WO2025023260A1 - Magnetic particles used for medication management - Google Patents
Magnetic particles used for medication management Download PDFInfo
- Publication number
- WO2025023260A1 WO2025023260A1 PCT/JP2024/026370 JP2024026370W WO2025023260A1 WO 2025023260 A1 WO2025023260 A1 WO 2025023260A1 JP 2024026370 W JP2024026370 W JP 2024026370W WO 2025023260 A1 WO2025023260 A1 WO 2025023260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formulation
- magnetic
- magnetic particles
- subject
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/06—Ferric oxide [Fe2O3]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/08—Ferroso-ferric oxide [Fe3O4]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
Definitions
- This disclosure relates to magnetic particles for use in medication management, their manufacturing method, and their applications.
- Drug efficacy depends on the patient's compliance with medication. Using a magnetic probe can improve compliance. Reasons for leftover medication include self-regulation, taking medication as needed, forgetting to take a dose, duplicate prescriptions, excessive prescription dates, and adjustments to topical medications.
- the present disclosure relates to a sensing magnetic probe that enables medication management.
- the magnetic probe of the present disclosure shows a magnetic response rate of 5 to 10 times by controlling the production of particles with irregular shapes and non-spherical shapes, even if they are relatively small.
- By using a magnetic probe containing the magnetic particles of the present disclosure it is possible to prevent self-regulation and forgetting to take medication, which are the causes of leftover medication.
- the present disclosure is as follows. (Item 1) Magnetic particles having a non-spherical shape. (Item 1B) The magnetic particle according to the preceding item, wherein the non-spherical shape is determined by images obtained by electron microscopy. (Item 1C) 13.
- Item 2 Item 11.
- Item 3 10.
- (Item 3B) 10 10.
- the magnetic particle of claim 1 wherein the particle size of the magnetic particle is measured by an image obtained by an electron microscope.
- Item 3C Item 11.
- a magnetic particle-containing ink comprising the magnetic particles according to any one of the preceding items or the magnetic particle aggregate according to any one of the preceding items.
- the magnetic particle-containing ink of any one of the preceding items further comprising a solvent, a surfactant, an additive or purified water.
- a method for producing a magnetic particle according to any one of the preceding items or a magnetic particle assembly according to any one of the preceding items comprising the steps of: a) forming nuclei by hydrolyzing a metal salt with water; b) adding a protective agent to form a protective agent around the core; and c) refluxing the cores with said protecting agent.
- a method for producing a magnetic particle according to any one of the preceding items or a magnetic particle assembly according to any one of the preceding items comprising the steps of: A method comprising the steps of: a') hydrolyzing a sample containing a metal salt; b') adding a protective agent to the hydrolyzate of a');c') refluxing the product obtained in b');d') optionally selecting and collecting desired magnetic particles or magnetic particle aggregates; and e') optionally classifying particles of a desired particle size.
- the method of any one of the preceding items, wherein the concentration of the metal salt is from 0.04 mol to 0.06 mol. (Item 18) 2.
- the metal salt comprises iron chloride, iron bromide, iron perchlorate or iron hydroxide.
- the hydrolysis is accomplished by adding water.
- the protecting agent comprises sodium acetate, sodium ascorbate, sodium malate, or sodium citrate.
- the moiety attached to the nucleus by the protecting agent is an acetate ion, an ascorbate ion, a malate ion or a citrate ion.
- (Item 22) The method of any one of the preceding items, wherein c') comprises stirring at 90°C to 100°C prior to said refluxing.
- (Item 23) A magnetic particle or magnetic particle collection produced by the method according to any one of the preceding items.
- (Item 24) A formulation comprising the magnetic particle according to any one of the preceding items, or the magnetic particle assembly according to any one of the preceding items, an active ingredient, and optionally an additive.
- (Item 25) The formulation of any one of the preceding claims, wherein the formulation is provided in the form of a tablet, capsule, caplet, pill, granule, or liquid. (Item 26) 10.
- a system for detecting medication ingestion comprising: A formulation according to any one of the preceding items; A sensing means for sensing the magnetic field of the formulation; and a detection means for detecting that a subject has taken the formulation based on the sensed magnetism.
- the detection means detects the amount of the formulation taken by the subject based on the sensed magnetism.
- the means for taking an action takes an action in response to determining that the subject has not taken the formulation at the predetermined time or that the subject has not taken the predetermined amount of the formulation; 11.
- the means for taking an action takes an action in response to determining that the subject has taken the formulation at the predetermined time or that the subject has taken the predetermined amount of the formulation;
- the system of any one of the preceding claims, wherein the action includes at least one of sending a message and storing medication information in association with a therapeutic effect.
- the formulation has information printed thereon by the magnetic particles, 13.
- a method for detecting ingestion, the formulation to be administered comprises a magnetic particle or a magnetic particle assembly as described in any one of the preceding items, or is a formulation as described in any one of the preceding items, the method comprising: placing a sensing means for sensing the magnetic field of the formulation around the subject; sensing the magnetic field of the formulation from within the subject with the sensing means; and detecting that the subject has ingested the formulation based on the sensed magnetism.
- (Item 34) determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation; The method of any one of the preceding items, comprising performing an action in response to determining that the subject has not taken the formulation at the predetermined time or that the subject has not taken the predetermined amount of the formulation.
- a program for detecting ingestion the program being executed in a computer system having a processor, the formulation to be administered comprising the magnetic particles or the magnetic particle assembly of any one of the preceding items, or the formulation of any one of the preceding items, the program comprising: receiving a signal representative of the magnetic properties of the formulation as sensed by sensing means disposed about the subject; and detecting that the subject has taken the formulation based on a signal representing the magnetism.
- the process comprises: determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation; 7.
- the program of claim 1 further comprising: performing an action in response to the determining.
- FIG. 1 shows a schematic diagram of a cross section of a particle having an irregular shape.
- FIG. 2 shows an example of a program for causing the processor unit to perform processing for detecting the taking of a medicine.
- FIG. 3 shows an SEM image of the magnetic particles produced in Example 1.
- FIG. 4 shows the relationship between the magnetic response rate and the particle size of the magnetic particles prepared in Example 1 and Comparative Example 1.
- FIG. 5 shows the relationship between the magnetic response rate and the sphericity of the magnetic particles prepared in Example 1 and Comparative Example 1.
- a microscope for example, an electron microscope such as a SEM (scanning electron microscope) or a TEM (transmission electron microscope)
- R is the surface area ratio
- d the D50 particle size
- ⁇ the particle density
- A is the BET specific surface area
- magnetic particles refers to particles having magnetism, such as ferromagnetic (Ferromagnetic, Fe, Ni , Co , etc.), ferrimagnetic (Ferrimagnetic, Fe2O3 , MnFe2O4 , BAO6Fe2O3, etc. ), paramagnetic (Paramagnetic, Al, Ti, Cu alloy, etc.), and superparamagnetic (Superparamagnetic, Fe3O4 , etc. ), and includes any particles having magnetism, regardless of the degree or type of magnetism .
- magnetism such as ferromagnetic (Ferromagnetic, Fe, Ni , Co , etc.), ferrimagnetic (Ferrimagnetic, Fe2O3 , MnFe2O4 , BAO6Fe2O3, etc. ), paramagnetic (Paramagnetic, Al, Ti, Cu alloy, etc.), and superparamagnetic (Superparamagnetic, Fe3O4 , etc. ), and includes any particles having
- Sizes can include, but are not limited to, about 1 nm to about 1000 nm, about 1 nm to about 800 nm, about 1 nm to about 600 nm, about 1 nm to about 400 nm, about 10 nm to about 1000 nm, about 10 nm to about 800 nm, about 10 nm to about 600 nm, about 10 nm to about 400 nm, and the like.
- iron-containing metal magnetic particles refers to magnetic particles that contain iron.
- the iron may be in the form of ions or salts.
- iron-containing metal oxide magnetic particles refers to magnetic particles that contain iron oxide (e.g., Fe2O3 and/or Fe3O4 ) .
- S is the two-dimensional projected area of the particle
- L is the two-dimensional projected perimeter.
- the two-dimensional projected area of the particle is obtained by calculating the area of the particle on the image from the acquired two-dimensional image of the particle.
- the two-dimensional projected perimeter is measured by measuring the acquired two-dimensional image of the particle, including notches such as edges.
- the circularity defined in this disclosure means the average value of the circularity calculated by measuring 500 particles randomly.
- the circularity is 1.0, it is a perfect sphere, and the lower the value, the more uneven the outer periphery is, and the higher the degree of irregularity.
- the circularity is preferably 0.6 or less.
- the "sphericity" is determined by observing a particle in a micrograph and calculating the sum of the circumference and the length of the depression on the particle surface according to the following formula.
- Sphericity (Circumference + Total Length of Indentations on Particle Surface)/Circumference
- an indentation is determined to exist if (R1-R2)/(R1) is 10% or more, as shown in Figure 1.
- R1 is the radius of an imaginary outer sphere inscribed in a non-spherical particle
- R2 is the radius of an imaginary inner sphere whose center is the center of the imaginary outer sphere and whose periphery passes through the point closest to the center of the indentation.
- the length of the cavity is calculated by R1-R2.
- the sphericity defined in this disclosure means the average sphericity value obtained by measuring 500 randomly selected particles. A sphericity of 1.0 indicates a perfect sphere, and the larger the value, the more irregular the outer periphery is, and the greater the degree of irregularity.
- particle size refers to the diameter of a particle
- the defined particle size range refers to the range of diameters of each single particle.
- the particle size of magnetic particles is measured from images obtained by an electron microscope such as a SEM (scanning electron microscope) or a TEM (transmission electron microscope). Unless otherwise specified, the particle size is determined by a SEM (scanning electron microscope).
- electron microscope refers to a microscope that uses a beam of accelerated electrons as a light source for a sample to provide a magnified image. Examples include, but are not limited to, SEM (scanning electron microscope) and TEM (transmission electron microscope). These electron microscopes can be used to measure particle size, circularity, sphericity, etc.
- magnetic particle aggregate means an aggregate of multiple magnetic particles.
- visible material refers to a material that can be seen with the naked eye and can be colored by adding it.
- visible materials include, but are not limited to, dyes and pigments.
- ink refers to a colored liquid or suspension for coloring a substance. It refers to a printing method in which ink is ejected from a jetting basic structure (architecture) such as inkjet architecture and sprayed onto a substance.
- a jetting basic structure such as inkjet architecture
- the term "core” refers to a basic substance that forms a particle.
- the core may be a metal or a metal oxide, and examples of the metal or metal oxide include iron, ferric oxide, or triiron tetroxide, and preferably ferric oxide. Since the present disclosure may be used in the pharmaceutical field, in this case, the core is preferably a pharma-ceutically acceptable substance, and is preferably a pharma-ceutically acceptable metal or metal oxide.
- metal salt refers to a salt of a metal ion with a free acid. Metal ions can be generated by adding water and hydrolyzing the salt. Examples of metal salts include, but are not limited to, iron chloride, iron bromide, iron perchlorate, and iron hydroxide.
- Hydrolysis is used herein to refer to a chemical reaction in which water reacts with a compound to produce another compound, which involves the cleavage of a chemical bond with the addition of hydrogen cations and hydroxide anions from the water.
- a compound to produce another compound, which involves the cleavage of a chemical bond with the addition of hydrogen cations and hydroxide anions from the water.
- the progress of the hydrolysis can be monitored by using an iron(III) ion titrant such as EDTA.
- protective agent refers to an agent for protecting the nuclei.
- a protective agent By using a protective agent, the size growth reaction of the nuclei can be stopped and the nuclei can be stabilized in the solvent.
- protective agents include, but are not limited to, sodium acetate, sodium ascorbate, sodium malate, and sodium citrate.
- the "protective substance” imparted by the “protective agent” refers to a reagent that, when added, can generate a protective substance for protecting the nucleus.
- protective substances include, but are not limited to, acetate ions, ascorbate ions, malate ions, and citrate ions.
- administration refers to dispensing an appropriate medication and giving it to a patient
- taking medication refers to a patient taking a medication
- magnetic includes all magnetic, paramagnetic and/or ferromagnetic elements.
- sensing means for sensing magnetism refers to means capable of sensing magnetism and/or changes in a magnetic field.
- the sensing means include magnetic sensors, and can be in the form of a necklace, an adhesive sheet (which can be a patch, a tape, etc.), a strap, clothing, underwear, a brassiere, a belt, suspenders, etc.
- the subject refers to an animal, such as a mammal (including a human), that has been or will be the target of treatment, observation, or experiment.
- the methods described herein may be useful for human therapy and/or veterinary applications.
- the subject is a mammal (or patient).
- the subject (or patient) is a human, a domestic animal (e.g., dogs and cats), a livestock animal (e.g., cows, horses, sheep, goats, and pigs), and/or a laboratory animal (e.g., mice, rats, hamsters, guinea pigs, pigs, rabbits, dogs, and monkeys).
- the subject (or patient) is a human.
- the present disclosure provides magnetic particles having a non-spherical shape.
- magnetic particles having a non-spherical shape By using magnetic particles having a non-spherical shape, magnetic responsiveness can be improved, and magnetic sensors can detect the magnetic particles with high sensitivity.
- the particle size of the magnetic particles of the present disclosure is about 1 nm to about 1000 nm, about 1 nm to about 800 nm, about 1 nm to about 600 nm, about 1 nm to about 400 nm, about 10 nm to about 1000 nm, about 10 nm to about 800 nm, about 10 nm to about 600 nm, or about 10 nm to about 400 nm, preferably 10 nm to 400 nm. It is preferable that the particle size is suitable for use in inkjet.
- the magnetic particles of the present disclosure are iron-containing metal magnetic particles or iron-containing metal oxide magnetic particles.
- the magnetic particles used in the present disclosure are preferably non-toxic to the human body.
- the circularity of the magnetic particles of the present disclosure is 0.9 or less, 0.8 or less, 0.7 or less, or 0.6 or less. Preferably, the circularity is 0.6 or less.
- the sphericity of the magnetic particles of the present disclosure is preferably 1.01 or more, 1.02 or more, 1.03 or more, 1.04 or more, 1.05 or more, 1.06 or more, 1.07 or more, 1.08 or more, 1.09 or more, or 1.1 or more. More preferably, the sphericity is 1.1 or more.
- the present disclosure provides a magnetic particle assembly including magnetic particles having a non-spherical shape for use in the present disclosure. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in ⁇ Magnetic Particles>.
- the content of the magnetic particles having a non-spherical shape of the present disclosure is 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100% of the total magnetic particles.
- the content of the magnetic particles having a non-spherical shape of the present disclosure is 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100%.
- it is 40% or more, or 50% or more.
- the ink of the present disclosure contains the magnetic particles or the magnetic particle aggregates of the present disclosure and a visible material. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in ⁇ Magnetic particles> and ⁇ Magnetic particle aggregates>.
- the ink of the present disclosure is for printing the magnetic particles or magnetic particle aggregates of the present disclosure onto the surface of a formulation by inkjet printing.
- information about the formulation such as a two-dimensional barcode, can be recorded.
- it can be printed on the surface of the formulation, it can also be applied to existing formulations.
- the ink of the present disclosure may further include a solvent, a surfactant, an additive, purified water, etc.
- the ink of the present disclosure contains a visible material, which makes it visible when printed with an inkjet.
- the inkjet of the present disclosure is selected from the group consisting of dyes, pigments, solvents, surfactants, additives, purified water, etc.
- the solvent used in this disclosure may include known solvents used in ink compositions.
- the solvent include alcohols such as ethanol, ethylene glycol, propylene glycol, and glycerin.
- the amount of the solvent added is preferably 0.5% to 50% by weight, and more preferably 20% to 45% by weight, in the composition.
- glycerin or propylene glycol is more preferred as the solvent. This is because these solvents are excellent as humectants and are easily available.
- the surfactant used in the present disclosure may include an edible surfactant.
- the surfactant adjusts the surface tension of the ink composition to an appropriate range, improving the ejection stability of the ink.
- examples of surfactants that can be used in the present invention include caffetannin, polyglycerin fatty acid ester, Quillaja saponin, propylene glycol fatty acid ester, lecithin, enzyme-treated lecithin, glycerin fatty acid ester, organic acid monoglyceride, amylose, barium chloride hydrate, sucrose fatty acid ester, sorbitan fatty acid ester, rosemary, sodium pyrophosphate, and the like.
- the surfactant may be used alone or in combination.
- the content of the surfactant in the composition is preferably 0.01% by weight to 0.5% by weight.
- the additives used in the present disclosure are various additives typically used in ink compositions, and may include edible additives.
- examples of such additives include chelating agents and antifungal agents.
- the amount of each of these in the composition is preferably 0.01% by weight to 0.5% by weight.
- chelating agents are preferred because they are effective in improving the dispersibility of edible pigments.
- examples of chelating agents include sodium hexametaphosphate and trisodium phosphate.
- additives include, but are not limited to, flavonoids, sodium carboxylate, calcium stearoyl lactylate lecithin, aerosil, potassium phosphate, sodium phosphate, polyvinyl, disodium hydrogen phosphate, potassium polyphosphate, tetrasodium pyrophosphate, sodium polyphosphate, guar gum, diacetyl tartaric acid monoglyceride, pectin, tamarind gum, xanthan gum, potassium metaphosphate, carboxymethylcellulose, citric acid, hydroxypropylcellulose, polyvinylpyrrolidone, sodium erythorbate, methylcellulose, and the like. These additives may be used alone or in combination.
- the content of the additive in the composition is preferably 0.05% to 11% by weight.
- the water used in this disclosure is preferably water of high purity, such as purified water or ion-exchanged water.
- the water content is preferably 20% to 65% by weight, and more preferably 40% to 60% by weight.
- the present disclosure provides a method for producing the magnetic particles of the present disclosure or the magnetic particle assembly of the present disclosure.
- the method for producing the magnetic particles of the present disclosure or the magnetic particle assembly of the present disclosure includes the steps of a) forming a nucleus by hydrolyzing a metal salt with water, b) forming a protective substance around the nucleus by adding a protective agent, and c) refluxing the nucleus having the protective agent. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in ⁇ Magnetic Particles>.
- the step of hydrolyzing the metal salt with water can be carried out by any method known in the art, and any method can be used as long as it is capable of forming nuclei.
- the protecting agent can be added by any method, and can usually be added by adding a solution of the protecting agent in a suitable reaction solvent.
- a solution of the protecting agent in a suitable reaction solvent it is believed that upon addition of the protective agent, the protective substance components contained in the protective agent interact with the nucleus and a protective substance is formed around the nucleus, which may be formed via covalent or non-covalent bonds (e.g., ionic bonds, hydrophobic bonds, etc.).
- refluxing the core with the protecting agent can typically be accomplished by heating a suitable reaction solvent to the reflux temperature.
- the present disclosure provides a method for producing a magnetic particle of the present disclosure, or a magnetic particle assembly of the present disclosure, comprising the steps of:
- the method includes the steps of a') hydrolyzing a sample containing a metal salt, b') adding a protective agent to the hydrolyzate of a'), c') refluxing the product obtained in b'), d') selecting and collecting desired magnetic particles or magnetic particle aggregates as necessary, and e') classifying particles of a desired particle size as necessary.
- the step of hydrolyzing the metal salt with water can be carried out by any method known in the art, and is preferably carried out under conditions that result in the formation of nuclei.
- the conditions that result in the formation of nuclei are typically achieved by mixing the metal salt with a suitable reaction solvent.
- the protective agent can be added in any manner. Without wishing to be bound by theory, it is preferred that the protective agent is added under conditions that result in the formation of a protective substance around the core. The conditions that result in the formation of a protective substance are typically achieved by mixing the protective agent with the core in a suitable reaction solvent.
- refluxing of the cores with the protecting agent can typically be accomplished by heating a suitable reaction solvent to the reflux temperature, preferably under conditions that result in the formation of the desired magnetic particles or magnetic particle aggregates.
- the concentration of the metal salt of the present disclosure used in step a) or step a') is high, for example, 0.02 mol to 0.1 mol, 0.02 mol to 0.09 mol, 0.02 mol to 0.08 mol, 0.02 mol to 0.07 mol, 0.02 mol to 0.06 mol, 0.02 mol to 0.05 ...
- the metal salt concentration is preferably 0.04 mol to 0.06 mol.
- the metal salt of the present disclosure may be any salt that forms metal ions upon hydrolysis, and is preferably an iron salt. More preferably, the metal salt is iron chloride, iron bromide, iron perchlorate, or iron hydroxide.
- the hydrolysis in step a) or a') is accomplished by adding water.
- the concentration of water used for hydrolysis in step a) or a') is high, for example, 0.1 mol to 1 mol, 0.1 mol to 0.9 mol, 0.1 mol to 0.8 mol, 0.1 mol to 0.7 mol, 0.1 mol to 0.6 mol, 0.1 mol to 0.5 mol, 0.1 mol to 0.4 mol, 0.1 mol to 0.03 mol, 0.1 mol to 0.05 mol, 0.1 mol to 0.06 mol, 0.1 mol to 0.09 mol, 0.1 mol to 0.08 ...
- the concentration of water is 0.4 mol to 0.6 mol.
- the probability of collision between metal ions generated by hydrolysis can be increased, and the probability of forming magnetic particles having a non-spherical shape can be improved.
- the hydrolysis in step a) or a') is achieved by heating.
- the temperature used in the hydrolysis in step a) or a') is, for example, 50°C to 100°C, 50°C to 90°C, 50°C to 80°C, 50°C to 70°C, 50°C to 60°C, 60°C to 100°C, 60°C to 90°C, 60°C to 80°C, 60°C to 70°C, 70°C to 100°C, 70°C to 90°C, 70°C to 80°C, 80°C to 100°C, 80°C to 90°C, or 90°C to 100°C.
- the temperature is 70°C to 80°C. Heating activates the movement of the material and earns collision energy, which increases the probability of metal ions colliding and improves the probability of forming magnetic particles having a non-spherical shape.
- the protective agent of the present disclosure is sodium acetate, sodium ascorbate, sodium malate, or sodium citrate.
- the protective agent can be used to control the size growth reaction of the nuclei during nucleation and stabilize them in the solvent.
- the particles can be made monodisperse, making it possible to produce small particles.
- step b) or b') of the present disclosure includes a step of heating and stirring after adding the protective agent.
- the temperature at which the mixture is heated is, for example, 50°C to 100°C, 50°C to 90°C, 50°C to 80°C, 50°C to 70°C, 50°C to 60°C, 60°C to 100°C, 60°C to 90°C, 60°C to 80°C, 60°C to 70°C, 70°C to 100°C, 70°C to 90°C, 70°C to 80°C, 80°C to 100°C, 80°C to 90°C, or 90°C to 100°C.
- the temperature is preferably 90°C to 100°C. Heating can promote the reduction reaction of metal ions to metal and further the bond formation between the protective agent and iron.
- step b) or step b' it is possible to confirm that the protective agent has been bound to the magnetic particles or their nuclei by electrophoresis or zeta potential measurement.
- XPS X-ray photoelectron spectroscopy
- IR infrared absorption spectroscopy
- step c') of the present disclosure includes a step of heating and stirring before refluxing.
- the temperature at which the mixture is heated is, for example, 50°C to 100°C, 50°C to 90°C, 50°C to 80°C, 50°C to 70°C, 50°C to 60°C, 60°C to 100°C, 60°C to 90°C, 60°C to 80°C, 60°C to 70°C, 70°C to 100°C, 70°C to 90°C, 70°C to 80°C, 80°C to 100°C, 80°C to 90°C, and 90°C to 100°C. It is preferably achieved at 90°C to 100°C.
- the movement of the substance can be activated and collision energy can be earned, so that the probability of collision of metal ions can be increased, and the probability of forming magnetic particles having a non-spherical shape can be improved.
- step d') of the present disclosure includes collecting the magnetic particles and sorting the desired magnetic particles or magnetic particle aggregates. By sorting the particles, only the more magnetic nanoparticles can be extracted.
- the present disclosure provides a formulation comprising the magnetic particles of the present disclosure, the magnetic particle assembly of the present disclosure, an active ingredient, and, if necessary, an additive. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in ⁇ Magnetic particles>, ⁇ Magnetic particle assembly>, and ⁇ Ink>.
- active ingredient is used in the same sense as it is usually used in the art, and refers to any ingredient that is effective in treating or preventing a disease, disorder, or symptom that is the target of treatment or prevention.
- the magnetic particles or magnetic particle aggregates of the present disclosure are included in the formulation in inkjet printed form.
- the formulations of the present disclosure are provided in the form of tablets, capsules, caplets, pills, or granules, as well as liquids.
- the magnetic particles or magnetic particle aggregates of the present disclosure can be printed onto a formulation to include information about the formulation.
- the information about the formulation of the present disclosure may be the type of formulation (e.g., active ingredient and, if necessary, additives), the dosage, and/or the method of use. It is transmitted by printing an ink containing the magnetic particles or magnetic particle aggregates of the present disclosure on the formulation.
- information about the formulation of the present disclosure is transmitted by detecting the magnetic information of the magnetic particles.
- detecting the magnetic information it is possible to prevent forgetting to take a dose, taking too much medicine, and taking the wrong medicine, check combinations of medicines (contraindications), check expiration dates (lot numbers), reduce the burden on caregivers, and make remaining medicine management more efficient.
- the particles of the present disclosure can be printed on a formulation using an appropriate dosage form and administered orally.
- specific examples of these dosage forms include, but are not limited to, tablets, capsules, caplets, etc.
- these formulations can be manufactured by known methods, such as by adding additives commonly used as pharmaceutical additives to the active ingredient.
- additives may include excipients, disintegrants, binders, flow agents, lubricants, coating agents, solubilizers, solubilizers, thickeners, dispersants, stabilizers, sweeteners, flavors, etc., depending on the purpose.
- additives include, but are not limited to, lactose, mannitol, crystalline cellulose, low-substituted hydroxypropyl cellulose, corn starch, partially pregelatinized starch, carmellose calcium, croscarmellose sodium, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinyl alcohol, magnesium stearate, sodium stearyl fumarate, polyethylene glycol, propylene glycol, titanium oxide, talc, etc.
- the formulation information of the present disclosure includes visually perceptible information.
- the magnetic particles of the present disclosure can be produced, for example, by the production methods described below, although they are not limited thereto. These production methods can be appropriately improved based on the knowledge of those skilled in the art.
- the iron metal salt is dissolved in a solvent such as ethylene glycol, and the solution is heated and stirred. Next, pure water is added, and the solution is heated and stirred. Next, a protective agent such as sodium acetate is added, and the solution is heated and stirred. Finally, the solution is refluxed to produce magnetic particles.
- the magnetic particles, magnetic particle aggregates, inks, and preparations or medication systems printed with magnetic particles of the present disclosure can be used for any purpose, for example, in tablet ink development, detection devices, medication management systems, and the like.
- the method of the present disclosure provides magnetic particles, magnetic particle aggregates, inks, and preparations or medication systems printed with magnetic particles for these purposes.
- a special material can be printed on the tablet surface by high-speed printing of magnetic nanoparticles using an inkjet, etc., making it possible to sense with a smart necklace or the like, and to identify the tablet type using a sensor.
- it is a service provided to patients, families, and medical professionals, and individual support can be provided by combined analysis of vital information, and notification of the effects of medication can be made.
- the formulation or medication system disclosed herein may provide unprecedented benefits in terms of safety, cost, and versatility. For example, in vivo safety is guaranteed, and it is dramatically safer than embedding a chip in a tablet. In terms of cost, mass production is easy and inexpensive, so there is no increase in cost due to the difficulty of production. In terms of versatility, it does not require major changes to the formulation, the regulatory hurdles are low, and under Japanese regulations it is deemed possible to make changes with just a minor change notification, and it can be applied to existing drugs, which are advantageous in that they are different from technologies that have high cost and regulatory hurdles and are difficult to apply to various drugs.
- the system for detecting the taking of medicine according to the present disclosure can determine the type of tablet taken by the subject, whether the subject took the tablet at a predetermined time, and/or whether the subject took a predetermined amount of medicine by attaching a detection device (e.g., a necklace-type detection device or a patch-type detection device) capable of detecting the magnetic particle aggregate according to the present disclosure to the subject by wearing or attaching it to a part of the subject where the digestive tract of the subject can be detected (e.g., the subject's neck or chest).
- a detection device e.g., a necklace-type detection device or a patch-type detection device
- the information according to the present disclosure can be combined with vital data, activity data, dietary data, sleep data, and the like for each individual subject to provide data on the effect of taking medicine, etc., tailored to the lifestyle of each subject.
- the present disclosure provides a system for detecting ingestion of a drug.
- the system for detecting ingestion of a drug includes the formulation of the present disclosure, a sensing means for sensing the magnetism of the formulation, and a detection means for detecting that a subject has taken the formulation based on the sensed magnetism.
- the various embodiments described herein can be applied by appropriately combining any of the forms described in ⁇ Magnetic particles>, ⁇ Magnetic particle aggregates>, and ⁇ Ink>.
- the "formulation” described below means the “formulation” of the present disclosure unless otherwise specified.
- the detection means of the present disclosure can detect that a subject has taken a formulation, for example, based on the intensity of the sensed magnetism, the distribution (position) of the sensed magnetism, the type of the sensed magnetism, and the manner of printing. For example, it can detect that a subject has taken a formulation when the intensity of the sensed magnetism exceeds a predetermined threshold.
- the predetermined threshold may be a fixed value or a variable value.
- the predetermined threshold may be set according to the attributes of the subject (e.g., gender, age, presence or absence of a disease, etc.).
- the detection means of the present disclosure detects the amount of the formulation taken by the subject based on the sensed magnetism.
- the detection means may detect the amount of the formulation taken by the subject using a function that defines the relationship between the intensity of the sensed magnetism and the amount of the formulation taken, or may detect the amount of the formulation taken by the subject using a lookup table that defines the relationship between the intensity of the sensed magnetism and the amount of the formulation taken, or may detect the amount of the formulation taken by the subject using machine learning.
- the machine learning model used learns the relationship between the intensity of the magnetism and the amount of the formulation taken. For example, data on multiple trials is learned using the intensity of the magnetism as input teacher data and the amount of the formulation taken at that time as output teacher data. In this case, the multiple trials may be for a single subject or may be for multiple subjects.
- system of the present disclosure further includes a determination means for determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation, and a means for taking an action in response to the result of the determination by the determination means.
- the determination means can communicate with the detection means and can receive information from the detection means regarding the subject taking the formulation.
- the information regarding the subject taking the formulation can include at least one of the fact that the subject has taken the formulation, the amount of the formulation taken by the subject, and information printed on the formulation taken by the subject.
- the determination means identifies the time when the subject took the formulation based on the information received from the detection means. Then, by determining whether the identified time is a predetermined time, it is possible to determine whether the subject took the formulation at a predetermined time. For example, if the subject is instructed to take the formulation after waking up, the determination means will determine whether the identified time is between 6:00 and 8:00 a.m.
- the predetermined time may be, for example, a time window with such a range, or it may be a pinpoint time.
- the determination means identifies the amount of the formulation taken by the subject based on information received from the detection means. Then, by determining whether the identified amount is a predetermined amount, it is possible to determine whether the subject has taken a predetermined amount of the formulation. For example, if the subject is instructed to take one tablet of the formulation per dose, the determination means will determine whether the identified amount of the formulation is one tablet.
- the determination means can use the information received from the detection means in combination with other sensors (such as sensors that can determine the state of chewing and swallowing, blood glucose level, body temperature, pulse, blood oxygen concentration, and whether the patient is lying down).
- sensors such as sensors that can determine the state of chewing and swallowing, blood glucose level, body temperature, pulse, blood oxygen concentration, and whether the patient is lying down.
- Examples of information that can be obtained from other sensors and can be utilized by obtaining the information simultaneously or in parallel with taking the medicine include: ⁇ Breathing, voice, eye movement, excretion, facial expression ⁇ Location information ⁇ Number of steps, walking speed, activity level, food, calorie intake ⁇ Vital data (heart rate, blood pressure, blood glucose level, blood flow, blood oxygen saturation, sleep data, brain waves, weight, body temperature, basal body temperature) ⁇ This includes, but is not limited to, electronic medical record data, health checkup and medical examination data, etc. By combining medication data with the above information, it can be used to visualize the effects of treatment and
- the means for performing an action of the present disclosure can perform an action in response to determining that the subject has not taken the formulation at a predetermined time or that the subject has not taken the formulation at a predetermined amount. This is the case when the subject has not taken the formulation as instructed, i.e., when there is poor compliance.
- the action at this time can be to encourage the subject to take the medication.
- the action can be to issue an alarm, and the means for performing the action can be an alarm means.
- the alarm can be issued visually (e.g., by light), audibly (e.g., by an alarm sound), tactilely (e.g., by vibration), or olfactory (e.g., by smell).
- the action can be to send a message
- the means for performing the action can be a communication means.
- the message can be, for example, a message encouraging the subject to take the medication, and can be sent to the subject's information terminal.
- the message may be, for example, a message informing the subject that he/she has not taken his/her medication, and may be sent to people in the vicinity of the subject (for example, the subject's family, doctor, nurse, caregiver, etc.).
- the information terminal may include, but is not limited to, a mobile phone, a smartphone, a tablet, a smart watch, smart glasses, a personal computer, a smart speaker, and a smart TV.
- the means for performing an action of the present disclosure can perform an action in response to determining that the subject has taken the formulation at a predetermined time or that the subject has taken a predetermined amount of the formulation. This is the case when the subject is taking the formulation as instructed, i.e., when compliance is good. Therefore, the action at this time can be for maintaining motivation to take the medication.
- the action can be sending a message
- the means for performing the action can be a communication means.
- the message can be, for example, a message praising the subject for taking the medication, and can be sent to the information terminal of the subject.
- the message can be, for example, a message informing the subject that he or she has taken the medication, and can be sent to people around the subject (for example, the subject's family, doctor, nurse, caregiver, etc.).
- the action can be for storing medication information in association with a treatment effect
- the means for performing the action can be a storage means.
- a record of taking the medication will be stored in a medication diary or the like.
- the formulation of the present disclosure has information printed thereon using magnetic particles, and the detection means detects the information based on the sensed magnetism. More specifically, the formulation has information regarding the type of drug, dosage, and/or usage printed thereon using magnetic particles, and the detection means receives a signal from a magnetic sensor to detect the strength of the magnetic field, the distribution (position) of the magnetic field, and the type of the magnetic field.
- the above-mentioned system for detecting medication can be implemented, for example, by a system including a magnetic sensor and an information processing device.
- the sensing means for sensing the magnetism of the above-mentioned formulation can be implemented by a magnetic sensor.
- the magnetic sensor is configured to be able to communicate with an information processing device.
- the magnetic sensor and the information processing device can communicate in any manner.
- the magnetic sensor and the information processing device may communicate with each other via a wire or wirelessly.
- the information processing device may be any device capable of performing information processing, and may typically be a mobile phone, a smartphone, a tablet, a smart watch, or a personal computer, and preferably may be a portable device.
- the information processing device includes an interface unit, a processor, and a memory.
- the interface unit exchanges information with the outside of the information processing device.
- the processor of the information processing device can receive information from the outside of the information processing device and can transmit information to the outside of the information processing device via the interface unit.
- the interface unit can exchange information in any format.
- a magnetic sensor can transmit a signal to the information processing device via the interface unit.
- a terminal device of the target or a person around the target can communicate with the information processing device via the interface unit.
- the interface unit includes, for example, an input unit that enables information to be input to the information processing device.
- an input unit that enables information to be input to the information processing device.
- the input unit is a receiver
- the receiver may input information by receiving information from outside the information processing device via a network.
- the input unit is a data reading device
- the information may be input by reading information from a storage medium connected to the information processing device.
- the information input to the interface unit is passed to the processor, which receives it.
- the interface unit includes, for example, an output unit that enables information to be output from the information processing device.
- an output unit that enables information to be output from the information processing device.
- the output unit is a display
- the information may be output by displaying a screen on the display.
- the output unit is a speaker
- the information may be output by sound to the outside.
- the output unit is a data writing device
- the information may be output by writing the information to a storage medium connected to the information processing device.
- the output unit is a transmitter
- the information may be output by the transmitter transmitting the information to the outside of the information processing device via a network.
- the processor executes the processing of the information processing device and controls the operation of the entire information processing device.
- the processor reads a program stored in the memory and executes the program. This makes it possible for the information processing device to function as a system that executes desired steps.
- the processor may be implemented by a single processor or by multiple processors.
- the memory stores a program required to execute the processing of the information processing device, data required to execute the program, etc.
- the memory may store a program for causing the processor unit to execute processing for detecting medication (e.g., a program that realizes the processing shown in FIG. 2).
- the program may be pre-installed in the memory.
- the program may be installed in the memory by being downloaded via a network.
- the program may be stored in a non-transitory computer-readable storage medium.
- the memory may be implemented by any storage means.
- the above-mentioned detection means and determination means can be implemented by a processor of the information processing device.
- the above-mentioned means for performing an action can be implemented by a processor of the information processing device, or a processor and an interface unit.
- the means for performing an action can be implemented by an external device that communicates with the information processing device.
- the processor of the above-mentioned information processing device can perform the process shown in FIG. First, the sensing means receives a signal representing the magnetism of the formulation detected. Next, it is detected that the subject has taken the formulation based on the signal representing the magnetism. Next, it is confirmed whether the subject has taken the formulation as instructed. If the subject has taken the formulation as instructed, an instruction is issued to take an action to maintain the subject's motivation to take the formulation as instructed. If the subject has not taken the formulation as instructed, an instruction is issued to take an action to encourage the subject to take the formulation as instructed.
- a method for detecting ingestion of the present disclosure in which the formulation to be ingested includes magnetic particles or magnetic particle aggregates of the present disclosure, or is a formulation of the present disclosure, includes disposing sensing means for sensing the magnetism of the formulation around the subject, sensing the magnetism of the formulation from within the subject with the sensing means, and detecting that the subject has ingested the formulation based on the sensed magnetism.
- the present disclosure includes determining whether a subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation, and taking an action in response to determining that the subject has not taken the formulation at the predetermined time or that the subject has not taken the predetermined amount of the formulation.
- a program for detecting the ingestion of the present disclosure is provided.
- the program is executed in a computer system having a processor, and the formulation to be ingested includes the magnetic particles or magnetic particle aggregates of the present disclosure, or is the formulation of the present disclosure.
- the program of the present disclosure can also cause the processor to perform processes including receiving a signal representing the magnetism of the formulation sensed by sensing means arranged around the subject, and detecting that the subject has taken the formulation based on the signal representing the magnetism.
- the process of the present disclosure includes determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation, and taking an action in response to the determination.
- the magnetic particles contained in the formulation of the present disclosure are printed on the formulation, information is imparted to the formulation by printing, and the information printed on the formulation is also used in the determination.
- the information disclosed herein can be combined with vital data, activity data, dietary data, sleep data, etc., for each subject to provide data tailored to each subject's lifestyle, such as the effects of medication.
- Example 1 Preparation of magnetic particles Details are as follows: (procedure) FeCl 3.6H 2 O was dissolved in ethylene glycol. The resulting 0.04 mol FeCl 3.6H 2 O/ethylene glycol solution was kept at 70°C and stirred for 80 minutes. 0.44 mol of pure water was added and the mixture was further kept at 70°C and stirred for 60 to 120 minutes. Sodium acetate was then added and the mixture was stirred at 100°C for 1 hour and then refluxed for 50 to 80 hours. The generation of magnetic particles was determined by confirming the change in the color of the solution from brown to black. The resulting magnetic particles were classified by particle size by methods known in the art.
- Example 2 Evaluation of magnetic particles
- An electron microscope image was obtained using a SEM (FIG. 3) of the magnetic particles produced in Example 1.
- 500 particles were analyzed from the obtained electron microscope image to measure the particle size and sphericity.
- the magnetism of the magnetic particles obtained in Example 1 and Comparative Example 1 was measured.
- the magnetism was measured using a magnetic sensor.
- the magnetic response rate (slope of the calibration curve) (mT/g) was obtained by dividing the obtained magnetic value by the mass of the measured magnetic particles.
- the magnetic response rate and particle size of the magnetic particles produced in Example 1 and Comparative Example 1 are summarized in FIG. 4.
- the magnetic response rate and sphericity of the magnetic particles produced in Example 1 and Comparative Example 1 are summarized in FIG. 5.
- the magnetic response rate and sphericity of the magnetic particles produced in Example 1 and Comparative Example 1 are summarized in Table 2.
- Example 3 Preparation of ink containing magnetic particles
- the magnetic particle-containing ink of the present disclosure is prepared using a method similar to that described in JP 2016-37566 A.
- the magnetic particles, solvent, surfactant, and additives prepared in Example 1 are placed in a beaker and stirred together with zirconia beads using a magnetic stirrer at room temperature for 4 hours to obtain an ink composition.
- Example 4 Preparation of magnetic particle-containing formulation
- the ink composition obtained in the above example is used to print on a tablet using an inkjet printer to prepare a magnetic particle-containing formulation.
- Example 5 Animal Experiments Dogs or monkeys equipped with a magnetic sensor are used to orally administer the magnetic particle-containing formulation of the present disclosure. A comparison can then be made between the placebo and the magnetic particle-containing formulation to assess the drug administration of the magnetic particle-containing formulation of the present disclosure as it passes through the dog or monkey body.
- Example 6 Human Application: Dosage Examples
- the magnetic particle-containing formulation of the present disclosure is administered to a person wearing a magnetic sensor. Data from the magnetic sensor is analyzed to analyze the type of formulation taken, the amount of formulation taken, and the timing of taking the formulation. If the type of formulation taken, the amount of formulation taken, and the timing of taking the formulation can be measured, the method can be widely used in a medication management system. Therefore, it is possible to measure which formulation was taken, when, and in what amount for multiple types of formulation, and by combining this with vital data, activity data, dietary data, sleep data, etc., it is possible to analyze the effects of taking medication in accordance with lifestyle.
- the technology provided in this disclosure can be used in any field that utilizes technology to observe magnetism within the body.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
本開示は、服薬管理に用いる磁性粒子、その製造法およびその応用に関する。 This disclosure relates to magnetic particles for use in medication management, their manufacturing method, and their applications.
薬効は、患者の医薬品に対する遵守に依存する。磁性プローブを用いることで、服薬遵守を高めることが可能になる。残薬が生じる理由としては、自己調節、頓服・頓用、飲み忘れ、重複処方、処方日数が過剰、外用薬の調節等が挙げられる。 Drug efficacy depends on the patient's compliance with medication. Using a magnetic probe can improve compliance. Reasons for leftover medication include self-regulation, taking medication as needed, forgetting to take a dose, duplicate prescriptions, excessive prescription dates, and adjustments to topical medications.
本開示は、服薬管理を可能にするセンシング磁性プローブに関する。本開示の磁性プローブは、比較的小さくてもいびつな形状、非真球形状の粒子を制御的に作製することで、5倍~10倍の磁性応答率を示す。本開示の磁性粒子を含む磁性プローブを用いることで、残薬の原因となる自己調節、飲み忘れを防ぐことができる。
本開示は以下のとおりである。
(項目1)
非真球形状を有する磁性粒子。
(項目1B)
前記非真球形状は、電子顕微鏡により取得する画像によって判定される、先行する項目に記載の磁性粒子。
(項目1C)
前記非真球形状は、SEM(走査電子顕微鏡)またはTEM(透過型電子顕微鏡)によって判定される、先行する項目のいずれか一項に記載の磁性粒子。
(項目2)
前記磁性粒子が、0.5×10-3μT/(mg・nm)以上の磁気応答率/粒径を有することを特徴とする、先行する項目のいずれか一項に記載の磁性粒子。
(項目3)
前記磁性粒子の粒径が、10nm~500nmである、先行する項目のいずれか一項に記載の磁性粒子。
(項目3B)
前記磁性粒子の粒径が、電子顕微鏡により取得する画像によって測定される、先行する項目のいずれか一項に記載の磁性粒子。
(項目3C)
前記電子顕微鏡がSEM(走査電子顕微鏡)またはTEM(透過型電子顕微鏡)である、先行する項目のいずれか一項に記載の磁性粒子。
(項目4)
前記磁性粒子が、鉄含有金属磁性粒子または鉄含有金属酸化物磁性粒子である、先行する項目のいずれか一項に記載の磁性粒子。
(項目5)
前記磁性粒子が、1.1以上の真球度を有することを特徴とする、先行する項目のいずれか一項に記載の磁性粒子。
(項目6)
非真球形状を有する磁性粒子を含む、磁性粒子集合物(agglomerate)。
(項目7)
前記非真球形状を有する磁性粒子は先行する項目のいずれか一項に記載のものである、先行する項目のいずれか一項に記載の磁性粒子集合物。
(項目8)
前記非真球形状を有する磁性粒子の含有率が、全磁性粒子に対して40%以上である、先行する項目のいずれか一項に記載の磁性粒子集合物。
(項目9)
前記非真球形状を有する磁性粒子の含有率が、全磁性粒子に対して50%以上である、先行する項目のいずれか一項に記載の磁性粒子集合物。
(項目10)
先行する項目のいずれか一項に記載の磁性粒子集合物を含む組成物であって、前記非真球形状を有する磁性粒子の含有率が、該組成物に対して50%以上である、組成物。
(項目11)
先行する項目のいずれか一項に記載の磁性粒子、または先行する項目のいずれか一項に記載の磁性粒子集合物を含有する、磁性粒子含有インク。
(項目12)
前記インクは、インクジェットにより製剤表面上に前記磁性粒子または前記磁性粒子集合物を印刷するためのものである、先行する項目のいずれか一項に記載の磁性粒子含有インク。
(項目13)
染料または顔料をさらに含む、先行する項目のいずれか一項に記載の磁性粒子含有インク。
(項目14)
溶媒、界面活性剤、添加剤または精製水をさらに含む、先行する項目のいずれか一項に記載の磁性粒子含有インク。
(項目15)
先行する項目のいずれか一項に記載の磁性粒子、または先行する項目のいずれか一項に記載の磁性粒子集合物を製造する方法であって、
a)金属塩を水で加水分解することにより核を形成する工程と、
b)保護剤を添加することにより該核の周囲に保護剤を形成する工程と、
c)該保護剤を有する核を還流する工程と
を含む、磁性粒子または磁性粒子集合物を製造する方法。
(項目16)
先行する項目のいずれか一項に記載の磁性粒子、または先行する項目のいずれか一項に記載の磁性粒子集合物を製造する方法であって、
a’)金属塩を含む試料を、加水分解する工程と
b’)a’)の加水分解物に、保護剤を添加する工程と
c’)b’)で得られた生成物を還流する工程と
d’)必要に応じて所望の磁性粒子または磁性粒子集合物を選択採取する工程と
e’)必要に応じて所望の粒子サイズの粒子を分級する工程と
を包含する方法。
(項目17)
前記金属塩の濃度は、0.04mol~0.06molである、先行する項目のいずれか一項に記載の方法。
(項目18)
前記金属塩は塩化鉄、臭化鉄、過塩素酸鉄または水酸化鉄を含む、先行する項目のいずれか一項に記載の方法。
(項目19)
前記加水分解は水を添加することにより達成される、先行する項目のいずれか一項に記載の方法。
(項目20)
前記保護剤は、酢酸ナトリウム、アスコルビン酸ナトリウム、リンゴ酸ナトリウムまたはクエン酸ナトリウムを含む、先行する項目のいずれか一項に記載の方法。
(項目21) 前記保護剤で核に付与される部分は、酢酸イオン、アスコルビン酸イオン、リンゴ酸イオンまたはクエン酸イオンである、先行する項目のいずれか一項に記載の方法。
(項目22)
前記c’)は、前記還流の前に90℃~100℃で撹拌する工程を含む、先行する項目のいずれか一項に記載の方法。
(項目23)
先行する項目のいずれか一項に記載の方法により製造される、磁性粒子または磁性粒子集合物。
(項目24)
先行する項目のいずれか一項に記載の磁性粒子、または先行する項目のいずれか一項に記載の磁性粒子集合物と、有効成分および必要に応じて添加剤とを含む、製剤。
(項目25)
前記製剤は、錠剤、カプセル剤、カプレット剤、丸剤、顆粒剤または液剤の形態で提供される、先行する項目のいずれか一項に記載の製剤。
(項目26)
前記磁性粒子または磁性粒子集合物は前記製剤にインクジェットにより印刷された形で含まれる、先行する項目のいずれか一項に記載の製剤。
(項目26B)
前記磁性粒子または磁性粒子集合物は前記薬剤に、該薬剤の情報を含むように印刷される、先行する項目のいずれか一項に記載の製剤。
(項目26C)
前記薬剤の情報は、該磁性粒子の個数や用量によって伝達される、先行する項目のいずれか一項に記載の製剤。
(項目26D)
前記薬剤の情報は、視覚的に認識できる情報を含む、先行する項目のいずれか一項に記載の製剤。
(項目27)
服薬を検出するためのシステムであって、
先行する項目のいずれか一項に記載の製剤と、
該製剤の磁気を感知する感知手段と、
感知された磁気に基づいて、対象が該製剤を服薬したことを検出する検出手段と
を備えるシステム。
(項目28)
前記検出手段は、前記感知された磁気に基づいて、前記対象が服薬した前記製剤の量を検出する、先行する項目のいずれか一項に記載のシステム。
(項目29)
前記対象が所定の時間に前記製剤を服薬したか否か、および/または、該対象が所定の量の該製剤を服薬したか否かを判定する判定手段と、
該判定手段による判定の結果に応答して、アクションを行う手段と
をさらに備える、先行する項目のいずれか一項に記載のシステム。
(項目30)
前記アクションを行う手段は、該対象が前記所定の時間に該製剤を服薬していないこと、または、該対象が該所定の量の該製剤を服薬していないことを判定したことに応答して、アクションを行い、
前記アクションは、警報を発すること、メッセージを送信することのうちの少なくとも1つを含む、先行する項目のいずれか一項に記載のシステム。
(項目31)
前記アクションを行う手段は、該対象が前記所定の時間に該製剤を服薬したこと、または、該対象が該所定の量の該製剤を服薬したことを判定したことに応答して、アクションを行い、
前記アクションは、メッセージを送信すること、服薬情報と治療効果とを関連付けて記憶することのうちの少なくとも1つを含む、先行する項目のいずれか一項に記載のシステム。
(項目32)
前記製剤は、前記磁性粒子によって情報を印刷されており、
前記検出手段は、前記感知された磁気に基づいて、該情報を検出する、先行する項目のいずれか一項に記載のシステム。
(項目33)
服薬を検出するための方法であって、服薬される製剤は、先行する項目のいずれか一項に記載の磁性粒子または先行する項目のいずれか一項に記載の磁性粒子集合物を含むか、または先行する項目のいずれか一項に記載の製剤であり、該方法は、
該製剤の磁気を感知する感知手段を対象の周囲に配置することと、
該感知手段によって該対象内から該製剤の磁気を感知することと、
感知された磁気に基づいて、該対象が該製剤を服薬したことを検出することと
を含む、方法。
(項目34)
前記対象が所定の時間に前記製剤を服薬したか否か、および/または、該対象が該製剤を服薬した量が所定の量であるか否かを判定することと、
該対象が前記所定の時間に該製剤を服薬していないこと、または、該対象が該所定の量の該製剤を服薬していないことを判定したことに応答して、アクションを行うことと
を含む、先行する項目のいずれか一項に記載の方法。
(項目35)
服薬を検出するためのプログラムであって、該プログラムは、プロセッサを備えるコンピュータシステムにおいて実行され、服薬される製剤は、先行する項目のいずれか一項に記載の磁性粒子または先行する項目のいずれか一項の磁性粒子集合物を含むか、または先行する項目のいずれか一項に記載の製剤であり、該プログラムは、
対象の周囲に配置された感知手段が感知した該製剤の磁気を表す信号を受信することと、
該磁気を表す信号に基づいて、該対象が該製剤を服薬したことを検出することと
を含む処理を該プロセッサに行わせる、プログラム。
(項目36)
前記処理は、
前記対象が所定の時間に前記製剤を服薬したか否か、および/または、該対象が該製剤を服薬した量が所定の量であるか否かを判定することと、
該判定に応答して、アクションを行うことと
を含む、先行する項目のいずれか一項に記載のプログラム。
(項目37)
前記製剤に含まれる磁性粒子は、前記製剤に印刷され、前記印刷により情報が付与されており、
前記判定において、前記製剤に印刷された情報もまた利用される、
先行する項目のいずれか一項に記載のプログラム。
本開示において、上記1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供されうることが意図される。本開示のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
The present disclosure relates to a sensing magnetic probe that enables medication management. The magnetic probe of the present disclosure shows a magnetic response rate of 5 to 10 times by controlling the production of particles with irregular shapes and non-spherical shapes, even if they are relatively small. By using a magnetic probe containing the magnetic particles of the present disclosure, it is possible to prevent self-regulation and forgetting to take medication, which are the causes of leftover medication.
The present disclosure is as follows.
(Item 1)
Magnetic particles having a non-spherical shape.
(Item 1B)
The magnetic particle according to the preceding item, wherein the non-spherical shape is determined by images obtained by electron microscopy.
(Item 1C)
13. The magnetic particle of any one of the preceding claims, wherein the non-spherical shape is determined by SEM (scanning electron microscope) or TEM (transmission electron microscope).
(Item 2)
Item 11. The magnetic particles according to any one of the preceding items, characterized in that the magnetic particles have a magnetic response rate/particle size of 0.5×10 −3 μT/(mg·nm) or more.
(Item 3)
10. The magnetic particle of any one of the preceding claims, wherein the particle size of the magnetic particle is between 10 nm and 500 nm.
(Item 3B)
10. The magnetic particle of claim 1, wherein the particle size of the magnetic particle is measured by an image obtained by an electron microscope.
(Item 3C)
Item 11. Magnetic particles according to any one of the preceding items, wherein the electron microscope is a SEM (scanning electron microscope) or a TEM (transmission electron microscope).
(Item 4)
10. The magnetic particle of any one of the preceding items, wherein the magnetic particle is an iron-containing metal magnetic particle or an iron-containing metal oxide magnetic particle.
(Item 5)
10. The magnetic particle according to claim 9, wherein the magnetic particle has a sphericity of 1.1 or more.
(Item 6)
A magnetic particle agglomerate comprising magnetic particles having a non-spherical shape.
(Item 7)
Item 11. The magnetic particle assembly according to any one of the preceding items, wherein the magnetic particles having a non-spherical shape are as defined in any one of the preceding items.
(Item 8)
2. The magnetic particle assembly according to any one of the preceding items, wherein a content of the magnetic particles having a non-spherical shape is 40% or more with respect to the total amount of magnetic particles.
(Item 9)
Item 10. The magnetic particle assembly according to any one of the preceding items, wherein a content of the magnetic particles having a non-spherical shape is 50% or more with respect to the total amount of magnetic particles.
(Item 10)
13. A composition comprising the magnetic particle assembly according to any one of the preceding items, wherein the content of said magnetic particles having a non-spherical shape is 50% or more relative to the composition.
(Item 11)
A magnetic particle-containing ink comprising the magnetic particles according to any one of the preceding items or the magnetic particle aggregate according to any one of the preceding items.
(Item 12)
10. The magnetic particle-containing ink of any one of the preceding items, wherein the ink is for printing the magnetic particles or the magnetic particle aggregates on a formulation surface by inkjet.
(Item 13)
13. The magnetic particle-containing ink of any one of the preceding items, further comprising a dye or pigment.
(Item 14)
13. The magnetic particle-containing ink of any one of the preceding items, further comprising a solvent, a surfactant, an additive or purified water.
(Item 15)
A method for producing a magnetic particle according to any one of the preceding items or a magnetic particle assembly according to any one of the preceding items, comprising the steps of:
a) forming nuclei by hydrolyzing a metal salt with water;
b) adding a protective agent to form a protective agent around the core;
and c) refluxing the cores with said protecting agent.
(Item 16)
A method for producing a magnetic particle according to any one of the preceding items or a magnetic particle assembly according to any one of the preceding items, comprising the steps of:
A method comprising the steps of: a') hydrolyzing a sample containing a metal salt; b') adding a protective agent to the hydrolyzate of a');c') refluxing the product obtained in b');d') optionally selecting and collecting desired magnetic particles or magnetic particle aggregates; and e') optionally classifying particles of a desired particle size.
(Item 17)
13. The method of any one of the preceding items, wherein the concentration of the metal salt is from 0.04 mol to 0.06 mol.
(Item 18)
2. The method of any one of the preceding items, wherein the metal salt comprises iron chloride, iron bromide, iron perchlorate or iron hydroxide.
(Item 19)
8. The method of any one of the preceding items, wherein the hydrolysis is accomplished by adding water.
(Item 20)
13. The method of any one of the preceding items, wherein the protecting agent comprises sodium acetate, sodium ascorbate, sodium malate, or sodium citrate.
(Item 21) The method according to any one of the preceding items, wherein the moiety attached to the nucleus by the protecting agent is an acetate ion, an ascorbate ion, a malate ion or a citrate ion.
(Item 22)
The method of any one of the preceding items, wherein c') comprises stirring at 90°C to 100°C prior to said refluxing.
(Item 23)
A magnetic particle or magnetic particle collection produced by the method according to any one of the preceding items.
(Item 24)
A formulation comprising the magnetic particle according to any one of the preceding items, or the magnetic particle assembly according to any one of the preceding items, an active ingredient, and optionally an additive.
(Item 25)
The formulation of any one of the preceding claims, wherein the formulation is provided in the form of a tablet, capsule, caplet, pill, granule, or liquid.
(Item 26)
10. The formulation of any one of the preceding claims, wherein the magnetic particles or magnetic particle aggregates are included in the formulation in inkjet printed form.
(Item 26B)
13. The formulation of any one of the preceding claims, wherein the magnetic particles or magnetic particle aggregates are printed on the medication to contain information about the medication.
(Item 26C)
The formulation of any one of the preceding claims, wherein information about the drug is conveyed by the number or dose of the magnetic particles.
(Item 26D)
The formulation of any one of the preceding claims, wherein the medication information comprises visually perceptible information.
(Item 27)
1. A system for detecting medication ingestion, comprising:
A formulation according to any one of the preceding items;
A sensing means for sensing the magnetic field of the formulation;
and a detection means for detecting that a subject has taken the formulation based on the sensed magnetism.
(Item 28)
11. The system of claim 1, wherein the detection means detects the amount of the formulation taken by the subject based on the sensed magnetism.
(Item 29)
a determining means for determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation;
7. The system of any one of the preceding claims, further comprising: means for taking an action in response to a result of the determination by the determining means.
(Item 30)
The means for taking an action takes an action in response to determining that the subject has not taken the formulation at the predetermined time or that the subject has not taken the predetermined amount of the formulation;
11. The system of any one of the preceding items, wherein the action includes at least one of raising an alarm and sending a message.
(Item 31)
the means for taking an action takes an action in response to determining that the subject has taken the formulation at the predetermined time or that the subject has taken the predetermined amount of the formulation;
The system of any one of the preceding claims, wherein the action includes at least one of sending a message and storing medication information in association with a therapeutic effect.
(Item 32)
The formulation has information printed thereon by the magnetic particles,
13. The system of claim 1, wherein the detection means detects the information based on the sensed magnetism.
(Item 33)
A method for detecting ingestion, the formulation to be administered comprises a magnetic particle or a magnetic particle assembly as described in any one of the preceding items, or is a formulation as described in any one of the preceding items, the method comprising:
placing a sensing means for sensing the magnetic field of the formulation around the subject;
sensing the magnetic field of the formulation from within the subject with the sensing means;
and detecting that the subject has ingested the formulation based on the sensed magnetism.
(Item 34)
determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation;
The method of any one of the preceding items, comprising performing an action in response to determining that the subject has not taken the formulation at the predetermined time or that the subject has not taken the predetermined amount of the formulation.
(Item 35)
A program for detecting ingestion, the program being executed in a computer system having a processor, the formulation to be administered comprising the magnetic particles or the magnetic particle assembly of any one of the preceding items, or the formulation of any one of the preceding items, the program comprising:
receiving a signal representative of the magnetic properties of the formulation as sensed by sensing means disposed about the subject;
and detecting that the subject has taken the formulation based on a signal representing the magnetism.
(Item 36)
The process comprises:
determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation;
7. The program of claim 1, further comprising: performing an action in response to the determining.
(Item 37)
The magnetic particles contained in the preparation are printed on the preparation, and information is imparted to the magnetic particles by the printing.
In the determination, information printed on the formulation is also used.
13. A program according to any one of the preceding items.
It is contemplated that the present disclosure may provide one or more of the above features in combinations other than those explicitly stated. Still further embodiments and advantages of the present disclosure will be recognized by those skilled in the art upon reading and understanding the following detailed description, if necessary.
本研究成果を利用することで、従来は磁性応答率が高くない、100nm~200nm程度の磁性粒子に対して、形状制御、含有量制御を行うことで、10倍の磁性応答率の向上を可能にした。 By utilizing the results of this research, it has become possible to improve the magnetic response rate by 10 times by controlling the shape and content of magnetic particles of about 100 nm to 200 nm, which previously had low magnetic response rates.
(定義)
以下に、本発明をさらに詳細に説明する。
本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
最初に本発明において使用される用語および一般的な技術を説明する。
(Definition)
The present invention will now be described in further detail.
Throughout this specification, the expression of the singular form should be understood to include the concept of the plural form, unless otherwise specified. Therefore, the singular article (e.g., in the case of English, "a", "an", "the", etc.) should be understood to include the concept of the plural form, unless otherwise specified. In addition, it should be understood that the terms used in this specification are used in the sense commonly used in the field, unless otherwise specified. Therefore, unless otherwise defined, all technical terms and scientific and technical terms used in this specification have the same meaning as commonly understood by those skilled in the art to which this invention belongs. In case of conflict, the specification (including definitions) will take precedence.
First, the terms and general techniques used in the present invention are explained.
本明細書において「非真球形状」とは、真球形状を有していない構造をいう。本明細書において、「いびつな形状」ともいう。非真球形状を有するかは、顕微鏡(例えば、SEM(走査電子顕微鏡)またはTEM(透過型電子顕微鏡)等の電子顕微鏡)等による観察、円形度、真球度、または理論表面積の比(R=Adα/6、R:表面積の比、d:D50粒子径、α:粒子の密度、A:BET比表面積を示す。)を用いることにより測定することができる。 In this specification, "non-spherical shape" refers to a structure that does not have a perfect spherical shape. In this specification, it is also referred to as "irregular shape." Whether or not a structure has a perfect spherical shape can be measured by observation using a microscope (for example, an electron microscope such as a SEM (scanning electron microscope) or a TEM (transmission electron microscope)), circularity, sphericity, or theoretical surface area ratio (R=Adα/6, where R is the surface area ratio, d is the D50 particle size, α is the particle density, and A is the BET specific surface area).
本明細書において「磁性粒子」とは、強磁性(Ferromagnetic、Fe、Ni、Coなど)、フェリ磁性(Ferrimagnetic、Fe2O3、MnFe2O4、BAO6Fe2O3など)、常磁性(Paramagnetic、Al、Ti、Cu合金など)、超常磁性(superparamagnetic、Fe3O4など)など、磁性を持つ粒子をいい、磁性を持つ粒子であれば磁性の程度や種類に制限されることなく、いずれも含む。サイズとしては、約1nm~約1000nm、約1nm~約800nm、約1nm~約600nm、約1nm~約400nm、約10nm~約1000nm、約10nm~約800nm、約10nm~約600nm、約10nm~約400nmなどを挙げることができるが、これに限定されない。 In this specification, the term "magnetic particles" refers to particles having magnetism, such as ferromagnetic (Ferromagnetic, Fe, Ni , Co , etc.), ferrimagnetic (Ferrimagnetic, Fe2O3 , MnFe2O4 , BAO6Fe2O3, etc. ), paramagnetic (Paramagnetic, Al, Ti, Cu alloy, etc.), and superparamagnetic (Superparamagnetic, Fe3O4 , etc. ), and includes any particles having magnetism, regardless of the degree or type of magnetism . Sizes can include, but are not limited to, about 1 nm to about 1000 nm, about 1 nm to about 800 nm, about 1 nm to about 600 nm, about 1 nm to about 400 nm, about 10 nm to about 1000 nm, about 10 nm to about 800 nm, about 10 nm to about 600 nm, about 10 nm to about 400 nm, and the like.
本明細書において「鉄含有金属磁性粒子」とは、鉄を含む磁性粒子をいう。ここで、鉄は、イオンまたは塩の形態でもあり得る。 As used herein, "iron-containing metal magnetic particles" refers to magnetic particles that contain iron. Here, the iron may be in the form of ions or salts.
本明細書において「鉄含有金属酸化物磁性粒子」とは、酸化鉄(例えば、Fe2O3および/またはFe3O4)を含む磁性粒子をいう。 As used herein, "iron-containing metal oxide magnetic particles" refers to magnetic particles that contain iron oxide (e.g., Fe2O3 and/or Fe3O4 ) .
本明細書において「円形度」とは、円形度=(4πS/L2)の式で測定される。ここで、Sは、粒子の二次元投影面積、Lは二次元投影周囲長である。円形度の測定には電子顕微鏡画像を画像処理で二値化し、粒子1個に対して、円形度を求めることができる。粒子の二次元投影面積は取得した二次元の粒子の画像から画像上の粒子の面積を求めることにより取得する。二次元投影周囲長は取得した二次元の粒子の画像をエッジ等の切れ込みも含めて測定する。本開示で規定する円形度とは、無作為に500個の粒子を計測して求めた円形度の平均値を意味する。円形度は、1.0の場合は真球であり、数値が低いほど外周に凹凸があり、異形の度合いが高くなる。非真球形状を有する磁性粒子において、円形度は、好ましくは0.6以下である。 In this specification, the "circularity" is measured by the formula: circularity=(4πS/L 2 ). Here, S is the two-dimensional projected area of the particle, and L is the two-dimensional projected perimeter. To measure the circularity, an electron microscope image is binarized by image processing, and the circularity can be calculated for each particle. The two-dimensional projected area of the particle is obtained by calculating the area of the particle on the image from the acquired two-dimensional image of the particle. The two-dimensional projected perimeter is measured by measuring the acquired two-dimensional image of the particle, including notches such as edges. The circularity defined in this disclosure means the average value of the circularity calculated by measuring 500 particles randomly. When the circularity is 1.0, it is a perfect sphere, and the lower the value, the more uneven the outer periphery is, and the higher the degree of irregularity. In magnetic particles having a non-spherical shape, the circularity is preferably 0.6 or less.
本明細書において「真球度」とは、顕微鏡写真から粒子を観察し、その円周と粒子表面のくぼみの長さの合計から下記数式に従い、決定される。
真球度=(円周+粒子表面のくぼみの長さの合計)/円周
ここで、くぼみは図1に示すように(R1-R2)/(R1)が、10%以上であれば、くぼみと判定する。R1は非真球形状の粒子を内接する仮想外周真球の半径とし、R2は仮想外周真球の中心を中心とし、くぼみの最も中心に近い点を外周が通る仮想内周真球の半径とする。
くぼみの長さはR1-R2により算出する。1つの粒子に複数のくぼみが存在する場合はくぼみの長さを合計して算出する。
本開示で規定する真球度とは、無作為に500個の粒子を計測して求めた真球度の平均値を意味する。真球度は、1.0の場合は真球であり、数値が大きいほど外周に凹凸があり、異形の度合いが高くなる。
In this specification, the "sphericity" is determined by observing a particle in a micrograph and calculating the sum of the circumference and the length of the depression on the particle surface according to the following formula.
Sphericity = (Circumference + Total Length of Indentations on Particle Surface)/Circumference Here, an indentation is determined to exist if (R1-R2)/(R1) is 10% or more, as shown in Figure 1. R1 is the radius of an imaginary outer sphere inscribed in a non-spherical particle, and R2 is the radius of an imaginary inner sphere whose center is the center of the imaginary outer sphere and whose periphery passes through the point closest to the center of the indentation.
The length of the cavity is calculated by R1-R2. When a particle has multiple cavities, the length of the cavities is calculated by adding them together.
The sphericity defined in this disclosure means the average sphericity value obtained by measuring 500 randomly selected particles. A sphericity of 1.0 indicates a perfect sphere, and the larger the value, the more irregular the outer periphery is, and the greater the degree of irregularity.
本明細書において「粒径」とは、粒子の直径を意味し、定義された粒径の範囲はそれぞれの単一粒子の直径の範囲を意味する。本明細書では、磁性粒子の粒径は、SEM(走査電子顕微鏡)またはTEM(透過型電子顕微鏡)等の電子顕微鏡により取得する画像によって測定される。特に指定しない場合、粒径は、SEM(走査電子顕微鏡)により特定される。 In this specification, "particle size" refers to the diameter of a particle, and the defined particle size range refers to the range of diameters of each single particle. In this specification, the particle size of magnetic particles is measured from images obtained by an electron microscope such as a SEM (scanning electron microscope) or a TEM (transmission electron microscope). Unless otherwise specified, the particle size is determined by a SEM (scanning electron microscope).
本明細書において「電子顕微鏡」とは、試料の光源として加速電子のビームを使用し、拡大画像を提供する顕微鏡を指す。例えば、SEM(走査電子顕微鏡)またはTEM(透過型電子顕微鏡)等を挙げることができるが、これに限定されない。これらの電子顕微鏡は粒径、円形度、真球度などを測定する際に利用され得る。 As used herein, "electron microscope" refers to a microscope that uses a beam of accelerated electrons as a light source for a sample to provide a magnified image. Examples include, but are not limited to, SEM (scanning electron microscope) and TEM (transmission electron microscope). These electron microscopes can be used to measure particle size, circularity, sphericity, etc.
本明細書において「磁性粒子集合物」とは、磁性粒子が複数集まっているものを意味する。 In this specification, "magnetic particle aggregate" means an aggregate of multiple magnetic particles.
本明細書において「視認し得る材料」とは、視認することができる材料をいい、添加することにより、着色することができる材料をいう。視認し得る材料とは、染料、顔料等を挙げることができるが、これに限定されない。 In this specification, the term "visible material" refers to a material that can be seen with the naked eye and can be colored by adding it. Examples of visible materials include, but are not limited to, dyes and pigments.
本明細書において「インク」とは、物質を着色するための有色の液体または懸濁物をいう。インクジェットアーキテクチャのような噴射基本構造(アーキテクチャ)から吐出されるインクを物質に吹き付けることによって印刷を行う印刷方式をいう。 In this specification, "ink" refers to a colored liquid or suspension for coloring a substance. It refers to a printing method in which ink is ejected from a jetting basic structure (architecture) such as inkjet architecture and sprayed onto a substance.
本明細書において「核」とは、粒子を形成する際の基本的な物質をいう。例えば、核としては、金属または金属酸化物が挙げられ、金属または金属酸化物としては鉄、三酸化二鉄、または四酸化三鉄が挙げられ、好ましくは、三酸化二鉄である。本開示は医薬分野で使用され得ることから、その場合は、核は薬学的に受容可能な物質であることが好ましく、薬学的に受容可能な金属または金属酸化物であることが好ましい。 In this specification, the term "core" refers to a basic substance that forms a particle. For example, the core may be a metal or a metal oxide, and examples of the metal or metal oxide include iron, ferric oxide, or triiron tetroxide, and preferably ferric oxide. Since the present disclosure may be used in the pharmaceutical field, in this case, the core is preferably a pharma-ceutically acceptable substance, and is preferably a pharma-ceutically acceptable metal or metal oxide.
本明細書において「金属塩」とは、金属イオンの遊離酸との塩をいう。水を添加し加水分解することで、金属イオンを生成することができる。金属塩は、塩化鉄、臭化鉄、過塩素酸鉄、水酸化鉄等を挙げることができるが、これに限定されない。 In this specification, "metal salt" refers to a salt of a metal ion with a free acid. Metal ions can be generated by adding water and hydrolyzing the salt. Examples of metal salts include, but are not limited to, iron chloride, iron bromide, iron perchlorate, and iron hydroxide.
本明細書において「加水分解」とは、水が化合物と反応して他の化合物を生成する化学反応を指すために使用され、この反応は、水由来の水素カチオンおよび水酸化物アニオンの付加による化学結合の開裂を含む。例えば、鉄塩を加水分解する際、EDTAなどの鉄(III)イオン滴定試薬を用いることで、加水分解の進行を確認することができる。 "Hydrolysis" is used herein to refer to a chemical reaction in which water reacts with a compound to produce another compound, which involves the cleavage of a chemical bond with the addition of hydrogen cations and hydroxide anions from the water. For example, when hydrolyzing iron salts, the progress of the hydrolysis can be monitored by using an iron(III) ion titrant such as EDTA.
本明細書において「保護剤」とは、核を保護するための薬剤をいう。保護剤を使用することで、核のサイズ成長反応を停止することができ、溶媒中で安定化させることができる。保護剤は、酢酸ナトリウム、アスコルビン酸ナトリウム、リンゴ酸ナトリウム、またはクエン酸ナトリウム等を挙げることができるが、これに限定されない。 In this specification, the term "protective agent" refers to an agent for protecting the nuclei. By using a protective agent, the size growth reaction of the nuclei can be stopped and the nuclei can be stabilized in the solvent. Examples of protective agents include, but are not limited to, sodium acetate, sodium ascorbate, sodium malate, and sodium citrate.
本明細書において「保護剤」によって付与される「保護物質」とは、添加することで、核を保護するための保護物質を生成することができる試薬をいう。保護物質としては酢酸イオン、アスコルビン酸イオン、リンゴ酸イオンまたはクエン酸イオンを挙げることができるが、これに限定されない。 In this specification, the "protective substance" imparted by the "protective agent" refers to a reagent that, when added, can generate a protective substance for protecting the nucleus. Examples of protective substances include, but are not limited to, acetate ions, ascorbate ions, malate ions, and citrate ions.
本明細書において、「投薬」とは、適切な薬剤を調剤して患者に与えることであり、「服薬」とは、患者が薬剤を服用することである。 In this specification, "administration" refers to dispensing an appropriate medication and giving it to a patient, and "taking medication" refers to a patient taking a medication.
本明細書において、「磁気」とは、磁性、常磁性および/または強磁性のあらゆる要素を包含する。 As used herein, "magnetic" includes all magnetic, paramagnetic and/or ferromagnetic elements.
本明細書において、「磁気を感知する感知手段」とは、磁気および/または磁場変化を感知することができる手段をいう。ここで感知手段は、磁気センサ等が挙げられ、ネックレス、貼付シート(貼付剤、パッチ剤、テープ剤などでありうる)、ストラップ、衣服、下着、ブラジャー、ベルト、およびサスペンダー等の形態であり得る。 In this specification, "sensing means for sensing magnetism" refers to means capable of sensing magnetism and/or changes in a magnetic field. Examples of the sensing means include magnetic sensors, and can be in the form of a necklace, an adhesive sheet (which can be a patch, a tape, etc.), a strap, clothing, underwear, a brassiere, a belt, suspenders, etc.
本明細書において、「対象」とは、処置、観察または実験の目標物となったかまたは目標物となるであろう哺乳動物(ヒトを含む)などの動物を指す。本明細書に記載の方法は、ヒトの治療および/または獣医学的適用に有用であり得る。一部の実施形態では、対象は、哺乳動物(または患者)である。一部の実施形態では、対象(または患者)は、ヒト、飼育動物(例えば、イヌおよびネコ)、家畜動物(例えば、ウシ、ウマ、ヒツジ、ヤギおよびブタ)、および/または実験動物(例えば、マウス、ラット、ハムスター、モルモット、ブタ、ウサギ、イヌおよびサル)である。一部の実施形態では、対象(または患者)は、ヒトである。 As used herein, "subject" refers to an animal, such as a mammal (including a human), that has been or will be the target of treatment, observation, or experiment. The methods described herein may be useful for human therapy and/or veterinary applications. In some embodiments, the subject is a mammal (or patient). In some embodiments, the subject (or patient) is a human, a domestic animal (e.g., dogs and cats), a livestock animal (e.g., cows, horses, sheep, goats, and pigs), and/or a laboratory animal (e.g., mice, rats, hamsters, guinea pigs, pigs, rabbits, dogs, and monkeys). In some embodiments, the subject (or patient) is a human.
(好ましい実施形態)
以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
Preferred Embodiments
The preferred embodiments of the present disclosure are described below. The embodiments provided below are provided for a better understanding of the present disclosure, and it is understood that the scope of the present disclosure should not be limited to the following description. Therefore, it is clear that a person skilled in the art can make appropriate modifications within the scope of the present disclosure in light of the description in this specification. It is also understood that the following embodiments of the present disclosure can be used alone or in combination.
<磁性粒子>
1つの局面において、本開示は、非真球形状を有する磁性粒子を提供する。非真球形状を有する磁性粒子を用いることにより、磁気応答性を向上することができ、磁気センサにより磁性粒子の観測を感度よく検出することができる。磁性粒子が、非真球形状を有するかは、顕微鏡等による観察、円形度、真球度、または理論表面積の比(R=Adα/6、R:表面積の比、d:D50粒子径、α:粒子の密度、A:BET比表面積を示す。)を用いることにより測定することができる。
<Magnetic particles>
In one aspect, the present disclosure provides magnetic particles having a non-spherical shape. By using magnetic particles having a non-spherical shape, magnetic responsiveness can be improved, and magnetic sensors can detect the magnetic particles with high sensitivity. Whether magnetic particles have a non-spherical shape can be measured by observation using a microscope or the like, circularity, sphericity, or theoretical surface area ratio (R=Adα/6, where R: surface area ratio, d: D50 particle diameter, α: particle density, and A: BET specific surface area).
1つの実施形態において、本開示の磁性粒子の粒径は、約1nm~約1000nm、約1nm~約800nm、約1nm~約600nm、約1nm~約400nm、約10nm~約1000nm、約10nm~約800nm、約10nm~約600nm、または約10nm~約400nmであり、好ましくは、10nm~400nmである。インクジェットに用いることができる粒径であることが好ましい。 In one embodiment, the particle size of the magnetic particles of the present disclosure is about 1 nm to about 1000 nm, about 1 nm to about 800 nm, about 1 nm to about 600 nm, about 1 nm to about 400 nm, about 10 nm to about 1000 nm, about 10 nm to about 800 nm, about 10 nm to about 600 nm, or about 10 nm to about 400 nm, preferably 10 nm to 400 nm. It is preferable that the particle size is suitable for use in inkjet.
1つの実施形態において、本開示の磁性粒子は、鉄含有金属磁性粒子、鉄含有金属酸化物磁性粒子である。本開示に用いられる磁性粒子は、人体へ毒性を示さないものが好ましい。 In one embodiment, the magnetic particles of the present disclosure are iron-containing metal magnetic particles or iron-containing metal oxide magnetic particles. The magnetic particles used in the present disclosure are preferably non-toxic to the human body.
1つの実施形態において、本開示の磁性粒子の円形度は、0.9以下、0.8以下、0.7以下、または0.6以下である。好ましくは、円形度は、0.6以下である。円形度が1より小さい非真球形状を有する磁性粒子を用いることにより、磁気応答性を向上することができ、磁気センサにより磁性粒子の観測を感度よく検出することができる。 In one embodiment, the circularity of the magnetic particles of the present disclosure is 0.9 or less, 0.8 or less, 0.7 or less, or 0.6 or less. Preferably, the circularity is 0.6 or less. By using magnetic particles having a non-spherical shape with a circularity of less than 1, the magnetic responsiveness can be improved, and the magnetic particles can be detected with high sensitivity by the magnetic sensor.
1つの実施形態において、本開示の磁性粒子の真球度は、好ましくは1.01以上、1.02以上、1.03以上、1.04以上、1.05以上、1.06以上、1.07以上、1.08以上、1.09以上、または1.1以上である。より好ましくは、真球度は1.1以上である。真球度が1より大きい非真球形状を有する磁性粒子を用いることにより、磁気応答性を向上することができ、磁気センサにより磁性粒子の観測を感度よく検出することができる。 In one embodiment, the sphericity of the magnetic particles of the present disclosure is preferably 1.01 or more, 1.02 or more, 1.03 or more, 1.04 or more, 1.05 or more, 1.06 or more, 1.07 or more, 1.08 or more, 1.09 or more, or 1.1 or more. More preferably, the sphericity is 1.1 or more. By using magnetic particles having a non-spherical shape with a sphericity of greater than 1, the magnetic responsiveness can be improved, and the magnetic particles can be detected with high sensitivity by a magnetic sensor.
<磁性粒子集合物>
1つの局面において、本開示は、本開示に用いられる非真球形状を有する磁性粒子を含む磁性粒子集合物を提供する。ここで記載される各種実施形態は、<磁性粒子>に記載される任意の形態を適宜組み合わせて適用することができることが理解される。
<Magnetic particle assembly>
In one aspect, the present disclosure provides a magnetic particle assembly including magnetic particles having a non-spherical shape for use in the present disclosure. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in <Magnetic Particles>.
1つの実施形態において、本開示の非真球形状を有する磁性粒子の含有率が、全磁性粒子に対して30%以上、40%以上、50%以上、60%以上、70%以上、80以上、90%以上または100%である。好ましくは、本開示の非真球形状を有する磁性粒子の含有率は、好ましくは、40%以上、50%以上、60%以上、70%以上、80以上、90%以上または100%である。好ましくは、40%以上、または50%以上である。 In one embodiment, the content of the magnetic particles having a non-spherical shape of the present disclosure is 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100% of the total magnetic particles. Preferably, the content of the magnetic particles having a non-spherical shape of the present disclosure is 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100%. Preferably, it is 40% or more, or 50% or more.
<インク>
1つの局面において、本開示のインクは、本開示の磁性粒子、または本開示の磁性粒子集合物と、視認し得る材料とを含有する。ここで記載される各種実施形態は、<磁性粒子><磁性粒子集合物>に記載される任意の形態を適宜組み合わせて適用することができることが理解される。
<Ink>
In one aspect, the ink of the present disclosure contains the magnetic particles or the magnetic particle aggregates of the present disclosure and a visible material. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in <Magnetic particles> and <Magnetic particle aggregates>.
1つの実施形態において、本開示のインクは、インクジェットにより製剤表面上に本開示の磁性粒子または本開示の磁性粒子集合物を印刷するためのものである。製剤表面上に印刷することにより、製剤の情報、2次元バーコードを記載することができる。製剤の表面に印刷可能であることにより、既存の製剤にも適用可能である。 In one embodiment, the ink of the present disclosure is for printing the magnetic particles or magnetic particle aggregates of the present disclosure onto the surface of a formulation by inkjet printing. By printing onto the surface of the formulation, information about the formulation, such as a two-dimensional barcode, can be recorded. As it can be printed on the surface of the formulation, it can also be applied to existing formulations.
1つの実施形態において、本開示のインクは、溶媒、界面活性剤、添加剤、精製水等をさらに含むことができる。 In one embodiment, the ink of the present disclosure may further include a solvent, a surfactant, an additive, purified water, etc.
1つの実施形態において、本開示のインクは視認し得る材料を含むことによって、インクジェットで印刷することによって視認することができる。本開示におけるインクジェットは、染料、顔料、溶媒、界面活性剤、添加剤、精製水等からなる群より選択される。 In one embodiment, the ink of the present disclosure contains a visible material, which makes it visible when printed with an inkjet. The inkjet of the present disclosure is selected from the group consisting of dyes, pigments, solvents, surfactants, additives, purified water, etc.
本開示において用いられる溶媒は、インク組成物に使用される公知の溶媒を含んでいてもよい。溶媒としては、エタノール、エチレングリコール、プロピレングリコール、グリセリン等のアルコールが挙げられる。この場合の溶媒の添加量は、組成物中0.5重量%~50重量%が好ましく、20重量%~45重量%がより好ましい。中でも、溶媒としてはグリセリンまたはプロピレングリコールがより好ましい。これらの溶媒は、保湿剤としても優れ、入手も容易であるからである。 The solvent used in this disclosure may include known solvents used in ink compositions. Examples of the solvent include alcohols such as ethanol, ethylene glycol, propylene glycol, and glycerin. In this case, the amount of the solvent added is preferably 0.5% to 50% by weight, and more preferably 20% to 45% by weight, in the composition. Among these, glycerin or propylene glycol is more preferred as the solvent. This is because these solvents are excellent as humectants and are easily available.
本開示において用いられる界面活性剤は可食性の界面活性剤を含んでいてもよい。界面活性剤はインク組成物の表面張力を適正な範囲に調整して、インクの吐出安定性を向上させる。本発明で使用できる界面活性剤としては、カフェタンニン、ポリグリセリン脂肪酸エステル、キラヤサポニン、ブロピレングリコール脂肪酸エステル、レシチン、酵素処埋レシチン、グリセリン脂肪酸エステル、有機酸モノグリセリド、アミロース、バリウム塩化物水和物、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ローズマリー類、ピロリン酸ナトリウム等が挙げられる。界面活性剤は単独で用いてもよいし複数種を併用してもよい。界面活性剤の含有量は、組成物中0.01重量%~0.5重量%が好ましい。 The surfactant used in the present disclosure may include an edible surfactant. The surfactant adjusts the surface tension of the ink composition to an appropriate range, improving the ejection stability of the ink. Examples of surfactants that can be used in the present invention include caffetannin, polyglycerin fatty acid ester, Quillaja saponin, propylene glycol fatty acid ester, lecithin, enzyme-treated lecithin, glycerin fatty acid ester, organic acid monoglyceride, amylose, barium chloride hydrate, sucrose fatty acid ester, sorbitan fatty acid ester, rosemary, sodium pyrophosphate, and the like. The surfactant may be used alone or in combination. The content of the surfactant in the composition is preferably 0.01% by weight to 0.5% by weight.
本開示において用いられる添加剤は、通常、インク組成物に使用される各種添加剤であって、可食性の添加剤を含んでいてもよい。このような添加剤としては、キレート剤や防かび剤が挙げられる。これらの量は、それぞれ組成物中0.01重量%~0.5重量%が好ましい。中でもキレート剤は、可食性顔料の分散性向上に効果があるので好ましい。キレート剤としてはヘキサメタリン酸ナトリウム、リン酸三ナトリウム等が挙げられる。その他の添加剤としてはフラボノイド類、カルボキシナトリウム、ステアロイル乳酸カルシウムレシチン、アエロジル、リン酸カリウム、リン酸ナトリウム、ポリビニル、リン酸水素二ナトリウム、ポリリン酸カリウム、ピロリン酸四ナトリウム、ポリリン酸ナトリウム、グアーガム、ジアセチル酒石酸モノグリセリド、ペクチン、タマリンドガム、キサンタンガム、メタリン酸カリウム、カルボキシメチルセルロース、クエン酸、ヒドロキシプロピルセルロース、ポリビニルピロリドン、エリソルビン酸ナトリウム、メチルセルロース等が上げられるが、これらに限定されない。これらの添加剤は単独で用いてもよいし複数種を併用してもよい。添加剤の含有量は、組成物中0.05重量%~11重量%が好ましい。 The additives used in the present disclosure are various additives typically used in ink compositions, and may include edible additives. Examples of such additives include chelating agents and antifungal agents. The amount of each of these in the composition is preferably 0.01% by weight to 0.5% by weight. Among these, chelating agents are preferred because they are effective in improving the dispersibility of edible pigments. Examples of chelating agents include sodium hexametaphosphate and trisodium phosphate. Other additives include, but are not limited to, flavonoids, sodium carboxylate, calcium stearoyl lactylate lecithin, aerosil, potassium phosphate, sodium phosphate, polyvinyl, disodium hydrogen phosphate, potassium polyphosphate, tetrasodium pyrophosphate, sodium polyphosphate, guar gum, diacetyl tartaric acid monoglyceride, pectin, tamarind gum, xanthan gum, potassium metaphosphate, carboxymethylcellulose, citric acid, hydroxypropylcellulose, polyvinylpyrrolidone, sodium erythorbate, methylcellulose, and the like. These additives may be used alone or in combination. The content of the additive in the composition is preferably 0.05% to 11% by weight.
本開示において用いられる水は、精製水、イオン交換水など、純度の高い水が好ましい。インク組成物の流動性等を考慮すると、水の含有量は組成物中20重量%~65重量%が好ましく、40重量%~60重量%がより好ましい。 The water used in this disclosure is preferably water of high purity, such as purified water or ion-exchanged water. Considering the fluidity of the ink composition, the water content is preferably 20% to 65% by weight, and more preferably 40% to 60% by weight.
<製造法>
1つの局面において、本開示は、本開示の磁性粒子、または本開示の磁性粒子集合物を製造する方法を提供する。本開示の磁性粒子、または本開示の磁性粒子集合物を製造する方法は、a)金属塩を水で加水分解することにより核を形成する工程と、b)保護剤を添加することにより該核の周囲に保護物質を形成する工程と、c)該保護剤を有する核を還流する工程とを含む。ここで記載される各種実施形態は、<磁性粒子>に記載される任意の形態を適宜組み合わせて適用することができることが理解される。
<Production method>
In one aspect, the present disclosure provides a method for producing the magnetic particles of the present disclosure or the magnetic particle assembly of the present disclosure. The method for producing the magnetic particles of the present disclosure or the magnetic particle assembly of the present disclosure includes the steps of a) forming a nucleus by hydrolyzing a metal salt with water, b) forming a protective substance around the nucleus by adding a protective agent, and c) refluxing the nucleus having the protective agent. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in <Magnetic Particles>.
一つの実施形態では、金属塩を水で加水分解する工程は、当該分野でにおいて任意の方法で実施することができ、核を形成することができる限りどのような方法を用いることもできる。 In one embodiment, the step of hydrolyzing the metal salt with water can be carried out by any method known in the art, and any method can be used as long as it is capable of forming nuclei.
一つの実施形態では、保護剤の添加は、任意の方法で行うことができる。保護剤の添加は、通常は、保護剤を適切な反応溶媒で溶解した溶液を添加することで行うことができる。
理論に束縛されることを望まないが、保護剤の添加により、保護剤に含まれる保護物質成分が、核に相互作用し、保護物質が核の周囲に形成される。核の周囲への形成は共有結合または非共有結合(例えば、イオン結合、疎水性結合等)を介してであり得る。
In one embodiment, the protecting agent can be added by any method, and can usually be added by adding a solution of the protecting agent in a suitable reaction solvent.
Without wishing to be bound by theory, it is believed that upon addition of the protective agent, the protective substance components contained in the protective agent interact with the nucleus and a protective substance is formed around the nucleus, which may be formed via covalent or non-covalent bonds (e.g., ionic bonds, hydrophobic bonds, etc.).
一つの実施形態では、保護剤を有する核の還流は、通常は、適切な反応溶媒を還流温度まで加熱することで行うことができる。 In one embodiment, refluxing the core with the protecting agent can typically be accomplished by heating a suitable reaction solvent to the reflux temperature.
1つの局面において、本開示は、本開示の磁性粒子、または本開示の磁性粒子集合物を製造する方法を提供する。本開示の磁性粒子、または本開示の磁性粒子集合物を製造する方法は、
a’)金属塩を含む試料を加水分解する工程と
b’)a’)の加水分解物に、保護剤を添加する工程と
c’)b’)で得られた生成物を還流する工程と
d’)必要に応じて所望の磁性粒子または磁性粒子集合物を選択採取する工程と
e’)必要に応じて所望の粒子サイズの粒子を分級する工程と
を包含する。ここで記載される各種実施形態は、<磁性粒子>に記載される任意の形態を適宜組み合わせて適用することができることが理解される。
In one aspect, the present disclosure provides a method for producing a magnetic particle of the present disclosure, or a magnetic particle assembly of the present disclosure, comprising the steps of:
The method includes the steps of a') hydrolyzing a sample containing a metal salt, b') adding a protective agent to the hydrolyzate of a'), c') refluxing the product obtained in b'), d') selecting and collecting desired magnetic particles or magnetic particle aggregates as necessary, and e') classifying particles of a desired particle size as necessary. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in <Magnetic Particles>.
この局面の一つの実施形態では、金属塩を水で加水分解する工程は、当該分野において任意の方法で実施することができ、核を形成する条件で行うことが好ましい。核を形成する条件は、通常は、金属塩を適切な反応溶媒で混合することで行うことができる。 In one embodiment of this aspect, the step of hydrolyzing the metal salt with water can be carried out by any method known in the art, and is preferably carried out under conditions that result in the formation of nuclei. The conditions that result in the formation of nuclei are typically achieved by mixing the metal salt with a suitable reaction solvent.
一つの実施形態では、保護剤の添加は、任意の方法で行うことができる。理論に束縛されることを望まないが、保護剤の添加は、保護物質が核の周囲に形成される条件で行うことが好ましい。保護物質を形成する条件は、通常は、保護剤を核と一緒に適切な反応溶媒中で混合することで行うことができる。 In one embodiment, the protective agent can be added in any manner. Without wishing to be bound by theory, it is preferred that the protective agent is added under conditions that result in the formation of a protective substance around the core. The conditions that result in the formation of a protective substance are typically achieved by mixing the protective agent with the core in a suitable reaction solvent.
一つの実施形態では、保護剤を有する核の還流は、通常は、適切な反応溶媒を還流温度まで加熱することで行うことができ、好ましくは、所望の磁性粒子または磁性粒子集合物が形成される条件で行うことができる。 In one embodiment, refluxing of the cores with the protecting agent can typically be accomplished by heating a suitable reaction solvent to the reflux temperature, preferably under conditions that result in the formation of the desired magnetic particles or magnetic particle aggregates.
1つの実施形態において、工程a)または工程a’)で用いられる本開示の金属塩の濃度は、高濃度で用いられ、例えば、0.02mol~0.1mol、0.02mol~0.09mol、0.02mol~0.08mol、0.02mol~0.07mol、0.02mol~0.06mol、0.02mol~0.05mol、0.02mol~0.04mol、0.02mol~0.03mol、0.03mol~0.1mol、0.03mol~0.09mol、0.03mol~0.08mol、0.03mol~0.07mol、0.03mol~0.06mol、0.03mol~0.05mol、0.03mol~0.04mol、0.04mol~0.1mol、0.04mol~0.09mol、0.04mol~0.08mol、0.04mol~0.07mol、0.04mol~0.06mol、0.04mol~0.05mol、0.05mol~0.1mol、0.05mol~0.09mol、0.05mol~0.08mol、0.05mol~0.07mol、0.05mol~0.06mol、0.06mol~0.1mol、0.06mol~0.09mol、0.06mol~0.08mol、0.06mol~0.07mol、0.07mol~0.1mol、0.07mol~0.09mol、0.07mol~0.08mol、0.08mol~0.1mol、0.08mol~0.09mol、0.09mol~0.1molである。好ましくは、金属塩の濃度は、0.04mol~0.06molである。高濃度で用いることにより、金属塩同士が衝突する確率を高めることができ、非真球形状を有する磁性粒子を形成する確率を向上させることができる。 In one embodiment, the concentration of the metal salt of the present disclosure used in step a) or step a') is high, for example, 0.02 mol to 0.1 mol, 0.02 mol to 0.09 mol, 0.02 mol to 0.08 mol, 0.02 mol to 0.07 mol, 0.02 mol to 0.06 mol, 0.02 mol to 0.05 ... ol ~ 0.04 mol, 0.02 mol ~ 0.03 mol, 0.03 mol ~ 0.1 mol, 0.03 mol ~ 0.09 mol, 0.03 mol ~ 0.08 mol, 0.03 mol~0.07mol, 0.03mol~0.06mol, 0.03mol~0.05mol, 0.03mol~0.04mol, 0.04mol~0.1mol, 0.04 mol ~ 0.09 mol, 0.04 mol ~ 0.08 mol, 0.04 mol ~ 0.07 mol, 0.04 mol ~ 0.06 mol, 0.04 mol ~ 0.05 mol, 0. 05 mol to 0.1 mol, 0.05 mol to 0.09 mol, 0.05 mol to 0.08 mol, 0.05 mol to 0.07 mol, 0.05 mol to 0.06 mol, 0. 06 mol to 0.1 mol, 0.06 mol to 0.09 mol, 0.06 mol to 0.08 mol, 0.06 mol to 0.07 mol, 0.07 mol to 0.1 mol, 0.07 mol to 0.09 mol, 0.07 mol to 0.08 mol, 0.08 mol to 0.1 mol, 0.08 mol to 0.09 mol, 0.09 mol to 0.1 mol. The metal salt concentration is preferably 0.04 mol to 0.06 mol. By using a high concentration, the probability of collision between metal salts can be increased, and the probability of forming magnetic particles having a non-spherical shape can be improved.
1つの実施形態において、本開示の金属塩は、加水分解すると金族イオンを形成する物であればよく、好ましくは鉄塩である。より好ましくは、塩化鉄、臭化鉄、過塩素酸鉄または水酸化鉄である。 In one embodiment, the metal salt of the present disclosure may be any salt that forms metal ions upon hydrolysis, and is preferably an iron salt. More preferably, the metal salt is iron chloride, iron bromide, iron perchlorate, or iron hydroxide.
1つの実施形態において、工程a)または工程a’)における加水分解は水を添加することにより達成される。工程a)または工程a’)で用いられる加水分解するための水の濃度は、高濃度で用いられ、例えば、0.1mol~1mol、0.1mol~0.9mol、0.1mol~0.8mol、0.1mol~0.7mol、0.1mol~0.6mol、0.1mol~0.5mol、0.1mol~0.4mol、0.1mol~0.03mol、0.1mol~0.02mol、0.2mol~1mol、0.2mol~0.9mol、0.2mol~0.8mol、0.2mol~0.7mol、0.2mol~0.6mol、0.2mol~0.5mol、0.2mol~0.4mol、0.2mol~0.3mol、0.3mol~1mol、0.3mol~0.9mol、0.3mol~0.8mol、0.3mol~0.7mol、0.3mol~0.6mol、0.3mol~0.5mol、0.3mol~0.4mol、0.4mol~1mol、0.4mol~0.9mol、0.4mol~0.8mol、0.4mol~0.7mol、0.4mol~0.6mol、0.4mol~0.5mol、0.5mol~1mol、0.5mol~0.9mol、0.5mol~0.8mol、0.5mol~0.7mol、0.5mol~0.6mol、0.6mol~1mol、0.6mol~0.9mol、0.6mol~0.8mol、0.6mol~0.7mol、0.7mol~1mol、0.7mol~0.9mol、0.7mol~0.8mol、0.8mol~1mol、0.8mol~0.9mol、0.9mol~1molである。好ましくは、水の濃度は、0.4mol~0.6molである。高濃度で用いることにより、加水分解によって生成される金属イオンが衝突する確率を高めることができ、非真球形状を有する磁性粒子を形成する確率を向上させることができる。 In one embodiment, the hydrolysis in step a) or a') is accomplished by adding water. The concentration of water used for hydrolysis in step a) or a') is high, for example, 0.1 mol to 1 mol, 0.1 mol to 0.9 mol, 0.1 mol to 0.8 mol, 0.1 mol to 0.7 mol, 0.1 mol to 0.6 mol, 0.1 mol to 0.5 mol, 0.1 mol to 0.4 mol, 0.1 mol to 0.03 mol, 0.1 mol to 0.05 mol, 0.1 mol to 0.06 mol, 0.1 mol to 0.09 mol, 0.1 mol to 0.08 ... .. 02 mol, 0.2 mol to 1 mol, 0.2 mol to 0.9 mol, 0.2 mol to 0.8 mol, 0.2 mol to 0.7 mol, 0.2 mol to 0.6 mol, 0.2 mol to 0 .5mol, 0.2mol~0.4mol, 0.2mol~0.3mol, 0.3mol~1mol, 0.3mol~0.9mol, 0.3mol~0.8mol, 0.3mol~0. 7 mol, 0.3 mol to 0.6 mol, 0.3 mol to 0.5 mol, 0.3 mol to 0.4 mol, 0.4 mol to 1 mol, 0.4 mol to 0.9 mol, 0.4 mol to 0.8 mol, 0.4 mol to 0.7 mol, 0.4 mol to 0.6 mol, 0.4 mol to 0.5 mol, 0.5 mol to 1 mol, 0.5 mol to 0.9 mol, 0.5 mol to 0.8 m ol, 0.5 mol to 0.7 mol, 0.5 mol to 0.6 mol, 0.6 mol to 1 mol, 0.6 mol to 0.9 mol, 0.6 mol to 0.8 mol, 0.6 mol to 0.7 mol, 0.7 mol to 1 mol, 0.7 mol to 0.9 mol, 0.7 mol to 0.8 mol, 0.8 mol to 1 mol, 0.8 mol to 0.9 mol, 0.9 mol to 1 mol. Preferably, the concentration of water is 0.4 mol to 0.6 mol. By using a high concentration, the probability of collision between metal ions generated by hydrolysis can be increased, and the probability of forming magnetic particles having a non-spherical shape can be improved.
1つの実施形態において、工程a)または工程a’)における加水分解は加熱することにより達成される。工程a)または工程a’)で用いられる加水分解する際の温度は、例えば、50℃~100℃、50℃~90℃、50℃~80℃、50℃~70℃、50℃~60℃、60℃~100℃、60℃~90℃、60℃~80℃、60℃~70℃、70℃~100℃、70℃~90℃、70℃~80℃、80℃~100℃、80℃~90℃、90℃~100℃である。好ましくは、70℃~80℃で達成される。加熱することにより、物質の動きを活性化し、衝突エネルギーを稼ぐことができるため、金属イオンが衝突する確率を高めることができ、非真球形状を有する磁性粒子を形成する確率を向上させることができる。 In one embodiment, the hydrolysis in step a) or a') is achieved by heating. The temperature used in the hydrolysis in step a) or a') is, for example, 50°C to 100°C, 50°C to 90°C, 50°C to 80°C, 50°C to 70°C, 50°C to 60°C, 60°C to 100°C, 60°C to 90°C, 60°C to 80°C, 60°C to 70°C, 70°C to 100°C, 70°C to 90°C, 70°C to 80°C, 80°C to 100°C, 80°C to 90°C, or 90°C to 100°C. Preferably, the temperature is 70°C to 80°C. Heating activates the movement of the material and earns collision energy, which increases the probability of metal ions colliding and improves the probability of forming magnetic particles having a non-spherical shape.
1つの実施形態において、本開示の保護剤は、酢酸ナトリウム、アスコルビン酸ナトリウム、リンゴ酸ナトリウムまたはクエン酸ナトリウムである。保護剤を用いることで、核を形成する際の核のサイズ成長反応を制御することができ、溶媒中で安定化させることができる。さらに粒子を単分散にさせることができ、サイズの小さい粒子の作製が可能となる。 In one embodiment, the protective agent of the present disclosure is sodium acetate, sodium ascorbate, sodium malate, or sodium citrate. The protective agent can be used to control the size growth reaction of the nuclei during nucleation and stabilize them in the solvent. Furthermore, the particles can be made monodisperse, making it possible to produce small particles.
1つの実施形態において、本開示の工程b)またはb’)は、保護剤を添加後、加熱して撹拌する工程を含む。ここで加熱する際の温度は、例えば、50℃~100℃、50℃~90℃、50℃~80℃、50℃~70℃、50℃~60℃、60℃~100℃、60℃~90℃、60℃~80℃、60℃~70℃、70℃~100℃、70℃~90℃、70℃~80℃、80℃~100℃、80℃~90℃、90℃~100℃である。好ましくは、90℃~100℃である。加熱することにより、金属イオンから金属への還元反応、さらに保護剤と鉄との結合形成を促進させることができる。 In one embodiment, step b) or b') of the present disclosure includes a step of heating and stirring after adding the protective agent. The temperature at which the mixture is heated is, for example, 50°C to 100°C, 50°C to 90°C, 50°C to 80°C, 50°C to 70°C, 50°C to 60°C, 60°C to 100°C, 60°C to 90°C, 60°C to 80°C, 60°C to 70°C, 70°C to 100°C, 70°C to 90°C, 70°C to 80°C, 80°C to 100°C, 80°C to 90°C, or 90°C to 100°C. The temperature is preferably 90°C to 100°C. Heating can promote the reduction reaction of metal ions to metal and further the bond formation between the protective agent and iron.
1つの実施形態において、工程b)または工程b’)において、電気泳動やゼータ電位測定により、保護剤が磁性粒子またはその核に結合した事を確認することができる。またX線光電子分光法(XPS)または赤外吸収分光法(IR)を用いることにより、保護剤の結合状態の変化を確認することができる。 In one embodiment, in step b) or step b'), it is possible to confirm that the protective agent has been bound to the magnetic particles or their nuclei by electrophoresis or zeta potential measurement. In addition, it is possible to confirm the change in the binding state of the protective agent by using X-ray photoelectron spectroscopy (XPS) or infrared absorption spectroscopy (IR).
1つの実施形態において、本開示の工程c’)は、還流の前に加熱して撹拌する工程を含む。ここで加熱する際の温度は、例えば、50℃~100℃、50℃~90℃、50℃~80℃、50℃~70℃、50℃~60℃、60℃~100℃、60℃~90℃、60℃~80℃、60℃~70℃、70℃~100℃、70℃~90℃、70℃~80℃、80℃~100℃、80℃~90℃、90℃~100℃である。好ましくは、90℃~100℃で達成される。物質の動きを活性化し、衝突エネルギーを稼ぐことができるため、金属イオンが衝突する確率を高めることができ、非真球形状を有する磁性粒子を形成する確率を向上させることができる。 In one embodiment, step c') of the present disclosure includes a step of heating and stirring before refluxing. The temperature at which the mixture is heated is, for example, 50°C to 100°C, 50°C to 90°C, 50°C to 80°C, 50°C to 70°C, 50°C to 60°C, 60°C to 100°C, 60°C to 90°C, 60°C to 80°C, 60°C to 70°C, 70°C to 100°C, 70°C to 90°C, 70°C to 80°C, 80°C to 100°C, 80°C to 90°C, and 90°C to 100°C. It is preferably achieved at 90°C to 100°C. The movement of the substance can be activated and collision energy can be earned, so that the probability of collision of metal ions can be increased, and the probability of forming magnetic particles having a non-spherical shape can be improved.
1つの実施形態において、本開示の工程d’)は、磁性粒子を採取する工程および所望の磁性粒子または磁性粒子集合物を振り分ける行程を含む。粒子を振り分けることにより、より磁性が高いナノ粒子のみを取り出すことができる。 In one embodiment, step d') of the present disclosure includes collecting the magnetic particles and sorting the desired magnetic particles or magnetic particle aggregates. By sorting the particles, only the more magnetic nanoparticles can be extracted.
<製剤>
1つの局面において、本開示は、本開示の磁性粒子、本開示の磁性粒子集合物と、有効成分および必要に応じて添加剤とを含む、製剤を提供する。ここで記載される各種実施形態は、<磁性粒子><磁性粒子集合物><インク>に記載される任意の形態を適宜組み合わせて適用することができることが理解される。本開示において、有効成分とは、当該分野で通常使用されるのと同じ意味で使用され、治療または予防の目的となる疾患、障害または症状の治療または予防に有効である任意の成分を言う。
<Preparation>
In one aspect, the present disclosure provides a formulation comprising the magnetic particles of the present disclosure, the magnetic particle assembly of the present disclosure, an active ingredient, and, if necessary, an additive. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in <Magnetic particles>, <Magnetic particle assembly>, and <Ink>. In the present disclosure, the term "active ingredient" is used in the same sense as it is usually used in the art, and refers to any ingredient that is effective in treating or preventing a disease, disorder, or symptom that is the target of treatment or prevention.
1つの実施形態において、本開示の磁性粒子または磁性粒子集合物は、製剤にインクジェットにより印刷された形で含まれる。 In one embodiment, the magnetic particles or magnetic particle aggregates of the present disclosure are included in the formulation in inkjet printed form.
1つの実施形態において、本開示の製剤は、錠剤、カプセル剤、カプレット剤、丸剤、または顆粒剤の他、液剤の形態で提供される。 In one embodiment, the formulations of the present disclosure are provided in the form of tablets, capsules, caplets, pills, or granules, as well as liquids.
1つの実施形態において、本開示の磁性粒子または磁性粒子集合物は製剤に、製剤の情報を含むように印刷することができる。 In one embodiment, the magnetic particles or magnetic particle aggregates of the present disclosure can be printed onto a formulation to include information about the formulation.
1つの実施形態において、本開示の製剤の情報は、製剤(例えば、有効成分および必要に応じて添加剤)の種類、用量および/または用法等であり得る。製剤上に本開示の磁性粒子または磁性粒子集合物を含んだインクで印刷することによって伝達される。 In one embodiment, the information about the formulation of the present disclosure may be the type of formulation (e.g., active ingredient and, if necessary, additives), the dosage, and/or the method of use. It is transmitted by printing an ink containing the magnetic particles or magnetic particle aggregates of the present disclosure on the formulation.
1つの実施形態において、本開示の製剤の情報は、該磁性粒子の磁気情報を検知するとことにより、個数、用量が伝達される。磁気情報を感知することにより、飲み忘れ、薬の飲み過ぎ、飲む薬の間違い防止、飲む薬の組み合わせ(禁忌)確認、有効期限切れ確認(ロット番号)、介助者の負担軽減、残薬管理の効率化を行うことができる。 In one embodiment, information about the formulation of the present disclosure, such as the number and dosage, is transmitted by detecting the magnetic information of the magnetic particles. By detecting the magnetic information, it is possible to prevent forgetting to take a dose, taking too much medicine, and taking the wrong medicine, check combinations of medicines (contraindications), check expiration dates (lot numbers), reduce the burden on caregivers, and make remaining medicine management more efficient.
本開示の粒子は、経口投与により、適当な剤形を用いた製剤上に印刷し、投与することができる。これらの剤形の具体例としては、これらに限定されないが、例えば、錠剤、カプセル剤、カプレット剤等が挙げられる。また、これらの製剤は、有効成分に、通常の医薬品添加物として使用されている添加剤を添加する等の工程により、公知の方法で製造することができる。 The particles of the present disclosure can be printed on a formulation using an appropriate dosage form and administered orally. Specific examples of these dosage forms include, but are not limited to, tablets, capsules, caplets, etc. Furthermore, these formulations can be manufactured by known methods, such as by adding additives commonly used as pharmaceutical additives to the active ingredient.
これらの添加剤としては、目的に応じて、賦形剤、崩壊剤、結合剤、流動化剤、滑沢剤、コーティング剤、溶解剤、溶解補助剤、増粘剤、分散剤、安定化剤、甘味剤、香料等を用いることができる。これらの添加剤の具体例としては、これらに限定されないが、例えば、乳糖、マンニトール、結晶セルロース、低置換度ヒドロキシプロピルセルロース、トウモロコシデンプン、部分α化デンプン、カルメロースカルシウム、クロスカルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ステアリン酸マグネシウム、フマル酸ステアリルナトリウム、ポリエチレングリコール、プロピレングリコール、酸化チタン、タルク等が挙げられる。 These additives may include excipients, disintegrants, binders, flow agents, lubricants, coating agents, solubilizers, solubilizers, thickeners, dispersants, stabilizers, sweeteners, flavors, etc., depending on the purpose. Specific examples of these additives include, but are not limited to, lactose, mannitol, crystalline cellulose, low-substituted hydroxypropyl cellulose, corn starch, partially pregelatinized starch, carmellose calcium, croscarmellose sodium, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinyl alcohol, magnesium stearate, sodium stearyl fumarate, polyethylene glycol, propylene glycol, titanium oxide, talc, etc.
1つの実施形態において、本開示の製剤の情報は、視覚的に認識できる情報を含む。 In one embodiment, the formulation information of the present disclosure includes visually perceptible information.
(合成例)
(本開示の磁性粒子の製造法)
以下に、本開示の磁性粒子の製造法について、実施例に具体的な合成例を挙げているが、これに限定されるものではなく、以下に代表的なスキームを挙げて説明するが、本開示はもとよりこれらに限定されるものではない。
(Synthesis Example)
(Method of manufacturing magnetic particles according to the present disclosure)
Specific synthesis examples of the method for producing magnetic particles according to the present disclosure are given in the Examples below, but the present disclosure is not limited to these. Representative schemes are given below for explanation, but the present disclosure is not limited to these.
本開示の磁性粒子は、これらに限定されないが、例えば、下記に記した製造法によって製造することができる。これらの製造法は、当業者の知識に基づき、適宜改良することができる。
鉄の金属塩をエチレングリコール等の溶媒に溶解させ、溶液を加熱し撹拌する。次に純水を添加し、加熱し撹拌する。次に酢酸ナトリウム等の保護剤を添加し、加熱し撹拌する。最後に還流を行い、磁性粒子を生成する。
The magnetic particles of the present disclosure can be produced, for example, by the production methods described below, although they are not limited thereto. These production methods can be appropriately improved based on the knowledge of those skilled in the art.
The iron metal salt is dissolved in a solvent such as ethylene glycol, and the solution is heated and stirred. Next, pure water is added, and the solution is heated and stirred. Next, a protective agent such as sodium acetate is added, and the solution is heated and stirred. Finally, the solution is refluxed to produce magnetic particles.
(用途)
本開示の磁性粒子、磁性粒子集合物、インク、磁性粒子で印刷した製剤または服薬システムは、任意の用途に使用することができ、例えば、錠剤用インク開発、検出デバイス、服薬管理システムなどにおいて使用することができる。本開示の方法は、これらの用途の磁性粒子、磁性粒子集合物、インク、磁性粒子で印刷した製剤または服薬システムを提供する。好ましくは、磁性ナノ粒子をインクジェットにより高速印刷を行うことなどにより、錠剤表面に特殊素材を印刷することができ、スマートネックレス等によるセンシングが可能であり、センサによる錠剤種識別が可能となる。あるいは、患者、家族・医療従事者へサービス提供であり、バイタル情報の組合わせ解析で個別サポートすることができ、服薬の効果の通知が可能となる。
(Application)
The magnetic particles, magnetic particle aggregates, inks, and preparations or medication systems printed with magnetic particles of the present disclosure can be used for any purpose, for example, in tablet ink development, detection devices, medication management systems, and the like. The method of the present disclosure provides magnetic particles, magnetic particle aggregates, inks, and preparations or medication systems printed with magnetic particles for these purposes. Preferably, a special material can be printed on the tablet surface by high-speed printing of magnetic nanoparticles using an inkjet, etc., making it possible to sense with a smart necklace or the like, and to identify the tablet type using a sensor. Alternatively, it is a service provided to patients, families, and medical professionals, and individual support can be provided by combined analysis of vital information, and notification of the effects of medication can be made.
理論に束縛されることを望まないが、本開示の製剤または服薬システムは、安全性、コスト、汎用性について従来にない利益を提供し得、例えば、生体内での安全性は担保されている点、錠剤内にチップ埋め込みをする場合に比べて飛躍的に安全性が優れており、コストとしても、簡便・安価に大量生産が可能であるため、生産の難易度が高いためコスト増となることはなく、汎用性の点でも、大きな処方変更を伴わず、規制面のハードルは低く、日本の規制においては軽微変更届のみで変更可能であると判断されることや、既存の薬剤にも適用可能である点、コスト・規制面のハードルが高く、各種薬剤への適用が難しい技術とは異なる面があることが有利でありうる。 Without wishing to be bound by theory, the formulation or medication system disclosed herein may provide unprecedented benefits in terms of safety, cost, and versatility. For example, in vivo safety is guaranteed, and it is dramatically safer than embedding a chip in a tablet. In terms of cost, mass production is easy and inexpensive, so there is no increase in cost due to the difficulty of production. In terms of versatility, it does not require major changes to the formulation, the regulatory hurdles are low, and under Japanese regulations it is deemed possible to make changes with just a minor change notification, and it can be applied to existing drugs, which are advantageous in that they are different from technologies that have high cost and regulatory hurdles and are difficult to apply to various drugs.
(服薬システム例)
本開示の服薬を検出するためのシステム(本明細書では、服薬システムと称することもある)は、本開示の磁性粒子集合物を検出することができる検出デバイス(例えばネックレス型の検出デバイスあるいは、貼付シート型の検出デバイス)を、対象の消化管を検出しうる部位(例えば対象の首、あるいは、胸)に装着ないし貼付などにより対象につけることにより、対象が服薬した錠剤の種類、対象が錠剤を所定の時間に服薬したか否か、および/または、対象が所定の量を服薬したか否かを判定することができる。本開示の情報は、各対象個別にバイタルデータ、活動運動データ、食事データおよび睡眠データ等と組み合わせて、各対象の生活スタイルに合わせた服薬の効果等のデータを提供することができる。
(Example of a medication system)
The system for detecting the taking of medicine according to the present disclosure (sometimes referred to as a medicine taking system in this specification) can determine the type of tablet taken by the subject, whether the subject took the tablet at a predetermined time, and/or whether the subject took a predetermined amount of medicine by attaching a detection device (e.g., a necklace-type detection device or a patch-type detection device) capable of detecting the magnetic particle aggregate according to the present disclosure to the subject by wearing or attaching it to a part of the subject where the digestive tract of the subject can be detected (e.g., the subject's neck or chest). The information according to the present disclosure can be combined with vital data, activity data, dietary data, sleep data, and the like for each individual subject to provide data on the effect of taking medicine, etc., tailored to the lifestyle of each subject.
<服薬システム系>
1つの局面において、本開示は服薬を検出するためのシステムを提供する。ここで、服薬を検出するためのシステムは本開示の製剤と、製剤の磁気を感知する感知手段と、感知された磁気に基づいて、対象が製剤を服薬したことを検出する検出手段とを備える。ここで記載される各種実施形態は、<磁性粒子><磁性粒子集合物><インク>に記載される任意の形態を適宜組み合わせて適用することができることが理解される。後述する「製剤」は、特別に指定されない限り、本開示の「製剤」を意味する。
<Medication System>
In one aspect, the present disclosure provides a system for detecting ingestion of a drug. Here, the system for detecting ingestion of a drug includes the formulation of the present disclosure, a sensing means for sensing the magnetism of the formulation, and a detection means for detecting that a subject has taken the formulation based on the sensed magnetism. It is understood that the various embodiments described herein can be applied by appropriately combining any of the forms described in <Magnetic particles>, <Magnetic particle aggregates>, and <Ink>. The "formulation" described below means the "formulation" of the present disclosure unless otherwise specified.
本開示の検出手段は、例えば、感知された磁気の強度、感知された磁気の分布(位置)、感知された磁気の種類、印刷の仕方に基づいて、対象が製剤を服薬したことを検出することができる。例えば、感知された磁気の強度が所定の閾値を超えるときに、対象が製剤を服用したことを検出することができる。所定の閾値は、固定値であってもよいし、変動値であってもよい。例えば、所定の閾値は、対象の属性(例えば、性別、年代、疾患の有無等)に応じて設定され得る。 The detection means of the present disclosure can detect that a subject has taken a formulation, for example, based on the intensity of the sensed magnetism, the distribution (position) of the sensed magnetism, the type of the sensed magnetism, and the manner of printing. For example, it can detect that a subject has taken a formulation when the intensity of the sensed magnetism exceeds a predetermined threshold. The predetermined threshold may be a fixed value or a variable value. For example, the predetermined threshold may be set according to the attributes of the subject (e.g., gender, age, presence or absence of a disease, etc.).
1つの実施形態において、本開示の検出手段は、感知された磁気に基づいて、対象が服薬した製剤の量を検出する。例えば、検出手段は、感知された磁気の強度と服薬した製剤の量との関係を規定する関数を用いて、対象が服薬した製剤の量を検出するようにしてもよいし、感知された磁気の強度と服薬した製剤の量との関係を規定するルックアップテーブルを用いて、対象が服薬した製剤の量を検出するようにしてもよいし、機械学習を用いて、対象が服薬した製剤の量を検出してもよい。機械学習を用いて製剤の量を検出する場合、用いられる機械学習モデルは、磁気の強度と服薬した製剤の量との関係を学習している。例えば、磁気の強度を入力用教師データとして、そのときの服薬した製剤の量を出力用教師データとして、複数の試行についてのデータを学習している。このとき、複数の試行は、単一の対象に対するものであってもよいし、複数の対象に対するものであってもよい。 In one embodiment, the detection means of the present disclosure detects the amount of the formulation taken by the subject based on the sensed magnetism. For example, the detection means may detect the amount of the formulation taken by the subject using a function that defines the relationship between the intensity of the sensed magnetism and the amount of the formulation taken, or may detect the amount of the formulation taken by the subject using a lookup table that defines the relationship between the intensity of the sensed magnetism and the amount of the formulation taken, or may detect the amount of the formulation taken by the subject using machine learning. When detecting the amount of the formulation using machine learning, the machine learning model used learns the relationship between the intensity of the magnetism and the amount of the formulation taken. For example, data on multiple trials is learned using the intensity of the magnetism as input teacher data and the amount of the formulation taken at that time as output teacher data. In this case, the multiple trials may be for a single subject or may be for multiple subjects.
1つの実施形態において、本開示のシステムは、対象が所定の時間に製剤を服薬したか否か、および/または、対象が所定の量の製剤を服薬したか否かを判定する判定手段と、判定手段による判定の結果に応答して、アクションを行う手段とをさらに備える。 In one embodiment, the system of the present disclosure further includes a determination means for determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation, and a means for taking an action in response to the result of the determination by the determination means.
判定手段は、検出手段と通信することができ、対象が製剤を服薬したことに関する情報を検出手段から受け取ることができる。対象が製剤を服薬したことに関する情報は、対象が製剤を服薬した事実、対象が服薬した製剤の量、対象が服薬した製剤に印刷された情報のうちの少なくとも1つを含み得る。 The determination means can communicate with the detection means and can receive information from the detection means regarding the subject taking the formulation. The information regarding the subject taking the formulation can include at least one of the fact that the subject has taken the formulation, the amount of the formulation taken by the subject, and information printed on the formulation taken by the subject.
判定手段は、例えば、検出手段から受け取った情報に基づいて、対象が製剤を服薬した時間を識別する。そして、識別された時間が、所定の時間であるか否かを判定することによって、対象が所定の時間に製剤を服薬したか否かを判定することができる。例えば、対象が起床後に製剤を服薬することが指示された場合、判定手段は、識別された時間が午前6時~8時の間であるか否かを判定することになる。所定の時間は、例えば、このような幅を持った時間窓であってもよいし、ピンポイントの時刻であってもよい。 The determination means, for example, identifies the time when the subject took the formulation based on the information received from the detection means. Then, by determining whether the identified time is a predetermined time, it is possible to determine whether the subject took the formulation at a predetermined time. For example, if the subject is instructed to take the formulation after waking up, the determination means will determine whether the identified time is between 6:00 and 8:00 a.m. The predetermined time may be, for example, a time window with such a range, or it may be a pinpoint time.
判定手段は、例えば、検出手段から受け取った情報に基づいて、対象が服用した製剤の量を識別する。そして、識別された量が、所定の量であるか否かを判定することによって、対象が所定の量の製剤を服薬したか否かを判定することができる。例えば、対象が1回の服薬につき1錠の製剤を服薬することが指示された場合、判定手段は、識別された製剤の量が1錠であるか否かを判定することになる。 The determination means, for example, identifies the amount of the formulation taken by the subject based on information received from the detection means. Then, by determining whether the identified amount is a predetermined amount, it is possible to determine whether the subject has taken a predetermined amount of the formulation. For example, if the subject is instructed to take one tablet of the formulation per dose, the determination means will determine whether the identified amount of the formulation is one tablet.
判定手段は、検出手段から受け取った情報と他のセンサ(咀嚼や嚥下の状態がわかる、血糖値や体温、脈拍、血中酸素濃度、横臥していることがわかるセンサなど)とを併用することができる。服薬と同時にもしくは並行して取得することで活用できる、他のセンサから入手できる情報としては、例えば、
・呼吸、声、目の動き、排せつ、表情
・位置情報
・歩数、歩行速度、活動量、食事、カロリー摂取
・バイタルデータ(心拍数、血圧、血糖値、血流量、血中酸素飽和度、睡眠データ、脳波、体重、体温、基礎体温)
・電子カルテデータ、健康診断・人間ドックデータ
等が挙げられるが、これらに限定されない。服薬データを上記情報と組み合わせることで、患者視点では、治療効果の可視化や動機付け、医療者・介助支援者側からは治療効果の可視化の他、疾病管理、再発予防、予後管理などに活用できる。
The determination means can use the information received from the detection means in combination with other sensors (such as sensors that can determine the state of chewing and swallowing, blood glucose level, body temperature, pulse, blood oxygen concentration, and whether the patient is lying down). Examples of information that can be obtained from other sensors and can be utilized by obtaining the information simultaneously or in parallel with taking the medicine include:
・Breathing, voice, eye movement, excretion, facial expression ・Location information ・Number of steps, walking speed, activity level, food, calorie intake ・Vital data (heart rate, blood pressure, blood glucose level, blood flow, blood oxygen saturation, sleep data, brain waves, weight, body temperature, basal body temperature)
・This includes, but is not limited to, electronic medical record data, health checkup and medical examination data, etc. By combining medication data with the above information, it can be used to visualize the effects of treatment and motivate patients, and to visualize the effects of treatment from the medical and caregiver perspective, as well as for disease management, recurrence prevention, and prognosis management.
1つの実施形態において、本開示のアクションを行う手段は、対象が所定の時間に製剤を服薬していないこと、または、対象が該所定の量の製剤を服薬していないことを判定したことに応答して、アクションを行うことができる。これは、対象が指示どおりに製剤を服薬していない場合、すなわち、服薬コンプライアンス不良の場合である。従って、このときのアクションは、服薬を促すものであり得る。例えば、アクションは、警報を発することであり得、このとき、アクションを行う手段は、発報手段であり得る。警報は、(例えば、光によって)視覚的に発せられてもよいし、(例えば、警報音によって)聴覚的に発せられてもよいし、(例えば、振動によって)触覚的に発せられてもよいし、(例えば、匂いによって)嗅覚的に発せられてもよい。例えば、アクションは、メッセージを送信することであり得、このとき、アクションを行う手段は、通信手段であり得る。メッセージは、例えば、対象に服薬を促すメッセージであり得、対象の情報端末に送信されることができる。メッセージは、例えば、対象が服薬していないことを報知するメッセージであり得、対象の周辺の人物(例えば、対象の家族、主治医、看護師、介護士等)に送信されることができる。ここで、情報端末は、例えば、携帯電話、スマートフォン、タブレット、スマートウォッチ、スマートグラス、パーソナルコンピュータ、スマートスピーカ、スマートテレビを含むが、これらに限定されない。 In one embodiment, the means for performing an action of the present disclosure can perform an action in response to determining that the subject has not taken the formulation at a predetermined time or that the subject has not taken the formulation at a predetermined amount. This is the case when the subject has not taken the formulation as instructed, i.e., when there is poor compliance. Thus, the action at this time can be to encourage the subject to take the medication. For example, the action can be to issue an alarm, and the means for performing the action can be an alarm means. The alarm can be issued visually (e.g., by light), audibly (e.g., by an alarm sound), tactilely (e.g., by vibration), or olfactory (e.g., by smell). For example, the action can be to send a message, and the means for performing the action can be a communication means. The message can be, for example, a message encouraging the subject to take the medication, and can be sent to the subject's information terminal. The message may be, for example, a message informing the subject that he/she has not taken his/her medication, and may be sent to people in the vicinity of the subject (for example, the subject's family, doctor, nurse, caregiver, etc.). Here, the information terminal may include, but is not limited to, a mobile phone, a smartphone, a tablet, a smart watch, smart glasses, a personal computer, a smart speaker, and a smart TV.
1つの実施形態において、本開示のアクションを行う手段は、対象が所定の時間に製剤を服薬したこと、または、対象が所定の量の製剤を服薬したことを判定したことに応答して、アクションを行うことができる。これは、対象が指示通りに製剤を服用している場合、すなわち、服薬コンプライアンス良好の場合である。従って、このときのアクションは、服薬のモチベーションを維持させるためのものであり得る。例えば、アクションは、メッセージを送信することであり得、このとき、アクションを行う手段は、通信手段であり得る。メッセージは、例えば、対象が服薬したことを褒めるメッセージであり得、対象の情報端末に送信されることができる。メッセージは、例えば、対象が服薬したことを報知するメッセージであり得、対象の周辺の人物(例えば、対象の家族、主治医、看護師、介護士等)に送信されることができる。例えば、アクションは、服薬情報と治療効果とを関連付けて記憶するためのものであり得、このとき、アクションを行う手段は、記憶手段であり得る。例えば、服薬日記等に服薬した記録が記憶されていくことになる。 In one embodiment, the means for performing an action of the present disclosure can perform an action in response to determining that the subject has taken the formulation at a predetermined time or that the subject has taken a predetermined amount of the formulation. This is the case when the subject is taking the formulation as instructed, i.e., when compliance is good. Therefore, the action at this time can be for maintaining motivation to take the medication. For example, the action can be sending a message, and the means for performing the action can be a communication means. The message can be, for example, a message praising the subject for taking the medication, and can be sent to the information terminal of the subject. The message can be, for example, a message informing the subject that he or she has taken the medication, and can be sent to people around the subject (for example, the subject's family, doctor, nurse, caregiver, etc.). For example, the action can be for storing medication information in association with a treatment effect, and the means for performing the action can be a storage means. For example, a record of taking the medication will be stored in a medication diary or the like.
1つの実施形態において、本開示の製剤は、磁性粒子によって情報が印刷されており、検出手段は、感知された磁気に基づいて、情報を検出する。より具体的には、製剤は、磁性粒子によって薬剤の種類、用量および/または用法の情報が印刷され、検出手段は、磁気センサから信号を受信して、磁気の強度、磁気の分布(位置)、磁気の種類を検出することができる。 In one embodiment, the formulation of the present disclosure has information printed thereon using magnetic particles, and the detection means detects the information based on the sensed magnetism. More specifically, the formulation has information regarding the type of drug, dosage, and/or usage printed thereon using magnetic particles, and the detection means receives a signal from a magnetic sensor to detect the strength of the magnetic field, the distribution (position) of the magnetic field, and the type of the magnetic field.
上述した服薬を検出するためのシステムは、例えば、磁気センサと、情報処理装置とを備えるシステムによって実装されることができる。 The above-mentioned system for detecting medication can be implemented, for example, by a system including a magnetic sensor and an information processing device.
上述した製剤の磁気を感知する感知手段は、磁気センサによって実装されることができる。磁気センサは、情報処理装置と通信可能に構成されている。磁気センサと情報処理装置とは、任意の態様で通信することができる。例えば、磁気センサと情報処理装置とは、有線で通信してもよいし、無線で通信してもよい。 The sensing means for sensing the magnetism of the above-mentioned formulation can be implemented by a magnetic sensor. The magnetic sensor is configured to be able to communicate with an information processing device. The magnetic sensor and the information processing device can communicate in any manner. For example, the magnetic sensor and the information processing device may communicate with each other via a wire or wirelessly.
情報処理装置は、情報処理を行うことができる任意の装置であり得、典型的には、携帯電話、スマートフォン、タブレット、スマートウォッチ、パーソナルコンピュータであり得、好ましくは、対象が携帯可能なデバイスであり得る。 The information processing device may be any device capable of performing information processing, and may typically be a mobile phone, a smartphone, a tablet, a smart watch, or a personal computer, and preferably may be a portable device.
情報処理装置は、インターフェース部と、プロセッサと、メモリとを備える。 The information processing device includes an interface unit, a processor, and a memory.
インターフェース部は、情報処理装置の外部と情報のやり取りを行う。情報処理装置のプロセッサは、インターフェース部を介して、情報処理装置の外部から情報を受信することが可能であり、情報処理装置の外部に情報を送信することが可能である。インターフェース部は、任意の形式で情報のやり取りを行うことができる。例えば、磁気センサは、インターフェース部を介して、情報処理装置に信号を送信することができる。例えば、対象または対象の周囲の人物の端末装置は、インターフェース部を介して、情報処理装置と通信することができる。 The interface unit exchanges information with the outside of the information processing device. The processor of the information processing device can receive information from the outside of the information processing device and can transmit information to the outside of the information processing device via the interface unit. The interface unit can exchange information in any format. For example, a magnetic sensor can transmit a signal to the information processing device via the interface unit. For example, a terminal device of the target or a person around the target can communicate with the information processing device via the interface unit.
インターフェース部は、例えば、情報処理装置に情報を入力することを可能にする入力部を備える。入力部が、どのような態様で情報処理装置に情報を入力することを可能にするかは問わない。例えば、入力部が受信器である場合、受信器がネットワークを介して情報処理装置の外部から情報を受信することにより入力してもよい。例えば、入力部がデータ読み取り装置である場合には、情報処理装置に接続された記憶媒体から情報を読み取ることによって情報を入力するようにしてもよい。インターフェース部に入力された情報は、プロセッサに渡され、プロセッサは、これを受信する。 The interface unit includes, for example, an input unit that enables information to be input to the information processing device. There is no restriction on the manner in which the input unit enables information to be input to the information processing device. For example, if the input unit is a receiver, the receiver may input information by receiving information from outside the information processing device via a network. For example, if the input unit is a data reading device, the information may be input by reading information from a storage medium connected to the information processing device. The information input to the interface unit is passed to the processor, which receives it.
インターフェース部は、例えば、情報処理装置から情報を出力することを可能にする出力部を備える。出力部が、どのような態様で情報処理装置から情報を出力することを可能にするかは問わない。例えば、出力部がディスプレイである場合、ディスプレイに画面を表示することで情報を出力するようにしてもよい。例えば、出力部がスピーカである場合、外部に音を出力するようにしてもよい。例えば、出力部がデータ書き込み装置である場合、情報処理装置に接続された記憶媒体に情報を書き込むことによって情報を出力するようにしてもよい。あるいは、出力部が送信器である場合、送信器がネットワークを介して情報処理装置の外部に情報を送信することにより出力してもよい。 The interface unit includes, for example, an output unit that enables information to be output from the information processing device. There is no restriction on the manner in which the output unit enables information to be output from the information processing device. For example, if the output unit is a display, the information may be output by displaying a screen on the display. For example, if the output unit is a speaker, the information may be output by sound to the outside. For example, if the output unit is a data writing device, the information may be output by writing the information to a storage medium connected to the information processing device. Alternatively, if the output unit is a transmitter, the information may be output by the transmitter transmitting the information to the outside of the information processing device via a network.
プロセッサは、情報処理装置の処理を実行し、かつ、情報処理装置全体の動作を制御する。プロセッサは、メモリに格納されているプログラムを読み出し、そのプログラムを実行する。これにより、情報処理装置を所望のステップを実行するシステムとして機能させることが可能である。プロセッサは、単一のプロセッサによって実装されてもよいし、複数のプロセッサによって実装されてもよい。 The processor executes the processing of the information processing device and controls the operation of the entire information processing device. The processor reads a program stored in the memory and executes the program. This makes it possible for the information processing device to function as a system that executes desired steps. The processor may be implemented by a single processor or by multiple processors.
メモリは、情報処理装置の処理を実行するために必要とされるプログラムやそのプログラムの実行に必要とされるデータ等を格納する。メモリは、服薬を検出するための処理をプロセッサ部に行わせるためのプログラム(例えば、図2に示される処理を実現するプログラム)を格納してもよい。ここで、プログラムをどのようにしてメモリに格納するかは問わない。例えば、プログラムは、メモリにプリインストールされていてもよい。あるいは、プログラムは、ネットワークを経由してダウンロードされることによってメモリにインストールされるようにしてもよい。あるいは、プログラムは、非一過性のコンピュータ読み取り可能な記憶媒体に格納されていてもよい。メモリは、任意の記憶手段によって実装され得る。 The memory stores a program required to execute the processing of the information processing device, data required to execute the program, etc. The memory may store a program for causing the processor unit to execute processing for detecting medication (e.g., a program that realizes the processing shown in FIG. 2). Here, there is no restriction on how the program is stored in the memory. For example, the program may be pre-installed in the memory. Alternatively, the program may be installed in the memory by being downloaded via a network. Alternatively, the program may be stored in a non-transitory computer-readable storage medium. The memory may be implemented by any storage means.
例えば、上述した検出手段、判定手段は、情報処理装置のプロセッサによって実装されることができる。例えば、上述したアクションを行う手段は、情報処理装置のプロセッサ、または、プロセッサおよびインターフェース部によって実装されることができる。あるいは、アクションを行う手段は、情報処理装置と通信する外部装置によって実装されることができる。 For example, the above-mentioned detection means and determination means can be implemented by a processor of the information processing device. For example, the above-mentioned means for performing an action can be implemented by a processor of the information processing device, or a processor and an interface unit. Alternatively, the means for performing an action can be implemented by an external device that communicates with the information processing device.
例えば、上述した情報処理装置のプロセッサは、図2に示す処理を行うことができる。
まず感知手段が感知した製剤の磁気を表す信号を受信する。次に、磁気を表す信号に基づいて、対象が製剤を服用したことを検出する。次に、対象が指示どおりに製剤を服用したかどうかを確認する。指示どおりに服薬を行っていたなら、指示どおりの服薬のモチベーションを維持するアクションを行うよう指示を出す。指示どおりに服薬を行っていなければ、指示どおりの服薬を促すアクションを行うよう指示を出す。
For example, the processor of the above-mentioned information processing device can perform the process shown in FIG.
First, the sensing means receives a signal representing the magnetism of the formulation detected. Next, it is detected that the subject has taken the formulation based on the signal representing the magnetism. Next, it is confirmed whether the subject has taken the formulation as instructed. If the subject has taken the formulation as instructed, an instruction is issued to take an action to maintain the subject's motivation to take the formulation as instructed. If the subject has not taken the formulation as instructed, an instruction is issued to take an action to encourage the subject to take the formulation as instructed.
1つの実施形態において、本開示の服薬を検出するための方法であって、服薬される製剤は、本開示の磁性粒子または本開示の磁性粒子集合物を含むか、または本開示の製剤であり、方法は、製剤の磁気を感知する感知手段を対象の周囲に配置することと、感知手段によって対象内から製剤の磁気を感知することと、感知された磁気に基づいて、該対象が製剤を服薬したことを検出することとを含む。 In one embodiment, a method for detecting ingestion of the present disclosure, in which the formulation to be ingested includes magnetic particles or magnetic particle aggregates of the present disclosure, or is a formulation of the present disclosure, includes disposing sensing means for sensing the magnetism of the formulation around the subject, sensing the magnetism of the formulation from within the subject with the sensing means, and detecting that the subject has ingested the formulation based on the sensed magnetism.
1つの実施形態において、本開示の対象が所定の時間に前記製剤を服薬したか否か、および/または、該対象が該製剤を服薬した量が所定の量であるか否かを判定することと、対象が所定の時間に製剤を服薬していないこと、または、対象が所定の量の製剤を服薬していないことを判定したことに応答して、アクションを行うこととを含む。 In one embodiment, the present disclosure includes determining whether a subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation, and taking an action in response to determining that the subject has not taken the formulation at the predetermined time or that the subject has not taken the predetermined amount of the formulation.
1つの実施形態において、本開示の服薬を検出するためのプログラムを提供する。ここでプログラムは、プロセッサを備えるコンピュータシステムにおいて実行され、服薬される製剤は、本開示の磁性粒子または本開示の磁性粒子集合物を含むか、または本開示の製剤である。また本開示のプログラムは、対象の周囲に配置された感知手段が感知した製剤の磁気を表す信号を受信することと、磁気を表す信号に基づいて、対象が製剤を服薬したことを検出することとを含む処理をプロセッサに行わせることができる。 In one embodiment, a program for detecting the ingestion of the present disclosure is provided. Here, the program is executed in a computer system having a processor, and the formulation to be ingested includes the magnetic particles or magnetic particle aggregates of the present disclosure, or is the formulation of the present disclosure. The program of the present disclosure can also cause the processor to perform processes including receiving a signal representing the magnetism of the formulation sensed by sensing means arranged around the subject, and detecting that the subject has taken the formulation based on the signal representing the magnetism.
1つの実施形態において、本開示の処理は、対象が所定の時間に製剤を服薬したか否か、および/または、対象が製剤を服薬した量が所定の量であるか否かを判定することと、判定に応答して、アクションを行うこととを含む。 In one embodiment, the process of the present disclosure includes determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation, and taking an action in response to the determination.
1つの実施形態において、本開示の製剤に含まれる磁性粒子は、製剤に印刷され、印刷により情報が付与されており、判定において、製剤に印刷された情報もまた利用される。 In one embodiment, the magnetic particles contained in the formulation of the present disclosure are printed on the formulation, information is imparted to the formulation by printing, and the information printed on the formulation is also used in the determination.
1つの実施形態において、本開示の情報は、各対象個別にバイタルデータ、活動運動データ、食事データおよび睡眠データ等と組み合わせて、服薬の効果等の各対象の生活スタイルに合わせたデータを提供することができる。 In one embodiment, the information disclosed herein can be combined with vital data, activity data, dietary data, sleep data, etc., for each subject to provide data tailored to each subject's lifestyle, such as the effects of medication.
以下に、本開示の実施について、例を挙げて説明するが、本開示はもとよりこれらに限定されるものではない。試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma-Aldrich、和光純薬、ナカライ等)の同等品でも代用可能である。 Below, the implementation of this disclosure will be explained using examples, but this disclosure is of course not limited to these. Specific reagents used are those described in the examples, but equivalent products from other manufacturers (Sigma-Aldrich, Wako Pure Chemical Industries, Nakarai, etc.) can be used instead.
(実施例1:磁性粒子の作製)
詳細は以下の通りである。
(手順)
FeCl3・6H2Oをエチレングリコールに溶解した。得られた0.04molのFeCl3・6H2O・エチレングリコール溶液を70℃に保ち、80分撹拌した。0.44mol純水を添加し更に60~120分間70℃で保温・撹拌した。次に酢酸ナトリウムを添加し、1時間100℃で撹拌したのち50~80時間還流した。溶液の色が茶色から黒色への変化を確認することにより、磁性粒子の生成を判断した。
得られた磁性粒子を、当該分野で公知の方法で粒子サイズにより分級した。
(Example 1: Preparation of magnetic particles)
Details are as follows:
(procedure)
FeCl 3.6H 2 O was dissolved in ethylene glycol. The resulting 0.04 mol FeCl 3.6H 2 O/ethylene glycol solution was kept at 70°C and stirred for 80 minutes. 0.44 mol of pure water was added and the mixture was further kept at 70°C and stirred for 60 to 120 minutes. Sodium acetate was then added and the mixture was stirred at 100°C for 1 hour and then refluxed for 50 to 80 hours. The generation of magnetic particles was determined by confirming the change in the color of the solution from brown to black.
The resulting magnetic particles were classified by particle size by methods known in the art.
(比較例1:サイズ効果の確認)
原料として、下記表1に記載のモル量で三塩化鉄・六水和物(FeCl3・6H2O)、酢酸ナトリウム(CH3COONa)、蒸留水(H2O)を、エチレングリコール中に溶解した。室温で20時間攪拌の後、2日間還流(197℃)により、真球度1を有する磁性粒子を作製した。サイズの制御は、導入する原料の割合(モル量:mol。表中の三塩化鉄、酢酸ナトリウム、蒸留水における記載はmolを意味する。)を変えることで制御し、結果を表1にまとめた。
(Comparative Example 1: Confirmation of size effect)
As raw materials, iron trichloride hexahydrate ( FeCl3.6H2O ), sodium acetate ( CH3COONa ), and distilled water ( H2O ) were dissolved in ethylene glycol in the molar amounts shown in Table 1 below. After stirring at room temperature for 20 hours, magnetic particles with a sphericity of 1 were produced by refluxing (197°C) for 2 days. The size was controlled by changing the ratio of the raw materials introduced (molar amount: mol. The numbers for iron trichloride, sodium acetate, and distilled water in the table mean mol), and the results are shown in Table 1.
(実施例2:磁性粒子の評価)
実施例1で作成した磁性粒子をSEMを用いて電子顕微鏡画像を得た(図3)。得られた電子顕微鏡画像から500個の粒子を解析して、粒径、および真球度を測定した。
次に実施例1および比較例1で入手した磁性粒子の磁性を測定した。磁気センサを用いて磁気を測定した。得られた磁気を測定した磁性粒子の質量で割ることにより、磁気応答率(検量線の傾き)(mT/g)を得た。実施例1および比較例1で作製した磁性粒子の
磁気応答率と粒子サイズを図4にまとめた。実施例1および比較例1で作製した磁性粒子の磁気応答率と真球度を図5にまとめた。表2に実施例1および比較例1で作製した磁性粒子の磁気応答率と真球度をまとめた。
(Example 2: Evaluation of magnetic particles)
An electron microscope image was obtained using a SEM (FIG. 3) of the magnetic particles produced in Example 1. 500 particles were analyzed from the obtained electron microscope image to measure the particle size and sphericity.
Next, the magnetism of the magnetic particles obtained in Example 1 and Comparative Example 1 was measured. The magnetism was measured using a magnetic sensor. The magnetic response rate (slope of the calibration curve) (mT/g) was obtained by dividing the obtained magnetic value by the mass of the measured magnetic particles. The magnetic response rate and particle size of the magnetic particles produced in Example 1 and Comparative Example 1 are summarized in FIG. 4. The magnetic response rate and sphericity of the magnetic particles produced in Example 1 and Comparative Example 1 are summarized in FIG. 5. The magnetic response rate and sphericity of the magnetic particles produced in Example 1 and Comparative Example 1 are summarized in Table 2.
(実施例3:磁性粒子含有インクの作製)
特開2016-37566に記載の方法と同様の方法を用いて、本開示の磁性粒子含有インクを作製する。実施例1で作成した磁性粒子、溶媒、界面活性剤および添加剤を、ビーカーに装入し、ジルコニアビーズとともにマグネチックスターラーを用いて室温で4時間撹拌してインク組成物を得る。
(Example 3: Preparation of ink containing magnetic particles)
The magnetic particle-containing ink of the present disclosure is prepared using a method similar to that described in JP 2016-37566 A. The magnetic particles, solvent, surfactant, and additives prepared in Example 1 are placed in a beaker and stirred together with zirconia beads using a magnetic stirrer at room temperature for 4 hours to obtain an ink composition.
(実施例4:磁性粒子含有製剤の作製)
錠剤に、上記実施例で得たインク組成物を用いて、インクジェット印刷機にて錠剤印刷を行い、磁性粒子含有製剤を作製する。
(Example 4: Preparation of magnetic particle-containing formulation)
The ink composition obtained in the above example is used to print on a tablet using an inkjet printer to prepare a magnetic particle-containing formulation.
(実施例5:動物実験)
磁気センサを備えたイヌまたはサルを用い、本開示の磁性粒子含有製剤を経口投与する。
その後、偽薬と磁性粒子含有製剤との比較を行い、本開示の磁性粒子含有製剤のイヌまたはサル体内を通過した際の服薬管理を評価することができる。
Example 5: Animal Experiments
Dogs or monkeys equipped with a magnetic sensor are used to orally administer the magnetic particle-containing formulation of the present disclosure.
A comparison can then be made between the placebo and the magnetic particle-containing formulation to assess the drug administration of the magnetic particle-containing formulation of the present disclosure as it passes through the dog or monkey body.
(実施例6:人での応用:服用例)
本開示の磁性粒子含有製剤を、磁気センサを身に着けた人に投与する。磁気センサからのデータを解析し、服薬した製剤の種類、服薬した製剤の量、服薬したタイミングを解析する。服薬した製剤の種類、服薬した製剤の量、服薬したタイミングを測定することができれば、広く服薬の管理システムに使うことができる。
従って、複数種の製剤を、どの製剤をどのタイミングでどのくらいの量を服薬したかを測定することができ、バイタルデータ、活動運動データ、食事データ、睡眠データ等と組み合わせて、生活スタイルに合わせた服薬の効果を解析することができる。
Example 6: Human Application: Dosage Examples
The magnetic particle-containing formulation of the present disclosure is administered to a person wearing a magnetic sensor. Data from the magnetic sensor is analyzed to analyze the type of formulation taken, the amount of formulation taken, and the timing of taking the formulation. If the type of formulation taken, the amount of formulation taken, and the timing of taking the formulation can be measured, the method can be widely used in a medication management system.
Therefore, it is possible to measure which formulation was taken, when, and in what amount for multiple types of formulation, and by combining this with vital data, activity data, dietary data, sleep data, etc., it is possible to analyze the effects of taking medication in accordance with lifestyle.
(注記)
以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本出願は、2023年7月25日に日本国特許庁に出願した特願2023-121116に対して優先権主張を伴うものであり、その内容は全体が参考として援用される。
(Note)
As described above, the present disclosure has been illustrated using preferred embodiments of the present disclosure, but it is understood that the scope of the present disclosure should be interpreted only by the scope of the claims. It is understood that the patents, patent applications and other documents cited in this specification should be incorporated by reference to this specification in the same manner as if the contents themselves were specifically described in this specification. This application claims priority to Japanese Patent Application No. 2023-121116 filed with the Japan Patent Office on July 25, 2023, the contents of which are incorporated by reference in their entirety.
本開示で提供される技術は、体内での磁性を観察する技術を利用するあらゆる分野において利用することができる。 The technology provided in this disclosure can be used in any field that utilizes technology to observe magnetism within the body.
Claims (37)
a)金属塩を水で加水分解することにより核を形成する工程と、
b)保護剤を添加することにより該核の周囲に保護剤を形成する工程と、
c)該保護剤を有する核を還流する工程と
を含む、磁性粒子または磁性粒子集合物を製造する方法。 A method for producing a magnetic particle according to any one of claims 1 to 5 or a magnetic particle assembly according to any one of claims 6 to 9, comprising the steps of:
a) forming nuclei by hydrolyzing a metal salt with water;
b) adding a protective agent to form a protective agent around the core;
and c) refluxing the cores with said protecting agent.
a’)金属塩を含む試料を、加水分解する工程と
b’)a’)の加水分解物に、保護剤を添加する工程と
c’)b’)で得られた生成物を還流する工程と
d’)必要に応じて所望の磁性粒子または磁性粒子集合物を選択採取する工程と
e’)必要に応じて所望の粒子サイズの粒子を分級する工程と
を包含する方法。 A method for producing a magnetic particle according to any one of claims 1 to 5 or a magnetic particle assembly according to any one of claims 6 to 9, comprising the steps of:
A method comprising the steps of: a') hydrolyzing a sample containing a metal salt; b') adding a protective agent to the hydrolyzate of a');c') refluxing the product obtained in b');d') optionally selecting and collecting desired magnetic particles or magnetic particle aggregates; and e') optionally classifying particles of a desired particle size.
請求項24~26のいずれか一項に記載の製剤と、
該製剤の磁気を感知する感知手段と、
感知された磁気に基づいて、対象が該製剤を服薬したことを検出する検出手段と
を備えるシステム。 1. A system for detecting medication ingestion, comprising:
A formulation according to any one of claims 24 to 26,
A sensing means for sensing the magnetic field of the formulation;
and a detection means for detecting that a subject has taken the formulation based on the sensed magnetism.
該判定手段による判定の結果に応答して、アクションを行う手段とをさらに備える、請求項28に記載のシステム。 a determining means for determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation;
30. The system of claim 28, further comprising: means for taking an action in response to a result of the determination by the means for determining.
前記アクションは、警報を発すること、メッセージを送信することのうちの少なくとも1つを含む、請求項29に記載のシステム。 The means for taking an action takes an action in response to determining that the subject has not taken the formulation at the predetermined time or that the subject has not taken the predetermined amount of the formulation;
30. The system of claim 29, wherein the action includes at least one of raising an alarm and sending a message.
前記アクションは、メッセージを送信すること、服薬情報と治療効果とを関連付けて記憶することのうちの少なくとも1つを含む、請求項30に記載のシステム。 the means for taking an action takes an action in response to determining that the subject has taken the formulation at the predetermined time or that the subject has taken the predetermined amount of the formulation;
The system of claim 30, wherein the action includes at least one of sending a message and storing medication information in association with a therapeutic effect.
前記検出手段は、前記感知された磁気に基づいて、該情報を検出する、請求項27~31のいずれか一項に記載のシステム。 The formulation has information printed thereon by the magnetic particles,
A system according to any one of claims 27 to 31, wherein the detection means detects the information based on the sensed magnetism.
該製剤の磁気を感知する感知手段を対象の周囲に配置することと、
該感知手段によって該対象内から該製剤の磁気を感知することと、
感知された磁気に基づいて、該対象が該製剤を服薬したことを検出することと
を含む、方法。 A method for detecting ingestion of a drug, the drug formulation to be ingested comprising the magnetic particle according to any one of claims 1 to 5 or the magnetic particle assembly according to any one of claims 6 to 9, or the drug formulation according to any one of claims 24 to 26, the method comprising the steps of:
placing a sensing means for sensing the magnetic field of the formulation around the subject;
sensing the magnetic field of the formulation from within the subject with the sensing means;
and detecting that the subject has ingested the formulation based on the sensed magnetism.
該対象が前記所定の時間に該製剤を服薬していないこと、または、該対象が該所定の量の該製剤を服薬していないことを判定したことに応答して、アクションを行うことと
を含む、請求項33に記載の方法。 determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation;
34. The method of claim 33, comprising taking an action in response to determining that the subject has not taken the formulation at the predetermined time or that the subject has not taken the predetermined amount of the formulation.
対象の周囲に配置された感知手段が感知した該製剤の磁気を表す信号を受信することと、
該磁気を表す信号に基づいて、該対象が該製剤を服薬したことを検出することと
を含む処理を該プロセッサに行わせる、プログラム。 A program for detecting ingestion of a drug, the program being executed in a computer system having a processor, the drug formulation to be ingested comprising the magnetic particles according to any one of claims 1 to 5 or the magnetic particle assembly according to any one of claims 6 to 9, or the drug formulation according to any one of claims 24 to 26, the program comprising:
receiving a signal representative of the magnetic properties of the formulation as sensed by sensing means disposed about the subject;
and detecting that the subject has taken the formulation based on a signal representing the magnetism.
前記対象が所定の時間に前記製剤を服薬したか否か、および/または、該対象が該製剤を服薬した量が所定の量であるか否かを判定することと、
該判定に応答して、アクションを行うことと
を含む、請求項35に記載のプログラム。 The process comprises:
determining whether the subject has taken the formulation at a predetermined time and/or whether the subject has taken a predetermined amount of the formulation;
36. The method of claim 35, further comprising: performing an action in response to said determining.
前記判定において、前記製剤に印刷された情報もまた利用される、請求項35または36に記載のプログラム。
The magnetic particles contained in the preparation are printed on the preparation, and information is imparted to the magnetic particles by the printing.
The program of claim 35 or 36, wherein information printed on the formulation is also utilized in the determination.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023-121116 | 2023-07-25 | ||
| JP2023121116 | 2023-07-25 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025023260A1 true WO2025023260A1 (en) | 2025-01-30 |
Family
ID=94375401
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/026370 Pending WO2025023260A1 (en) | 2023-07-25 | 2024-07-23 | Magnetic particles used for medication management |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025023260A1 (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007258622A (en) * | 2006-03-27 | 2007-10-04 | Sanyo Chem Ind Ltd | Magnetic nanoparticle composite |
| JP2007533847A (en) * | 2004-03-25 | 2007-11-22 | コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス | Magnetic nanoparticles of precious metals |
| JP2008189967A (en) * | 2007-02-02 | 2008-08-21 | Fujifilm Corp | Magnetic fine particles containing platinum and / or gold and iron oxide, and aqueous colloidal composition containing the magnetic fine particles |
| JP2012178539A (en) * | 2010-09-10 | 2012-09-13 | Hitachi Maxell Ltd | Functional particle with rough-surface polymer coating applied thereto |
| JP2020019763A (en) * | 2018-05-02 | 2020-02-06 | ロイヤル・メルボルン・インスティテュート・オブ・テクノロジーRoyal Melbourne Institute Of Technology | Multimodal pet/mri contrast agent and process for synthesis thereof |
| JP2020070246A (en) * | 2018-10-30 | 2020-05-07 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Device and method for detecting composition for oral administration, and composition for oral administration |
-
2024
- 2024-07-23 WO PCT/JP2024/026370 patent/WO2025023260A1/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007533847A (en) * | 2004-03-25 | 2007-11-22 | コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス | Magnetic nanoparticles of precious metals |
| JP2007258622A (en) * | 2006-03-27 | 2007-10-04 | Sanyo Chem Ind Ltd | Magnetic nanoparticle composite |
| JP2008189967A (en) * | 2007-02-02 | 2008-08-21 | Fujifilm Corp | Magnetic fine particles containing platinum and / or gold and iron oxide, and aqueous colloidal composition containing the magnetic fine particles |
| JP2012178539A (en) * | 2010-09-10 | 2012-09-13 | Hitachi Maxell Ltd | Functional particle with rough-surface polymer coating applied thereto |
| JP2020019763A (en) * | 2018-05-02 | 2020-02-06 | ロイヤル・メルボルン・インスティテュート・オブ・テクノロジーRoyal Melbourne Institute Of Technology | Multimodal pet/mri contrast agent and process for synthesis thereof |
| JP2020070246A (en) * | 2018-10-30 | 2020-05-07 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Device and method for detecting composition for oral administration, and composition for oral administration |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5461999B2 (en) | Oral drug capsule components incorporating communication devices | |
| US7062308B1 (en) | Remote physiological monitoring with the reticulum of livestock | |
| JP4933538B2 (en) | Oral medication monitoring using radio frequency identification signs | |
| MX2014007081A (en) | Detection system for detecting magnetic objects in the human organism. | |
| CN101953795A (en) | Nanoscale drug delivery devices, methods of manufacture, and uses | |
| Laulicht et al. | Localization of magnetic pills | |
| EP2473095B1 (en) | Oral dosage form, comprising at least one biologically active agent, formulation auxiliary substances and magnetizable particles | |
| JP2013527198A (en) | Oral film formulation with physicochemical identification on the surface | |
| US20190223770A1 (en) | Biological sample extraction and detection system | |
| CN113616200B (en) | Wireless capsule sensing device and method for gastrointestinal tract pH value detection | |
| CN105451651B (en) | Individualized detection system for detecting magnetic objects in the human body | |
| Traverso et al. | First-in-human trial of an ingestible vitals-monitoring pill | |
| DE102004019763A1 (en) | System and method for monitoring the gastrointestinal system | |
| WO2025023260A1 (en) | Magnetic particles used for medication management | |
| Stokes et al. | Evaluation of a wireless ambulatory capsule (SmartPill®) to measure gastrointestinal tract pH, luminal pressure and temperature, and transit time in ponies | |
| CN101496811A (en) | Soluble and stable tilmicosin composition | |
| US20200029901A1 (en) | Contactless measurement, monitoring and communication of bodily functions of infants and other helpless individuals | |
| TWI674114B (en) | Pharmaceutical composition, methods for preparing and using the same | |
| Senekowitsch et al. | Intragastric carbon dioxide release prolongs the gastric residence time of postprandially administered caffeine | |
| US8776802B2 (en) | Methods and systems for prolonged localization of drug delivery | |
| CN114929096A (en) | Accessories for mandibular advancement devices | |
| CN107550884B (en) | A kind of Doneppezil Hydrochloride capsule and preparation method thereof | |
| CN105498078A (en) | Intelligent pill, system and implementation method on basis of access control authentication and intelligent home control | |
| Chandran et al. | Advancement in targeted drug delivery systems in managing colonic disorders | |
| JP2020070246A (en) | Device and method for detecting composition for oral administration, and composition for oral administration |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24845635 Country of ref document: EP Kind code of ref document: A1 |