at least indications that chemical degradation was the main cause.
  • Example 6 Furthermore, the same reverse osmosis membrane element as in Example 5 was evaluated under the same conditions as in Example 2, and the permeated water was sampled from the permeated water collection pipe of the reverse osmosis membrane element. The electrical conductivity of the permeated water sampled at multiple positions from the feed water side to the concentrated water side in the permeated water collection pipe was measured, and the sodium chloride concentration and magnesium sulfate concentration were calculated from the relationship between the concentration and electrical conductivity.
  • Example 7 Since deterioration of the water quality of the product water of the ultrapure water production plant became evident, the reverse osmosis membrane element in use was removed from the vessel, and the sodium chloride and magnesium sulfate concentrations of the permeate at multiple positions in the permeate collection pipe were determined in the same manner as in Example 1. As a result, the sodium chloride removal performance was 88.24% (transmittance 11.76%), and the magnesium sulfate removal performance was 95.95% (transmittance 4.05%).
  • Example 8 Furthermore, the same reverse osmosis membrane element as in Example 7 was evaluated under the same conditions as in Example 2, and the permeated water was sampled from the permeated water collection pipe of the reverse osmosis membrane element. The electrical conductivity of the permeated water sampled at multiple positions in the permeated water collection pipe from the feed water side to the concentrated water side was measured, and the sodium chloride concentration and magnesium sulfate concentration were calculated from the relationship between the concentration and electrical conductivity.
  • Example 1 As shown in Example 1, a tendency for the quality of the produced water to deteriorate was observed in an ultrapure water production plant, so a reverse osmosis membrane element in use was removed from a vessel, and one reverse osmosis membrane element was loaded into a pressure vessel as shown in FIG. 2, and the separation performance was measured using a performance evaluation device.
  • Sodium chloride was dissolved in pure water to prepare test water with a concentration of 1500 mg/L.
  • the system was operated with a supply pressure of 1.5 MPa, a concentrated water flow rate of 80 L/min, a water temperature of 25°C, and a pH of 7 for the treated water, and permeated water was obtained from the pressure vessel.
  • Permeated water 7 was taken out and its electrical conductivity was measured, and the concentration was calculated from the relationship between sodium chloride concentration and electrical conductivity. As a result, the sodium chloride removal rate was 98.80% (transmittance 1.20%).
  • Example 3 As shown in Example 3, a tendency for the quality of the produced water to deteriorate was observed in a pure water production plant where hot water sterilization was performed periodically, so a reverse osmosis membrane element that was in use was removed from a vessel, and one reverse osmosis membrane element was loaded into a reverse osmosis membrane element evaluation device.
  • the sodium chloride removal performance was measured using the same method as in Comparative Example 1, and the sodium chloride removal rate was 98.50% (transmittance 1.50%), and the magnesium sulfate removal rate was 98.93% (transmittance 1.07%). Note that the sodium chloride removal rate of this reverse osmosis membrane element measured under the same conditions as at the time of production was 99.82% (transmittance 0.18%), indicating that the separation performance had decreased by 8.4 times. However, it was not possible to determine whether this was chemical or physical degradation, and appropriate measures to address the problem could not be taken.
  • Example 5 As shown in Example 5, during regular inspection of an ultrapure water production plant, a reverse osmosis membrane element in use was removed from a vessel, and one reverse osmosis membrane element was loaded into a reverse osmosis membrane element evaluation device.
  • the sodium chloride removal performance was measured using the same method as in Comparative Example 1, and the sodium chloride removal rate was 98.50% (transmittance 1.50%). Note that the sodium chloride removal rate of this reverse osmosis membrane element at the time of production, measured under the same conditions, was 99.82% (transmittance 0.18%), indicating that the separation performance had decreased by 3.1 times. However, it was not possible to determine whether this was chemical or physical degradation, and appropriate measures to address the problem could not be taken.
  • the sodium chloride concentration of the permeate at multiple positions in the permeate collection pipe was determined using a method similar to that used in Example 1, and the sodium chloride removal rate was 88.24% (transmittance 11.76%).
  • the performance of this reverse osmosis membrane element measured under the same conditions as at the time of production was a sodium chloride removal rate of 99.82% (transmittance 0.18%), indicating that the separation performance had decreased by 65.3 times. However, it was not clear whether this was chemical or physical degradation, and appropriate measures to address the problem could not be taken.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Test water containing, as solutes, at least two kinds of ionic substances having different valences or substances having different molecular weights is supplied to a separating membrane module, or at least two kinds of test water containing one kind of solute, obtained by changing the valence of the ionic substance or changing the molecular weight of the substance, are individually supplied to the separating membrane module, permeated water is collected at a plurality of positions, namely two or more positions, in a permeated water collecting tube, and separation performances of the at least two kinds of solutes, obtained on the basis of differences between the solute concentration in the permeated water collected at each water collection position and the solute concentration attributable to the permeated water on the upstream side of the water collection position are compared with each other to determine any of the type of an abnormality, the degree of the abnormality, and the occurrence position of the abnormality in the permeated water collection pipe length direction in the separating membrane module.

Description

分離膜モジュールの状態診断方法Method for diagnosing the condition of a separation membrane module

 本発明は、分離膜モジュールの状態診断方法に関する。 The present invention relates to a method for diagnosing the condition of a separation membrane module.

 近年、水資源の枯渇が深刻になりつつあり、これまで利用されてこなかった水資源の活用が検討されている。また、そのための新技術として、精密濾過膜、限外濾過膜、ナノ濾過膜、逆浸透膜、イオン交換膜といった、従来の砂ろ過や蒸発法などに比べて、分離効率が非常に高い分離膜が水処理に適用されるようになってきている。特に、最も身近でそのままでは利用できなかった海水から飲料水などを製造する技術、いわゆる海水淡水化、さらには下廃水を浄化し、処理水を再生する再利用技術に分離膜、特に、逆浸透膜の適用が大きく注目されてきている。 In recent years, the depletion of water resources has become a serious problem, and the utilization of water resources that have not been used until now is being considered. In addition, as a new technology for this purpose, separation membranes with extremely high separation efficiency compared to conventional sand filtration and evaporation methods, such as microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and ion exchange membranes, are being applied to water treatment. In particular, the application of separation membranes, especially reverse osmosis membranes, has attracted much attention in the technology of producing drinking water from seawater, which is the most familiar but cannot be used as is, so-called seawater desalination, and in the reuse technology of purifying sewage wastewater and regenerating treated water.

 海水淡水化は、従来、水資源が極端に少なく、かつ、石油による熱資源が非常に豊富である中東地域で蒸発法を中心に実用化されてきた。最近では、逆浸透膜法の技術進歩による信頼性の向上やコストダウンが進み、中東地域において、逆浸透膜法海水淡水化プラントが実用化されている。  Seawater desalination has traditionally been practiced mainly using the evaporation method in the Middle East, where water resources are extremely scarce and heat resources from petroleum are abundant. Recently, technological advances in the reverse osmosis method have improved reliability and reduced costs, and reverse osmosis seawater desalination plants have been put into practical use in the Middle East.

 下廃水再利用においても、内陸や海岸沿いの都市部や工業地域、水源がないような地域、排水規制のために放流量が制約されているような地域等で逆浸透膜法が適用されている。特に、シンガポールでは、国内で発生する下水を処理後、逆浸透膜で飲料水レベルの水質にまで再生し、水不足に対応している。 In the case of sewage and wastewater reuse, reverse osmosis is used in inland and coastal urban and industrial areas, areas with no water sources, and areas where discharge volumes are restricted due to wastewater regulations. In particular, Singapore deals with water shortages by treating sewage generated within the country and then using reverse osmosis to regenerate it to drinking water quality.

 海水淡水化や下廃水再利用に適用される逆浸透膜法は、塩分などの溶質を含んだ水に浸透圧以上の圧力を加えて逆浸透膜を透過させることで、脱塩された水を得る造水方法である。この技術を用いると、例えば、海水、かん水から飲料水を得ることも可能であるし、また、工業用超純水の製造、排水処理、有価物の回収などにも用いられてきた。 The reverse osmosis membrane process, which is used in seawater desalinization and sewage wastewater reuse, is a method of producing desalinated water by applying a pressure greater than the osmotic pressure to water containing solutes such as salt, causing it to pass through a reverse osmosis membrane. This technology can be used to produce drinking water from seawater or brackish water, for example, and has also been used to produce ultrapure water for industrial use, treat wastewater, and recover valuable materials.

 しかしながら、各種水処理プラントにおける通常運転中に取水した原水の殺菌に使用した殺菌剤や前処理で使用した凝集剤その他の残留物が逆浸透膜面に接触することによって、さらに、逆浸透膜が汚染された場合に一般に実施される強酸や強アルカリなどでの薬品洗浄によって逆浸透膜に化学劣化が発生することがある。また、原水水質に応じた前処理を適用しても、残留した被処理水中の異物や運転中に発生したスケール、ファウラントが逆浸透膜の膜面に接触することによって、逆浸透膜の膜面に物理劣化が発生したり、逆浸透膜エレメントモジュールの使用時に急激に運転条件を変更したことで膜面に発生したシワが流路材と強く接触したりすることで、物理劣化が発生することがある。また、各種水処理プラントにおける通常運転中に逆浸透膜が高圧下に長期間晒されたり、ファウラントが逆浸透膜の膜面を被覆したりすることで性能変化が発生することがある。そのため、定期的に逆浸透膜の性能を調査して、性能劣化が発生していた際は、トラブルに対する適切な対策を至急講じる必要がある。 However, chemical deterioration of the reverse osmosis membrane may occur when the disinfectant used to sterilize the raw water taken during normal operation in various water treatment plants, the coagulant used in pretreatment, and other residues come into contact with the reverse osmosis membrane surface, and when the reverse osmosis membrane is contaminated, chemical cleaning with strong acids or strong alkalis is generally performed. Even if pretreatment according to the raw water quality is applied, physical deterioration may occur on the reverse osmosis membrane surface when foreign matter remaining in the treated water or scale and foulants generated during operation come into contact with the reverse osmosis membrane surface, or when wrinkles generated on the membrane surface due to a sudden change in operating conditions during use of the reverse osmosis membrane element module come into strong contact with the flow path material, causing physical deterioration. In addition, performance changes may occur when the reverse osmosis membrane is exposed to high pressure for a long period of time during normal operation in various water treatment plants, or when foulants cover the membrane surface of the reverse osmosis membrane. Therefore, it is necessary to periodically check the performance of the reverse osmosis membrane, and if performance deterioration occurs, it is necessary to take appropriate measures to address the problem immediately.

 逆浸透膜の物理的損傷の有無を調査する方法としては、調査対象の逆浸透膜エレメントを解体して取り出した膜片の逆浸透機能を有するスキン層側に染色液(例えば、ベーシックバイオレット1(東京化成工業社製)の溶解液)を線速0.1~0.2cm/秒のクロスフローによって、運転圧力1.5MPaにて30分以上加圧通水させ、目視にて評価用膜に染色領域が存在しないか観察する方法が知られている(特許文献1)。 A known method for investigating whether or not there is physical damage to a reverse osmosis membrane is to disassemble the reverse osmosis membrane element under investigation, extract a piece of membrane, and pressurize the skin layer side, which has a reverse osmosis function, with a dye solution (for example, a solution of Basic Violet 1 (manufactured by Tokyo Chemical Industry Co., Ltd.)) at a linear velocity of 0.1 to 0.2 cm/sec by cross-flow at an operating pressure of 1.5 MPa for 30 minutes or more, and then visually observe whether or not there is any dyed area on the evaluation membrane (Patent Document 1).

 また、逆浸透膜の化学劣化の有無を調査する方法としては、調査対象の逆浸透膜エレメントを解体して取り出した膜片をアルカリ水溶液とピリジンを混合した溶液に浸漬し、溶液の呈色有無で化学劣化、特に、酸化劣化を特定する方法が知られている(非特許文献1)。 A method for investigating whether or not a reverse osmosis membrane has chemically deteriorated is known in which the reverse osmosis membrane element under investigation is disassembled, the membrane pieces are removed, and immersed in a solution containing a mixture of an alkaline aqueous solution and pyridine, and chemical deterioration, particularly oxidative deterioration, is identified based on the presence or absence of color change in the solution (Non-Patent Document 1).

 一方、逆浸透膜以外の膜に関しても、化学劣化や物理劣化が問題になる場合は少なくない。例えば、処理対象の水に酸化性物質が含まれている場合、例えば、地下水や産業廃水などは、有機ポリマーからなる分離膜が酸化性物質によって酸化され、化学的な劣化を生じる。また、被処理水に高硬度の物質が含まれている場合は、分離膜が物理的な劣化を生じる。これら劣化について、物理劣化は、PDT(Pressure Decay Test)という試験(非特許文献2)やエアリーク試験、化学劣化などによる分離性能低下を調べる試験として、バブルポイント試験(非特許文献3)、ラボレベルでは、分画分子量試験(非特許文献4)が知られている。 Meanwhile, chemical and physical deterioration is often an issue for membranes other than reverse osmosis membranes. For example, when the water to be treated contains oxidizing substances, such as groundwater or industrial wastewater, the separation membrane made of organic polymers is oxidized by the oxidizing substances, causing chemical deterioration. Furthermore, when the water to be treated contains substances with high hardness, the separation membrane undergoes physical deterioration. Regarding such deterioration, tests such as the PDT (Pressure Decay Test) (Non-Patent Document 2) and air leak tests are known for physical deterioration, as are bubble point tests (Non-Patent Document 3) as tests to check for deterioration in separation performance due to chemical deterioration, and at the laboratory level, the molecular weight cutoff test (Non-Patent Document 4).

国際公開第2015/063975号International Publication No. 2015/063975 国際公開第2020/071507号International Publication No. 2020/071507

R. Sandin et al. / Desalination and Water Treatment 51 (2013)318-327 “Reverse osmosis membranes oxidation by hypochlorite and chlorine dioxide: spectroscopic techniques vs. Fujiwara test”R. Sandin et al. / Desalination and Water Treatment 51 (2013)318-327 “Reverse osmosis membranes oxidation by hypochlorite and chlorine dioxide: spectroscopic techniques vs. Fujiwara test” United States Environmental Agency/MEMBRANE FILTRATION GUIDANCE MANUAL(2005)、p183United States Environmental Agency/MEMBRANE FILTRATION GUIDANCE MANUAL (2005), p183 日本工業規格、JIS K3832-1990、精密ろ過膜エレメント及びモジュールのバブルポイント試験方法Japanese Industrial Standards, JIS K3832-1990, Bubble point test method for microfiltration membrane elements and modules 大矢晴彦ら,膜,第16巻1号,1991,p34Haruhiko Ohya et al., Membrane, Vol. 16, No. 1, 1991, p. 34 ジャーナル・オブ・メンブレン・サイエンス,第183巻,2000年,p259-267Journal of Membrane Science, Vol. 183, 2000, pp. 259-267 ジャーナル・オブ・メンブレン・サイエンス,第183巻,2000年,p249-258)Journal of Membrane Science, Vol. 183, 2000, pp. 249-258)

 しかしながら、本発明者らの検討によると、従来の方法では、各種水処理プラントにおいて使用された分離膜モジュールの性能劣化要因を診断するために分離膜モジュールを解体し膜片を取り出して分析する必要があり、トラブル要因の診断に時間を要し、対策が遅れるという問題があった。 However, according to the inventors' investigations, in conventional methods, in order to diagnose the cause of performance degradation in separation membrane modules used in various water treatment plants, it was necessary to dismantle the separation membrane modules and remove and analyze the membrane pieces, which resulted in the problem that it took time to diagnose the cause of the trouble and delayed countermeasures.

 本発明は、上記従来の実情に鑑みてなされたものであって、極めて簡便かつ迅速に分離膜モジュールの性能劣化要因を診断することができる分離膜モジュールの状態診断方法を提供する。 The present invention was made in consideration of the above-mentioned conventional situation, and provides a method for diagnosing the condition of a separation membrane module that can diagnose the causes of performance degradation of the separation membrane module extremely simply and quickly.

 前記課題を解決するために、本発明は次の構成をとる。
(1)被処理水から透過水を得るための集水孔を複数有する透過水集水管を備えた分離膜モジュールの状態診断方法であって、
 2種類以上の溶質を含有する試験水を分離膜モジュールに供給し、前記試験水は、前記2種類以上の溶質として、価数の異なるイオン性物質、若しくは、分子量が異なる2種以上の物質を含む、または、1種類の溶質を含有する試験水に対して、前記1種類の溶質の価数を変更する若しくは分子量を変更することにより個別に前記分離膜モジュールに供給される前記2種類以上の溶質とし、
 前記透過水集水管内の少なくとも2箇所以上の複数位置で透過水を採取し、
 各採水位置で採取した透過水中の溶質濃度と前記採水位置よりも上流側の透過水に起因する溶質濃度との差分に基づき求める前記少なくとも2種類の溶質の各分離性能同士を比較することによって、
 分離膜モジュール内の透過水集水管長さ方向での異常の種類、異常の程度、異常の発生位置のいずれかを判定することを特徴とする分離膜モジュールの状態診断方法。
(2)前記分離膜モジュールを薬品に接触させて前記少なくとも2種類の溶質の分離性能が悪化する化学的劣化プロファイルと分離膜モジュール供給側に物理的な傷をつけて前記少なくとも2種類の溶質の分離性能が低下する物理的劣化プロファイルを予め作成し、
 前記各採水位置で採取した透過水中の溶質濃度と前記採水位置よりも上流側の透過水に起因する溶質濃度との差分に基づき求める前記少なくとも2種類の溶質の各分離性能同士を比較し、
 前記化学的劣化プロファイルと、前記物理的劣化プロファイルと、前記少なくとも2種類の溶質の各分離性能から、分離膜モジュール内の透過水集水管長さ方向での化学劣化と物理劣化の寄与率を算出し、少なくとも劣化要因、劣化位置および劣化範囲のいずれかを判定する(1)に記載の分離膜モジュールの状態診断方法。
(3)前記分離性能の比較を、透過水の濃度指標、濃度指標から換算される濃度、運転条件に基づいて換算される標準分離性能、運転データに基づいて計算される溶質透過係数に基づいて実施する(1)または(2)に記載の分離膜モジュールの状態診断方法。
(4)前記価数が異なるイオン性物質が、少なくとも、1価の陽イオンで構成される物質と2価の陽イオンで構成される物質である、(1)~(3)のいずれかに記載の分離膜モジュールの状態診断方法。
(5)前記価数が異なるイオン性物質が、少なくとも、1価の陰イオンで構成される物質と2価の陰イオンで構成される物質である、(1)~(3)のいずれかに記載の分離膜モジュールの状態診断方法。
(6)前記透過水濃度指標が、電気伝導度、総溶解固形物濃度、TOC、屈折率、濁度、吸光度、発光光度、色度、IRスペクトル、質量分析スペクトル、イオンクロマトグラフィー、ICP発光質量分析法による無機物濃度、
pHのいずれかである、(1)~(5)のいずれかに記載の分離膜モジュールの状態診断方法。
(7)前記透過水集水管内の少なくとも2箇所以上の複数位置で透過水を採取する方法が、前記透過集水管の内径より外径の小さい細いチューブを通して、前記分離膜モジュールの異なる位置の透過水を採水して透過水質を測定する透過水質測定によって透過水測定水質を測定する方法である(1)~(6)のいずれかに記載の分離膜モジュールの状態診断方法。
(8)前記分離膜モジュールの使用前状態での該試験水の分離性能を予め測定もしくは予測しておき、その値との乖離に基づいて分離膜モジュールの状態を判定する(1)~(7)のいずれかに記載の分離膜モジュールの状態診断方法。
In order to solve the above problems, the present invention has the following configuration.
(1) A method for diagnosing the state of a separation membrane module having a permeate collection pipe having a plurality of water collection holes for obtaining permeate from water to be treated, comprising the steps of:
Test water containing two or more types of solutes is supplied to a separation membrane module, and the test water contains, as the two or more types of solutes, ionic substances with different valences or two or more types of substances with different molecular weights, or the two or more types of solutes are individually supplied to the separation membrane module by changing the valence or molecular weight of the one type of solute in test water containing the one type of solute;
Permeate water is collected at at least two or more positions in the permeate collection pipe;
By comparing the separation performances of the at least two types of solutes, which are calculated based on the difference between the solute concentration in the permeated water collected at each water collection position and the solute concentration due to the permeated water upstream of the water collection position,
A method for diagnosing the condition of a separation membrane module, comprising determining the type of abnormality, the degree of abnormality, or the location of the abnormality in the longitudinal direction of a permeate collection pipe in a separation membrane module.
(2) creating in advance a chemical deterioration profile in which the separation performance of the at least two solutes is deteriorated by contacting the separation membrane module with a chemical and a physical deterioration profile in which the separation performance of the at least two solutes is deteriorated by physically scratching the supply side of the separation membrane module;
comparing the separation performances of the at least two types of solutes obtained based on a difference between a solute concentration in the permeated water sampled at each of the water sampling positions and a solute concentration originating from the permeated water upstream of the water sampling positions;
The method for diagnosing the condition of a separation membrane module described in (1), further comprising calculating a contribution rate of chemical deterioration and physical deterioration in a longitudinal direction of a permeate collection pipe in a separation membrane module from the chemical deterioration profile, the physical deterioration profile, and the separation performance of each of the at least two types of solutes, and determining at least any one of a cause of deterioration, a position of deterioration, and an extent of deterioration.
(3) The method for diagnosing the state of a separation membrane module according to (1) or (2), in which the comparison of the separation performance is carried out based on a concentration index of the permeate, a concentration converted from the concentration index, a standard separation performance converted based on operating conditions, and a solute permeability coefficient calculated based on operating data.
(4) The method for diagnosing the state of a separation membrane module according to any one of (1) to (3), wherein the ionic substances having different valences are at least a substance composed of monovalent cations and a substance composed of divalent cations.
(5) The method for diagnosing the state of a separation membrane module according to any one of (1) to (3), wherein the ionic substances having different valences are at least a substance composed of monovalent anions and a substance composed of divalent anions.
(6) The permeate concentration indicator is an inorganic concentration measured by electrical conductivity, total dissolved solids concentration, TOC, refractive index, turbidity, absorbance, luminous intensity, chromaticity, IR spectrum, mass spectrometry spectrum, ion chromatography, or ICP emission mass spectrometry;
The method for diagnosing a state of a separation membrane module according to any one of (1) to (5), wherein the state of the separation membrane module is either pH or pH.
(7) The method for diagnosing the state of a separation membrane module according to any one of (1) to (6), wherein the method for collecting permeate water at at least two or more positions in the permeate water collecting pipe is a method for measuring the permeate water quality by measuring the permeate water quality by collecting permeate water at different positions in the separation membrane module through a thin tube having an outer diameter smaller than the inner diameter of the permeate water collecting pipe.
(8) A method for diagnosing the state of a separation membrane module according to any one of (1) to (7), in which the separation performance of the test water in a state before use of the separation membrane module is measured or predicted in advance, and the state of the separation membrane module is judged based on the deviation from the measured value.

 本発明の分離膜モジュールの診断方法を用いれば、分離膜モジュールを解体することなく、極めて簡便かつ迅速に分離膜モジュールの性能劣化要因を診断することができる。その結果、診断結果を基に水処理プラントの対応策を至急講じることで、水処理プラントにおける分離膜の安定運転を可能とし、安定的かつ安価に淡水や清澄水を得ることが可能となる。  By using the separation membrane module diagnostic method of the present invention, the cause of performance degradation of the separation membrane module can be diagnosed very simply and quickly without dismantling the separation membrane module. As a result, by taking immediate measures for the water treatment plant based on the diagnostic results, it becomes possible to stably operate the separation membranes in the water treatment plant and obtain fresh water and clear water stably and inexpensively.

図1は、最も代表的なスパイラル型逆浸透膜エレメントの部分分解斜視図である。FIG. 1 is a partially exploded perspective view of a most typical spiral-wound reverse osmosis membrane element. 図2は、スパイラル型逆浸透膜エレメントを耐圧容器に装填した逆浸透膜モジュールの側断面図である。FIG. 2 is a side cross-sectional view of a reverse osmosis membrane module in which a spiral-type reverse osmosis membrane element is loaded into a pressure-resistant vessel. 図3は、一般的な中空糸型精密ろ過膜モジュールの側断面図である。FIG. 3 is a side cross-sectional view of a typical hollow fiber microfiltration membrane module. 図4は、逆浸透膜モジュールの透過水配管からチューブを通して局所透過水質を測定する方法の一例を示す概略図である。FIG. 4 is a schematic diagram showing an example of a method for measuring local permeated water quality through a tube from a permeated water piping of a reverse osmosis membrane module. 図5は、複数の逆浸透膜モジュールを直列した状態で透過水配管からチューブを通して局所透過水質を測定する方法の一例を示す概略図である。FIG. 5 is a schematic diagram showing an example of a method for measuring local permeated water quality through a tube from a permeated water piping in a state where a plurality of reverse osmosis membrane modules are connected in series. 図6は、2箇所以上の透過水取水口を有する分離膜モジュールを備えた逆浸透膜エレメント性能評価装置の概略図である。FIG. 6 is a schematic diagram of a reverse osmosis membrane element performance evaluation device equipped with a separation membrane module having two or more permeate intake ports. 図7は、採水位置nにおける透過水濃度と、前記採水位置nよりも上流側(供給水側)の採水位置で採取した透過水濃度の差分から初期性能に対する分離性能変化率を求める微分法のイメージ図である。FIG. 7 is an image diagram of a differential method for determining the rate of change in separation performance relative to the initial performance from the difference between the permeate concentration at the water sampling position n and the permeate concentration sampled at a water sampling position upstream (supply water side) of the water sampling position n. 図8は、実施例1における分離性能の変化および化学劣化と物理劣化の寄与率を示すグラフである。FIG. 8 is a graph showing the change in separation performance and the contribution rates of chemical deterioration and physical deterioration in Example 1. 図9は、実施例2における透過水中の各イオン性物質濃度の透過水集水管長さ方向での分布を示すグラフである。FIG. 9 is a graph showing the distribution of the concentration of each ionic substance in the permeated water in the length direction of the permeated water collecting pipe in Example 2. 図10は、実施例2における透過水集水管の長さ方向での分離性能変化率および透過水集水管長さ方向での化学劣化と物理劣化の寄与率を示すグラフである。FIG. 10 is a graph showing the rate of change in separation performance in the length direction of the permeate collecting tube in Example 2 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the permeate collecting tube. 図11は、実施例2における透過水集水管の長さ方向での分離性能変化率および透過水集水管長さ方向での化学劣化と物理劣化の寄与率を示すグラフ(微分法)である。FIG. 11 is a graph (differential method) showing the rate of change in separation performance in the length direction of the permeate collecting tube in Example 2 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the permeate collecting tube. 図12は、実施例3における分離性能の変化および化学劣化と物理劣化の寄与率を示すグラフである。FIG. 12 is a graph showing the change in separation performance and the contribution rates of chemical deterioration and physical deterioration in Example 3. 図13は、実施例4における透過水中の各イオン性物質濃度の透過水集水管長さ方向での分布を示すグラフである。FIG. 13 is a graph showing the distribution of the concentration of each ionic substance in the permeated water in the length direction of the permeated water collecting pipe in Example 4. 図14は、実施例4における透過水集水管の長さ方向での分離性能変化率および透過水集水管長さ方向での化学劣化と物理劣化の寄与率を示すグラフである。FIG. 14 is a graph showing the rate of change in separation performance in the length direction of the permeate collecting tube in Example 4 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the permeate collecting tube. 図15は、実施例4における透過水集水管の長さ方向での分離性能変化率および透過水集水管長さ方向での化学劣化と物理劣化の寄与率を示すグラフ(微分法)である。FIG. 15 is a graph (differential method) showing the rate of change in separation performance in the length direction of the permeate collecting tube in Example 4 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the permeate collecting tube. 図16は、実施例5における分離性能の変化および化学劣化と物理劣化の寄与率を示すグラフである。FIG. 16 is a graph showing the change in separation performance and the contribution rates of chemical deterioration and physical deterioration in Example 5. 図17は、実施例6における透過水中の各イオン性物質濃度の透過水集水管長さ方向での分布を示すグラフである。FIG. 17 is a graph showing the distribution of the concentration of each ionic substance in the permeated water in the length direction of the permeated water collecting pipe in Example 6. 図18は、実施例6における透過水集水管の長さ方向での分離性能変化率および集水管長さ方向での化学劣化と物理劣化の寄与率を示すグラフである。FIG. 18 is a graph showing the rate of change in separation performance in the length direction of the permeate collecting pipe in Example 6 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the collecting pipe. 図19は、実施例6における透過水集水管の長さ方向での分離性能変化率および集水管長さ方向での化学劣化と物理劣化の寄与率を示すグラフ(微分法)である。FIG. 19 is a graph (differential method) showing the rate of change in separation performance in the length direction of the permeate collecting pipe in Example 6 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the collecting pipe. 図20は、実施例7における分離性能の変化および化学劣化と物理劣化の寄与率を示すグラフである。FIG. 20 is a graph showing the change in separation performance and the contribution rates of chemical deterioration and physical deterioration in Example 7. 図21は、実施例8における透過水中の各イオン性物質濃度の透過水集水管長さ方向での分布を示すグラフである。FIG. 21 is a graph showing the distribution of the concentration of each ionic substance in the permeated water in the length direction of the permeated water collecting pipe in Example 8. 図22は、実施例8における透過水集水管の長さ方向での分離性能変化率および集水管長さ方向での化学劣化と物理劣化の寄与率を示すグラフである。FIG. 22 is a graph showing the rate of change in separation performance in the length direction of the permeate collecting pipe in Example 8 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the collecting pipe. 図23は、実施例8における透過水集水管の長さ方向での分離性能変化率および集水管長さ方向での化学劣化と物理劣化の寄与率を示すグラフ(微分法)である。FIG. 23 is a graph (differential method) showing the rate of change in separation performance in the length direction of the permeate collecting pipe in Example 8 and the contribution rates of chemical deterioration and physical deterioration in the length direction of the collecting pipe.

 以下、本発明について詳述するが、これらは望ましい実施態様の一例を示すものであり、本発明はこれらの内容に特定されるものではない。なお、単に本発明と記載した場合は、後述の第一実施形態、第二実施形態及び第三実施形態を含む概念を意味する。また、数値範囲の「~」は、その前後の数値を含む範囲であり、例えば、「50~70000」は、50以上であり、且つ、70000以下である範囲を意味する。 The present invention will be described in detail below, but these are merely examples of preferred embodiments, and the present invention is not limited to these contents. When simply referring to the present invention, it means a concept including the first, second, and third embodiments described below. Furthermore, "to" in a numerical range means a range including the numerical values before and after it, for example, "50 to 70,000" means a range of 50 or more and 70,000 or less.

[分離膜モジュールの診断方法]
 本発明の第一実施形態に係る(以下、単に第一実施形態と称することがある)診断方法は、被処理水から透過水を得るための分離膜モジュールの状態診断方法であって、2種類以上の溶質を含有する試験水を分離膜モジュールに供給する。試験水は、2種類以上の溶質として、価数の異なるイオン性物質、若しくは、分子量が異なる2種以上の物質を含む、または、1種類の溶質を含有する試験水に対して、1種類の溶質の価数を変更する若しくは分子量を変更することにより個別に前記分離膜モジュールに供給される2種類以上の溶質とする。透過水に含有される溶質の濃度に基づいて、少なくとも2種類の溶質の各分離性能を測定すればよく、分離膜モジュールに供給される試験水は1種類でも、2種類以上でもよい。分離膜モジュールの使用前状態での前記試験水の分離性能を予め測定もしくは予測しておき、分離膜モジュールを薬品に接触させて分離性能が悪化する化学劣化プロファイルと分離膜モジュール供給側に物理的な傷をつけて分離性能が低下する物理劣化プロファイルを予め作成し、分離膜モジュールの劣化前後での前記試験水の分離性能と、化学劣化プロファイルと、物理劣化プロファイルと、を比較することによって、分離膜モジュールの化学劣化と物理劣化の程度を判定する。具体的には、第1の溶質と第2の溶質それぞれの分離性能は、分離膜の特性に基づいて、ある一定の比率になる。この分離性能は、一般に除去率で表される。例えば、逆浸透膜モジュールの場合、文献「東レTSW-LEシリーズカタログ」に例示されるように、NaCl除去率99.6%、ホウ素除去率90%と記載されている。分離膜モジュールが分離性能低下を生じる大きな要因は、前述のように化学劣化と物理劣化であり、各劣化による分離性能低下の関係は異なる。この場合の化学劣化としては、例えば、逆浸透膜の分離機能層が化学薬品に接触して劣化が発生し始めたときの化学劣化が挙げられる。
[Method for diagnosing separation membrane module]
A diagnostic method according to a first embodiment of the present invention (hereinafter sometimes simply referred to as the first embodiment) is a method for diagnosing the state of a separation membrane module for obtaining permeate water from water to be treated, in which test water containing two or more types of solutes is supplied to the separation membrane module. The test water contains, as the two or more types of solutes, ionic substances with different valences or two or more types of substances with different molecular weights, or two or more types of solutes are supplied individually to the separation membrane module by changing the valence or molecular weight of one type of solute in test water containing one type of solute. It is sufficient to measure the separation performance of each of the at least two types of solutes based on the concentration of the solute contained in the permeate water, and the test water supplied to the separation membrane module may be one type or two or more types. The separation performance of the test water in a state before use of the separation membrane module is measured or predicted in advance, and a chemical deterioration profile in which the separation performance is deteriorated by contacting the separation membrane module with a chemical and a physical deterioration profile in which the separation performance is deteriorated by physically scratching the supply side of the separation membrane module are prepared in advance. The separation performance of the test water before and after deterioration of the separation membrane module, the chemical deterioration profile, and the physical deterioration profile are compared to determine the degree of chemical deterioration and physical deterioration of the separation membrane module. Specifically, the separation performance of the first solute and the separation performance of the second solute are in a certain ratio based on the characteristics of the separation membrane. This separation performance is generally expressed as a removal rate. For example, in the case of a reverse osmosis membrane module, as exemplified in the document "Toray TSW-LE Series Catalog", it is described that the NaCl removal rate is 99.6% and the boron removal rate is 90%. The major factors that cause the separation performance deterioration of the separation membrane module are chemical deterioration and physical deterioration as described above, and the relationship between the separation performance deterioration due to each type of deterioration is different. The chemical deterioration in this case may be, for example, the chemical deterioration that occurs when the separating functional layer of the reverse osmosis membrane comes into contact with a chemical agent and begins to deteriorate.

 本発明における化学劣化は、例えば、分離機能層の高分子成分の分子鎖配列が変化したり、切断されたり、低分子量体が欠落することであり、化学劣化の形態は特に限定されない。 In the present invention, chemical deterioration refers to, for example, changes in the molecular chain arrangement of the polymer components of the separation functional layer, breakage, or loss of low molecular weight molecules, and there are no particular limitations on the form of chemical deterioration.

 逆浸透膜エレメントを使用しているプラントでは、逆浸透膜エレメントに供給する原水の前処理で酸化剤を使用することが多く、その酸化剤の一部が逆浸透膜エレメントに漏れ込むことで酸化劣化を引き起こすことが知られている。本発明では、特に前処理で使用する酸化剤に限定されることではないが、化学劣化の主要因は、原水の殺菌で使用する次亜塩素酸や次亜塩素酸から転換して生成した次亜臭素酸による酸化劣化が多い。 In plants that use reverse osmosis membrane elements, an oxidizing agent is often used in the pretreatment of the raw water supplied to the reverse osmosis membrane elements, and it is known that some of the oxidizing agent leaks into the reverse osmosis membrane elements, causing oxidative deterioration. In the present invention, the oxidizing agent is not particularly limited to the oxidizing agent used in the pretreatment, but the main cause of chemical deterioration is often oxidative deterioration caused by hypochlorous acid used to disinfect the raw water and hypobromous acid generated by conversion of hypochlorous acid.

 化学劣化の場合は、2種類の溶質の除去性能低下がある関係をもって低下する。具体的には、例えば、非特許文献5(ジャーナル・オブ・メンブレン・サイエンス,第183巻,2000年,p259-267)にも示されるように、NaCl除去性能とホウ素除去性能の低下に比例に近い一定の関係があることが判っている。この関係は、他の溶質においても同様であることが本願発明者らの鋭意検討によって確認された。すなわち、2種類の溶質の除去性能の変化がある一定関係となり、多くの場合は、新品時の性能からある一定レベルまでは直線関係で性能低下する。すなわち、化学劣化と物理劣化が発生する前の分離膜モジュールの該試験水の分離性能を予め測定もしくは予測しておき、その値との乖離に基づいて分離膜モジュールの状態を判定することで異常を検知・診断することが出来る。劣化前の2種類の溶質の分離性能は、例えば、新品時の性能、プラントの立ち上げ時の初期性能、薬品洗浄直後の性能、トラブルや設備保全等によるプラントの長期停機直後の性能などいずれでも構わなく、プラントで発生したトラブルに応じて適宜設定してもよい。また、N回目の使用時に生じた分離膜モジュールの劣化については、例えば、N回目の使用前の分離性能をあらかじめ測定しておき、その使用前状態の値との乖離に基づいて分離膜モジュールの状態を判定すればよい。1回目からN回目の使用の間に進行した分離膜モジュールの劣化については、1回目使用直後の分離性能を測定もしくは予測しておき、N回目の使用時に測定もしくは予測した分離性能との乖離に基づいて分離膜モジュールの状態を判定すればよい。 In the case of chemical deterioration, the removal performance of the two solutes decreases in a certain relationship. Specifically, for example, as shown in Non-Patent Document 5 (Journal of Membrane Science, Vol. 183, 2000, pp. 259-267), it is known that there is a certain relationship that is nearly proportional to the decrease in NaCl removal performance and boron removal performance. The inventors of the present application have confirmed through intensive research that this relationship is similar for other solutes. That is, the change in the removal performance of the two solutes is in a certain relationship, and in many cases, the performance decreases in a linear relationship from the performance when new to a certain level. In other words, the separation performance of the test water of the separation membrane module before chemical deterioration and physical deterioration occur is measured or predicted in advance, and the state of the separation membrane module is judged based on the deviation from that value, so that abnormalities can be detected and diagnosed. The separation performance of two types of solutes before deterioration may be, for example, the performance when new, the initial performance when the plant is started up, the performance immediately after chemical cleaning, or the performance immediately after a long-term shutdown of the plant due to a problem or equipment maintenance, and may be set appropriately depending on the problem that occurs in the plant. Regarding deterioration of the separation membrane module that occurs during the Nth use, for example, the separation performance before the Nth use may be measured in advance, and the state of the separation membrane module may be determined based on the deviation from the value of the state before use. Regarding deterioration of the separation membrane module that progresses between the first and Nth uses, the separation performance immediately after the first use may be measured or predicted, and the state of the separation membrane module may be determined based on the deviation from the separation performance measured or predicted during the Nth use.

 また、逆浸透膜で化学劣化が発生し始めたとき、1価のイオン性物質の透過量が2価のイオン性物質の透過量よりも先に大きくなり、さらに化学劣化が進行すると、2価のイオン性物質の透過量も増大し、1価のイオン性物質の透過量との差が小さくなる現象が認められる。したがって、1価のイオン性物質と2価のイオン性物質の分離性能低下の程度から、化学薬品接触による化学劣化の初期状態(軽微な劣化)を診断することもできる。 In addition, when chemical deterioration begins to occur in a reverse osmosis membrane, the amount of monovalent ionic substances that permeates increases before the amount of divalent ionic substances that permeates, and as chemical deterioration progresses further, the amount of divalent ionic substances that permeates also increases, and the difference between the amount of monovalent ionic substances that permeates decreases. Therefore, the degree of deterioration in the separation performance of monovalent ionic substances and divalent ionic substances can also be used to diagnose the early stage of chemical deterioration due to contact with chemicals (minor deterioration).

 簡易的には、例えば、逆浸透膜に対して1価イオン性物質と2価イオン性物質を使用して診断する場合は、1価イオン性物質の濃度が、原水中の前記1価のイオン性物質の濃度の0.9質量%以上であり、前記透過水集水管内の透過水の前記2価のイオン性物質の濃度が、原水中の前記2価のイオン性物質の濃度の0.2質量%以下であるとき、前記逆浸透膜エレメントの劣化の主要因が化学劣化であると診断することができる。 Simply put, for example, when diagnosing a reverse osmosis membrane using monovalent ionic substances and divalent ionic substances, if the concentration of the monovalent ionic substances is 0.9% by mass or more of the concentration of the monovalent ionic substances in the raw water, and the concentration of the divalent ionic substances in the permeated water in the permeated water collection pipe is 0.2% by mass or less of the concentration of the divalent ionic substances in the raw water, it can be diagnosed that the main cause of deterioration of the reverse osmosis membrane element is chemical deterioration.

 一方、物理劣化の場合、漏れのない分離膜モジュールと漏れを生じさせた分離膜モジュールの特性を測定して関係式を得ておくことも出来るが、基本的には膜の傷や大きな穴、接着部その他の隙間などを生じて、試験水や被処理水等の供給水が漏れる、すなわち、膜の分離性能とは関係なく供給水の組成によって透過水濃度が悪化するという現象であるので、計算によってもおおよそ求めることが出来る。例えば、供給水のNaイオン濃度が32000mg/Lでホウ素濃度が5mg/Lの場合、正常な新品分離膜モジュールで、例えば、透過水濃度がそれぞれ、100mg/L、0.5mg/L、そして、化学劣化した場合は、例えば、150mg/L、0.75mg/Lの関係性で性能低下するが、物理劣化した場合は、例えば、供給水が0.1%漏れ込んだ場合、透過水濃度は132mg/L、0.505mg/Lとなり、Naイオンの分離性能低下が著しく大きい。このような場合は、物理劣化が発生したと判断することが出来る。 On the other hand, in the case of physical deterioration, it is possible to obtain a relational equation by measuring the characteristics of a separation membrane module without leakage and a separation membrane module with leakage, but basically, the membrane is damaged, has large holes, or has gaps in the adhesive or other areas, causing leakage of test water, water to be treated, or other feed water. In other words, the phenomenon is that the permeate concentration deteriorates depending on the feed water composition regardless of the membrane's separation performance, so it can also be roughly calculated. For example, if the Na ion concentration of the feed water is 32,000 mg/L and the boron concentration is 5 mg/L, a normal new separation membrane module will have permeate concentrations of, for example, 100 mg/L and 0.5 mg/L, respectively, and if chemically deteriorated, the performance will decrease in a relationship of, for example, 150 mg/L and 0.75 mg/L. However, if there is physical deterioration, for example, if 0.1% of the feed water leaks, the permeate concentration will be 132 mg/L and 0.505 mg/L, and the decrease in Na ion separation performance will be significant. In such cases, it can be determined that physical deterioration has occurred.

 薬品接触による化学劣化と傷などによる物理劣化の関係プロファイルを予め作成・獲得した上で、図8に示す化学劣化と物理劣化のベクトルの絵のように、測定された分離膜モジュールの分離性能と比較し、化学劣化の場合の1価イオンと2価イオンの変化率の関係と物理劣化の1価イオンと2価イオンの変化率の関係の2つの矢印に分解することによって化学劣化と物理劣化の寄与を判断することが可能となる。このように、化学劣化と物理劣化のどちらが劣化の主要因であるか判断できることで、トラブルに対する適切な対策が可能となる。 After creating and acquiring a relationship profile in advance between chemical deterioration due to contact with chemicals and physical deterioration due to scratches, etc., it is possible to compare it with the measured separation performance of the separation membrane module and determine the contribution of chemical deterioration and physical deterioration by decomposing it into two arrows, the relationship between the rate of change of monovalent ions and divalent ions in the case of chemical deterioration and the relationship between the rate of change of monovalent ions and divalent ions in the case of physical deterioration, as shown in the vector diagram of chemical deterioration and physical deterioration in Figure 8. In this way, by being able to determine whether chemical deterioration or physical deterioration is the main cause of deterioration, appropriate measures can be taken in response to problems.

 第一実施形態は、2種類の価数が異なるイオンを混合させた試験水を使用しているが、異なる溶質1種類のみを含有する2種類の試験水を用意して、それぞれ個別に試験水を分離膜モジュールに供給、透過水を採水し、2種類の分離性能を獲得した上で、分離膜モジュールの診断を行うことも可能である。 In the first embodiment, test water containing a mixture of two types of ions with different valences is used, but it is also possible to prepare two types of test water containing only one different solute, supply each test water separately to the separation membrane module, collect the permeate, and obtain two types of separation performance, after which the separation membrane module can be diagnosed.

 以下、本発明の第二実施形態(以下、単に第二実施形態と称することがある。)について説明する。第二実施形態に係るスパイラル型逆浸透膜エレメントの診断方法は、1価のイオン性物質を含む第1被処理水を、前記第1被処理水の浸透圧以上の圧力で、集水孔を複数有する透過水集水管を備えたスパイラル型逆浸透膜エレメントに加圧供給し、前記第1被処理水を第1濃縮水と第1透過水に分離し、前記透過水集水管内の供給水側から濃縮水側までの複数位置で前記第1透過水を採取し、前記第1透過水を採水する前又は後に、2価のイオン性物質を含む第2被処理水を、前記第2被処理水の浸透圧以上の圧力で、前記逆浸透膜エレメントに加圧供給し、前記第2被処理水を第2濃縮水と第2透過水に分離し、前記透過水集水管の中の複数箇所で前記第2透過水を採取し、前記第1透過水の水質を測定することによって、前記第1透過水中の前記1価のイオン性物質の濃度を求め、前記第2透過水の水質を測定することによって、前記第2透過水中の前記2価のイオン性物質の濃度を求め、前記1価のイオン性物質の濃度及び前記2価のイオン性物質の濃度の変化から、前記逆浸透膜エレメントの劣化状態を診断する。 A second embodiment of the present invention (hereinafter, sometimes simply referred to as the second embodiment) will be described below. The diagnostic method for a spiral reverse osmosis membrane element according to the second embodiment includes supplying a first treated water containing monovalent ionic substances to a spiral reverse osmosis membrane element equipped with a permeate collection pipe having a plurality of collection holes under pressure at a pressure equal to or greater than the osmotic pressure of the first treated water, separating the first treated water into a first concentrated water and a first permeate, sampling the first permeate at a plurality of positions within the permeate collection pipe from the supply water side to the concentrated water side, and, before or after sampling the first permeate, supplying a second treated water containing divalent ionic substances to a spiral reverse osmosis membrane element equipped with a permeate collection pipe having a plurality of collection holes under pressure at a pressure equal to or greater than the osmotic pressure of the second treated water. The second treated water is pressurized and supplied to the reverse osmosis membrane element with a pressure force, the second treated water is separated into a second concentrated water and a second permeate, the second permeate is collected at multiple locations in the permeate collection pipe, and the concentration of the monovalent ionic substance in the first permeate is determined by measuring the water quality of the first permeate, and the concentration of the divalent ionic substance in the second permeate is determined by measuring the water quality of the second permeate, and the deterioration state of the reverse osmosis membrane element is diagnosed from changes in the concentration of the monovalent ionic substance and the concentration of the divalent ionic substance.

 さらに、前記逆浸透膜エレメントの透過水集水管内の各採水位置における透過水中の前記1価のイオン性物質の濃度と前記2価のイオン性物質の濃度から初期性能に対する分離性能変化率を求め、化学劣化の場合の1価イオンと2価イオンの変化率の関係と物理劣化の1価イオンと2価イオンの変化率の関係の2つの矢印に分解することによって、各採水位置での化学劣化と物理劣化の寄与を判断することが可能となる。そして、これらを組み合わせることで、前記逆浸透膜エレメント内の長さ方向における分離性能変化率、および、化学劣化と物理劣化の寄与率が算出され、分離膜モジュールの化学劣化と物理劣化の程度と発生位置が明確となり、トラブルに対するより適切な対策が可能となる。 Furthermore, by determining the rate of change in separation performance relative to the initial performance from the concentrations of the monovalent ionic substances and the divalent ionic substances in the permeate at each water sampling position in the permeate collection pipe of the reverse osmosis membrane element, and decomposing this into two arrows representing the relationship between the rate of change of monovalent ions and divalent ions in the case of chemical deterioration and the relationship between the rate of change of monovalent ions and divalent ions in the case of physical deterioration, it becomes possible to determine the contribution of chemical deterioration and physical deterioration at each water sampling position. By combining these, the rate of change in separation performance in the length direction within the reverse osmosis membrane element and the contribution rates of chemical deterioration and physical deterioration can be calculated, making the degree and location of chemical deterioration and physical deterioration of the separation membrane module clear, enabling more appropriate measures to be taken against problems.

 さらに好ましくは、例えば、図7に示すように、前記逆浸透膜エレメントの透過水集水管内の採水位置nにおける透過水中の前記1価のイオン性物質の濃度および前記2価のイオン性物質の濃度と、前記採水位置nよりも上流側(供給水側)の採水位置で採取した透過水に起因する前記1価のイオン性物質の濃度と前記2価のイオン性物質の濃度の差分から初期性能に対する分離性能変化率を求め、化学劣化の場合の1価イオンと2価イオンの変化率の関係と物理劣化の1価イオンと2価イオンの変化率の関係の2つの矢印に分解することによって、各採水位置での化学劣化と物理劣化の寄与を判断することが可能となる。そして、これらを組み合わせることで、前記逆浸透膜エレメント内の長さ方向における分離性能変化率、および、化学劣化と物理劣化の寄与率がより正確に算出され、分離膜モジュールの化学劣化と物理劣化の程度と発生位置が明確となり、トラブルに対するより適切な対策が可能となる。この方法で解析することによって、特に、膜キズ、シワ、膜端部や織り込み部からの漏れなどの局所的な物理劣化が発生している場合に、逆浸透膜エレメントの上流側(供給水側)の性能影響を受けることなく、より正確な劣化要因、劣化位置および劣化範囲を特定することが可能となる。 More preferably, for example, as shown in FIG. 7, the separation performance change rate relative to the initial performance is calculated from the difference between the concentration of the monovalent ionic substance and the concentration of the divalent ionic substance in the permeated water at the water collection position n in the permeated water collection pipe of the reverse osmosis membrane element and the concentration of the monovalent ionic substance and the divalent ionic substance resulting from the permeated water collected at the water collection position upstream (supply water side) of the water collection position n, and the contribution of chemical deterioration and physical deterioration at each water collection position can be determined by decomposing into two arrows representing the relationship between the change rate of monovalent ions and divalent ions in the case of chemical deterioration and the relationship between the change rate of monovalent ions and divalent ions in the case of physical deterioration. By combining these, the separation performance change rate in the length direction within the reverse osmosis membrane element and the contribution rate of chemical deterioration and physical deterioration can be calculated more accurately, the degree and the location of chemical deterioration and physical deterioration of the separation membrane module become clear, and more appropriate measures against troubles can be taken. By using this method of analysis, it is possible to more accurately identify the cause, location and extent of deterioration, particularly when localized physical deterioration such as membrane scratches, wrinkles, or leakage from the membrane edge or woven area occurs, without being affected by the performance upstream (supply water side) of the reverse osmosis membrane element.

 採水位置nにおける集水孔(n番目)の透過水濃度C(n)は溶質量のマテバラから求めることができる。
 具体的には、
F(n)×C(n)=F(n-1)×C(n-1)+F(n)×C(n) ・・・(1)
F(1)=F(1)
C(1)=C(1)
ΔC(n)=C(n)-C(n-1)
 (1)式を整理して、
(n)=(F(n)×C(n)-F(n-1)×C(n-1))/F(n) ・・・(2)
(1)=F(2)=・・・=F(N)=F(N)/N ・・・(3)
F(n)=n×F(1)=n×F(N)/N ・・・(4)
C(1)=C(2)=・・・=C(N) ・・・(5)
 上記(2)~(5)から
(n)=C(n)+(n-1)×ΔC(n)
 なお、
   F(n):集水孔(n番目)の透過水量[m/d]
   C(n):集水孔(n番目)の透過水濃度[mg/L]
   F(n-1):集水孔(n-1番目)の透過水量[m/d]
   C(n-1):集水孔(n-1番目)の透過水濃度[mg/L]
   F(n):集水管内採水位置(n番目)の透過水量[m/d]
   C(n):集水管内採水位置(n番目)の透過水濃度[mg/L]
   F(n-1):集水管内採水位置(n-1番目)の透過水量[m/d]
   C(n-1):集水管内採水位置(n-1番目)の透過水濃度[mg/L]
である。
The permeate concentration C p (n) of the collection hole (nth) at the water sampling position n can be calculated from the amount of solute material.
in particular,
F(n)×C(n)=F(n-1)×C(n-1)+F p (n)×C p (n) ... (1)
F(1) = Fp (1)
C(1) = Cp (1)
ΔC(n)=C(n)-C(n-1)
(1) Rearranging the equation,
C p (n) = (F (n) × C (n) - F (n-1) × C (n-1)) / F p (n) ... (2)
F p (1)=F p (2)=...=F p (N)=F(N)/N...(3)
F(n)=n×F p (1)=n×F(N)/N...(4)
C(1)=C(2)=...=C(N)...(5)
From (2) to (5) above, Cp (n) = C(n) + (n-1) x ΔC(n)
In addition,
F p (n): Permeation rate of the water collecting hole (nth) [m 3 /d]
C p (n): Permeate concentration of the collection hole (nth) [mg/L]
F p (n-1): Permeation rate of the water collecting hole (n-1th) [m 3 /d]
C p (n-1): Permeate concentration of the collection hole (n-1th) [mg/L]
F(n): Permeate volume at the water collection position (nth) in the water collection pipe [m 3 /d]
C(n): Permeate concentration at the water collection position (nth) in the collection pipe [mg/L]
F(n-1): Amount of permeated water at the water collection position (n-1th) in the water collection pipe [m 3 /d]
C(n-1): Permeate concentration at the water collection position (n-1th) in the collection pipe [mg/L]
It is.

 簡略的には、集水管内採水位置(n番目)の透過水濃度から直近の集水管内採水位置(n-1番目)の透過水濃度を差し引いた値をC(n)としてもよい。 For simplicity, C p (n) may be calculated by subtracting the permeate concentration at the nearest water sampling position (n-1th) in the water collection pipe from the permeate concentration at the nth water sampling position in the water collection pipe.

 第1被処理水中の1価のイオン性物質の濃度は、好ましくは50~70000mg/Lであり、より好ましくは500~35000mg/Lである。第2被処理水中の2価のイオン性物質の濃度は、好ましくは50~10000mg/Lであり、より好ましくは50~4000mg/Lである。 The concentration of monovalent ionic substances in the first treated water is preferably 50 to 70,000 mg/L, more preferably 500 to 35,000 mg/L. The concentration of divalent ionic substances in the second treated water is preferably 50 to 10,000 mg/L, more preferably 50 to 4,000 mg/L.

 第1処理水は、例えば、純水に1価のイオン性物質を配合して得ることができる。また、第2処理水は、例えば、純水に2価のイオン性物質を配合して得ることができる。 The first treated water can be obtained, for example, by mixing a monovalent ionic substance with pure water. The second treated water can be obtained, for example, by mixing a divalent ionic substance with pure water.

 逆浸透膜エレメントについては、上述のとおりである。  The reverse osmosis membrane element is as described above.

 混合被処理水を逆浸透膜エレメントに加圧供給する際の圧力は、好ましくは0.5~10MPaであり、より好ましくは0.75~6MPaである。 The pressure at which the mixed treated water is pressurized and supplied to the reverse osmosis membrane element is preferably 0.5 to 10 MPa, and more preferably 0.75 to 6 MPa.

 第1被処理水を第1濃縮水と第1透過水に分離する際の第1被処理水流量は、例えば、逆浸透膜エレメントの外径が約201mm(約8インチ)のサイズの物の場合、好ましくは50~1000L/分であり、より好ましくは120~500L/分である。その際の第1被処理水の水温は、好ましくは5~45℃であり、より好ましくは20~35℃である。その際の第1被処理水のpHは、好ましくは2~11であり、強酸あるいは強アルカリに近くなると化学劣化が生じるため、より好ましくは6~8.5である。 The flow rate of the first treated water when separating the first treated water into the first concentrated water and the first permeate is preferably 50 to 1000 L/min, and more preferably 120 to 500 L/min, for example, when the reverse osmosis membrane element has an outer diameter of about 201 mm (about 8 inches). The temperature of the first treated water at this time is preferably 5 to 45°C, and more preferably 20 to 35°C. The pH of the first treated water at this time is preferably 2 to 11, and more preferably 6 to 8.5, since chemical deterioration occurs when the pH becomes close to a strong acid or strong alkali.

 第2被処理水を第2濃縮水と第2透過水に分離する際の第2被処理水流量は、例えば、逆浸透膜エレメントの外径が約201mm(約8インチ)のサイズの物の場合、好ましくは50~1000L/分であり、より好ましくは120~500L/分である。その際の第2被処理水の水温は、好ましくは5~45℃であり、より好ましくは20~35℃である。その際の第2被処理水のpHは、好ましくは2~11であり、強酸あるいは強アルカリに近くなると化学劣化が生じるため、より好ましくは6~8.5である。 The flow rate of the second treated water when separating the second treated water into the second concentrated water and the second permeate is preferably 50 to 1000 L/min, and more preferably 120 to 500 L/min, for example, when the reverse osmosis membrane element has an outer diameter of about 201 mm (about 8 inches). The temperature of the second treated water at this time is preferably 5 to 45°C, and more preferably 20 to 35°C. The pH of the second treated water at this time is preferably 2 to 11, and more preferably 6 to 8.5, since chemical deterioration occurs when the pH becomes close to a strong acid or strong alkali.

 また、第1透過水中の1価のイオン性物質の濃度は、第1透過水の水質を測定することによって求められる。第2透過水中の2価のイオン性物質の濃度は、第2透過水の水質を測定することによって求められる。 In addition, the concentration of monovalent ionic substances in the first permeated water is determined by measuring the water quality of the first permeated water. The concentration of divalent ionic substances in the second permeated water is determined by measuring the water quality of the second permeated water.

 第1透過水及び第2透過水の水質の具体例としては、例えば、第1透過水及び第2透過水の電気伝導度、イオン濃度又は総溶解固形物濃度が挙げられる。 Specific examples of the water quality of the first permeate and the second permeate include, for example, the electrical conductivity, ion concentration, or total dissolved solids concentration of the first permeate and the second permeate.

 また、1価のイオン性物質の濃度が、第1透過水の電気伝導度から求められた値であることが好ましく、2価のイオン性物質の濃度が、第2透過水の電気伝導度から求められた値であることが好ましい。各透過水の電気伝導度から各イオン性物質の濃度を求めることで、イオンクロマトグラフィーや滴定などの測定を省略することができる。 Furthermore, it is preferable that the concentration of the monovalent ionic substance is a value determined from the electrical conductivity of the first permeated water, and the concentration of the divalent ionic substance is a value determined from the electrical conductivity of the second permeated water. By determining the concentration of each ionic substance from the electrical conductivity of each permeated water, measurements such as ion chromatography and titration can be omitted.

 なお、第二実施形態においては、第1被処理水及び第2被処理水の加圧供給順序は限定されず、どちらを先に加圧供給してもよい。例えば、第1被処理水を先に加圧供給する場合は、第2被処理水を加圧供給する前に、第1被処理水を純水等の水に変更して逆浸透膜エレメントに供給し、第1被処理水を洗い出せばよい。 In the second embodiment, the order in which the first treated water and the second treated water are pressurized and supplied is not limited, and either may be pressurized and supplied first. For example, if the first treated water is pressurized and supplied first, the first treated water may be converted to water such as pure water and supplied to the reverse osmosis membrane element before the second treated water is pressurized and supplied, and the first treated water may be washed out.

 前述の第一実施形態ではNa(1価の強陽イオン性物質)とホウ素(3価の弱陰イオン性物質)を使用しているが、価数が異なるイオン性物質を用いることも好ましければ、分子量が異なる物質であることも好ましい。さらに、除去性能に大きな差があったり、測定がしやすい成分を対象にすると良い。また、分離膜の表面は荷電を有している場合が多いので2種類のイオンは、価数の異なる同種イオンであることも好ましい。すなわち、例えば、1価の陽イオンと2価の陽イオン、もしくは、1価の陰イオンと2価の陰イオンである。 In the first embodiment described above, Na (a strong monovalent cationic substance) and boron (a weak trivalent anionic substance) are used, but it is also preferable to use ionic substances with different valences, and it is also preferable for substances to have different molecular weights. Furthermore, it is good to target components that have a large difference in removal performance or are easy to measure. Also, since the surface of the separation membrane is often charged, it is also preferable that the two types of ions are the same type but with different valences. That is, for example, a monovalent cation and a divalent cation, or a monovalent anion and a divalent anion.

 本発明で使用される1価のイオン性物質は、特に限定されるものではないが、純水等の水に溶解したときに完全に乖離し、中性であることが好ましく、例えば、特に天然に多数存在し、取り扱いのしやすさや比較的低価格であることから、NaとMg、ClとSOは非常に好ましい。さらに、海水や河川水などの天然水を処理する水処理用分離膜は、天然性の有機物が弱い陰イオンであることが一般的なので、膜表面にマイナス荷電を持たせていることが多く、その場合は、陽イオンであるNaとMgを適用するのが好ましい。特に、1価のイオン性物質として、塩化ナトリウムが好適に使用される。また、本発明で使用される2価のイオン性物質は、純水等の水に溶解したときに完全に乖離し、中性であればよく、特に限定されるものではないが、同様の理由から、硫酸マグネシウムが好適に使用される。これらを同時に選択すると、陽イオンも陰イオンも特性が異なるため、非常に好ましい。 The monovalent ionic substance used in the present invention is not particularly limited, but is preferably completely dissociated and neutral when dissolved in water such as pure water. For example, Na and Mg, Cl and SO4 are very preferable because they are abundant in nature, easy to handle, and relatively low cost. Furthermore, in water treatment separation membranes for treating natural water such as seawater and river water, natural organic matter is generally weak anion, so the membrane surface is often negatively charged, and in that case, it is preferable to apply Na and Mg , which are cations. In particular, sodium chloride is preferably used as the monovalent ionic substance. In addition, the divalent ionic substance used in the present invention is not particularly limited, but is preferably used for the same reason as long as it is completely dissociated and neutral when dissolved in water such as pure water. Magnesium sulfate is preferably used for the same reason. It is very preferable to select these simultaneously, because the cations and anions have different properties.

 なお、試験水中の濃度は、測定しやすい条件に設定するのが好ましいが、特に制約されるものではない。一般には、1価のイオン性物質の濃度は、好ましくは50~70000mg/Lであり、より好ましくは500~35000mg/L、2価のイオン性物質の濃度は、好ましくは50~10000mg/L、であり、より好ましくは500~4000mg/Lである。 The concentrations in the test water are preferably set to conditions that make them easy to measure, but are not subject to any particular restrictions. In general, the concentration of monovalent ionic substances is preferably 50 to 70,000 mg/L, more preferably 500 to 35,000 mg/L, and the concentration of divalent ionic substances is preferably 50 to 10,000 mg/L, more preferably 500 to 4,000 mg/L.

 本願発明における「試験水少なくとも2種類」は溶質が異なることが基本ではあるが、同じ溶質でpHもしくは温度を変えて実質的に異なる溶質とすることも可能である。例えば、炭酸を含む溶質は、pHを変えれば、解離、すなわち価数が変化するため、異なる特性の溶質となる。温度を変えることによっても溶質、とくに高分子系の溶質は特性が変化するので、適用可能な方法である。pHや温度を変化させた場合は、膜性能も変化する場合があり、化学変化の判定もしやすくなるという特徴がある。一方、物理劣化の場合、膜性能の変化は基本的には影響しない。ただし、pHや温度を変化させるのは、薬品や熱エネルギー、さらにそのための時間や手間を要することになるため、注意が必要である。 In the present invention, the "at least two types of test water" basically have different solutes, but it is also possible to use the same solute and change the pH or temperature to create substantially different solutes. For example, if the pH of a solute containing carbon dioxide is changed, it will dissociate, i.e., its valence will change, resulting in a solute with different properties. Changing the temperature can also change the properties of solutes, particularly polymeric solutes, so this is an applicable method. When the pH or temperature is changed, the membrane performance may also change, making it easier to determine chemical changes. On the other hand, in the case of physical deterioration, changes in membrane performance generally have no effect. However, care must be taken as changing the pH or temperature requires chemicals and thermal energy, as well as the time and effort required for this.

 また、試験水は、測定を目的とした成分のみを含有している方が、分析精度が高まるため好ましいが、使用に供している(プラント運転中の)分離膜モジュールを診断したい場合、被処理水の供給を止めて試験水に切り替えるか、分離膜モジュールを設備から取り外して診断するための装置に装填する必要がある。実際のプラントの運転中に本診断を実施したい場合は、運転中の状態で、すなわち、被処理水を試験水として使用することも可能である。ただし、比較評価の対象となる溶質以外の溶質が含まれている場合が多いので、分析精度に影響を及ぼすことに注意が必要である。もし、運転中の被処理水や透過水の濃度分析精度に難がある場合は、比較評価対象となる2種類の溶質をパルス的に被処理水に添加することによって、感度を上げることも好ましい方法の一つである。 In addition, it is preferable that the test water contains only the components to be measured, as this increases analytical accuracy, but if it is desired to diagnose a separation membrane module that is in use (while the plant is operating), it is necessary to stop the supply of treated water and switch to test water, or to remove the separation membrane module from the facility and load it into a diagnostic device. If it is desired to carry out this diagnosis while the actual plant is operating, it is possible to use the treated water as the test water while the plant is in operation. However, since solutes other than the solutes to be compared and evaluated are often contained, it is necessary to be aware that this will affect analytical accuracy. If there are problems with the accuracy of the concentration analysis of the treated water and permeate during operation, one preferred method is to increase sensitivity by adding two types of solutes to be compared and evaluated in a pulsed manner to the treated water.

 ところで、膜モジュールの分離性能としては、除去率(=1-透過水濃度/供給水濃度)、透過率(=透過水濃度/供給水濃度)、透過係数などが一般的である。 The separation performance of a membrane module is generally measured in terms of removal rate (= 1 - permeate concentration / feed water concentration), permeability (= permeate concentration / feed water concentration), permeability coefficient, etc.

 透過係数に関しては、簡易的には、例えば、kg/m/Pa/sという単位で表されるように、膜面積あたり、圧力あたり、時間あたりの透過量として算出することが出来るが、より厳密には、非特許文献6「ジャーナル・オブ・メンブレン・サイエンス,第183巻,2000年,p249-258)」に示される浸透圧や濃度分極を考慮、さらには、膜性能の温度変化を考慮した計算方法によって求めることが出来る。 The permeability coefficient can be calculated simply as the permeation amount per membrane area, pressure and time, for example, as expressed in units of kg/ m2 /Pa/s. More precisely, however, it can be determined by a calculation method taking into account the osmotic pressure and concentration polarization shown in Non-Patent Document 6, "Journal of Membrane Science, Vol. 183, 2000, pp. 249-258," and further taking into account the temperature change of membrane performance.

 具体的には、
=L(ΔP-Δπ)
=P(C-C
Δπ=π(C)-π(C
(C-C)/(C-C)=exp(J/k)
 なお、
   J :純水透過流束[m/m・s]
   J :溶質透過流束[kg/m・s]
   L :純水透過係数[m/m・Pa・s]
   P  :TDS透過係数[m/s]
   π  :浸透圧[Pa]
   Δπ :浸透圧差[Pa]
   ΔP :操作圧力差[Pa]
   C :供給水膜面濃度[kg/m
   C :供給水バルク濃度[kg/m
   C :透過水濃度[kg/m
   k  :溶質物質移動係数[m/s]
である。
in particular,
J v = L p (ΔP−Δπ)
J s = P(C m −C p )
Δπ=π(C m )−π(C p )
(C m - C p )/(C f - C p )=exp(J v /k)
In addition,
J v : Pure water permeation flux [m 3 /m 2・s]
J s : Solute permeation flux [kg/m 2・s]
L p : Pure water permeability coefficient [m 3 /m 2 ·Pa·s]
P: TDS permeability coefficient [m/s]
π: Osmotic pressure [Pa]
Δπ: Osmotic pressure difference [Pa]
ΔP: Operating pressure difference [Pa]
C m : Supply water film surface concentration [kg/m 3 ]
C f : Supply water bulk concentration [kg/m 3 ]
C p : Permeated water concentration [kg/m 3 ]
k: solute mass transfer coefficient [m / s]
It is.

 ここで、溶質物質移動係数kは、分離膜モジュール構造や評価セルによって決められる値であるが、非特許文献5(ジャーナル・オブ・メンブレン・サイエンス,第183巻,2000年,p259-267)に示されている浸透圧法もしくは流速変化法によって膜面流量Q[m/s]もしくは膜面流速u[m/s]の関数として得ることができる。 Here, the solute mass transfer coefficient k is a value determined by the separation membrane module structure and the evaluation cell, but can be obtained as a function of the membrane surface flow rate Q [m 3 /s] or the membrane surface flow rate u [m/s] by the osmotic pressure method or flow rate change method shown in Non-Patent Document 5 (Journal of Membrane Science, Vol. 183, 2000, pp. 259-267).

 参考文献2に示されている平膜セルの場合、
 k=1.63×10-3・Q0.4053
 である。
In the case of the flat membrane cell shown in Reference 2,
k=1.63×10 -3・Q 0.4053
It is.

 したがって、上記の式から未知数L,P,Cを算出することができる。なお、分離膜モジュールの場合は、モジュール全体の平均値として得ることも出来れば、参考文献1に示されているように、膜エレメントの長さ方向に積分しながらL,Pをフィッティングによって算出することができる。 Therefore, the unknowns Lp , P, and Cm can be calculated from the above formula. In the case of a separation membrane module, Lp and P can be calculated by fitting while integrating in the longitudinal direction of the membrane element, as shown in Reference 1, if the unknowns can be obtained as average values for the entire module.

 本発明を適用する分離膜モジュールについては、逆浸透膜、ナノ濾過膜、限外濾過膜、精密濾過膜、イオン交換膜、ガス分離膜、ろ布など、様々な分離膜で用いることが出来るが、特に、海水や河川水などを処理して、飲料水や各種用水を製造する水処理用精密濾過膜、限外濾過膜、ナノ濾過膜、逆浸透膜へ適用すると、水処理コスト削減に貢献でき、非常に好ましい。また、モジュール形状としても、スパイラル型、中空糸型、平膜平行平板がプレートアンドフレーム型など、特に限定されるものではない。 The separation membrane module to which the present invention is applied can be used with a variety of separation membranes, including reverse osmosis membranes, nanofiltration membranes, ultrafiltration membranes, microfiltration membranes, ion exchange membranes, gas separation membranes, and filter cloths. In particular, application to microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes for water treatment, which treat seawater or river water to produce drinking water or various types of water, is highly preferable, as it contributes to reducing water treatment costs. The module shape is also not particularly limited, and may be a spiral type, hollow fiber type, or flat membrane parallel plate plate and frame type.

 逆浸透膜やナノ濾過膜の素材としては、例えば、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。また、その膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部またはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い機能層を有する複合膜のどちらでもよい。 The materials that can be used for reverse osmosis and nanofiltration membranes include polymeric materials such as cellulose acetate polymers, polyamides, polyesters, polyimides, and vinyl polymers. The membrane structure can be either an asymmetric membrane with a dense layer on at least one side of the membrane and gradually increasing micropores from the dense layer toward the inside of the membrane or the other side, or a composite membrane with a very thin functional layer made of a different material on top of the dense layer of the asymmetric membrane.

 また、限外濾過膜や精密濾過膜としては、ポリアクリロニトリル、ポリイミド、ポリエーテルスルホン、ポリフェニレンスルフィドスルホン、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン等の多孔質膜を挙げることができる。 In addition, examples of ultrafiltration membranes and precision filtration membranes include porous membranes such as polyacrylonitrile, polyimide, polyethersulfone, polyphenylene sulfide sulfone, polytetrafluoroethylene, polypropylene, and polyethylene.

 さらに、これら多孔質膜に機能層としては架橋型シリコーン、ポリブタジエン、ポリアクリロニトリルブタジエン、エチレンプロピレンラバー、ネオプレンゴム等のゴム状高分子を複合化することで透過性が高い複合分離膜として本発明を適用することが出来る。 Furthermore, by compounding these porous membranes with rubber-like polymers such as cross-linked silicone, polybutadiene, polyacrylonitrile butadiene, ethylene propylene rubber, and neoprene rubber as a functional layer, the present invention can be applied as a highly permeable composite separation membrane.

 分離膜モジュールの構造は、膜の用途によって様々であるが、逆浸透膜やナノ濾過膜の場合は、スパイラル型が一般的である。最も代表的な逆浸透膜モジュールにとして使用するエレメントの部分分解斜視図を図1に示す。 The structure of a separation membrane module varies depending on the application of the membrane, but in the case of reverse osmosis and nanofiltration membranes, the spiral type is common. Figure 1 shows a partially exploded perspective view of an element used in the most typical reverse osmosis membrane module.

 このスパイラル型逆浸透膜エレメントは、一般的に、集水孔を有する透過水集水管4の周りに、逆浸透膜1と透過水流路材2と被処理水流路材(ネットスペーサー)3とを含む逆浸透膜ユニットがスパイラル状に巻囲されており、その逆浸透膜ユニットの外側をフィルムや硬化性樹脂を含侵したガラスファイバー等で覆い、この流体分離素子のその少なくとも一方の端部に、テレスコープ防止板5が装着されている。 This spiral-type reverse osmosis membrane element generally consists of a reverse osmosis membrane unit including a reverse osmosis membrane 1, a permeate flow path material 2, and a treated water flow path material (net spacer) 3 wound in a spiral shape around a permeate collection pipe 4 with a collection hole, the outside of the reverse osmosis membrane unit is covered with a film or glass fiber impregnated with a hardening resin, etc., and a telescope prevention plate 5 is attached to at least one end of the fluid separation element.

 被処理水流路材には、ネット状やメッシュ状の格子状流路材、溝付シート、波形シート等が使用できる。透過水流路材には、ネット状やメッシュ状の格子状流路材、溝付シート、波形シート等が使用できる。いずれも、分離膜と独立したネットやシートでも構わないし、接着や融着するなどして一体化したものでも差し支えない。 For the treated water flow path material, net-like or mesh-like lattice flow path material, grooved sheets, corrugated sheets, etc. can be used. For the permeate water flow path material, net-like or mesh-like lattice flow path material, grooved sheets, corrugated sheets, etc. can be used. In either case, the net or sheet may be independent of the separation membrane, or may be integrated by bonding or fusion.

 被処理水6はテレスコープ防止板5から供給され被処理水流路材3を通って逆浸透膜に供給され、膜分離処理されて透過水7と濃縮水8とに分離され、透過水7は、透過水集水管4の側面の孔から透過水集水管の内側に集められ、透過水集水管を通り、透過水集水管の口から透過水7が採取される。このスパイラル型エレメントを図2のように圧力容器9に装填することで使用に供することが出来る。 The water 6 to be treated is supplied from the telescope prevention plate 5 and passes through the water flow path material 3 to the reverse osmosis membrane, where it is separated by membrane separation into permeate 7 and concentrated water 8. The permeate 7 is collected inside the permeate collection pipe 4 through a hole in the side of the pipe, passes through the pipe, and is collected from the opening of the pipe. This spiral element can be used by loading it into a pressure vessel 9 as shown in Figure 2.

 逆浸透膜が平膜の場合は、上述のスパイラル型と呼ばれるタイプが一般的であり、これらのエレメントを圧力容器などの円筒状の筐体に納めて、供給水、透過水、濃縮水の配管に接続することで使用に供することが出来る。 When the reverse osmosis membrane is a flat membrane, the type known as the spiral type mentioned above is common, and these elements can be placed in a cylindrical housing such as a pressure vessel and connected to pipes for feed water, permeate water, and concentrated water for use.

 混合被処理水を逆浸透膜エレメントに加圧供給する際の圧力は、好ましくは0.5~10MPaであり、より好ましくは0.75~6MPaである。 The pressure at which the mixed treated water is pressurized and supplied to the reverse osmosis membrane element is preferably 0.5 to 10 MPa, and more preferably 0.75 to 6 MPa.

 混合被処理水を混合濃縮水と混合透過水に分離する際の混合被処理水流量は、例えば、逆浸透膜エレメントの外径が約201mm(約8インチ)のサイズの物の場合、好ましくは50~1000L/分であり、より好ましくは120~500L/分である。その際の 混合被処理水の水温は、好ましくは5~45℃であり、より好ましくは20~35℃である。その際の混合被処理水のpHは、好ましくは2~11であり、強酸あるいは強アルカリに近くなると化学劣化が生じるため、より好ましくは6~8.5である。 The flow rate of the mixed treated water when separating the mixed treated water into the mixed retentate and the mixed permeate is preferably 50 to 1000 L/min, and more preferably 120 to 500 L/min, for example, when the reverse osmosis membrane element has an outer diameter of about 201 mm (about 8 inches). The temperature of the mixed treated water in this case is preferably 5 to 45°C, and more preferably 20 to 35°C. The pH of the mixed treated water in this case is preferably 2 to 11, and more preferably 6 to 8.5, since chemical deterioration occurs when the pH becomes close to a strong acid or strong alkali.

 なお、本実施形態においては、透過水の採取は、図2に示すように圧力容器9の透過水集水管右側(濃縮水出口側)から行ってもよいし、図2では封止されている透過水集水管左側(供給水入口側)から行ってもよい。 In this embodiment, the permeate may be collected from the right side of the permeate collection pipe of the pressure vessel 9 (the concentrated water outlet side) as shown in FIG. 2, or from the left side of the permeate collection pipe (the feed water inlet side), which is sealed in FIG. 2.

 一方、本発明を適用する中空糸膜モジュールとしては、一般的には、中空糸膜と中空糸膜の間、および中空糸膜とモジュール容器の間を気密にシール(ポッティング)して開口させた形状をとる。これによって、中空糸膜の外部と内部を中空糸膜自体によって隔離し、膜を通して分離処理を行うことができる。中空糸膜モジュールの構造としては、中空糸膜の両端部をポッティングした後、両端から開口する「両端開口型」、両端をポッティングした後に片方だけを開口させる「片端開口型」、中空糸膜をU字型にして中空糸膜端部を片方だけにして開口させる「U字型」、U字部を切断した上で、中空糸膜一本ずつを単独で封止した状態の「くし型」モジュールがあり、濾過方向としても中空糸膜の内側に処理原水を流す場合(内圧式)と外側に流す場合(外圧式)があり、いずれも本発明を適用することが出来る。 On the other hand, the hollow fiber membrane module to which the present invention is applied generally has an opening that is airtightly sealed (potted) between the hollow fiber membranes and between the hollow fiber membranes and the module container. This allows the outside and inside of the hollow fiber membrane to be isolated by the hollow fiber membrane itself, and separation processing can be performed through the membrane. The structure of the hollow fiber membrane module can be a "double-ended open type" in which both ends of the hollow fiber membrane are potted and then opened from both ends, a "single-ended open type" in which only one end is opened after both ends are potted, a "U-shaped" in which the hollow fiber membrane is U-shaped and only one end of the hollow fiber membrane is open, and a "comb-shaped" module in which the U-shaped portion is cut and each hollow fiber membrane is individually sealed. As for the filtration direction, there are cases where the raw water to be treated flows inside the hollow fiber membrane (internal pressure type) and cases where it flows outside (external pressure type), and the present invention can be applied to all of these.

 試験水や透過水濃度の測定に関しても特に制限はなく、電気伝導度、総溶解固形物濃度、TOC、屈折率、濁度、吸光度、発光光度、色度、IRスペクトル、質量分析スペクトル、イオンクロマトグラフィー、ICP発光質量分析法による無機物濃度、pH、放射線など、様々な測定手法を用いることが出来るが、1種類の溶質で構成される2種類の試験水を使用する場合は、イオン性物質の場合は電気伝導度、高分子の場合は、屈折率、吸光度、発光光度など、簡便に測定できる方法を使用すると好ましい。 There are no particular restrictions on the measurement of test water and permeate concentration, and various measurement methods can be used, such as electrical conductivity, total dissolved solids concentration, TOC, refractive index, turbidity, absorbance, luminescence intensity, color, IR spectrum, mass spectrometry spectrum, ion chromatography, inorganic concentration by ICP optical emission mass spectrometry, pH, and radiation. However, when using two types of test water consisting of one type of solute, it is preferable to use a method that allows easy measurement, such as electrical conductivity for ionic substances, and refractive index, absorbance, and luminescence intensity for polymers.

 各透過水の電気伝導度から各イオン性物質の濃度を求めるには、従来公知の方法で事前に各イオン性物質の濃度と電導度の関係を求めておけばよい。事前に各イオン性物質の濃度と電気伝導度の関係を求めておくことで、電気伝導度を濃度に換算できる。 To determine the concentration of each ionic substance from the electrical conductivity of each permeate, the relationship between the concentration of each ionic substance and electrical conductivity can be determined in advance using a conventionally known method. By determining the relationship between the concentration of each ionic substance and electrical conductivity in advance, electrical conductivity can be converted into concentration.

 2種類以上の溶質を含有する試験水の場合は、クロマトグラフや吸光度などで、滞留時間や波長を分解してスキャンを行い、検出器で検知・測定すれば、一度で多成分を測定できるし、2種類の異なる検出器を同時に繋いで2種類の異なる水質指標を測定することも好ましい方法である。特に、これらの方法は、オンラインで水質を測定する場合には、測定の煩雑さや制度の面でも非常に好ましい方法である。 When test water contains two or more types of solutes, multiple components can be measured at once by using a chromatograph or absorbance to resolve the retention time or wavelength, scanning, and then detecting and measuring with a detector. It is also a preferred method to connect two different detectors simultaneously to measure two different water quality indicators. In particular, these methods are highly preferred when measuring water quality online, in terms of the complexity of the measurement and the accuracy.

 第一実施形態においては、分離膜モジュール全体の分離性能を測定して診断しているが、本発明の手法を用いて、分離膜モジュールの局所の異常を検知することも可能である。すなわち、透過水をモジュールの少なくとも2箇所から取水し、分離性能を比較することで、モジュール内部のどの位置でどのような異常が発生しているか診断することが出来るようになる。 In the first embodiment, the separation performance of the entire separation membrane module is measured and diagnosed, but the method of the present invention can also be used to detect local abnormalities in the separation membrane module. In other words, by taking permeate water from at least two locations in the module and comparing the separation performance, it becomes possible to diagnose what type of abnormality has occurred and at what location inside the module.

 具体例を第二実施形態として、スパイラル型逆浸透膜モジュールを用いた場合の例を図4に側断面図として示す。ここでは、透過水集水管の中の複数箇所で混合透過水を採取し、採水ポイントの分離性能を獲得し、異常の内容とポイントをする方法としては、例えば、細いチューブ10を透過水集水管内に通して、透過水集水管の所定の位置でチューブ10の一端を留めて、チューブ10の他端から前記位置の混合透過水を採取する方法が挙げられる。 As a specific example of the second embodiment, a side cross-sectional view of an example using a spiral-type reverse osmosis membrane module is shown in Figure 4. Here, the mixed permeate is collected at multiple points in the permeate collection tube, and the separation performance of the collection points is obtained. As a method of identifying the content and location of the abnormality, for example, a thin tube 10 is passed through the permeate collection tube, one end of the tube 10 is fastened at a predetermined position in the permeate collection tube, and the mixed permeate at that position is collected from the other end of the tube 10.

 その際、徐々にチューブ10を移動させ複数箇所で混合透過水を採取し、得られた混合透過水における1価のイオン性物質の濃度及び2価のイオン性物質の濃度を、イオンクロマトグラフィーや滴定などの手法で測定し、1価のイオン性物質の濃度及び2価のイオン性物質の濃度の変化から、分離膜モジュールの劣化状態を診断することができる。 In this case, the tube 10 is gradually moved to collect mixed permeate at multiple locations, and the concentrations of monovalent ionic substances and divalent ionic substances in the resulting mixed permeate are measured using techniques such as ion chromatography and titration. The deterioration state of the separation membrane module can be diagnosed from the changes in the concentrations of monovalent ionic substances and divalent ionic substances.

 上述のようにチューブを用いる場合、チューブ10にあらかじめ長さの目盛を記載しておくことで、分離膜モジュールの透過水集水管内のどの位置にチューブ10の端が位置しているかを特定することができる。 When using a tube as described above, by marking length scales on the tube 10 in advance, it is possible to identify where the end of the tube 10 is located within the permeate collection pipe of the separation membrane module.

 すなわち、チューブを用いて各透過水の電導度を測定する場合は、チューブを透過水集水管内に通して、透過水集水管の所定の位置でチューブの一端を留めて、チューブの他端から前記位置の透過水を採取して電気伝導度を測定すればよい。 In other words, when using a tube to measure the electrical conductivity of each permeate, the tube is passed through the permeate collection pipe, one end of the tube is secured at a predetermined position in the permeate collection pipe, and the permeate at that position is sampled from the other end of the tube to measure the electrical conductivity.

 ここで、圧力容器の透過水配管からチューブを通し、チューブの先端を所定の位置で留め、複数個所で透過水を採取する場合は、透過水集水管の供給水側と濃縮水側の両端で採水し、その間を概ね等間隔で採水すればよい。特に、その間隔幅を限定することはないが、全長1m程度の逆浸透膜エレメント1本の評価の場合、5cm間隔程度が好ましい。また、図4は、透過水集水管の下流方向からチューブ10を挿入しているが、上流側を開放してチューブを挿入することも可能である。さらに、図4は膜モジュール1本に本発明を適用している場合を示しているが、スパイラル型モジュールの場合は、図5に例示するように、透過水集水管で複数のモジュールを直列に接続することが可能なため、複数モジュールを一度に採水、評価することも可能である。 Here, if a tube is passed through the permeate piping of the pressure vessel and the tip of the tube is fixed at a predetermined position, and permeate is collected at multiple locations, water should be collected from both ends of the permeate collection tube, the supply water side and the concentrated water side, and water should be collected at approximately equal intervals between them. There is no particular limit to the width of the interval, but when evaluating one reverse osmosis membrane element with a total length of about 1 m, an interval of about 5 cm is preferable. Also, in Figure 4, the tube 10 is inserted from the downstream direction of the permeate collection tube, but it is also possible to insert the tube with the upstream side open. Furthermore, while Figure 4 shows the case where the present invention is applied to one membrane module, in the case of a spiral-type module, it is possible to connect multiple modules in series with the permeate collection tube, as exemplified in Figure 5, so that water can be collected and evaluated from multiple modules at once.

 また、各透過水の電気伝導度を測定する方法としては、複数の電気伝導度センサーを透過水集水管内の複数箇所に設置して電気伝導度を測定する方法を採用することもできる。 In addition, the electrical conductivity of each permeate can be measured by installing multiple electrical conductivity sensors at multiple locations in the permeate collection pipe.

 なお、第二実施形態を適用可能な分離膜モジュールは特に制限はないが、図2に例示するように、細いチューブを挿入しやすい平膜モジュール、特に、透過水の集水管を直線的に挿入しやすいスパイラル型逆浸透膜モジュールが好適である。 There are no particular limitations on the separation membrane module to which the second embodiment can be applied, but as shown in FIG. 2, flat membrane modules into which thin tubes can be easily inserted, and in particular spiral reverse osmosis membrane modules into which permeate collection pipes can be easily inserted in a straight line, are preferred.

 スパイラル逆浸透膜の場合、まれに透過水集水管の片側の出口を封止しているところのO-リング等のシール材の劣化により原水が混入することがあり、透過水集水管の封止している一端から30cm位までのところで、前記2価のイオン性物質の濃度が高くなることがある。そのため、透過水集水管の封止している一端から30cm離れたところから、前記透過水集水管の他端までの前記2価のイオン性物質の濃度において異常が確認された場合は、シール材の問題が発生したと判断することができる。 In the case of spiral reverse osmosis membranes, raw water may occasionally get mixed in due to deterioration of the sealing material, such as an O-ring, that seals the outlet on one side of the permeate collection pipe, and the concentration of the divalent ionic substances may become high up to about 30 cm from the sealed end of the permeate collection pipe. Therefore, if an abnormality is confirmed in the concentration of the divalent ionic substances from 30 cm away from the sealed end of the permeate collection pipe to the other end of the permeate collection pipe, it can be determined that a problem with the sealing material has occurred.

 もちろん、第二実施形態においても、実際のプラントの圧力容器から分離膜モジュールを抜き出し、別の評価装置を用いて、上述の方法を用いて分離膜モジュールの劣化状態を診断することも可能である。 Of course, in the second embodiment, it is also possible to extract the separation membrane module from the pressure vessel of the actual plant and use another evaluation device to diagnose the deterioration state of the separation membrane module using the above-mentioned method.

 第三の実施形態として、分離膜モジュールが2箇所以上の透過水取水口を有する場合、さらに詳細情報を獲得するためには、図6に示すような装置を適用し、特許文献2「国際公開第2020/071507号:水質プロファイルの作成方法、分離膜モジュールの検査方法及び水処理装置」のように、前記分離膜モジュールが透過水を少なくとも2箇所から取水できるような構造を有し、透過水の流量比率を変化させることによって第二の実施形態と同様の結果を得ることが出来る。 As a third embodiment, when the separation membrane module has two or more permeate intake ports, in order to obtain more detailed information, a device such as that shown in FIG. 6 is applied, and as in Patent Document 2 "WO 2020/071507: Method for creating a water quality profile, method for inspecting a separation membrane module, and water treatment device", the separation membrane module has a structure that allows the permeate to be taken in from at least two locations, and the flow rate ratio of the permeate can be changed to obtain results similar to those of the second embodiment.

 この方法は、オンラインの水質検出器を用いることで、自動的かつ連続的に運転条件と濃度指標を獲得し、標準分離性能や溶質透過係数を算出、物理劣化と化学劣化に寄与率を含め、常時異常診断が出来るようになるため、非常に好ましい方法である。この方法によって、分離膜モジュールにチューブを挿入することなく、異常ポジションの検知が可能となるので好ましい実施態様である。 This method is highly preferable because it uses an online water quality detector to automatically and continuously obtain operating conditions and concentration indicators, calculate standard separation performance and solute permeability coefficients, and perform constant abnormality diagnosis, including the contribution rates of physical and chemical deterioration. This method is a preferable embodiment because it makes it possible to detect abnormal positions without inserting tubes into the separation membrane module.

 なお、この方法の場合は、局所的な透水量の分布がある場合誤差を生じる可能性があるため、日本国特開2023-20636号公報のように透過水集水管にチューブを挿入する方法と併用することで、精度を上げる方法も提案されている。 However, because this method can cause errors if there is a localized distribution of permeability, a method has been proposed to increase accuracy by combining it with a method of inserting a tube into the permeate collection pipe, as described in Japanese Patent Publication No. 2023-20636.

 本発明の第三実施形態(以下、単に第三実施形態と称することがある。)に係る劣化診断装置を、分離膜モジュールとして、スパイラル型逆浸透膜エレメントを、2種類の異なる試験水として、1価のイオン性物質と2価のイオン性物質を含有する試験水を適用した場合を例に説明する。 The deterioration diagnosis device according to the third embodiment of the present invention (hereinafter sometimes simply referred to as the third embodiment) will be described using an example in which a spiral-type reverse osmosis membrane element is used as a separation membrane module, and test water containing a monovalent ionic substance and a divalent ionic substance is used as two different types of test water.

 第三実施形態に係る逆浸透膜エレメントの劣化診断装置は、1価のイオン性物質を含む第1被処理水及び2価のイオン性物質を含む第2被処理水の少なくとも一方を含む被処理水を濃縮水と透過水とに分離する分離膜と、前記透過水を集水する集水管を有する逆浸透膜エレメントの劣化診断装置であって、前記逆浸透膜エレメントの劣化状態を診断するためにコンピュータを、運転中の前記逆浸透膜エレメントの運転条件と、前記1価のイオン性物質を含む第1透過水の水質及び前記2価のイオン性物質を含む第2透過水の水質とを、コンピュータに入力するデータ入力手段、前記運転条件と、前記第1透過水の水質と、前記第2透過水の水質とを、コンピュータに記録しておくデータ記録手段、前記運転条件と、前記第1透過水の水質と、前記第2透過水の水質とで求められた前記逆浸透膜エレメントの性能、及び、前記第1透過水中の前記1価のイオン性物質の濃度と、前記第2透過水中の前記2価のイオン性物質の濃度との変化率のデータを用い、予め定められた前記逆浸透膜エレメントの劣化診断基準に基づいて、前記逆浸透膜エレメントの劣化の発生の有無を診断する劣化診断計算手段として機能させる。 The deterioration diagnosis device for a reverse osmosis membrane element according to the third embodiment is a deterioration diagnosis device for a reverse osmosis membrane element having a separation membrane for separating treated water, which contains at least one of a first treated water containing monovalent ionic substances and a second treated water containing divalent ionic substances, into concentrated water and permeate water, and a water collection pipe for collecting the permeate water, and includes inputting into the computer the operating conditions of the reverse osmosis membrane element during operation, the water quality of the first permeate water containing the monovalent ionic substances, and the water quality of the second permeate water containing the divalent ionic substances, into the computer to diagnose the deterioration state of the reverse osmosis membrane element. The data input means inputs the data, the operating conditions, the water quality of the first permeate, and the water quality of the second permeate into a computer, and the data on the performance of the reverse osmosis membrane element determined from the operating conditions, the water quality of the first permeate, and the water quality of the second permeate, and the data on the rate of change between the concentration of the monovalent ionic substance in the first permeate and the concentration of the divalent ionic substance in the second permeate are used to function as a deterioration diagnosis calculation means for diagnosing the occurrence or non-occurrence of deterioration of the reverse osmosis membrane element based on a predetermined deterioration diagnosis criterion for the reverse osmosis membrane element.

 第三実施形態は、上記の各手段を有するコンピュータを逆浸透膜エレメントの劣化状態を診断するために機能させるものである。第三実施形態は、コンピュータのメモリ、ハードディスクなどの記録装置等に記録可能であり、記録の形態は特に限定されない。 In the third embodiment, a computer having the above means is made to function to diagnose the deterioration state of a reverse osmosis membrane element. The third embodiment can be recorded in a recording device such as a computer memory or a hard disk, and the form of recording is not particularly limited.

 コンピュータは、運転中の逆浸透膜エレメントの運転条件と、第1透過水の水質及び第2透過水の水質に関わるデータを工程別に抜き出し入力するデータ入力手段を有し、データ入力手段で得られる各工程での各測定値はデータ記録手段に記録される。 The computer has a data input means for extracting and inputting data relating to the operating conditions of the reverse osmosis membrane element during operation and the water quality of the first permeate and the water quality of the second permeate for each process, and the measured values for each process obtained by the data input means are recorded in the data recording means.

 データ記録手段に記録されるデータを用い、予め定められた前記逆浸透膜エレメントの劣化診断基準に基づいて、逆浸透膜エレメントの劣化の発生の有無が診断される。 The data recorded in the data recording means is used to diagnose whether or not deterioration of the reverse osmosis membrane element has occurred based on predetermined deterioration diagnosis criteria for the reverse osmosis membrane element.

 データ記録手段に記録されるデータとしては、例えば、前記運転条件と、前記第1透過水の水質と、前記第2透過水の水質とで求められた前記逆浸透膜エレメントの性能、及び、前記第1透過水中の前記1価のイオン性物質の濃度と、前記第2透過水中の前記2価のイオン性物質の濃度との変化率のデータが挙げられる。 The data recorded in the data recording means may include, for example, the performance of the reverse osmosis membrane element determined from the operating conditions, the water quality of the first permeate, and the water quality of the second permeate, and data on the rate of change between the concentration of the monovalent ionic substance in the first permeate and the concentration of the divalent ionic substance in the second permeate.

 第三実施形態によって、極めて簡便かつ迅速に逆浸透膜エレメントの性能劣化要因を診断することができる。 The third embodiment makes it possible to diagnose the causes of performance degradation of a reverse osmosis membrane element extremely simply and quickly.

 なお、第三実施形態における、被処理水、逆浸透膜エレメントの構造、第1透過水及び第2透過水の水質の具体例については、第一実施形態及び第二実施形態と同様である。 In addition, specific examples of the water to be treated, the structure of the reverse osmosis membrane element, and the water quality of the first permeate and the second permeate in the third embodiment are the same as those in the first and second embodiments.

 また、第三実施形態における、逆浸透膜エレメントの劣化の主要因が化学劣化であるか物理劣化であるかの診断基準は、第一実施形態及び第二実施形態と同様である。また、第三実施形態は、コンピュータ読取可能な記録媒体に記録して利用することができる。 In addition, in the third embodiment, the diagnostic criteria for determining whether the main cause of deterioration of the reverse osmosis membrane element is chemical deterioration or physical deterioration are the same as in the first and second embodiments. In addition, the third embodiment can be recorded on a computer-readable recording medium and used.

 以下に実施例を挙げ、本発明を具体的に説明するが、本発明は何らこれらに限定されるものではない。 The present invention will be specifically explained below with reference to examples, but the present invention is not limited to these in any way.

<実施例1>
 超純水製造プラントで生産水の水質悪化傾向が観察されたため、使用中の逆浸透膜エレメントをベッセルから抜き出し、図2に示すように逆浸透膜エレメント1本を圧力容器に装填の上、性能評価装置で分離性能の測定に供した。
Example 1
Because a tendency for the quality of the produced water to deteriorate was observed at an ultrapure water production plant, a reverse osmosis membrane element in use was removed from a vessel and one reverse osmosis membrane element was loaded into a pressure vessel as shown in Figure 2, and its separation performance was measured using a performance evaluation device.

 純水に塩化ナトリウムを溶解して1500mg/Lの濃度の試験水を調製し、供給圧力1.5MPa、濃縮水流量80L/分、水温25℃、被処理水pH7で運転し、圧力容器の透過水を獲得した。透過水7を取り出し、電気伝導度を測定し、塩化ナトリウムと電気伝導度の関係から、濃度を求めた。 Sodium chloride was dissolved in pure water to prepare test water with a concentration of 1500 mg/L. The system was operated with a supply pressure of 1.5 MPa, a concentrated water flow rate of 80 L/min, a water temperature of 25°C, and a pH of 7 for the treated water, and permeated water was obtained from the pressure vessel. Permeated water 7 was taken out and its electrical conductivity was measured, and the concentration was calculated from the relationship between sodium chloride and electrical conductivity.

 その後、試験水を純水に変更して、圧力容器内に装填された膜エレメントに供給し、塩化ナトリウムを洗い出した上で、純水に硫酸マグネシウムを溶解し濃度2000mg/Lの溶液を調製して、供給圧力1.5MPa、濃縮水流量80L/分、水温25℃、被処理水pH7で運転し、塩化ナトリウムのときと同様の方法で、透過水集水管内の硫酸マグネシウムを含んだ透過水の電気伝導度を測定し、硫酸マグネシウム濃度と電気伝導度の関係から、濃度を求めた。 Then, the test water was changed to pure water and supplied to the membrane element loaded in the pressure vessel, the sodium chloride was washed out, and magnesium sulfate was dissolved in the pure water to prepare a solution with a concentration of 2000 mg/L. The system was operated with a supply pressure of 1.5 MPa, a concentrated water flow rate of 80 L/min, a water temperature of 25°C, and a pH of 7 for the treated water. Using the same method as for sodium chloride, the electrical conductivity of the permeate containing magnesium sulfate in the permeate collection pipe was measured, and the concentration was calculated from the relationship between magnesium sulfate concentration and electrical conductivity.

 結果、塩化ナトリウムの除去率は98.80%(透過率1.20%)、硫酸マグネシウムの除去率は99.93%(透過率0.07%)であった。なお、同条件で測定したこの逆浸透膜エレメントの生産時の性能は、塩化ナトリウムの除去率が99.74%(透過率0.26%)、硫酸マグネシウムの除去率が99.97%(透過率0.03%)であり、分離性能の低下率は、それぞれ、初期比の4.6倍と2.7倍であり、塩化ナトリウム分離性能の低下率に対して硫酸マグネシウム分離性能の低下率が大きくなかったことから、少なくとも化学劣化が主であるという兆候を確認した。 As a result, the sodium chloride removal rate was 98.80% (transmittance 1.20%) and the magnesium sulfate removal rate was 99.93% (transmittance 0.07%). Note that the performance of this reverse osmosis membrane element as produced, measured under the same conditions, was 99.74% sodium chloride removal rate (transmittance 0.26%) and 99.97% magnesium sulfate removal rate (transmittance 0.03%). The rates of decline in separation performance were 4.6 and 2.7 times the initial rates, respectively. As the rate of decline in magnesium sulfate separation performance was not large compared to the rate of decline in sodium chloride separation performance, at least indications were confirmed that chemical degradation was the main cause.

 さらに、化学劣化の関係式として、予め、逆浸透膜を次亜塩素酸に浸漬して強制的に化学劣化させた膜を用いて作成した塩化ナトリウムと硫酸マグネシウムの分離性能(透過率)に基づき、解析した塩化ナトリウムと硫酸マグネシウムの透過率の関係式(1)を作成した。また、物理劣化の関係式としては、傷が大きくなるにつれて供給水が漏れによって微量混合していったと想定して得られる塩化ナトリウムの透過率と硫酸マグネシウムの透過率の関係式(2)を作成した。それぞれの関係式を図8に、さらに、初期(劣化前)と劣化後の透過率をプロットしたところ、化学劣化と物理劣化の寄与率は、97:3と計算され、ほぼ化学劣化のみによる分離性能低下であると判断された。 Furthermore, as a relational expression for chemical deterioration, a relational expression (1) for the analyzed permeability of sodium chloride and magnesium sulfate was created based on the separation performance (permeability) of sodium chloride and magnesium sulfate created using a reverse osmosis membrane that had been forcibly chemically deteriorated by immersing it in hypochlorous acid in advance. In addition, as a relational expression for physical deterioration, a relational expression (2) for the permeability of sodium chloride and magnesium sulfate was created, which was obtained by assuming that as the damage became larger, the supply water leaked and mixed in small amounts. When each of these relational expressions was plotted in Figure 8, and the initial (before deterioration) and post-deterioration permeability were further plotted, the contribution ratio of chemical deterioration to physical deterioration was calculated to be 97:3, and it was determined that the decrease in separation performance was almost entirely due to chemical deterioration.

<実施例2>
 実施例1と同じ逆浸透膜エレメントを実施例1と同じ条件で評価した。ただし、超純水製造プラントで生産水の水質悪化傾向が観察されたため、使用中の逆浸透膜エレメントをベッセルから抜き出し、図2に示すように逆浸透膜エレメント1本を圧力容器に装填の上、性能評価装置で分離性能の測定に供した。ただし、透過水は、図4に示すように圧力容器の透過水配管からチューブを通し、逆浸透膜エレメントの透過水集水管内の透過水を採水した。集水管内の供給水側から濃縮水側までの複数の位置で採水した透過水の電気伝導度を測定し、塩化ナトリウム濃度、硫酸マグネシウム濃度と電気伝導度の関係から、それぞれの濃度を求めた。
Example 2
The same reverse osmosis membrane element as in Example 1 was evaluated under the same conditions as in Example 1. However, since a tendency for the quality of the produced water to deteriorate was observed in an ultrapure water production plant, the reverse osmosis membrane element in use was removed from the vessel, and one reverse osmosis membrane element was loaded into a pressure vessel as shown in Figure 2, and the separation performance was measured using a performance evaluation device. However, as shown in Figure 4, the permeated water was passed through a tube from the permeated water piping of the pressure vessel, and the permeated water was sampled from the permeated water collection pipe of the reverse osmosis membrane element. The electrical conductivity of the permeated water sampled at multiple positions in the collection pipe from the feed water side to the concentrated water side was measured, and the sodium chloride concentration and magnesium sulfate concentration were calculated from the relationship between the concentration and electrical conductivity.

 結果を図9に示す。この結果に基づいて、実施例1と同様に、ただし、長さ方向に計算した分離性能変化率、および、図8と同様の方法で、各ポジションでの寄与率を算出した結果を図10、図11に示す。これらの結果から、先頭と後方での硫酸マグネシウムの分離性能変化率が小さく、物理劣化の発生は軽微であると判断された。 The results are shown in Figure 9. Based on these results, the rate of change in separation performance was calculated in the length direction in the same manner as in Example 1, and the contribution rate at each position was calculated in the same manner as in Figure 8, and these results are shown in Figures 10 and 11. From these results, it was determined that the rate of change in separation performance of magnesium sulfate at the front and rear was small, and that the occurrence of physical deterioration was minor.

 以上より、逆浸透膜エレメントの劣化の主要因が化学劣化であると診断された。プラントの薬品使用工程をチェックしたところ、原水の殺菌工程で添加されている次亜塩素酸ナトリウムが所定量より過剰に添加されていた記録があり、原水に漏れ出していたことが推定された。そのため、速やかに薬品添加工程の運転管理を改善し、プラントの重大トラブルを回避することができ、造水を継続することができた。  Based on the above, it was determined that the main cause of deterioration of the reverse osmosis membrane elements was chemical degradation. When the plant's chemical usage process was checked, records showed that sodium hypochlorite had been added in excess of the prescribed amount in the raw water sterilization process, and it was presumed that it had leaked into the raw water. As a result, the operational management of the chemical addition process was quickly improved, which allowed the plant to avoid serious trouble and continue producing fresh water.

<実施例3>
 定期的に熱水殺菌を実施している純水製造プラントで生産水の水質悪化傾向が観察されたため、使用中の逆浸透膜エレメントをベッセルから抜き出し、逆浸透膜エレメント1本を逆浸透膜エレメント評価装置に装填した。
Example 3
At a pure water manufacturing plant where hot water sterilization is performed periodically, a tendency for the quality of the produced water to deteriorate was observed. Therefore, a reverse osmosis membrane element that was in use was removed from a vessel, and one reverse osmosis membrane element was loaded into a reverse osmosis membrane element evaluation device.

 実施例1と同様の方法で、透過水の塩化ナトリウム濃度と硫酸マグネシウム濃度を求めた結果、塩化ナトリウムの除去率は98.50%(透過率1.50%)、硫酸マグネシウムの除去率は98.93%(透過率1.07%)であった。なお、同条件で測定したこの逆浸透膜エレメントの生産時の性能は、塩化ナトリウムの除去率が99.82%(透過率0.18%)、硫酸マグネシウムの除去率が99.98%(透過率0.02%)であり、分離性能の低下率は、それぞれ、初期比の8.4倍と59.2倍であり、塩化ナトリウム分離性能の低下率が5倍以上と大きく、さらに、硫酸マグネシウム分離性能の低下率が極めて大きかったことから、少なくとも物理劣化が主要因であるという兆候を確認した。 The sodium chloride and magnesium sulfate concentrations of the permeate were determined using the same method as in Example 1, and the sodium chloride removal rate was 98.50% (transmittance 1.50%) and the magnesium sulfate removal rate was 98.93% (transmittance 1.07%). The performance of this reverse osmosis membrane element measured under the same conditions as production was 99.82% (transmittance 0.18%) for sodium chloride removal rate and 99.98% (transmittance 0.02%) for magnesium sulfate removal rate. The rates of decline in separation performance were 8.4 and 59.2 times the initial values, respectively. The rate of decline in sodium chloride separation performance was large, at least 5 times, and the rate of decline in magnesium sulfate separation performance was extremely large, confirming at least indications that physical deterioration was the main cause.

 さらに、化学劣化の関係式として、予め、逆浸透膜を次亜塩素酸に浸漬して強制的に化学劣化させた膜を用いて作成した塩化ナトリウムと硫酸マグネシウムの分離性能(透過率)に基づき、塩化ナトリウムと硫酸マグネシウムの透過率の関係式(1)を作成した。また、物理劣化の関係式としては、傷が大きくなるにつれて供給水が漏れによって微量混合していったと想定して得られる塩化ナトリウムと硫酸マグネシウムの透過率の関係式(2)を作成した。それぞれの関係式を図12に、さらに、初期(劣化前)と劣化後の透過率をプロットしたところ、化学劣化と物理劣化の寄与率は、21:79と計算され、物理劣化が主要因の分離性能低下であると判断された。 Furthermore, as a relational equation for chemical deterioration, a relational equation (1) for the permeability of sodium chloride and magnesium sulfate was created based on the separation performance (permeability) of sodium chloride and magnesium sulfate created using a reverse osmosis membrane that had been forcibly chemically deteriorated by first immersing it in hypochlorous acid. Furthermore, as a relational equation for physical deterioration, a relational equation (2) for the permeability of sodium chloride and magnesium sulfate was created, which was obtained by assuming that as the damage became larger, the supply water leaked and mixed in small amounts. When each of these relational equations was plotted in Figure 12, and the initial (before deterioration) and post-deterioration permeability were plotted, the contribution ratio of chemical deterioration to physical deterioration was calculated to be 21:79, and it was determined that physical deterioration was the main cause of the decline in separation performance.

<実施例4>
 実施例3と同じ逆浸透膜エレメントを実施例2と同じ条件で評価し、逆浸透膜エレメントの透過水集水管内の透過水を採取した。透過水集水管内の供給水側から濃縮水側までの複数の位置で採水した透過水の電気伝導度を測定し、塩化ナトリウム濃度、硫酸マグネシウム濃度と電気伝導度の関係から、それぞれの濃度を求めた。
Example 4
The same reverse osmosis membrane element as in Example 3 was evaluated under the same conditions as in Example 2, and the permeated water was sampled from the permeated water collection pipe of the reverse osmosis membrane element. The electrical conductivity of the permeated water sampled at multiple positions in the permeated water collection pipe from the feed water side to the concentrated water side was measured, and the sodium chloride concentration and magnesium sulfate concentration were calculated from the relationship between the concentration and electrical conductivity.

 結果を図13に示す。この結果に基づいて、実施例1と同様に、ただし、長さ方向に計算した分離性能変化率、および、図12と同様の方法で、各ポジションでの寄与率を算出した結果を図14、図15に示す。図14から、先頭よりも後方での硫酸マグネシウムの分離性能変化率が大きく、化学劣化も発生しているが物理劣化も発生、特に300mm~700mmの中央部分の物理劣化が著しく大きいと判断された。さらに、図15で示されるように、300mm~700mmの中央部分において、物理劣化の発生が主体であると判断された。 The results are shown in Figure 13. Based on these results, the rate of change in separation performance was calculated in the length direction in the same way as in Example 1, and the contribution rate at each position was calculated in the same way as in Figure 12, and these results are shown in Figures 14 and 15. From Figure 14, it was determined that the rate of change in separation performance of magnesium sulfate was greater at the rear than at the front, and that while chemical degradation was occurring, physical degradation was also occurring, with physical degradation being particularly significant in the central portion from 300 mm to 700 mm. Furthermore, as shown in Figure 15, it was determined that physical degradation was occurring primarily in the central portion from 300 mm to 700 mm.

 以上より、逆浸透膜エレメントの性能劣化要因として、物理劣化の寄与が大きいと診断された。プラントの運転方法として、熱水殺菌工程をチェックしたところ、熱水殺菌工程の冷却時、プラント配管内水温度が35℃まで下がってから、25℃冷却水を導入することになっていたが、誤ってプラント配管内水温40℃で25℃冷却水を導入していたことが判明した。35℃以上の水温から急激な冷却を実施したため分離膜面にシワが発生し物理劣化が発生したと推察された。速やかに熱水殺菌工程の運転方法を改善し、影響を受けた逆浸透膜レメントを交換することでプラントの重大トラブルを回避することができ、造水を継続することができた。  Based on the above, it was determined that physical deterioration was a major factor in the deterioration of the performance of the reverse osmosis membrane elements. When the hot water sterilization process was checked as a part of the plant's operating method, it was discovered that when cooling during the hot water sterilization process, 25°C cooling water was to be introduced only after the water temperature in the plant's piping had dropped to 35°C, but 25°C cooling water had mistakenly been introduced when the water temperature in the plant's piping was 40°C. It was presumed that sudden cooling from a water temperature of over 35°C had caused wrinkles on the separation membrane surface, resulting in physical deterioration. By quickly improving the operating method of the hot water sterilization process and replacing the affected reverse osmosis membrane elements, the plant was able to avoid serious trouble and continue producing water.

<実施例5>
 超純水製造プラントの定期点検で、使用中の逆浸透膜エレメントをベッセルから抜き出し、実施例1と同様の方法で、透過水集水管内の複数の位置の透過水の塩化ナトリウム濃度と硫酸マグネシウム濃度を求めた結果、塩化ナトリウムの除去率は99.37%(透過率0.63%)、硫酸マグネシウムの除去率は99.93%(透過率0.07%)であった。なお、同条件で測定したこの逆浸透膜エレメントの生産時の性能は、塩化ナトリウムの除去率が99.80%(透過率0.20%)、硫酸マグネシウムの除去率が99.98%(透過率0.02%)であり、分離性能の低下率は、それぞれ、初期比の3.1倍と3.5倍であり、塩化ナトリウム分離性能の低下率に対して硫酸マグネシウム分離性能の低下率も大きく違わなかったことから、少なくとも化学劣化が主要因であるという兆候を確認した。
Example 5
During a periodic inspection of an ultrapure water production plant, a reverse osmosis membrane element in use was removed from the vessel, and the sodium chloride and magnesium sulfate concentrations of the permeate at multiple positions in the permeate collection pipe were determined in the same manner as in Example 1. As a result, the sodium chloride removal rate was 99.37% (transmittance 0.63%) and the magnesium sulfate removal rate was 99.93% (transmittance 0.07%). Note that the performance of this reverse osmosis membrane element as produced, measured under the same conditions, was a sodium chloride removal rate of 99.80% (transmittance 0.20%) and a magnesium sulfate removal rate of 99.98% (transmittance 0.02%), and the rates of decline in separation performance were 3.1 and 3.5 times the initial rates, respectively, and the rate of decline in magnesium sulfate separation performance was not significantly different from the rate of decline in sodium chloride separation performance, confirming at least indications that chemical degradation was the main cause.

 さらに、実施例1と同様、図16に初期(劣化前)と劣化後の透過率をプロットしたところ、化学劣化と物理劣化の寄与率は、90:10と計算され、化学劣化が主要因の分離性能低下であると判断された。 Furthermore, similar to Example 1, when the initial (before deterioration) and post-deterioration transmittances were plotted in Figure 16, the contribution ratio of chemical deterioration to physical deterioration was calculated to be 90:10, and it was determined that chemical deterioration was the main cause of the decrease in separation performance.

<実施例6>
 さらに、実施例5と同じ逆浸透膜エレメントを実施例2と同じ条件で評価し、逆浸透膜エレメントの透過水集水管内の透過水を採取した。透過水集水管内の供給水側から濃縮水側までの複数の位置で採取した透過水の電気伝導度を測定し、塩化ナトリウム濃度、硫酸マグネシウム濃度と電気伝導度の関係から、それぞれの濃度を求めた。
Example 6
Furthermore, the same reverse osmosis membrane element as in Example 5 was evaluated under the same conditions as in Example 2, and the permeated water was sampled from the permeated water collection pipe of the reverse osmosis membrane element. The electrical conductivity of the permeated water sampled at multiple positions from the feed water side to the concentrated water side in the permeated water collection pipe was measured, and the sodium chloride concentration and magnesium sulfate concentration were calculated from the relationship between the concentration and electrical conductivity.

 結果を図17に示す。この結果に基づいて、実施例1と同様に、ただし、長さ方向に計算した分離性能変化率、および、図16と同様の方法で、各ポジションでの寄与率を算出した結果を図18、図19に示す。これらの結果からも、化学劣化が主要因であることと、局所的ではなく、全体的に劣化が発生していることを確認した。 The results are shown in Figure 17. Based on these results, the rate of change in separation performance was calculated in the length direction in the same manner as in Example 1, and the contribution rate at each position was calculated in the same manner as in Figure 16, and these results are shown in Figures 18 and 19. These results also confirmed that chemical deterioration was the main cause, and that deterioration occurred overall, not locally.

<実施例7>
 超純水製造プラントの生産水の水質悪化が顕在化したため、使用中の逆浸透膜エレメントをベッセルから抜き出し、実施例1と同様の方法で、透過水集水管内の複数の位置の透過水の塩化ナトリウム濃度と硫酸マグネシウム濃度を求めた結果、塩化ナトリウムの除去性能は88.24%(透過率11.76%)、硫酸マグネシウムの除去性能は95.95%(透過率4.05%)であった。なお、同条件で測定したこの逆浸透膜エレメントの生産時の性能は、塩化ナトリウムの除去率が99.82%(透過率0.18%)、硫酸マグネシウムの除去率が99.98%(透過率0.02%)であり、分離性能の低下率は、それぞれ、初期比の65.3倍と225.2倍であり、塩化ナトリウム分離性能の低下率、硫酸マグネシウム分離性能の低下率ともに大きかったことから、主要因を判定するのは困難であった。
Example 7
Since deterioration of the water quality of the product water of the ultrapure water production plant became evident, the reverse osmosis membrane element in use was removed from the vessel, and the sodium chloride and magnesium sulfate concentrations of the permeate at multiple positions in the permeate collection pipe were determined in the same manner as in Example 1. As a result, the sodium chloride removal performance was 88.24% (transmittance 11.76%), and the magnesium sulfate removal performance was 95.95% (transmittance 4.05%). Note that the performance of this reverse osmosis membrane element measured under the same conditions as when it was produced was 99.82% (transmittance 0.18%) for sodium chloride removal and 99.98% (transmittance 0.02%) for magnesium sulfate removal, and the rates of decline in separation performance were 65.3 and 225.2 times the initial rates, respectively. Since the rates of decline in both sodium chloride separation performance and magnesium sulfate separation performance were large, it was difficult to determine the main cause.

 そこで、実施例1と同様、図20に、初期(劣化前)と劣化後の透過率をプロットしたところ、化学劣化と物理劣化の寄与率は、67:33と計算され、化学劣化と物理劣化の両方が要因であり、化学劣化の寄与の方がやや大きい分離性能低下であると判断された。 Similar to Example 1, when the initial (before deterioration) and post-deterioration transmittances were plotted in Figure 20, the contribution ratio of chemical deterioration to physical deterioration was calculated to be 67:33, and it was determined that both chemical and physical deterioration were factors, with the contribution of chemical deterioration being slightly greater in the deterioration of separation performance.

<実施例8>
 さらに、実施例7と同じ逆浸透膜エレメントを実施例2と同じ条件で評価し、逆浸透膜エレメントの透過水集水管内の透過水を採取した。透過水集水管内の供給水側から濃縮水側までの複数の位置で採取した透過水の電気伝導度を測定し、塩化ナトリウム濃度、硫酸マグネシウム濃度と電気伝導度の関係から、それぞれの濃度を求めた。
Example 8
Furthermore, the same reverse osmosis membrane element as in Example 7 was evaluated under the same conditions as in Example 2, and the permeated water was sampled from the permeated water collection pipe of the reverse osmosis membrane element. The electrical conductivity of the permeated water sampled at multiple positions in the permeated water collection pipe from the feed water side to the concentrated water side was measured, and the sodium chloride concentration and magnesium sulfate concentration were calculated from the relationship between the concentration and electrical conductivity.

 結果を図21に示す。この結果に基づいて、実施例1と同様に、ただし、長さ方向に計算した分離性能変化率、および、図20と同様の方法で、各ポジションでの寄与率を算出した結果を図22、図23に示す。図22から、先頭よりも後方での硫酸マグネシウム分離性能の変化率が大きく、後方位置での物理劣化の寄与がやや大きいもの比較的均一に物理劣化と化学劣化が生じていると判断された。さらに、図23に示されるように、後方位置の中でも700mm付近で物理劣化が著しく大きく、解体調査において、後方位置700mm付近における物理劣化の要因調査に注力する方針を立てた。 The results are shown in Figure 21. Based on these results, the rate of change in separation performance was calculated in the lengthwise direction in the same manner as in Example 1, and the contribution rate at each position was calculated in the same manner as in Figure 20, and these results are shown in Figures 22 and 23. From Figure 22, it was determined that the rate of change in magnesium sulfate separation performance was greater at the rear than at the front, and that although the contribution of physical deterioration at the rear positions was somewhat greater, physical deterioration and chemical deterioration occurred relatively uniformly. Furthermore, as shown in Figure 23, physical deterioration was significantly greater at around 700 mm in the rear positions, and it was decided to focus on investigating the causes of physical deterioration at the rear positions of around 700 mm in the dismantling investigation.

 後日、劣化要因の確認のため逆浸透膜エレメントを解体し、膜表面を観察したところ、膜全面に結晶性の付着物が存在しており、膜を染色した結果からも析出した結晶性の塩によって膜全面に傷が発生したと推定された。 Later, the reverse osmosis membrane element was dismantled to confirm the cause of deterioration, and the membrane surface was observed. Crystalline deposits were found all over the membrane, and staining of the membrane suggested that scratches had occurred all over the membrane due to precipitated crystalline salt.

<比較例1>
 実施例1に示すように、超純水製造プラントで生産水の水質悪化傾向が観察されたため、使用中の逆浸透膜エレメントをベッセルから抜き出し、図2に示すように逆浸透膜エレメント1本を圧力容器に装填の上、性能評価装置で分離性能の測定に供した。
<Comparative Example 1>
As shown in Example 1, a tendency for the quality of the produced water to deteriorate was observed in an ultrapure water production plant, so a reverse osmosis membrane element in use was removed from a vessel, and one reverse osmosis membrane element was loaded into a pressure vessel as shown in FIG. 2, and the separation performance was measured using a performance evaluation device.

 純水に塩化ナトリウムを溶解して1500mg/Lの濃度の試験水を調製し、供給圧力1.5MPa、濃縮水流量80L/分、水温25℃、被処理水pH7で運転し、圧力容器の透過水を獲得した。透過水7を取り出し、電気伝導度を測定し、塩化ナトリウム濃度と電気伝導度の関係から、濃度を求めた。結果、塩化ナトリウムの除去率は98.80%(透過率1.20%)であった。なお、同条件で測定したこの逆浸透膜エレメントの生産時の塩化ナトリウム除去率は99.74%(透過率0.26%)であり、分離性能が4.6倍低下していることが判ったが、化学劣化なのか物理劣化なのかは判らず、トラブルに対する適切な対策を立てられなかった。 Sodium chloride was dissolved in pure water to prepare test water with a concentration of 1500 mg/L. The system was operated with a supply pressure of 1.5 MPa, a concentrated water flow rate of 80 L/min, a water temperature of 25°C, and a pH of 7 for the treated water, and permeated water was obtained from the pressure vessel. Permeated water 7 was taken out and its electrical conductivity was measured, and the concentration was calculated from the relationship between sodium chloride concentration and electrical conductivity. As a result, the sodium chloride removal rate was 98.80% (transmittance 1.20%). The sodium chloride removal rate of this reverse osmosis membrane element at the time of production, measured under the same conditions, was 99.74% (transmittance 0.26%), indicating that the separation performance had decreased by 4.6 times. However, it was not clear whether this was due to chemical or physical deterioration, and appropriate measures to deal with the problem could not be taken.

 そこで、手間をかけてこの逆浸透膜エレメントを解体し、解体した膜を染色したが、膜面に目立った傷はなく、劣化の主要因が物理劣化にあると考えることは出来なかった。さらに、逆浸透膜片をアルカリ水溶液とピリジンを混合した溶液に浸漬したところ、着色が認められ、酸化劣化が発生していることが確認され、劣化の主要因は化学劣化であると結論づけられた。しかし、化学劣化と物理劣化の寄与率まで推定することは出来なかった。 So, they took the time to dismantle the reverse osmosis membrane element and dyed the membrane, but there were no noticeable scratches on the membrane surface, and it was not possible to conclude that physical deterioration was the main cause of the deterioration. Furthermore, when a piece of the reverse osmosis membrane was immersed in a solution containing a mixture of an alkaline aqueous solution and pyridine, coloring was observed, confirming the occurrence of oxidative deterioration, and it was concluded that chemical deterioration was the main cause of the deterioration. However, they were unable to estimate the contribution ratio between chemical and physical deterioration.

<比較例2>
 実施例3に示すように、定期的に熱水殺菌を実施している純水製造プラントで生産水の水質悪化傾向が観察されたため、使用中の逆浸透膜エレメントをベッセルから抜き出し、逆浸透膜エレメント1本を逆浸透膜エレメント評価装置に装填した。
<Comparative Example 2>
As shown in Example 3, a tendency for the quality of the produced water to deteriorate was observed in a pure water production plant where hot water sterilization was performed periodically, so a reverse osmosis membrane element that was in use was removed from a vessel, and one reverse osmosis membrane element was loaded into a reverse osmosis membrane element evaluation device.

 比較例1と同様の方法で、塩化ナトリウムの除去性能を測定した結果、塩化ナトリウムの除去率は98.50%(透過率1.50%)、硫酸マグネシウムの除去率は98.93%(透過率1.07%)であった。なお、同条件で測定したこの逆浸透膜エレメントの生産時の塩化ナトリウムの除去率は99.82%(透過率0.18%)であり、分離性能が8.4倍低下していることが判ったが、化学劣化なのか物理劣化なのかは判らず、トラブルに対する適切な対策を立てられなかった。 The sodium chloride removal performance was measured using the same method as in Comparative Example 1, and the sodium chloride removal rate was 98.50% (transmittance 1.50%), and the magnesium sulfate removal rate was 98.93% (transmittance 1.07%). Note that the sodium chloride removal rate of this reverse osmosis membrane element measured under the same conditions as at the time of production was 99.82% (transmittance 0.18%), indicating that the separation performance had decreased by 8.4 times. However, it was not possible to determine whether this was chemical or physical degradation, and appropriate measures to address the problem could not be taken.

 そこで、手間をかけてこの逆浸透膜エレメントを解体したところ、膜面のしわが確認されると共に、解体した膜を染色したところ、膜面に多数の傷が確認されたため、大きな物理劣化が発生していることは確認できたが、化学劣化の発生有無は判断できなかった。さらに、逆浸透膜片をアルカリ水溶液とピリジンを混合した溶液に浸漬したところ、着色が認められ、酸化劣化が発生していることが確認され、性能低下は化学劣化と物理劣化の両方であると結論づけられた。しかし、化学劣化と物理劣化の寄与率まで推定することは出来なかった。 So, after going to the trouble of dismantling the reverse osmosis membrane element, wrinkles were found on the membrane surface, and when the dismantled membrane was stained, numerous scratches were found on the membrane surface, confirming that significant physical deterioration had occurred, but it was not possible to determine whether chemical deterioration had also occurred. Furthermore, when a piece of the reverse osmosis membrane was immersed in a solution made up of a mixture of an alkaline aqueous solution and pyridine, coloring was observed, confirming the occurrence of oxidative deterioration, and it was concluded that the decline in performance was due to both chemical and physical deterioration. However, it was not possible to estimate the contribution ratios of chemical and physical deterioration.

<比較例3> 
 実施例5に示すように、超純水製造プラントの定期点検で、使用中の逆浸透膜エレメントをベッセルから抜き出し、逆浸透膜エレメント1本を逆浸透膜エレメント評価装置に装填した。
<Comparative Example 3>
As shown in Example 5, during regular inspection of an ultrapure water production plant, a reverse osmosis membrane element in use was removed from a vessel, and one reverse osmosis membrane element was loaded into a reverse osmosis membrane element evaluation device.

 比較例1と同様の方法で、塩化ナトリウムの除去性能を測定した結果、塩化ナトリウムの除去率は98.50%(透過率1.50%)であった。なお、同条件で測定したこの逆浸透膜エレメントの生産時の塩化ナトリウム除去率は99.82%(透過率0.18%)であり、分離性能が3.1倍低下していることが判ったが、化学劣化なのか物理劣化なのかは判らず、トラブルに対する適切な対策を立てられなかった。 The sodium chloride removal performance was measured using the same method as in Comparative Example 1, and the sodium chloride removal rate was 98.50% (transmittance 1.50%). Note that the sodium chloride removal rate of this reverse osmosis membrane element at the time of production, measured under the same conditions, was 99.82% (transmittance 0.18%), indicating that the separation performance had decreased by 3.1 times. However, it was not possible to determine whether this was chemical or physical degradation, and appropriate measures to address the problem could not be taken.

 そこで、手間をかけてこの逆浸透膜エレメントを解体したところ、外観に異常はなく、染色によっても膜面の傷もほとんどなく、物理劣化発生の兆候は確認されなかったため、化学劣化が主要因だと推定されたが、表面観察による原因究明には至らなかった。さらに、逆浸透膜片をアルカリ水溶液とピリジンを混合した溶液に浸漬したところ、着色が認められ、酸化劣化が発生していることが確認され、劣化の主要因は化学劣化であると結論づけられた。しかし、化学劣化と物理劣化の寄与率まで推定することは出来なかった。  So, after going to the trouble of dismantling the reverse osmosis membrane element, they found nothing abnormal in appearance, and dyed the membrane surface to have had almost no scratches, and no signs of physical deterioration were found, so it was assumed that chemical deterioration was the main cause, but surface observations were unable to determine the cause. Furthermore, when a piece of the reverse osmosis membrane was immersed in a solution made up of a mixture of an alkaline aqueous solution and pyridine, coloring was observed, confirming the occurrence of oxidative deterioration, and it was concluded that chemical deterioration was the main cause of deterioration. However, it was not possible to estimate the contribution ratio between chemical and physical deterioration.

<比較例4>
 超純水製造プラントの生産水の水質悪化が顕在化したため、使用中の逆浸透膜エレメントをベッセルから抜き出し、逆浸透膜エレメント1本を逆浸透膜エレメント評価装置に装填した。
<Comparative Example 4>
Since deterioration in the quality of water produced at an ultrapure water manufacturing plant became evident, a reverse osmosis membrane element in use was removed from a vessel, and one reverse osmosis membrane element was loaded into a reverse osmosis membrane element evaluation device.

 実施例1と同様の方法で、透過水集水管内の複数の位置の透過水の塩化ナトリウム濃度を求めた結果、塩化ナトリウムの除去率は88.24%(透過率11.76%)であった。なお、同条件で測定したこの逆浸透膜エレメントの生産時の性能は、塩化ナトリウム除去率が99.82%(透過率0.18%)であり、分離性能が65.3倍と低下していることが判ったが、化学劣化なのか物理劣化なのかは判らず、トラブルに対する適切な対策を立てられなかった。 The sodium chloride concentration of the permeate at multiple positions in the permeate collection pipe was determined using a method similar to that used in Example 1, and the sodium chloride removal rate was 88.24% (transmittance 11.76%). The performance of this reverse osmosis membrane element measured under the same conditions as at the time of production was a sodium chloride removal rate of 99.82% (transmittance 0.18%), indicating that the separation performance had decreased by 65.3 times. However, it was not clear whether this was chemical or physical degradation, and appropriate measures to address the problem could not be taken.

 そこで、手間をかけてこの逆浸透膜エレメントを解体し、膜表面を観察したところ、膜全面に結晶性の付着物が存在しており、膜を染色した結果からも析出した結晶性の塩によって膜全面に大量の傷が発生したと推定された。ただし、この結果からは化学劣化の有無は判断できなかった。さらに、逆浸透膜片をアルカリ水溶液とピリジンを混合した溶液に浸漬したところ、着色が認められず、酸化劣化の発生を検知することは出来なかった。 So, after going to the trouble of dismantling the reverse osmosis membrane element and observing the membrane surface, they found crystalline deposits all over the membrane, and dyeing the membrane suggested that precipitated crystalline salts had caused numerous scratches all over the membrane. However, this result did not allow them to determine whether chemical deterioration had occurred. Furthermore, when a piece of the reverse osmosis membrane was immersed in a solution made up of a mixture of an alkaline aqueous solution and pyridine, no coloring was observed, and it was not possible to detect the occurrence of oxidative deterioration.

 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the claims, and it is understood that these also naturally fall within the technical scope of the present invention. Furthermore, the components in the above embodiments may be combined in any manner as long as it does not deviate from the spirit of the invention.

 なお、本出願は、2023年6月26日出願の日本特許出願(特願2023-104395)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Patent Application No. 2023-104395) filed on June 26, 2023, the contents of which are incorporated by reference into this application.

1:逆浸透膜
2:透過水流路材
3:被処理水流路材(ネットスペーサー)
4:透過水集水管
5:テレスコープ防止板
6,6’:被処理水
7,7’:透過水
8:濃縮水
9:圧力容器
10:チューブ
11:電導度計
12:透過水集水管コネクタ
21:中空糸膜
22:ポッティング
23:ろ過水側キャップ
24:逆洗水排出口
25:供給水排出口
26:ろ過水出口ノズル
27:供給水入口ノズル
28:供給水入口
1: reverse osmosis membrane 2: permeate flow path material 3: treated water flow path material (net spacer)
4: Permeate water collection pipe 5: Telescope prevention plate 6, 6': Water to be treated 7, 7': Permeate water 8: Concentrated water 9: Pressure vessel 10: Tube 11: Conductivity meter 12: Permeate water collection pipe connector 21: Hollow fiber membrane 22: Potting 23: Filtrate water side cap 24: Backwash water outlet 25: Feed water outlet 26: Filtrate water outlet nozzle 27: Feed water inlet nozzle 28: Feed water inlet

Claims (8)

 被処理水から透過水を得るための集水孔を複数有する透過水集水管を備えた分離膜モジュールの状態診断方法であって、
 2種類以上の溶質を含有する試験水を分離膜モジュールに供給し、前記試験水は、前記2種類以上の溶質として、価数の異なるイオン性物質、若しくは、分子量が異なる2種以上の物質を含む、または、1種類の溶質を含有する試験水に対して、前記1種類の溶質の価数を変更する若しくは分子量を変更することにより個別に前記分離膜モジュールに供給される前記2種類以上の溶質とし、
 前記透過水集水管内の少なくとも2箇所以上の複数位置で透過水を採取し、
 各採水位置で採取した透過水中の溶質濃度と前記採水位置よりも上流側の透過水に起因する溶質濃度との差分に基づき求める前記少なくとも2種類の溶質の各分離性能同士を比較することによって、
 分離膜モジュール内の透過水集水管長さ方向での異常の種類、異常の程度、異常の発生位置のいずれかを判定することを特徴とする分離膜モジュールの状態診断方法。
A method for diagnosing the state of a separation membrane module having a permeate collection pipe having a plurality of water collection holes for obtaining permeate from water to be treated, comprising:
Test water containing two or more types of solutes is supplied to a separation membrane module, and the test water contains, as the two or more types of solutes, ionic substances with different valences or two or more types of substances with different molecular weights, or the two or more types of solutes are individually supplied to the separation membrane module by changing the valence or molecular weight of the one type of solute in test water containing the one type of solute;
Permeate water is collected at at least two or more positions in the permeate collection pipe;
By comparing the separation performances of the at least two types of solutes, which are calculated based on the difference between the solute concentration in the permeated water collected at each water collection position and the solute concentration due to the permeated water upstream of the water collection position,
A method for diagnosing the condition of a separation membrane module, comprising determining the type of abnormality, the degree of abnormality, or the location of the abnormality in the longitudinal direction of a permeate collection pipe in a separation membrane module.
 前記分離膜モジュールを薬品に接触させて前記少なくとも2種類の溶質の分離性能が悪化する化学的劣化プロファイルと分離膜モジュール供給側に物理的な傷をつけて前記少なくとも2種類の溶質の分離性能が低下する物理的劣化プロファイルを予め作成し、
 前記各採水位置で採取した透過水中の溶質濃度と前記採水位置よりも上流側の透過水に起因する溶質濃度との差分に基づき求める前記少なくとも2種類の溶質の各分離性能を取得し、
 前記化学的劣化プロファイルと、前記物理的劣化プロファイルと、前記少なくとも2種類の溶質の各分離性能から、分離膜モジュール内の透過水集水管長さ方向での化学劣化と物理劣化の寄与率を算出し、少なくとも劣化要因、劣化位置および劣化範囲のいずれかを判定する請求項1に記載の分離膜モジュールの状態診断方法。
A chemical deterioration profile in which the separation performance of the at least two solutes is deteriorated by contacting the separation membrane module with a chemical and a physical deterioration profile in which the separation performance of the at least two solutes is deteriorated by physically scratching the supply side of the separation membrane module are prepared in advance;
obtaining a separation performance for each of the at least two types of solutes based on a difference between a solute concentration in the permeated water sampled at each of the water sampling positions and a solute concentration resulting from the permeated water upstream of the water sampling positions;
2. The method for diagnosing the condition of a separation membrane module according to claim 1, further comprising: calculating a contribution rate of chemical deterioration and physical deterioration in the longitudinal direction of a permeate collection pipe in a separation membrane module from the chemical deterioration profile, the physical deterioration profile, and the separation performance of each of the at least two types of solutes; and determining at least any one of the cause of deterioration, the location of deterioration, and the extent of deterioration.
 前記分離性能の比較を、透過水の濃度指標、濃度指標から換算される濃度、運転条件に基づいて換算される標準分離性能、運転データに基づいて計算される溶質透過係数に基づいて実施する請求項1または2に記載の分離膜モジュールの状態診断方法。 The separation membrane module condition diagnosis method according to claim 1 or 2, in which the comparison of separation performance is carried out based on the concentration index of the permeate, the concentration converted from the concentration index, the standard separation performance converted based on the operating conditions, and the solute permeability coefficient calculated based on the operating data.  前記価数が異なるイオン性物質が、少なくとも、1価の陽イオンで構成される物質と2価の陽イオンで構成される物質である、請求項1から3のいずれか1項に記載の分離膜モジュールの状態診断方法。 The separation membrane module condition diagnosis method according to any one of claims 1 to 3, wherein the ionic substances having different valences are at least a substance composed of monovalent cations and a substance composed of divalent cations.  前記価数が異なるイオン性物質が、少なくとも、1価の陰イオンで構成される物質と2価の陰イオンで構成される物質である、請求項1から3のいずれか1項に記載の分離膜モジュールの状態診断方法。 The separation membrane module condition diagnosis method according to any one of claims 1 to 3, wherein the ionic substances having different valences are at least a substance composed of monovalent anions and a substance composed of divalent anions.  前記透過水濃度指標が、電気伝導度、総溶解固形物濃度、TOC、屈折率、濁度、吸光度、発光光度、色度、IRスペクトル、質量分析スペクトル、イオンクロマトグラフィー、ICP発光質量分析法による無機物濃度、pHのいずれかである、請求項1から5のいずれか1項に記載の分離膜モジュールの状態診断方法。 The method for diagnosing the state of a separation membrane module according to any one of claims 1 to 5, wherein the permeate concentration indicator is any one of electrical conductivity, total dissolved solids concentration, TOC, refractive index, turbidity, absorbance, luminous intensity, chromaticity, IR spectrum, mass spectrometry spectrum, ion chromatography, inorganic concentration by ICP emission mass spectrometry, and pH.  前記透過水集水管内の少なくとも2箇所以上の複数位置で透過水を採取する方法が、前記透過集水管の内径より外径の小さい細いチューブを通して、前記分離膜モジュールの異なる位置の透過水を採水して透過水質を測定する透過水質測定によって透過水測定水質を測定する方法である請求項1から6のいずれか1項に記載の分離膜モジュールの状態診断方法。 The method for diagnosing the state of a separation membrane module according to any one of claims 1 to 6, wherein the method for collecting permeate water at at least two or more positions in the permeate water collection pipe is a method for measuring the permeate water quality by collecting permeate water at different positions in the separation membrane module through a thin tube having an outer diameter smaller than the inner diameter of the permeate water collection pipe and measuring the permeate water quality.  前記分離膜モジュールの使用前状態での前記試験水の分離性能を予め測定もしくは予測しておき、その値との乖離に基づいて分離膜モジュールの状態を判定する請求項1から7のいずれか1項に記載の分離膜モジュールの状態診断方法。 The separation membrane module condition diagnosis method according to any one of claims 1 to 7, in which the separation performance of the test water in the pre-use state of the separation membrane module is measured or predicted in advance, and the state of the separation membrane module is judged based on the deviation from that value.
PCT/JP2024/022961 2023-06-26 2024-06-25 Method for diagnosing state of separating membrane module Pending WO2025005078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023104395 2023-06-26
JP2023-104395 2023-06-26

Publications (1)

Publication Number Publication Date
WO2025005078A1 true WO2025005078A1 (en) 2025-01-02

Family

ID=93939114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/022961 Pending WO2025005078A1 (en) 2023-06-26 2024-06-25 Method for diagnosing state of separating membrane module

Country Status (1)

Country Link
WO (1) WO2025005078A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023020636A (en) * 2021-07-30 2023-02-09 東レ株式会社 Method of creating performance profile of separation membrane module, method of inspecting separation membrane module and water treatment device
WO2023100958A1 (en) * 2021-11-30 2023-06-08 東レ株式会社 State diagnosis method for separation membrane element
WO2023127810A1 (en) * 2021-12-27 2023-07-06 東レ株式会社 Diagnosis method for separation membrane module and deterioration diagnosis device for separation membrane module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023020636A (en) * 2021-07-30 2023-02-09 東レ株式会社 Method of creating performance profile of separation membrane module, method of inspecting separation membrane module and water treatment device
WO2023100958A1 (en) * 2021-11-30 2023-06-08 東レ株式会社 State diagnosis method for separation membrane element
WO2023127810A1 (en) * 2021-12-27 2023-07-06 東レ株式会社 Diagnosis method for separation membrane module and deterioration diagnosis device for separation membrane module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANIGUCHI, MASAHIDE ET AL.: "Boron reduction performance of reverse osmosis seawater desalination process", JOURNAL OF MEMBRANE SCIENCE, vol. 183, 2001, pages 259 - 267, XP055132966, DOI: 10.1016/S0376-7388(00)00596-2 *

Similar Documents

Publication Publication Date Title
EP2319612B1 (en) Method for testing membrane separation modules
Al-Ahmad et al. Biofuoling in RO membrane systems Part 1: Fundamentals and control
JP5079372B2 (en) Membrane separation method and membrane separation apparatus
JP6567274B2 (en) Method for analyzing contamination state of separation membrane, and method for evaluating water quality of filtration target water using the method
JP6679439B2 (en) Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method
Fujioka et al. Integrity of reverse osmosis membrane for removing bacteria: New insight into bacterial passage
Lidén et al. Integrity breaches in a hollow fiber nanofilter–Effects on natural organic matter and virus-like particle removal
Kramer et al. Quantifying defects in ceramic tight ultra-and nanofiltration membranes and investigating their robustness
Cran et al. Root cause analysis for membrane system validation failure at a full-scale recycled water treatment plant
JP7529132B2 (en) Method for diagnosing separation membrane module, and device for diagnosing deterioration of separation membrane module
US20250018343A1 (en) State diagnosis method for separation membrane element
CN112752604B (en) Method for inspecting separation membrane module
JP2003299937A (en) Performance evaluation method for reverse osmosis membrane element
JP7574710B2 (en) Water treatment device and water treatment method
JP2021006335A (en) Oxidation risk evaluation method of separation membrane in separation membrane plant and fresh water generator
WO2025005078A1 (en) Method for diagnosing state of separating membrane module
KR102218025B1 (en) Method and apparatus for inspection of polymeric membrane aging in water treatment process
JP2022156189A (en) Permeation side oxidant contact determination
JPWO2023127810A5 (en)
Brockmeyer et al. Evaluation of a disc tube methodology for nano-and ultrafiltration of natural dissolved organic matter (DOM)
JP7593509B2 (en) Method for evaluating oxidation risk of separation membrane, oxidation risk evaluation program, recording medium, and evaluation device
CN113083028B (en) Testing device and method for compatibility of water treatment chemicals and filtration membranes
Nasr El Sheikh et al. Reclamation of aqueous solution synthetically polluted with endocrine disturbing chemicals by commercial NF membrane
Camilleri-Rumbau et al. Forward Osmosis
Dang et al. Evaluation of apparatus for membrane cleaning tests

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2024540950

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24831938

Country of ref document: EP

Kind code of ref document: A1