WO2025183271A1 - Low-power control method for wearable device using photoplethysmography sensor. - Google Patents
Low-power control method for wearable device using photoplethysmography sensor.Info
- Publication number
- WO2025183271A1 WO2025183271A1 PCT/KR2024/008583 KR2024008583W WO2025183271A1 WO 2025183271 A1 WO2025183271 A1 WO 2025183271A1 KR 2024008583 W KR2024008583 W KR 2024008583W WO 2025183271 A1 WO2025183271 A1 WO 2025183271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wearable device
- heart rate
- oxygen saturation
- led
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
Definitions
- the present invention relates to control of a wearable device, and more particularly, to a method for controlling low-power mode operation in a wearable device that must measure proximity, heart rate, and oxygen saturation using a PPG (PhotoPlethysmoGraphy) sensor.
- PPG PhotoPlethysmoGraphy
- Wearable devices such as clothing, watches, and accessories, are devices that can be worn on the body. Because they operate on batteries, they require control algorithms for low-power operation, such as sleep/standby mode and shutdown mode, to ensure long-term operation after a single charge. Typically, wearable devices use proximity sensors to determine whether they are being worn and switch to sleep/standby mode when not in use, thereby reducing battery consumption and extending usage time.
- the present invention has been devised to solve the above problems, and the purpose of the present invention is to provide a method for controlling low-power operation of a wearable device through operation of multiple stages of modes depending on the bio-signal detection situation of the wearable device, breaking away from the fragmented existing method of relying only on a single proximity sensor for low-power control of a wearable device.
- a method for controlling a wearable device for achieving the above object includes: a step of detecting proximity of a human body to a wearable device; a first attempt step of attempting to measure a heartbeat when proximity of a human body is detected; and a second attempt step of attempting to measure oxygen saturation when the heartbeat is measured.
- the detection step may be performed by turning on the IR-LED and photo-diode that make up the PPG sensor and activating the proximity sensing module within the processor.
- the first attempt step may be performed by activating a DC feedback circuit to remove DC from the detection signal of the photodiode and a heart rate sensing module within the processor.
- the wearable device control method according to the present invention may further include a step of deactivating a DC feedback circuit and a heart rate sensing module within the processor if a heart rate is not measured after the first attempt step.
- the second attempt step may be performed by turning on the RED LED constituting the PPG sensor and activating the oxygen saturation sensing module within the processor.
- the wearable device control method according to the present invention may further include a step of turning off the RED LED and deactivating the oxygen saturation sensing module within the processor if the oxygen saturation is not measured after the second attempt step.
- a wearable device control method may further include a step of determining whether a heartbeat amplitude is within a predetermined range when oxygen saturation is measured; and a step of continuously measuring a heartbeat and oxygen saturation if the heartbeat amplitude is within the predetermined range.
- the judgment step may be performed by turning on the GREEN LED that constitutes the PPG sensor.
- the wearable device control method according to the present invention may further include a step of adjusting the intensity of the RED LED and the GREEN LED if the heartbeat amplitude is not within a predetermined range.
- a method for controlling a wearable device comprising: a multi-LED including a plurality of LEDs; a photodiode detecting light reflected from a human body after being irradiated by the multi-LED; and a processor detecting proximity of the wearable device to a human body based on a detection result of the photodiode, attempting to measure a heartbeat when proximity of the human body is detected, and attempting to measure oxygen saturation when the heartbeat is measured.
- a wearable device characterized by including a first attempt step of attempting to measure a heart rate; if the heart rate is measured, a second attempt step of attempting to measure oxygen saturation; if the oxygen saturation is measured, a step of determining whether the heart rate amplitude is within a predetermined range; and if the heart rate amplitude is within the predetermined range, a step of continuously measuring the heart rate and oxygen saturation.
- a wearable device comprising: a multi-LED including a plurality of LEDs; a photodiode detecting light reflected from a human body after being irradiated by the multi-LED; and a processor configured to attempt to measure a heart rate based on a detection result of the photodiode, attempt to measure oxygen saturation when the heart rate is measured, determine whether the heart rate amplitude is within a predetermined range when the oxygen saturation is measured, and continue to measure the heart rate and oxygen saturation when the heart rate amplitude is within the predetermined range.
- the LEDs and processor modules are selectively turned on/activated through multiple mode operations by distinguishing them according to the bio-signal detection situation in the wearable device, thereby controlling low-power operation of the wearable device, thereby reducing battery consumption of the wearable device and maximizing its usage time.
- Figure 1 is a configuration of a wearable device with a built-in PPG sensor according to one embodiment of the present invention.
- Figures 2 and 3 are diagrams illustrating the flow of a low-power/optimized control method for a wearable device using a PPG sensor.
- An embodiment of the present invention proposes a low-power control method for a wearable device using a PhotoPlethysmography (PPG) sensor.
- PPG PhotoPlethysmography
- the low-power operation of the wearable device is controlled through operation in multiple stages of modes by distinguishing between LEDs and processor modules depending on the bio-signal detection situation of the wearable device.
- a PPG sensor is utilized to detect whether the wearable device is being worn.
- FIG. 1 is a diagram illustrating the configuration of a wearable device with a built-in PPG sensor according to one embodiment of the present invention.
- a wearable device is configured to include, as illustrated, a multi-LED (110), an LED driver (120), a DC feedback circuit (130), a photodiode (140), an AFE (Analog Front End, 150), an ADC (Analog-to-Digital Converter, 160), and a DSP (Digital Signal Processor, 170).
- a multi-LED 110
- an LED driver 120
- a DC feedback circuit 130
- a photodiode 140
- An AFE Analog Front End
- ADC Analog-to-Digital Converter
- DSP Digital Signal Processor
- the multi-LED (110) and photodiode (140) are components for implementing a PPG sensor for measuring heart rate and oxygen saturation.
- the multi-LED (110) includes an IR-LED, a RED-LED, and a GREEN-LED.
- the LED driver (120) applies driving current to the IR-LED, RED-LED, and GREEN-LED constituting the multi-LED (110).
- the driving current by the LED driver (120) is controlled by the DSP (170) described later.
- the photodiode (140) is a sensor for detecting an optical signal reflected from the human body after being emitted from the multi-LED (110).
- the DC feedback circuit (130) is a circuit for removing the DC component from the optical signal detected by the photodiode (140).
- the AFE (150) performs necessary analog signal processing, such as amplification and filtering, on the detection signal of the photodiode (140).
- the ADC (160) converts the analog signal processed by the AFE (150) into a digital signal and transmits it to the DSP (170).
- the DSP (170) performs human proximity detection, heart rate measurement, and oxygen saturation measurement through digital signal processing on the detection signal of the photodiode (140) converted into a digital signal by the ADC (160), and the DSP (170) controls the driving of the multi-LED (110) by the LED driver (120) and the operation of the DC feedback circuit (130) and the AFE (150).
- the DSP (170) performing such a function is configured to include an optimization module (171), an oxygen saturation sensing module (172), a heart rate sensing module (173), and a proximity sensing module (174), as shown in FIG. 1.
- the optimization module (171) controls the driving current of the multi-LED (110) generated by the LED driver (120), thereby controlling the intensity of the light emitted from the IR-LED, RED-LED, and GREEN-LED constituting the multi-LED (110).
- the proximity sensing module (174) detects the proximity of a human body based on the intensity of the IR detection signal by the photodiode (140).
- the heart rate sensing module (173) detects a heart rate from a detection signal by a photodiode (140) and measures the heart rate amplitude.
- the oxygen saturation sensing module (172) measures oxygen saturation from a detection signal by a photodiode (140).
- FIGS. 2 and 3 are diagrams illustrating the flow of a low-power/optimized control method for a wearable device using a PPG sensor.
- an IR signal is detected to detect the proximity of a human body to a wearable device (S210).
- the IR signal is a light signal that is emitted from the IR-LED of the multi-LED (110), reflected from the human body, and detected by the photo-diode (140).
- the IR-LED, photo-diode (140), AFE (150), and ADC (160) of the multi-LED (110) in the wearable device are always turned on.
- the optimization module (171) and the proximity sensing module (174) are enabled in the DSP (170).
- the wearable device When the proximity of a human body is detected, for example, when a human body approaches the wearable device within 5 mm (S220-Y), the wearable device attempts to measure a heart rate (S230). To perform step S230, the DSP (170) turns on the DC feedback circuit (130) and enables the heart rate sensing module (173).
- step S220 if the proximity of a human body is not detected in step S220 (S220-N), it returns to step S210.
- step S230 the wearable device attempts to measure oxygen saturation (S250).
- step S250 the DSP (170) turns on the RED LED of the multi-LED (110) and enables the oxygen saturation sensing module (172).
- step S240 the DSP (170) turns off the DC feedback circuit (130), disables the heart rate sensing module (173) (S260), and returns to step S210.
- the DSP (170) turns off the DC feedback circuit (130), disables the heart rate sensing module (173) (S260), and returns to step S210.
- This case applies when the heart rate is not measured due to proximity to an object other than the human body, such as when the wearable device is placed on a desk or the like.
- step S250 When oxygen saturation is measured by performing step S250 (S310-Y), the wearable device attempts to measure heartbeat amplitude (S320). To perform step S320, the DSP (170) turns on the GREEN LED of the multi-LED (110).
- step S310 if oxygen saturation is not measured in step S310 (S310-N), the RED LED of the multi-LED (110) is turned off, the oxygen saturation sensing module (172) is disabled (S330), and the process returns to step S240 of FIG. 2.
- the optimization module (171) of the DSP (170) maintains the driving current of the RED-LED and GREEN-LED as is (S350).
- the optimization module (171) of the DSP (170) adjusts the driving current of the RED-LED and GREEN-LED of the multi-LED (110) so that the heartbeat amplitude is within the operating range (S360). If the wearable device strongly presses the human body, i.e., if the wearable device is tightly tied, the heartbeat amplitude may be out of the operating range, and in this case, the LES intensity is adjusted to adjust the amplitude within the operating range.
- Wearable devices are always worn, so battery operation is essential. However, since they are equipped with a circuit for measuring bio-signals to check health status, battery consumption increases rapidly.
- the LEDs and processor modules are selectively activated through operation in multiple stages of mode by distinguishing them according to the bio-signal detection situation in the wearable device, thereby controlling the low-power operation of the wearable device, thereby reducing the battery consumption of the wearable device and maximizing the usage time.
- the technical idea of the present invention can also be applied to a computer-readable recording medium containing a computer program that performs the functions of the device and method according to the present embodiment.
- the technical idea according to various embodiments of the present invention can be implemented in the form of computer-readable code recorded on a computer-readable recording medium.
- the computer-readable recording medium can be any data storage device that can be read by a computer and store data.
- the computer-readable recording medium can be a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical disk, a hard disk drive, etc.
- the computer-readable code or program stored on the computer-readable recording medium can be transmitted through a network connected between computers.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physiology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
본 발명은 웨어러블 기기 제어에 관한 것으로, 더욱 상세하게는 PPG(PhotoPlethysmoGraphy: 광혈류측정) 센서를 이용하여 근접, 심박, 산소포화도를 측정하여야 하는 웨어러블 기기에서 저전력 모드 동작을 제어하기 위한 방법에 관한 것이다.The present invention relates to control of a wearable device, and more particularly, to a method for controlling low-power mode operation in a wearable device that must measure proximity, heart rate, and oxygen saturation using a PPG (PhotoPlethysmoGraphy) sensor.
웨어러블 기기는 옷, 시계, 악세서리 등과 같이 자유롭게 몸에 착용 가능한 디바이스로, 배터리로 동작하기 때문에 한번 충전 후 장시간 동작이 가능하도록 슬립/대기 모드, 셧다운 모드 등과 같이 저전력 동작을 위한 제어 알고리즘이 필요하다. 통상적으로 웨어러블 기기는 근접 센서를 통해 착용 여부를 판단하여, 미착용시에는 슬립/대기 모드로 전환함으로써 배터리 사용을 줄여 사용 시간을 늘이고 있다.Wearable devices, such as clothing, watches, and accessories, are devices that can be worn on the body. Because they operate on batteries, they require control algorithms for low-power operation, such as sleep/standby mode and shutdown mode, to ensure long-term operation after a single charge. Typically, wearable devices use proximity sensors to determine whether they are being worn and switch to sleep/standby mode when not in use, thereby reducing battery consumption and extending usage time.
하지만 최근 들어 웨어러블 기기는 다양한 스마트 기능을 제공하는 것에서 나아가 건강 관리를 위한 생체 신호 측정 회로, 이를 테면, 심박, 산소포화도 측정을 위한 PPG 센서 까지 내장하고 있어, 저전력 제어는 더욱 중요하게 되었는데, 종래의 저전력 제어 방식으로는 충분한 사용 시간을 확보함에 있어 충분치 못하다는 문제가 있다.However, recently, wearable devices have gone beyond providing various smart functions and have built-in circuits for measuring bio-signals for health management, such as PPG sensors for measuring heart rate and oxygen saturation. Therefore, low-power control has become more important. However, the problem is that the conventional low-power control method is not enough to secure sufficient usage time.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 웨어러블 기기의 저전력 제어를 근접 센서 하나에만 의존하던 단편화된 기존 방식을 탈피하여, 웨어러블 기기에서의 생체 신호 감지 상황에 따라 여러 단계의 모드 운영을 통해 웨어러블 기기의 저전력 동작을 제어하는 방법을 제공함에 있다.The present invention has been devised to solve the above problems, and the purpose of the present invention is to provide a method for controlling low-power operation of a wearable device through operation of multiple stages of modes depending on the bio-signal detection situation of the wearable device, breaking away from the fragmented existing method of relying only on a single proximity sensor for low-power control of a wearable device.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 웨어러블 기기 제어 방법은 웨어러블 기기의 인체의 근접을 감지하는 단계; 인체의 근접이 감지되면, 심박 측정을 시도하는 제1 시도단계; 심박이 측정되면, 산소포화도 측정을 시도하는 제2 시도단계;를 포함한다.A method for controlling a wearable device according to one embodiment of the present invention for achieving the above object includes: a step of detecting proximity of a human body to a wearable device; a first attempt step of attempting to measure a heartbeat when proximity of a human body is detected; and a second attempt step of attempting to measure oxygen saturation when the heartbeat is measured.
감지 단계는, PPG 센서를 구성하는 IR-LED와 포토-다이오드를 턴-온 시키고 프로세서 내 근접 센싱 모듈을 활성화하여 수행하는 것일 수 있다. The detection step may be performed by turning on the IR-LED and photo-diode that make up the PPG sensor and activating the proximity sensing module within the processor.
제1 시도단계는, 포토-다이오드의 검출 신호에서 DC를 제거하기 위한 DC 피드백 회로와 프로세서 내 심박 센싱 모듈을 활성화하여 수행하는 것일 수 있다. The first attempt step may be performed by activating a DC feedback circuit to remove DC from the detection signal of the photodiode and a heart rate sensing module within the processor.
본 발명에 따른 웨어러블 기기 제어 방법은 제1 시도단계 이후에 심박이 측정되지 않으면, DC 피드백 회로와 프로세서 내 심박 센싱 모듈을 비활성화하는 단계;를 더 포함할 수 있다.The wearable device control method according to the present invention may further include a step of deactivating a DC feedback circuit and a heart rate sensing module within the processor if a heart rate is not measured after the first attempt step.
제2 시도단계는, PPG 센서를 구성하는 RED-LED를 턴-온시키고, 프로세서 내 산소포화도 센싱 모듈을 활성화하여 수행하는 것일 수 있다.The second attempt step may be performed by turning on the RED LED constituting the PPG sensor and activating the oxygen saturation sensing module within the processor.
본 발명에 따른 웨어러블 기기 제어 방법은 제2 시도단계 이후에 산소포화도가 측정되지 않으면, RED-LED를 턴-오프시키고, 프로세서 내 산소포화도 센싱 모듈을 비활성화시키는 단계;를 더 포함할 수 있다.The wearable device control method according to the present invention may further include a step of turning off the RED LED and deactivating the oxygen saturation sensing module within the processor if the oxygen saturation is not measured after the second attempt step.
본 발명에 따른 웨어러블 기기 제어 방법은 산소포화도가 측정되면, 심박 진폭이 정해진 범위인지 판단하는 단계; 심박 진폭이 정해진 범위이면, 심박과 산소포화도를 계속 측정하는 단계;를 더 포함할 수 있다.A wearable device control method according to the present invention may further include a step of determining whether a heartbeat amplitude is within a predetermined range when oxygen saturation is measured; and a step of continuously measuring a heartbeat and oxygen saturation if the heartbeat amplitude is within the predetermined range.
판단 단계는, PPG 센서를 구성하는 GREEN-LED를 턴-온하여 수행하는 것일 수 있다.The judgment step may be performed by turning on the GREEN LED that constitutes the PPG sensor.
본 발명에 따른 웨어러블 기기 제어 방법은 심박 진폭이 정해진 범위가 아니면, RED-LED와 GREEN-LED의 세기를 조절하는 단계;를 더 포함할 수 있다.The wearable device control method according to the present invention may further include a step of adjusting the intensity of the RED LED and the GREEN LED if the heartbeat amplitude is not within a predetermined range.
본 발명의 다른 측면에 따르면, 다수의 LED들을 포함하는 멀티-LED; 멀티-LED에서 조사된 후 인체에서 반사되는 광을 검출하는 포토-다이오드; 포토-다이오드의 검출 결과를 기초로, 웨어러블 기기의 인체의 근접을 감지하고, 인체의 근접이 감지되면 심박 측정을 시도하며, 심박이 측정되면 산소포화도 측정을 시도하는 프로세서;를 포함하는 것을 특징으로 하는 웨어러블 기기 제어 방법이 제공된다.According to another aspect of the present invention, a method for controlling a wearable device is provided, comprising: a multi-LED including a plurality of LEDs; a photodiode detecting light reflected from a human body after being irradiated by the multi-LED; and a processor detecting proximity of the wearable device to a human body based on a detection result of the photodiode, attempting to measure a heartbeat when proximity of the human body is detected, and attempting to measure oxygen saturation when the heartbeat is measured.
본 발명의 또다른 측면에 따르면, 심박 측정을 시도하는 제1 시도단계; 심박이 측정되면, 산소포화도 측정을 시도하는 제2 시도단계; 산소포화도가 측정되면, 심박 진폭이 정해진 범위인지 판단하는 단계; 심박 진폭이 정해진 범위이면, 심박과 산소포화도를 계속 측정하는 단계;를 포함하는 것을 특징으로 하는 웨어러블 기기가 제공된다.According to another aspect of the present invention, a wearable device is provided, characterized by including a first attempt step of attempting to measure a heart rate; if the heart rate is measured, a second attempt step of attempting to measure oxygen saturation; if the oxygen saturation is measured, a step of determining whether the heart rate amplitude is within a predetermined range; and if the heart rate amplitude is within the predetermined range, a step of continuously measuring the heart rate and oxygen saturation.
본 발명의 또다른 측면에 따르면, 다수의 LED들을 포함하는 멀티-LED; 멀티-LED에서 조사된 후 인체에서 반사되는 광을 검출하는 포토-다이오드; 포토-다이오드의 검출 결과를 기초로, 심박 측정을 시도하고, 심박이 측정되면 산소포화도 측정을 시도하며, 산소포화도가 측정되면 심박 진폭이 정해진 범위인지 판단하고, 심박 진폭이 정해진 범위이면 심박과 산소포화도를 계속 측정하는 프로세서;를 포함하는 것을 특징으로 하는 웨어러블이 제공된다.According to another aspect of the present invention, a wearable device is provided, comprising: a multi-LED including a plurality of LEDs; a photodiode detecting light reflected from a human body after being irradiated by the multi-LED; and a processor configured to attempt to measure a heart rate based on a detection result of the photodiode, attempt to measure oxygen saturation when the heart rate is measured, determine whether the heart rate amplitude is within a predetermined range when the oxygen saturation is measured, and continue to measure the heart rate and oxygen saturation when the heart rate amplitude is within the predetermined range.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 웨어러블 기기의 착용 여부만을 판단하여 동작 모드 또는 대기 모드로 이원화하지 않고, 웨어러블 기기에서의 생체 신호 감지 상황에 따라 LED들과 프로세서 모듈들을 구분하여 여러 단계의 모드 운영을 통해 선택적으로 턴-온/활성화하여 웨어러블 기기의 저전력 동작을 제어함으로써, 웨어러블 기기의 배터리 소모를 절감하여 사용 시간을 극대화할 수 있게 된다.As described above, according to embodiments of the present invention, rather than determining only whether the wearable device is worn and dividing it into an operation mode or a standby mode, the LEDs and processor modules are selectively turned on/activated through multiple mode operations by distinguishing them according to the bio-signal detection situation in the wearable device, thereby controlling low-power operation of the wearable device, thereby reducing battery consumption of the wearable device and maximizing its usage time.
도 1은 본 발명의 일 실시예에 따른 PPG 센서 내장형 웨어러블 기기의 구성, 그리고,Figure 1 is a configuration of a wearable device with a built-in PPG sensor according to one embodiment of the present invention, and
도 2와 도 3은 PPG 센서를 사용하는 웨어러블 기기를 위한 저전력/최적화 제어 방법의 흐름을 도시한 도면이다.Figures 2 and 3 are diagrams illustrating the flow of a low-power/optimized control method for a wearable device using a PPG sensor.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
본 발명의 실시예에서는 PPG(PhotoPlethysmoGraphy) 센서를 사용하는 웨어러블 기기를 위한 저전력 제어 방법을 제시한다. PPG 센서를 이용하여 근접, 심박, 산소포화도를 측정하여야 하는 웨어러블 기기에서 저전력 모드 동작을 제어하기 위한 기술이다.An embodiment of the present invention proposes a low-power control method for a wearable device using a PhotoPlethysmography (PPG) sensor. This technology controls low-power mode operation in a wearable device that uses a PPG sensor to measure proximity, heart rate, and oxygen saturation.
웨어러블 기기의 저전력 제어를 근접 센서 하나에만 의존함으로 인해 웨어러블 기기의 착용 여부만을 판단하여 동작 모드 또는 대기 모드로 이원화하여 운용하는 기존 기술과 달리, 본 발명의 실시예에서는 웨어러블 기기에서의 생체 신호 감지 상황에 따라 LED와 프로세서 모듈들을 구분하여 여러 단계의 모드 운영을 통해 웨어러블 기기의 저전력 동작을 제어한다.Unlike existing technologies that operate in a dual mode of operation or standby mode by only determining whether the wearable device is worn or not by relying on only one proximity sensor for low-power control of a wearable device, in an embodiment of the present invention, the low-power operation of the wearable device is controlled through operation in multiple stages of modes by distinguishing between LEDs and processor modules depending on the bio-signal detection situation of the wearable device.
또한 본 발명의 실시예에서는 웨어러블 기기의 착용 여부 감지를 위한 근접 센서를 추가하는 것이 아닌, PPG 센서를 활용하여 웨어러블 기기의 착용 여부까지 감지한다.In addition, in an embodiment of the present invention, rather than adding a proximity sensor to detect whether a wearable device is being worn, a PPG sensor is utilized to detect whether the wearable device is being worn.
이와 같은 기능을 수행하기 위한 웨어러블 기기를 도 1에 도시하였다. 도 1은 본 발명의 일 실시예에 따른 PPG 센서 내장형 웨어러블 기기의 구성을 도시한 도면이다.A wearable device for performing such a function is illustrated in Fig. 1. Fig. 1 is a diagram illustrating the configuration of a wearable device with a built-in PPG sensor according to one embodiment of the present invention.
본 발명의 실시예에 따른 웨어러블 기기는, 도시된 바와 같이, 멀티-LED(110), LED 드라이버(120), DC 피드백 회로(130), 포토-다이오드(140), AFE(Analog Front End, 150), ADC(Analog-to-Digital Converter, 160) 및 DSP(Digital Signal Processor, 170)를 포함하여 구성된다.A wearable device according to an embodiment of the present invention is configured to include, as illustrated, a multi-LED (110), an LED driver (120), a DC feedback circuit (130), a photodiode (140), an AFE (Analog Front End, 150), an ADC (Analog-to-Digital Converter, 160), and a DSP (Digital Signal Processor, 170).
멀티-LED(110)와 포토-다이오드(140)는 심박과 산소포화도를 측정하기 위한 PPG 센서를 구현하기 위한 구성들이다. 멀티-LED(110)는 IR-LED, RED-LED, GREEN-LED를 포함한다.The multi-LED (110) and photodiode (140) are components for implementing a PPG sensor for measuring heart rate and oxygen saturation. The multi-LED (110) includes an IR-LED, a RED-LED, and a GREEN-LED.
LED 드라이버(120)는 멀티-LED(110)를 구성하는 IR-LED, RED-LED, GREEN-LED에 구동 전류를 인가한다. LED 드라이버(120)에 의한 구동 전류는 후술할 DSP(170)에 의해 제어된다.The LED driver (120) applies driving current to the IR-LED, RED-LED, and GREEN-LED constituting the multi-LED (110). The driving current by the LED driver (120) is controlled by the DSP (170) described later.
포토-다이오드(140)는 멀티-LED(110)에서 출사된 후에 인체에서 반사되는 광 신호를 검출하기 위한 센서이다. DC 피드백 회로(130)는 포토-다이오드(140)에 의해 검출되는 광 신호에서 DC 성분을 제거하기 위한 회로이다.The photodiode (140) is a sensor for detecting an optical signal reflected from the human body after being emitted from the multi-LED (110). The DC feedback circuit (130) is a circuit for removing the DC component from the optical signal detected by the photodiode (140).
AFE(150)는 포토-다이오드(140)의 검출 신호에 대해 필요한 아날로그 신호처리, 이를 테면, 증폭, 필터링 등을 수행한다. ADC(160)는 AFE(150)에 의해 처리된 아날로그 신호를 디지털 신호로 변환하여 DSP(170)로 전달한다.The AFE (150) performs necessary analog signal processing, such as amplification and filtering, on the detection signal of the photodiode (140). The ADC (160) converts the analog signal processed by the AFE (150) into a digital signal and transmits it to the DSP (170).
DSP(170)는 ADC(160)에 의해 디지털 신호로 변환된 포토-다이오드(140)의 검출 신호에 대해 디지털 신호처리를 통해 인체 근접 감지, 심박 측정, 산소포화도 측정을 수행하고, DSP(170)는 LED 드라이버(120)에 의한 멀티-LED(110)의 구동, DC 피드백 회로(130)와 AFE(150)의 동작을 제어한다.The DSP (170) performs human proximity detection, heart rate measurement, and oxygen saturation measurement through digital signal processing on the detection signal of the photodiode (140) converted into a digital signal by the ADC (160), and the DSP (170) controls the driving of the multi-LED (110) by the LED driver (120) and the operation of the DC feedback circuit (130) and the AFE (150).
이와 같은 기능을 수행하는 DSP(170)는 도 1에 도시된 바와 같이 최적화 모듈(171), 산소포화도 센싱 모듈(172), 심박 센싱 모듈(173) 및 근접 센싱 모듈(174)을 포함하여 구성된다.The DSP (170) performing such a function is configured to include an optimization module (171), an oxygen saturation sensing module (172), a heart rate sensing module (173), and a proximity sensing module (174), as shown in FIG. 1.
최적화 모듈(171)은 LED 드라이버(120)가 생성하는 멀티-LED(110)의 구동 전류를 제어하여, 멀티-LED(110)를 구성하는 IR-LED, RED-LED, GREEN-LED에서 출사되는 광들의 세기를 제어한다.The optimization module (171) controls the driving current of the multi-LED (110) generated by the LED driver (120), thereby controlling the intensity of the light emitted from the IR-LED, RED-LED, and GREEN-LED constituting the multi-LED (110).
근접 센싱 모듈(174)은 포토-다이오드(140)에 의한 IR 검출 신호의 세기를 기초로 인체의 근접 여부를 감지한다.The proximity sensing module (174) detects the proximity of a human body based on the intensity of the IR detection signal by the photodiode (140).
심박 센싱 모듈(173)은 포토-다이오드(140)에 의한 검출 신호로부터 심박을 검출하고 심박 진폭을 측정한다. 산소포화도 센싱 모듈(172)은 포토-다이오드(140)에 의한 검출 신호로부터 산소포화도를 측정한다.The heart rate sensing module (173) detects a heart rate from a detection signal by a photodiode (140) and measures the heart rate amplitude. The oxygen saturation sensing module (172) measures oxygen saturation from a detection signal by a photodiode (140).
DSP(170)의 제어에 따라 웨어러블 기기의 저전력 및 최적화 동작을 제어하는 과정에 대해, 이하에서 도 2와 도 3을 참조하여 상세히 설명한다. 도 2와 도 3은 PPG 센서를 사용하는 웨어러블 기기를 위한 저전력/최적화 제어 방법의 흐름을 도시한 도면이다.The process of controlling low-power and optimized operation of a wearable device under the control of a DSP (170) will be described in detail below with reference to FIGS. 2 and 3. FIGS. 2 and 3 are diagrams illustrating the flow of a low-power/optimized control method for a wearable device using a PPG sensor.
도시된 바와 같이, 먼저 웨어러블 기기에 인체의 근접을 감지하기 위해 IR 신호를 검출한다(S210). IR 신호는 멀티-LED(110)의 IR-LED에서 출사된 후 인체에서 반사되어 포토-다이오드(140)에서 감지되는 광 신호이다. S210단계를 수행하기 위해, 웨어러블 기기에서 멀티-LED(110)의 IR-LED, 포토-다이오드(140), AFE(150), ADC(160)는 항시 턴-온되어 있다. 또한 DSP(170)에서는 최적화 모듈(171)과 근접 센싱 모듈(174)만이 enable(활성화) 되어 있다.As illustrated, first, an IR signal is detected to detect the proximity of a human body to a wearable device (S210). The IR signal is a light signal that is emitted from the IR-LED of the multi-LED (110), reflected from the human body, and detected by the photo-diode (140). To perform step S210, the IR-LED, photo-diode (140), AFE (150), and ADC (160) of the multi-LED (110) in the wearable device are always turned on. In addition, only the optimization module (171) and the proximity sensing module (174) are enabled in the DSP (170).
인체의 근접이 감지되면, 이를 테면, 인체가 5mm 이내로 웨어러블 기기에 근접하게 되면(S220-Y), 웨어러블 기기는 심박 측정을 시도하게 된다(S230). S230단계를 수행하기 위해, DSP(170)는 DC 피드백 회로(130)를 턴-온시키고, 심박 센싱 모듈(173)을 enable 시킨다.When the proximity of a human body is detected, for example, when a human body approaches the wearable device within 5 mm (S220-Y), the wearable device attempts to measure a heart rate (S230). To perform step S230, the DSP (170) turns on the DC feedback circuit (130) and enables the heart rate sensing module (173).
반면 S220단계에서 인체의 근접이 감지되지 않으면(S220-N), S210단계로 회귀한다.On the other hand, if the proximity of a human body is not detected in step S220 (S220-N), it returns to step S210.
한편 S230단계를 수행함으로써 심박이 측정되면(S240-Y), 웨어러블 기기는 산소포화도 측정을 시도하게 된다(S250). S250단계를 수행하기 위해, DSP(170)는 멀티-LED(110)의 RED-LED를 턴-온시키고, 산소포화도 센싱 모듈(172)을 enable 시킨다.Meanwhile, when the heart rate is measured by performing step S230 (S240-Y), the wearable device attempts to measure oxygen saturation (S250). To perform step S250, the DSP (170) turns on the RED LED of the multi-LED (110) and enables the oxygen saturation sensing module (172).
반면 S240단계에서 심박이 측정되지 않으면(S250-N), DSP(170)는 DC 피드백 회로(130)를 턴-오프, 심박 센싱 모듈(173)을 disable(비활성화) 시키고(S260), S210단계로 회귀한다. 웨어러블 기기가 책상 등에 놓여진 경우와 같이 인체가 아닌 다른 물체에 근접함으로 심박이 측정되지 않는 경우가 이 경우에 해당한다.On the other hand, if the heart rate is not measured at step S240 (S250-N), the DSP (170) turns off the DC feedback circuit (130), disables the heart rate sensing module (173) (S260), and returns to step S210. This case applies when the heart rate is not measured due to proximity to an object other than the human body, such as when the wearable device is placed on a desk or the like.
이후의 웨어러블 기기의 동작에 대해서는 도 3을 참조하여 설명한다.The subsequent operation of the wearable device is described with reference to Fig. 3.
S250단계를 수행함으로써 산소포화도가 측정되면(S310-Y), 웨어러블 기기는 심박의 진폭 측정을 시도하게 된다(S320). S320단계를 수행하기 위해, DSP(170)는 멀티-LED(110)의 GREEN-LED를 턴-온시킨다.When oxygen saturation is measured by performing step S250 (S310-Y), the wearable device attempts to measure heartbeat amplitude (S320). To perform step S320, the DSP (170) turns on the GREEN LED of the multi-LED (110).
반면 S310단계에서 산소포화도가 측정되지 않으면(S310-N), 멀티-LED(110)의 RED-LED를 턴-오프, 산소포화도 센싱 모듈(172)을 disable 시키고(S330), 도 2의 S240단계로 회귀한다.On the other hand, if oxygen saturation is not measured in step S310 (S310-N), the RED LED of the multi-LED (110) is turned off, the oxygen saturation sensing module (172) is disabled (S330), and the process returns to step S240 of FIG. 2.
한편 S320단계를 수행함으로써 측정된 심박 진폭이 동작 범위 이내이면(S340-Y), DSP(170)의 최적화 모듈(171)은 RED-LED와 GREEN-LED의 구동 전류를 그대로 유지시킨다(S350).Meanwhile, if the heartbeat amplitude measured by performing step S320 is within the operating range (S340-Y), the optimization module (171) of the DSP (170) maintains the driving current of the RED-LED and GREEN-LED as is (S350).
반면 S340단계에서 측정된 심박 진폭이 동작 범위를 벗어난 경우(S340-N), DSP(170)의 최적화 모듈(171)은 심박 진폭이 동작 범위 이내가 되도록 멀티-LED(110)의 RED-LED와 GREEN-LED의 구동 전류를 조절한다(S360). 웨어러블 기기가 인체를 강하게 압박하는 경우, 즉 웨어러블 기기가 쎄게 매어진 경우에, 심박 진폭이 동작 범위를 벗어날 수 있으며, 이 경우 LES 세기를 조절하여 진폭을 동작 범위 내로 조정하는 것이다.On the other hand, if the heartbeat amplitude measured in step S340 is out of the operating range (S340-N), the optimization module (171) of the DSP (170) adjusts the driving current of the RED-LED and GREEN-LED of the multi-LED (110) so that the heartbeat amplitude is within the operating range (S360). If the wearable device strongly presses the human body, i.e., if the wearable device is tightly tied, the heartbeat amplitude may be out of the operating range, and in this case, the LES intensity is adjusted to adjust the amplitude within the operating range.
지금까지, PPG 센서를 사용하는 웨어러블 기기를 위한 저전력 제어 방법에 대해 바람직한 실시예를 들어 상세히 설명하였다.So far, a preferred embodiment of a low-power control method for a wearable device using a PPG sensor has been described in detail.
웨어러블 기기는 항상 착용하고 다녀야 하므로 배터리 동작이 필수인데, 건강 상태 체크를 위한 생체 신호 측정용 회로까지 내장되어 배터리 소모가 급격하게 증가하게 된다.Wearable devices are always worn, so battery operation is essential. However, since they are equipped with a circuit for measuring bio-signals to check health status, battery consumption increases rapidly.
이에 위 실시예에서는, 웨어러블 기기의 착용 여부만을 판단하여 동작 모드 또는 대기 모드로 이원화하지 않고, 웨어러블 기기에서의 생체 신호 감지 상황에 따라 LED들과 프로세서 모듈들을 구분하여 여러 단계의 모드 운영을 통해 선택적으로 활성화하여 웨어러블 기기의 저전력 동작을 제어함으로써, 웨어러블 기기의 배터리 소모를 절감하여 사용 시간을 극대화할 수 있도록 하였다.Accordingly, in the above embodiment, rather than determining only whether the wearable device is worn and dividing it into an operating mode or a standby mode, the LEDs and processor modules are selectively activated through operation in multiple stages of mode by distinguishing them according to the bio-signal detection situation in the wearable device, thereby controlling the low-power operation of the wearable device, thereby reducing the battery consumption of the wearable device and maximizing the usage time.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.Meanwhile, it goes without saying that the technical idea of the present invention can also be applied to a computer-readable recording medium containing a computer program that performs the functions of the device and method according to the present embodiment. In addition, the technical idea according to various embodiments of the present invention can be implemented in the form of computer-readable code recorded on a computer-readable recording medium. The computer-readable recording medium can be any data storage device that can be read by a computer and store data. For example, the computer-readable recording medium can be a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical disk, a hard disk drive, etc. In addition, the computer-readable code or program stored on the computer-readable recording medium can be transmitted through a network connected between computers.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although the preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the specific embodiments described above, and various modifications can be made by a person having ordinary skill in the art to which the present invention pertains without departing from the gist of the present invention as claimed in the claims, and such modifications should not be understood individually from the technical idea or prospect of the present invention.
Claims (12)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20240028485 | 2024-02-28 | ||
| KR10-2024-0028485 | 2024-02-28 | ||
| KR1020240055954A KR20250132317A (en) | 2024-02-28 | 2024-04-26 | Low-power control method for wearable devices using PPG sensors |
| KR10-2024-0055954 | 2024-04-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025183271A1 true WO2025183271A1 (en) | 2025-09-04 |
Family
ID=96921085
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2024/008583 Pending WO2025183271A1 (en) | 2024-02-28 | 2024-06-21 | Low-power control method for wearable device using photoplethysmography sensor. |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025183271A1 (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20160109690A (en) * | 2015-03-12 | 2016-09-21 | 크루셜텍 (주) | Pulse rate sensing module, user device having the same, and pulse rate sensing method for user device |
| US9723997B1 (en) * | 2014-09-26 | 2017-08-08 | Apple Inc. | Electronic device that computes health data |
| KR20170103558A (en) * | 2016-03-04 | 2017-09-13 | 삼성전자주식회사 | Electric device for measuring biometric information and method for operating the same |
| JP2019526293A (en) * | 2016-08-26 | 2019-09-19 | 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. | Heart rate measuring method, heart rate measuring apparatus and wearable apparatus |
| KR20220053364A (en) * | 2020-10-22 | 2022-04-29 | 삼성전자주식회사 | Wearable device and method for measuring biometric information |
| KR20220141487A (en) * | 2021-04-13 | 2022-10-20 | 삼성전자주식회사 | Method for detecting biometric information and electronic device supporting the same |
-
2024
- 2024-06-21 WO PCT/KR2024/008583 patent/WO2025183271A1/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9723997B1 (en) * | 2014-09-26 | 2017-08-08 | Apple Inc. | Electronic device that computes health data |
| KR20160109690A (en) * | 2015-03-12 | 2016-09-21 | 크루셜텍 (주) | Pulse rate sensing module, user device having the same, and pulse rate sensing method for user device |
| KR20170103558A (en) * | 2016-03-04 | 2017-09-13 | 삼성전자주식회사 | Electric device for measuring biometric information and method for operating the same |
| JP2019526293A (en) * | 2016-08-26 | 2019-09-19 | 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. | Heart rate measuring method, heart rate measuring apparatus and wearable apparatus |
| KR20220053364A (en) * | 2020-10-22 | 2022-04-29 | 삼성전자주식회사 | Wearable device and method for measuring biometric information |
| KR20220141487A (en) * | 2021-04-13 | 2022-10-20 | 삼성전자주식회사 | Method for detecting biometric information and electronic device supporting the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11076769B2 (en) | Human body wearable device and operation method thereof | |
| JPH0663161A (en) | Device for reducing electric power consumption of electric therapeutic device implantable in human body | |
| US20210123801A1 (en) | Ambient light signal adjustment method, chip and electronic equipment | |
| EP1239577A3 (en) | Power Supply Control Apparatus and Method thereof | |
| EP3678540A1 (en) | Method of obtaining biometric information based on wearing state and electronic device thereof | |
| US20120018637A1 (en) | Switching apparatus, switching method, and electronic device | |
| CN101546218B (en) | Method, device and system for saving electricity for display device | |
| WO2004032720A3 (en) | Multi-modal system for detection and control of changes in brain state | |
| CN104902634A (en) | Intelligent light control system and control method thereof | |
| WO2025183271A1 (en) | Low-power control method for wearable device using photoplethysmography sensor. | |
| CN113995390A (en) | A working mode control method of a wearable device, wearable device and medium | |
| WO2018043812A1 (en) | Energy-saving smart stand using automatic lighting control technique | |
| GB9704068D0 (en) | Trigger sequencing controller | |
| JP6692938B2 (en) | Wear determination device and electronic device | |
| KR20250132317A (en) | Low-power control method for wearable devices using PPG sensors | |
| CN112995831B (en) | Water entry alarm method of Bluetooth headset, wearable device and medium | |
| CN109497923A (en) | A kind of electronic videoendoscope with two-segment type preamplifier | |
| CN201912089U (en) | Finger griping type pulse oximeter with automatic multidirectional display interface switching function | |
| CN207168476U (en) | A kind of anesthesia video laryngoscope based on light sensing | |
| CN105919745B (en) | a hospital bed | |
| JP2008001438A (en) | Security camera system for elevator | |
| CN210328074U (en) | Intelligent controller for presence type human body infrared detection | |
| CN220139774U (en) | Automatic lighting device of safety cabinet | |
| CN101866151B (en) | Infrared mcu control system and control method thereof | |
| CN207792395U (en) | A kind of human body detecting device |