WO2025032961A1 - Light detection device and electronic apparatus - Google Patents
Light detection device and electronic apparatus Download PDFInfo
- Publication number
- WO2025032961A1 WO2025032961A1 PCT/JP2024/021538 JP2024021538W WO2025032961A1 WO 2025032961 A1 WO2025032961 A1 WO 2025032961A1 JP 2024021538 W JP2024021538 W JP 2024021538W WO 2025032961 A1 WO2025032961 A1 WO 2025032961A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor substrate
- pixel isolation
- photoelectric conversion
- pixel
- inter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
Definitions
- This technology (the technology disclosed herein) relates to a light detection device and electronic equipment.
- a photodetector includes, for example, a semiconductor substrate having two adjacent photoelectric conversion units, an inter-pixel separation unit surrounding a block consisting of the two photoelectric conversion units, an intra-pixel separation unit formed between the photoelectric conversion units that make up the block, and an on-chip lens that is disposed on the light receiving surface side of the semiconductor substrate and shared by the two photoelectric conversion units (see, for example, Patent Document 1).
- the photodetector described in Patent Document 1 detects a phase difference from the output of the two photoelectric conversion units, and performs autofocus using the detected phase difference.
- the peripheral areas of the inter-pixel separation unit and the intra-pixel separation unit are brought into a high hole concentration state, suppressing the generation of dark current.
- the on-chip lens focuses light on the central area of a block consisting of two photoelectric conversion units. Therefore, the focused light is irradiated onto the in-pixel separation unit, and there is a possibility that the light is absorbed by the in-pixel separation unit. This reduces the amount of light that reaches the photoelectric conversion unit, and there is a possibility that the quantum efficiency Qe decreases.
- the present disclosure aims to provide a photodetector and electronic device that can improve quantum efficiency Qe while suppressing the generation of dark current.
- the photodetector disclosed herein comprises (a) a semiconductor substrate having a first surface on which light is incident and a second surface located opposite the first surface, (b) a plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate, (c) a pixel separation structure formed between the photoelectric conversion units of the semiconductor substrate, and (d) an on-chip lens arranged on the first surface side of the semiconductor substrate and shared by two or more photoelectric conversion units, (e) the pixel separation structure has an inter-pixel separation unit surrounding the periphery of the two or more photoelectric conversion units and an intra-pixel separation unit located between the photoelectric conversion units in the area surrounded by the inter-pixel separation unit, (f) a conductor is arranged within the inter-pixel separation unit, and (g) only a low-absorption material having a lower light absorption rate than the conductor is arranged within the intra-pixel separation unit.
- the electronic device disclosed herein includes (a) a semiconductor substrate having a first surface on which light is incident and a second surface located opposite to the first surface, (b) a plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate, (c) a pixel separation structure formed between the photoelectric conversion units of the semiconductor substrate, (d) and an on-chip lens arranged on the first surface side of the semiconductor substrate and shared by two or more photoelectric conversion units, (e) the pixel separation structure includes an inter-pixel separation unit surrounding the periphery of the two or more photoelectric conversion units and an intra-pixel separation unit located between the photoelectric conversion units in the area surrounded by the inter-pixel separation unit, (f) a conductor is arranged within the inter-pixel separation unit, and (g) a light detection device in which only a low absorptivity material having a lower light absorptivity than the conductor is arranged within the intra-pixel separation unit.
- FIG. 1 is a diagram showing an overall configuration of a solid-state imaging device according to a first embodiment.
- 2 is a diagram showing a cross-sectional configuration of the solid-state imaging device taken along line AA in FIG. 1.
- 3 is a diagram showing a cross-sectional configuration of the solid-state imaging device taken along line BB in FIG. 2.
- FIG. 1 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a comparative example.
- 5 is a diagram showing a cross-sectional configuration of the solid-state imaging device taken along line DD in FIG. 4.
- 1A to 1C are diagrams illustrating a method for manufacturing a solid-state imaging device.
- 7 is a diagram showing a cross-sectional configuration of the semiconductor substrate when broken along line FF in FIG. 6.
- 1A to 1C are diagrams illustrating a method for manufacturing a solid-state imaging device.
- 9 is a diagram showing a cross-sectional configuration of the semiconductor substrate when broken along line HH in FIG. 8.
- 9 is a diagram showing a cross-sectional configuration of a semiconductor substrate taken along line II in FIG. 8.
- 1A to 1C are diagrams illustrating a method for manufacturing a solid-state imaging device.
- 12 is a diagram showing a cross-sectional configuration of a semiconductor substrate taken along line K-K in FIG. 11.
- 12 is a diagram showing a cross-sectional configuration of a semiconductor substrate taken along line LL in FIG. 11.
- 1A to 1C are diagrams illustrating a method for manufacturing a solid-state imaging device.
- 15 is a diagram showing a cross-sectional configuration of a semiconductor substrate taken along line N-N in FIG. 14.
- 15 is a diagram showing a cross-sectional configuration of a semiconductor substrate taken along line OO in FIG. 14.
- FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example.
- 1A to 1C are diagrams illustrating a method for manufacturing a solid-state imaging device.
- 19 is a diagram showing a cross-sectional configuration of a semiconductor substrate taken along line QQ in FIG. 18.
- 19 is a diagram showing a cross-sectional configuration of a semiconductor substrate taken along line R--R in FIG. 18.
- 1A to 1C are diagrams illustrating a method for manufacturing a solid-state imaging device.
- FIG. 22 is a diagram showing a cross-sectional configuration of a semiconductor substrate taken along line T-T in FIG. 21. 22 is a diagram showing a cross-sectional configuration of a semiconductor substrate taken along line UU in FIG. 21.
- FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a second embodiment.
- 1A to 1C are diagrams illustrating a method for manufacturing a solid-state imaging device.
- 1A to 1C are diagrams illustrating a method for manufacturing a solid-state imaging device.
- 1A to 1C are diagrams illustrating a method for manufacturing a solid-state imaging device.
- FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a third embodiment.
- FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example.
- FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a fourth embodiment.
- FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example.
- FIG. 13 is a diagram showing a schematic configuration of an electronic device according to a fifth embodiment.
- FIGS. 1 to 32 An example of a light detection device and electronic device according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 32.
- the embodiments of the present disclosure will be described in the following order. Note that the present disclosure is not limited to the following examples.
- the effects described in this specification are illustrative and not limiting, and other effects may also be present.
- First embodiment solid-state imaging device 1-1 Overall configuration of solid-state imaging device 1-2 Configuration of main parts 1-3 Manufacturing method of solid-state imaging device 1-4 Modification 2.
- Second embodiment solid-state imaging device 2-1 Configuration of main parts 2-2 Manufacturing method of solid-state imaging device 2-3 Modification 3.
- Third embodiment solid-state imaging device 3-1 Configuration of main parts 3-2 Modification 4.
- Fourth embodiment solid-state imaging device 4-1 Configuration of main parts 4-2 Modification 5.
- FIG. 1 is a diagram showing an overall configuration of the solid-state imaging device 1 according to the first embodiment.
- the solid-state imaging device 1 in Fig. 1 is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor. As shown in Fig.
- CMOS Complementary Metal Oxide Semiconductor
- the solid-state imaging device 1 (1002) captures image light (incident light) from a subject via a lens group 1001, converts the amount of incident light focused on an imaging surface into an electrical signal on a pixel-by-pixel basis, and outputs the electrical signal.
- the solid-state imaging device 1 includes a pixel region 2, a vertical drive circuit 3, a column signal processing circuit 4, a horizontal drive circuit 5, an output circuit 6, and a control circuit .
- the pixel region 2 has a plurality of pixels 8 arranged in a two-dimensional array.
- the pixel 8 has two photoelectric conversion units PD1 and PD2 (see FIG. 3) and a plurality of pixel transistors (e.g., a transfer transistor, a reset transistor, an amplification transistor, and a selection transistor).
- FIG. 3 illustrates a case in which the pixel 8 has two photoelectric conversion units PD1 and PD2 and is a square phase difference pixel with an aspect ratio of 1:1.
- the first embodiment as an example, a case in which all the pixels 8 are phase difference pixels is shown, but only some of the pixels 8 may be phase difference pixels and the remaining pixels 8 may be pixels having only one photoelectric conversion unit.
- the vertical drive circuit 3 is configured, for example, by a shift register, and sequentially selects each pixel 8 in the pixel region 2 on a row-by-row basis by, for example, sequentially outputting selection pulses to pixel drive wiring 9, and outputs pixel signals of the selected pixels 8 to the column signal processing circuit 4 through vertical signal lines 10.
- the pixel signals are signals obtained from charges (for example, electrons) generated in the photoelectric conversion units PD1 and PD2.
- the column signal processing circuit 4 is arranged, for example, for each column of pixels 8, and performs signal processing such as noise removal for each pixel column on signals output from one row of pixels 8. For example, correlated double sampling (CDS) for removing fixed pattern noise specific to each pixel and AD (Analog-Digital) conversion can be used as the signal processing.
- the horizontal drive circuit 5 is, for example, composed of a shift register, and sequentially outputs horizontal scanning pulses to the column signal processing circuits 4, selects the column signal processing circuits 4 in order, and causes the selected column signal processing circuit 4 to output pixel signals that have been subjected to signal processing to the horizontal signal line 11.
- the output circuit 6 performs various signal processing on each of the pixel signals sequentially output from the column signal processing circuit 4 through the horizontal signal line 11.
- various types of digital signal processing such as buffering, black level adjustment, column variation correction, etc. can be used.
- the control circuit 7 generates clock signals and control signals that serve as a reference for the operation of the vertical drive circuit 3, the column signal processing circuit 4, the horizontal drive circuit 5, etc., based on a vertical synchronization signal, a horizontal synchronization signal, and a master clock signal (not shown). Then, the control circuit 7 outputs the generated clock signals and control signals to the vertical drive circuit 3, the column signal processing circuit 4, the horizontal drive circuit 5, etc.
- Fig. 2 is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 when cut along line A-A in Fig. 1.
- Fig. 2 is also a diagram showing a cross-sectional configuration of the solid-state imaging device 1 when cut along line CC in Fig. 3.
- the solid-state imaging device 1 has a semiconductor substrate 12, and a fixed charge film 26, an insulator 27, a color filter 13, and an on-chip lens 14 are laminated in this order on a light incident surface (hereinafter also referred to as "rear surface S1") of the semiconductor substrate 12.
- a wiring layer 15 is disposed on a surface (hereinafter referred to as "front surface S2”) of the semiconductor substrate 12 opposite to the rear surface S1.
- the semiconductor substrate 12 is a substrate made of, for example, silicon (Si).
- each region corresponding to each pixel 8 has a first region R1 and a second region R2.
- the first region R1 and the second region R2 are arranged adjacent to each other in the row direction (left-right direction in FIG. 3) when viewed from the thickness direction of the semiconductor substrate 12, and each is formed in a rectangular shape extending in the column direction (up-down direction in FIG. 3).
- FIG. 3 is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 when broken along line B-B in FIG. 2.
- a photoelectric conversion unit PD1 is formed in the first region R1
- a photoelectric conversion unit PD2 is formed in the second region R2. That is, in the semiconductor substrate 12, two photoelectric conversion units PD1 and PD2 are formed for one pixel 8, and a plurality of photoelectric conversion units PD1 and PD2 are arranged in a two-dimensional array.
- Each of the photoelectric conversion units PD1 and PD2 constitutes a photodiode by a p-type semiconductor region and an n-type semiconductor region.
- the photoelectric conversion unit PD1 generates and accumulates electric charges according to the amount of light L1 incident from the back surface S1 side of the semiconductor substrate 12.
- the photoelectric conversion unit PD2 generates and accumulates electric charges according to the amount of light L2 incident from the back surface S1 side of the semiconductor substrate 12.
- the light L1 is the light that is incident on the first region R1 of the incident light L to the pixel 8.
- the light L2 is the light that is incident on the second region R2 of the incident light L.
- a pixel isolation structure 18 is formed between the photoelectric conversion units PD1 and PD2 on the semiconductor substrate 12. That is, the pixel isolation structure 18 is formed in a lattice shape on the semiconductor substrate 12 so as to surround each of the multiple photoelectric conversion units PD1 and PD2.
- the pixel isolation structure 18 has a portion (hereinafter also referred to as an "inter-pixel isolation portion 19") that surrounds the periphery of the photoelectric conversion units PD1 and PD2 (also referred to as “two or more photoelectric conversion units” in a broad sense) in the same pixel 8, and a portion (hereinafter also referred to as an "intra-pixel isolation portion 20") located between the photoelectric conversion units PD1 and PD2 in the region surrounded by the inter-pixel isolation portion 19.
- the pixel isolation portion 19 is formed from the back surface S1 of the semiconductor substrate 12 to the vicinity of the front surface S2.
- the pixel isolation portion 19 has a trench portion 21, and an insulator 22 and a conductor 23 arranged in the trench portion 21.
- the trench portion 21 penetrates the semiconductor substrate 12 from the back surface S1 to the front surface S2 of the semiconductor substrate 12, and the side wall surface forms the outer shape of the pixel isolation portion 19.
- the insulator 22 and the conductor 23 are arranged in a space from the back surface S1 to an end position of the front surface S2 side of the pixel isolation portion 19 in the trench portion 21.
- a silicon oxide (SiO) or other isolation portion 50 is arranged in the space from the end position of the front surface S2 side of the pixel isolation portion 19 of the trench portion 21 to the front surface S2.
- the insulator 22 covers the side wall surface of the trench portion 21.
- silicon oxide (SiO 2 ) can be used as the material of the insulator 22.
- the conductor 23 is disposed in the space within the trench portion 21, that is, in the space between the sidewall surfaces covered with the insulator 22.
- the conductor 23 is disposed from the rear surface S1 of the semiconductor substrate 12 to the bottom surface of the space between the sidewall surfaces.
- Each part of the conductor 23 within the trench portion 21 is electrically integrated.
- polysilicon doped with impurities such as boron (B) (B-doped polysilicon, hereinafter also referred to as "doped polysilicon”) can be used as the material for the conductor 23.
- the conductor 23 is electrically connected to a negative bias voltage supply source, and a negative bias voltage is applied to the conductor 23. By applying a negative bias voltage, the peripheral portion of the pixel separation portion 19 can be brought into a high hole concentration state, and the generation of dark current is suppressed.
- FIG. 3 illustrates a case in which the intra-pixel isolation portion 20 is formed as a pair of strips extending in the column direction (up-down direction in FIG. 3) toward the center of the pixel 8 from each of a pair of linear portions extending along the row direction (left-right direction in FIG. 3) of the inter-pixel isolation portion 19 when viewed from the thickness direction of the semiconductor substrate 12.
- the tips of the pair of intra-pixel isolation portions 20 are spaced apart from each other in the column direction (up-down direction in FIG. 3) at the center of the pixel 8, forming a gap 24.
- the gap 24 functions as an overflow path that allows charge to pass from one side to the other side between the adjacent photoelectric conversion portions PD1 and PD2. Therefore, for example, during normal shooting, when the charge of one of the photoelectric conversion units PD1 and PD2 approaches saturation, the charge can be moved to the other photoelectric conversion unit via the overflow path, and saturation of the charge of the photoelectric conversion units PD1 and PD2 can be avoided. As a result, the linearity of the pixel signal output from the pixel 8 can be ensured, and degradation of the captured image can be suppressed.
- the line width Wa of the intra-pixel separation portion 20 is constant from the portion (root portion) located on the inter-pixel separation portion 19 side to the tip portion.
- the line width Wa of the intra-pixel separation portion 20 is the same as the line width Wb of the inter-pixel separation portion 19.
- the intra-pixel isolation portion 20 is formed from the back surface S1 of the semiconductor substrate 12 to near the front surface S2 (to the same depth as the inter-pixel isolation portion 19). Specifically, the intra-pixel isolation portion 20 has a trench portion 25, and a negatively charged fixed charge film 26 and an insulator 27 arranged in the trench portion 25.
- the trench portion 25 penetrates the semiconductor substrate 12 from the back surface S1 to the front surface S2 of the semiconductor substrate 12, and the sidewall surface forms the outer shape of the intra-pixel isolation portion 20.
- the fixed charge film 26 and the insulator 27 are arranged in the space from the back surface S1 to the end position on the front surface S2 side of the intra-pixel isolation portion 20 in the trench portion 25.
- the isolation portion 50 is arranged in the space from the end position on the front surface S2 side of the intra-pixel isolation portion 20 of the trench portion 25 to the front surface S2.
- the fixed charge film 26 continuously covers the sidewall surface of the trench portion 25 and the back surface S1 of the semiconductor substrate 12. That is, the fixed charge film 26 constitutes the sidewall of the pixel isolation section 20.
- the fixed charge film 26 induces holes (positive holes) on the pixel isolation section 20 side of the semiconductor substrate 12 to form a portion in a high hole concentration state, realizing pinning of the sidewall surface of the trench section 25 and suppressing the generation of dark current.
- the insulator 27 is disposed in the space within the trench section 25, that is, in the space between the sidewall surfaces covered with the fixed charge film 26.
- the insulator 27 also covers the light receiving surface (hereinafter also referred to as "back surface S3") of the fixed charge film 26 located on the back surface S1 of the semiconductor substrate 12. That is, the insulator 27 is disposed continuously within the pixel isolation section 20 and on the back surface S1 of the semiconductor substrate 12.
- the fixed charge film 26 and the insulator 27 are made of a low absorptivity material having a lower light absorptivity than the conductor 23. That is, only low absorptivity materials having a lower light absorptivity than the conductor 23 are disposed in the pixel separation section 20.
- the fixed charge film 26 is made of a material (low absorptivity material) that can be formed on the semiconductor substrate 12 to generate fixed charges and strengthen pinning. Examples of the material include oxides or nitrides containing at least one element of hafnium (Hf), aluminum (Al), zirconium (Zr), tantalum (Ta), and titanium (Ti).
- hafnium oxide (HfO 2 ) is preferable because it is difficult to peel off from the semiconductor substrate 12.
- the insulator 27 is made of a material (low absorptivity material) that can be formed on the semiconductor substrate 12 to generate fixed charges and strengthen pinning.
- a p-type semiconductor region 16 is formed on the sidewall surface (sidewall surface of the pixel isolation structure 18) of each of the inter-pixel isolation portion 19 and the intra-pixel isolation portion 20. That is, the p-type semiconductor region 16 is formed on the side surface of the photoelectric conversion units PD1 and PD2 so as to cover the sidewall surface of the pixel isolation structure 18.
- the p-type semiconductor region 16 induces holes (positive holes) on the pixel isolation structure 18 side of the semiconductor substrate 12 to form a portion with a high hole concentration, realizing pinning of the sidewall surface of the trench portions 21 and 25, and more appropriately suppressing the generation of dark current.
- the p-type semiconductor region 16 can increase the potential depth of the photoelectric conversion units PD1 and PD2, and can increase the amount of charge (saturation charge amount Qs) that can be accumulated by the photoelectric conversion units PD1 and PD2.
- the color filters 13 are arranged in a two-dimensional array on the back surface S1 side of the semiconductor substrate 12 so that one color filter 13 is arranged for one pixel 8. That is, a shared color filter 13 is arranged for the photoelectric conversion units PD1 and PD2 in the same pixel 8.
- the color filters 13 for example, multiple types of color filters (that is, multiple types of color filters with different transmission characteristics) that transmit only light of different predetermined wavelengths are used. For example, an R filter that transmits red light, a G filter that transmits green light, and a B filter that transmits blue light are included.
- the color filters 13 transmit light of a predetermined wavelength (red light, green light, blue light, etc.) according to the transmission characteristics, and allow the transmitted light to enter the photoelectric conversion units PD1 and PD2.
- the light transmitted through the color filters 13 is also incident on the pixel separation unit 20 (fixed charge film 26, insulator 27) between the photoelectric conversion units PD1 and PD2.
- the on-chip lenses 14 are arranged in a two-dimensional array on the light incident surface (hereinafter also referred to as "rear surface S4") side of the color filter 13 so that one on-chip lens 14 is arranged for one pixel 8. That is, the on-chip lens 14 is arranged on the rear surface S1 side of the semiconductor substrate 12, and is shared by the photoelectric conversion units PD1 and PD2 (also referred to as "two or more photoelectric conversion units” in a broad sense) in the same pixel 8.
- the on-chip lens 14 collects image light (incident light L) from a subject at the center of the pixel 8 (the region where the gap 24 in FIG.
- the wiring layer 15 is disposed on the surface S2 side of the semiconductor substrate 12.
- the wiring layer 15 has an interlayer insulating film and wirings stacked in multiple layers with the interlayer insulating film interposed therebetween.
- the wiring layer 15 drives pixel transistors (not shown) of each pixel 8 via the multiple layers of wiring.
- the solid-state imaging device 1 In the solid-state imaging device 1 having the above configuration, light is irradiated from the rear surface S1 side of the semiconductor substrate 12, the irradiated light is transmitted through the on-chip lens 14 and the color filter 13, and the transmitted light is photoelectrically converted by the photoelectric conversion units PD1 and PD2 to generate electric charges. The generated electric charges are then output as pixel signals from the vertical signal lines 10 formed by the wiring of the wiring layer 15. Furthermore, when detecting a phase difference, the solid-state imaging device 1 detects the phase difference by detecting the difference between pixel signals based on the charges generated by the photoelectric conversion units PD1 and PD2.
- the photoelectric conversion units PD1 and PD2 in the same pixel 8 are made to function as one photoelectric conversion unit, and the sum of the pixel signals based on the charges generated by the photoelectric conversion units PD1 and PD2 is detected.
- the gap 24 between the pair of intra-pixel isolation units 20 functions as an overflow path that allows the passage of charges from one of the photoelectric conversion units PD1 and PD2 to the other photoelectric conversion unit.
- a comparative example is considered in which the side walls of the inter-pixel isolation portion 19 and the intra-pixel isolation portion 20 are continuously covered with an insulator 22, and a conductor 23 is continuously embedded in the space surrounded by the insulator 22 (the space in the inter-pixel isolation portion 19 and the space in the intra-pixel isolation portion 20). That is, a case is considered in which silicon oxide (SiO 2 ) and doped polysilicon are also used as the material for the intra-pixel isolation portion 20.
- a negative bias voltage is also applied to the conductor 23 in the intra-pixel isolation portion 20, so that both the peripheral portion of the inter-pixel isolation portion 19 and the peripheral portion of the intra-pixel isolation portion 20 are brought into a high hole concentration state, and the generation of dark current is suppressed.
- polysilicon has a property of absorbing light. Therefore, incident light is absorbed by the intra-pixel isolation section 20, and the amount of light reaching the photoelectric conversion sections PD1 and PD2 is reduced, and the quantum efficiency Qe may decrease.
- FIG. 4 is also a diagram showing the cross-sectional configuration of the solid-state imaging device 1 when cut along the line E-E in FIG. 5.
- FIG. 5 is also a diagram showing the cross-sectional configuration of the solid-state imaging device 1 when cut along the line D-D in FIG. 4.
- the conductor 23 (doped polysilicon) is arranged in the inter-pixel isolation section 19. Therefore, by applying a negative bias voltage to the conductor 23 in the inter-pixel isolation section 19, the peripheral portion of the inter-pixel isolation section 19 is brought into a high hole concentration state, and the generation of dark current is suppressed.
- only low-absorption members (fixed charge film 26, insulator 27) having a lower light absorption rate than the conductor 23 are arranged in the intra-pixel isolation section 20. In other words, polysilicon (doped polysilicon) is not arranged near the light-focusing spot.
- the absorption of incident light by the intra-pixel isolation section 20 can be suppressed, the amount of light reaching the photoelectric conversion sections PD1 and PD2 can be increased, and the decrease in quantum efficiency Qe can be suppressed. Therefore, the quantum efficiency Qe can be improved while suppressing the generation of dark current.
- a trench portion 21 of the pixel isolation portion 19 is formed on the surface S2 of the semiconductor substrate 12 by using lithography and dry etching. Then, a conformal doping technique is used to dope the sidewall surface of the trench portion 21 with boron (B) to form a part of the p-type semiconductor region 16 in the semiconductor substrate 12. Then, an insulator 22 is formed so as to continuously cover the sidewall surface and the bottom surface of the trench portion 21.
- a chemical vapor deposition (CVD) method or thermal oxidation can be used as a method for forming the insulator 22.
- CVD chemical vapor deposition
- thermal oxidation can be used as a method for forming the insulator 22.
- a conductor 23 is buried in the space between the sidewall surfaces covered with the insulator 22.
- the trench portion 21, the insulator 22, and the conductor 23 form the pixel isolation portion 19.
- doped polysilicon is used as the material of the conductor 23.
- silicon oxide (SiO) is embedded on the surface S2 side of the trench portion 21 to form an isolation portion 50.
- Fig. 6 is a diagram showing the semiconductor substrate 12 when cut along line G-G in Fig. 7.
- Fig. 7 is a diagram showing the semiconductor substrate 12 when cut along line F-F in Fig. 6.
- a trench portion 25 of the intra-pixel isolation portion 20 is formed on the surface S2 of the semiconductor substrate 12 on which the inter-pixel isolation portion 19 is formed, using lithography and dry etching.
- boron (B) is doped into the sidewall surface of the trench portion 25 using conformal doping technology to form the remaining portion of the p-type semiconductor region 16 in the semiconductor substrate 12.
- an oxide film 31 is formed so as to continuously cover the sidewall surface and bottom surface of the trench portion 25 thus formed.
- silicon oxide (SiO) can be used as the material for the oxide film 31.
- chemical vapor deposition and thermal oxidation can be used as the method for forming the oxide film 31.
- a filling material 32 is filled into the space between the sidewall surfaces covered with the oxide film 31.
- polysilicon Pure-Poly Si
- the embedding material 32 can be removed with an alkaline chemical solution, and the process of removing the embedding material 32 can be performed relatively easily.
- doped polysilicon doped with boron (B) is not suitable for the embedding material 32 because it cannot be removed with an alkaline chemical solution.
- the embedding material 32 is arranged so as not to come into direct contact with the conductor 23 of the inter-pixel isolation portion 19.
- FIG. 8 is a diagram showing the semiconductor substrate 12 when broken along the line J-J in FIG. 9.
- FIG. 9 is a diagram showing the semiconductor substrate 12 when broken along the line H-H in FIG. 9.
- FIG. 10 is a diagram showing the semiconductor substrate 12 when broken along the line I-I in FIG. 10.
- Fig. 11 is a diagram showing the semiconductor substrate 12 when broken along the line M-M in Fig. 12.
- Fig. 12 is a diagram showing the semiconductor substrate 12 when broken along the line K-K in Fig. 11.
- Fig. 13 is a diagram showing the semiconductor substrate 12 when broken along the line L-L in Fig. 11.
- the oxide film 31 is removed from within the trench portion 25 using hydrofluoric acid (HF) or the like.
- a fixed charge film 26 is continuously formed in the trench portion 25 and on the back surface S1 of the semiconductor substrate 12.
- an insulator 27 is continuously formed in the space between the sidewall surfaces covered with the fixed charge film 26 and on the back surface S1 of the semiconductor substrate 12.
- the trench portion 25, the fixed charge film 26, and the insulator 27 form the intra-pixel separation portion 20.
- a material having a lower light absorption rate than the conductor 23 can be used as the material of the fixed charge film 26 and the material of the insulator 27.
- a high refractive index material film or a high dielectric film having a negative charge is used as the material of the fixed charge film 26.
- silicon oxide SiO 2
- a color filter 13 see FIG. 2
- an on-chip lens 14 see FIG. 2
- the solid-state imaging device 1 shown in FIG. 2 is manufactured.
- the trench portion 25 of the intra-pixel isolation portion 20 is formed from the back surface S1 to the front surface S2 of the semiconductor substrate 12, but other configurations may be adopted.
- the trench portion 25 of the intra-pixel isolation portion 20 may be formed from the back surface S1 of the semiconductor substrate 12 to a position midway between the back surface S1 and the front surface S2.
- a process for forming the intra-pixel isolation portion 20 in the case where such a configuration is adopted will be described. First, after forming the inter-pixel isolation portion 19 shown in FIG.
- the trench portion 25 of the intra-pixel isolation portion 20 is formed from the back surface S1 side of the semiconductor substrate 12 as shown in FIG. 18, FIG. 19, and FIG. 20.
- the trench portion 25 is formed from the back surface S1 to a position halfway between the back surface S1 and the front surface S2, and the side wall surface and the bottom surface form the outline of the intra-pixel isolation portion 20.
- boron (B) is doped into the side wall surface of the trench portion 25 using a conformal doping technique, and a p-type semiconductor region 16 is formed in the semiconductor substrate 12.
- FIG. 18 is a diagram showing the semiconductor substrate 12 when broken along the line S-S in FIG. 19.
- FIG. 19 is a diagram showing the semiconductor substrate 12 when broken along the line Q-Q in FIG. 18.
- FIG. 20 is a diagram showing the semiconductor substrate 12 when broken along the line R-R in FIG. 18.
- a fixed charge film 26 having a negative charge is continuously formed in the trench portion 25 and on the back surface S1 of the semiconductor substrate 12.
- an insulator 27 is continuously formed in the space between the sidewall surfaces covered with the fixed charge film 26 and on the back surface S1 of the semiconductor substrate 12.
- the trench portion 25, the fixed charge film 26, and the insulator 27 form the pixel separation portion 20.
- the material of the fixed charge film 26 and the material of the insulator 27 are materials having a lower light absorption rate than the conductor 23 (doped polysilicon).
- the material of the fixed charge film 26 is, for example, a high refractive index material film or a high dielectric film having a negative charge, such as hafnium oxide (HfO 2 ).
- the material of the insulator 27 is, for example, silicon oxide (SiO 2 ).
- a solid-state imaging device 1 according to a second embodiment of the present disclosure will be described.
- the overall configuration of the solid-state imaging device 1 of the second embodiment is the same as that of Fig. 1, and is therefore omitted from the illustration.
- Fig. 24 is a diagram corresponding to Fig. 3 of the first embodiment, and is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 of the second embodiment.
- parts corresponding to Fig. 3 are given the same reference numerals, and duplicated explanations will be omitted.
- the solid-state imaging device 1 according to the second embodiment differs from the solid-state imaging device 1 according to the first embodiment in the configuration of the intra-pixel isolation section 20.
- the intra-pixel isolation section 20 protrudes from the inter-pixel isolation section 19 into a region between the photoelectric conversion sections PD1 and PD2 (also referred to as “two or more photoelectric conversion sections” in a broad sense) in the same pixel 8, and when viewed in the thickness direction of the semiconductor substrate 12, the tip section 35 of the intra-pixel isolation section 20 has a larger line width than the portion between the tip section 35 and the inter-pixel isolation section 19 (hereinafter also referred to as "connection section 36"). That is, the line width Wc of the connection section 36 is smaller than the line width Wd of the tip section 35 (the diameter of the circular section in FIG. 24).
- the tip portion 35 has a circular shape when viewed from the thickness direction of the semiconductor substrate 12. In addition, it is formed from the back surface S1 of the semiconductor substrate 12 to the vicinity of the front surface S2 (to the same depth as the inter-pixel separation portion 19). Specifically, the tip portion 35 has a trench portion 37, and a fixed charge film 38 having a negative charge and an insulator 39 arranged in the trench portion 37.
- the trench portion 37 penetrates the semiconductor substrate 12 from the back surface S1 to the front surface S2 of the semiconductor substrate 12, and the side wall surface forms the outline of the intra-pixel separation portion 20.
- the fixed charge film 38 and the insulator 39 are arranged in the space from the back surface S1 to the end position of the tip portion 35 on the front surface S2 side in the trench portion 37.
- a separation portion 50 (see FIG. 2) is arranged in the space from the end position on the front surface S2 side of the tip portion 35 of the trench portion 37 to the front surface S2.
- the fixed charge film 38 continuously covers the sidewall surface of the trench portion 37 and the back surface S1 of the semiconductor substrate 12.
- the fixed charge film 38 can make the periphery of the intra-pixel separation portion 20 into a high hole concentration state, and can suppress the generation of dark current.
- the material of the fixed charge film 38 for example, a high refractive index material film or a high dielectric film having a negative charge that can generate fixed charges and strengthen pinning by being formed on the semiconductor substrate 12, similar to the fixed charge film 26 of the first embodiment, can be adopted.
- a high refractive index material film or a high dielectric film having a negative charge that can generate fixed charges and strengthen pinning by being formed on the semiconductor substrate 12, similar to the fixed charge film 26 of the first embodiment can be adopted.
- an oxide or nitride containing at least one element of hafnium (Hf), aluminum (Al), zirconium (Zr), tantalum (Ta), and titanium (Ti) can be mentioned.
- the insulator 39 is disposed in the space in the trench portion 37, that is, in the space between the sidewall surfaces covered with the fixed charge film 38.
- the insulator 39 In addition to covering the space within the trench portion 37, the insulator 39 also covers the light receiving surface (rear surface S3; see FIG. 2) of the fixed charge film 38 located on the rear surface S1 of the semiconductor substrate 12. That is, the insulator 39 is continuously disposed within the intra-pixel isolation portion 20 and on the rear surface S1 of the semiconductor substrate 12.
- silicon oxide SiO2
- the connecting portion 36 has a strip shape extending along the column direction (the vertical direction in FIG. 24) when viewed from the thickness direction of the semiconductor substrate 12. Also, it is formed from the back surface S1 of the semiconductor substrate 12 to the vicinity of the front surface S2 (to the same depth as the tip portion 35). Specifically, the connecting portion 36 has a trench portion 40 and an insulator 41 arranged in the trench portion 40.
- the trench portion 40 penetrates the semiconductor substrate 12 from the back surface S1 to the front surface S2 of the semiconductor substrate 12, and the side wall surface forms the outline of the intra-pixel separation portion 20.
- the insulator 41 is arranged in the space from the back surface S1 to the end position of the connecting portion 36 on the front surface S2 side in the trench portion 40.
- the insulator 41 is arranged in the connecting portion 36. Also, the insulator 41 is integrated with the insulator 22 of the inter-pixel separation portion 19. The same material (SiO 2 ) as the insulator 22 of the inter-pixel separation portion 19 is used as the material of the insulator 41.
- An isolation portion 50 (see FIG. 2) is disposed in the space between the end position of the trench portion 40 on the surface S2 side of the connection portion 36 and the surface S2. When viewed in the thickness direction of the semiconductor substrate 12, the line width Wd of the tip 35 of the intra-pixel isolation portion 20 is larger than the line width Wc of the connection portion 36 located on the inter-pixel isolation portion 19 side (Wc ⁇ Wd).
- the line width Wd of the tip 35 for example, the maximum value of the width of the tip 35 in the row direction (left-right direction in FIG. 24) is used.
- the line width Wc of the connection portion 36 (trench portion 40) is constant at each point in the column direction and is equal to or less than twice the film thickness We of the insulator 22.
- the trench portion 21 of the inter-pixel isolation portion 19 and the trench portion of the intra-pixel isolation portion 20 are formed on the surface S2 of the semiconductor substrate 12 using lithography and dry etching.
- the line width Wc of the trench portion 40 of the connection portion 36 is set to be equal to or less than twice the film thickness We of the insulator 22 (see FIG. 24) (Wc ⁇ We ⁇ 2).
- the line width Wc of the trench portion 40 may be formed to be wider than We ⁇ 2, and then the sidewall surface of the trench portion 40 may be epitaxially grown to be equal to or less than We ⁇ 2.
- the sidewall surfaces of the trench portions 21, 37, and 40 are doped with boron (B) using a conformal doping technique to form a p-type semiconductor region 16 in the semiconductor substrate 12.
- the insulators 22, 41, 42 are continuously formed on the sidewall and bottom surfaces of the trench portions 21, 37, 40 so that the trench portion 40 of the connection portion 36 is closed.
- a silicon oxide (SiO 2 ) film is formed on the inner wall surfaces of the trench portions 21, 37, 40, and layers of the insulators 22, 41, 42 are formed in the trench portions 21, 37, 40 so as to cover the inner wall and bottom surfaces of the trench portions 21, 37, 40.
- the layers of the insulators 22, 41, 42 grow from the inner wall and bottom surfaces of the trench portions 21, 37, 40, and when the thickness of the layers of the insulators 22, 41, 42 reaches 1/2 the width of the trench portion 40 of the connection portion 36, the trench portion 40 is closed with the insulator 41.
- conductors 23, 43 are embedded in the space of trench portion 21 covered with insulator 22 and in the space within trench portion 37 covered with insulator 42.
- the conductor 23 in trench portion 21 and the conductor 43 within trench portion 37 are separated by trench portion 40 blocked with insulator 41.
- the conductors 23, 43 are made of, for example, doped polysilicon.
- the trench portion 21, insulator 22, and conductor 23 form inter-pixel isolation portion 19. Silicon oxide (SiO) is embedded on the surface S2 side of trench portions 21, 37, 40 to form isolation portion 50 (see FIG. 2).
- a polishing process such as CMP (Chemical Mechanical Polishing) is performed on the back surface S1 side of the semiconductor substrate 12.
- CMP Chemical Mechanical Polishing
- the conductor 43 is selectively removed from the trench portion 37 of the tip portion 35 using a mixed solution of fluoronitric acid and acetic acid, etc.
- the insulator 42 is removed from the trench portion 37 using hydrofluoric acid (HF), etc.
- HF hydrofluoric acid
- a fixed charge film 38 is continuously formed in the trench portion 37 of the tip portion 35 and on the back surface S1 of the semiconductor substrate 12.
- an insulator 39 is continuously formed in the space in the trench portion 37 covered with the fixed charge film 38 and on the back surface S1 of the semiconductor substrate 12.
- the trench portion 37, the fixed charge film 38, and the insulator 39 form the intra-pixel separation portion 20.
- the fixed charge film 38 and the insulator 39 are made of a material having a lower light absorption rate than the conductor 23 (polysilicon doped with boron), for example.
- the fixed charge film 38 is made of a negatively charged high refractive index material film or a high dielectric film, for example.
- the insulator 39 is made of silicon oxide (SiO 2 ), for example. After that, the color filter 13, the on-chip lens 14, etc. are formed on the insulator 39. Through these steps, the solid-state imaging device 1 shown in FIG. 2 is manufactured.
- the trench portions 37, 40 of the intra-pixel isolation portion 20 are formed so as to penetrate the semiconductor substrate 12 from the rear surface S1 to the front surface S2 of the semiconductor substrate 12, but other configurations may be adopted.
- the trench portions 37, 40 of the intra-pixel isolation portion 20 may be formed from the rear surface S1 of the semiconductor substrate 12 to a position midway between the rear surface S1 and the front surface S2.
- a solid-state imaging device 1 according to a third embodiment of the present disclosure will be described.
- the overall configuration of the solid-state imaging device 1 of the third embodiment is the same as that of Fig. 1, and is therefore omitted from the illustration.
- Fig. 28 is a diagram corresponding to Fig. 3 of the first embodiment, and is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 of the third embodiment.
- parts corresponding to Fig. 3 are given the same reference numerals, and duplicated explanations will be omitted.
- the solid-state imaging device 1 according to the third embodiment is different from the solid-state imaging devices 1 according to the first and second embodiments in the configuration of the intra-pixel isolation portion 20.
- the intra-pixel isolation portion 20 of the third embodiment is disposed at a position away from the inter-pixel isolation portion 19 within a region surrounded by the inter-pixel isolation portion 19 when viewed in the thickness direction of the semiconductor substrate 12.
- the intra-pixel isolation section 20 When viewed from the thickness direction of the semiconductor substrate 12, the intra-pixel isolation section 20 is formed in a band shape extending along the column direction (up-down direction in FIG. 28) passing through the center of the pixel 8 in the region between the photoelectric conversion units PD1 and PD2 in the same pixel 8.
- Each of the column direction ends (upper end and lower end in FIG. 28) of the intra-pixel isolation section 20 is separated from the linear portion of the inter-pixel isolation section 19 extending along the row direction (left-right direction in FIG. 28) so as to have gaps 45 and 46 between the intra-pixel isolation section 20 and the linear portion.
- the intra-pixel isolation section 20 when viewed from the thickness direction of the semiconductor substrate 12, the intra-pixel isolation section 20 is disposed at a position away from the inter-pixel isolation section 19 within the region surrounded by the inter-pixel isolation section 19.
- the gaps 45 and 46 function as an overflow path that allows the passage of electric charge from one side to the other side between the adjacent photoelectric conversion units PD1 and PD2.
- the trench portion 25 of the intra-pixel isolation portion 20 is formed to penetrate the semiconductor substrate 12 from the rear surface S1 to the front surface S2 of the semiconductor substrate 12, similar to the first embodiment shown in FIG. 2.
- the gaps 45 and 46 are formed between the column-side ends (the upper end and the lower end in FIG. 28 ) of the intra-pixel separation unit 20 and the linear portion of the inter-pixel separation unit 19 extending along the row direction (the left-right direction in FIG. 28 ), respectively.
- FIG. 29 a configuration may be adopted in which a gap is formed only at one of the column-side ends (the upper end and the lower end in FIG. 29 ) of the intra-pixel separation unit 20.
- FIG. 29 illustrates a configuration having only the gap 45 of the gaps 45 and 46 shown in FIG. 28 .
- the intra-pixel separation unit 20 is formed in a strip shape extending along the column direction (the up-down direction in FIG. 29 ) from one of a pair of linear portions extending along the row direction (the left-right direction in FIG. 29 ) of the inter-pixel separation unit 19, passing through the center of the pixel 8, when viewed from the thickness direction of the semiconductor substrate 12.
- the tip end (the end on the upper side in FIG. 29) of intra-pixel separation portion 20 is separated from the linear portion of inter-pixel separation portion 19 that extends along the row direction, forming a gap 45 .
- the trench portion 25 of the intra-pixel isolation portion 20 is formed so as to penetrate the semiconductor substrate 12 from the back surface S1 to the front surface S2 of the semiconductor substrate 12, but other configurations can also be adopted.
- the trench portion 25 of the intra-pixel isolation portion 20 may be formed from the back surface S1 of the semiconductor substrate 12 to a position halfway between the back surface S1 and the front surface S2.
- a solid-state imaging device 1 according to a fourth embodiment of the present disclosure will be described.
- the overall configuration of the solid-state imaging device 1 of the fourth embodiment is the same as that of Fig. 1, and therefore is not illustrated.
- Fig. 30 is a diagram corresponding to Fig. 3 of the first embodiment, and is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 of the fourth embodiment.
- parts corresponding to Fig. 3 are given the same reference numerals, and duplicated explanations are omitted.
- the solid-state imaging device 1 according to the fourth embodiment differs from the solid-state imaging device 1 according to the first embodiment in the configuration of the on-chip lens 14 and the configuration of the intra-pixel separation section 20. Specifically, as shown in Fig. 30, the on-chip lens 14 of the fourth embodiment is shared by 2 x 2 photoelectric conversion units PD1, PD2, PD3, and PD4. That is, 2 x 2 photoelectric conversion units PD1, PD2, PD3, and PD4 are used as "two or more photoelectric conversion units".
- the intra-pixel separation section 20 is formed in a cross shape that divides the area surrounded by the inter-pixel separation section 19 into each of the photoelectric conversion units PD1, PD2, PD3, and PD4 when viewed from the thickness direction of the semiconductor substrate 12.
- the semiconductor substrate 12 has a first region R1, a second region R2, a third region R3, and a fourth region R4, each of which corresponds to one of the pixels 8.
- the first region R1, the second region R2, the third region R3, and the fourth region R4 are arranged in a 2x2 two-dimensional array adjacent to each other in the row direction (left-right direction in FIG. 30) and the column direction (up-down direction in FIG. 30), and each is formed in a square shape.
- a photoelectric conversion unit PD1 is formed in the first region R1, and similarly, a photoelectric conversion unit PD2 is formed in the second region R2, a photoelectric conversion unit PD3 is formed in the third region R3, and a photoelectric conversion unit PD4 is formed in the fourth region R4. That is, four photoelectric conversion units PD1, PD2, PD3, and PD4 (broadly speaking, also called “two or more photoelectric conversion units”) are formed for each pixel 8 on the semiconductor substrate 12, and the multiple photoelectric conversion units PD1, PD2, PD3, and PD4 are arranged in a two-dimensional array.
- the intra-pixel separation portion 20 When viewed from the thickness direction of the semiconductor substrate 12, the intra-pixel separation portion 20 is formed in a cross shape extending from the center of the pixel 8 along both the row direction (left-right direction in FIG. 30) and the column direction (up-down direction in FIG. 30) to the inter-pixel separation portion 19.
- the intra-pixel separation portion 20 is formed from the rear surface S1 of the semiconductor substrate 12 to near the front surface S2 (to the same depth as the inter-pixel separation portion 19).
- the color filters 13 and on-chip lenses 14 are arranged in a two-dimensional array on the rear surface S1 side of the semiconductor substrate 12 so that one color filter 13 and one on-chip lens 14 are arranged for one pixel 8.
- a shared color filter 13 is arranged for the photoelectric conversion units PD1 to PD4 (also referred to as “two or more photoelectric conversion units” in a broad sense) in the same pixel 8.
- a shared on-chip lens 14 is arranged for the photoelectric conversion units PD1 to PD4 (also referred to as “two or more photoelectric conversion units” in a broad sense) in the same pixel 8.
- the intra-pixel separation section 20 is formed in a cross shape in the region surrounded by the inter-pixel separation section 19, but other configurations can also be adopted.
- a configuration in which a region overlapping with a region located at the center of the pixel 8 is omitted from the intra-pixel separation section 20 shown in FIG. 30 may be used.
- the intra-pixel separation section 20 when viewed from the thickness direction of the semiconductor substrate 12, the intra-pixel separation section 20 is formed in a cross shape in which a portion overlapping with a region located at the center of the block of 2 ⁇ 2 photoelectric conversion units PD1 to PD4 (hereinafter also referred to as a "center region 44") is omitted so that the region surrounded by the inter-pixel separation section 19 is divided into each of the photoelectric conversion units PD1, PD2, PD3, and PD4.
- a floating diffusion (not shown) that is shared by the photoelectric conversion units PD1 to PD4 and to which the signal charges of the photoelectric conversion units PD1 to PD4 are transferred can be arranged on the surface S2 side of the center region 44 of the semiconductor substrate 12.
- the trench portion 25 of the intra-pixel isolation portion 20 is formed so as to penetrate the semiconductor substrate 12 from the back surface S1 to the front surface S2 of the semiconductor substrate 12, but other configurations can also be adopted.
- the trench portion 25 of the intra-pixel isolation portion 20 may be formed from the back surface S1 of the semiconductor substrate 12 to a position midway between the back surface S1 and the front surface S2.
- this technology can be applied to light detection devices in general, including distance measuring sensors that measure distance, also known as ToF (Time of Flight) sensors, in addition to the solid-state imaging device 1 as the image sensor described above.
- a distance measuring sensor is a sensor that emits light toward an object, detects the reflected light that is reflected back from the surface of the object, and calculates the distance to the object based on the flight time from when the light is emitted to when the reflected light is received.
- the structure of pixel 8 described above can be adopted as the light receiving pixel structure of this distance measuring sensor.
- FIG. 32 is a diagram showing an example of a schematic configuration of an imaging device (such as a video camera or a digital still camera) as an electronic device to which the present technology is applied.
- the imaging device 1000 includes a lens group 1001, a solid-state imaging device 1002 (solid-state imaging device 1 according to the first embodiment), a DSP (Digital Signal Processor) circuit 1003, a frame memory 1004, a monitor 1005, and a memory 1006.
- the DSP circuit 1003, the frame memory 1004, the monitor 1005, and the memory 1006 are connected to each other via a bus line 1007.
- the lens group 1001 guides incident light (image light) from a subject to the solid-state imaging device 1002 , and forms an image on the light receiving surface (pixel region) of the solid-state imaging device 1002 .
- the solid-state imaging device 1002 is made up of the CMOS image sensor according to the first embodiment described above.
- the solid-state imaging device 1002 converts the amount of incident light focused on the light receiving surface by the lens group 1001 into an electrical signal on a pixel-by-pixel basis and supplies the signal to the DSP circuit 1003 as a pixel signal.
- the DSP circuit 1003 performs predetermined image processing on the pixel signals supplied from the solid-state imaging device 1002.
- the DSP circuit 1003 supplies the image signals after the image processing to a frame memory 1004 on a frame-by-frame basis, and causes the image signals to be temporarily stored in the frame memory 1004.
- the monitor 1005 is formed of a panel-type display device such as a liquid crystal panel, an organic EL (Electro Luminescence) panel, etc.
- the monitor 1005 displays an image (moving image) of a subject based on pixel signals in frame units temporarily stored in the frame memory 1004.
- the memory 1006 is composed of a DVD, a flash memory, etc.
- the memory 1006 reads out and records the pixel signals temporarily stored in the frame memory 1004 on a frame-by-frame basis.
- the electronic device to which the solid-state imaging device 1 can be applied is not limited to the imaging device 1000, but can also be applied to other electronic devices.
- the solid-state imaging device 1 according to the first embodiment is used as the solid-state imaging device 1002, other configurations can also be adopted.
- the solid-state imaging device 1 according to the second to fourth embodiments, the solid-state imaging device 1 according to the modified examples, or other light detection devices to which the present technology is applied can also be used.
- the present technology can also be configured as follows. (1) a semiconductor substrate having a first surface onto which light is incident and a second surface located on the opposite side to the first surface; A plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate; a pixel isolation structure formed between the photoelectric conversion units of the semiconductor substrate; an on-chip lens disposed on the first surface side of the semiconductor substrate and shared by two or more of the photoelectric conversion units; the pixel isolation structure includes an inter-pixel isolation portion surrounding the two or more photoelectric conversion portions, and an intra-pixel isolation portion located between the photoelectric conversion portions within a region surrounded by the inter-pixel isolation portion, a conductor is disposed within the inter-pixel isolation portion, a low absorptivity member having a lower light absorptivity than the conductor is disposed within the pixel isolation portion.
- the inter-pixel isolation portion has a trench portion formed so as to penetrate the semiconductor substrate from the first surface to the second surface, and the conductor disposed in the trench portion;
- the conductor is a conductor to which a negative bias voltage is applied.
- the intra-pixel isolation portion includes a trench portion formed so as to penetrate the semiconductor substrate from the first surface to the second surface, and the low absorption rate member disposed in the trench portion;
- the optical detection device according to any one of (1) to (3).
- the intra-pixel isolation portion includes a trench portion formed from the first surface to a position midway between the first surface and the second surface, and the low absorption rate member disposed in the trench portion;
- the optical detection device according to any one of (1) to (3).
- the intra-pixel isolation portion protrudes from the inter-pixel isolation portion into a region between the two or more photoelectric conversion portions, and when viewed in a thickness direction of the semiconductor substrate, a tip portion of the intra-pixel isolation portion has a line width larger than that of a connection portion which is a portion between the tip portion and the inter-pixel isolation portion,
- the photodetector according to any one of (1) to (5), wherein only an insulator is disposed within the connection portion.
- the two or more photoelectric conversion units are 2 ⁇ 2 photoelectric conversion units, The photodetector device described in (6), wherein the intra-pixel isolation portion is formed in a cross shape that divides the area surrounded by the inter-pixel isolation portion into each of the photoelectric conversion portions when viewed in the thickness direction of the semiconductor substrate.
- the two or more photoelectric conversion units are 2 ⁇ 2 photoelectric conversion units, The photodetector device described in (6) above, in which the intra-pixel isolation portion is formed in a cross shape with the overlapping portion with the area located at the center of the 2 x 2 blocks of photoelectric conversion units omitted, so that the area surrounded by the inter-pixel isolation portion is divided for each photoelectric conversion unit when viewed in the thickness direction of the semiconductor substrate.
- An electronic device comprising: a semiconductor substrate having a first surface through which light is incident and a second surface located opposite to the first surface; a plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate; a pixel isolation structure formed between the photoelectric conversion units of the semiconductor substrate; and an on-chip lens located on the first surface side of the semiconductor substrate and shared by two or more of the photoelectric conversion units, the pixel isolation structure having an inter-pixel isolation unit surrounding the two or more photoelectric conversion units and an intra-pixel isolation unit located between the photoelectric conversion units in a region surrounded by the inter-pixel isolation unit, a conductor is arranged in the inter-pixel isolation unit, and only a low absorptance material having a lower light absorptance than the conductor is arranged in the intra-pixel isolation unit.
- 1...solid-state imaging device 2...pixel region, 3...vertical drive circuit, 4...column signal processing circuit, 5...horizontal drive circuit, 6...output circuit, 7...control circuit, 8...pixel, 9...pixel drive wiring, 10...vertical signal line, 11...horizontal signal line, 12...semiconductor substrate, 13...color filter, 14...on-chip lens, 15...wiring layer, 16...semiconductor region, 18...pixel separation structure, 19...inter-pixel separation section, 20...inside pixel Isolation portion, 21...trench portion, 22...insulator, 23...conductor, 24...gap, 25...trench portion, 26...fixed charge film, 27...insulator, 31...oxide film, 32...filling material, 35...tip portion, 36...connection portion, 37...trench portion, 38...fixed charge film, 39...insulator, 40...trench portion, 41...insulator, 42...insulator, 43...conductor, 44...center region, 45...gap, 46...gap, 50...i
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
本技術(本開示に係る技術)は、光検出装置及び電子機器に関する。 This technology (the technology disclosed herein) relates to a light detection device and electronic equipment.
従来、例えば、隣り合う2個の光電変換部を有する半導体基板と、2個の光電変換部からなるブロックの周囲を囲む画素間分離部と、ブロックを構成する光電変換部間に形成された画素内分離部と、半導体基板の受光面側に配置され2個の光電変換部で共有されるオンチップレンズと、を備えた光検出装置が提案されている(例えば、特許文献1参照)。特許文献1に記載の光検出装置では、2個の光電変換部の出力から位相差を検出し、検出した位相差を用いてオートフォーカスを行うようになっている。また、画素間分離部及び画素内分離部のそれぞれに負のバイアス電圧を印加することで、画素間分離部及び画素内分離部の周辺部を高ホール濃度状態とし、暗電流の発生を抑制するようになっている。 Conventionally, a photodetector has been proposed that includes, for example, a semiconductor substrate having two adjacent photoelectric conversion units, an inter-pixel separation unit surrounding a block consisting of the two photoelectric conversion units, an intra-pixel separation unit formed between the photoelectric conversion units that make up the block, and an on-chip lens that is disposed on the light receiving surface side of the semiconductor substrate and shared by the two photoelectric conversion units (see, for example, Patent Document 1). The photodetector described in Patent Document 1 detects a phase difference from the output of the two photoelectric conversion units, and performs autofocus using the detected phase difference. In addition, by applying a negative bias voltage to each of the inter-pixel separation unit and the intra-pixel separation unit, the peripheral areas of the inter-pixel separation unit and the intra-pixel separation unit are brought into a high hole concentration state, suppressing the generation of dark current.
しかし、特許文献1に記載の光検出装置では、オンチップレンズによって、2個の光電変換部からなるブロックの中央の領域に光が集光される。それゆえ、集光された光が画素内分離部に照射され、画素内分離部によって光が吸収される可能性があった。そのため、光電変換部に到達する光の量が減少し、量子効率Qeが低下する可能性があった。 However, in the photodetector described in Patent Document 1, the on-chip lens focuses light on the central area of a block consisting of two photoelectric conversion units. Therefore, the focused light is irradiated onto the in-pixel separation unit, and there is a possibility that the light is absorbed by the in-pixel separation unit. This reduces the amount of light that reaches the photoelectric conversion unit, and there is a possibility that the quantum efficiency Qe decreases.
本開示は、暗電流の発生を抑制しつつ、量子効率Qeを向上可能な光検出装置及び電子機器を提供することを目的とする。 The present disclosure aims to provide a photodetector and electronic device that can improve quantum efficiency Qe while suppressing the generation of dark current.
本開示の光検出装置は、(a)光が入射する第1面及び第1面の反対側に位置する第2面を有する半導体基板と、(b)半導体基板に二次元アレイ状に形成された複数の光電変換部と、(c)半導体基板の光電変換部間に形成された画素分離構造と、(d)半導体基板の第1面側に配置され、2以上の光電変換部で共有されるオンチップレンズと、を備え、(e)画素分離構造は、2以上の光電変換部の周囲を囲む画素間分離部と、画素間分離部で囲まれた領域内の光電変換部間に位置する画素内分離部と、を有し、(f)画素間分離部内には、導電体が配置されており、(g)画素内分離部内には、導電体よりも光吸収率が低い低吸収率部材のみが配置されていることを要旨とする。 The photodetector disclosed herein comprises (a) a semiconductor substrate having a first surface on which light is incident and a second surface located opposite the first surface, (b) a plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate, (c) a pixel separation structure formed between the photoelectric conversion units of the semiconductor substrate, and (d) an on-chip lens arranged on the first surface side of the semiconductor substrate and shared by two or more photoelectric conversion units, (e) the pixel separation structure has an inter-pixel separation unit surrounding the periphery of the two or more photoelectric conversion units and an intra-pixel separation unit located between the photoelectric conversion units in the area surrounded by the inter-pixel separation unit, (f) a conductor is arranged within the inter-pixel separation unit, and (g) only a low-absorption material having a lower light absorption rate than the conductor is arranged within the intra-pixel separation unit.
本開示の電子機器は、(a)光が入射する第1面及び第1面の反対側に位置する第2面を有する半導体基板、(b)半導体基板に二次元アレイ状に形成された複数の光電変換部、(c)半導体基板の光電変換部間に形成された画素分離構造、(d)及び半導体基板の第1面側に配置され、2以上の光電変換部で共有されるオンチップレンズを備え、(e)画素分離構造は、2以上の光電変換部の周囲を囲む画素間分離部と、画素間分離部で囲まれた領域内の光電変換部間に位置する画素内分離部と、を有し、(f)画素間分離部内には、導電体が配置されており、(g)画素内分離部内には、導電体よりも光吸収率が低い低吸収率部材のみが配置されている光検出装置を有することを要旨とする。 The electronic device disclosed herein includes (a) a semiconductor substrate having a first surface on which light is incident and a second surface located opposite to the first surface, (b) a plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate, (c) a pixel separation structure formed between the photoelectric conversion units of the semiconductor substrate, (d) and an on-chip lens arranged on the first surface side of the semiconductor substrate and shared by two or more photoelectric conversion units, (e) the pixel separation structure includes an inter-pixel separation unit surrounding the periphery of the two or more photoelectric conversion units and an intra-pixel separation unit located between the photoelectric conversion units in the area surrounded by the inter-pixel separation unit, (f) a conductor is arranged within the inter-pixel separation unit, and (g) a light detection device in which only a low absorptivity material having a lower light absorptivity than the conductor is arranged within the intra-pixel separation unit.
以下に、本開示の実施形態に係る光検出装置及び電子機器の一例を、図1~図32を参照しながら説明する。本開示の実施形態は以下の順序で説明する。なお、本開示は以下の例に限定されるものではない。また、本明細書に記載された効果は例示であって限定されるものではなく、また他の効果があってもよい。 Below, an example of a light detection device and electronic device according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 32. The embodiments of the present disclosure will be described in the following order. Note that the present disclosure is not limited to the following examples. In addition, the effects described in this specification are illustrative and not limiting, and other effects may also be present.
1.第1の実施形態:固体撮像装置
1-1 固体撮像装置の全体の構成
1-2 要部の構成
1-3 固体撮像装置の製造方法
1-4 変形例
2.第2の実施形態:固体撮像装置
2-1 要部の構成
2-2 固体撮像装置の製造方法
2-3 変形例
3.第3の実施形態:固体撮像装置
3-1 要部の構成
3-2 変形例
4.第4の実施形態:固体撮像装置
4-1 要部の構成
4-2 変形例
5.第5の実施形態:電子機器への応用例
1. First embodiment: solid-state imaging device 1-1 Overall configuration of solid-state imaging device 1-2 Configuration of main parts 1-3 Manufacturing method of solid-state imaging device 1-4
〈1.第1の実施形態〉
[1-1 固体撮像装置の全体の構成]
本開示の第1の実施形態に係る固体撮像装置1(広義には「光検出装置」)について説明する。図1は、第1の実施形態に係る固体撮像装置1の全体構成を示す図である。
図1の固体撮像装置1は、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。図32に示すように、固体撮像装置1(1002)はレンズ群1001を介して、被写体からの像光(入射光)を取り込み、撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。
図1に示すように、固体撮像装置1は、画素領域2と、垂直駆動回路3と、カラム信号処理回路4と、水平駆動回路5と、出力回路6と、制御回路7とを備えている。
1. First embodiment
[1-1 Overall configuration of solid-state imaging device]
A solid-state imaging device 1 (or, in a broader sense, a "photodetector") according to a first embodiment of the present disclosure will be described below. Fig. 1 is a diagram showing an overall configuration of the solid-state imaging device 1 according to the first embodiment.
The solid-state imaging device 1 in Fig. 1 is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor. As shown in Fig. 32, the solid-state imaging device 1 (1002) captures image light (incident light) from a subject via a
As shown in FIG. 1, the solid-state imaging device 1 includes a
画素領域2は、二次元アレイ状に配置された複数の画素8を有している。画素8は、2つの光電変換部PD1、PD2(図3参照)と、複数の画素トランジスタ(例えば、転送トランジスタ、リセットトランジスタ、増幅トランジスタ、選択トランジスタ)とを有している。図3では、画素8として、2つの光電変換部PD1、PD2を有し、且つ、縦横の比率が1:1の正方形状の位相差画素を用いた場合を例示している。なお、第1実施形態では、一例として、すべての画素8を位相差画素とした場合を示すが、一部の画素8のみを位相差画素とし、残りの画素8は光電変換部を1つだけ有する画素としてもよい。
垂直駆動回路3は、例えば、シフトレジスタによって構成され、選択パルスを画素駆動配線9に順次出力する等して、画素領域2の各画素8を行単位で順次選択し、選択した画素8の画素信号を、垂直信号線10を通してカラム信号処理回路4に出力する。画素信号は、光電変換部PD1、PD2で生成した電荷(例えば電子)から得られる信号である。
The
The
カラム信号処理回路4は、例えば、画素8の列毎に配置されており、1行分の画素8から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。信号処理としては、例えば画素固有の固定パターンノイズを除去するための相関二重サンプリング(CDS:Correlated Double Sampling)、AD(Analog Digital)変換を用いることができる。
水平駆動回路5は、例えば、シフトレジスタによって構成され、水平走査パルスをカラム信号処理回路4に順次出力して、カラム信号処理回路4を順番に選択し、選択したカラム信号処理回路4に、信号処理が行われた画素信号を水平信号線11に出力させる。
The column
The
出力回路6は、カラム信号処理回路4から水平信号線11を通して順次出力される画素信号それぞれに対して各種の信号処理を行う。信号処理としては、例えば、バファリング、黒レベル調整、列ばらつき補正等の各種デジタル信号処理を用いることができる。
制御回路7は、垂直同期信号、水平同期信号、及びマスタクロック信号(不図示)に基づいて、垂直駆動回路3、カラム信号処理回路4及び水平駆動回路5等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路7は、生成したクロック信号や制御信号を、垂直駆動回路3、カラム信号処理回路4及び水平駆動回路5等に出力する。
The
The control circuit 7 generates clock signals and control signals that serve as a reference for the operation of the
[1-2 要部の構成]
次に、固体撮像装置1の詳細構造について説明する。図2は、図1のA-A線で破断した場合の、固体撮像装置1の断面構成を示す図である。また、図2は、図3のC-C線で破断した場合の、固体撮像装置1の断面構成を示す図でもある。
図2に示すように、固体撮像装置1は、半導体基板12を有し、半導体基板12の光入射面(以下、「裏面S1」とも呼ぶ)に、固定電荷膜26、絶縁体27、カラーフィルタ13、及びオンチップレンズ14がこの順に積層されている。また、半導体基板12の裏面S1と反対側の面(以下、「表面S2」)には、配線層15が配置されている。
[1-2 Configuration of Main Parts]
Next, a detailed structure of the solid-state imaging device 1 will be described. Fig. 2 is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 when cut along line A-A in Fig. 1. Fig. 2 is also a diagram showing a cross-sectional configuration of the solid-state imaging device 1 when cut along line CC in Fig. 3.
2, the solid-state imaging device 1 has a
半導体基板12は、例えば、シリコン(Si)によって構成された基板である。半導体基板12は、各画素8に対応する領域それぞれが、第1領域R1と、第2領域R2とを有している。第1領域R1と第2領域R2とは、図3に示すように、半導体基板12の厚さ方向から見た場合に、行方向(図3では左右方向)に隣り合うように配置され、それぞれが列方向(図3では上下方向)に延びた長方形状に形成されている。図3は、図2のB-B線で破断した場合の、固体撮像装置1の断面構成を示す図である。また、第1領域R1には光電変換部PD1が形成されており、第2領域R2には光電変換部PD2が形成されている。即ち、半導体基板12には、1つの画素8に対して2つの光電変換部PD1、PD2が形成され、複数の光電変換部PD1、PD2が二次元アレイ状に配置されている。
The
光電変換部PD1、PD2のそれぞれは、p型の半導体領域と、n型の半導体領域とによってフォトダイオードを構成する。光電変換部PD1は、半導体基板12の裏面S1側から入射される光L1の受光量に応じた電荷を生成して蓄積する。同様に、光電変換部PD2は、半導体基板12の裏面S1側から入射される光L2の受光量に応じた電荷を生成して蓄積する。ここで、光L1は、画素8への入射光Lのうちの第1領域R1に入射される光である。また、光L2は、入射光Lのうちの第2領域R2に入射される光である。
Each of the photoelectric conversion units PD1 and PD2 constitutes a photodiode by a p-type semiconductor region and an n-type semiconductor region. The photoelectric conversion unit PD1 generates and accumulates electric charges according to the amount of light L1 incident from the back surface S1 side of the
また、半導体基板12には、光電変換部PD1、PD2間に画素分離構造18が形成されている。即ち、画素分離構造18は、複数の光電変換部PD1、PD2それぞれを囲むように、半導体基板12に格子状に形成されている。また、画素分離構造18は、同じ画素8内の光電変換部PD1、PD2(広義には「2以上の光電変換部」とも呼ぶ)の周囲を囲む部分(以下、「画素間分離部19」とも呼ぶ)と、画素間分離部19で囲まれた領域内の光電変換部PD1、PD2間に位置する部分(以下、「画素内分離部20」とも呼ぶ)と、を有している。
画素間分離部19は、半導体基板12の裏面S1から表面S2付近まで形成されている。具体的には、画素間分離部19は、トレンチ部21、並びにトレンチ部21内に配置された絶縁体22及び導電体23を有している。トレンチ部21は、半導体基板12の裏面S1から表面S2まで半導体基板12を貫通し、側壁面が画素間分離部19の外形を形成している。また、絶縁体22及び導電体23は、トレンチ部21内の、裏面S1から、画素間分離部19の表面S2側の端部位置までの空間内に配置されている。なお、トレンチ部21の画素間分離部19の表面S2側の端部位置から表面S2までの空間内には、酸化シリコン(SiO)等の分離部50が配置される。また、絶縁体22は、トレンチ部21の側壁面を覆っている。絶縁体22の材料としては例えば酸化シリコン(SiO2)を採用できる。
Furthermore, a
The
また、導電体23は、トレンチ部21内の空間、つまり、絶縁体22で覆われた側壁面間の空間に配置されている。また、導電体23は、半導体基板12の裏面S1から、側壁面間の空間の底面まで配置されている。トレンチ部21内の導電体23の各部は、電気的に一体となっている。導電体23の材料としては、例えば、ボロン(B)等の不純物がドープされたポリシリコン(B-Doped Poly Si。以下、「ドープドポリシリコン」とも呼ぶ)を採用できる。また、導電体23は、負のバイアス電圧の供給源と電気的に接続され、負のバイアス電圧が印加される。負のバイアス電圧を印加することにより、画素間分離部19の周辺部を高ホール濃度状態とすることができ、暗電流の発生が抑制される。
The
また、画素内分離部20は、画素間分離部19から同じ画素8内の光電変換部PD1、PD2間の領域へ突出している。図3では、画素内分離部20を、半導体基板12の厚さ方向から見た場合に、画素間分離部19のうちの行方向(図3では左右方向)に沿って延びている一対の直線状部分それぞれから、画素8の中心に向かって列方向(図3では上下方向)に延びる一対の帯状に形成した場合を例示している。一対の画素内分離部20の先端部の間は、画素8の中心で列方向(図3では上下方向)に互いに離間され、隙間24が形成されている。これにより、隙間24は、隣り合う光電変換部PD1、PD2間の一方から他方への電荷の通過を可能とするオーバーフローパスとして機能する。それゆえ、例えば、通常の撮影時に、光電変換部PD1、PD2間において、一方の光電変換部の電荷が飽和しそうになった際に、オーバーフローパスを介して他方の光電変換部に電荷を移動させることができ、光電変換部PD1、PD2の電荷の飽和を回避できる。そのため、画素8から出力される画素信号のリニアリティを確保でき、撮像画像の劣化を抑制できる。
また、半導体基板12の厚さ方向から見た場合に、画素内分離部20の線幅Waは、画素間分離部19側に位置する部分(根元部分)から先端部まで一定となっている。また、画素内分離部20の線幅Waは、画素間分離部19の線幅Wbと同一となっている。
Further, the
When viewed in the thickness direction of the
また、画素内分離部20は、半導体基板12の裏面S1から表面S2付近まで(画素間分離部19と同じ深さまで)形成されている。具体的には、画素内分離部20は、トレンチ部25、並びにトレンチ部25内に配置された負の電荷を有する固定電荷膜26及び絶縁体27を有している。トレンチ部25は、半導体基板12の裏面S1から表面S2まで半導体基板12を貫通し、側壁面が画素内分離部20の外形を形成している。また、固定電荷膜26及び絶縁体27は、トレンチ部25内の、裏面S1から、画素内分離部20の表面S2側の端部位置までの空間内に配置されている。なお、トレンチ部25の画素内分離部20の表面S2側の端部位置から表面S2までの空間内には、分離部50が配置される。また、固定電荷膜26は、トレンチ部25の側壁面、並びに半導体基板12の裏面S1を連続的に覆っている。即ち、固定電荷膜26は、画素内分離部20の側壁を構成している。固定電荷膜26により、半導体基板12の画素内分離部20側にホール(正孔)が誘起されて高ホール濃度状態の部分が形成され、トレンチ部25の側壁面のピニングが実現され、暗電流の発生が抑制される。また、絶縁体27は、トレンチ部25内の空間、つまり、固定電荷膜26で覆われた側壁面間の空間に配置されている。また、絶縁体27は、トレンチ部25内の空間の他にも、半導体基板12の裏面S1に位置する固定電荷膜26の受光面(以下、「裏面S3」とも呼ぶ)も覆っている。即ち、絶縁体27は、画素内分離部20内、及び半導体基板12の裏面S1上に連続的に配置されている。
The
固定電荷膜26及び絶縁体27の材料としては、導電体23よりも光吸収率が低い低吸収率部材が用いられる。即ち、画素内分離部20内には、導電体23よりも光吸収率が低い低吸収率部材のみが配置されている。固定電荷膜26の材料(低吸収率部材)としては、例えば、半導体基板12上に形成することで、固定電荷を発生させてピニングを強化させることが可能な、負の電荷を有する高屈折率材料膜又は高誘電体膜を採用できる。例えば、ハフニウム(Hf)、アルミニウム(Al)、ジルコニウム(Zr)、タンタル(Ta)及びチタン(Ti)の少なくとも1つの元素を含む酸化物又は窒化物等が挙げられる。特に、半導体基板12から剥がれ難いという点から、酸化ハフニウム(HfO2)が好ましい。また、絶縁体27の材料(低吸収率部材)としては、例えば、酸化シリコン(SiO2)を採用できる。
The fixed
また、半導体基板12には、画素間分離部19及び画素内分離部20それぞれの側壁面(画素分離構造18の側壁面)にp型の半導体領域16が形成されている。即ち、p型の半導体領域16は、画素分離構造18の側壁面を覆うように、光電変換部PD1、PD2の側面側に形成されている。p型の半導体領域16により、半導体基板12の画素分離構造18側にホール(正孔)が誘起されて高ホール濃度状態の部分が形成され、トレンチ部21、25の側壁面のピニングが実現され、暗電流の発生がより適切に抑制される。また、p型の半導体領域16により、光電変換部PD1、PD2のポテンシャルの深さを増大でき、光電変換部PD1、PD2が蓄積できる電荷量(飽和電荷量Qs)を増大できる。
In addition, in the
カラーフィルタ13は、1つの画素8に対して1つのカラーフィルタ13が配置されるように、半導体基板12の裏面S1側に二次元アレイ状に配置されている。即ち、同じ画素8内の光電変換部PD1、PD2に対して共有のカラーフィルタ13が配置されている。カラーフィルタ13としては、例えば、互いに異なる所定波長の光のみを透過させる複数種類のカラーフィルタ(つまり、透過特性が異なる複数種類のカラーフィルタ)が用いられる。例えば、赤色光を透過させるRフィルタ、緑色光を透過させるGフィルタ、青色光を透過させるBフィルタが挙げられる。これにより、カラーフィルタ13は、透過特性に応じた所定波長の光(赤色光、緑色光、青色光等)を透過し、透過した光を光電変換部PD1、PD2に入射させる。その際、カラーフィルタ13を透過した光は、光電変換部PD1、PD2間の画素内分離部20(固定電荷膜26、絶縁体27)にも入射される。
The color filters 13 are arranged in a two-dimensional array on the back surface S1 side of the
オンチップレンズ14は、1つの画素8に対して1つのオンチップレンズ14が配置されるように、カラーフィルタ13の光入射面(以下、「裏面S4」とも呼ぶ)側に二次元アレイ状に配置されている。即ち、半導体基板12の裏面S1側に配置され、同じ画素8内の光電変換部PD1、PD2(広義には「2以上の光電変換部」とも呼ぶ)に対して共有のオンチップレンズ14が配置されている。オンチップレンズ14は、被写体からの像光(入射光L)を画素8の中央(図3の隙間24が位置する領域)に集光させ、集光させた入射光L(光L1、L2)を、光電変換部PD1、PD2のそれぞれに入射させる。
配線層15は、半導体基板12の表面S2側に配置されている。配線層15は、層間絶縁膜と、層間絶縁膜を介して複数層に積層された配線とを有している。そして、配線層15は、複数層の配線を介して、各画素8の画素トランジスタ(不図示)を駆動する。
The on-
The
以上の構成を有する固体撮像装置1では、半導体基板12の裏面S1側から光が照射され、照射された光がオンチップレンズ14及びカラーフィルタ13を透過し、透過した光が光電変換部PD1、PD2で光電変換されて電荷が生成される。そして、生成された電荷が、配線層15の配線で形成された垂直信号線10から画素信号として出力される。
また、固体撮像装置1は、位相差の検出時には、光電変換部PD1、PD2で生成した電荷に基づく画素信号の差分を検出することにより、位相差を検出する。また通常の撮影時には、同じ画素8内の光電変換部PD1、PD2を1つの光電変換部として機能させ、光電変換部PD1、PD2で生成した電荷に基づく画素信号の合計を検出する。その際、一対の画素内分離部20間の隙間24は、光電変換部PD1、PD2の一方の光電変換部から他方の光電変換部への電荷の通過を可能とするオーバーフローパスとして機能する。
In the solid-state imaging device 1 having the above configuration, light is irradiated from the rear surface S1 side of the
Furthermore, when detecting a phase difference, the solid-state imaging device 1 detects the phase difference by detecting the difference between pixel signals based on the charges generated by the photoelectric conversion units PD1 and PD2. During normal shooting, the photoelectric conversion units PD1 and PD2 in the
ここで、比較例として、例えば、図4及び図5に示すように、画素間分離部19の側壁及び画素内分離部20の側壁を絶縁体22が連続的に覆い、また、絶縁体22で囲まれた空間内(画素間分離部19内の空間内、画素内分離部20内の空間内)に導電体23を連続的に埋め込んだ構成とした場合を考える。即ち、画素内分離部20の材料にも酸化シリコン(SiO2)及びドープドポリシリコンを採用した場合を考える。この場合、画素間分離部19内の導電体23に負のバイアス電圧を印加することで、画素内分離部20内の導電体23にも負のバイアス電圧が印加されるため、画素間分離部19の周辺部及び画素内分離部20の周辺部の両方が高ホール濃度状態とされ、暗電流の発生が抑制される。
しかしながら、ポリシリコンは光を吸収する性質を有している。そのため、画素内分離部20によって入射光が吸収され、光電変換部PD1、PD2に到達する光の量が減少し、量子効率Qeが低下する可能性がある。特に、オンチップレンズ14で光が集光される画素8の中央の領域(集光スポット)の近くに、ドープドポリシリコンを含む画素内分離部20が存在することで、量子効率Qeの低下量が大きくなる可能性がある。図4は、図5のE-E線で破断した場合の、固体撮像装置1の断面構成を示す図でもある。また、図5は、図4のD-D線で破断した場合の、固体撮像装置1の断面構成を示す図である。
4 and 5, a comparative example is considered in which the side walls of the
However, polysilicon has a property of absorbing light. Therefore, incident light is absorbed by the
これに対し、第1の実施形態に係る固体撮像装置1では、画素間分離部19内には、導電体23(ドープドポリシリコン)が配置されている構成とした。それゆえ、画素間分離部19内の導電体23に負のバイアス電圧を印加することで、画素間分離部19の周辺部が高ホール濃度状態とされ、暗電流の発生が抑制される。また、画素内分離部20内には、導電体23よりも光吸収率が低い低吸収率部材(固定電荷膜26、絶縁体27)のみが配置されている構成とした。即ち、集光スポットの近くには、ポリシリコン(ドープドポリシリコン)が配置されない構成とした。それゆえ、画素内分離部20による入射光の吸収を抑制でき、光電変換部PD1、PD2に到達する光の量を増大でき、量子効率Qeの低下を抑制できる。したがって、暗電流の発生を抑制しつつ量子効率Qeを向上できる。
In contrast, in the solid-state imaging device 1 according to the first embodiment, the conductor 23 (doped polysilicon) is arranged in the
[1-3 固体撮像装置の製造方法]
次に、第1の実施形態に係る固体撮像装置1の製造方法について説明する。
まず、リソグラフィー法及びドライエッチング法を用いて、図6及び図7に示すように、半導体基板12の表面S2に対して、画素間分離部19のトレンチ部21を形成する。続いて、コンフォーマルドーピング(Conformal Doping)技術を用いて、トレンチ部21の側壁面にボロン(B)をドーピングし、半導体基板12内にp型の半導体領域16の一部を形成する。続いて、トレンチ部21の側壁面及び底面を連続的に覆うように絶縁体22を形成する。絶縁体22の形成方法としては、例えば、化学気相成長法(CVD:Chemical Vapor Deposition)、熱酸化を採用できる。続いて、絶縁体22で覆われた側壁面間の空間に導電体23を埋め込む。これらトレンチ部21、絶縁体22及び導電体23により、画素間分離部19を形成する。導電体23の材料としては、例えば、ドープドポリシリコンを用いる。また、トレンチ部21の表面S2側に、酸化シリコン(SiO)を埋め込んで分離部50を形成する。図6は、図7のG-G線で破断した場合の半導体基板12を示す図である。また、図7は、図6のF-F線で破断した場合の半導体基板12を示す図である。
[1-3 Manufacturing method of solid-state imaging device]
Next, a method for manufacturing the solid-state imaging device 1 according to the first embodiment will be described.
First, as shown in FIG. 6 and FIG. 7, a
続いて、リソグラフィー法及びドライエッチング法を用いて、図8、図9及び図10に示すように、画素間分離部19を形成した半導体基板12の表面S2に対して、画素内分離部20のトレンチ部25を形成する。続いて、コンフォーマルドーピング技術を用いて、トレンチ部25の側壁面にボロン(B)をドーピングし、半導体基板12内にp型の半導体領域16の残りの部分を形成する。続いて、形成したトレンチ部25の側壁面及び底面を連続的に覆うように酸化膜31を形成する。酸化膜31の材料としては、例えば、酸化シリコン(SiO)を採用できる。酸化膜31の形成方法としては、例えば、化学気相成長法、熱酸化を採用できる。続いて、酸化膜31で覆われた側壁面間の空間に埋込材32を埋め込む。埋込材32の材料としては、例えば、不純物がドープされていないポリシリコン(Pure-Poly Si)を用いる。Pure-Poly Siを用いることにより、埋込材32をアルカリ薬液で除去できるようになるため、埋込材32の除去工程を比較適容易に行うことができる。なお、ボロン(B)がドープされたドープドポリシリコンは、アルカリ薬液で除去できないため、埋込材32に不適である。埋込材32は、画素間分離部19の導電体23と直接接触しないように配置する。また、トレンチ部25の表面S2側に、酸化シリコン(SiO)を埋め込んで分離部50を形成する。図8は、図9のJ-J線で破断した場合の半導体基板12を示す図である。図9は、図9のH-H線で破断した場合の半導体基板12を示す図である。図10は、図10のI-I線で破断した場合の半導体基板12を示す図である。
Subsequently, as shown in Figs. 8, 9, and 10, a
続いて、半導体基板12の上下を反転させた後、半導体基板12の裏面S1側にCMP(Chemical Mechanical Polishing)等の研磨加工を行う。続いて、アルカリ薬液等を用いて、図11、図12及び図13に示すように、トレンチ部25内から埋込材32を選択的に除去する。図11は、図12のM-M線で破断した場合の、半導体基板12を示す図である。図12は、図11のK-K線で破断した場合の、半導体基板12を示す図である。また、図13は、図11のL-L線で破断した場合の、半導体基板12を示す図である。続いて、フッ化水素酸(HF)等を用いて、トレンチ部25内から酸化膜31を除去する。
続いて、図14、図15及び図16に示すように、トレンチ部25内及び半導体基板12の裏面S1に固定電荷膜26を連続的に形成する。続いて、固定電荷膜26で覆われた側壁面間の空間、及び半導体基板12の裏面S1に絶縁体27を連続的に形成する。これらトレンチ部25、固定電荷膜26及び絶縁体27により、画素内分離部20を形成する。固定電荷膜26の材料及び絶縁体27の材料としては、例えば、導電体23(ドープドポリシリコン)よりも光吸収率が低い材料を採用できる。固定電荷膜26の材料としては、例えば、負の電荷を有する高屈折率材料膜や高誘電体膜を用いる。また、絶縁体27の材料としては、例えば、酸化シリコン(SiO2)を用いる。その後、絶縁体27上に、カラーフィルタ13(図2参照)やオンチップレンズ14(図2参照)等を形成する。
このような手順により、図2に示した固体撮像装置1を製造する。
Next, the
14, 15, and 16, a fixed
Through these steps, the solid-state imaging device 1 shown in FIG. 2 is manufactured.
[1-4 変形例]
(1)なお、第1の実施形態では、画素内分離部20のトレンチ部25を、半導体基板12の裏面S1から表面S2まで形成する例を示したが、他の構成を採用することもできる。例えば図17に示すように、画素内分離部20のトレンチ部25を、半導体基板12の裏面S1から、裏面S1と表面S2との間の途中の位置まで形成する構成としてもよい。
このような構成を採用する場合の、画素内分離部20の形成工程について説明する。
まず、図6に示した画素間分離部19の形成や、半導体基板12の裏面S1側への研磨加工を行った後、図18、図19及び図20に示すように、半導体基板12の裏面S1側から画素内分離部20のトレンチ部25を形成する。トレンチ部25は、裏面S1から、裏面S1と表面S2との間の途中の位置まで形成し、側壁面及び底面が画素内分離部20の外形を形成する。続いて、コンフォーマルドーピング技術を用いて、トレンチ部25の側壁面にボロン(B)をドーピングし、半導体基板12にp型の半導体領域16を形成する。図18は、図19のS-S線で破断した場合の半導体基板12を示す図である。また、図19は、図18のQ-Q線で破断した場合の半導体基板12を示す図である。また、図20は、図18のR-R線で破断した場合の半導体基板12を示す図である。
[1-4 Modifications]
(1) In the first embodiment, the
A process for forming the
First, after forming the
続いて、図21、図22及び図23に示すように、トレンチ部25内及び半導体基板12の裏面S1に負の電荷を有する固定電荷膜26を連続的に形成する。続いて、固定電荷膜26で覆われた側壁面間の空間、及び半導体基板12の裏面S1に絶縁体27を連続的に形成する。これらトレンチ部25、固定電荷膜26及び絶縁体27により、画素内分離部20を形成する。固定電荷膜26の材料及び絶縁体27の材料としては、導電体23(ドープドポリシリコン)よりも光吸収率が低い材料を用いる。固定電荷膜26の材料としては、例えば、酸化ハフニウム(HfO2)等、負の電荷を有する高屈折率材料膜や高誘電体膜を用いる。また、絶縁体27の材料としては、例えば、酸化シリコン(SiO2)を用いる。
21, 22, and 23, a fixed
〈2.第2の実施形態〉
[2-1 要部の構成]
次に、本開示の第2の実施形態に係る固体撮像装置1について説明する。第2の実施形態の固体撮像装置1の全体構成は、図1と同様であるから図示を省略する。図24は、第1の実施形態の図3に対応する図であり、第2の実施形態の固体撮像装置1の断面構成を示す図である。図24では図3に対応する部分には同一符号を付し重複説明を省略する。
第2の実施形態に係る固体撮像装置1は、画素内分離部20の構成が、第1の実施形態に係る固体撮像装置1と異なっている。具体的には、第2の実施形態の画素内分離部20は、画素間分離部19から、同じ画素8内の光電変換部PD1、PD2(広義には「2以上の光電変換部」とも呼ぶ)間の領域へ突出しており、半導体基板12の厚さ方向から見た場合に、画素内分離部20の先端部35が、先端部35と画素間分離部19との間の部分(以下、「接続部36」とも呼ぶ)よりも線幅が大きくなっている。即ち、接続部36の線幅Wc < 先端部35の線幅Wd(図24では円形部分の直径)、となっている。
2. Second embodiment
[2-1 Configuration of Main Parts]
Next, a solid-state imaging device 1 according to a second embodiment of the present disclosure will be described. The overall configuration of the solid-state imaging device 1 of the second embodiment is the same as that of Fig. 1, and is therefore omitted from the illustration. Fig. 24 is a diagram corresponding to Fig. 3 of the first embodiment, and is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 of the second embodiment. In Fig. 24, parts corresponding to Fig. 3 are given the same reference numerals, and duplicated explanations will be omitted.
The solid-state imaging device 1 according to the second embodiment differs from the solid-state imaging device 1 according to the first embodiment in the configuration of the
先端部35は、半導体基板12の厚さ方向から見た場合の形状が円形状となっている。また、半導体基板12の裏面S1から表面S2付近まで(画素間分離部19と同じ深さまで)形成されている。具体的には、先端部35は、トレンチ部37、並びにトレンチ部37内に配置された負の電荷を有する固定電荷膜38及び絶縁体39を有している。トレンチ部37は、半導体基板12の裏面S1から表面S2まで半導体基板12を貫通し、側壁面が画素内分離部20の外形を形成している。また、固定電荷膜38及び絶縁体39は、トレンチ部37内の、裏面S1から、先端部35の表面S2側の端部位置までの空間内に配置されている。なお、トレンチ部37の先端部35の表面S2側の端部位置から表面S2までの空間内には、分離部50(図2参照)が配置される。また、固定電荷膜38は、トレンチ部37の側壁面、並びに半導体基板12の裏面S1を連続的に覆っている。固定電荷膜38により、画素内分離部20の周囲を高ホール濃度状態とすることができ、暗電流の発生を抑制できる。固定電荷膜38の材料としては、例えば、第1の実施形態の固定電荷膜26と同様に、半導体基板12上に形成することで、固定電荷を発生させてピニングを強化させることが可能な、負の電荷を有する高屈折率材料膜又は高誘電体膜を採用できる。例えば、ハフニウム(Hf)、アルミニウム(Al)、ジルコニウム(Zr)、タンタル(Ta)及びチタン(Ti)の少なくとも1つの元素を含む酸化物又は窒化物等が挙げられる。また、絶縁体39は、トレンチ部37内の空間、つまり、固定電荷膜38で覆われた側壁面間の空間に配置されている。また、絶縁体39は、トレンチ部37内の空間の他にも、半導体基板12の裏面S1に位置する固定電荷膜38の受光面(裏面S3。図2参照)も覆っている。即ち、画素内分離部20内、並びに半導体基板12の裏面S1上に連続的に配置されている。絶縁体39の材料としては、例えば酸化シリコン(SiO2)を採用できる。
The
接続部36は、半導体基板12の厚さ方向から見た場合の形状が列方向(図24の上下方向)に沿って延びる帯状となっている。また、半導体基板12の裏面S1から表面S2付近まで(先端部35と同じ深さまで)形成されている。具体的には、接続部36は、トレンチ部40、並びにトレンチ部40内に配置された絶縁体41を有している。トレンチ部40は、半導体基板12の裏面S1から表面S2まで半導体基板12を貫通し、側壁面が画素内分離部20の外形を形成している。また、絶縁体41は、トレンチ部40内の、裏面S1から、接続部36の表面S2側の端部位置までの空間内に配置されている。即ち、接続部36内には、絶縁体41のみが配置されている。また、絶縁体41は画素間分離部19の絶縁体22と一体となっている。絶縁体41の材料としては、画素間分離部19の絶縁体22と同じ材料(SiO2)が用いられる。なお、トレンチ部40の接続部36の表面S2側の端部位置から表面S2までの空間内には分離部50(図2参照)が配置される。
また、半導体基板12の厚さ方向から見た場合に、画素内分離部20の先端部35の線幅Wdは、画素間分離部19側に位置する接続部36の線幅Wcよりも大きくなっている(Wc<Wd)。先端部35の線幅Wdとしては、例えば、先端部35の行方向(図24の左右方向)の幅の最大値を用いる。また、接続部36(トレンチ部40)の線幅Wcは、列方向の各箇所で一定となっており、絶縁体22の膜厚Weの2倍以下となっている。
The connecting
When viewed in the thickness direction of the
[2-2 固体撮像装置の製造方法]
続いて、第2の実施形態に係る固体撮像装置1の製造方法について説明する。
まず、リソグラフィー法及びドライエッチング法を用いて、図25に示すように、半導体基板12の表面S2に対して、画素間分離部19のトレンチ部21、並びに画素内分離部20のトレンチ部(先端部35のトレンチ部37、接続部36のトレンチ部40)を形成する。接続部36のトレンチ部40の線幅Wcは、絶縁体22の膜厚We(図24参照)の2倍以下とする(Wc≦We×2)。なお、トレンチ部40の線幅Wcは、We×2よりも幅広に形成した後、トレンチ部40の側壁面をエピタキシャル成長させてWe×2以下としてもよい。続いて、図26に示すように、コンフォーマルドーピング技術を用いて、トレンチ部21、37、40の側壁面にボロン(B)をドーピングし、半導体基板12にp型の半導体領域16を形成する。続いて、化学気相成長法を用いて、接続部36のトレンチ部40が閉塞されるように、トレンチ部21、37、40の側壁面及び底面に連続的に絶縁体22、41、42を形成する。具体的には、トレンチ部21、37、40の内壁面に酸化シリコン(SiO2)膜を成膜し、トレンチ部21、37、40の内壁面及び底面を覆うように、トレンチ部21、37、40内に絶縁体22、41、42の層を形成する。絶縁体22、41、42の層は、トレンチ部21、37、40の内壁面側及び底面側から成長し、絶縁体22、41、42の層の厚さが接続部36のトレンチ部40の幅の1/2に達すると、トレンチ部40内が絶縁体41で閉塞される。続いて、絶縁体22で覆われたトレンチ部21の空間、並びに絶縁体42で覆われたトレンチ部37内の空間に導電体23、43を埋め込む。トレンチ部21の導電体23とトレンチ部37内の導電体43とは、絶縁体41で閉塞されたトレンチ部40によって分離されている。導電体23、43としては、例えば、ドープドポリシリコンを用いる。これらトレンチ部21、絶縁体22及び導電体23により、画素間分離部19を形成する。また、トレンチ部21、37、40の表面S2側に、酸化シリコン(SiO)を埋め込んで分離部50(図2参照)を形成する。
[2-2 Manufacturing method of solid-state imaging device]
Next, a method for manufacturing the solid-state imaging device 1 according to the second embodiment will be described.
First, as shown in FIG. 25, the
続いて、半導体基板12の上下を反転させた後、半導体基板12の裏面S1側にCMP(Chemical Mechanical Polishing)等の研磨加工を行う。続いて、フッ硝酸と酢酸との混合液等を用いて、図27に示すように、先端部35のトレンチ部37内から導電体43を選択的に除去する。続いて、フッ化水素酸(HF)等を用いて、トレンチ部37内から絶縁体42を除去する。続いて、図24に示すように、先端部35のトレンチ部37内及び半導体基板12の裏面S1に固定電荷膜38を連続的に形成する。続いて、固定電荷膜38で覆われたトレンチ部37内の空間、及び半導体基板12の裏面S1に絶縁体39を連続的に形成する。これらトレンチ部37、固定電荷膜38及び絶縁体39により、画素内分離部20を形成する。固定電荷膜38の材料及び絶縁体39の材料としては、例えば、導電体23(ボロンがドープされたドープドポリシリコン)よりも光吸収率が低い材料を用いる。固定電荷膜38の材料としては、例えば、負の電荷を有する高屈折率材料膜や高誘電体膜を用いる。また、絶縁体39の材料としては、例えば、酸化シリコン(SiO2)を用いる。その後、絶縁体39上にカラーフィルタ13やオンチップレンズ14等を形成する。
このような手順により、図2に示した固体撮像装置1を製造する。
Next, after the
Through these steps, the solid-state imaging device 1 shown in FIG. 2 is manufactured.
[2-3 変形例]
(1)なお、第2の実施形態では、画素内分離部20のトレンチ部37、40を、半導体基板12の裏面S1から表面S2まで、半導体基板12を貫通するように形成する例を示したが、他の構成を採用することもできる。例えば、図17に示した第1の実施形態の変形例(1)と同様に、画素内分離部20のトレンチ部37、40を、半導体基板12の裏面S1から、裏面S1と表面S2との間の途中の位置まで形成する構成としてもよい。
[2-3 Modifications]
(1) In the second embodiment, the
〈3.第3の実施形態〉
[3-1 要部の構成]
次に、本開示の第3の実施形態に係る固体撮像装置1について説明する。第3の実施形態の固体撮像装置1の全体構成は、図1と同様であるから図示を省略する。図28は、第1の実施形態の図3に対応する図であり、第3の実施形態の固体撮像装置1の断面構成を示す図である。図28では図3に対応する部分には同一符号を付し重複説明を省略する。
第3の実施形態に係る固体撮像装置1は、画素内分離部20の構成が、第1の実施形態及び第2の実施形態に係る固体撮像装置1と異なっている。具体的には、第3の実施形態の画素内分離部20は、半導体基板12の厚さ方向から見た場合に、画素間分離部19で囲まれた領域内において、画素間分離部19から離れた位置に配置されている。
3. Third embodiment
[3-1 Configuration of Main Parts]
Next, a solid-state imaging device 1 according to a third embodiment of the present disclosure will be described. The overall configuration of the solid-state imaging device 1 of the third embodiment is the same as that of Fig. 1, and is therefore omitted from the illustration. Fig. 28 is a diagram corresponding to Fig. 3 of the first embodiment, and is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 of the third embodiment. In Fig. 28, parts corresponding to Fig. 3 are given the same reference numerals, and duplicated explanations will be omitted.
The solid-state imaging device 1 according to the third embodiment is different from the solid-state imaging devices 1 according to the first and second embodiments in the configuration of the
画素内分離部20は、半導体基板12の厚さ方向から見た場合に、同じ画素8内の光電変換部PD1、PD2間の領域において、画素8の中心を通って列方向(図28では上下方向)に沿って延びた帯状に形成されている。画素内分離部20の列方向側の端部(図28では上方向側の端部、下方向側の端部)それぞれは、画素間分離部19のうち行方向(図28では左右方向)に沿って延びる直線状部分との間に隙間45、46を有するように、直線状部分から離間されている。これにより、画素内分離部20は、半導体基板12の厚さ方向から見た場合に、画素間分離部19で囲まれた領域内において、画素間分離部19から離れた位置に配置される。隙間45、46は、隣り合う光電変換部PD1、PD2間の一方から他方への電荷の通過を可能とするオーバーフローパスとして機能する。また、画素内分離部20のトレンチ部25は、図2に示した第1の実施形態と同様に、半導体基板12の裏面S1から表面S2まで半導体基板12を貫通するように形成されている。
When viewed from the thickness direction of the
[3-2 変形例]
(1)なお、第3の実施形態では、画素内分離部20の列方向側の端部(図28では上方向側の端部、下方向側の端部)それぞれと、画素間分離部19のうち行方向(図28では左右方向)に沿って延びる直線状部分との間に、隙間45、46を形成する例を示したが、他の構成を採用することもできる。例えば、図29に示すように、画素内分離部20の列方向側の端部(図29では上方向側の端部、下方向側の端部)のうちの一方にのみ隙間を形成する構成としてもよい。図29では、図28に示した隙間45、46のうちの、隙間45のみを有する構成とした場合を例示している。具体的には、画素内分離部20を、半導体基板12の厚さ方向から見た場合に、画素間分離部19のうちの行方向(図29では左右方向)に沿って延びている一対の直線状部分のうちの一方から他方に向かって、画素8の中心を通って列方向(図29では上下方向)に沿って延びる1つの帯状に形成した。画素内分離部20の先端部(図29では上方向側の端部)は、画素間分離部19のうちの行方向に沿って延びている直線状部分から離間され、隙間45が形成されている。
[3-2 Modifications]
(1) In the third embodiment, the
(2)また、第3の実施形態では、画素内分離部20のトレンチ部25を、半導体基板12の裏面S1から表面S2まで、半導体基板12を貫通するように形成する例を示したが、他の構成を採用することもできる。例えば、図17に示した第1の実施形態の変形例(1)と同様に、画素内分離部20のトレンチ部25を、半導体基板12の裏面S1から、裏面S1と表面S2との間の途中の位置まで形成する構成としてもよい。
(2) In the third embodiment, the
〈4.第4の実施形態〉
[4-1 要部の構成]
次に、本開示の第4の実施形態に係る固体撮像装置1について説明する。第4の実施形態の固体撮像装置1の全体構成は、図1と同様であるから図示を省略する。図30は、第1の実施形態の図3に対応する図であり、第4の実施形態の固体撮像装置1の断面構成を示す図である。図30では図3に対応する部分には同一符号を付し重複説明を省略する。
第4の実施形態に係る固体撮像装置1は、オンチップレンズ14の構成、及び画素内分離部20の構成が、第1の実施形態に係る固体撮像装置1と異なっている。具体的には、図30に示すように、第4の実施形態のオンチップレンズ14は、2×2個の光電変換部PD1、PD2、PD3、PD4で共有される。即ち、「2以上の光電変換部」として、2×2個の光電変換部PD1、PD2、PD3、PD4が用いられる。また、画素内分離部20は、半導体基板12の厚さ方向から見た場合に、画素間分離部19で囲まれた領域を光電変換部PD1、PD2、PD3、PD4ごとに分割する十字状に形成されている。
4. Fourth embodiment
[4-1 Configuration of Main Parts]
Next, a solid-state imaging device 1 according to a fourth embodiment of the present disclosure will be described. The overall configuration of the solid-state imaging device 1 of the fourth embodiment is the same as that of Fig. 1, and therefore is not illustrated. Fig. 30 is a diagram corresponding to Fig. 3 of the first embodiment, and is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 of the fourth embodiment. In Fig. 30, parts corresponding to Fig. 3 are given the same reference numerals, and duplicated explanations are omitted.
The solid-state imaging device 1 according to the fourth embodiment differs from the solid-state imaging device 1 according to the first embodiment in the configuration of the on-
半導体基板12は、各画素8に対応する領域それぞれが、第1領域R1と、第2領域R2と、第3領域R3と、第4領域R4とを有している。第1領域R1、第2領域R2、第3領域R3及び第4領域R4は、半導体基板12の厚さ方向から見た場合に、行方向(図30では左右方向)及び列方向(図30では上下方向)に隣り合う2×2の二次元アレイ状に配置され、それぞれが正方形状に形成されている。第1領域R1には光電変換部PD1が形成され、以下同様に、第2領域R2には光電変換部PD2が形成され、第3領域R3には光電変換部PD3が形成され、第4領域R4には光電変換部PD4が形成されている。即ち、半導体基板12には、1つの画素8に対して4つの光電変換部PD1、PD2、PD3、PD4(広義には「2以上の光電変換部」とも呼ぶ)が形成され、複数の光電変換部PD1、PD2、PD3、PD4が二次元アレイ状に配置されている。
The
画素内分離部20は、半導体基板12の厚さ方向から見た場合に、画素8の中心から行方向(図30では左右方向)及び列方向(図30では上下方向)のそれぞれに沿って画素間分離部19まで延びる十字状に形成されている。画素内分離部20は、半導体基板12の裏面S1から表面S2付近まで(画素間分離部19と同じ深さまで)形成されている。
カラーフィルタ13及びオンチップレンズ14は、1つの画素8に対して1つのカラーフィルタ13及びオンチップレンズ14が配置されるように、半導体基板12の裏面S1側に二次元アレイ状に配置されている。即ち、同じ画素8内の光電変換部PD1~PD4(広義には「2以上の光電変換部」とも呼ぶ)に対して共有のカラーフィルタ13が配置されている。また、同じ画素8内の光電変換部PD1~PD4(広義には「2以上の光電変換部」とも呼ぶ)に対して共有のオンチップレンズ14が配置されている。
When viewed from the thickness direction of the
The color filters 13 and on-
[4-2 変形例]
(1)なお、第4の実施形態では、画素間分離部19で囲まれた領域に、画素内分離部20を十字状に形成する例を示したが、他の構成を採用することもできる。例えば、図31に示すように、図30に示した画素内分離部20から、画素8の中央に位置する領域と重なる領域を省略した構成としてもよい。即ち、画素内分離部20を、半導体基板12の厚さ方向から見た場合に、画素間分離部19で囲まれた領域が光電変換部PD1、PD2、PD3、PD4ごとに分割されるように、2×2個の光電変換部PD1~PD4のブロックの中央に位置する領域(以下、「中央領域44」とも呼ぶ)と重なる箇所が省略された十字状に形成する。このような構成により、例えば、半導体基板12の中央領域44の表面S2側に、光電変換部PD1~PD4で共有され且つ光電変換部PD1~PD4の信号電荷が転送されるフローティングディフュージョン(不図示)を配置することができる。
[4-2 Modifications]
(1) In the fourth embodiment, the
(2)また、第4の実施形態では、画素内分離部20のトレンチ部25を、半導体基板12の裏面S1から表面S2まで、半導体基板12を貫通するように形成する例を示したが、他の構成を採用することもできる。例えば、図17に示した第1の実施形態の変形例(1)と同様に、画素内分離部20のトレンチ部25を、半導体基板12の裏面S1から、裏面S1と表面S2との間の途中の位置まで形成する構成としてもよい。
(2) In the fourth embodiment, the
(3)また、本技術は、上述したイメージセンサとしての固体撮像装置1の他、ToF(Time of Flight)センサとも呼ばれる距離を測定する測距センサ等も含む光検出装置全般に適用することができる。測距センサは、物体に向かって照射光を発光し、その照射光が物体の表面で反射され返ってくる反射光を検出し、照射光が発光されてから反射光が受光されるまでの飛行時間に基づいて物体までの距離を算出するセンサである。この測距センサの受光画素構造として、上述した画素8の構造を採用することができる。
(3) Furthermore, this technology can be applied to light detection devices in general, including distance measuring sensors that measure distance, also known as ToF (Time of Flight) sensors, in addition to the solid-state imaging device 1 as the image sensor described above. A distance measuring sensor is a sensor that emits light toward an object, detects the reflected light that is reflected back from the surface of the object, and calculates the distance to the object based on the flight time from when the light is emitted to when the reflected light is received. The structure of
〈5.第5の実施形態〉
本開示に係る技術(本技術)は、各種の電子機器に適用されてもよい。
図32は、本技術を適用した電子機器としての撮像装置(ビデオカメラ、デジタルスチルカメラ等)の概略的な構成の一例を示す図である。
図32に示すように、撮像装置1000は、レンズ群1001と、固体撮像装置1002(第1の実施形態に係る固体撮像装置1)と、DSP(Digital Signal Processor)回路1003と、フレームメモリ1004と、モニタ1005と、メモリ1006とを備えている。DSP回路1003、フレームメモリ1004、モニタ1005及びメモリ1006は、バスライン1007を介して相互に接続されている。
5. Fifth embodiment
The technology according to the present disclosure (the present technology) may be applied to various electronic devices.
FIG. 32 is a diagram showing an example of a schematic configuration of an imaging device (such as a video camera or a digital still camera) as an electronic device to which the present technology is applied.
32, the
レンズ群1001は、被写体からの入射光(像光)を固体撮像装置1002に導き、固体撮像装置1002の受光面(画素領域)に結像させる。
固体撮像装置1002は、上述した第1の実施の形態のCMOSイメージセンサからなる。固体撮像装置1002は、レンズ群1001によって受光面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号としてDSP回路1003に供給する。
DSP回路1003は、固体撮像装置1002から供給される画素信号に対して所定の画像処理を行う。そして、DSP回路1003は、画像処理後の画像信号をフレーム単位でフレームメモリ1004に供給し、フレームメモリ1004に一時的に記憶させる。
モニタ1005は、例えば、液晶パネルや、有機EL(Electro Luminescence)パネル等のパネル型表示装置からなる。モニタ1005は、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号に基づいて、被写体の画像(動画)を表示する。
メモリ1006は、DVD、フラッシュメモリ等からなる。メモリ1006は、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号を読み出して記録する。
The
The solid-
The
The
The
なお、固体撮像装置1を適用できる電子機器としては、撮像装置1000に限られるものではなく、他の電子機器にも適用できる。また、固体撮像装置1002として、第1の実施形態に係る固体撮像装置1を用いる構成としたが、他の構成を採用することもできる。例えば、第2~第4の実施形態に係る固体撮像装置1、変形例に係る固体撮像装置1等、本技術を適用した他の光検出装置を用いる構成としてもよい。
The electronic device to which the solid-state imaging device 1 can be applied is not limited to the
なお、本技術は、以下のような構成も取ることができる。
(1)
光が入射する第1面及び前記第1面の反対側に位置する第2面を有する半導体基板と、
前記半導体基板に二次元アレイ状に形成された複数の光電変換部と、
前記半導体基板の前記光電変換部間に形成された画素分離構造と、
前記半導体基板の前記第1面側に配置され、2以上の前記光電変換部で共有されるオンチップレンズと、を備え、
前記画素分離構造は、前記2以上の前記光電変換部の周囲を囲む画素間分離部と、前記画素間分離部で囲まれた領域内の前記光電変換部間に位置する画素内分離部と、を有し、
前記画素間分離部内には、導電体が配置されており、
前記画素内分離部内には、前記導電体よりも光吸収率が低い低吸収率部材のみが配置されている
光検出装置。
(2)
前記画素間分離部は、前記第1面から前記第2面まで前記半導体基板を貫通するように形成されたトレンチ部と、該トレンチ部内に配置された前記導電体とを有し、
前記半導体基板は、前記画素間分離部の側壁面に形成されたp型の半導体領域を備える
前記(1)に記載の光検出装置。
(3)
前記導電体は、負のバイアス電圧が印加される導電体である
前記(1)又は(2)に記載の光検出装置。
(4)
前記画素内分離部は、前記第1面から前記第2面まで前記半導体基板を貫通するように形成されたトレンチ部と、該トレンチ部内に配置された前記低吸収率部材とを有し、
前記(1)から(3)の何れかに記載の光検出装置。
(5)
前記画素内分離部は、前記第1面から、前記第1面と前記第2面との間の途中の位置まで形成されたトレンチ部と、前記トレンチ部内に配置された前記低吸収率部材とを有し、
前記(1)から(3)の何れかに記載の光検出装置。
(6)
前記画素内分離部は、該画素内分離部の側壁を構成する、負の電荷を有する固定電荷膜を有している
前記(1)から(5)の何れかに記載の光検出装置。
(7)
前記画素内分離部は、前記画素間分離部から、前記2以上の前記光電変換部間の領域へ突出しており、前記半導体基板の厚さ方向から見た場合に、前記画素間分離部側に位置する根元部分から先端部まで線幅が一定である
前記(6)に記載の光検出装置。
(8)
前記画素内分離部は、前記画素間分離部から、前記2以上の前記光電変換部間の領域へ突出しており、前記半導体基板の厚さ方向から見た場合に、前記画素内分離部の先端部が該先端部と前記画素間分離部との間の部分である接続部よりも線幅が大きくなっており、
前記接続部内には、絶縁体のみが配置されている
前記(1)から(5)の何れかに記載の光検出装置。
(9)
前記画素内分離部は、前記半導体基板の厚さ方向から見た場合に、前記画素間分離部で囲まれた領域内において、前記画素間分離部から離れた位置に配置されている
前記(6)に記載の光検出装置。
(10)
前記2以上の前記光電変換部は、2×2個の前記光電変換部であり、
前記画素内分離部は、前記半導体基板の厚さ方向から見た場合に、前記画素間分離部で囲まれた領域を前記光電変換部ごとに分割する十字状に形成されている
前記(6)に記載の光検出装置。
(11)
前記2以上の前記光電変換部は、2×2個の前記光電変換部であり、
前記画素内分離部は、前記半導体基板の厚さ方向から見た場合に、前記画素間分離部で囲まれた領域が前記光電変換部ごとに分割されるように、前記2×2個の前記光電変換部のブロックの中央に位置する領域と重なる箇所が省略された十字状に形成されている
前記(6)に記載の光検出装置。
(12)
前記導電体は、ドープドポリシリコンである
前記(1)から(11)の何れかに記載の光検出装置。
(13)
光が入射する第1面及び前記第1面の反対側に位置する第2面を有する半導体基板、前記半導体基板に二次元アレイ状に形成された複数の光電変換部、前記半導体基板の前記光電変換部間に形成された画素分離構造、及び前記半導体基板の前記第1面側に配置され、2以上の前記光電変換部で共有されるオンチップレンズを備え、前記画素分離構造は、前記2以上の前記光電変換部の周囲を囲む画素間分離部と、前記画素間分離部で囲まれた領域内の前記光電変換部間に位置する画素内分離部と、を有し、前記画素間分離部内には、導電体が配置されており、前記画素内分離部内には、前記導電体よりも光吸収率が低い低吸収率部材のみが配置されている光検出装置を有する
電子機器。
The present technology can also be configured as follows.
(1)
a semiconductor substrate having a first surface onto which light is incident and a second surface located on the opposite side to the first surface;
A plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate;
a pixel isolation structure formed between the photoelectric conversion units of the semiconductor substrate;
an on-chip lens disposed on the first surface side of the semiconductor substrate and shared by two or more of the photoelectric conversion units;
the pixel isolation structure includes an inter-pixel isolation portion surrounding the two or more photoelectric conversion portions, and an intra-pixel isolation portion located between the photoelectric conversion portions within a region surrounded by the inter-pixel isolation portion,
a conductor is disposed within the inter-pixel isolation portion,
a low absorptivity member having a lower light absorptivity than the conductor is disposed within the pixel isolation portion.
(2)
the inter-pixel isolation portion has a trench portion formed so as to penetrate the semiconductor substrate from the first surface to the second surface, and the conductor disposed in the trench portion;
The photodetector according to any one of claims 1 to 4, wherein the semiconductor substrate includes a p-type semiconductor region formed on a side wall surface of the inter-pixel isolation portion.
(3)
The photodetector according to any one of (1) to (2), wherein the conductor is a conductor to which a negative bias voltage is applied.
(4)
the intra-pixel isolation portion includes a trench portion formed so as to penetrate the semiconductor substrate from the first surface to the second surface, and the low absorption rate member disposed in the trench portion;
The optical detection device according to any one of (1) to (3).
(5)
the intra-pixel isolation portion includes a trench portion formed from the first surface to a position midway between the first surface and the second surface, and the low absorption rate member disposed in the trench portion;
The optical detection device according to any one of (1) to (3).
(6)
The photodetector according to any one of (1) to (5), wherein the intra-pixel isolation portion has a fixed charge film having negative charges and constituting a side wall of the intra-pixel isolation portion.
(7)
The photodetector device described in (6), wherein the intra-pixel isolation portion protrudes from the inter-pixel isolation portion into a region between the two or more photoelectric conversion portions, and when viewed in the thickness direction of the semiconductor substrate, has a constant line width from a base portion located on the inter-pixel isolation portion side to a tip portion.
(8)
the intra-pixel isolation portion protrudes from the inter-pixel isolation portion into a region between the two or more photoelectric conversion portions, and when viewed in a thickness direction of the semiconductor substrate, a tip portion of the intra-pixel isolation portion has a line width larger than that of a connection portion which is a portion between the tip portion and the inter-pixel isolation portion,
The photodetector according to any one of (1) to (5), wherein only an insulator is disposed within the connection portion.
(9)
The photodetector device described in (6), wherein the intra-pixel isolation portion is disposed at a position away from the inter-pixel isolation portion within a region surrounded by the inter-pixel isolation portion when viewed in a thickness direction of the semiconductor substrate.
(10)
The two or more photoelectric conversion units are 2×2 photoelectric conversion units,
The photodetector device described in (6), wherein the intra-pixel isolation portion is formed in a cross shape that divides the area surrounded by the inter-pixel isolation portion into each of the photoelectric conversion portions when viewed in the thickness direction of the semiconductor substrate.
(11)
The two or more photoelectric conversion units are 2×2 photoelectric conversion units,
The photodetector device described in (6) above, in which the intra-pixel isolation portion is formed in a cross shape with the overlapping portion with the area located at the center of the 2 x 2 blocks of photoelectric conversion units omitted, so that the area surrounded by the inter-pixel isolation portion is divided for each photoelectric conversion unit when viewed in the thickness direction of the semiconductor substrate.
(12)
The photodetector according to any one of (1) to (11), wherein the conductor is doped polysilicon.
(13)
1. An electronic device comprising: a semiconductor substrate having a first surface through which light is incident and a second surface located opposite to the first surface; a plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate; a pixel isolation structure formed between the photoelectric conversion units of the semiconductor substrate; and an on-chip lens located on the first surface side of the semiconductor substrate and shared by two or more of the photoelectric conversion units, the pixel isolation structure having an inter-pixel isolation unit surrounding the two or more photoelectric conversion units and an intra-pixel isolation unit located between the photoelectric conversion units in a region surrounded by the inter-pixel isolation unit, a conductor is arranged in the inter-pixel isolation unit, and only a low absorptance material having a lower light absorptance than the conductor is arranged in the intra-pixel isolation unit.
1…固体撮像装置、2…画素領域、3…垂直駆動回路、4…カラム信号処理回路、5…水平駆動回路、6…出力回路、7…制御回路、8…画素、9…画素駆動配線、10…垂直信号線、11…水平信号線、12…半導体基板、13…カラーフィルタ、14…オンチップレンズ、15…配線層、16…半導体領域、18…画素分離構造、19…画素間分離部、20…画素内分離部、21…トレンチ部、22…絶縁体、23…導電体、24…隙間、25…トレンチ部、26…固定電荷膜、27…絶縁体、31…酸化膜、32…埋込材、35…先端部、36…接続部、37…トレンチ部、38…固定電荷膜、39…絶縁体、40…トレンチ部、41…絶縁体、42…絶縁体、43…導電体、44…中央領域、45…隙間、46…隙間、50…分離部 1...solid-state imaging device, 2...pixel region, 3...vertical drive circuit, 4...column signal processing circuit, 5...horizontal drive circuit, 6...output circuit, 7...control circuit, 8...pixel, 9...pixel drive wiring, 10...vertical signal line, 11...horizontal signal line, 12...semiconductor substrate, 13...color filter, 14...on-chip lens, 15...wiring layer, 16...semiconductor region, 18...pixel separation structure, 19...inter-pixel separation section, 20...inside pixel Isolation portion, 21...trench portion, 22...insulator, 23...conductor, 24...gap, 25...trench portion, 26...fixed charge film, 27...insulator, 31...oxide film, 32...filling material, 35...tip portion, 36...connection portion, 37...trench portion, 38...fixed charge film, 39...insulator, 40...trench portion, 41...insulator, 42...insulator, 43...conductor, 44...center region, 45...gap, 46...gap, 50...isolation portion
Claims (13)
前記半導体基板に二次元アレイ状に形成された複数の光電変換部と、
前記半導体基板の前記光電変換部間に形成された画素分離構造と、
前記半導体基板の前記第1面側に配置され、2以上の前記光電変換部で共有されるオンチップレンズと、を備え、
前記画素分離構造は、前記2以上の前記光電変換部の周囲を囲む画素間分離部と、前記画素間分離部で囲まれた領域内の前記光電変換部間に位置する画素内分離部と、を有し、
前記画素間分離部内には、導電体が配置されており、
前記画素内分離部内には、前記導電体よりも光吸収率が低い低吸収率部材のみが配置されている
光検出装置。 a semiconductor substrate having a first surface onto which light is incident and a second surface located on the opposite side to the first surface;
A plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate;
a pixel isolation structure formed between the photoelectric conversion units of the semiconductor substrate;
an on-chip lens disposed on the first surface side of the semiconductor substrate and shared by two or more of the photoelectric conversion units;
the pixel isolation structure includes an inter-pixel isolation portion surrounding the two or more photoelectric conversion portions, and an intra-pixel isolation portion located between the photoelectric conversion portions within a region surrounded by the inter-pixel isolation portion,
a conductor is disposed within the inter-pixel isolation portion,
a low absorptivity member having a lower light absorptivity than the conductor is disposed within the pixel isolation portion.
前記半導体基板は、前記画素間分離部の側壁面に形成されたp型の半導体領域を備える
請求項1に記載の光検出装置。 the inter-pixel isolation portion has a trench portion formed so as to penetrate the semiconductor substrate from the first surface to the second surface, and the conductor disposed in the trench portion;
The photodetector according to claim 1 , wherein the semiconductor substrate includes a p-type semiconductor region formed on a side wall surface of the inter-pixel isolation portion.
請求項1に記載の光検出装置。 The photodetector according to claim 1 , wherein the conductor is a conductor to which a negative bias voltage is applied.
請求項1に記載の光検出装置。 the intra-pixel isolation portion includes a trench portion formed so as to penetrate the semiconductor substrate from the first surface to the second surface, and the low absorption rate member disposed in the trench portion;
2. The optical detection device according to claim 1.
請求項1に記載の光検出装置。 the intra-pixel isolation portion includes a trench portion formed from the first surface to a position midway between the first surface and the second surface, and the low absorption rate member disposed in the trench portion;
2. The optical detection device according to claim 1.
請求項1に記載の光検出装置。 The photodetector according to claim 1 , wherein the intra-pixel isolation portion has a fixed charge film having negative charges and constituting a side wall of the intra-pixel isolation portion.
請求項6に記載の光検出装置。 The photodetection device of claim 6, wherein the intra-pixel separation portion protrudes from the inter-pixel separation portion into a region between the two or more photoelectric conversion portions, and when viewed in the thickness direction of the semiconductor substrate, the intra-pixel separation portion has a constant line width from a base portion located on the inter-pixel separation portion side to a tip portion.
前記接続部内には、絶縁体のみが配置されている
請求項1に記載の光検出装置。 the intra-pixel isolation portion protrudes from the inter-pixel isolation portion into a region between the two or more photoelectric conversion portions, and when viewed in a thickness direction of the semiconductor substrate, a tip portion of the intra-pixel isolation portion has a line width larger than that of a connection portion which is a portion between the tip portion and the inter-pixel isolation portion,
The photodetector according to claim 1 , wherein only an insulator is disposed within the connection portion.
請求項6に記載の光検出装置。 The photodetector according to claim 6 , wherein the intra-pixel isolation portion is disposed at a position away from the inter-pixel isolation portion within a region surrounded by the inter-pixel isolation portion when viewed in a thickness direction of the semiconductor substrate.
前記画素内分離部は、前記半導体基板の厚さ方向から見た場合に、前記画素間分離部で囲まれた領域を前記光電変換部ごとに分割する十字状に形成されている
請求項6に記載の光検出装置。 The two or more photoelectric conversion units are 2×2 photoelectric conversion units,
The photodetector according to claim 6 , wherein the intra-pixel isolation portion is formed in a cross shape that divides an area surrounded by the inter-pixel isolation portion into each of the photoelectric conversion portions when viewed in a thickness direction of the semiconductor substrate.
前記画素内分離部は、前記半導体基板の厚さ方向から見た場合に、前記画素間分離部で囲まれた領域が前記光電変換部ごとに分割されるように、前記2×2個の前記光電変換部のブロックの中央に位置する領域と重なる箇所が省略された十字状に形成されている
請求項6に記載の光検出装置。 The two or more photoelectric conversion units are 2×2 photoelectric conversion units,
The photodetector device of claim 6, wherein the intra-pixel isolation portion is formed in a cross shape with the overlapping portion with the area located at the center of the 2 x 2 blocks of photoelectric conversion units omitted, so that, when viewed in the thickness direction of the semiconductor substrate, the area surrounded by the inter-pixel isolation portion is divided into each of the photoelectric conversion units.
請求項1に記載の光検出装置。 The photodetector of claim 1 , wherein the conductor is doped polysilicon.
電子機器。 1. An electronic device comprising: a semiconductor substrate having a first surface through which light is incident and a second surface located opposite to the first surface; a plurality of photoelectric conversion units formed in a two-dimensional array on the semiconductor substrate; a pixel isolation structure formed between the photoelectric conversion units of the semiconductor substrate; and an on-chip lens located on the first surface side of the semiconductor substrate and shared by two or more of the photoelectric conversion units, the pixel isolation structure having an inter-pixel isolation unit surrounding the two or more photoelectric conversion units and an intra-pixel isolation unit located between the photoelectric conversion units in a region surrounded by the inter-pixel isolation unit, a conductor is arranged in the inter-pixel isolation unit, and only a low absorptance material having a lower light absorptance than the conductor is arranged in the intra-pixel isolation unit.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023128507A JP2025024416A (en) | 2023-08-07 | 2023-08-07 | Photodetection device and electronic device |
| JP2023-128507 | 2023-08-07 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025032961A1 true WO2025032961A1 (en) | 2025-02-13 |
Family
ID=94534235
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/021538 Pending WO2025032961A1 (en) | 2023-08-07 | 2024-06-13 | Light detection device and electronic apparatus |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2025024416A (en) |
| WO (1) | WO2025032961A1 (en) |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018201015A (en) * | 2017-05-29 | 2018-12-20 | ソニーセミコンダクタソリューションズ株式会社 | Solid state image pickup device and electronic apparatus |
| WO2020175195A1 (en) * | 2019-02-25 | 2020-09-03 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging device and electronic apparatus |
| JP2021027276A (en) * | 2019-08-08 | 2021-02-22 | キヤノン株式会社 | Photoelectric conversion device and equipment |
| WO2021193254A1 (en) * | 2020-03-27 | 2021-09-30 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device and electronic apparatus |
| WO2021193915A1 (en) * | 2020-03-27 | 2021-09-30 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device and electronic apparatus |
| WO2022163296A1 (en) * | 2021-01-26 | 2022-08-04 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device |
| JP2022148841A (en) * | 2021-03-24 | 2022-10-06 | ソニーセミコンダクタソリューションズ株式会社 | Imaging element and imaging device |
| WO2022209681A1 (en) * | 2021-03-31 | 2022-10-06 | ソニーセミコンダクタソリューションズ株式会社 | Light detection device and electronic apparatus |
| JP2022549577A (en) * | 2019-09-25 | 2022-11-28 | ソニーセミコンダクタソリューションズ株式会社 | Photodetectors, ranging modules, and electronic devices |
| WO2022249575A1 (en) * | 2021-05-27 | 2022-12-01 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging element, method for producing solid-state imaging element, and electronic device |
-
2023
- 2023-08-07 JP JP2023128507A patent/JP2025024416A/en active Pending
-
2024
- 2024-06-13 WO PCT/JP2024/021538 patent/WO2025032961A1/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018201015A (en) * | 2017-05-29 | 2018-12-20 | ソニーセミコンダクタソリューションズ株式会社 | Solid state image pickup device and electronic apparatus |
| WO2020175195A1 (en) * | 2019-02-25 | 2020-09-03 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging device and electronic apparatus |
| JP2021027276A (en) * | 2019-08-08 | 2021-02-22 | キヤノン株式会社 | Photoelectric conversion device and equipment |
| JP2022549577A (en) * | 2019-09-25 | 2022-11-28 | ソニーセミコンダクタソリューションズ株式会社 | Photodetectors, ranging modules, and electronic devices |
| WO2021193254A1 (en) * | 2020-03-27 | 2021-09-30 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device and electronic apparatus |
| WO2021193915A1 (en) * | 2020-03-27 | 2021-09-30 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device and electronic apparatus |
| WO2022163296A1 (en) * | 2021-01-26 | 2022-08-04 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device |
| JP2022148841A (en) * | 2021-03-24 | 2022-10-06 | ソニーセミコンダクタソリューションズ株式会社 | Imaging element and imaging device |
| WO2022209681A1 (en) * | 2021-03-31 | 2022-10-06 | ソニーセミコンダクタソリューションズ株式会社 | Light detection device and electronic apparatus |
| WO2022249575A1 (en) * | 2021-05-27 | 2022-12-01 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging element, method for producing solid-state imaging element, and electronic device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2025024416A (en) | 2025-02-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11832463B2 (en) | Solid-state imaging device, method of manufacturing the same, and electronic apparatus | |
| TWI460849B (en) | Solid-state imaging device, manufacturing method thereof, and electronic device | |
| JP6079502B2 (en) | Solid-state imaging device and electronic device | |
| TWI387101B (en) | Solid-state imaging device and method of manufacturing same | |
| US8183603B2 (en) | Solid-state imaging device for inhibiting dark current | |
| US12243891B2 (en) | Image sensor and method of manufacturing the same | |
| US12191335B2 (en) | Image sensor and method of manufacturing the same | |
| US20250176295A1 (en) | Photodetection device and electronic apparatus | |
| US20100026824A1 (en) | Image sensor with reduced red light crosstalk | |
| US20240234458A1 (en) | Image sensor and method of fabricating the same | |
| WO2025032961A1 (en) | Light detection device and electronic apparatus | |
| WO2025074746A1 (en) | Optical detection device and electronic equipment | |
| WO2024142599A1 (en) | Light detection device, method for producing light detection device, and electronic apparatus | |
| WO2023021758A1 (en) | Photodetection device and electronic apparatus | |
| WO2025028309A1 (en) | Light detection device and electronic apparatus | |
| KR20250065625A (en) | Photodetector, electronic device and method for manufacturing photodetector | |
| WO2023199642A1 (en) | Light detection device and electronic apparatus | |
| JP2024066996A (en) | Image sensor and method for manufacturing the same | |
| JP2024132977A (en) | Image sensor and method for manufacturing the same | |
| KR20240157930A (en) | Image sensor and method of fabricating the same |