[go: up one dir, main page]

WO2025100106A1 - Signal processing device, display system, and electronic apparatus - Google Patents

Signal processing device, display system, and electronic apparatus Download PDF

Info

Publication number
WO2025100106A1
WO2025100106A1 PCT/JP2024/033380 JP2024033380W WO2025100106A1 WO 2025100106 A1 WO2025100106 A1 WO 2025100106A1 JP 2024033380 W JP2024033380 W JP 2024033380W WO 2025100106 A1 WO2025100106 A1 WO 2025100106A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
memory
memory cell
unit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/033380
Other languages
French (fr)
Japanese (ja)
Inventor
広樹 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Group Corp filed Critical Sony Group Corp
Publication of WO2025100106A1 publication Critical patent/WO2025100106A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]

Definitions

  • This technology relates to signal processing devices, display systems, and electronic devices.
  • a logic circuit is used to calculate the APL.
  • the circuit size of the logic circuit increases as the resolution of the display device increases, which causes a problem of increased power consumption.
  • One of the objectives of this technology is to provide a signal processing device that can acquire data for calculating APL while suppressing increases in circuit size and power consumption, a display system that has the signal processing device, and an electronic device that has the display system.
  • FIG. 1 is a diagram to which reference is made when explaining problems to be considered in the present technology.
  • FIG. 1 is a diagram to which reference is made when explaining problems to be considered in the present technology.
  • 1 is a block diagram showing an example of the configuration of a display system according to an embodiment.
  • 2 is a diagram for explaining a configuration example of a pixel array unit according to the embodiment;
  • FIG. 2 is a diagram for explaining a configuration example of a pixel circuit according to the embodiment;
  • FIG. 2 is a diagram for explaining a schematic configuration example of a memory unit according to the first embodiment;
  • FIG. 4 is a diagram for explaining a detailed configuration example of a memory unit according to the first embodiment;
  • FIG. 4 is a diagram for explaining an example of a connection mode between a memory cell and a peripheral circuit according to the first embodiment;
  • FIG. FIG. 2 is a diagram for explaining an example of the configuration of an image processing unit according to the embodiment; 1A and 1B are diagrams to be referred to when describing an example of processing performed in a memory unit according to the first embodiment.
  • 3 is a diagram referred to when describing an example of processing performed in a memory unit according to the first embodiment.
  • FIG. 3 is a diagram to be referred to when describing an example of processing performed by an image processing unit according to the embodiment.
  • FIG. 4 is a diagram for explaining an example of the arrangement of components when a memory unit and an image processing unit according to the first embodiment are integrated into an IC;
  • FIG. 13 is a diagram showing an example of the interior of a vehicle from the diagonally rear to the diagonally front of the vehicle.
  • FIG. 13 is a diagram showing another example of the configuration of a pixel circuit.
  • FIG. 13 is a diagram showing another example of the configuration of a pixel circuit.
  • FIG. 13 is a diagram showing another example of the configuration of a pixel circuit.
  • FIG. 13 is a diagram showing another example of the configuration of a pixel circuit.
  • FIG. 13 is a diagram showing another example of the configuration of a pixel circuit.
  • FIG. 13 is a diagram showing another example of the configuration of a pixel circuit.
  • FIG. 13 is a diagram showing another example of the configuration of a pixel circuit.
  • power limit processing is performed to control the overall brightness according to the APL of the input image data.
  • the horizontal axis of the graph shown in FIG. 1 indicates the APL, and the vertical axis indicates the gain for the input image data.
  • the gain is reduced when the APL is equal to or higher than a predetermined value. Even if the gain is reduced because the APL is equal to or higher than a predetermined value, there is little risk that the user will perceive a change in brightness. Furthermore, by performing such power limit processing, power consumption can be reduced.
  • the display device 4 is, for example, a display mounted on an electronic device such as an electronic viewfinder (EVF: Electronic View Finder) of a digital camera, an Augmented Reality (AR) glass, or a Virtual Reality (VR) glass.
  • EMF Electronic Viewfinder
  • AR Augmented Reality
  • VR Virtual Reality
  • the display device 4 is not limited to this, and may be, for example, a medium-sized or large-sized display such as a smartphone or a tablet.
  • the display system 100 has a data input/output I/F (Interface) unit 1, a timing controller 2, a display controller 3, and a display device 4. Note that in FIG. 3, the data input/output I/F unit 1, the timing controller 2, and the display controller 3 are separate from the display device 4, but the display controller 3 etc. may be integrated into the display device 4 to form a single display device.
  • I/F Interface
  • the data input/output I/F unit 1 has a high-speed I/F unit 11, a data S/P unit 12, a clock control unit 13, and an H/V synchronization unit 14.
  • the timing controller 2 has a clock generator 23, a timing generator 24, a memory unit 25, and an image processing unit 26.
  • the timing controller 2 corresponds to an example of a signal processing device of the present technology.
  • the display controller 3 has an HLOGIC section 31 as a horizontal logic circuit and a VLOGIC section 32 as a vertical logic circuit.
  • the high-speed I/F unit 11 receives image data for display that has been serially transferred from the outside.
  • the data S/P unit 12 converts the image data into parallel data.
  • the image data converted into parallel data is sent to a memory unit 25 in the timing controller 2.
  • the clock control unit 13 generates a clock that matches the display frequency of the display device 4.
  • the H/V synchronization unit 14 generates a horizontal synchronization signal and a vertical synchronization signal based on the image data and sends them to the timing generator 24.
  • the clock generator 23 generates a vertical synchronization clock signal and a horizontal synchronization clock signal for the display device 4 under the control of the clock control unit 13, and supplies them to the display controller 3.
  • the timing generator 24 generates a timing signal that specifies the operation timing of the display controller 3 based on the horizontal synchronization signal and the vertical synchronization signal supplied from the H/V synchronization unit 14.
  • the timing signal is supplied to the display controller 3.
  • the memory unit 25 temporarily stores image data supplied from the data S/P 12 unit. Details of the memory unit 25 will be described later.
  • the image processing unit 26 performs various image processes on the image data supplied from the memory unit 25. As the image processes, known image processes can be applied.
  • the image processing unit 26 performs gain adjustment, brightness adjustment, gamma adjustment, resolution conversion, color correction for each pixel, and the like.
  • the image data output from the image processing unit 26 is supplied to the HLOGIC 31 via a source amplifier (not shown in FIG. 3).
  • the pixel array section 41 has, for example, a rectangular display area, and has a configuration in which a plurality of pixel circuits PIX having light-emitting elements such as organic EL elements that are driven for display are arranged in a matrix.
  • control lines are provided in the horizontal direction (horizontal direction) for each row of the pixel circuits PIX arranged in the matrix, and further, signal lines are provided for each column so as to be perpendicular to the control lines.
  • the pixel array section 41 is provided with pixels (also called sub-pixels) of three primary colors R (red), G (green), and B (blue). These three pixels represent one dot of a color image.
  • the combination of pixels that represent one dot is not limited to this, and may be configured by adding a W (white) pixel for improving brightness, or may be configured by adding a complementary color pixel for expanding the color reproduction range.
  • the display device 4 may be configured to represent not only color images but also monochrome (black and white) images.
  • the shape of the pixel array section 41 may be a shape other than a rectangle, such as a circle or an ellipse.
  • VANALOG 42 generates control signals (e.g., control signals WS, DS, AZ) using the shift signal generated by VLOGIC 32 and outputs them to the pixel array unit 41.
  • HANALOG 43 outputs the pixel signal supplied from the signal processing unit 44 to the corresponding signal line of the pixel array unit 41.
  • the signal processing unit 44 performs signal processing on the image data to be displayed on the pixel array unit 41.
  • the specific content of the signal processing is not important, but an example is gamma correction.
  • the signal processing unit 44 performs gamma correction on the image data allocated by the HLOGIC 31 to generate a gamma-corrected pixel signal.
  • the pixel signal that has been signal-processed by the signal processing unit 44 is sent to the HANALOG unit 43.
  • the gradation voltage indicating the gradation generated when the signal processing unit 44 performs gamma correction is generated based on a setting value stored in a register (not shown).
  • the timing controller 2 has the above-mentioned register.
  • the display device 4 sequentially drives each pixel arranged in the pixel array section 41, causes each pixel to emit light according to the signal level of each signal line, and displays a desired image on the pixel array section 41.
  • the display device 4 is one example of a display device to which the present technology can be applied, and is also applicable to other configurations.
  • scanning is not limited to line sequential scanning, and may be point sequential scanning.
  • the arrangement of pixels is not limited to a matrix arrangement, and may be arranged along an arc. The signal lines and control lines need only be formed accordingly.
  • Example of pixel array configuration 4 is a diagram for explaining a schematic configuration example of the pixel array section 41.
  • a signal line SIG is wired for each pixel column along the column direction CD for the arrangement of pixel circuits PIX.
  • control lines (control lines WSL, DSL, AZSL) are wired for each pixel row along the row direction RD for the arrangement of pixel circuits PIX. Note that the pixel arrangement shown in the figure is merely an example for the purpose of simplifying the illustration.
  • Each signal line SIG is connected to the output terminal of the corresponding column of HANALOG43.
  • Each control line WSL, DSL, AZSL is connected to the output terminal of the corresponding row of VANALOG42.
  • HANALOG 43 supplies pixel signals corresponding to the display image to each signal line SIG based on image data supplied from the timing controller 2.
  • HANALOG 43 selectively outputs, for example, as pixel signals, a signal voltage Vsig corresponding to the luminance of the display image and various reference voltages that serve as the basis for the signal voltage Vsig.
  • VANALOG42 supplies control signals (control signals WS, DS, AZ) that control driving based on pixel signals to each control line WSL, DSL, AZSL.
  • the control signal WS is a control signal that scans each of the multiple pixels
  • the control signal DS is a control signal that controls light emission/extinction
  • the control signal AZ is a control signal that controls so as not to emit light during the extinction period.
  • VANALOG42 sequentially supplies control signals WS0, WS1, ... to each control line WSL to scan each pixel circuit PIX of the pixel array section 41 in sequence by row (line sequential scanning).
  • VANALOG42 controls the light emission/extinction of the pixel circuits PIX by supplying control signals DS0, DS1, ... to the control line DSL in synchronization with the scanning. Furthermore, VANALOG42 controls the light-emitting element of pixel circuit PIX not to emit light during the extinction period by supplying control signals AZ0, AZ1, ... to control line AZSL in synchronization with the scanning.
  • the “Configuration example of pixel circuit PIX" 5 shows an example of the configuration of the pixel circuit PIX.
  • the pixel circuit PIX has a capacitor C01, transistors MN02 to MN03, and a light-emitting element EL.
  • the transistors MN02 to MN03 are N-type MOSFETs (Metal Oxide Semiconductor Field Effect Transistors).
  • the gate of the transistor MN02 is connected to a control line WSL, the drain is connected to a signal line SIG, and the source is connected to the gate of the transistor MN03 and the capacitor C01.
  • One end of the capacitor C01 is connected to the source of the transistor MN02 and the gate of the transistor MN03, and the other end is connected to the source of the transistor MN03 and the anode of the light-emitting element EL.
  • the gate of the transistor MN03 is connected to the source of the transistor MN02 and one end of the capacitor C01, the drain is connected to the power supply line VCCP, and the source is connected to the other end of the capacitor C01 and the anode of the light-emitting element EL.
  • the anode of the light-emitting element EL is connected to the source of the transistor MN03 and the other end of the capacitor C01, and the cathode is connected to the power supply line Vcath.
  • the voltage of the power supply line VCCP is appropriately switched between a first voltage and a second voltage lower than the first voltage.
  • the pixel circuit PIX when the transistor MN02 is turned on, the voltage across the capacitor C01 is set based on the pixel signal supplied from the signal line SIG.
  • the transistor MN03 passes a current corresponding to the voltage across the capacitor C01 through the light-emitting element EL.
  • the light-emitting element EL emits light based on the current supplied from the transistor MN03. In this way, the pixel circuit PIX emits light with a brightness corresponding to the pixel signal. Note that during the period when the voltage of the power supply line VCCP is the second voltage, the light-emitting element EL is turned off.
  • Fig. 6 is a diagram for explaining a schematic configuration example of the memory unit 25 according to the present embodiment.
  • Fig. 7 is a diagram for explaining a detailed configuration example of the memory unit 25 according to the present embodiment.
  • Fig. 8 is a diagram for explaining an example of a connection mode between the memory cell and the peripheral circuit according to the present embodiment.
  • the memory unit 25 is, for example, a frame memory that temporarily stores one frame's worth of image data.
  • the memory unit 25 according to this embodiment is also a component that applies a technology known as in-memory computing (also called memory-in computing or near-memory computing), in which a storage circuit and an arithmetic circuit are integrated within a memory.
  • in-memory computing also called memory-in computing or near-memory computing
  • a storage circuit and an arithmetic circuit are integrated within a memory.
  • the memory unit 25 includes, for example, a memory circuit 51 and an arithmetic circuit 61.
  • the memory circuit 51 has a memory cell section MCX, a peripheral circuit section 52, a data write circuit 53, and a data read circuit 54.
  • the memory cell unit MCX is composed of multiple memory cells MC.
  • an SRAM Static Random Access Memory
  • CMOS Complementary Metal Oxide Semiconductor
  • the memory cell MC may not be an SRAM, but may be other memory elements such as a DRAM (Dynamic Random Access Memory).
  • the SRAM cell is not limited to the CMOS type, and other types of SRAM cells can be used, such as a high resistance load type or an SRAM cell using a TFT (Thin Film Transistor).
  • the peripheral circuit section 52 is a general term for the peripheral circuits connected to the memory cell section MCX.
  • the peripheral circuit section 52 includes, for example, an address decoder 52A that decodes an address to select a specific memory cell MC, and a precharge circuit 52B that precharges the bit lines.
  • the precharge circuit 52B refers to any precharge circuit among the precharge circuits 52B0, 52B1, ..., 52Bm described below.
  • the peripheral circuit section 52 also includes a circuit that generates a precharge control signal PRE that operates the precharge circuit 52B, and a circuit that generates a sense amplifier enable signal SAE that operates the sense amplifier (sense amplifier 54A described below). Illustration of these circuits is omitted.
  • the data write circuit 53 is a circuit that writes a logical value of "1 (H (High) level)” or "0 (L (Low) level)" into each memory cell MC that constitutes the memory cell unit MCX.
  • the arithmetic circuit 61 has an AD converter 62 and an APL calculation circuit 63.
  • the AD converter 62 converts information (e.g., potential) obtained based on the outputs of a plurality of memory cells MC from an analog signal to a digital signal.
  • the AD converter 62 is connected to the memory node of each memory cell MC. Note that the AD converter 62 refers to any of the AD converters 620, 621, ... 62m described below.
  • Each AD converter 62 is connected to the APL calculation circuit 63, and the output of each AD converter 62 is supplied to the APL calculation circuit 63.
  • the APL calculation circuit 63 calculates, for example, the APL of one frame of image data stored in the memory unit 25 based on the digital signal output from the AD converter 62.
  • the APL calculation circuit 63 is configured, for example, by a product-sum calculation circuit.
  • FIG. 7 Note that in FIG. 7, the data write circuit 53 is omitted, and only the sense amplifier 54A of the data read circuit 54 is shown.
  • the memory cell unit MCX has, for example, a plurality of memory cells MC-00 to MC-mn arranged in a matrix.
  • Each word line WL0, WL1, ... WLn is connected to the address decoder 52A.
  • Each word line WL0, WL1, ... WLn extends from the address decoder 52A to the arrangement area of the memory cells MC.
  • the multiple memory cells MC-00, MC-10, ..., MC-m0 arranged in the uppermost row direction are connected to the same word line WL0.
  • the multiple memory cells MC-01, MC-11, ..., MC-m1 arranged in the next row direction are connected to the same word line WL1.
  • the multiple memory cells MC-0n, MC-1n, ..., MC-mn arranged in the lowermost row direction are connected to the same word line WLn.
  • word lines WL when there is no need to distinguish between individual word lines, they will be referred to as word lines WL.
  • the multiple memory cells MC-00, MC-01, ..., MC-0n arranged in the leftmost column direction are connected to a pair of bit lines, bit lines BL0 (an example of a first bit line) and BLX0 (an example of a second bit line).
  • Bit line BL0 has a parasitic capacitance C0.
  • Bit line BLX0 has a parasitic capacitance CX0.
  • the memory cells MC-00, MC-01, ..., MC-0n arranged in the same column direction form a memory cell group MCX0.
  • the next set of memory cells MC-10, MC-11, ..., MC-1n arranged in the column direction are connected to a pair of bit lines BL1 and BLX1.
  • Bit line BL1 has a parasitic capacitance C1.
  • Bit line BLX1 has a parasitic capacitance CX1.
  • the memory cells MC-10, MC-11, ..., MC-1n arranged in the same column direction form a memory cell group MCX1.
  • the multiple memory cells MC-m0, MC-m1, ..., MC-mn arranged in the rightmost column direction are connected to a pair of bit lines BLm, BLXm.
  • Bit line BLm has a parasitic capacitance Cm.
  • Bit line BLXm has a parasitic capacitance CXm.
  • the memory cells MC-m0, MC-m1, ..., MC-mn arranged in the same column direction form a memory cell group MCXm.
  • a precharge circuit 52B, a sense amplifier 54A, and an AD converter 62 are provided for each memory cell group.
  • a precharge circuit 52B0, a sense amplifier 54A0, and an AD converter 620 are provided for memory cell group MCX0.
  • the precharge circuit 52B0, the sense amplifier 54A0, and the AD converter 620 are each connected to a pair of bit lines BL0, BLX0 to which each memory cell constituting memory cell group MCX0 is connected.
  • a precharge circuit 52B1, a sense amplifier 54A1, and an AD converter 621 are provided for the memory cell group MCX1. Specifically, the precharge circuit 52B1, the sense amplifier 54A1, and the AD converter 621 are each connected to a pair of bit lines BL1, BLX1 to which each memory cell constituting the memory cell group MCX1 is connected.
  • a precharge circuit 52Bm, a sense amplifier 54Am, and an AD converter 62m are provided for the memory cell group MCXm. Specifically, the precharge circuit 52Bm, the sense amplifier 54Am, and the AD converter 62m are connected to a pair of bit lines BLm, BLXm to which each memory cell constituting the memory cell group MCXm is connected.
  • FIG. 8 shows only memory cell MC-00 out of the multiple memories, only precharge circuit 52B0 out of the multiple precharge circuits 52B, only sense amplifier 54A0 out of the multiple sense amplifiers 54A, and only AD converter 620 out of the multiple AD converters 62.
  • the other memory cells MC also have a circuit configuration similar to that of memory cell MC-00. Although only one bit of memory cell MC-00 is shown, the configuration can be made according to any number of bits.
  • Memory cell MC-00 has two load transistors P1 and P2 made of PMOS, and two driver transistors N1 and N2 made of N-channel MOS transistors (NMOS). Memory cell MC-00 also has two access transistors ST1 and ST2 made of NMOS.
  • Load transistor P1 and driver transistor N1 are connected in series (cascade connected) between the supply line of power supply voltage Vdd and the supply line of reference voltage Vss (e.g., ground voltage).
  • Load transistor P2 and driver transistor N2 are connected in series (cascade connected) between the supply line of power supply voltage Vdd and the supply line of reference voltage Vss (e.g., ground voltage).
  • the gates of the load transistor P2 and the driver transistor N2 are both connected to the connection point between the load transistor P1 and the driver transistor N1. This connection point forms a first memory node ND1. Similarly, the gates of the load transistor P1 and the driver transistor N1 are both connected to the connection point between the load transistor P2 and the driver transistor N2. This connection point forms a second memory node ND2.
  • the logical level of the first memory node ND1 and the logical level of the second memory node ND2 are complementary to each other.
  • One of the source and drain of the access transistor ST1 is connected to the first memory node ND1, the other is connected to the write bit line BL0, and the gate is connected to the word line WL0.
  • One of the source and drain of the access transistor ST2 is connected to the second memory node ND2, the other is connected to the bit line BLX0, and the gate is connected to the word line WL0.
  • the precharge circuit 52B0 is connected to the memory node of the memory cell MC-00 via a specific bit line.
  • the precharge circuit 52B0 is connected to the first memory node ND1 of the memory cell MC-00 via the bit line BL0 and the access transistor ST1, and is connected to the second memory node ND2 of the memory cell MC-00 via the bit line BLX0 and the access transistor ST2.
  • the precharge circuit 52B0 is also connected to the first memory node ND1 of the other memory cells MC-01...MC-0n via the bit line BL0, and is also connected to the second memory node ND2 via the bit line BLX0.
  • the sense amplifier 54A0 is connected to the memory node of the memory cell MC-00 via a specific bit line.
  • the sense amplifier 54A0 is connected to the first memory node ND1 of the memory cell MC-00 via the bit line BL0 and the access transistor ST1, and is connected to the second memory node ND2 of the memory cell MC-00 via the bit line BLX0 and the access transistor ST2.
  • the sense amplifier 54A0 is also connected to the first memory node ND1 of the other memory cells MC-01...MC-0n via the bit line BL0, and is also connected to the second memory node ND2 via the bit line BLX0.
  • the AD converter 620 is connected to the memory node of the memory cell MC-00 via a specific bit line.
  • the AD converter 620 is connected to the first memory node ND1 of the memory cell MC-00 via the bit line BL0 and the access transistor ST1, and is connected to the second memory node ND2 of the memory cell MC-00 via the bit line BLX0 and the access transistor ST2.
  • the AD converter 620 is also connected to the first memory node ND1 of the other memory cells MC-01...MC-0n via the bit line BL0, and is also connected to the second memory node ND2 via the bit line BLX0.
  • the precharge circuit 52B1, sense amplifier 54A1, and AD converter 621 are connected to the memory cells MC-10, MC-11, ... MC-1n via bit lines BL1, BLX1, etc. in the same manner as described above.
  • the precharge circuit 52Bm, sense amplifier 54Am, and AD converter 62m are connected to the memory cells MC-m0, MC-m1, ... MC-mn via bit lines BLm, BLXm in the same manner as described above.
  • [Configuration example of image processing unit] 9 is a diagram for explaining an example of the configuration of the image processing unit 26.
  • the image processing unit performs image processing according to the APL calculated by the APL calculation circuit 63.
  • the image processing unit 26 has, as functional blocks, for example, a gain adjustment unit 26A, a brightness adjustment unit 26B, a gamma adjustment unit 26C, and a data latch unit 26D.
  • the gain adjustment unit 26A adjusts the gain of the image data input from the memory unit 25.
  • the brightness adjustment unit 26B adjusts the brightness of the image data that has been subjected to gain adjustment processing by the gain adjustment unit 26A.
  • the gamma adjustment unit 26C adjusts the gamma of the image data that has been subjected to brightness adjustment by the brightness adjustment unit 26B.
  • the data latch unit 26D latches the image data that has been subjected to gamma adjustment, and outputs the latched image data in response to a predetermined clock signal.
  • the image data output from the image processing unit 26 is supplied to the HLOGIC 31 via the source amplifier 27.
  • the image processing unit 26 may be configured to include the source amplifier 27.
  • FIG. 10A is the same circuit example as that shown in Fig. 8, and shows an example in which the logic level of the first storage node ND1 is H level and the logic level of the second storage node ND2 is L level.
  • Fig. 10B is a timing chart to be referred to when describing data read processing, etc.
  • the precharge circuit 52B0 operates when the precharge control signal PRE is supplied. The same applies to the other precharge circuits 52B.
  • the sense amplifier 54A0 operates when the sense amplifier enable signal SAE is supplied. The same applies to the other sense amplifiers 54A.
  • the precharge control signal PRE and the sense amplifier enable signal SAE are generated by the peripheral circuit unit 52 based on, for example, the external clock signal ECK.
  • the data write circuit 53 selects a pair of bit lines (bit lines BL0, BLX0 in this example) connected to the memory cell MC-00 into which data is to be written. The data write circuit 53 then writes a voltage corresponding to the input image data into the memory cell MC-00 via the selected bit lines BL0, BLX0. Data is written into the other memory cells MC in the same manner.
  • a word line selection signal (H level signal) which is a memory cell selection signal is applied to the word line WL0 (timing t10 in FIG. 10B), turning on the access transistors ST1 and ST2 of the memory cell MC-00, and the voltage latched in the memory cell MC-00 is output to the bit lines BL0 and BLX0. If the latched voltage is set to H level at the first memory node ND1 and L level at the second memory node ND2 as shown in FIG. 9A, a H level voltage is applied to the bit line BL0 via the access transistor ST1, and a L level voltage is applied to the bit line BLX0 via the access transistor ST2.
  • bit lines BL0 and BLX0 are charged to a H level voltage in advance by the precharge circuit 52B0, the bit line BL0 maintains a H level voltage state, while the bit line BLX0 is discharged via the access transistor ST2 by the latch section of the memory cell MC-00, and the voltage level transitions from H level to L level.
  • the sense amplifier enable signal SAE is input to the sense amplifier 54A0 (see timing t11 in FIG. 10B). This causes the sense amplifier 54A0 to operate, and the voltages of bit lines BL0 and BLX0 are amplified by the sense amplifier 54A0, fixing the voltage of bit line BL0 to the H level and the voltage of bit line BLX0 to the L level. Then, an output signal (output signal VOUT in FIG. 10B) corresponding to the voltages of bit lines BL0 and BLX0 is output from the sense amplifier 54A0 via an output circuit (not shown) (see timing t11 in FIG. 10B). This causes the data stored in memory cell MC-00 to be read out.
  • the APL calculation process can be performed at any timing in a series of image processing sequences. For example, after image data corresponding to a specific frame is written to the memory cell unit MCX, each AD converter 62 is operated by a specific control signal. The APL calculation circuit 63 calculates the APL of the frame according to the output of each AD converter 62, and outputs the APL to the image processing unit 26. At the next timing, the image data corresponding to the specific frame is written again to the memory cell unit MCX, and then, at the next specified timing, the sense amplifier 54A is operated instead of the AD converter 62 to read the image data corresponding to the specific frame from the memory unit 25. The read image data is supplied to the image processing unit 26. The image processing unit 26 executes various image processes based on the APL.
  • each precharge circuit 52B precharges the pair of bit lines connected to it to the H level. Then, a specific control signal is supplied to each AD converter 62, causing each AD converter 62 to start operating. For example, after the precharge circuit 52B0 precharges the bit lines BL0 and BLX0 to the H level, a specific control signal is supplied, causing the AD converter 620 to start operating.
  • the bit line BL0 when the first memory node ND1 is at H level and the second memory node ND2 is at L level voltage, an H level voltage is applied to the bit line BL0 via the access transistor ST1, and an L level voltage is applied to the bit line BLX0 via the access transistor ST2. Since the bit lines BL0 and BLX0 have been charged to H level voltage in advance by the precharge circuit 52B0, the bit line BL0 maintains an H level voltage state. Meanwhile, the bit line BLX0 is discharged via the access transistor ST2, and the voltage level transitions from H level to L level.
  • a number of memory cells MC-00, MC-01...MC-0n are connected to bit line BL0 and bit line BLX0.
  • the logical level of the first memory node ND1 of each memory cell MC is more often H level than L level, the amount of discharge is small and the amount of drop in the potential of the bit line BL0 from the potential after precharging is small.
  • the logical level of the first memory node ND1 of each memory cell MC is more often L level than H level, the amount of discharge is large and the amount of drop in the potential of the bit line BL0 from the potential after precharging is large. The same is true for bit line BLX0.
  • a predetermined detection period is set from the timing when the precharging of the bit lines BL0 and BLX0 is completed (timing t21 in FIG. 11).
  • the potential of at least one of the bit lines BL0 and BLX0 is detected.
  • the discharge amount is small, and the drop in the potential of the bit line BL0 is small, as shown by lines LNa and LNb in FIG. 11.
  • the discharge amount is large, and the drop in the potential of the bit line BL0 is large, as shown by lines LNc and LNd.
  • the AD converter 620 converts the potential at timing t22 into a digital signal and outputs it to the APL calculation circuit 63. Note that in FIG. 11, four patterns of potential changes are shown by lines LNa to LNd, but this is only an example and the patterns of potential changes are not limited to the examples shown.
  • each AD converter 62 When each AD converter 62 operates in the same manner as described above, the digital signal output from each AD converter is supplied to the APL calculation circuit 63.
  • the APL calculation circuit 63 calculates the APL of one frame of image data stored in the memory cell unit MCX by performing a product-sum operation on the digital signal (digital signal corresponding to the potential after the detection period has elapsed) supplied from each AD converter 62.
  • the APL calculation method may be other known methods other than the product-sum operation.
  • the APL calculation circuit 63 outputs the calculated APL to the image processing unit 26.
  • the memory unit 25 is provided with an AD converter 62 and an APL calculation circuit 63 configured as in-memory computing.
  • the APL calculated by the APL calculation circuit 63 is supplied to, for example, each of the gain adjustment unit 26A, the brightness adjustment unit 26B, and the gamma adjustment unit 26C of the image processing unit 26.
  • the gain adjustment unit 26A multiplies the image data by a gain corresponding to the APL. For example, the gain decreases as the APL increases (see FIG. 1).
  • the gain adjustment unit 26A refers to a table that describes the relationship between the APL and the gain, reads out the gain corresponding to the APL, and multiplies the image data by the read out gain.
  • the brightness adjustment unit 26B adjusts the image data so that the brightness level corresponds to the APL. For example, the brightness adjustment unit 26B adjusts the brightness of the image data so that it is within a range of peak brightness corresponding to the APL.
  • the peak brightness is set to increase as the APL increases.
  • the brightness adjustment unit 26B refers to a table that describes the relationship between the APL and peak brightness, reads out the peak brightness corresponding to the APL, and adjusts the brightness of the image data so that it is within the range of the read peak brightness. Note that the brightness adjustment unit 26B may adjust the brightness level of the image data so that it is a brightness level corresponding to the APL rather than the peak brightness.
  • the gamma adjustment unit 26C performs gamma correction on the image data using a gamma value corresponding to the APL.
  • the gamma adjustment unit 26C refers to a table that describes the relationship between the APL and the gamma value, reads out the gamma value corresponding to the APL, and performs gamma correction on the image data using the read out gamma value.
  • the APL calculated by the APL calculation circuit 63 may be used to perform processing other than the above-mentioned processing.
  • the light emission time of the light-emitting element in each pixel circuit PIX may be adjusted so that the light emission time corresponds to the APL.
  • FIG. 13 shows an example of a layout in which the memory unit 25, image processing unit 26, and source amplifier 27 are configured as one IC.
  • the APL calculation circuit 63 and image processing unit 26 are placed in the center of the layout space of the IC.
  • the memory cell unit MCX of the memory unit 25, the address decoder 52A, the data write circuit 53, the data read circuit 54, and the AD converter 62 are placed.
  • the source amplifier 27 is then placed so that the output of the image processing unit 26 is supplied to it.
  • the AD converter 62 is essentially the only component that needs to be added, so even if the IC is configured as an IC, it is possible to prevent the IC from becoming too large.
  • data for calculating the APL can be obtained by adding an AD converter to an existing circuit. Also, by using a precharge circuit, which is a commonly used component, when calculating the APL, the number of newly added components can be minimized.
  • the AD converter and APL calculation circuit as in-memory computing of a memory unit (e.g., a frame memory) used in general display devices, it is possible to suppress the increase in size of the IC, and further to significantly improve the data processing speed and the power efficiency of calculations. Conventionally, as shown in FIG.
  • the APL calculation circuit 63 is configured using a logic circuit included in the image processing unit 26 to calculate the APL. In this method, processing is required for each frame and each dot. Therefore, as the resolution of the display device increases, the circuit scale increases, and the power consumption increases due to the increased number of calculation processes. In contrast, in this embodiment, since it is sufficient to add only an AD converter, the circuit scale does not increase. In addition, this embodiment is advantageous in terms of power consumption compared to a logic circuit. For example, the power consumption can be reduced to about 1/4 compared to when the APL calculation circuit is configured with a logic circuit.
  • the APL can be calculated for each block of image data, and it is also possible to calculate the APL while inputting the image data.
  • the accuracy of the APL calculated in this embodiment may be inferior to that of the APL calculated by the logic circuit, but in image processing using the APL, the accuracy of the APL does not need to be high, and there are many cases where an approximate accuracy does not cause any inconvenience, so the above-mentioned advantages are greater.
  • the memory cell unit MCX of the memory unit 25 is configured as a frame memory capable of storing one frame's worth of image data.
  • the memory cell unit MCX of the memory unit (memory unit 70) in this embodiment differs from the first embodiment in that it is configured as a line buffer (line memory) capable of storing one line's worth of image data.
  • Example of memory configuration 15 is a diagram showing an example of the configuration of a memory unit 70 according to the second embodiment.
  • the memory unit 70 has an input terminal TI connected to the data S/P unit 12 and an output terminal TO connected to the image processing unit 26.
  • a number of memory cells are connected in a row between the input terminal TI and the output terminal TO.
  • memory cells MC-0, MC-1, ... MC-m are connected between the input terminal TI and the output terminal TO.
  • the memory cell unit MCX is composed of memory cells MC-0, MC-1, ... MC-m.
  • the memory unit 70 also has a precharge circuit 52B, an AD converter 62, and an APL calculation circuit 63.
  • the precharge circuit 52B and the AD converter 62 are connected via a connection line LY.
  • the AD converter 62 is connected to the APL calculation circuit 63, and a digital signal that is the result of conversion by the AD converter 62 is supplied to the APL calculation circuit 63.
  • Bit lines BLY0, BLY1, ... BLYm extend from the connection line LY.
  • Each bit line BLY0, BLY1, ... BLYm is connected to a corresponding memory cell MC.
  • the connection line LY has a parasitic capacitance CY.
  • Each memory cell has, for example, a loop circuit (latch circuit) using two inverters.
  • the memory cell MC-0 has an inverter 710 whose input is connected to the input terminal TI, and an inverter 720 whose input terminal is connected to the output terminal of the inverter 710.
  • a switching element SWA-0 is provided between the input terminal of the inverter 710 and the output terminal of the inverter 720 in the loop.
  • the memory cell MC-1 has an inverter 711 whose input terminal is connected to the output terminal of the inverter 710, and an inverter 721 whose input terminal is connected to the output terminal of the inverter 711.
  • a switching element SWA-1 is provided between the input terminal of the inverter 711 and the output terminal of the inverter 721 in the loop.
  • the memory cell MC-m has an inverter 71m whose input terminal is connected to the output terminal side of the inverter 711, and an inverter 72m whose input terminal is connected to the output terminal of the inverter 71m.
  • a switching element SWA-m is provided between the input terminal of the inverter 71m and the output terminal of the inverter 72m in the loop.
  • a switching element is provided at the input stage of each memory cell MC. Specifically, switching element SWB-0 is provided between the input terminal of inverter 710 and input terminal TI. Switching element SWB-1 is provided between the input terminal of inverter 711 and the output terminal of inverter 710. Switching element SWB-m is provided between the input terminal of inverter 71m and the output terminal side of inverter 711.
  • Each bit line is connected to a memory cell MC via a switching element.
  • the bit line BLY0 is connected to the memory cell MC-0 via the switching element SWC-0. More specifically, the bit line BLY0 is connected to a connection point CP0 between the output terminal of the inverter 720 in the loop circuit of the memory cell MC-0 and the switching element SWA-0 via the switching element SWC-0.
  • the bit line BLY1 is connected to the memory cell MC-1 via the switching element SWC-1. More specifically, the bit line BLY1 is connected to a connection point CP1 between the output terminal of the inverter 721 in the loop circuit of the memory cell MC-1 and the switching element SWA-1 via the switching element SWC-1.
  • the bit line BLYm is connected to the memory cell MC-m via the switching element SWC-m. More specifically, the bit line BLYm is connected to a connection point CPm between the output terminal of the inverter 72m in the loop circuit of the memory cell MC-m and the switching element SWA-m via the switching element SWC-m.
  • each connection point CP0, CP1, ... CPm forms a storage node of each memory cell.
  • the precharge circuit 52B is connected to each memory cell MC via a predetermined bit line and a switching element provided for each memory cell MC. Specifically, the precharge circuit 52B is connected to memory cell MC-0 via bit line BLY0 and switching element SWC-0. The precharge circuit 52B is also connected to memory cell MC-1 via bit line BLY1 and switching element SWC-1. The precharge circuit 52B is also connected to memory cell MC-m via bit line BLYm and switching element SWC-m.
  • the AD converter 62 is connected to each memory cell MC via a predetermined bit line and a switching element provided for each memory cell MC. Specifically, the AD converter 62 is connected to memory cell MC-0 via bit line BLY0 and switching element SWC-0. The AD converter 62 is also connected to memory cell MC-1 via bit line BLY1 and switching element SWC-1. The AD converter 62 is also connected to memory cell MC-m via bit line BLYm and switching element SWC-m.
  • switching element SWB-0 When data is written to memory cell MC-0, switching element SWB-0 is turned on, switching element SWB-1 is turned off, and switching element SWA-0 is turned off. As a result, H-level or L-level data input via input terminal TI is written and held in memory cell MC-0.
  • the data written to memory cell MC-0 is transferred to the next-stage memory cell MC-1 in response to a predetermined clock signal. For example, switching element SWB-0 is turned off, switching element SWB-1 is turned on, switching element SWA-0 is turned on, and switching element SWA-1 is turned off. As a result, the data held in memory cell MC-0 is transferred to memory cell MC-1.
  • image data input via input terminal TI is transferred sequentially, and one line's worth of image data is stored in memory unit 70.
  • image data stored in each memory cell MC is read out and output from output terminal TO.
  • the method of calculating the APL is basically the same as in the first embodiment. That is, the precharge circuit 52B precharges each bit line to the H level, the AD converter 62 detects the potential after a predetermined detection period, and outputs the value obtained by converting the detected potential into a digital signal to the APL calculation circuit 63. The APL calculation circuit 63 then calculates the APL according to the digital signal.
  • the APL calculation process is performed, for example, after one line of image data is stored in the memory unit 70.
  • the APL calculation process can be performed at an appropriate timing within a series of sequences for processing image data.
  • the switching elements SWA-0, SWA-1...SWA-m and SWB-0, SWB-1...SWB-m are turned off.
  • each switching element SWC-0, SWC-1...SWC-m is also turned off.
  • the precharge circuit 52B operates to precharge each bit line BLY0, BLY1...BLYm to the H level.
  • connection points CP0, CP1, ... CPm which are the storage nodes of each memory cell MC
  • the discharge amount is small and the drop in potential after precharge is small.
  • the discharge amount is large and the drop in potential after precharge is large.
  • the AD converter 62 converts the potential at the timing after the detection period into a digital signal and outputs it to the APL calculation circuit 63.
  • the APL calculation circuit 63 calculates the APL according to the value of the digital signal and outputs the calculated APL to the image processing unit 26 at the subsequent stage.
  • the processing using the APL in the image processing unit 26 is the same as in the first embodiment, so a duplicated description will be omitted.
  • the display device according to the above embodiment to which the present technology is applied may be provided in various electronic devices.
  • Application examples of the electronic device include the following.
  • (Application Example 1) 16 shows an example of the appearance of a head mounted display 110.
  • the head mounted display 110 has, for example, ear hooks 112 for wearing on the user's head on both sides of a glasses-shaped display unit 111.
  • the display system according to the above-described embodiment and the like can be applied to such a head mounted display 110.
  • FIG. 17 shows an example of the appearance of another head mounted display 120.
  • the head mounted display 120 is a see-through head mounted display having a main body 121, an arm 122, and a lens barrel 123.
  • This head mounted display 120 is attached to glasses 128.
  • the main body 121 has a control board and a display unit for controlling the operation of the head mounted display 120.
  • This display unit emits image light of a display image.
  • the arm 122 connects the main body 121 and the lens barrel 123, and supports the lens barrel 123.
  • the lens barrel 123 projects the image light supplied from the main body 121 through the arm 122 toward the user's eyes through the lens 129 of the glasses 128.
  • the display system according to the above embodiment can be applied to such a head mounted display 120.
  • the head mounted display 120 is a so-called light guide plate type head mounted display, but is not limited to this and may be, for example, a so-called birdbath type head mounted display.
  • the birdbath type head mounted display includes, for example, a beam splitter and a partially transparent mirror.
  • the beam splitter outputs light encoded with image information toward the mirror, and the mirror reflects the light toward the user's eyes.
  • Both the beam splitter and the partially transparent mirror are partially transparent. This allows light from the surrounding environment to reach the user's eyes.
  • FIG. 18A and 18B show an example of the appearance of a digital still camera 138, with FIG. 18A showing a front view and FIG. 18B showing a rear view.
  • This digital still camera 138 is a lens-interchangeable single-lens reflex type camera, and has a camera main body (camera body) 131, a photographing lens unit 132, a grip unit 133, a monitor 134, and an electronic viewfinder 135.
  • the photographing lens unit 132 is an interchangeable lens unit, and is provided near the approximate center of the front of the camera main body 311.
  • the grip unit 133 is provided on the left side of the front of the camera main body 311, and the photographer holds the grip unit 133.
  • the monitor 134 is provided on the left side of the approximate center of the rear of the camera main body 131.
  • the electronic viewfinder 135 is provided above the monitor 134 on the rear of the camera main body 131.
  • a photographer can visually confirm the optical image of the subject guided through the photographing lens unit 132 and determine the composition by looking through the electronic viewfinder 135.
  • the display system according to the above-described embodiment and the like can be applied to the electronic viewfinder 135.
  • (Application Example 4) 19 shows an example of the appearance of a television device 140.
  • the television device 140 has an image display screen unit 141 including a front panel 142 and a filter glass 143.
  • the display system according to the above-described embodiment and the like can be applied to this image display screen unit 141.
  • the smartphone 150 has a display unit 151 that displays various information, and an operation unit 152 that includes buttons and the like that accept operation inputs by a user.
  • the display system according to the above-described embodiment and the like can be applied to this display unit 151.
  • the display device may be provided in various displays provided in vehicles.
  • FIG. 21A and 21B are diagrams showing an example of the internal configuration of a vehicle 200 equipped with various displays. Specifically, FIG. 21A is a diagram showing an example of the interior of the vehicle 200 from the rear to the front, and FIG. 21B is a diagram showing an example of the interior of the vehicle 200 from diagonally rear to diagonally front.
  • the vehicle 200 includes a center display 201, a console display 202, a head-up display 203, a digital rear mirror 204, a steering wheel display 205, and a rear entertainment display 206. At least one of these displays includes a display system according to an embodiment. For example, all of these displays may include a display system according to an embodiment.
  • the center display 201 is disposed in a portion of the dashboard facing the driver's seat 208 and the passenger seat 209.
  • Figs. 21A and 21B show an example of a horizontally elongated center display 201 extending from the driver's seat 208 side to the passenger seat 209 side
  • the screen size and location of the center display 201 are arbitrary.
  • the center display 201 can display information detected by various sensors. As a specific example, the center display 201 can display an image captured by an image sensor, an image of the distance to an obstacle in front of or to the side of the vehicle 200 measured by a ToF sensor, and the body temperature of a passenger detected by an infrared sensor.
  • the center display 201 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • the safety-related information includes information such as detection of drowsiness, detection of distraction, detection of tampering by children in the vehicle, whether or not a seat belt is fastened, and detection of an occupant being left behind, and is information detected, for example, by a sensor arranged on the back side of the center display 201.
  • the operation-related information is obtained by detecting gestures related to the operation of the occupant using a sensor.
  • the detected gestures may include operations of various facilities in the vehicle 200. For example, operations of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. are detected.
  • the life log includes the life log of all occupants. For example, the life log includes a record of the actions of each occupant while on board.
  • the health-related information is obtained by detecting the body temperature of the occupant using a sensor such as a temperature sensor, and inferring the health condition of the occupant based on the detected body temperature.
  • a sensor such as a temperature sensor
  • the face of the occupant may be captured using an image sensor, and the health condition of the occupant may be inferred from the facial expression captured in the image.
  • the occupant may be spoken to by an automated voice and the occupant's health condition may be inferred based on the occupant's responses.
  • Authentication/identification related information includes a keyless entry function that uses a sensor to perform face authentication, and a function for automatically adjusting seat height and position using face recognition.
  • Entertainment related information includes a function for detecting operation information of an AV device by an occupant using a sensor, and a function for recognizing the occupant's face using a sensor and providing content suitable for the occupant via the AV device.
  • the console display 202 can be used, for example, to display life log information.
  • the console display 202 is disposed near the shift lever 211 on the center console 210 between the driver's seat 208 and the passenger seat 209. Information detected by various sensors can also be displayed on the console display 202.
  • the console display 202 may display an image of the surroundings of the vehicle captured by an image sensor, or may display an image showing the distance to obstacles around the vehicle.
  • the head-up display 203 is virtually displayed behind the windshield 212 in front of the driver's seat 208.
  • the head-up display 203 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 203 is often virtually positioned in front of the driver's seat 208, it is suitable for displaying information directly related to the operation of the vehicle 200, such as the speed of the vehicle 200 and the remaining fuel (battery) level.
  • the digital rear-view mirror 204 can not only display the rear of the vehicle 200, but also display the state of passengers in the back seats. Therefore, by placing a sensor on the back side of the digital rear-view mirror 204, it can be used to display life log information, for example.
  • the steering wheel display 205 is disposed near the center of the steering wheel 213 of the vehicle 200.
  • the steering wheel display 205 can be used to display, for example, at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • the steering wheel display 205 since the steering wheel display 205 is located near the driver's hands, it is suitable for displaying life log information such as the driver's body temperature, and for displaying information related to the operation of AV equipment, air conditioning equipment, etc.
  • the rear entertainment display 206 is attached to the back side of the driver's seat 208 and passenger seat 209, and is intended for viewing by rear seat passengers.
  • the rear entertainment display 206 can be used to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information, for example.
  • information related to the rear seat passengers is displayed on the rear entertainment display 206.
  • the rear entertainment display 206 may display information related to the operation of AV equipment or air conditioning equipment, or may display the results of measuring the body temperature of the rear seat passengers using a temperature sensor.
  • a sensor may be placed on the back side of the display device to measure the distance to surrounding objects.
  • Optical distance measurement methods are broadly divided into passive and active types. Passive types measure distance by receiving light from an object without projecting light from the sensor onto the object. Passive types include the lens focusing method, stereo method, and monocular vision method. Active types measure distance by projecting light onto an object and receiving the light reflected from the object with a sensor. Active types include the optical radar method, active stereo method, photometric stereo method, moire topography method, and interference method.
  • the above display device can be applied to any of these distance measurement methods. By using a sensor placed on the back side of the above display device, the above passive or active distance measurement can be performed.
  • FIG. 22 shows another example of the configuration of the pixel circuit (pixel) PIX.
  • This pixel circuit PIX has capacitors C11 and C12, transistors MP12 to MP15, and a light-emitting element EL.
  • the transistors MP12 to MP15 are P-type MOSFETs.
  • the gate of the transistor MP12 is connected to a control line WSL, the source is connected to a signal line SIG, and the drain is connected to the gate of the transistor MP14 and the capacitor C12.
  • One end of the capacitor C11 is connected to a power supply line VCCP, and the other end is connected to the capacitor C12, the drain of the transistor MP13, and the source of the transistor MP14.
  • One end of the capacitor C12 is connected to the other end of the capacitor C11, the drain of the transistor MP13, and the source of the transistor MP14, and the other end is connected to the drain of the transistor MP12 and the gate of the transistor MP14.
  • the gate of the transistor MP13 is connected to the control line DSL, the source is connected to the power supply line VCCP, and the drain is connected to the source of the transistor MP14, the other end of the capacitor C11, and one end of the capacitor C12.
  • the gate of the transistor MP14 is connected to the drain of the transistor MP12 and the other end of the capacitor C12, the source is connected to the drain of the transistor MP13, the other end of the capacitor C11, and one end of the capacitor C12, and the drain is connected to the anode of the light-emitting element EL and the source of the transistor MP15.
  • the gate of the transistor MP15 is connected to the control line AZSL, the source is connected to the drain of the transistor MP14 and the anode of the light-emitting element EL, and the drain is connected to the power supply line VSS.
  • the transistor MP12 when the transistor MP12 is turned on, the voltage across the capacitor C12 is set based on the pixel signal supplied from the signal line SIG.
  • the transistor MP13 is turned on and off based on the signal on the control line DSL.
  • the transistor MP14 passes a current corresponding to the voltage across the capacitor C12 through the light-emitting element EL.
  • the light-emitting element EL emits light based on the current supplied from the transistor MP14.
  • the pixel circuit PIX emits light at a brightness corresponding to the pixel signal.
  • the transistor MP15 is turned on and off based on the signal on the control line AZSL. During the period when the transistor MP15 is on, the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.
  • the transistors MP12 to MP15 may be transistors using low temperature polycrystalline silicon (LTPS).
  • at least one of the transistors MP12 and MP15 may be a transistor using an oxide semiconductor.
  • FIG. 23 shows another example configuration of the pixel circuit PIX.
  • This pixel circuit PIX has a capacitor C21, transistors MN22 to MN25, and a light-emitting element EL.
  • Transistors MN22 to MN25 are N-type MOSFETs.
  • the gate of transistor MN22 is connected to a control line WSL, the drain is connected to a signal line SIG, and the source is connected to the gate of transistor MN24 and capacitor C21.
  • One end of capacitor C21 is connected to the source of transistor MN22 and the gate of transistor MN24, and the other end is connected to the source of transistor MN24, the drain of transistor MN25, and the anode of the light-emitting element EL.
  • the gate of transistor MN23 is connected to a control line DSL, the drain is connected to a power supply line VCCP, and the source is connected to the drain of transistor MN24.
  • the gate of transistor MN24 is connected to the source of transistor MN22 and one end of capacitor C21, the drain is connected to the source of transistor MN23, the source is connected to the other end of capacitor C21, the drain of transistor MN25, and the anode of the light-emitting element EL.
  • the gate of transistor MN25 is connected to the control line AZSL, the drain is connected to the source of transistor MN24, the other end of capacitor C21, and the anode of the light-emitting element EL, and the source is connected to the power supply line VSS.
  • the transistor MN22 when the transistor MN22 is turned on, the voltage across the capacitor C21 is set based on the pixel signal supplied from the signal line SIG.
  • the transistor MN23 is turned on and off based on the signal on the control line DSL.
  • the transistor MN24 passes a current corresponding to the voltage across the capacitor C21 through the light-emitting element EL.
  • the light-emitting element EL emits light based on the current supplied from the transistor MN24.
  • the pixel circuit PIX emits light with a brightness corresponding to the pixel signal.
  • the transistor MN25 is turned on and off based on the signal on the control line AZSL. During the period when the transistor MN25 is on, the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.
  • the transistors MN22 to MN25 may be transistors using low temperature polycrystalline silicon (LTPS).
  • at least one of the transistors MN22 and MN25 may be a transistor using an oxide semiconductor.
  • FIG. 24 shows another example configuration of the pixel circuit PIX.
  • This pixel circuit PIX has a capacitor C31, transistors MP32 to MP36, and a light-emitting element EL.
  • Transistors MP32 to MP36 are P-type MOSFETs.
  • the gate of transistor MP32 is connected to a control line WSL, its source is connected to a signal line SIG, and its drain is connected to the gate of transistor MP33, the drain of transistor MP34, and capacitor C31.
  • One end of capacitor C31 is connected to a power supply line VCCP, and the other end is connected to the drain of transistor MP32, the gate of transistor MP33, and the drain of transistor MP34.
  • the gate of transistor MP34 is connected to a control line AZSL1, its source is connected to the drain of transistor MP33 and the source of transistor MP35, and its drain is connected to the drain of transistor MP32, the gate of transistor MP33, and the other end of capacitor C31.
  • the gate of transistor MP35 is connected to the control line DSL, the source is connected to the drain of transistor MP33 and the source of transistor MP34, and the drain is connected to the source of transistor MP36 and the anode of the light-emitting element EL.
  • the gate of transistor MP36 is connected to the control line AZSL2, the source is connected to the drain of transistor MP35 and the anode of the light-emitting element EL, and the drain is connected to the power supply line VSS.
  • the transistor MP32 when the transistor MP32 is turned on, the voltage across the capacitor C31 is set based on the pixel signal supplied from the signal line SIG.
  • the transistor MP35 is turned on and off based on the signal on the control line DSL.
  • the transistor MP33 passes a current corresponding to the voltage across the capacitor C31 through the light-emitting element EL.
  • the light-emitting element EL emits light based on the current supplied from the transistor MP33.
  • the pixel circuit PIX emits light at a luminance corresponding to the pixel signal.
  • the transistor MP34 is turned on and off based on the signal on the control line AZSL1.
  • the drain and gate of the transistor MP33 are connected to each other.
  • the transistor MP36 is turned on and off based on the signal on the control line AZSL2.
  • the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.
  • transistors MP32 to MP36 may be transistors using low temperature polycrystalline silicon (LTPS). Also, at least one of transistors MP32, MP34, and MP36 may be a transistor using an oxide semiconductor.
  • LTPS low temperature polycrystalline silicon
  • FIG. 25 shows another example of the configuration of the pixel circuit PIX.
  • One end of the capacitor C48 is connected to the signal line SIG1, and the other end is connected to the power supply line VSS.
  • One end of the capacitor C49 is connected to the signal line SIG1, and the other end is connected to the signal line SIG2.
  • the transistor MP49 is a P-type MOSFET, with its gate connected to the control line WSL2, its source connected to the signal line SIG1, and its drain connected to the signal line SIG2.
  • the pixel circuit PIX has a capacitor C41, transistors MP42 to MP46, and a light-emitting element EL.
  • Transistors MP42 to MP46 are P-type MOSFETs.
  • the gate of transistor MP42 is connected to control line WSL1, its source is connected to signal line SIG2, and its drain is connected to the gate of transistor MP43 and capacitor C41.
  • One end of capacitor C41 is connected to power supply line VCCP, and the other end is connected to the drain of transistor MP42 and the gate of transistor MP43.
  • the gate of transistor MP43 is connected to the drain of transistor MP42 and the other end of capacitor C41, its source is connected to power supply line VCCP, and its drain is connected to the sources of transistors MP44 and MP45.
  • the gate of transistor MP44 is connected to control line AZSL1, its source is connected to the drain of transistor MP43 and the source of transistor MP45, and its drain is connected to signal line SIG2.
  • the gate of transistor MP45 is connected to the control line DSL, the source is connected to the drain of transistor MP43 and the source of transistor MP44, and the drain is connected to the source of transistor MP46 and the anode of the light-emitting element EL.
  • the gate of transistor MP46 is connected to the control line AZSL2, the source is connected to the drain of transistor MP45 and the anode of the light-emitting element EL, and the drain is connected to the power supply line VSS.
  • the transistor MP42 when the transistor MP42 is turned on, the voltage across the capacitor C41 is set based on the pixel signal supplied from the signal line SIG1 via the capacitor C49.
  • the transistor MP45 is turned on and off based on the signal on the control line DSL.
  • the transistor MP43 passes a current corresponding to the voltage across the capacitor C41 through the light-emitting element EL.
  • the light-emitting element EL emits light based on the current supplied from the transistor MP43. In this way, the pixel circuit PIX emits light at a luminance corresponding to the pixel signal.
  • the transistor MP44 is turned on and off based on the signal on the control line AZSL1.
  • the drain of the transistor MP43 and the signal line SIG2 are connected to each other.
  • the transistor MP46 is turned on and off based on the signal on the control line AZSL2.
  • the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.
  • transistors MP42 to MP46 and MP49 may be transistors using low temperature polycrystalline silicon (LTPS). Also, at least one of transistors MP42, MP46 and MP49 may be a transistor using an oxide semiconductor.
  • LTPS low temperature polycrystalline silicon
  • FIG. 26 shows another example of the configuration of the pixel circuit PIX.
  • a plurality of pixel circuits PIX are arranged in a matrix in the display area 300, and the display area 300 is arranged between the first control unit 400 and the second control unit 80.
  • the first control unit 400 has transmission gates TG45 and TG46, transistors MP56 and MP57, and a capacitor C61.
  • the transistors MP56 and MP57 are P-type MOSFETs.
  • a pixel signal is supplied to the input terminal of the transmission gate TG45, and the output terminal of the transmission gate TG45 is connected to one end of the signal line 14a.
  • the input terminal of the transmission gate TG46 is connected to the signal line 14b, and the output terminal of the transmission gate TG46 is connected to the power line Vorst.
  • One end of the capacitor C61 is connected to the signal line 14a, and the other end is connected to the power line VSS1.
  • the gate of the transistor MP56 is connected to the control line INIL, the source is connected to the power line Vini, and the drain is connected to the signal line 14b.
  • the gate of the transistor MP57 is connected to the control line ELL, the source is connected to the power line Vel, and the drain is connected to the signal line 14b.
  • the second control unit 80 has a transmission gate TG72, a transistor MP73, and a capacitor C82.
  • the transistor MP73 is a P-type MOSFET.
  • the input end of the transmission gate TG72 is connected to the other end of the signal line 14a, and the output end is connected to the drain of the transistor MP73 and one end of the capacitor C82.
  • the gate of the transistor MP73 is connected to the control line REFL, the source is connected to the power supply line Vref, and the drain is connected to the output end of the transmission gate TG72 and one end of the capacitor C82.
  • One end of the capacitor C82 is connected to the output end of the transmission gate TG72 and the drain of the transistor MP73, and the other end is connected to one end of the signal line 14b.
  • the pixel circuit PIX has a capacitor C132, transistors MP121 to MP125, and a light-emitting element EL.
  • Transistors MP121 to MP125 are P-type MOSFETs.
  • the gate of transistor MP122 is connected to a control line WSL, its source is connected to signal line 14b, and its drain is connected to the gate of transistor MP121 and capacitor C132.
  • One end of capacitor C132 is connected to a power supply line Vel, and the other end is connected to the drain of transistor MP122 and the gate of transistor MP121.
  • the gate of transistor MP121 is connected to the drain of transistor MP122 and the other end of capacitor C132, its source is connected to the power supply line Vel, and its drain is connected to the sources of transistors MP123 and MP124.
  • the gate of transistor MP123 is connected to a control line AZSL, its source is connected to the drain of transistor MP121 and the source of transistor MP124, and its drain is connected to signal line 14b.
  • the gate of transistor MP124 is connected to the control line DSL, the source is connected to the drain of transistor MP121 and the source of transistor MP123, and the drain is connected to the drain of transistor MP125 and the anode of light-emitting element 130.
  • the gate of transistor MP125 is connected to the control line AZSL, the source is connected to the power supply line Vorst, and the drain is connected to the drain of transistor MP124 and the anode of light-emitting element 130.
  • the transistor MP122 when the transistor MP122 is turned on, the voltage across the capacitor C132 is set based on the pixel signal supplied via the transmission gate TG45, the signal line 14a, the transmission gate TG72, the capacitor C82, and the signal line 14b.
  • the transistor MP124 is turned on and off based on the signal on the control line DSL.
  • the transistor MP121 passes a current corresponding to the voltage across the capacitor C132 through the light-emitting element EL.
  • the light-emitting element EL emits light based on the current supplied from the transistor MP121. In this way, the pixel circuit PIX emits light at a luminance corresponding to the pixel signal.
  • the transistors MP123 and MP125 are turned on and off based on the signal on the control line AZSL. During the period when the transistor MP123 is on, the drain of the transistor MP121 and the source of the transistor MP124 are connected to the signal line 14b. During the period when transistor MP125 is in the ON state, the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line Vorst.
  • transistor MP56 is turned on and off based on the signal of the control line INIL
  • transistor MP57 is turned on and off based on the signal of the control line ELL
  • transistor MP73 is turned on and off based on the signal of the control line REFL.
  • signal line 14b When transistor MP56 is in the ON state, signal line 14b is set to the voltage of the power supply line Vini, and when transistor MP57 is in the ON state, signal line 14b is set to the voltage of the power supply line Vel.
  • transistor MP73 When transistor MP73 is in the ON state, one end of capacitor C82 is initialized by being set to the voltage of the power supply line Vref.
  • transistors MP121 to MP125, MP56, and MP57 may be transistors using low temperature polycrystalline silicon (LTPS). Also, at least one of transistors MP122 and MP125 may be a transistor using an oxide semiconductor.
  • LTPS low temperature polycrystalline silicon
  • FIG. 27 shows another example configuration of a pixel circuit PIX.
  • This pixel circuit PIX has a capacitor C51, transistors MP52 to MP60, and a light-emitting element EL.
  • Transistors MP52 to MP60 are P-type MOSFETs.
  • the gate of transistor MP52 is connected to a control line WSL, its source is connected to a signal line SIG, and its drain is connected to the drain of transistor MP53 and the source of transistor MP54.
  • the gate of transistor MP53 is connected to a control line DSL, its source is connected to a power supply line VCCP, and its drain is connected to the drain of transistor MP52 and the source of transistor MP54.
  • the gate of transistor MP54 is connected to the source of transistor MP55, the drain of transistor MP57, and capacitor C51, its source is connected to the drains of transistors MP52 and MP53, and its drain is connected to the sources of transistors MP58 and MP59.
  • One end of the capacitor C51 is connected to the power supply line VCCP, and the other end is connected to the gate of the transistor MP54, the source of the transistor MP55, and the drain of the transistor MP57.
  • the capacitor C51 may include two capacitors connected in parallel to each other.
  • the gate of the transistor MP55 is connected to the control line AZSL1, the source is connected to the gate of the transistor MP54, the drain of the transistor MP57, and the other end of the capacitor C51, and the drain is connected to the source of the transistor MP56.
  • the gate of the transistor MP56 is connected to the control line AZSL1, the source is connected to the drain of the transistor MP55, and the drain is connected to the power supply line VSS.
  • the gate of the transistor MP57 is connected to the control line WSL, the drain is connected to the gate of the transistor MP54, the source of the transistor MP55, and the other end of the capacitor C51, and the source is connected to the drain of the transistor MP58.
  • the gate of transistor MP58 is connected to the control line WSL, the drain is connected to the source of transistor MP57, and the source is connected to the drain of transistor MP54 and the source of transistor MP59.
  • the gate of transistor 59 is connected to the control line DSL, the source is connected to the drain of transistor MP54 and the source of transistor MP58, and the drain is connected to the source of transistor MP60 and the anode of the light-emitting element EL.
  • the gate of transistor MP60 is connected to the control line AZSL2, the source is connected to the drain of transistor MP59 and the anode of the light-emitting element EL, and the drain is connected to the power supply line VSS.
  • the transistors MP52, MP54, MP58, and MP57 are turned on, and the voltage across the capacitor C51 is set based on the pixel signal supplied from the signal line SIG.
  • the transistors MP53 and MP59 are turned on and off based on the signal on the control line DSL.
  • the transistor MP54 passes a current corresponding to the voltage across the capacitor C51 through the light-emitting element EL.
  • the light-emitting element EL emits light based on the current supplied from the transistor MP54. In this way, the pixel circuit PIX emits light with a luminance corresponding to the pixel signal.
  • the transistors MP55 and MP56 are turned on and off based on the signal on the control line AZSL1. During the period when the transistors MP55 and MP56 are on, the voltage of the gate of the transistor MP54 is initialized by being set to the voltage of the power supply line VSS. The transistor MP60 is turned on and off based on the signal on the control line AZSL2. While the transistor MP60 is in the on state, the anode voltage of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.
  • transistors MP52 to MP60 may be transistors using low temperature polycrystalline silicon (LTPS). Also, at least one of transistors MP55 to MP58 and MP60 may be a transistor using an oxide semiconductor.
  • LTPS low temperature polycrystalline silicon
  • FIG. 28 shows another example of the configuration of the pixel circuit PIX.
  • the signal on the control line WSNL and the signal on the control line WSPL are mutually inverted signals.
  • the pixel circuit PIX has capacitors C61 and C62, transistors MN63, MP64, MN65 to MN67, and a light-emitting element EL.
  • Transistors MN63, MN65 to MN67 are N-type MOSFETs
  • transistor MP64 is a P-type MOSFET.
  • the gate of transistor MN63 is connected to a control line WSNL, the drain is connected to a signal line SIG and the source of transistor MP64, the source is connected to the drain of transistor MP64, capacitors C61 and C62, and the gate of transistor MN65.
  • the gate of transistor MP64 is connected to a control line WSPL, the source is connected to a signal line SIG and the drain of transistor MN63, and the drain is connected to the source of transistor MN63, capacitors C61 and C62, and the gate of transistor MN65.
  • the capacitor C61 is configured, for example, using a MOM (Metal Oxide Metal) capacitor, one end of which is connected to the source of the transistor MN63, the drain of the transistor MP64, the capacitor C62, and the gate of the transistor MN65, and the other end of which is connected to the power supply line VSS2.
  • the capacitor C61 may be configured, for example, using a MOS capacitor or a MIM (Metal Insulator Metal) capacitor.
  • the capacitor C62 is configured, for example, using a MOS capacitor, one end of which is connected to the source of the transistor MN63, the drain of the transistor MP64, one end of the capacitor C61, and the gate of the transistor MN65, and the other end of which is connected to the power supply line VSS2.
  • the capacitor C62 may be configured, for example, using a MOM capacitor or a MIM capacitor.
  • the other end of the capacitor C62 may be connected to the power supply line VSS3 (not shown).
  • the gate of transistor MN65 is connected to the source of transistor MN63, the drain of transistor MP64, and one end of capacitors C61 and C62, the drain is connected to the power supply line VCCP, and the source is connected to the drains of transistors MN66 and MN67.
  • the gate of transistor MN66 is connected to the control line AZL, the drain is connected to the source of transistor MN65 and the drain of transistor MN67, and the source is connected to the power supply line VSS1.
  • the gate of transistor MN67 is connected to the control line DSL, the drain is connected to the source of transistor MN65 and the drain of transistor MN66, and the source is connected to the anode of the light-emitting element EL. Note that the transistor MN67 and the control line DSL may not be provided, and the source of transistor MN65 may be connected to the drain of transistor MN66 and the anode of the light-emitting element EL.
  • the pixel circuit PIX when at least one of the transistors MN63 and MP64 is turned on, the voltage between both ends of the capacitors C61 and C62 is set based on the pixel signal supplied from the signal line SIG.
  • the transistor MN67 is turned on and off based on the signal on the control line DSL.
  • the transistor MN65 passes a current corresponding to the voltage between both ends of the capacitors C61 and C62 through the light-emitting element EL.
  • the light-emitting element EL emits light based on the current supplied from the transistor MP65. In this way, the pixel circuit PIX emits light with a luminance corresponding to the pixel signal.
  • the transistor MN66 may be turned on and off based on the signal on the control line AZL.
  • the transistor MN66 may also function as a resistive element having a resistance value corresponding to the signal on the control line AZL.
  • the transistors MN65 and MN66 form a so-called source follower circuit.
  • the transistors MN63, MP64, MN65 to MN67 may be transistors using low temperature polycrystalline silicon (LTPS: Low Temperature Polysilicon). Also, at least one of the transistors MN63, MP64, and MN66 may be a transistor using an oxide semiconductor.
  • LTPS Low Temperature Polysilicon
  • the APL of the entire frame is calculated, but the APL of a specific region in one frame may be calculated.
  • the address decoder selects memory cells included in the specific region, and the selected memory cells are subjected to the processing described in the embodiment to calculate the APL in the specific region.
  • a portion of image data a portion of image data of one frame
  • the difference with the APL corresponding to the portion of image data may become large, and the result of image processing using the APL may become inappropriate.
  • such inconvenience can be avoided by selecting a portion of memory cells and calculating the APL of the portion of image data in which the memory cells are included, as in this modified example.
  • the memory cell unit MCX described above stores data corresponding to each of the colors RGB, for example.
  • weighting according to each color may be applied.
  • the APL may be calculated by weighting the G component, which has high luminosity, more heavily than the R and B components.
  • the APL may be calculated by weighting the MSB (Most Significant Bit) or a few bits from the MSB more heavily than the LSB (Least Significant Bit). For example, a large weight may be assigned to a memory cell MC corresponding to green or a memory cell MC corresponding to the MSB, and the APL may be calculated by applying the weighting to the data corresponding to the memory cell MC.
  • the circuit configuration of the memory unit 25 and the arrangement of each component are merely examples and are not limited to the illustrated circuit configurations, and other known circuit configurations can be applied.
  • an APL configured with a logic circuit i.e., a circuit capable of calculating the APL with high accuracy
  • two APL calculation circuits may be switched so that the APL calculation circuit described in the embodiment is used for normal processing, and the APL calculation circuit configured with a logic circuit is used for processing requiring a high accuracy APL.
  • the memory unit described in the second embodiment may be a memory capable of storing image data for multiple lines.
  • the AD converter and the APL calculation circuit are configured as in-memory computing, but they may be separate from the memory unit.
  • a memory unit for temporarily storing image data includes: A memory cell; an AD converter connected to a storage node of the memory cell; A signal processing device comprising: (2) the memory unit has a precharge circuit, the precharge circuit is connected to a storage node of the memory cell; A signal processing device as described in (1). (3) the AD converter and the precharge circuit are connected to the storage node via a predetermined bit line; A signal processing device as described in (2). (4) The precharge circuit precharges the bit line at a predetermined timing; the AD converter converts the potential of the bit line after a predetermined period of time from an analog signal to a digital signal; A signal processing device as described in (3).
  • the memory unit has an average luminance calculation unit, The average luminance calculation unit calculates an average luminance of the image data based on the digital signal.
  • the memory unit has an address decoder, the average luminance calculation unit calculates an average luminance in a specific area of the image data specified by the address decoder;
  • the average luminance calculation unit calculates an average luminance by using a weight associated with the memory cell;
  • a plurality of memory cell groups each including a plurality of the memory cells; the AD converter and the precharge circuit are provided for each of the plurality of memory cell groups; A signal processing device according to any one of (2) to (8).
  • the memory cell is an SRAM cell, the SRAM cell having a first storage node and a second storage node; a first bit line is connected to the first storage node, and a second bit line is connected to the second storage node; the AD converter is connected to the first bit line and the second bit line; the precharge circuit is connected to the first bit line and the second bit line; A signal processing device according to any one of (3) to (8).
  • the memory unit has an address decoder, The SRAM cells are connected to word lines extending from the address decoder.
  • the memory unit has a memory cell unit configured of a plurality of the memory cells, The memory cell unit is configured as a line buffer that stores the image data for one line or a predetermined number of lines.
  • the AD converter and the precharge circuit are connected to a storage node of each memory cell constituting the line buffer via a switch provided for each of the memory cells;
  • a display system including: (15) (14) An electronic device having the display system according to (14).
  • Timing controller 4 Display device 25: Memory section 26: Image processing section 52A: Address decoder 62: Arithmetic circuit 63: APL calculation circuit 100: Display system MCX: Memory cell section MC-00 to MC-mn, MC-0 to MC-m: Memory cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Provided is a signal processing device capable of acquiring data for calculating an APL, for example, while suppressing an increase in circuit scale and an increase in power consumption. The signal processing device includes a memory unit in which image data is temporarily stored, and the memory unit includes a memory cell and an AD converter connected to a storage node of the memory cell.

Description

信号処理装置、表示システム、及び、電子機器Signal processing device, display system, and electronic device

 本技術は、信号処理装置、表示システム、及び、電子機器に関する。 This technology relates to signal processing devices, display systems, and electronic devices.

 自発光型の素子(発光素子)を用いる表示装置が知られている。係る表示装置は、従来の液晶を用いる表示装置などと比べて視認性が高く、低消費電力で軽量化、薄型化及び小型化が可能であるといった利点がある(例えば、特許文献1及び特許文献2を参照のこと。)。係る表示装置では、平均輝度レベルであるAPL(Average Picture Level)を算出し、算出したAPLに応じた画像処理を行うことで、画質の向上や表示装置の高寿命化を図ることが行われている。 Display devices that use self-luminous elements (light-emitting elements) are known. Such display devices have the advantages of high visibility compared to conventional display devices that use liquid crystal, and can be made lighter, thinner, and smaller with low power consumption (see, for example, Patent Documents 1 and 2). In such display devices, the average brightness level, APL (Average Picture Level), is calculated, and image processing is performed according to the calculated APL, thereby improving image quality and extending the lifespan of the display device.

特開2020-144256号公報JP 2020-144256 A 特開2008-233931号公報JP 2008-233931 A

 一般に、APLを算出するためには論理回路が使用されている。係る構成によれば、表示装置の解像度の増大に伴って論理回路の回路規模も増大してしまい、消費電力も大きくなる問題がある。 Generally, a logic circuit is used to calculate the APL. With this configuration, the circuit size of the logic circuit increases as the resolution of the display device increases, which causes a problem of increased power consumption.

 本技術は、回路規模の増大や消費電力の増加を抑制しつつ、APLを算出するためのデータを取得できる信号処理装置、当該信号処理装置を有する表示システム、及び、当該表示システムを有する電子機器を提供することを目的の一つとする。 One of the objectives of this technology is to provide a signal processing device that can acquire data for calculating APL while suppressing increases in circuit size and power consumption, a display system that has the signal processing device, and an electronic device that has the display system.

 本技術は、例えば、
 画像データが一時的に記憶されるメモリ部を有し、
 メモリ部は、
 メモリセルと、
 メモリセルの記憶ノードに接続されるADコンバータと、
 を有する信号処理装置である。
 本技術は、上記の信号処理装置と、
 メモリ部から読み出された画像データを表示する表示装置と、
 を含む表示システムであってもよい。
 本技術は、上記の表示システムを有する電子機器であってもよい。
This technology is, for example,
A memory unit for temporarily storing image data;
The memory section is
A memory cell;
an AD converter connected to a storage node of the memory cell;
The signal processing device includes:
The present technology relates to the above-mentioned signal processing device,
a display device that displays image data read from the memory unit;
The display system may include:
The present technology may be an electronic device having the above-mentioned display system.

本技術で考慮すべき問題についての説明がなされる際に参照される図である。FIG. 1 is a diagram to which reference is made when explaining problems to be considered in the present technology. 本技術で考慮すべき問題についての説明がなされる際に参照される図である。FIG. 1 is a diagram to which reference is made when explaining problems to be considered in the present technology. 実施形態に係る表示システムの構成例を示すブロック図である。1 is a block diagram showing an example of the configuration of a display system according to an embodiment. 実施形態に係る画素アレイ部の構成例を説明するための図である。2 is a diagram for explaining a configuration example of a pixel array unit according to the embodiment; FIG. 実施形態に係る画素回路の構成例を説明するための図である。2 is a diagram for explaining a configuration example of a pixel circuit according to the embodiment; FIG. 第1の実施形態に係るメモリ部の概略構成例を説明するための図である。2 is a diagram for explaining a schematic configuration example of a memory unit according to the first embodiment; FIG. 第1の実施形態に係るメモリ部の詳細な構成例を説明するための図である。4 is a diagram for explaining a detailed configuration example of a memory unit according to the first embodiment; FIG. 第1の実施形態に係るメモリセルと周辺回路との接続態様例を説明するための図である。4 is a diagram for explaining an example of a connection mode between a memory cell and a peripheral circuit according to the first embodiment; FIG. 実施形態に係る画像処理部の構成例を説明するための図である。FIG. 2 is a diagram for explaining an example of the configuration of an image processing unit according to the embodiment; A及びBは、第1の実施形態に係るメモリ部で行われる処理例についての説明がなされる際に参照される図である。1A and 1B are diagrams to be referred to when describing an example of processing performed in a memory unit according to the first embodiment. 第1の実施形態に係るメモリ部で行われる処理例についての説明がなされる際に参照される図である。3 is a diagram referred to when describing an example of processing performed in a memory unit according to the first embodiment. FIG. 実施形態に係る画像処理部で行われる処理例についての説明がなされる際に参照される図である。3 is a diagram to be referred to when describing an example of processing performed by an image processing unit according to the embodiment. FIG. 第1の実施形態に係るメモリ部及び画像処理部をIC化した場合の、各構成要素の配置例を説明するための図である。4 is a diagram for explaining an example of the arrangement of components when a memory unit and an image processing unit according to the first embodiment are integrated into an IC; FIG. 比較例に係る画像処理部等を示す図である。FIG. 13 is a diagram showing an image processing unit and the like according to a comparative example. 第2の実施形態に係るメモリ部の構成例を説明するための図である。FIG. 11 is a diagram for explaining a configuration example of a memory unit according to a second embodiment; ヘッドマウントディスプレイの外観の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the appearance of a head mounted display. シースルーヘッドマウントディスプレイの外観の一例を示す斜視図である。1 is a perspective view showing an example of the appearance of a see-through head mounted display. Aは、デジタルスチルカメラの外観の一例を示す正面図である。Bは、デジタルスチルカメラの外観の一例を示す背面図である。1A is a front view showing an example of the external appearance of a digital still camera, and FIG. テレビジョン装置の外観の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the appearance of a television device. スマートフォンの外観の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the appearance of a smartphone. Aは、乗物の後方から前方にかけての乗物の内部の様子の一例を示す図である。Bは、乗物の斜め後方から斜め前方にかけての乗物の内部の様子の一例を示す図である。1A is a diagram showing an example of the interior of a vehicle from the rear to the front of the vehicle, and FIG. 1B is a diagram showing an example of the interior of a vehicle from the diagonally rear to the diagonally front of the vehicle. 画素回路の別の構成例を示す図である。FIG. 13 is a diagram showing another example of the configuration of a pixel circuit. 画素回路の別の構成例を示す図である。FIG. 13 is a diagram showing another example of the configuration of a pixel circuit. 画素回路の別の構成例を示す図である。FIG. 13 is a diagram showing another example of the configuration of a pixel circuit. 画素回路の別の構成例を示す図である。FIG. 13 is a diagram showing another example of the configuration of a pixel circuit. 画素回路の別の構成例を示す図である。FIG. 13 is a diagram showing another example of the configuration of a pixel circuit. 画素回路の別の構成例を示す図である。FIG. 13 is a diagram showing another example of the configuration of a pixel circuit. 画素回路の別の構成例を示す図である。FIG. 13 is a diagram showing another example of the configuration of a pixel circuit.

 以下、本技術の実施形態等について図面を参照しながら説明する。説明は以下の順序で行う。
<本技術で考慮すべき問題>
<第1の実施形態>
<第2の実施形態>
<適用例>
<変形例>
 なお、本明細書及び図面において、実質的に同一の機能または構成を有するものについては同一の符号を付することにより、重複した説明を適宜省略する。また、図示の簡略化のため、図面上の符号を省略したり、同じ構成要素の一部にのみ符号を付すことがある。
Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will be made in the following order.
<Issues to be considered with this technology>
First Embodiment
Second Embodiment
<Application Examples>
<Modification>
In this specification and the drawings, the same reference numerals are used to denote components having substantially the same functions or configurations, and redundant explanations will be omitted as appropriate. In addition, for the sake of simplicity of illustration, reference numerals may be omitted in the drawings, or reference numerals may be used only to some of the same components.

<本技術で考慮すべき問題>
 始めに、本技術の理解を容易とするために、本技術で考慮すべき問題について説明する。OLED(Organic Light Emitting Diode)等の自発光ディスプレイでは、上述したように、APLが算出され、算出されたAPLに基づく種々の処理が行われる。
<Issues to be considered with this technology>
First, in order to facilitate understanding of the present technology, problems to be considered in the present technology will be described. In a self-luminous display such as an OLED (Organic Light Emitting Diode), as described above, an APL is calculated, and various processes based on the calculated APL are performed.

 例えば、入力画像データのAPLに応じて、全体の輝度をコントロールする電力リミット処理が行われる。図1に示すグラフの横軸はAPLを示し、縦軸は入力画像データに対するゲインを示す。図1のラインLN1で示すように、APLが所定以上の場合にゲインを下げる。APLが所定以上であることからゲインを下げたとしても、輝度の変化をユーザが知覚する虞が低い。また、係る電力リミット処理を行うことで、消費電力を小さくすることができる。 For example, power limit processing is performed to control the overall brightness according to the APL of the input image data. The horizontal axis of the graph shown in FIG. 1 indicates the APL, and the vertical axis indicates the gain for the input image data. As shown by line LN1 in FIG. 1, the gain is reduced when the APL is equal to or higher than a predetermined value. Even if the gain is reduced because the APL is equal to or higher than a predetermined value, there is little risk that the user will perceive a change in brightness. Furthermore, by performing such power limit processing, power consumption can be reduced.

 上述したように、一般に、APLは論理回路を用いて算出される。例えば、図2に模式的に示すように、入力画像データが論理回路LCに入力され、論理回路LCからは出力画像データ及び論理回路LCで算出されたAPLが出力される。論理回路LCは、加算器、カウンタ、平均を出すための除算器等が適宜組み合わせられて構成される。このように論理回路を使用した場合には、APLの計算が画素毎に行われるため表示装置の解像度の増大に伴って論理回路の回路規模も増大してしまい、消費電力も大きくなってしまう。また、全体の輝度の積算が必要となるためAPLの計算に1フレーム分の画像データが必要となる。以上の点を考慮しつつ、本技術の詳細について実施形態を参照して説明する。 As mentioned above, APL is generally calculated using a logic circuit. For example, as shown in FIG. 2, input image data is input to a logic circuit LC, which outputs output image data and the APL calculated by the logic circuit LC. The logic circuit LC is configured by appropriately combining an adder, a counter, a divider for averaging, and the like. When a logic circuit is used in this way, the APL is calculated for each pixel, so that the circuit scale of the logic circuit increases as the resolution of the display device increases, and power consumption also increases. In addition, one frame's worth of image data is required to calculate the APL, since the total luminance must be accumulated. Taking the above points into consideration, the details of this technology will be described with reference to the embodiment.

<第1の実施形態>
[表示システムの概要]
 図3は、第1の実施形態に係る表示装置(表示装置4)を備えた表示システム100の概略構成例を示すブロック図である。本技術に係る表示装置4は、例えば、発光素子を有する装置である。発光素子は、例えば、LED(Light Emitting Diode)である。LEDは、マイクロLEDディスプレイに用いられるLEDや、有機EL(Electro-Luminescence)ディスプレイに用いられるOLEDを包含する。有機ELディスプレイは、例えば、OLEDマイクロディスプレイ(Organic Light-Emitting Diode Micro Display)を包含する。表示装置4は、例えば、デジタルカメラの電子ビューファインダ(EVF:Electronic View Finder)、AR(Augmented Reality)グラス、VR(Virtual Reality)グラス等の電子機器に搭載されるディスプレイである。なお、表示装置4は、これに限らず、例えば、スマートフォンやタブレット等の中型、大型のディスプレイであってもよい。
First Embodiment
[Display System Overview]
FIG. 3 is a block diagram showing a schematic configuration example of a display system 100 including a display device (display device 4) according to the first embodiment. The display device 4 according to the present technology is, for example, a device having a light-emitting element. The light-emitting element is, for example, an LED (Light Emitting Diode). The LED includes an LED used in a micro LED display and an OLED used in an organic EL (Electro-Luminescence) display. The organic EL display includes, for example, an OLED micro display (Organic Light-Emitting Diode Micro Display). The display device 4 is, for example, a display mounted on an electronic device such as an electronic viewfinder (EVF: Electronic View Finder) of a digital camera, an Augmented Reality (AR) glass, or a Virtual Reality (VR) glass. Note that the display device 4 is not limited to this, and may be, for example, a medium-sized or large-sized display such as a smartphone or a tablet.

 表示システム100は、データ入出力I/F(Interface)部1と、タイミングコントローラ2と、ディスプレイコントローラ3と、表示装置4とを有する。なお、図3では、データ入出力I/F部1、タイミングコントローラ2、及び、ディスプレイコントローラ3を表示装置4とは別体にしているが、ディスプレイコントローラ3等を表示装置4に統合させて一つの表示装置として構成してもよい。 The display system 100 has a data input/output I/F (Interface) unit 1, a timing controller 2, a display controller 3, and a display device 4. Note that in FIG. 3, the data input/output I/F unit 1, the timing controller 2, and the display controller 3 are separate from the display device 4, but the display controller 3 etc. may be integrated into the display device 4 to form a single display device.

 データ入出力I/F部1は、高速I/F部11と、データS/P部12と、クロック制御部13と、H/V同期部14とを有する。 The data input/output I/F unit 1 has a high-speed I/F unit 11, a data S/P unit 12, a clock control unit 13, and an H/V synchronization unit 14.

 タイミングコントローラ2は、クロック生成器23と、タイミング生成器24と、メモリ部25と、画像処理部26とを有する。タイミングコントローラ2が、本技術の信号処理装置の一例に対応している。 The timing controller 2 has a clock generator 23, a timing generator 24, a memory unit 25, and an image processing unit 26. The timing controller 2 corresponds to an example of a signal processing device of the present technology.

 ディスプレイコントローラ3は、水平ロジック回路としてのHLOGIC部31と、垂直ロジック回路としてのVLOGIC部32とを有する。 The display controller 3 has an HLOGIC section 31 as a horizontal logic circuit and a VLOGIC section 32 as a vertical logic circuit.

 表示装置4は、画素アレイ部41と、垂直アナログ回路としてのVANALOG42と、水平アナログ回路としてのHANALOG43と、信号処理部44とを有する。以下、各構成要素の詳細について説明する。 The display device 4 has a pixel array section 41, a VANALOG 42 as a vertical analog circuit, a HANALOG 43 as a horizontal analog circuit, and a signal processing section 44. Each component will be described in detail below.

(データ入力I/F部)
 高速I/F部11は、外部からのシリアル転送された表示用の画像データを受信する。データS/P部12は、画像データをパラレルデータに変換する。パラレルデータに変換され画像データは、タイミングコントローラ2内のメモリ部25に送られる。クロック制御部13は、表示装置4の表示周波数に適合するクロックを生成する。H/V同期部14は、画像データに基づいて、水平同期信号及び垂直同期信号を生成して、タイミング生成器24に送る。
(Data input I/F section)
The high-speed I/F unit 11 receives image data for display that has been serially transferred from the outside. The data S/P unit 12 converts the image data into parallel data. The image data converted into parallel data is sent to a memory unit 25 in the timing controller 2. The clock control unit 13 generates a clock that matches the display frequency of the display device 4. The H/V synchronization unit 14 generates a horizontal synchronization signal and a vertical synchronization signal based on the image data and sends them to the timing generator 24.

(タイミングコントローラ)
 クロック生成器23は、クロック制御部13の制御に従って、表示装置4の垂直同期クロック信号と水平同期クロック信号を生成して、ディスプレイコントローラ3に供給する。タイミング生成器24は、H/V同期部14から供給される水平同期信号及び垂直同期信号に基づいて、ディスプレイコントローラ3の動作タイミングを規定するタイミング信号を生成する。タイミング信号は、ディスプレイコントローラ3に供給される。メモリ部25は、データS/P12部から供給される画像データを一時的に記憶する。なお、メモリ部25の詳細については後述する。画像処理部26は、メモリ部25から供給される画像データに対して、種々の画像処理を施す。画像処理としては、公知の画像処理を適用できる。例えば、画像処理部26は、ゲイン調整処理、輝度調整処理、ガンマ調整処理、解像度変換処理、画素毎に行う色補正処理等を行う。画像処理部26から出力された画像データは、ソースアンプ(図3では不図示)を介して、HLOGIC31に供給される。
(Timing Controller)
The clock generator 23 generates a vertical synchronization clock signal and a horizontal synchronization clock signal for the display device 4 under the control of the clock control unit 13, and supplies them to the display controller 3. The timing generator 24 generates a timing signal that specifies the operation timing of the display controller 3 based on the horizontal synchronization signal and the vertical synchronization signal supplied from the H/V synchronization unit 14. The timing signal is supplied to the display controller 3. The memory unit 25 temporarily stores image data supplied from the data S/P 12 unit. Details of the memory unit 25 will be described later. The image processing unit 26 performs various image processes on the image data supplied from the memory unit 25. As the image processes, known image processes can be applied. For example, the image processing unit 26 performs gain adjustment, brightness adjustment, gamma adjustment, resolution conversion, color correction for each pixel, and the like. The image data output from the image processing unit 26 is supplied to the HLOGIC 31 via a source amplifier (not shown in FIG. 3).

(ディスプレイコントローラ)
 HLOGIC31は、タイミング振動に同期してHANALOG43に画素データを供給する。例えば、HLOGIC31は、タイミングコントローラ2から入力される画像データを信号線毎に振り分ける。VLOGIC32は、タイミング信号に同期してVANALOG42を制御する。例えば、VLOGIC32は、スタートパルスからシフト信号を生成する。
(Display Controller)
The HLOGIC 31 supplies pixel data to the HANALOG 43 in synchronization with the timing oscillation. For example, the HLOGIC 31 distributes image data input from the timing controller 2 to each signal line. The VLOGIC 32 controls the VANALOG 42 in synchronization with the timing signal. For example, the VLOGIC 32 generates a shift signal from a start pulse.

(表示装置)
「表示装置の全体構成例」
 画素アレイ部41は、例えば、矩形状の表示領域を有しており、表示に際して駆動する有機EL素子等の発光素子を有する複数の画素回路PIXがマトリクス状に配置された構成を有している。画素アレイ部41には、このマトリクス状に配置された画素回路PIXに対して、制御線が行単位で水平方向(横方向)に設けられており、さらに、この制御線と直交するように信号線が列毎に設けられている。画素アレイ部41には、R(赤)、G(緑)、B(青)の三原色の画素(サブ画素とも称される)が設けられている。これら3画素がカラー画像の1ドットを表現する。なお、1ドットを表現する画素の組み合わせはこれに限らず、輝度向上のためのW(白)画素を加えて構成してもよいし、色再現範囲拡大のための補色画素を加えて構成してもよい。また、表示装置4は、カラー画像に限らず、モノクロ(白黒)画像を表現する構成であってもよい。また、画素アレイ部41の形状は、円形や楕円形等、矩形状以外であってもよい。
(Display device)
"Example of the overall configuration of a display device"
The pixel array section 41 has, for example, a rectangular display area, and has a configuration in which a plurality of pixel circuits PIX having light-emitting elements such as organic EL elements that are driven for display are arranged in a matrix. In the pixel array section 41, control lines are provided in the horizontal direction (horizontal direction) for each row of the pixel circuits PIX arranged in the matrix, and further, signal lines are provided for each column so as to be perpendicular to the control lines. The pixel array section 41 is provided with pixels (also called sub-pixels) of three primary colors R (red), G (green), and B (blue). These three pixels represent one dot of a color image. Note that the combination of pixels that represent one dot is not limited to this, and may be configured by adding a W (white) pixel for improving brightness, or may be configured by adding a complementary color pixel for expanding the color reproduction range. In addition, the display device 4 may be configured to represent not only color images but also monochrome (black and white) images. In addition, the shape of the pixel array section 41 may be a shape other than a rectangle, such as a circle or an ellipse.

 VANALOG42は、VLOGIC32が生成したシフト信号により制御信号(例えば、制御信号WS,DS,AZ)を生成し、画素アレイ部41に出力する。HANALOG43は、信号処理部44から供給される画素信号を画素アレイ部41の対応する信号線に出力する。 VANALOG 42 generates control signals (e.g., control signals WS, DS, AZ) using the shift signal generated by VLOGIC 32 and outputs them to the pixel array unit 41. HANALOG 43 outputs the pixel signal supplied from the signal processing unit 44 to the corresponding signal line of the pixel array unit 41.

 信号処理部44は、画素アレイ部41に表示されるべき画像データに対する信号処理を行う。信号処理の具体的内容は問わないが、例えばガンマ補正が挙げられる。例えば、信号処理部44は、HLOGIC31が振り分けた画像データに対してガンマ補正を行い、ガンマ補正された画素信号を生成する。信号処理部44で信号処理された画素信号が、HANALOG部43に送られる。なお、信号処理部44がガンマ補正を行う際に生成する階調を示す階調電圧は、レジスタ(不図示)に記憶された設定値に基づいて生成される。例えば、タイミングコントローラ2が上記のレジスタを有する。 The signal processing unit 44 performs signal processing on the image data to be displayed on the pixel array unit 41. The specific content of the signal processing is not important, but an example is gamma correction. For example, the signal processing unit 44 performs gamma correction on the image data allocated by the HLOGIC 31 to generate a gamma-corrected pixel signal. The pixel signal that has been signal-processed by the signal processing unit 44 is sent to the HANALOG unit 43. Note that the gradation voltage indicating the gradation generated when the signal processing unit 44 performs gamma correction is generated based on a setting value stored in a register (not shown). For example, the timing controller 2 has the above-mentioned register.

 これにより表示装置4は、画素アレイ部41に配置された各画素を順次駆動し、各信号線の信号レベルで各画素を発光させ、所望の画像を画素アレイ部41で表示する。なお、この表示装置4は、本技術を適用可能な表示装置の一例であり、他の構成のものにも適用可能である。例えば、走査は、線順次走査に限らず、点順次走査であってもよい。また、画素の配置も円弧状に沿って配置するなど、マトリクス状の配置に限らない。信号線、制御線は、それに合わせて形成されていればよい。 As a result, the display device 4 sequentially drives each pixel arranged in the pixel array section 41, causes each pixel to emit light according to the signal level of each signal line, and displays a desired image on the pixel array section 41. Note that the display device 4 is one example of a display device to which the present technology can be applied, and is also applicable to other configurations. For example, scanning is not limited to line sequential scanning, and may be point sequential scanning. Furthermore, the arrangement of pixels is not limited to a matrix arrangement, and may be arranged along an arc. The signal lines and control lines need only be formed accordingly.

「画素アレイ部の構成例」
 図4は、画素アレイ部41の概略的な構成例を説明するための図である。画素アレイ部41には、画素回路PIXの配列に対して、列方向CDに沿って信号線SIGが画素列毎に配線されている。また、画素回路PIXの配列に対して、行方向RDに沿って制御線(制御線WSL,DSL,AZSL)が画素行毎に配線されている。なお、図に示す画素配列は、あくまで図示表現簡略化のための例示である。
"Example of pixel array configuration"
4 is a diagram for explaining a schematic configuration example of the pixel array section 41. In the pixel array section 41, a signal line SIG is wired for each pixel column along the column direction CD for the arrangement of pixel circuits PIX. In addition, control lines (control lines WSL, DSL, AZSL) are wired for each pixel row along the row direction RD for the arrangement of pixel circuits PIX. Note that the pixel arrangement shown in the figure is merely an example for the purpose of simplifying the illustration.

 各信号線SIGは、HANALOG43の対応する列の出力端にそれぞれ接続されている。各制御線WSL,DSL,AZSLは、VANALOG42の対応する行の出力端にそれぞれ接続されている。 Each signal line SIG is connected to the output terminal of the corresponding column of HANALOG43. Each control line WSL, DSL, AZSL is connected to the output terminal of the corresponding row of VANALOG42.

 HANALOG43は、タイミングコントローラ2から供給される画像データに基づいて表示画像に応じた画素信号を各信号線SIGに供給する。HANALOG43は、例えば、画素信号として、表示画像の輝度に対応する信号電圧Vsigと、信号電圧Vsigの基準となる各種基準電圧とを選択的に出力する。 HANALOG 43 supplies pixel signals corresponding to the display image to each signal line SIG based on image data supplied from the timing controller 2. HANALOG 43 selectively outputs, for example, as pixel signals, a signal voltage Vsig corresponding to the luminance of the display image and various reference voltages that serve as the basis for the signal voltage Vsig.

 VANALOG42は、画素信号に基づく駆動を制御する制御信号(制御信号WS,DS,AZ)を各制御線WSL、DSL、AZSLに供給する。制御信号WSは、複数の画素の各々を走査する制御信号であり、制御信号DSは、発光/消光を制御する制御信号であり、制御信号AZは、消光期間に発光しないように制御する制御信号である。具体的には、VANALOG42は、画素アレイ部41の各画素回路PIXへの画素信号の書込みに際して、各制御線WSLに対して制御信号WS0,WS1,・・・を順次供給することで画素アレイ部41の各画素回路PIXを行単位で順番に走査(線順次走査)する。また、VANALOG42は、該走査に同期して制御線DSLに対して制御信号DS0,DS1,・・・を供給することで画素回路PIXの発光/消光の制御を行う。さらに、VANALOG42は、該走査に同期して制御線AZSLに対して制御信号AZ0、AZ1、・・・を供給することで画素回路PIXが有する発光素子が消光期間に発光しないように制御する。 VANALOG42 supplies control signals (control signals WS, DS, AZ) that control driving based on pixel signals to each control line WSL, DSL, AZSL. The control signal WS is a control signal that scans each of the multiple pixels, the control signal DS is a control signal that controls light emission/extinction, and the control signal AZ is a control signal that controls so as not to emit light during the extinction period. Specifically, when writing pixel signals to each pixel circuit PIX of the pixel array section 41, VANALOG42 sequentially supplies control signals WS0, WS1, ... to each control line WSL to scan each pixel circuit PIX of the pixel array section 41 in sequence by row (line sequential scanning). In addition, VANALOG42 controls the light emission/extinction of the pixel circuits PIX by supplying control signals DS0, DS1, ... to the control line DSL in synchronization with the scanning. Furthermore, VANALOG42 controls the light-emitting element of pixel circuit PIX not to emit light during the extinction period by supplying control signals AZ0, AZ1, ... to control line AZSL in synchronization with the scanning.

「画素回路PIXの構成例」
 図5は、画素回路PIXの一構成例を表すものである。画素回路PIXは、キャパシタC01と、トランジスタMN02~MN03と、発光素子ELとを有している。トランジスタMN02~MN03は、N型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。トランジスタMN02のゲートは制御線WSLに接続され、ドレインは信号線SIGに接続され、ソースはトランジスタMN03のゲート及びキャパシタC01に接続される。キャパシタC01の一端はトランジスタMN02のソース及びトランジスタMN03のゲートに接続され、他端はトランジスタMN03のソース及び発光素子ELのアノードに接続される。トランジスタMN03のゲートはトランジスタMN02のソース及びキャパシタC01の一端に接続され、ドレインは電源線VCCPに接続され、ソースはキャパシタC01の他端及び発光素子ELのアノードに接続される。発光素子ELのアノードはトランジスタMN03のソース及びキャパシタC01の他端に接続され、カソードは電源線Vcathに接続される。電源線VCCPの電圧は、第1電圧と、第1電圧よりも低い第2電圧と、に適宜切り替わる。
"Configuration example of pixel circuit PIX"
5 shows an example of the configuration of the pixel circuit PIX. The pixel circuit PIX has a capacitor C01, transistors MN02 to MN03, and a light-emitting element EL. The transistors MN02 to MN03 are N-type MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). The gate of the transistor MN02 is connected to a control line WSL, the drain is connected to a signal line SIG, and the source is connected to the gate of the transistor MN03 and the capacitor C01. One end of the capacitor C01 is connected to the source of the transistor MN02 and the gate of the transistor MN03, and the other end is connected to the source of the transistor MN03 and the anode of the light-emitting element EL. The gate of the transistor MN03 is connected to the source of the transistor MN02 and one end of the capacitor C01, the drain is connected to the power supply line VCCP, and the source is connected to the other end of the capacitor C01 and the anode of the light-emitting element EL. The anode of the light-emitting element EL is connected to the source of the transistor MN03 and the other end of the capacitor C01, and the cathode is connected to the power supply line Vcath. The voltage of the power supply line VCCP is appropriately switched between a first voltage and a second voltage lower than the first voltage.

 この構成により、画素回路PIXでは、トランジスタMN02がオン状態になることにより、信号線SIGから供給された画素信号に基づいてキャパシタC01の両端間の電圧が設定される。電源線VCCPの電圧が第1電圧である期間に、トランジスタMN03は、キャパシタC01の両端間の電圧に応じた電流を発光素子ELに流す。発光素子ELは、トランジスタMN03から供給された電流に基づいて発光する。このようにして、画素回路PIXは、画素信号に応じた輝度で発光する。なお、電源線VCCPの電圧が第2電圧である期間には、発光素子ELは消光する。 With this configuration, in the pixel circuit PIX, when the transistor MN02 is turned on, the voltage across the capacitor C01 is set based on the pixel signal supplied from the signal line SIG. During the period when the voltage of the power supply line VCCP is the first voltage, the transistor MN03 passes a current corresponding to the voltage across the capacitor C01 through the light-emitting element EL. The light-emitting element EL emits light based on the current supplied from the transistor MN03. In this way, the pixel circuit PIX emits light with a brightness corresponding to the pixel signal. Note that during the period when the voltage of the power supply line VCCP is the second voltage, the light-emitting element EL is turned off.

[メモリ部の構成例]
 次に、図6乃至図8を参照して、本実施形態に係るメモリ部25の構成例について説明する。図6は、本実施形態に係るメモリ部25の概略構成例を説明するための図である。図7は、本実施形態に係るメモリ部25の詳細な構成例を説明するための図である。図8は、本実施形態に係るメモリセルと周辺回路との接続態様例を説明するための図である。
[Example of memory configuration]
Next, a configuration example of the memory unit 25 according to the present embodiment will be described with reference to Fig. 6 to Fig. 8. Fig. 6 is a diagram for explaining a schematic configuration example of the memory unit 25 according to the present embodiment. Fig. 7 is a diagram for explaining a detailed configuration example of the memory unit 25 according to the present embodiment. Fig. 8 is a diagram for explaining an example of a connection mode between the memory cell and the peripheral circuit according to the present embodiment.

 本実施形態に係るメモリ部25は、例えば、1フレーム分の画像データを一時的に記憶するフレームメモリである。また、本実施形態に係るメモリ部25は、記憶回路と演算回路とをメモリ内で一体化した、所謂インメモリコンピューティングと称される(メモリインコンピューティングやニアメモリコンピューティングとも称される)技術が適用された構成要素である。メモリ部25をインメモリコンピューティングとして構成することで、メモリ内に蓄積されたデータをメモリ外の演算回路等の処理要素とやり取りする必要がないため、データ処理速度及び計算の電力効率を大幅に向上させることができる。 The memory unit 25 according to this embodiment is, for example, a frame memory that temporarily stores one frame's worth of image data. The memory unit 25 according to this embodiment is also a component that applies a technology known as in-memory computing (also called memory-in computing or near-memory computing), in which a storage circuit and an arithmetic circuit are integrated within a memory. By configuring the memory unit 25 as in-memory computing, there is no need to exchange data stored in the memory with processing elements such as arithmetic circuits outside the memory, and therefore data processing speed and power efficiency of calculations can be significantly improved.

 図6に示すようにメモリ部25は、例えば、記憶回路51及び演算回路61を含む構成を有する。 As shown in FIG. 6, the memory unit 25 includes, for example, a memory circuit 51 and an arithmetic circuit 61.

 記憶回路51は、メモリセル部MCXと、周辺回路部52と、データ書き込み回路53と、データ読み出し回路54と、を有する。 The memory circuit 51 has a memory cell section MCX, a peripheral circuit section 52, a data write circuit 53, and a data read circuit 54.

 メモリセル部MCXは、複数のメモリセルMCにより構成される。本実施形態では、メモリセルMCとしてSRAM(Static Random Access Memory)セルを適用した例について説明する。具体的には、6個のトランジスタを使用したCMOS(Complementary Metal Oxide Semiconductor)型のSRAMセルを例にして説明する。但し、メモリセルMCは、SRAMではなく、DRAM(Dynamic Random Access Memory)等の他のメモリ素子であってもよい。また、SRAMセルとしては、CMOS型に限定されることはなく、高抵抗負荷型やTFT(Thin Film Transistor)を使用したSRAMセル等、他の方式のSRAMセルを適用することができる。 The memory cell unit MCX is composed of multiple memory cells MC. In this embodiment, an example in which an SRAM (Static Random Access Memory) cell is used as the memory cell MC will be described. Specifically, an example in which a CMOS (Complementary Metal Oxide Semiconductor) type SRAM cell using six transistors will be described. However, the memory cell MC may not be an SRAM, but may be other memory elements such as a DRAM (Dynamic Random Access Memory). In addition, the SRAM cell is not limited to the CMOS type, and other types of SRAM cells can be used, such as a high resistance load type or an SRAM cell using a TFT (Thin Film Transistor).

 周辺回路部52は、メモリセル部MCXに接続される周辺回路を総称したものである。周辺回路部52は、例えば、アドレスをデコードして所定のメモリセルMCを選択するアドレスデコーダ52A、及び、ビット線をプリチャージするプリチャージ回路52Bを含む。なお、プリチャージ回路52Bは、後述するプリチャージ回路52B0、52B1・・・52Bmのうち任意のプリチャージ回路を意味する。また、周辺回路部52は、プリチャージ回路52Bを動作させるプリチャージ制御信号PREを生成する回路や、センスアンプ(後述するセンスアンプ54A)を動作させるセンスアンプイネーブル信号SAEを生成する回路等を含む。これらの回路の図示は省略している。 The peripheral circuit section 52 is a general term for the peripheral circuits connected to the memory cell section MCX. The peripheral circuit section 52 includes, for example, an address decoder 52A that decodes an address to select a specific memory cell MC, and a precharge circuit 52B that precharges the bit lines. Note that the precharge circuit 52B refers to any precharge circuit among the precharge circuits 52B0, 52B1, ..., 52Bm described below. The peripheral circuit section 52 also includes a circuit that generates a precharge control signal PRE that operates the precharge circuit 52B, and a circuit that generates a sense amplifier enable signal SAE that operates the sense amplifier (sense amplifier 54A described below). Illustration of these circuits is omitted.

 データ書き込み回路53は、メモリセル部MCXを構成する各メモリセルMCに、論理的な値である「1(H(High)レベル)」又は「0(L(Low)レベル)」を書き込む回路である。 The data write circuit 53 is a circuit that writes a logical value of "1 (H (High) level)" or "0 (L (Low) level)" into each memory cell MC that constitutes the memory cell unit MCX.

 データ読み出し回路54は、各メモリセルMCに記憶された論理的な値を読み出す回路である。データ読み出し回路54は、例えば、センスアンプ54Aを含む。センスアンプ54Aは、後述するセンスアンプ54A0、54A1・・・54Amのうち任意のセンスアンプを意味する。 The data read circuit 54 is a circuit that reads out the logical values stored in each memory cell MC. The data read circuit 54 includes, for example, a sense amplifier 54A. The sense amplifier 54A refers to any of the sense amplifiers 54A0, 54A1, ... 54Am described below.

 演算回路61は、ADコンバータ62及びAPL算出回路63を有する。ADコンバータ62は、例えば、複数のメモリセルMCの出力に基づいて得られる情報(例えば、電位)をアナログ信号からデジタル信号に変換する。ADコンバータ62は、各メモリセルMCの記憶ノードに接続されている。なお、ADコンバータ62は、後述するADコンバータ620、621・・・62mのうち任意のADコンバータを意味する。各ADコンバータ62がAPL算出回路63に接続されており、各ADコンバータ62の出力がAPL算出回路63に供給される。 The arithmetic circuit 61 has an AD converter 62 and an APL calculation circuit 63. The AD converter 62 converts information (e.g., potential) obtained based on the outputs of a plurality of memory cells MC from an analog signal to a digital signal. The AD converter 62 is connected to the memory node of each memory cell MC. Note that the AD converter 62 refers to any of the AD converters 620, 621, ... 62m described below. Each AD converter 62 is connected to the APL calculation circuit 63, and the output of each AD converter 62 is supplied to the APL calculation circuit 63.

 APL算出回路63は、ADコンバータ62から出力されるデジタル信号に基づいて、例えば、メモリ部25に記憶された1フレームの画像データのAPLを算出する。APL算出回路63は、例えば、積和演算回路によって構成されている。 The APL calculation circuit 63 calculates, for example, the APL of one frame of image data stored in the memory unit 25 based on the digital signal output from the AD converter 62. The APL calculation circuit 63 is configured, for example, by a product-sum calculation circuit.

 さらに、図7を参照して、メモリ部25の詳細な構成例について説明する。なお、図7では、データ書き込み回路53の図示は省略し、データ読み出し回路54についてはセンスアンプ54Aのみを図示している。 Furthermore, a detailed configuration example of the memory unit 25 will be described with reference to FIG. 7. Note that in FIG. 7, the data write circuit 53 is omitted, and only the sense amplifier 54A of the data read circuit 54 is shown.

 図7に示すように、メモリセル部MCXは、例えば、複数のメモリセルMC-00~MC-mnがマトリクス状に配列される。アドレスデコーダ52Aに対して各ワード線WL0、WL1・・・WLnが接続されている。そして、アドレスデコーダ52AからメモリセルMCの配置領域に対して各ワード線WL0、WL1・・・WLnが延在している。 As shown in FIG. 7, the memory cell unit MCX has, for example, a plurality of memory cells MC-00 to MC-mn arranged in a matrix. Each word line WL0, WL1, ... WLn is connected to the address decoder 52A. Each word line WL0, WL1, ... WLn extends from the address decoder 52A to the arrangement area of the memory cells MC.

 最も上側の行方向に配置される複数のメモリセルMC-00、MC-10・・・、MC-m0が同一のワード線WL0に接続されている。次の行方向に配置される複数のメモリセルMC-01、MC-11・・・、MC-m1が同一のワード線WL1に接続されている。そして、最も下側の行方向に配置される複数のメモリセルMC-0n、MC-1n・・・、MC-mnが同一のワード線WLnに接続されている。なお、以下の説明において、個々のワード線を区別する必要がない場合は、ワード線WLと適宜称する。 The multiple memory cells MC-00, MC-10, ..., MC-m0 arranged in the uppermost row direction are connected to the same word line WL0. The multiple memory cells MC-01, MC-11, ..., MC-m1 arranged in the next row direction are connected to the same word line WL1. And the multiple memory cells MC-0n, MC-1n, ..., MC-mn arranged in the lowermost row direction are connected to the same word line WLn. In the following explanation, when there is no need to distinguish between individual word lines, they will be referred to as word lines WL.

 最も左側の列方向に配置される複数のメモリセルMC-00、MC-01・・・、MC-0nが、一対のビット線であるビット線BL0(第1ビット線の一例)、BLX0(第2ビット線の一例)に接続されている。ビット線BL0は、寄生容量C0を有する。ビット線BLX0は、寄生容量CX0を有する。なお、同一の列方向に配置されるメモリセルMC-00、MC-01・・・、MC-0nにより、メモリセル群MCX0が形成される。 The multiple memory cells MC-00, MC-01, ..., MC-0n arranged in the leftmost column direction are connected to a pair of bit lines, bit lines BL0 (an example of a first bit line) and BLX0 (an example of a second bit line). Bit line BL0 has a parasitic capacitance C0. Bit line BLX0 has a parasitic capacitance CX0. The memory cells MC-00, MC-01, ..., MC-0n arranged in the same column direction form a memory cell group MCX0.

 次の列方向に配置される複数のメモリセルMC-10、MC-11・・・、MC-1nが、一対のビット線であるビット線BL1、BLX1に接続されている。ビット線BL1は、寄生容量C1を有する。ビット線BLX1は、寄生容量CX1を有する。なお、同一の列方向に配置されるメモリセルMC-10、MC-11・・・、MC-1nにより、メモリセル群MCX1が形成される。 The next set of memory cells MC-10, MC-11, ..., MC-1n arranged in the column direction are connected to a pair of bit lines BL1 and BLX1. Bit line BL1 has a parasitic capacitance C1. Bit line BLX1 has a parasitic capacitance CX1. The memory cells MC-10, MC-11, ..., MC-1n arranged in the same column direction form a memory cell group MCX1.

 最も右側の列方向に配置される複数のメモリセルMC-m0、MC-m1・・・、MC-mnが、一対のビット線であるビット線BLm、BLXmに接続される。ビット線BLmは、寄生容量Cmを有する。ビット線BLXmは、寄生容量CXmを有する。なお、同一の列方向に配置されるメモリセルMC-m0、MC-m1・・・、MC-mnにより、メモリセル群MCXmが形成される。 The multiple memory cells MC-m0, MC-m1, ..., MC-mn arranged in the rightmost column direction are connected to a pair of bit lines BLm, BLXm. Bit line BLm has a parasitic capacitance Cm. Bit line BLXm has a parasitic capacitance CXm. The memory cells MC-m0, MC-m1, ..., MC-mn arranged in the same column direction form a memory cell group MCXm.

 本実施形態では、メモリセル群毎に、プリチャージ回路52B、センスアンプ54A、及び、ADコンバータ62が設けられている。例えば、メモリセル群MCX0に対して、プリチャージ回路52B0、センスアンプ54A0、及び、ADコンバータ620が設けられる。具体的には、メモリセル群MCX0を構成する各メモリセルが接続される一対のビット線BL0、BLX0に対して、プリチャージ回路52B0、センスアンプ54A0、及び、ADコンバータ620のそれぞれが接続される。 In this embodiment, a precharge circuit 52B, a sense amplifier 54A, and an AD converter 62 are provided for each memory cell group. For example, a precharge circuit 52B0, a sense amplifier 54A0, and an AD converter 620 are provided for memory cell group MCX0. Specifically, the precharge circuit 52B0, the sense amplifier 54A0, and the AD converter 620 are each connected to a pair of bit lines BL0, BLX0 to which each memory cell constituting memory cell group MCX0 is connected.

 また、メモリセル群MCX1に対して、プリチャージ回路52B1、センスアンプ54A1、及び、ADコンバータ621が設けられる。具体的には、メモリセル群MCX1を構成する各メモリセルが接続される一対のビット線BL1、BLX1に対して、プリチャージ回路52B1、センスアンプ54A1、及び、ADコンバータ621のそれぞれが接続される。 Furthermore, a precharge circuit 52B1, a sense amplifier 54A1, and an AD converter 621 are provided for the memory cell group MCX1. Specifically, the precharge circuit 52B1, the sense amplifier 54A1, and the AD converter 621 are each connected to a pair of bit lines BL1, BLX1 to which each memory cell constituting the memory cell group MCX1 is connected.

 また、メモリセル群MCXmに対して、プリチャージ回路52Bm、センスアンプ54Am、及び、ADコンバータ62mが設けられる。具体的には、メモリセル群MCXmを構成する各メモリセルが接続される一対のビット線BLm、BLXmに対して、プリチャージ回路52Bm、センスアンプ54Am、及び、ADコンバータ62mのそれぞれが接続される。 Furthermore, a precharge circuit 52Bm, a sense amplifier 54Am, and an AD converter 62m are provided for the memory cell group MCXm. Specifically, the precharge circuit 52Bm, the sense amplifier 54Am, and the AD converter 62m are connected to a pair of bit lines BLm, BLXm to which each memory cell constituting the memory cell group MCXm is connected.

 図8を参照して、メモリセルMCの具体的構成例及びメモリセルMCとプリチャージ回路52B等との具体的な接続例について説明する。なお、説明の便宜を考慮して、図8では、複数のメモリのうちメモリセルMC-00のみを、複数のプリチャージ回路52Bのうちプリチャージ回路52B0のみを、複数のセンスアンプ54Aのうちセンスアンプ54A0のみを、複数のADコンバータ62のうちADコンバータ620のみをそれぞれ示している。また、他のメモリセルMCもメモリセルMC-00と同様の回路構成を有する。また、メモリセルMC-00は1ビット分のみを示しているが、任意のビット数に応じた構成とすることができる。 With reference to FIG. 8, a specific configuration example of memory cell MC and a specific connection example between memory cell MC and precharge circuit 52B etc. will be described. For ease of explanation, FIG. 8 shows only memory cell MC-00 out of the multiple memories, only precharge circuit 52B0 out of the multiple precharge circuits 52B, only sense amplifier 54A0 out of the multiple sense amplifiers 54A, and only AD converter 620 out of the multiple AD converters 62. The other memory cells MC also have a circuit configuration similar to that of memory cell MC-00. Although only one bit of memory cell MC-00 is shown, the configuration can be made according to any number of bits.

 メモリセルMC-00は、PMOSからなる2つの負荷トランジスタP1、P2と、Nチャネル型MOSトランジスタ(NMOS)からなる2つのドライバトランジスタN1、N2と、を有する。また、メモリセルMC-00は、NMOSからなる2つのアクセストランジスタST1、ST2を有する。 Memory cell MC-00 has two load transistors P1 and P2 made of PMOS, and two driver transistors N1 and N2 made of N-channel MOS transistors (NMOS). Memory cell MC-00 also has two access transistors ST1 and ST2 made of NMOS.

 電源電圧Vddの供給線と基準電圧Vss(例えば接地電圧)の供給線との間に、負荷トランジスタP1とドライバトランジスタN1とが直列接続(縦続接続)されている。また、電源電圧Vddの供給線と基準電圧Vss(例えば接地電圧)の供給線との間に、負荷トランジスタP2とドライバトランジスタN2とが直列接続(縦続接続)されている。 Load transistor P1 and driver transistor N1 are connected in series (cascade connected) between the supply line of power supply voltage Vdd and the supply line of reference voltage Vss (e.g., ground voltage). Load transistor P2 and driver transistor N2 are connected in series (cascade connected) between the supply line of power supply voltage Vdd and the supply line of reference voltage Vss (e.g., ground voltage).

 負荷トランジスタP2とドライバトランジスタN2はゲート同士が共に、負荷トランジスタP1とドライバトランジスタN1との接続点に接続されている。係る接続点が第1記憶ノードND1を形成している。同様に、負荷トランジスタP1とドライバトランジスタN1はゲート同士が共に、負荷トランジスタP2とドライバトランジスタN2との接続点に接続されている。係る接続点が第2記憶ノードND2を形成している。第1記憶ノードND1の論理レベルと第2記憶ノードND2の論理レベルはと相補的な関係となる。 The gates of the load transistor P2 and the driver transistor N2 are both connected to the connection point between the load transistor P1 and the driver transistor N1. This connection point forms a first memory node ND1. Similarly, the gates of the load transistor P1 and the driver transistor N1 are both connected to the connection point between the load transistor P2 and the driver transistor N2. This connection point forms a second memory node ND2. The logical level of the first memory node ND1 and the logical level of the second memory node ND2 are complementary to each other.

 アクセストランジスタST1のソースとドレインの一方が、第1記憶ノードND1に接続され、他方が書き込みビット線BL0に接続され、ゲートがワード線WL0に接続されている。また、アクセストランジスタST2のソースとドレインの一方が、第2記憶ノードND2に接続され、他方がビット線BLX0に接続され、ゲートがワード線WL0に接続されている。 One of the source and drain of the access transistor ST1 is connected to the first memory node ND1, the other is connected to the write bit line BL0, and the gate is connected to the word line WL0. One of the source and drain of the access transistor ST2 is connected to the second memory node ND2, the other is connected to the bit line BLX0, and the gate is connected to the word line WL0.

 プリチャージ回路52B0は、メモリセルMC-00の記憶ノードに対して所定のビット線を介して接続されている。例えば、プリチャージ回路52B0は、メモリセルMC-00の第1記憶ノードND1に対してビット線BL0及びアクセストランジスタST1を介して接続され、メモリセルMC-00の第2記憶ノードND2に対してビット線BLX0及びアクセストランジスタST2を介して接続されている。図示は省略しているが、プリチャージ回路52B0は、他のメモリセルMC-01・・・MC-0nの第1記憶ノードND1に対してもビット線BL0を介して接続され、第2記憶ノードND2に対してもビット線BLX0を介して接続されている。 The precharge circuit 52B0 is connected to the memory node of the memory cell MC-00 via a specific bit line. For example, the precharge circuit 52B0 is connected to the first memory node ND1 of the memory cell MC-00 via the bit line BL0 and the access transistor ST1, and is connected to the second memory node ND2 of the memory cell MC-00 via the bit line BLX0 and the access transistor ST2. Although not shown in the figure, the precharge circuit 52B0 is also connected to the first memory node ND1 of the other memory cells MC-01...MC-0n via the bit line BL0, and is also connected to the second memory node ND2 via the bit line BLX0.

 センスアンプ54A0は、メモリセルMC-00の記憶ノードに対して所定のビット線を介して接続されている。例えば、センスアンプ54A0は、メモリセルMC-00の第1記憶ノードND1に対してビット線BL0及びアクセストランジスタST1を介して接続され、メモリセルMC-00の第2記憶ノードND2に対してビット線BLX0及びアクセストランジスタST2を介して接続されている。図示は省略しているが、センスアンプ54A0は、他のメモリセルMC-01・・・MC-0nの第1記憶ノードND1に対してもビット線BL0を介して接続され、第2記憶ノードND2に対してもビット線BLX0を介して接続されている。 The sense amplifier 54A0 is connected to the memory node of the memory cell MC-00 via a specific bit line. For example, the sense amplifier 54A0 is connected to the first memory node ND1 of the memory cell MC-00 via the bit line BL0 and the access transistor ST1, and is connected to the second memory node ND2 of the memory cell MC-00 via the bit line BLX0 and the access transistor ST2. Although not shown in the figure, the sense amplifier 54A0 is also connected to the first memory node ND1 of the other memory cells MC-01...MC-0n via the bit line BL0, and is also connected to the second memory node ND2 via the bit line BLX0.

 ADコンバータ620は、メモリセルMC-00の記憶ノードに対して所定のビット線を介して接続されている。例えば、ADコンバータ620は、メモリセルMC-00の第1記憶ノードND1に対してビット線BL0及びアクセストランジスタST1を介して接続され、メモリセルMC-00の第2記憶ノードND2に対してビット線BLX0及びアクセストランジスタST2を介して接続されている。図示は省略しているが、ADコンバータ620は、他のメモリセルMC-01・・・MC-0nの第1記憶ノードND1に対してもビット線BL0を介して接続され、第2記憶ノードND2に対してもビット線BLX0を介して接続されている。 The AD converter 620 is connected to the memory node of the memory cell MC-00 via a specific bit line. For example, the AD converter 620 is connected to the first memory node ND1 of the memory cell MC-00 via the bit line BL0 and the access transistor ST1, and is connected to the second memory node ND2 of the memory cell MC-00 via the bit line BLX0 and the access transistor ST2. Although not shown in the figure, the AD converter 620 is also connected to the first memory node ND1 of the other memory cells MC-01...MC-0n via the bit line BL0, and is also connected to the second memory node ND2 via the bit line BLX0.

 なお、図示は省略しているが、メモリセルMC-10、MC-11・・・MC-1nに対して、上記と同様の接続態様により、ビット線BL1、BLX1等を介して、プリチャージ回路52B1、センスアンプ54A1、及び、ADコンバータ621のそれぞれが接続されている。また、メモリセルMC-m0、MC-m1・・・MC-mnに対して、上記と同様の接続態様により、ビット線BLm、BLXmを介して、プリチャージ回路52Bm、センスアンプ54Am、及び、ADコンバータ62mのそれぞれが接続されている。 Although not shown, the precharge circuit 52B1, sense amplifier 54A1, and AD converter 621 are connected to the memory cells MC-10, MC-11, ... MC-1n via bit lines BL1, BLX1, etc. in the same manner as described above. The precharge circuit 52Bm, sense amplifier 54Am, and AD converter 62m are connected to the memory cells MC-m0, MC-m1, ... MC-mn via bit lines BLm, BLXm in the same manner as described above.

[画像処理部の構成例]
 図9は、画像処理部26の構成例を説明するための図である。画像処理部は、APL算出回路63が算出したAPLに応じた画像処理を行う。画像処理部26は、機能ブロックとして、例えば、ゲイン調整部26Aと、輝度調整部26Bと、ガンマ調整部26Cと、データラッチ部26Dと、を有する。
[Configuration example of image processing unit]
9 is a diagram for explaining an example of the configuration of the image processing unit 26. The image processing unit performs image processing according to the APL calculated by the APL calculation circuit 63. The image processing unit 26 has, as functional blocks, for example, a gain adjustment unit 26A, a brightness adjustment unit 26B, a gamma adjustment unit 26C, and a data latch unit 26D.

 ゲイン調整部26Aは、メモリ部25から入力される画像データのゲインを調整する。輝度調整部26Bは、ゲイン調整部26Aによりゲイン調整処理がなされた画像データの輝度を調整する。ガンマ調整部26Cは、輝度調整部26Bにより輝度調整がなされた画像データのガンマを調整する。データラッチ部26Dは、ガンマ調整がなされた画像データをラッチし、所定のクロック信号に応じて、ラッチした画像データを出力する。画像処理部26から出力された画像データは、ソースアンプ27を介して、HLOGIC31に供給される。なお、画像処理部26がソースアンプ27を含む構成であってもよい。 The gain adjustment unit 26A adjusts the gain of the image data input from the memory unit 25. The brightness adjustment unit 26B adjusts the brightness of the image data that has been subjected to gain adjustment processing by the gain adjustment unit 26A. The gamma adjustment unit 26C adjusts the gamma of the image data that has been subjected to brightness adjustment by the brightness adjustment unit 26B. The data latch unit 26D latches the image data that has been subjected to gamma adjustment, and outputs the latched image data in response to a predetermined clock signal. The image data output from the image processing unit 26 is supplied to the HLOGIC 31 via the source amplifier 27. Note that the image processing unit 26 may be configured to include the source amplifier 27.

[処理例]
(メモリ部で行われる処理)
 次に、表示システム100で行われる処理の一例について説明する。始めに、図8に示す回路例、及び、図10A及び図10Bを参照して、メモリ部25で行われる処理例について説明する。図10Aは、図8に示す回路例と同一の回路例であり、一例として第1記憶ノードND1の論理レベルがHレベルであり、第2記憶ノードND2の論理レベルがLレベルである例を示している。図10Bは、データ読み出し処理等についての説明がなされる際に参照されるタイミングチャートである。
[Processing example]
(Processing performed in the memory section)
Next, an example of processing performed in the display system 100 will be described. First, an example of processing performed in the memory unit 25 will be described with reference to the circuit example shown in Fig. 8 and Figs. 10A and 10B. Fig. 10A is the same circuit example as that shown in Fig. 8, and shows an example in which the logic level of the first storage node ND1 is H level and the logic level of the second storage node ND2 is L level. Fig. 10B is a timing chart to be referred to when describing data read processing, etc.

 プリチャージ回路52B0はプリチャージ制御信号PREが供給されるタイミングで動作する。他のプリチャージ回路52Bについても同様である。センスアンプ54A0はセンスアンプイネーブル信号SAEが供給されるタイミングで動作する。他のセンスアンプ54Aについても同様である。プリチャージ制御信号PREやセンスアンプイネーブル信号SAEは、例えば、外部クロック信号ECKに基づいて周辺回路部52が発生する。 The precharge circuit 52B0 operates when the precharge control signal PRE is supplied. The same applies to the other precharge circuits 52B. The sense amplifier 54A0 operates when the sense amplifier enable signal SAE is supplied. The same applies to the other sense amplifiers 54A. The precharge control signal PRE and the sense amplifier enable signal SAE are generated by the peripheral circuit unit 52 based on, for example, the external clock signal ECK.

「データ書き込み処理」
 始めに、各メモリセルMCにデータを書き込むデータ書き込み処理について説明する。なお、本例では、データを書き込む対象のメモリセルMCがメモリセルMC-00であるものとして説明する。
Data writing process
First, a data write process for writing data to each memory cell MC will be described. In this example, the memory cell MC to which data is to be written is assumed to be the memory cell MC-00.

 データ書き込み回路53は、データを書き込む対象であるメモリセルMC-00に接続されている一対のビット線(本例ではビット線BL0、BLX0)を選択する。そして、データ書き込み回路53は、入力される画像データに応じた電圧を、選択したビット線BL0、BLX0を介してメモリセルMC-00に書き込む。他のメモリセルMCについても同様にしてデータが書き込まれる。 The data write circuit 53 selects a pair of bit lines (bit lines BL0, BLX0 in this example) connected to the memory cell MC-00 into which data is to be written. The data write circuit 53 then writes a voltage corresponding to the input image data into the memory cell MC-00 via the selected bit lines BL0, BLX0. Data is written into the other memory cells MC in the same manner.

「データ読み出し処理」
 次に、データ読み出し処理について説明する。メモリセルMC-00からデータを読み出す際、まず、Lレベルのプリチャージ制御信号PREをプリチャージ回路52B0へ入力し、このプリチャージ回路52B0によりビット線BL0、BLX0をHレベルにプリチャージしておく(図10Bのタイミングt10まで)。
"Data reading process"
Next, a data read process will be described. When reading data from the memory cell MC-00, first, a precharge control signal PRE of L level is input to the precharge circuit 52B0, and the bit lines BL0 and BLX0 are precharged to H level by the precharge circuit 52B0 (until timing t10 in FIG. 10B).

 その後、ワード線WL0にメモリセル選択信号であるワード線選択信号(Hレベルの信号)を印加して(図10Bのタイミングt10)、メモリセルMC-00のアクセストランジスタST1、ST2をオン状態とし、これによりにメモリセルMC-00でラッチされている電圧がビット線BL0、BLX0に出力される。ここで、ラッチされている電圧を図9Aに示すように、第1記憶ノードND1をHレベル、第2記憶ノードND2をLレベルの電圧とすると、ビット線BL0にはアクセストランジスタST1を介してHレベルの電圧が印加され、ビット線BLX0にはアクセストランジスタST2を介してLレベルの電圧が印加される。ビット線BL0、BLX0はプリチャージ回路52B0によって事前にHレベルの電圧がチャージされているため、ビット線BL0はHレベルの電圧状態を維持し、一方、ビット線BLX0はメモリセルMC-00のラッチ部によってアクセストランジスタST2を介してディスチャージされて電圧レベルがHレベルからLレベルに移行していく。 After that, a word line selection signal (H level signal) which is a memory cell selection signal is applied to the word line WL0 (timing t10 in FIG. 10B), turning on the access transistors ST1 and ST2 of the memory cell MC-00, and the voltage latched in the memory cell MC-00 is output to the bit lines BL0 and BLX0. If the latched voltage is set to H level at the first memory node ND1 and L level at the second memory node ND2 as shown in FIG. 9A, a H level voltage is applied to the bit line BL0 via the access transistor ST1, and a L level voltage is applied to the bit line BLX0 via the access transistor ST2. Since the bit lines BL0 and BLX0 are charged to a H level voltage in advance by the precharge circuit 52B0, the bit line BL0 maintains a H level voltage state, while the bit line BLX0 is discharged via the access transistor ST2 by the latch section of the memory cell MC-00, and the voltage level transitions from H level to L level.

 そして、ビット線BLX0の電圧が十分にLレベルに近づいた後、センスアンプイネーブル信号SAEがセンスアンプ54A0に入力される(図10Bのタイミングt11参照)。これにより、センスアンプ54A0が動作し、ビット線BL0、BLX0の電圧がセンスアンプ54A0によって増幅され、ビット線BL0の電圧がHレベルに、ビット線BLX0の電圧がLレベルに固定される。そして、センスアンプ54A0から出力回路(不図示)を介してビット線BL0、BLX0の電圧に応じた出力信号(図10Bにおける出力信号VOUT)が出力される(図10Bのタイミングt11参照)。これによりメモリセルMC-00に記憶されたデータが読み出される。 Then, after the voltage of bit line BLX0 has sufficiently approached the L level, the sense amplifier enable signal SAE is input to the sense amplifier 54A0 (see timing t11 in FIG. 10B). This causes the sense amplifier 54A0 to operate, and the voltages of bit lines BL0 and BLX0 are amplified by the sense amplifier 54A0, fixing the voltage of bit line BL0 to the H level and the voltage of bit line BLX0 to the L level. Then, an output signal (output signal VOUT in FIG. 10B) corresponding to the voltages of bit lines BL0 and BLX0 is output from the sense amplifier 54A0 via an output circuit (not shown) (see timing t11 in FIG. 10B). This causes the data stored in memory cell MC-00 to be read out.

(APL算出処理)
 次に、図8に示す回路例を参照して、APL算出処理について説明する。APL算出処理は、一連の画像処理シーケンスの中で任意のタイミングで行うことができる。例えば、所定のフレームに対応する画像データをメモリセル部MCXに書き込んだ後、所定の制御信号によって各ADコンバータ62を動作させる。各ADコンバータ62の出力に応じてAPL算出回路63が上記のフレームのAPLを算出して、当該APLを画像処理部26に出力する。次のタイミングで、上記の所定のフレームに対応する画像データをメモリセル部MCXに再度書き込んだ後、次の所定のタイミングで、ADコンバータ62ではなくセンスアンプ54Aを動作させることでメモリ部25から上記の所定のフレームに対応する画像データを読み出す。読み出された画像データが画像処理部26に供給される。画像処理部26は、APLに基づく各種の画像処理を実行する。
(APL Calculation Process)
Next, the APL calculation process will be described with reference to the circuit example shown in FIG. 8. The APL calculation process can be performed at any timing in a series of image processing sequences. For example, after image data corresponding to a specific frame is written to the memory cell unit MCX, each AD converter 62 is operated by a specific control signal. The APL calculation circuit 63 calculates the APL of the frame according to the output of each AD converter 62, and outputs the APL to the image processing unit 26. At the next timing, the image data corresponding to the specific frame is written again to the memory cell unit MCX, and then, at the next specified timing, the sense amplifier 54A is operated instead of the AD converter 62 to read the image data corresponding to the specific frame from the memory unit 25. The read image data is supplied to the image processing unit 26. The image processing unit 26 executes various image processes based on the APL.

 所定のフレームに対応する画像データがメモリセル部MCXに書き込まれた後、各プリチャージ回路52Bは、自身に接続された一対のビット線をHレベルにプリチャージする。そして、所定の制御信号が各ADコンバータ62に供給されることで、各ADコンバータ62が動作を開始する。例えば、プリチャージ回路52B0が、ビット線BL0、BLX0をHレベルにプリチャージした後に、所定の制御信号が供給されることで、ADコンバータ620が動作を開始する。 After image data corresponding to a specific frame is written to the memory cell unit MCX, each precharge circuit 52B precharges the pair of bit lines connected to it to the H level. Then, a specific control signal is supplied to each AD converter 62, causing each AD converter 62 to start operating. For example, after the precharge circuit 52B0 precharges the bit lines BL0 and BLX0 to the H level, a specific control signal is supplied, causing the AD converter 620 to start operating.

 上述したように、第1記憶ノードND1をHレベル、第2記憶ノードND2をLレベルの電圧とすると、ビット線BL0にはアクセストランジスタST1を介してHレベルの電圧が印加され、ビット線BLX0にはアクセストランジスタST2を介してLレベルの電圧が印加される。ビット線BL0、BLX0はプリチャージ回路52B0によって事前にHレベルの電圧がチャージされているため、ビット線BL0はHレベルの電圧状態を維持する。一方で、ビット線BLX0はアクセストランジスタST2を介してディスチャージされて電圧レベルがHレベルからLレベルに移行していく。 As described above, when the first memory node ND1 is at H level and the second memory node ND2 is at L level voltage, an H level voltage is applied to the bit line BL0 via the access transistor ST1, and an L level voltage is applied to the bit line BLX0 via the access transistor ST2. Since the bit lines BL0 and BLX0 have been charged to H level voltage in advance by the precharge circuit 52B0, the bit line BL0 maintains an H level voltage state. Meanwhile, the bit line BLX0 is discharged via the access transistor ST2, and the voltage level transitions from H level to L level.

 ここで、ビット線BL0及びビット線BLX0には、複数のメモリセルMC-00、MC-01・・・MC-0nが接続される。各メモリセルMCの第1記憶ノードND1の論理レベルについて、LレベルよりもHレベルが多い場合にはディスチャージ量が小さくなり、ビット線BL0の電位のプリチャージ後の電位からの低下量が小さくなる。各メモリセルMCの第1記憶ノードND1の論理レベルについて、HレベルよりもLレベルが多い場合にはディスチャージ量が大きくなり、ビット線BL0の電位のプリチャージ後の電位からの低下量が大きくなる。このことは、ビット線BLX0についても同様である。 Here, a number of memory cells MC-00, MC-01...MC-0n are connected to bit line BL0 and bit line BLX0. When the logical level of the first memory node ND1 of each memory cell MC is more often H level than L level, the amount of discharge is small and the amount of drop in the potential of the bit line BL0 from the potential after precharging is small. When the logical level of the first memory node ND1 of each memory cell MC is more often L level than H level, the amount of discharge is large and the amount of drop in the potential of the bit line BL0 from the potential after precharging is large. The same is true for bit line BLX0.

 すなわち、図11に示すように、ビット線BL0、BLX0のプリチャージが完了したタイミング(図11におけるタイミングt21)から所定の検出期間を設定する。検出期間後のタイミング(図11におけるタイミングt22)で、ビット線BL0及びビット線BLX0の少なくとも一方の電位を検出する。上述したように、各メモリセルMCの第1記憶ノードND1の論理レベルについて、LレベルよりもHレベルが多い場合にはディスチャージ量が小さくなり、ビット線BL0の電位の低下が図11のラインLNaやラインLNbに示すように、小さくなる。各メモリセルMCの第1記憶ノードND1の論理レベルについて、HレベルよりもLレベルが多い場合にはディスチャージ量が大きくなり、ビット線BL0の電位の低下がラインLNcやラインLNdに示すように大きくなる。タイミングt22での電位を検出することで、ビット線BL0(若しくはビット線BLX0)のHレベルの概略的な多さ、換言すれば、各メモリセルMCの記憶状態を検出することが可能となる。ADコンバータ620は、タイミングt22の電位をデジタル信号に変換してAPL算出回路63に出力する。なお、図11では、電位の変化についてラインLNa~LNdにより4個のパターンが示されているが、これは一例であって電位の変化のパターンが図示した例に限定されるものではない。 That is, as shown in FIG. 11, a predetermined detection period is set from the timing when the precharging of the bit lines BL0 and BLX0 is completed (timing t21 in FIG. 11). At the timing after the detection period (timing t22 in FIG. 11), the potential of at least one of the bit lines BL0 and BLX0 is detected. As described above, when the logic level of the first memory node ND1 of each memory cell MC is more H level than L level, the discharge amount is small, and the drop in the potential of the bit line BL0 is small, as shown by lines LNa and LNb in FIG. 11. When the logic level of the first memory node ND1 of each memory cell MC is more L level than H level, the discharge amount is large, and the drop in the potential of the bit line BL0 is large, as shown by lines LNc and LNd. By detecting the potential at timing t22, it is possible to detect the approximate number of H levels of the bit line BL0 (or bit line BLX0), in other words, the memory state of each memory cell MC. The AD converter 620 converts the potential at timing t22 into a digital signal and outputs it to the APL calculation circuit 63. Note that in FIG. 11, four patterns of potential changes are shown by lines LNa to LNd, but this is only an example and the patterns of potential changes are not limited to the examples shown.

 各ADコンバータ62が上記と同様に動作することで、各ADコンバータから出力されたデジタル信号がAPL算出回路63に供給される。APL算出回路63は、各ADコンバータ62から供給されるデジタル信号(検出期間経過後の電位に対応するデジタル信号)を積和演算することで、メモリセル部MCXに記憶された1フレームの画像データのAPLを算出する。APLの算出方法は積和演算ではなく他の公知の方法であってもよい。APL算出回路63は、算出したAPLを画像処理部26に出力する。 When each AD converter 62 operates in the same manner as described above, the digital signal output from each AD converter is supplied to the APL calculation circuit 63. The APL calculation circuit 63 calculates the APL of one frame of image data stored in the memory cell unit MCX by performing a product-sum operation on the digital signal (digital signal corresponding to the potential after the detection period has elapsed) supplied from each AD converter 62. The APL calculation method may be other known methods other than the product-sum operation. The APL calculation circuit 63 outputs the calculated APL to the image processing unit 26.

(画像処理部により行われる画像処理)
 次に、図12を参照して、本実施形態に係る画像処理部26による画像処理の一例について説明する。上述したように、メモリ部25には、インメモリコンピューティングとして構成されたADコンバータ62及びAPL算出回路63が設けられている。図12における矢印で示すように、APL算出回路63で算出されたAPLは、例えば、画像処理部26のゲイン調整部26A、輝度調整部26B、及び、ガンマ調整部26Cのそれぞれに供給される。
(Image processing performed by the image processing unit)
Next, an example of image processing by the image processing unit 26 according to this embodiment will be described with reference to Fig. 12. As described above, the memory unit 25 is provided with an AD converter 62 and an APL calculation circuit 63 configured as in-memory computing. As indicated by the arrows in Fig. 12, the APL calculated by the APL calculation circuit 63 is supplied to, for example, each of the gain adjustment unit 26A, the brightness adjustment unit 26B, and the gamma adjustment unit 26C of the image processing unit 26.

 ゲイン調整部26Aは、APLに応じたゲインを画像データに乗算する。ゲインは、例えば、APLが大きくなるにつれて小さくなる(図1参照)。ゲイン調整部26Aは、例えば、APLとゲインとの関係が記述されたテーブルを参照して、APLに応じたゲインを読み出し、読み出したゲインを画像データに乗算する。 The gain adjustment unit 26A multiplies the image data by a gain corresponding to the APL. For example, the gain decreases as the APL increases (see FIG. 1). For example, the gain adjustment unit 26A refers to a table that describes the relationship between the APL and the gain, reads out the gain corresponding to the APL, and multiplies the image data by the read out gain.

 輝度調整部26Bは、APLに応じた輝度レベルとなるように画像データを調整する。輝度調整部26Bは、例えば、APLに応じたピーク輝度の範囲内となるように、画像データの輝度を調整する。ピーク輝度は、APLが大きくなるようにつれて大きくなるように設定される。輝度調整部26Bは、例えば、APLとピーク輝度との関係が記述されたテーブルを参照して、APLに応じたピーク輝度を読み出し、読み出したピーク輝度の範囲内となるように画像データの輝度を調整する。なお、輝度調整部26Bは、ピーク輝度ではなくAPLに対応する輝度レベルとなるように、画像データの輝度レベルを調整してもよい。 The brightness adjustment unit 26B adjusts the image data so that the brightness level corresponds to the APL. For example, the brightness adjustment unit 26B adjusts the brightness of the image data so that it is within a range of peak brightness corresponding to the APL. The peak brightness is set to increase as the APL increases. For example, the brightness adjustment unit 26B refers to a table that describes the relationship between the APL and peak brightness, reads out the peak brightness corresponding to the APL, and adjusts the brightness of the image data so that it is within the range of the read peak brightness. Note that the brightness adjustment unit 26B may adjust the brightness level of the image data so that it is a brightness level corresponding to the APL rather than the peak brightness.

 ガンマ調整部26Cは、APLに応じたガンマ値を用いて画像データに対するガンマ補正を行う。ガンマ調整部26Cは、例えば、APLとガンマ値との関係が記述されたテーブルを参照して、APLに応じたガンマ値を読み出し、読み出したガンマ値を用いて画像データに対するガンマ補正を行う。 The gamma adjustment unit 26C performs gamma correction on the image data using a gamma value corresponding to the APL. For example, the gamma adjustment unit 26C refers to a table that describes the relationship between the APL and the gamma value, reads out the gamma value corresponding to the APL, and performs gamma correction on the image data using the read out gamma value.

 なお、APL算出回路63により算出されたAPLを使用して、上述した処理以外の処理が行われるようにしてもよい。例えば、APLに応じた発光時間となるように、各画素回路PIXにおける発光素子の発光時間が調整されてもよい。 Note that the APL calculated by the APL calculation circuit 63 may be used to perform processing other than the above-mentioned processing. For example, the light emission time of the light-emitting element in each pixel circuit PIX may be adjusted so that the light emission time corresponds to the APL.

[IC(Integrated Circuit)として構成した場合の配置例]
 図13は、メモリ部25、画像処理部26、及び、ソースアンプ27を1個のICとして構成した場合の配置例を示す。例えば、ICの配置スペースの中央に、APL算出回路63及び画像処理部26が配置される。その両側にメモリ部25のメモリセル部MCX、アドレスデコーダ52A、データ書き込み回路53、データ読み出し回路54、及び、ADコンバータ62が配置される。そして、画像処理部26の出力が供給されるようにソースアンプ27が配置される。ICの配置スペースの中央にAPL算出回路63及び画像処理部26を配置することで、IC全体の小型化を実現できる。
[Example of layout when configured as an IC (Integrated Circuit)]
13 shows an example of a layout in which the memory unit 25, image processing unit 26, and source amplifier 27 are configured as one IC. For example, the APL calculation circuit 63 and image processing unit 26 are placed in the center of the layout space of the IC. On either side of them, the memory cell unit MCX of the memory unit 25, the address decoder 52A, the data write circuit 53, the data read circuit 54, and the AD converter 62 are placed. The source amplifier 27 is then placed so that the output of the image processing unit 26 is supplied to it. By placing the APL calculation circuit 63 and the image processing unit 26 in the center of the layout space of the IC, it is possible to reduce the size of the entire IC.

 図13に示す構成のうち、ADコンバータ62以外の構成要素については、一般的な表示装置で使用されるICにも設けられることが多い。本実施形態では、追加する構成要素が実質的にADコンバータ62のみで済むことから、ICとして構成した場合でも当該ICが大型化してしまうことを抑制できる。 Of the components shown in FIG. 13, those other than the AD converter 62 are often also provided in ICs used in general display devices. In this embodiment, the AD converter 62 is essentially the only component that needs to be added, so even if the IC is configured as an IC, it is possible to prevent the IC from becoming too large.

[本実施形態で得られる効果]
 本実施形態によれば、例えば、下記の効果が得られる。
 本実施形態によれば、例えば、既存の回路にADコンバータを追加することでAPLを算出するためのデータを取得することができる。また、APLを算出する際に、一般的に用いられる構成要素であるプリチャージ回路を利用することで、新たに追加する構成要素を最小限とすることができる。
 ADコンバータ及びAPL算出回路を、一般的な表示装置で用いられるメモリ部(例えば、フレームメモリ)のインメモリコンピューティングとして構成することで、例えばICの大型化を抑制でき、さらに、データ処理速度及び計算の電力効率を大幅に向上させることができる。
 従来は、図14に示すように、例えば画像処理部26が有するロジック回路を用いてAPL算出回路63を構成してAPLを算出するようにしていた。この方式では、毎フレーム及びドット毎の処理が必要となる。このため、表示装置の解像度の増大に伴い、回路規模が大型化してしまい、且つ、演算処理が多くなるため消費電力が増加する。これに対して本実施形態では、実質的にADコンバータのみを追加すればよいので回路規模が大型化してしまうことを抑制できる。また、ロジック回路に比べて消費電力の観点でも有利である。例えば、APL算出回路をロジック回路で構成する場合に比べて消費電力を1/4程度に抑制できる。また、本実施形態によれば、必ずしも1フレーム分の画像データがない場合であっても、画像データのまとまった単位でAPLを算出することができ、また、画像データを入力しながらAPLを算出することも可能である。
 本実施形態で算出したAPLの精度は、ロジック回路で算出したAPLに比べて劣る可能性もある。しかしながら、APLを使用した画像処理では、APLの精度が高精度である必要はなく概算的な精度であっても不都合が生じない場合が多いので、上記得られるメリットの方が大きい。
[Effects obtained by this embodiment]
According to this embodiment, for example, the following effects can be obtained.
According to this embodiment, for example, data for calculating the APL can be obtained by adding an AD converter to an existing circuit. Also, by using a precharge circuit, which is a commonly used component, when calculating the APL, the number of newly added components can be minimized.
By configuring the AD converter and APL calculation circuit as in-memory computing of a memory unit (e.g., a frame memory) used in general display devices, it is possible to suppress the increase in size of the IC, and further to significantly improve the data processing speed and the power efficiency of calculations.
Conventionally, as shown in FIG. 14, for example, the APL calculation circuit 63 is configured using a logic circuit included in the image processing unit 26 to calculate the APL. In this method, processing is required for each frame and each dot. Therefore, as the resolution of the display device increases, the circuit scale increases, and the power consumption increases due to the increased number of calculation processes. In contrast, in this embodiment, since it is sufficient to add only an AD converter, the circuit scale does not increase. In addition, this embodiment is advantageous in terms of power consumption compared to a logic circuit. For example, the power consumption can be reduced to about 1/4 compared to when the APL calculation circuit is configured with a logic circuit. In addition, according to this embodiment, even if there is not necessarily one frame of image data, the APL can be calculated for each block of image data, and it is also possible to calculate the APL while inputting the image data.
The accuracy of the APL calculated in this embodiment may be inferior to that of the APL calculated by the logic circuit, but in image processing using the APL, the accuracy of the APL does not need to be high, and there are many cases where an approximate accuracy does not cause any inconvenience, so the above-mentioned advantages are greater.

<第2の実施形態>
 次に、第2の実施形態について説明する。なお、第2の実施形態の説明において、上述した説明における同一または同質の構成については同一の参照符号を付し、重複した説明を適宜省略する。また、特に断らない限り、第1の実施形態で説明した事項は第2の実施形態に対して適用することができる。
Second Embodiment
Next, a second embodiment will be described. In the description of the second embodiment, the same or similar components in the above description are given the same reference numerals, and duplicated descriptions will be omitted as appropriate. In addition, unless otherwise specified, the matters described in the first embodiment can be applied to the second embodiment.

 第1の実施形態では、メモリ部25のメモリセル部MCXが1フレーム分の画像データを記憶できるフレームメモリとして構成されていた。本実施形態に係るメモリ部(メモリ部70)のメモリセル部MCXは、1ライン分の画像データを記憶できるラインバッファ(ラインメモリ)として構成されている点が、第1の実施形態と相違する。 In the first embodiment, the memory cell unit MCX of the memory unit 25 is configured as a frame memory capable of storing one frame's worth of image data. The memory cell unit MCX of the memory unit (memory unit 70) in this embodiment differs from the first embodiment in that it is configured as a line buffer (line memory) capable of storing one line's worth of image data.

(メモリ部の構成例)
 図15は、第2の実施形態に係るメモリ部70の構成例を示す図である。メモリ部70は、データS/P部12に対して接続される入力端子TIと、画像処理部26に対して接続される出力端子TOと、を有する。
(Example of memory configuration)
15 is a diagram showing an example of the configuration of a memory unit 70 according to the second embodiment. The memory unit 70 has an input terminal TI connected to the data S/P unit 12 and an output terminal TO connected to the image processing unit 26.

 入力端子TIと出力端子TOとの間に、複数のメモリセルが列状に接続されている。例えば、入力端子TIと出力端子TOとの間に、メモリセルMC-0、MC-1・・・MC-mが接続されている。本実施形態では、メモリセルMC-0、MC-1・・・MC-mによりメモリセル部MCXが構成される。 A number of memory cells are connected in a row between the input terminal TI and the output terminal TO. For example, memory cells MC-0, MC-1, ... MC-m are connected between the input terminal TI and the output terminal TO. In this embodiment, the memory cell unit MCX is composed of memory cells MC-0, MC-1, ... MC-m.

 また、メモリ部70は、プリチャージ回路52B、ADコンバータ62、及び、APL算出回路63を有する。プリチャージ回路52BとADコンバータ62とが接続ラインLYを介して接続されている。ADコンバータ62はAPL算出回路63と接続されており、ADコンバータ62による変換結果であるデジタル信号がAPL算出回路63に供給される。 The memory unit 70 also has a precharge circuit 52B, an AD converter 62, and an APL calculation circuit 63. The precharge circuit 52B and the AD converter 62 are connected via a connection line LY. The AD converter 62 is connected to the APL calculation circuit 63, and a digital signal that is the result of conversion by the AD converter 62 is supplied to the APL calculation circuit 63.

 接続ラインLYから、ビット線BLY0、BLY1・・・BLYmが延在している。各ビット線BLY0、BLY1・・・BLYmが、対応するメモリセルMCに対して接続されている。接続ラインLYは、寄生容量CYを有する。 Bit lines BLY0, BLY1, ... BLYm extend from the connection line LY. Each bit line BLY0, BLY1, ... BLYm is connected to a corresponding memory cell MC. The connection line LY has a parasitic capacitance CY.

 メモリ部70の構成例について詳細に説明する。各メモリセルは、例えば、インバータを2個使ったループ回路(ラッチ回路)を有する。具体的には、メモリセルMC-0は、入力が入力端子TIに接続されるインバータ710と、入力端子がインバータ710の出力端子に接続されるインバータ720と、を有する。ループにおけるインバータ710の入力端子とインバータ720の出力端子との間には、スイッチング素子SWA-0が設けられている。メモリセルMC-1は、入力端子がインバータ710の出力端子に接続されるインバータ711と、入力端子がインバータ711の出力端子に接続されるインバータ721と、を有する。ループにおけるインバータ711の入力端子とインバータ721の出力端子との間には、スイッチング素子SWA-1が設けられている。メモリセルMC-mは、入力端子がインバータ711の出力端子側に接続されるインバータ71mと、入力端子がインバータ71mの出力端子に接続されるインバータ72mと、を有する。ループにおけるインバータ71mの入力端子とインバータ72mの出力端子との間には、スイッチング素子SWA-mが設けられている。 A detailed description of an example of the configuration of the memory unit 70 will be given. Each memory cell has, for example, a loop circuit (latch circuit) using two inverters. Specifically, the memory cell MC-0 has an inverter 710 whose input is connected to the input terminal TI, and an inverter 720 whose input terminal is connected to the output terminal of the inverter 710. A switching element SWA-0 is provided between the input terminal of the inverter 710 and the output terminal of the inverter 720 in the loop. The memory cell MC-1 has an inverter 711 whose input terminal is connected to the output terminal of the inverter 710, and an inverter 721 whose input terminal is connected to the output terminal of the inverter 711. A switching element SWA-1 is provided between the input terminal of the inverter 711 and the output terminal of the inverter 721 in the loop. The memory cell MC-m has an inverter 71m whose input terminal is connected to the output terminal side of the inverter 711, and an inverter 72m whose input terminal is connected to the output terminal of the inverter 71m. A switching element SWA-m is provided between the input terminal of the inverter 71m and the output terminal of the inverter 72m in the loop.

 各メモリセルMCの入力段には、スイッチング素子が設けられている。具体的には、インバータ710の入力端子と入力端子TIとの間に、スイッチング素子SWB-0が設けられている。インバータ711の入力端子とインバータ710の出力端子との間に、スイッチング素子SWB-1が設けられている。インバータ71mの入力端子とインバータ711の出力端子側との間に、スイッチング素子SWB-mが設けられている。 A switching element is provided at the input stage of each memory cell MC. Specifically, switching element SWB-0 is provided between the input terminal of inverter 710 and input terminal TI. Switching element SWB-1 is provided between the input terminal of inverter 711 and the output terminal of inverter 710. Switching element SWB-m is provided between the input terminal of inverter 71m and the output terminal side of inverter 711.

 各ビット線が、スイッチング素子を介してメモリセルMCに接続されている。具体的には、ビット線BLY0が、スイッチング素子SWC-0を介して、メモリセルMC-0に接続されている。より具体的には、ビット線BLY0が、スイッチング素子SWC-0を介して、メモリセルMC-0のループ回路におけるインバータ720の出力端子とスイッチング素子SWA-0との間の接続点CP0に接続されている。ビット線BLY1が、スイッチング素子SWC-1を介して、メモリセルMC-1に接続されている。より具体的には、ビット線BLY1が、スイッチング素子SWC-1を介して、メモリセルMC-1のループ回路におけるインバータ721の出力端子とスイッチング素子SWA-1との間の接続点CP1に接続されている。ビット線BLYmが、スイッチング素子SWC-mを介して、メモリセルMC-mに接続されている。より具体的には、ビット線BLYmが、スイッチング素子SWC-mを介して、メモリセルMC-mのループ回路におけるインバータ72mの出力端子とスイッチング素子SWA-mとの間の接続点CPmに接続されている。本実施形態では、各接続点CP0、CP1・・・CPmが各メモリセルの記憶ノードを形成している。 Each bit line is connected to a memory cell MC via a switching element. Specifically, the bit line BLY0 is connected to the memory cell MC-0 via the switching element SWC-0. More specifically, the bit line BLY0 is connected to a connection point CP0 between the output terminal of the inverter 720 in the loop circuit of the memory cell MC-0 and the switching element SWA-0 via the switching element SWC-0. The bit line BLY1 is connected to the memory cell MC-1 via the switching element SWC-1. More specifically, the bit line BLY1 is connected to a connection point CP1 between the output terminal of the inverter 721 in the loop circuit of the memory cell MC-1 and the switching element SWA-1 via the switching element SWC-1. The bit line BLYm is connected to the memory cell MC-m via the switching element SWC-m. More specifically, the bit line BLYm is connected to a connection point CPm between the output terminal of the inverter 72m in the loop circuit of the memory cell MC-m and the switching element SWA-m via the switching element SWC-m. In this embodiment, each connection point CP0, CP1, ... CPm forms a storage node of each memory cell.

 プリチャージ回路52Bが、所定のビット線及びメモリセルMC毎に設けられたスイッチング素子を介して、それぞれのメモリセルMCに接続されている。具体的には、プリチャージ回路52Bが、ビット線BLY0及びスイッチング素子SWC-0を介して、メモリセルMC-0と接続されている。また、プリチャージ回路52Bが、ビット線BLY1及びスイッチング素子SWC-1を介して、メモリセルMC-1と接続されている。また、プリチャージ回路52Bが、ビット線BLYm及びスイッチング素子SWC-mを介して、メモリセルMC-mと接続されている。 The precharge circuit 52B is connected to each memory cell MC via a predetermined bit line and a switching element provided for each memory cell MC. Specifically, the precharge circuit 52B is connected to memory cell MC-0 via bit line BLY0 and switching element SWC-0. The precharge circuit 52B is also connected to memory cell MC-1 via bit line BLY1 and switching element SWC-1. The precharge circuit 52B is also connected to memory cell MC-m via bit line BLYm and switching element SWC-m.

 ADコンバータ62が、所定のビット線及びメモリセルMC毎に設けられたスイッチング素子を介して、それぞれのメモリセルMCに接続されている。具体的には、ADコンバータ62が、ビット線BLY0及びスイッチング素子SWC-0を介して、メモリセルMC-0と接続されている。また、ADコンバータ62が、ビット線BLY1及びスイッチング素子SWC-1を介して、メモリセルMC-1と接続されている。また、ADコンバータ62が、ビット線BLYm及びスイッチング素子SWC-mを介して、メモリセルMC-mと接続されている。 The AD converter 62 is connected to each memory cell MC via a predetermined bit line and a switching element provided for each memory cell MC. Specifically, the AD converter 62 is connected to memory cell MC-0 via bit line BLY0 and switching element SWC-0. The AD converter 62 is also connected to memory cell MC-1 via bit line BLY1 and switching element SWC-1. The AD converter 62 is also connected to memory cell MC-m via bit line BLYm and switching element SWC-m.

(メモリ部で行われる処理例)
 次に、メモリ部70で行われる処理の一例について説明する。始めに、メモリ部70に対するデータの書き込み処理及びデータの読み出し処理について説明する。なお、データの書き込み処理及びデータの読み出し処理の際は、スイッチング素子SWC-0、SWC-1・・・SWC-mはいずれもオフ状態とされる。
(Example of processing performed in the memory unit)
Next, an example of processing performed in the memory unit 70 will be described. First, a data write process and a data read process for the memory unit 70 will be described. Note that, during the data write process and the data read process, all of the switching elements SWC-0, SWC-1, ..., SWC-m are turned off.

 メモリセルMC-0に対して、データを書き込む場合には、スイッチング素子SWB-0がオン状態にされ、スイッチング素子SWB-1がオフ状態にされ、スイッチング素子SWA-0がオフ状態にされる。これにより、入力端子TIを介して入力されるHレベル若しくはLレベルのデータがメモリセルMC-0に書き込まれ保持される。メモリセルMC-0に書き込まれたデータは、所定のクロック信号に応じて次段のメモリセルMC-1に転送される。例えば、スイッチング素子SWB-0がオフ状態にされ、スイッチング素子SWB-1がオン状態にされ、スイッチング素子SWA-0がオン状態にされ、スイッチング素子SWA-1がオフ状態にされる。これにより、メモリセルMC-0に保持されたデータがメモリセルMC-1に転送される。以上の処理が繰り返されることで、入力端子TIを介して入力された画像データが順次転送され、1ライン分の画像データがメモリ部70に記憶される。各メモリセルMCに記憶された画像データが所定のクロック信号に応じて順次転送されることで、当該画像データが読み出され出力端子TOから出力される。 When data is written to memory cell MC-0, switching element SWB-0 is turned on, switching element SWB-1 is turned off, and switching element SWA-0 is turned off. As a result, H-level or L-level data input via input terminal TI is written and held in memory cell MC-0. The data written to memory cell MC-0 is transferred to the next-stage memory cell MC-1 in response to a predetermined clock signal. For example, switching element SWB-0 is turned off, switching element SWB-1 is turned on, switching element SWA-0 is turned on, and switching element SWA-1 is turned off. As a result, the data held in memory cell MC-0 is transferred to memory cell MC-1. By repeating the above process, image data input via input terminal TI is transferred sequentially, and one line's worth of image data is stored in memory unit 70. By sequentially transferring image data stored in each memory cell MC in response to a predetermined clock signal, the image data is read out and output from output terminal TO.

 次に、メモリ部70で行われるAPL算出処理について説明する。APLを算出する方法は、基本的に第1の実施形態と同様である。すなわち、各ビット線をプリチャージ回路52BがHレベルにプリチャージし、ADコンバータ62が、所定の検出期間後の電位を検出し、検出した電位をデジタル信号に変換した値をAPL算出回路63に出力する。そして、APL算出回路63が、デジタル信号に応じたAPLを算出する。 Next, the APL calculation process performed in the memory unit 70 will be described. The method of calculating the APL is basically the same as in the first embodiment. That is, the precharge circuit 52B precharges each bit line to the H level, the AD converter 62 detects the potential after a predetermined detection period, and outputs the value obtained by converting the detected potential into a digital signal to the APL calculation circuit 63. The APL calculation circuit 63 then calculates the APL according to the digital signal.

 APL算出処理は、例えば、メモリ部70に1ライン分の画像データが記憶された後に行われる。APL算出処理は、画像データを処理する一連のシーケンスの中で適宜なタイミングで行うことができる。 The APL calculation process is performed, for example, after one line of image data is stored in the memory unit 70. The APL calculation process can be performed at an appropriate timing within a series of sequences for processing image data.

 各メモリセルMCに画像データが書き込まれた後、スイッチング素子SWA-0、SWA-1・・・SWA-m、及び、SWB-0、SWB-1・・・SWB-mがオフ状態にされる。この段階では、各スイッチング素子SWC-0、SWC-1・・・SWC-mもオフ状態にされる。各スイッチング素子SWC-0、SWC-1・・・SWC-mがオン状態にされた後に、プリチャージ回路52Bが動作することで、各ビット線BLY0、BLY1・・・BLYmがHレベルにプリチャージされる。 After image data is written to each memory cell MC, the switching elements SWA-0, SWA-1...SWA-m and SWB-0, SWB-1...SWB-m are turned off. At this stage, each switching element SWC-0, SWC-1...SWC-m is also turned off. After each switching element SWC-0, SWC-1...SWC-m is turned on, the precharge circuit 52B operates to precharge each bit line BLY0, BLY1...BLYm to the H level.

 上述したように、各メモリセルMCの記憶ノードである接続点CP0、CP1・・・CPmの論理レベルについて、LレベルよりもHレベルが多い場合にはディスチャージ量が小さくなり、プリチャージ後の電位の低下が小さくなる。各メモリセルMCの記憶ノードである接続点CP0、CP1・・・CPmの論理レベルについて、HレベルよりもLレベルが多い場合にはディスチャージ量が大きくなり、プリチャージ後の電位の低下が大きくなる。検出期間後の所定のタイミングにおける電位を検出することで、各接続点CP0、CP1・・・CPmのHレベルの概略的な多さ、換言すれば、各メモリセルMCの記憶状態を検出することが可能となる。ADコンバータ62は、検出期間経過後のタイミングでの電位をデジタル信号に変換してAPL算出回路63に出力する。APL算出回路63は、デジタル信号の値に応じたAPLを算出し、算出したAPLを後段の画像処理部26に出力する。画像処理部26におけるAPLを用いた処理は第1の実施形態と同様であるため、重複した説明を省略する。 As described above, when the logical levels of the connection points CP0, CP1, ... CPm, which are the storage nodes of each memory cell MC, are more H-level than L-level, the discharge amount is small and the drop in potential after precharge is small. When the logical levels of the connection points CP0, CP1, ... CPm, which are the storage nodes of each memory cell MC, are more L-level than H-level, the discharge amount is large and the drop in potential after precharge is large. By detecting the potential at a predetermined timing after the detection period, it is possible to detect the approximate number of H-levels of each connection point CP0, CP1, ... CPm, in other words, the memory state of each memory cell MC. The AD converter 62 converts the potential at the timing after the detection period into a digital signal and outputs it to the APL calculation circuit 63. The APL calculation circuit 63 calculates the APL according to the value of the digital signal and outputs the calculated APL to the image processing unit 26 at the subsequent stage. The processing using the APL in the image processing unit 26 is the same as in the first embodiment, so a duplicated description will be omitted.

 以上説明したように、ラインバッファとして構成されるメモリ部に対しても本技術を適用することができる。 As explained above, this technology can also be applied to memory units configured as line buffers.

<適用例>
(電子機器)
 本技術を適用した上記の実施形態に係る表示装置は、各種の電子機器に備えられてもよい。電子機器の適用例としては、例えば、以下のものがあげられる。
<Application Examples>
(electronic equipment)
The display device according to the above embodiment to which the present technology is applied may be provided in various electronic devices. Application examples of the electronic device include the following.

(適用例1)
 図16は、ヘッドマウントディスプレイ110の外観の一例を表すものである。ヘッドマウントディスプレイ110は、例えば、眼鏡形の表示部111の両側に、使用者の頭部に装着するための耳掛け部112を有する。このようなヘッドマウントディスプレイ110に、上記実施形態等に係る表示システムを適用することができる。
(Application Example 1)
16 shows an example of the appearance of a head mounted display 110. The head mounted display 110 has, for example, ear hooks 112 for wearing on the user's head on both sides of a glasses-shaped display unit 111. The display system according to the above-described embodiment and the like can be applied to such a head mounted display 110.

(適用例2)
 図17は、他のヘッドマウントディスプレイ120の外観の一例を表すものである。ヘッドマウントディスプレイ120は、本体部121と、アーム部122と、鏡筒部123とを有する、透過式のヘッドマウントディスプレイである。このヘッドマウントディスプレイ120は、眼鏡128に装着されている。本体部121は、ヘッドマウントディスプレイ120の動作を制御するための制御基板や表示部を有している。この表示部は、表示画像の画像光を射出する。アーム部122は、本体部121と鏡筒部123とを連結し、鏡筒部123を支持する。鏡筒部123は、本体部121からアーム部122を介して供給された画像光を、眼鏡128のレンズ129を介して、ユーザの目に向かって投射する。このようなヘッドマウントディスプレイ120に、上記実施形態等に係る表示システムを適用することができる。
(Application Example 2)
FIG. 17 shows an example of the appearance of another head mounted display 120. The head mounted display 120 is a see-through head mounted display having a main body 121, an arm 122, and a lens barrel 123. This head mounted display 120 is attached to glasses 128. The main body 121 has a control board and a display unit for controlling the operation of the head mounted display 120. This display unit emits image light of a display image. The arm 122 connects the main body 121 and the lens barrel 123, and supports the lens barrel 123. The lens barrel 123 projects the image light supplied from the main body 121 through the arm 122 toward the user's eyes through the lens 129 of the glasses 128. The display system according to the above embodiment can be applied to such a head mounted display 120.

 なお、このヘッドマウントディスプレイ120は、いわゆる導光板方式のヘッドマウントディスプレイであるが、これに限定されるものではなく、例えば、いわゆるバードバス方式のヘッドマウントディスプレイであってもよい。このバードバス方式のヘッドマウントディスプレイは、例えば、ビームスプリッタと、部分的に透明なミラーとを備えている。ビームスプリッタは、画像情報でエンコードされた光をミラーに向けて出力し、ミラーは、光をユーザの目に向かって反射させる。ビームスプリッタおよび部分的に透明なミラーの両方は、部分的に透明である。これにより、周囲環境からの光がユーザの目に到達する。 Note that the head mounted display 120 is a so-called light guide plate type head mounted display, but is not limited to this and may be, for example, a so-called birdbath type head mounted display. The birdbath type head mounted display includes, for example, a beam splitter and a partially transparent mirror. The beam splitter outputs light encoded with image information toward the mirror, and the mirror reflects the light toward the user's eyes. Both the beam splitter and the partially transparent mirror are partially transparent. This allows light from the surrounding environment to reach the user's eyes.

(適用例3)
 図18A、18Bは、デジタルスチルカメラ138の外観の一例を表すものであり、図18Aは正面図を示し、図18Bは背面図を示す。このデジタルスチルカメラ138は、レンズ交換式一眼レフレックスタイプのカメラであり、カメラ本体部(カメラボディ)131と、撮影レンズユニット132と、グリップ部133と、モニタ134と、電子ビューファインダ135とを有する。撮影レンズユニット132は、交換式のレンズユニットであり、カメラ本体部311の正面のほぼ中央付近に設けられる。グリップ部133は、カメラ本体部311の正面の左側に設けられ、撮影者は、このグリップ部133を把持するようになっている。モニタ134は、カメラ本体部131の背面のほぼ中央よりも左側に設けられる。電子ビューファインダ135は、カメラ本体部131の背面において、モニタ134の上部に設けられる。撮影者は、この電子ビューファインダ135を覗くことにより、撮影レンズユニット132から導かれた被写体の光像を視認し、構図を決定することができる。電子ビューファインダ135に、上記実施形態等に係る表示システムを適用することができる。
(Application Example 3)
18A and 18B show an example of the appearance of a digital still camera 138, with FIG. 18A showing a front view and FIG. 18B showing a rear view. This digital still camera 138 is a lens-interchangeable single-lens reflex type camera, and has a camera main body (camera body) 131, a photographing lens unit 132, a grip unit 133, a monitor 134, and an electronic viewfinder 135. The photographing lens unit 132 is an interchangeable lens unit, and is provided near the approximate center of the front of the camera main body 311. The grip unit 133 is provided on the left side of the front of the camera main body 311, and the photographer holds the grip unit 133. The monitor 134 is provided on the left side of the approximate center of the rear of the camera main body 131. The electronic viewfinder 135 is provided above the monitor 134 on the rear of the camera main body 131. A photographer can visually confirm the optical image of the subject guided through the photographing lens unit 132 and determine the composition by looking through the electronic viewfinder 135. The display system according to the above-described embodiment and the like can be applied to the electronic viewfinder 135.

(適用例4)
 図19は、テレビジョン装置140の外観の一例を表すものである。テレビジョン装置140は、フロントパネル142およびフィルターガラス143を含む映像表示画面部141を有する。この映像表示画面部141に、上記実施形態等に係る表示システムを適用することができる。
(Application Example 4)
19 shows an example of the appearance of a television device 140. The television device 140 has an image display screen unit 141 including a front panel 142 and a filter glass 143. The display system according to the above-described embodiment and the like can be applied to this image display screen unit 141.

(適用例5)
 図20は、スマートフォン150の外観の一例を表すものである。スマートフォン150は、各種情報を表示する表示部151と、ユーザによる操作入力を受け付けるボタンなどを含む操作部152とを有する。この表示部151に、上記実施形態等に係る表示システムを適用することができる。
(Application Example 5)
20 shows an example of the appearance of a smartphone 150. The smartphone 150 has a display unit 151 that displays various information, and an operation unit 152 that includes buttons and the like that accept operation inputs by a user. The display system according to the above-described embodiment and the like can be applied to this display unit 151.

(適用例6)
 上記の実施形態に係る表示装置は、乗物に備えられる各種のディスプレイに備えられてもよい。
(Application Example 6)
The display device according to the above-described embodiment may be provided in various displays provided in vehicles.

 図21A及び図21Bは、各種のディスプレイが備えられた乗物200の内部の構成の一例を示す図である。具体的には、図21Aは、乗物200の後方から前方にかけての乗物200の内部の様子の一例を示す図、図21Bは、乗物200の斜め後方から斜め前方にかけての乗物200の内部の様子の一例を示す図である。 21A and 21B are diagrams showing an example of the internal configuration of a vehicle 200 equipped with various displays. Specifically, FIG. 21A is a diagram showing an example of the interior of the vehicle 200 from the rear to the front, and FIG. 21B is a diagram showing an example of the interior of the vehicle 200 from diagonally rear to diagonally front.

 乗物200は、センターディスプレイ201と、コンソールディスプレイ202と、ヘッドアップディスプレイ203と、デジタルリアミラー204と、ステアリングホイールディスプレイ205と、リアエンタテイメントディスプレイ206とを備える。これらのディスプレイの少なくとも1つが、実施形態に係る表示システムを備える。例えば、これらのディスプレイのすべてが、実施形態に係る表示システムを備えてもよい。 The vehicle 200 includes a center display 201, a console display 202, a head-up display 203, a digital rear mirror 204, a steering wheel display 205, and a rear entertainment display 206. At least one of these displays includes a display system according to an embodiment. For example, all of these displays may include a display system according to an embodiment.

 センターディスプレイ201は、運転席208及び助手席209に対向するダッシュボードの部分に配置されている。図21A及び図21Bでは、運転席208側から助手席209側まで延びる横長形状のセンターディスプレイ201の例を示すが、センターディスプレイ201の画面サイズや配置場所は任意である。センターディスプレイ201には、種々のセンサで検知された情報を表示可能である。具体的な一例として、センターディスプレイ201には、イメージセンサで撮影した撮影画像、ToFセンサで計測された乗物200の前方や側方の障害物までの距離画像、赤外線センサで検出された乗客の体温などを表示可能である。センターディスプレイ201は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。 The center display 201 is disposed in a portion of the dashboard facing the driver's seat 208 and the passenger seat 209. Although Figs. 21A and 21B show an example of a horizontally elongated center display 201 extending from the driver's seat 208 side to the passenger seat 209 side, the screen size and location of the center display 201 are arbitrary. The center display 201 can display information detected by various sensors. As a specific example, the center display 201 can display an image captured by an image sensor, an image of the distance to an obstacle in front of or to the side of the vehicle 200 measured by a ToF sensor, and the body temperature of a passenger detected by an infrared sensor. The center display 201 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information.

 安全関連情報は、居眠り検知、よそ見検知、同乗している子供のいたずら検知、シートベルト装着有無、乗員の置き去り検知などの情報であり、例えばセンターディスプレイ201の裏面側に重ねて配置されたセンサにて検知される情報である。操作関連情報は、センサを用いて乗員の操作に関するジェスチャを検知する。検知されるジェスチャは、乗物200内の種々の設備の操作を含んでいてもよい。例えば、空調設備、ナビゲーション装置、AV装置、照明装置等の操作を検知する。ライフログは、乗員全員のライフログを含む。例えば、ライフログは、乗車中の各乗員の行動記録を含む。ライフログを取得及び保存することで、事故時に乗員がどのような状態であったかを確認できる。健康関連情報は、温度センサなどのセンサを用いて乗員の体温を検知し、検知した体温に基づいて乗員の健康状態を推測する。あるいは、イメージセンサを用いて乗員の顔を撮像し、撮像した顔の表情から乗員の健康状態を推測してもよい。さらに、乗員に対して自動音声で会話を行って、乗員の回答内容に基づいて乗員の健康状態を推測してもよい。認証/識別関連情報は、センサを用いて顔認証を行うキーレスエントリ機能や、顔識別でシート高さや位置の自動調整機能などを含む。エンタテイメント関連情報は、センサを用いて乗員によるAV装置の操作情報を検出する機能や、センサで乗員の顔を認識して、乗員に適したコンテンツをAV装置にて提供する機能などを含む。 The safety-related information includes information such as detection of drowsiness, detection of distraction, detection of tampering by children in the vehicle, whether or not a seat belt is fastened, and detection of an occupant being left behind, and is information detected, for example, by a sensor arranged on the back side of the center display 201. The operation-related information is obtained by detecting gestures related to the operation of the occupant using a sensor. The detected gestures may include operations of various facilities in the vehicle 200. For example, operations of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. are detected. The life log includes the life log of all occupants. For example, the life log includes a record of the actions of each occupant while on board. By acquiring and saving the life log, it is possible to confirm the condition of the occupant at the time of the accident. The health-related information is obtained by detecting the body temperature of the occupant using a sensor such as a temperature sensor, and inferring the health condition of the occupant based on the detected body temperature. Alternatively, the face of the occupant may be captured using an image sensor, and the health condition of the occupant may be inferred from the facial expression captured in the image. Furthermore, the occupant may be spoken to by an automated voice and the occupant's health condition may be inferred based on the occupant's responses. Authentication/identification related information includes a keyless entry function that uses a sensor to perform face authentication, and a function for automatically adjusting seat height and position using face recognition. Entertainment related information includes a function for detecting operation information of an AV device by an occupant using a sensor, and a function for recognizing the occupant's face using a sensor and providing content suitable for the occupant via the AV device.

 コンソールディスプレイ202は、例えば、ライフログ情報の表示に用いることができる。コンソールディスプレイ202は、運転席208と助手席209の間のセンターコンソール210のシフトレバー211の近くに配置されている。コンソールディスプレイ202にも、種々のセンサで検知された情報を表示可能である。また、コンソールディスプレイ202には、イメージセンサで撮像された車両周辺の画像を表示してもよいし、車両周辺の障害物までの距離画像を表示してもよい。 The console display 202 can be used, for example, to display life log information. The console display 202 is disposed near the shift lever 211 on the center console 210 between the driver's seat 208 and the passenger seat 209. Information detected by various sensors can also be displayed on the console display 202. In addition, the console display 202 may display an image of the surroundings of the vehicle captured by an image sensor, or may display an image showing the distance to obstacles around the vehicle.

 ヘッドアップディスプレイ203は、運転席208の前方のフロントガラス212の奥に仮想的に表示される。ヘッドアップディスプレイ203は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。ヘッドアップディスプレイ203は、運転席208の正面に仮想的に配置されることが多いため、乗物200の速度や燃料(バッテリ)残量などの乗物200の操作に直接関連する情報を表示するのに適している。 The head-up display 203 is virtually displayed behind the windshield 212 in front of the driver's seat 208. The head-up display 203 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 203 is often virtually positioned in front of the driver's seat 208, it is suitable for displaying information directly related to the operation of the vehicle 200, such as the speed of the vehicle 200 and the remaining fuel (battery) level.

 デジタルリアミラー204は、乗物200の後方を表示できるだけでなく、後部座席の乗員の様子も表示できるため、デジタルリアミラー204の裏面側に重ねてセンサを配置することで、例えばライフログ情報の表示に用いることができる。 The digital rear-view mirror 204 can not only display the rear of the vehicle 200, but also display the state of passengers in the back seats. Therefore, by placing a sensor on the back side of the digital rear-view mirror 204, it can be used to display life log information, for example.

 ステアリングホイールディスプレイ205は、乗物200のハンドル213の中心付近に配置されている。ステアリングホイールディスプレイ205は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、ステアリングホイールディスプレイ205は、運転者の手の近くにあるため、運転者の体温等のライフログ情報を表示したり、AV装置や空調設備等の操作に関する情報などを表示したりするのに適している。 The steering wheel display 205 is disposed near the center of the steering wheel 213 of the vehicle 200. The steering wheel display 205 can be used to display, for example, at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information. In particular, since the steering wheel display 205 is located near the driver's hands, it is suitable for displaying life log information such as the driver's body temperature, and for displaying information related to the operation of AV equipment, air conditioning equipment, etc.

 リアエンタテイメントディスプレイ206は、運転席208や助手席209の背面側に取り付けられており、後部座席の乗員が視聴するためのものである。リアエンタテイメントディスプレイ206は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、リアエンタテイメントディスプレイ206は、後部座席の乗員の目の前にあるため、後部座席の乗員に関連する情報が表示される。例えば、AV装置や空調設備の操作に関する情報を表示したり、後部座席の乗員の体温等を温度センサで計測した結果を表示したりしてもよい。 The rear entertainment display 206 is attached to the back side of the driver's seat 208 and passenger seat 209, and is intended for viewing by rear seat passengers. The rear entertainment display 206 can be used to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information, for example. In particular, since the rear entertainment display 206 is located in front of the rear seat passengers, information related to the rear seat passengers is displayed on the rear entertainment display 206. For example, the rear entertainment display 206 may display information related to the operation of AV equipment or air conditioning equipment, or may display the results of measuring the body temperature of the rear seat passengers using a temperature sensor.

 表示装置の裏面側に重ねてセンサを配置し、周囲に存在する物体までの距離を計測することができる構成としてもよい。光学的な距離計測の手法には、大きく分けて、受動型と能動型がある。受動型は、センサから物体に光を投光せずに、物体からの光を受光して距離計測を行うものである。受動型には、レンズ焦点法、ステレオ法、及び単眼視法などがある。能動型は、物体に光を投光して、物体からの反射光をセンサで受光して距離計測を行うものである。能動型には、光レーダ方式、アクティブステレオ方式、照度差ステレオ法、モアレトポグラフィ法、干渉法などがある。上記の表示装置は、これらのどの方式の距離計測にも適用可能である。上記の表示装置の裏面側に重ねて配置されるセンサを用いることで、上述した受動型又は能動型の距離計測を行うことができる。 A sensor may be placed on the back side of the display device to measure the distance to surrounding objects. Optical distance measurement methods are broadly divided into passive and active types. Passive types measure distance by receiving light from an object without projecting light from the sensor onto the object. Passive types include the lens focusing method, stereo method, and monocular vision method. Active types measure distance by projecting light onto an object and receiving the light reflected from the object with a sensor. Active types include the optical radar method, active stereo method, photometric stereo method, moire topography method, and interference method. The above display device can be applied to any of these distance measurement methods. By using a sensor placed on the back side of the above display device, the above passive or active distance measurement can be performed.

<変形例>
 以上、本技術の実施形態及び適用例について具体的に説明したが、本技術の内容は上述した実施形態及び適用例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
<Modification>
Although the embodiments and application examples of the present technology have been specifically described above, the content of the present technology is not limited to the above-described embodiments and application examples, and various modifications based on the technical ideas of the present technology are possible.

[画素回路の変形例]
 始めに、画素回路の変形例について説明する。図22は、画素回路(画素)PIXの他の一構成例を表すものである。この画素回路PIXは、キャパシタC11,C12と、トランジスタMP12~MP15と、発光素子ELとを有している。トランジスタMP12~MP15はP型のMOSFETである。トランジスタMP12のゲートは制御線WSLに接続され、ソースは信号線SIGに接続され、ドレインはトランジスタMP14のゲートおよびキャパシタC12に接続される。キャパシタC11の一端は電源線VCCPに接続され、他端はキャパシタC12、トランジスタMP13のドレイン、およびトランジスタMP14のソースに接続される。キャパシタC12の一端はキャパシタC11の他端、トランジスタMP13のドレイン、およびトランジスタMP14のソースに接続され、他端はトランジスタMP12のドレインおよびトランジスタMP14のゲートに接続される。トランジスタMP13のゲートは制御線DSLに接続され、ソースは電源線VCCPに接続され、ドレインはトランジスタMP14のソース、キャパシタC11の他端、およびキャパシタC12の一端に接続される。トランジスタMP14のゲートはトランジスタMP12のドレインおよびキャパシタC12の他端に接続され、ソースはトランジスタMP13のドレイン、キャパシタC11の他端、およびキャパシタC12の一端に接続され、ドレインは発光素子ELのアノードおよびトランジスタMP15のソースに接続される。トランジスタMP15のゲートは制御線AZSLに接続され、ソースはトランジスタMP14のドレインおよび発光素子ELのアノードに接続され、ドレインは電源線VSSに接続される。
[Modification of pixel circuit]
First, a modified example of the pixel circuit will be described. Fig. 22 shows another example of the configuration of the pixel circuit (pixel) PIX. This pixel circuit PIX has capacitors C11 and C12, transistors MP12 to MP15, and a light-emitting element EL. The transistors MP12 to MP15 are P-type MOSFETs. The gate of the transistor MP12 is connected to a control line WSL, the source is connected to a signal line SIG, and the drain is connected to the gate of the transistor MP14 and the capacitor C12. One end of the capacitor C11 is connected to a power supply line VCCP, and the other end is connected to the capacitor C12, the drain of the transistor MP13, and the source of the transistor MP14. One end of the capacitor C12 is connected to the other end of the capacitor C11, the drain of the transistor MP13, and the source of the transistor MP14, and the other end is connected to the drain of the transistor MP12 and the gate of the transistor MP14. The gate of the transistor MP13 is connected to the control line DSL, the source is connected to the power supply line VCCP, and the drain is connected to the source of the transistor MP14, the other end of the capacitor C11, and one end of the capacitor C12. The gate of the transistor MP14 is connected to the drain of the transistor MP12 and the other end of the capacitor C12, the source is connected to the drain of the transistor MP13, the other end of the capacitor C11, and one end of the capacitor C12, and the drain is connected to the anode of the light-emitting element EL and the source of the transistor MP15. The gate of the transistor MP15 is connected to the control line AZSL, the source is connected to the drain of the transistor MP14 and the anode of the light-emitting element EL, and the drain is connected to the power supply line VSS.

 この構成により、画素回路PIXでは、トランジスタMP12がオン状態になることにより、信号線SIGから供給された画素信号に基づいてキャパシタC12の両端間の電圧が設定される。トランジスタMP13は、制御線DSLの信号に基づいてオンオフする。トランジスタMP14は、トランジスタMP13がオン状態である期間において、キャパシタC12の両端間の電圧に応じた電流を発光素子ELに流す。発光素子ELは、トランジスタMP14から供給された電流に基づいて発光する。このようにして、画素回路PIXは、画素信号に応じた輝度で発光する。トランジスタMP15は、制御線AZSLの信号に基づいてオンオフする。トランジスタMP15がオン状態である期間において、発光素子ELのアノードの電圧は電源線VSSの電圧に設定されることにより初期化される。 With this configuration, in the pixel circuit PIX, when the transistor MP12 is turned on, the voltage across the capacitor C12 is set based on the pixel signal supplied from the signal line SIG. The transistor MP13 is turned on and off based on the signal on the control line DSL. During the period when the transistor MP13 is on, the transistor MP14 passes a current corresponding to the voltage across the capacitor C12 through the light-emitting element EL. The light-emitting element EL emits light based on the current supplied from the transistor MP14. In this way, the pixel circuit PIX emits light at a brightness corresponding to the pixel signal. The transistor MP15 is turned on and off based on the signal on the control line AZSL. During the period when the transistor MP15 is on, the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.

 なお、トランジスタMP12~MP15は、低温多結晶シリコン(LTPS:Low Temperature Poly Silicon)を用いたトランジスタであってもよい。また、トランジスタMP12、MP15のうち少なくともいずれかは、酸化物半導体を用いたトランジスタであってもよい。 Note that the transistors MP12 to MP15 may be transistors using low temperature polycrystalline silicon (LTPS). In addition, at least one of the transistors MP12 and MP15 may be a transistor using an oxide semiconductor.

 図23は、画素回路PIXの他の一構成例を表すものである。この画素回路PIXは、キャパシタC21と、トランジスタMN22~MN25と、発光素子ELとを有している。トランジスタMN22~MN25はN型のMOSFETである。トランジスタMN22のゲートは制御線WSLに接続され、ドレインは信号線SIGに接続され、ソースはトランジスタMN24のゲートおよびキャパシタC21に接続される。キャパシタC21の一端はトランジスタMN22のソースおよびトランジスタMN24のゲートに接続され、他端はトランジスタMN24のソース、トランジスタMN25のドレイン、および発光素子ELのアノードに接続される。トランジスタMN23のゲートは制御線DSLに接続され、ドレインは電源線VCCPに接続され、ソースはトランジスタMN24のドレインに接続される。トランジスタMN24のゲートはトランジスタMN22のソースおよびキャパシタC21の一端に接続され、ドレインはトランジスタMN23のソースに接続され、ソースはキャパシタC21の他端、トランジスタMN25のドレイン、および発光素子ELのアノードに接続される。トランジスタMN25のゲートは制御線AZSLに接続され、ドレインはトランジスタMN24のソース、キャパシタC21の他端、および発光素子ELのアノードに接続され、ソースは電源線VSSに接続される。 Figure 23 shows another example configuration of the pixel circuit PIX. This pixel circuit PIX has a capacitor C21, transistors MN22 to MN25, and a light-emitting element EL. Transistors MN22 to MN25 are N-type MOSFETs. The gate of transistor MN22 is connected to a control line WSL, the drain is connected to a signal line SIG, and the source is connected to the gate of transistor MN24 and capacitor C21. One end of capacitor C21 is connected to the source of transistor MN22 and the gate of transistor MN24, and the other end is connected to the source of transistor MN24, the drain of transistor MN25, and the anode of the light-emitting element EL. The gate of transistor MN23 is connected to a control line DSL, the drain is connected to a power supply line VCCP, and the source is connected to the drain of transistor MN24. The gate of transistor MN24 is connected to the source of transistor MN22 and one end of capacitor C21, the drain is connected to the source of transistor MN23, the source is connected to the other end of capacitor C21, the drain of transistor MN25, and the anode of the light-emitting element EL. The gate of transistor MN25 is connected to the control line AZSL, the drain is connected to the source of transistor MN24, the other end of capacitor C21, and the anode of the light-emitting element EL, and the source is connected to the power supply line VSS.

 この構成により、画素回路PIXでは、トランジスタMN22がオン状態になることにより、信号線SIGから供給された画素信号に基づいてキャパシタC21の両端間の電圧が設定される。トランジスタMN23は、制御線DSLの信号に基づいてオンオフする。トランジスタMN24は、トランジスタMN23がオン状態である期間において、キャパシタC21の両端間の電圧に応じた電流を発光素子ELに流す。発光素子ELは、トランジスタMN24から供給された電流に基づいて発光する。このようにして、画素回路PIXは、画素信号に応じた輝度で発光する。トランジスタMN25は、制御線AZSLの信号に基づいてオンオフする。トランジスタMN25がオン状態である期間において、発光素子ELのアノードの電圧は電源線VSSの電圧に設定されることにより初期化される。 With this configuration, in the pixel circuit PIX, when the transistor MN22 is turned on, the voltage across the capacitor C21 is set based on the pixel signal supplied from the signal line SIG. The transistor MN23 is turned on and off based on the signal on the control line DSL. During the period when the transistor MN23 is on, the transistor MN24 passes a current corresponding to the voltage across the capacitor C21 through the light-emitting element EL. The light-emitting element EL emits light based on the current supplied from the transistor MN24. In this way, the pixel circuit PIX emits light with a brightness corresponding to the pixel signal. The transistor MN25 is turned on and off based on the signal on the control line AZSL. During the period when the transistor MN25 is on, the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.

 なお、トランジスタMN22~MN25は、低温多結晶シリコン(LTPS:Low Temperature Poly Silicon)を用いたトランジスタであってもよい。また、トランジスタMN22、MN25のうち少なくともいずれかは、酸化物半導体を用いたトランジスタであってもよい。 Note that the transistors MN22 to MN25 may be transistors using low temperature polycrystalline silicon (LTPS). In addition, at least one of the transistors MN22 and MN25 may be a transistor using an oxide semiconductor.

 図24は、画素回路PIXの他の一構成例を表すものである。この画素回路PIXは、キャパシタC31と、トランジスタMP32~MP36と、発光素子ELとを有している。トランジスタMP32~MP36はP型のMOSFETである。トランジスタMP32のゲートは制御線WSLに接続され、ソースは信号線SIGに接続され、ドレインはトランジスタMP33のゲート、トランジスタMP34のドレイン、およびキャパシタC31に接続される。キャパシタC31の一端は電源線VCCPに接続され、他端はトランジスタMP32のドレイン、トランジスタMP33のゲート、およびトランジスタMP34のドレインに接続される。トランジスタMP34のゲートは制御線AZSL1に接続され、ソースはトランジスタMP33のドレインおよびトランジスタMP35のソースに接続され、ドレインはトランジスタMP32のドレイン、トランジスタMP33のゲート、およびキャパシタC31の他端に接続される。トランジスタMP35のゲートは制御線DSLに接続され、ソースはトランジスタMP33のドレインおよびトランジスタMP34のソースに接続され、ドレインはトランジスタMP36のソースおよび発光素子ELのアノードに接続される。トランジスタMP36のゲートは制御線AZSL2に接続され、ソースはトランジスタMP35のドレインおよび発光素子ELのアノードに接続され、ドレインは電源線VSSに接続される。 Figure 24 shows another example configuration of the pixel circuit PIX. This pixel circuit PIX has a capacitor C31, transistors MP32 to MP36, and a light-emitting element EL. Transistors MP32 to MP36 are P-type MOSFETs. The gate of transistor MP32 is connected to a control line WSL, its source is connected to a signal line SIG, and its drain is connected to the gate of transistor MP33, the drain of transistor MP34, and capacitor C31. One end of capacitor C31 is connected to a power supply line VCCP, and the other end is connected to the drain of transistor MP32, the gate of transistor MP33, and the drain of transistor MP34. The gate of transistor MP34 is connected to a control line AZSL1, its source is connected to the drain of transistor MP33 and the source of transistor MP35, and its drain is connected to the drain of transistor MP32, the gate of transistor MP33, and the other end of capacitor C31. The gate of transistor MP35 is connected to the control line DSL, the source is connected to the drain of transistor MP33 and the source of transistor MP34, and the drain is connected to the source of transistor MP36 and the anode of the light-emitting element EL. The gate of transistor MP36 is connected to the control line AZSL2, the source is connected to the drain of transistor MP35 and the anode of the light-emitting element EL, and the drain is connected to the power supply line VSS.

 この構成により、画素回路PIXでは、トランジスタMP32がオン状態になることにより、信号線SIGから供給された画素信号に基づいてキャパシタC31の両端間の電圧が設定される。トランジスタMP35は、制御線DSLの信号に基づいてオンオフする。トランジスタMP33は、トランジスタMP35がオン状態である期間において、キャパシタC31の両端間の電圧に応じた電流を、発光素子ELに流す。発光素子ELは、トランジスタMP33から供給された電流に基づいて発光する。このようにして、画素回路PIXは、画素信号に応じた輝度で発光する。トランジスタMP34は、制御線AZSL1の信号に基づいてオンオフする。トランジスタMP34がオン状態である期間において、トランジスタMP33のドレインおよびゲートが互いに接続される。トランジスタMP36は、制御線AZSL2の信号に基づいてオンオフする。トランジスタMP36がオン状態になる期間において、発光素子ELのアノードの電圧は電源線VSSの電圧に設定されることにより初期化される。 With this configuration, in the pixel circuit PIX, when the transistor MP32 is turned on, the voltage across the capacitor C31 is set based on the pixel signal supplied from the signal line SIG. The transistor MP35 is turned on and off based on the signal on the control line DSL. During the period when the transistor MP35 is on, the transistor MP33 passes a current corresponding to the voltage across the capacitor C31 through the light-emitting element EL. The light-emitting element EL emits light based on the current supplied from the transistor MP33. In this way, the pixel circuit PIX emits light at a luminance corresponding to the pixel signal. The transistor MP34 is turned on and off based on the signal on the control line AZSL1. During the period when the transistor MP34 is on, the drain and gate of the transistor MP33 are connected to each other. The transistor MP36 is turned on and off based on the signal on the control line AZSL2. During the period when the transistor MP36 is on, the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.

 なお、トランジスタMP32~MP36は、低温多結晶シリコン(LTPS:Low Temperature Poly Silicon)を用いたトランジスタであってもよい。また、トランジスタMP32、MP34、MP36のうち少なくともいずれかは、酸化物半導体を用いたトランジスタであってもよい。 Note that transistors MP32 to MP36 may be transistors using low temperature polycrystalline silicon (LTPS). Also, at least one of transistors MP32, MP34, and MP36 may be a transistor using an oxide semiconductor.

 図25は、画素回路PIXの他の一構成例を表すものである。キャパシタC48の一端は信号線SIG1に接続され、他端は電源線VSSに接続される。キャパシタC49の一端は信号線SIG1に接続され、他端は信号線SIG2に接続される。トランジスタMP49はP型のMOSFETであり、ゲートは制御線WSL2に接続され、ソースは信号線SIG1に接続され、ドレインは信号線SIG2に接続される。 FIG. 25 shows another example of the configuration of the pixel circuit PIX. One end of the capacitor C48 is connected to the signal line SIG1, and the other end is connected to the power supply line VSS. One end of the capacitor C49 is connected to the signal line SIG1, and the other end is connected to the signal line SIG2. The transistor MP49 is a P-type MOSFET, with its gate connected to the control line WSL2, its source connected to the signal line SIG1, and its drain connected to the signal line SIG2.

 画素回路PIXは、キャパシタC41と、トランジスタMP42~MP46と、発光素子ELとを有している。トランジスタMP42~MP46は、P型のMOSFETである。トランジスタMP42のゲートは制御線WSL1に接続され、ソースは信号線SIG2に接続され、ドレインはトランジスタMP43のゲートおよびキャパシタC41に接続される。キャパシタC41の一端は電源線VCCPに接続され、他端はトランジスタMP42のドレインおよびトランジスタMP43のゲートに接続される。トランジスタMP43のゲートはトランジスタMP42のドレインおよびキャパシタC41の他端に接続され、ソースは電源線VCCPに接続され、ドレインはトランジスタMP44、MP45のソースに接続される。トランジスタMP44のゲートは制御線AZSL1に接続され、ソースはトランジスタMP43のドレインおよびトランジスタMP45のソースに接続され、ドレインは信号線SIG2に接続される。トランジスタMP45のゲートは制御線DSLに接続され、ソースはトランジスタMP43のドレインおよびトランジスタMP44のソースに接続され、ドレインはトランジスタMP46のソースおよび発光素子ELのアノードに接続される。トランジスタMP46のゲートは制御線AZSL2に接続され、ソースはトランジスタMP45のドレインおよび発光素子ELのアノードに接続され、ドレインは電源線VSSに接続される。 The pixel circuit PIX has a capacitor C41, transistors MP42 to MP46, and a light-emitting element EL. Transistors MP42 to MP46 are P-type MOSFETs. The gate of transistor MP42 is connected to control line WSL1, its source is connected to signal line SIG2, and its drain is connected to the gate of transistor MP43 and capacitor C41. One end of capacitor C41 is connected to power supply line VCCP, and the other end is connected to the drain of transistor MP42 and the gate of transistor MP43. The gate of transistor MP43 is connected to the drain of transistor MP42 and the other end of capacitor C41, its source is connected to power supply line VCCP, and its drain is connected to the sources of transistors MP44 and MP45. The gate of transistor MP44 is connected to control line AZSL1, its source is connected to the drain of transistor MP43 and the source of transistor MP45, and its drain is connected to signal line SIG2. The gate of transistor MP45 is connected to the control line DSL, the source is connected to the drain of transistor MP43 and the source of transistor MP44, and the drain is connected to the source of transistor MP46 and the anode of the light-emitting element EL. The gate of transistor MP46 is connected to the control line AZSL2, the source is connected to the drain of transistor MP45 and the anode of the light-emitting element EL, and the drain is connected to the power supply line VSS.

 この構成により、画素回路PIXでは、トランジスタMP42がオン状態になることにより、信号線SIG1からキャパシタC49を介して供給された画素信号に基づいてキャパシタC41の両端間の電圧が設定される。トランジスタMP45は、制御線DSLの信号に基づいてオンオフする。トランジスタMP43は、トランジスタMP45がオン状態である期間において、キャパシタC41の両端間の電圧に応じた電流を発光素子ELに流す。発光素子ELは、トランジスタMP43から供給された電流に基づいて発光する。このようにして、画素回路PIXは、画素信号に応じた輝度で発光する。トランジスタMP44は、制御線AZSL1の信号に基づいてオンオフする。トランジスタMP44がオン状態である期間において、トランジスタMP43のドレインおよび信号線SIG2が互いに接続される。トランジスタMP46は、制御線AZSL2の信号に基づいてオンオフする。トランジスタMP46がオン状態になる期間において、発光素子ELのアノードの電圧は電源線VSSの電圧に設定されることにより初期化される。 With this configuration, in the pixel circuit PIX, when the transistor MP42 is turned on, the voltage across the capacitor C41 is set based on the pixel signal supplied from the signal line SIG1 via the capacitor C49. The transistor MP45 is turned on and off based on the signal on the control line DSL. During the period when the transistor MP45 is on, the transistor MP43 passes a current corresponding to the voltage across the capacitor C41 through the light-emitting element EL. The light-emitting element EL emits light based on the current supplied from the transistor MP43. In this way, the pixel circuit PIX emits light at a luminance corresponding to the pixel signal. The transistor MP44 is turned on and off based on the signal on the control line AZSL1. During the period when the transistor MP44 is on, the drain of the transistor MP43 and the signal line SIG2 are connected to each other. The transistor MP46 is turned on and off based on the signal on the control line AZSL2. During the period when the transistor MP46 is on, the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.

 なお、トランジスタMP42~MP46、MP49は、低温多結晶シリコン(LTPS:Low Temperature Poly Silicon)を用いたトランジスタであってもよい。また、トランジスタMP42、MP46、MP49のうち少なくともいずれかは、酸化物半導体を用いたトランジスタであってもよい。 Note that transistors MP42 to MP46 and MP49 may be transistors using low temperature polycrystalline silicon (LTPS). Also, at least one of transistors MP42, MP46 and MP49 may be a transistor using an oxide semiconductor.

 図26は、画素回路PIXの他の一構成例を表すものである。複数の画素回路PIXは、表示領域300にマトリクス状に設けられ、表示領域300は、第1の制御部400と第2の制御部80の間に設けられる。 FIG. 26 shows another example of the configuration of the pixel circuit PIX. A plurality of pixel circuits PIX are arranged in a matrix in the display area 300, and the display area 300 is arranged between the first control unit 400 and the second control unit 80.

 第1の制御部400は、トランスミッションゲートTG45、TG46と、トランジスタMP56、MP57と、キャパシタC61とを有している。トランジスタMP56、MP57は、P型のMOSFETである。トランスミッションゲートTG45の入力端には画素信号が供給され、トランスミッションゲートTG45の出力端は信号線14aの一端に接続される。トランスミッションゲートTG46の入力端は信号線14bに接続され、トランスミッションゲートTG46の出力端は電源線Vorstに接続される。キャパシタC61の一端は信号線14aに接続され、他端は電源線VSS1に接続される。トランジスタMP56のゲートは制御線INILに接続され、ソースは電源線Viniに接続され、ドレインは信号線14bに接続される。トランジスタMP57のゲートは制御線ELLに接続され、ソースは電源線Velに接続され、ドレインは信号線14bに接続される。 The first control unit 400 has transmission gates TG45 and TG46, transistors MP56 and MP57, and a capacitor C61. The transistors MP56 and MP57 are P-type MOSFETs. A pixel signal is supplied to the input terminal of the transmission gate TG45, and the output terminal of the transmission gate TG45 is connected to one end of the signal line 14a. The input terminal of the transmission gate TG46 is connected to the signal line 14b, and the output terminal of the transmission gate TG46 is connected to the power line Vorst. One end of the capacitor C61 is connected to the signal line 14a, and the other end is connected to the power line VSS1. The gate of the transistor MP56 is connected to the control line INIL, the source is connected to the power line Vini, and the drain is connected to the signal line 14b. The gate of the transistor MP57 is connected to the control line ELL, the source is connected to the power line Vel, and the drain is connected to the signal line 14b.

 第2の制御部80は、トランスミッションゲートTG72と、トランジスタMP73と、キャパシタC82とを有している。トランジスタMP73は、P型のMOSFETである。トランスミッションゲートTG72の入力端は信号線14aの他端に接続され、出力端はトランジスタMP73のドレインおよびキャパシタC82の一端に接続される。トランジスタMP73のゲートは制御線REFLに接続され、ソースは電源線Vrefに接続され、ドレインはトランスミッションゲートTG72の出力端およびキャパシタC82の一端に接続される。キャパシタC82の一端はトランスミッションゲートTG72の出力端およびトランジスタMP73のドレインに接続され、他端は信号線14bの一端に接続される。 The second control unit 80 has a transmission gate TG72, a transistor MP73, and a capacitor C82. The transistor MP73 is a P-type MOSFET. The input end of the transmission gate TG72 is connected to the other end of the signal line 14a, and the output end is connected to the drain of the transistor MP73 and one end of the capacitor C82. The gate of the transistor MP73 is connected to the control line REFL, the source is connected to the power supply line Vref, and the drain is connected to the output end of the transmission gate TG72 and one end of the capacitor C82. One end of the capacitor C82 is connected to the output end of the transmission gate TG72 and the drain of the transistor MP73, and the other end is connected to one end of the signal line 14b.

 画素回路PIXは、キャパシタC132と、トランジスタMP121~MP125と、発光素子ELとを有している。トランジスタMP121~MP125は、P型のMOSFETである。トランジスタMP122のゲートは制御線WSLに接続され、ソースは信号線14bに接続され、ドレインはトランジスタMP121のゲートおよびキャパシタC132に接続される。キャパシタC132の一端は電源線Velに接続され、他端はトランジスタMP122のドレインおよびトランジスタMP121のゲートに接続される。トランジスタMP121のゲートはトランジスタMP122のドレインおよびキャパシタC132の他端に接続され、ソースは電源線Velに接続され、ドレインはトランジスタMP123、MP124のソースに接続される。トランジスタMP123のゲートは制御線AZSLに接続され、ソースはトランジスタMP121のドレインおよびトランジスタMP124のソースに接続され、ドレインは信号線14bに接続される。トランジスタMP124のゲートは制御線DSLに接続され、ソースはトランジスタMP121のドレインおよびトランジスタMP123のソースに接続され、ドレインはトランジスタMP125のドレインおよび発光素子130のアノードに接続される。トランジスタMP125のゲートは制御線AZSLに接続され、ソースは電源線Vorstに接続され、ドレインはトランジスタMP124のドレインおよび発光素子130のアノードに接続される。 The pixel circuit PIX has a capacitor C132, transistors MP121 to MP125, and a light-emitting element EL. Transistors MP121 to MP125 are P-type MOSFETs. The gate of transistor MP122 is connected to a control line WSL, its source is connected to signal line 14b, and its drain is connected to the gate of transistor MP121 and capacitor C132. One end of capacitor C132 is connected to a power supply line Vel, and the other end is connected to the drain of transistor MP122 and the gate of transistor MP121. The gate of transistor MP121 is connected to the drain of transistor MP122 and the other end of capacitor C132, its source is connected to the power supply line Vel, and its drain is connected to the sources of transistors MP123 and MP124. The gate of transistor MP123 is connected to a control line AZSL, its source is connected to the drain of transistor MP121 and the source of transistor MP124, and its drain is connected to signal line 14b. The gate of transistor MP124 is connected to the control line DSL, the source is connected to the drain of transistor MP121 and the source of transistor MP123, and the drain is connected to the drain of transistor MP125 and the anode of light-emitting element 130. The gate of transistor MP125 is connected to the control line AZSL, the source is connected to the power supply line Vorst, and the drain is connected to the drain of transistor MP124 and the anode of light-emitting element 130.

 この構成により、画素回路PIXでは、トランジスタMP122がオン状態になることにより、トランスミッションゲートTG45、信号線14a、トランスミッションゲートTG72、キャパシタC82および信号線14bを介して供給された画素信号に基づいてキャパシタC132の両端間の電圧が設定される。トランジスタMP124は、制御線DSLの信号に基づいてオンオフする。トランジスタMP121は、トランジスタMP124がオン状態である期間において、キャパシタC132の両端間の電圧に応じた電流を発光素子ELに流す。発光素子ELは、トランジスタMP121から供給された電流に基づいて発光する。このようにして、画素回路PIXは、画素信号に応じた輝度で発光する。トランジスタMP123,MP125は、制御線AZSLの信号に基づいてオンオフする。トランジスタMP123がオン状態である期間において、トランジスタMP121のドレインおよびトランジスタMP124のソースが信号線14bに接続される。トランジスタMP125がオン状態になる期間において、発光素子ELのアノードの電圧は電源線Vorstの電圧に設定されることにより初期化される。また、トランジスタMP56は、制御線INILの信号に基づいてオンオフし、トランジスタMP57は、制御線ELLの信号に基づいてオンオフし、トランジスタMP73は、制御線REFLの信号に基づいてオンオフする。トランジスタMP56がオン状態になると、信号線14bは電源線Viniの電圧に設定され、トランジスタMP57がオン状態になると、信号線14bは電源線Velの電圧に設定される。トランジスタMP73がオン状態になると、キャパシタC82の一端は電源線Vrefの電圧に設定されることにより初期化される。 With this configuration, in the pixel circuit PIX, when the transistor MP122 is turned on, the voltage across the capacitor C132 is set based on the pixel signal supplied via the transmission gate TG45, the signal line 14a, the transmission gate TG72, the capacitor C82, and the signal line 14b. The transistor MP124 is turned on and off based on the signal on the control line DSL. During the period when the transistor MP124 is on, the transistor MP121 passes a current corresponding to the voltage across the capacitor C132 through the light-emitting element EL. The light-emitting element EL emits light based on the current supplied from the transistor MP121. In this way, the pixel circuit PIX emits light at a luminance corresponding to the pixel signal. The transistors MP123 and MP125 are turned on and off based on the signal on the control line AZSL. During the period when the transistor MP123 is on, the drain of the transistor MP121 and the source of the transistor MP124 are connected to the signal line 14b. During the period when transistor MP125 is in the ON state, the voltage of the anode of the light-emitting element EL is initialized by being set to the voltage of the power supply line Vorst. In addition, transistor MP56 is turned on and off based on the signal of the control line INIL, transistor MP57 is turned on and off based on the signal of the control line ELL, and transistor MP73 is turned on and off based on the signal of the control line REFL. When transistor MP56 is in the ON state, signal line 14b is set to the voltage of the power supply line Vini, and when transistor MP57 is in the ON state, signal line 14b is set to the voltage of the power supply line Vel. When transistor MP73 is in the ON state, one end of capacitor C82 is initialized by being set to the voltage of the power supply line Vref.

 なお、トランジスタMP121~MP125、MP56、MP57は、低温多結晶シリコン(LTPS:Low Temperature Poly Silicon)を用いたトランジスタであってもよい。また、トランジスタMP122、MP125のうち少なくともいずれかは、酸化物半導体を用いたトランジスタであってもよい。 Note that transistors MP121 to MP125, MP56, and MP57 may be transistors using low temperature polycrystalline silicon (LTPS). Also, at least one of transistors MP122 and MP125 may be a transistor using an oxide semiconductor.

 図27は、画素回路PIXの他の一構成例を表すものである。この画素回路PIXは、キャパシタC51と、トランジスタMP52~MP60と、発光素子ELとを有している。トランジスタMP52~MP60はP型のMOSFETである。トランジスタMP52のゲートは制御線WSLに接続され、ソースは信号線SIGに接続され、ドレインはトランジスタMP53のドレインおよびトランジスタMP54のソースに接続される。トランジスタMP53のゲートは制御線DSLに接続され、ソースは電源線VCCPに接続され、ドレインはトランジスタMP52のドレインおよびトランジスタMP54のソースに接続される。トランジスタMP54のゲートはトランジスタMP55のソース、トランジスタMP57のドレイン、およびキャパシタC51に接続され、ソースはトランジスタMP52,MP53のドレインに接続され、ドレインはトランジスタMP58,MP59のソースに接続される。キャパシタC51の一端は電源線VCCPに接続され、他端はトランジスタMP54のゲート、トランジスタMP55のソース、およびトランジスタMP57のドレインに接続される。キャパシタC51は、互いに並列に接続された2つのキャパシタを含んでいてもよい。トランジスタMP55のゲートは制御線AZSL1に接続され、ソースはトランジスタMP54のゲート、トランジスタMP57のドレイン、およびキャパシタC51の他端に接続され、ドレインはトランジスタMP56のソースに接続される。トランジスタMP56のゲートは制御線AZSL1に接続され、ソースはトランジスタMP55のドレインに接続され、ドレインは電源線VSSに接続される。トランジスタMP57のゲートは制御線WSLに接続され、ドレインはトランジスタMP54のゲート、トランジスタMP55のソース、およびキャパシタC51の他端に接続され、ソースはトランジスタMP58のドレインに接続される。トランジスタMP58のゲートは制御線WSLに接続され、ドレインはトランジスタMP57のソースに接続され、ソースはトランジスタMP54のドレインおよびトランジスタMP59のソースに接続される。トランジスタ59のゲートは制御線DSLに接続され、ソースはトランジスタMP54のドレインおよびトランジスタMP58のソースに接続され、ドレインはトランジスタMP60のソースおよび発光素子ELのアノードに接続される。トランジスタMP60のゲートは制御線AZSL2に接続され、ソースはトランジスタMP59のドレインおよび発光素子ELのアノードに接続され、ドレインは電源線VSSに接続される。 Figure 27 shows another example configuration of a pixel circuit PIX. This pixel circuit PIX has a capacitor C51, transistors MP52 to MP60, and a light-emitting element EL. Transistors MP52 to MP60 are P-type MOSFETs. The gate of transistor MP52 is connected to a control line WSL, its source is connected to a signal line SIG, and its drain is connected to the drain of transistor MP53 and the source of transistor MP54. The gate of transistor MP53 is connected to a control line DSL, its source is connected to a power supply line VCCP, and its drain is connected to the drain of transistor MP52 and the source of transistor MP54. The gate of transistor MP54 is connected to the source of transistor MP55, the drain of transistor MP57, and capacitor C51, its source is connected to the drains of transistors MP52 and MP53, and its drain is connected to the sources of transistors MP58 and MP59. One end of the capacitor C51 is connected to the power supply line VCCP, and the other end is connected to the gate of the transistor MP54, the source of the transistor MP55, and the drain of the transistor MP57. The capacitor C51 may include two capacitors connected in parallel to each other. The gate of the transistor MP55 is connected to the control line AZSL1, the source is connected to the gate of the transistor MP54, the drain of the transistor MP57, and the other end of the capacitor C51, and the drain is connected to the source of the transistor MP56. The gate of the transistor MP56 is connected to the control line AZSL1, the source is connected to the drain of the transistor MP55, and the drain is connected to the power supply line VSS. The gate of the transistor MP57 is connected to the control line WSL, the drain is connected to the gate of the transistor MP54, the source of the transistor MP55, and the other end of the capacitor C51, and the source is connected to the drain of the transistor MP58. The gate of transistor MP58 is connected to the control line WSL, the drain is connected to the source of transistor MP57, and the source is connected to the drain of transistor MP54 and the source of transistor MP59. The gate of transistor 59 is connected to the control line DSL, the source is connected to the drain of transistor MP54 and the source of transistor MP58, and the drain is connected to the source of transistor MP60 and the anode of the light-emitting element EL. The gate of transistor MP60 is connected to the control line AZSL2, the source is connected to the drain of transistor MP59 and the anode of the light-emitting element EL, and the drain is connected to the power supply line VSS.

 この構成により、画素回路PIXでは、トランジスタMP52,MP54,MP58,MP57がオン状態になることにより、信号線SIGから供給された画素信号に基づいてキャパシタC51の両端間の電圧が設定される。トランジスタMP53,MP59は、制御線DSLの信号に基づいてオンオフする。トランジスタMP54は、トランジスタMP53,MP59がオン状態である期間において、キャパシタC51の両端間の電圧に応じた電流を、発光素子ELに流す。発光素子ELは、トランジスタMP54から供給された電流に基づいて発光する。このようにして、画素回路PIXは、画素信号に応じた輝度で発光する。トランジスタMP55,MP56は、制御線AZSL1の信号に基づいてオンオフする。トランジスタMP55,MP56がオン状態である期間において、トランジスタMP54のゲートの電圧は電源線VSSの電圧に設定されることにより初期化される。トランジスタMP60は、制御線AZSL2の信号に基づいてオンオフする。トランジスタMP60がオン状態である期間において、発光素子ELのアノードの電圧は電源線VSSの電圧に設定されることにより初期化される。 With this configuration, in the pixel circuit PIX, the transistors MP52, MP54, MP58, and MP57 are turned on, and the voltage across the capacitor C51 is set based on the pixel signal supplied from the signal line SIG. The transistors MP53 and MP59 are turned on and off based on the signal on the control line DSL. During the period when the transistors MP53 and MP59 are on, the transistor MP54 passes a current corresponding to the voltage across the capacitor C51 through the light-emitting element EL. The light-emitting element EL emits light based on the current supplied from the transistor MP54. In this way, the pixel circuit PIX emits light with a luminance corresponding to the pixel signal. The transistors MP55 and MP56 are turned on and off based on the signal on the control line AZSL1. During the period when the transistors MP55 and MP56 are on, the voltage of the gate of the transistor MP54 is initialized by being set to the voltage of the power supply line VSS. The transistor MP60 is turned on and off based on the signal on the control line AZSL2. While the transistor MP60 is in the on state, the anode voltage of the light-emitting element EL is initialized by being set to the voltage of the power supply line VSS.

 なお、トランジスタMP52~MP60は、低温多結晶シリコン(LTPS:Low Temperature Poly Silicon)を用いたトランジスタであってもよい。また、トランジスタMP55~MP58、MP60のうち少なくともいずれかは、酸化物半導体を用いたトランジスタであってもよい。 Note that transistors MP52 to MP60 may be transistors using low temperature polycrystalline silicon (LTPS). Also, at least one of transistors MP55 to MP58 and MP60 may be a transistor using an oxide semiconductor.

 図28は、画素回路PIXの他の一構成例を表すものである。制御線WSNLの信号および制御線WSPLの信号は、互いに反転した信号である。 FIG. 28 shows another example of the configuration of the pixel circuit PIX. The signal on the control line WSNL and the signal on the control line WSPL are mutually inverted signals.

 画素回路PIXは、キャパシタC61,C62と、トランジスタMN63,MP64,MN65~MN67と、発光素子ELとを有している。トランジスタMN63,MN65~MN67はN型のMOSFETであり、トランジスタMP64はP型のMOSFETである。トランジスタMN63のゲートは制御線WSNLに接続され、ドレインは信号線SIGおよびトランジスタMP64のソースに接続され、ソースはトランジスタMP64のドレイン、キャパシタC61,C62、およびトランジスタMN65のゲートに接続される。トランジスタMP64のゲートは制御線WSPLに接続され、ソースは信号線SIGおよびトランジスタMN63のドレインに接続され、ドレインはトランジスタMN63のソース、キャパシタC61,C62、およびトランジスタMN65のゲートに接続される。キャパシタC61は、例えばMOM(Metal Oxide Metal)キャパシタを用いて構成され、一端はトランジスタMN63のソース、トランジスタMP64のドレイン、キャパシタC62、およびトランジスタMN65のゲートに接続され、他端は電源線VSS2に接続される。なお、キャパシタC61は、例えばMOSキャパシタやMIM(Metal Insulator Metal)キャパシタを用いて構成されてもよい。キャパシタC62は、例えばMOSキャパシタを用いて構成され、一端はトランジスタMN63のソース、トランジスタMP64のドレイン、キャパシタC61の一端、およびトランジスタMN65のゲートに接続され、他端は電源線VSS2に接続される。なお、キャパシタC62は、例えば、MOMキャパシタやMIMキャパシタを用いて構成されてもよい。また、キャパシタC62の他端は、電源線VSS3(図示省略)に接続されてもよい。トランジスタMN65のゲートはトランジスタMN63のソース、トランジスタMP64のドレイン、およびキャパシタC61,C62の一端に接続され、ドレインは電源線VCCPに接続され、ソースはトランジスタMN66,MN67のドレインに接続される。トランジスタMN66のゲートは制御線AZLに接続され、ドレインはトランジスタMN65のソースおよびトランジスタMN67のドレインに接続され、ソースは電源線VSS1に接続される。トランジスタMN67のゲートは制御線DSLに接続され、ドレインはトランジスタMN65のソースおよびトランジスタMN66のドレインに接続され、ソースは発光素子ELのアノードに接続される。なお、トランジスタMN67および制御線DSLを設けず、トランジスタMN65のソースがトランジスタMN66のドレインおよび発光素子ELのアノードに接続される構成としてもよい。 The pixel circuit PIX has capacitors C61 and C62, transistors MN63, MP64, MN65 to MN67, and a light-emitting element EL. Transistors MN63, MN65 to MN67 are N-type MOSFETs, and transistor MP64 is a P-type MOSFET. The gate of transistor MN63 is connected to a control line WSNL, the drain is connected to a signal line SIG and the source of transistor MP64, the source is connected to the drain of transistor MP64, capacitors C61 and C62, and the gate of transistor MN65. The gate of transistor MP64 is connected to a control line WSPL, the source is connected to a signal line SIG and the drain of transistor MN63, and the drain is connected to the source of transistor MN63, capacitors C61 and C62, and the gate of transistor MN65. The capacitor C61 is configured, for example, using a MOM (Metal Oxide Metal) capacitor, one end of which is connected to the source of the transistor MN63, the drain of the transistor MP64, the capacitor C62, and the gate of the transistor MN65, and the other end of which is connected to the power supply line VSS2. The capacitor C61 may be configured, for example, using a MOS capacitor or a MIM (Metal Insulator Metal) capacitor. The capacitor C62 is configured, for example, using a MOS capacitor, one end of which is connected to the source of the transistor MN63, the drain of the transistor MP64, one end of the capacitor C61, and the gate of the transistor MN65, and the other end of which is connected to the power supply line VSS2. The capacitor C62 may be configured, for example, using a MOM capacitor or a MIM capacitor. The other end of the capacitor C62 may be connected to the power supply line VSS3 (not shown). The gate of transistor MN65 is connected to the source of transistor MN63, the drain of transistor MP64, and one end of capacitors C61 and C62, the drain is connected to the power supply line VCCP, and the source is connected to the drains of transistors MN66 and MN67. The gate of transistor MN66 is connected to the control line AZL, the drain is connected to the source of transistor MN65 and the drain of transistor MN67, and the source is connected to the power supply line VSS1. The gate of transistor MN67 is connected to the control line DSL, the drain is connected to the source of transistor MN65 and the drain of transistor MN66, and the source is connected to the anode of the light-emitting element EL. Note that the transistor MN67 and the control line DSL may not be provided, and the source of transistor MN65 may be connected to the drain of transistor MN66 and the anode of the light-emitting element EL.

 この構成により、画素回路PIXでは、トランジスタMN63,MP64のうちの少なくとも一方がオン状態になることにより、信号線SIGから供給された画素信号に基づいてキャパシタC61,C62の両端間の電圧が設定される。トランジスタMN67は、制御線DSLの信号に基づいてオンオフする。トランジスタMN65は、トランジスタMN67がオン状態である期間において、キャパシタC61,C62の両端間の電圧に応じた電流を、発光素子ELに流す。発光素子ELは、トランジスタMP65から供給された電流に基づいて発光する。このようにして、画素回路PIXは、画素信号に応じた輝度で発光する。トランジスタMN66は、制御線AZLの信号に基づいてオンオフしてもよい。また、トランジスタMN66は、制御線AZLの信号に応じた抵抗値を有する抵抗素子として機能してもよい。この場合、トランジスタMN65およびトランジスタMN66はいわゆるソースフォロワ回路を構成する。 With this configuration, in the pixel circuit PIX, when at least one of the transistors MN63 and MP64 is turned on, the voltage between both ends of the capacitors C61 and C62 is set based on the pixel signal supplied from the signal line SIG. The transistor MN67 is turned on and off based on the signal on the control line DSL. During the period when the transistor MN67 is in the on state, the transistor MN65 passes a current corresponding to the voltage between both ends of the capacitors C61 and C62 through the light-emitting element EL. The light-emitting element EL emits light based on the current supplied from the transistor MP65. In this way, the pixel circuit PIX emits light with a luminance corresponding to the pixel signal. The transistor MN66 may be turned on and off based on the signal on the control line AZL. The transistor MN66 may also function as a resistive element having a resistance value corresponding to the signal on the control line AZL. In this case, the transistors MN65 and MN66 form a so-called source follower circuit.

 なお、トランジスタMN63,MP64,MN65~MN67は、低温多結晶シリコン(LTPS:Low Temperature Poly Silicon)を用いたトランジスタであってもよい。また、トランジスタMN63,MP64,MN66のうち少なくともいずれかは、酸化物半導体を用いたトランジスタであってもよい。 Note that the transistors MN63, MP64, MN65 to MN67 may be transistors using low temperature polycrystalline silicon (LTPS: Low Temperature Polysilicon). Also, at least one of the transistors MN63, MP64, and MN66 may be a transistor using an oxide semiconductor.

[その他の変形例]
 上述した第1の実施形態では、1フレーム全体のAPLを算出するようにしたが、1フレーム内の特定の領域のAPLを算出するようにしてもよい。例えば、アドレスデコーダによって特定の領域内に含まれるメモリセルを選択し、選択したメモリセルを対象として実施形態で説明した処理を行うことにより、特定の領域におけるAPLを算出することができる。例えば、VRグラスを使用した表示システムでは、表示デバイスの一部分に一部の画像データ(1フレームの画像データのうちの一部の画像データ)のみを表示させる場合がある。この場合に1フレーム分のデータを用いてAPLを算出してしまうと、一部の画像データに対応するAPLとの差異が大きくなり、APLを使用した画像処理の結果が適切でなくなってしまう虞がある。しかしながら、本変形例のように、一部のメモリセルを選択して当該メモリセルが含まれる一部の画像データのAPLを算出することで、係る不都合を回避することができる。
[Other Modifications]
In the first embodiment described above, the APL of the entire frame is calculated, but the APL of a specific region in one frame may be calculated. For example, the address decoder selects memory cells included in the specific region, and the selected memory cells are subjected to the processing described in the embodiment to calculate the APL in the specific region. For example, in a display system using VR glasses, only a portion of image data (a portion of image data of one frame) may be displayed on a portion of the display device. In this case, if the APL is calculated using data for one frame, the difference with the APL corresponding to the portion of image data may become large, and the result of image processing using the APL may become inappropriate. However, such inconvenience can be avoided by selecting a portion of memory cells and calculating the APL of the portion of image data in which the memory cells are included, as in this modified example.

 上述したメモリセル部MCXには、例えば、RGB各色に対応するデータが記憶される。APLを算出する際に、各色に応じた重み付けがなされてもよい。例えば、視感度が高いG成分がR成分やB成分に対して重みが重くなるように重み付けがなされてAPLが算出されるようにしてもよい。また、例えば8ビットの画像データの場合に、MSB(Most Significant Bit)若しくはMSBから数えて数桁のビットの重みがLSB(Least Significant Bit)よりも重くなるようにしてAPLが算出されるようにしてもよい。例えば、緑に応じたメモリセルMCやMSBに対応するメモリセルMCには、大きくなるような重みが対応付けられており、当該メモリセルMCに対応するデータに対して上記の重みが適用されることでAPLが算出されるようにしてもよい。 The memory cell unit MCX described above stores data corresponding to each of the colors RGB, for example. When calculating the APL, weighting according to each color may be applied. For example, the APL may be calculated by weighting the G component, which has high luminosity, more heavily than the R and B components. Also, in the case of 8-bit image data, for example, the APL may be calculated by weighting the MSB (Most Significant Bit) or a few bits from the MSB more heavily than the LSB (Least Significant Bit). For example, a large weight may be assigned to a memory cell MC corresponding to green or a memory cell MC corresponding to the MSB, and the APL may be calculated by applying the weighting to the data corresponding to the memory cell MC.

 上述した実施形態において、メモリ部25等の回路構成や各構成要素の配置は一例であって例示した回路構成等に限定されることはなく、他の公知の回路構成等を適用することができる。また、ロジック回路で構成されたAPL、すなわち、APLを高精度に算出可能な回路を設けて、通常の処理は実施形態で説明したAPL算出回路を用い、高精度なAPLを必要とする処理についてはロジック回路で構成されたAPL算出回路を用いるように、2個のAPL算出回路を切り替えるようにしてもよい。また、第2の実施形態で説明したメモリ部が複数ライン分の画像データを記憶できるメモリであってもよい。また、実施形態で説明した効果を得る観点から、ADコンバータ及びAPL算出回路はインメモリコンピューティングとして構成されることが好ましいが、メモリ部とは別個とされてもよい。 In the above-described embodiment, the circuit configuration of the memory unit 25 and the arrangement of each component are merely examples and are not limited to the illustrated circuit configurations, and other known circuit configurations can be applied. In addition, an APL configured with a logic circuit, i.e., a circuit capable of calculating the APL with high accuracy, may be provided, and two APL calculation circuits may be switched so that the APL calculation circuit described in the embodiment is used for normal processing, and the APL calculation circuit configured with a logic circuit is used for processing requiring a high accuracy APL. In addition, the memory unit described in the second embodiment may be a memory capable of storing image data for multiple lines. In addition, from the viewpoint of obtaining the effects described in the embodiment, it is preferable that the AD converter and the APL calculation circuit are configured as in-memory computing, but they may be separate from the memory unit.

 例えば、上述した実施形態、適用例の構成、方法、工程、形状、材料及び数値等は、本技術の主旨を逸脱しない限り、互いに組み合わせることや入れ替えることが可能である。また、1つのものを2つ以上に分けることも可能であり、一部を省略することも可能である。また、本技術を適用可能であれば、上述した各構成は、適宜、付加、削除、変更してもよい。 For example, the configurations, methods, processes, shapes, materials, and numerical values of the above-mentioned embodiments and application examples can be combined or substituted with each other without departing from the spirit of the present technology. Also, one thing can be divided into two or more things, and some can be omitted. Also, as long as the present technology is applicable, each of the above-mentioned configurations can be added, deleted, or modified as appropriate.

 なお、本技術は、以下のような構成も採ることができる。
(1)
 画像データが一時的に記憶されるメモリ部を有し、
 前記メモリ部は、
 メモリセルと、
 前記メモリセルの記憶ノードに接続されるADコンバータと、
 を有する信号処理装置。
(2)
 前記メモリ部は、プリチャージ回路を有し、
 前記メモリセルの記憶ノードに、前記プリチャージ回路が接続されている、
 (1)に記載の信号処理装置。
(3)
 前記ADコンバータ及び前記プリチャージ回路は、所定のビット線を介して前記記憶ノードに接続されている、
 (2)に記載の信号処理装置。
(4)
 前記プリチャージ回路は、所定のタイミングで前記ビット線をプリチャージし、
 前記ADコンバータは、所定期間後の前記ビット線の電位をアナログ信号からデジタル信号に変換する、
 (3)に記載の信号処理装置。
(5)
 前記メモリ部は、平均輝度算出部を有し、
 前記平均輝度算出部は、前記デジタル信号に基づいて前記画像データの平均輝度を算出する、
 (4)に記載の信号処理装置。
(6)
 前記メモリ部は、アドレスデコーダを有し、
 前記平均輝度算出部は、前記アドレスデコーダによって特定された前記画像データの特定の領域における平均輝度を算出する、
 (5)に記載の信号処理装置。
(7)
 前記平均輝度算出部は、前記メモリセルに対応付けられた重みを用いて平均輝度を算出する、
 (5)又は(6)に記載の信号処理装置。
(8)
 前記平均輝度算出部が算出した平均輝度に応じた画像処理を行う画像処理部を有する、
 (5)から(7)までの何れかに記載の信号処理装置。
(9)
 複数の前記メモリセルを含むメモリセル群を複数有し、
 前記複数のメモリセル群毎に、前記ADコンバータ及び前記プリチャージ回路が設けられている、
 (2)から(8)までの何れかに記載の信号処理装置。
(10)
 前記メモリセルは、SRAMセルであり、
 前記SRAMセルは、第1記憶ノード及び第2記憶ノードを有し、
 前記第1記憶ノードに第1ビット線が接続され、前記第2記憶ノードに第2ビット線が接続され、
 前記ADコンバータは、前記第1ビット線及び前記第2ビット線に接続され、
 前記プリチャージ回路は、前記第1ビット線及び前記第2ビット線に接続されている、
 (3)から(8)までの何れかに記載の信号処理装置。
(11)
 前記メモリ部は、アドレスデコーダを有し、
 前記SRAMセルは、前記アドレスデコーダから延在するワード線に接続されている、
 (10)に記載の信号処理装置。
(12)
 前記メモリ部は、複数の前記メモリセルから構成されるメモリセル部を有し、
 前記メモリセル部は、1ライン又は所定ライン数分の前記画像データを記憶するラインバッファとして構成されている、
 (2)から(8)までの何れかに記載の信号処理装置。
(13)
 前記ラインバッファを構成する各メモリセルの記憶ノードに対して、前記ADコンバータ及び前記プリチャージ回路が、前記メモリセル毎に設けられたスイッチを介して接続されている、
 (12)に記載の信号処理装置。
(14)
 (1)から(13)までの何れかに記載の信号処理装置と、
 前記メモリ部から読み出された前記画像データを表示する表示装置と、
 を含む表示システム。
(15)
 (14)に記載の表示システムを有する電子機器。
The present technology can also be configured as follows.
(1)
A memory unit for temporarily storing image data;
The memory unit includes:
A memory cell;
an AD converter connected to a storage node of the memory cell;
A signal processing device comprising:
(2)
the memory unit has a precharge circuit,
the precharge circuit is connected to a storage node of the memory cell;
A signal processing device as described in (1).
(3)
the AD converter and the precharge circuit are connected to the storage node via a predetermined bit line;
A signal processing device as described in (2).
(4)
The precharge circuit precharges the bit line at a predetermined timing;
the AD converter converts the potential of the bit line after a predetermined period of time from an analog signal to a digital signal;
A signal processing device as described in (3).
(5)
The memory unit has an average luminance calculation unit,
The average luminance calculation unit calculates an average luminance of the image data based on the digital signal.
A signal processing device as described in (4).
(6)
The memory unit has an address decoder,
the average luminance calculation unit calculates an average luminance in a specific area of the image data specified by the address decoder;
A signal processing device as described in (5).
(7)
the average luminance calculation unit calculates an average luminance by using a weight associated with the memory cell;
A signal processing device according to (5) or (6).
(8)
an image processing unit that performs image processing according to the average luminance calculated by the average luminance calculation unit;
A signal processing device according to any one of (5) to (7).
(9)
A plurality of memory cell groups each including a plurality of the memory cells;
the AD converter and the precharge circuit are provided for each of the plurality of memory cell groups;
A signal processing device according to any one of (2) to (8).
(10)
the memory cell is an SRAM cell,
the SRAM cell having a first storage node and a second storage node;
a first bit line is connected to the first storage node, and a second bit line is connected to the second storage node;
the AD converter is connected to the first bit line and the second bit line;
the precharge circuit is connected to the first bit line and the second bit line;
A signal processing device according to any one of (3) to (8).
(11)
The memory unit has an address decoder,
The SRAM cells are connected to word lines extending from the address decoder.
A signal processing device as described in (10).
(12)
the memory unit has a memory cell unit configured of a plurality of the memory cells,
The memory cell unit is configured as a line buffer that stores the image data for one line or a predetermined number of lines.
A signal processing device according to any one of (2) to (8).
(13)
the AD converter and the precharge circuit are connected to a storage node of each memory cell constituting the line buffer via a switch provided for each of the memory cells;
A signal processing device as described in (12).
(14)
A signal processing device according to any one of (1) to (13) above;
a display device that displays the image data read from the memory unit;
A display system including:
(15)
(14) An electronic device having the display system according to (14).

 2・・・タイミングコントローラ
 4・・・・表示装置
 25・・・メモリ部
 26・・・画像処理部
 52A・・・アドレスデコーダ
 62・・・演算回路
 63・・・APL算出回路
 100・・・表示システム
 MCX・・・メモリセル部
 MC-00~MC-mn、MC-0~MC-m・・・メモリセル
2: Timing controller 4: Display device 25: Memory section 26: Image processing section 52A: Address decoder 62: Arithmetic circuit 63: APL calculation circuit 100: Display system MCX: Memory cell section MC-00 to MC-mn, MC-0 to MC-m: Memory cell

Claims (15)

 画像データが一時的に記憶されるメモリ部を有し、
 前記メモリ部は、
 メモリセルと、
 前記メモリセルの記憶ノードに接続されるADコンバータと、
 を有する信号処理装置。
A memory unit for temporarily storing image data;
The memory unit includes:
A memory cell;
an AD converter connected to a storage node of the memory cell;
A signal processing device comprising:
 前記メモリ部は、プリチャージ回路を有し、
 前記メモリセルの記憶ノードに、前記プリチャージ回路が接続されている、
 請求項1に記載の信号処理装置。
the memory unit has a precharge circuit,
the precharge circuit is connected to a storage node of the memory cell;
The signal processing device according to claim 1 .
 前記ADコンバータ及び前記プリチャージ回路は、所定のビット線を介して前記記憶ノードに接続されている、
 請求項2に記載の信号処理装置。
the AD converter and the precharge circuit are connected to the storage node via a predetermined bit line;
The signal processing device according to claim 2 .
 前記プリチャージ回路は、所定のタイミングで前記ビット線をプリチャージし、
 前記ADコンバータは、所定期間後の前記ビット線の電位をアナログ信号からデジタル信号に変換する、
 請求項3に記載の信号処理装置。
The precharge circuit precharges the bit line at a predetermined timing;
The AD converter converts the potential of the bit line after a predetermined period of time from an analog signal to a digital signal.
The signal processing device according to claim 3 .
 前記メモリ部は、平均輝度算出部を有し、
 前記平均輝度算出部は、前記デジタル信号に基づいて前記画像データの平均輝度を算出する、
 請求項4に記載の信号処理装置。
The memory unit has an average luminance calculation unit,
The average luminance calculation unit calculates an average luminance of the image data based on the digital signal.
The signal processing device according to claim 4.
 前記メモリ部は、アドレスデコーダを有し、
 前記平均輝度算出部は、前記アドレスデコーダによって選択された前記画像データの特定の領域における平均輝度を算出する、
 請求項5に記載の信号処理装置。
The memory unit has an address decoder,
the average luminance calculation unit calculates an average luminance in a specific area of the image data selected by the address decoder;
The signal processing device according to claim 5 .
 前記平均輝度算出部は、前記メモリセルに対応付けられた重みを用いて平均輝度を算出する、
 請求項5に記載の信号処理装置。
the average luminance calculation unit calculates an average luminance by using a weight associated with the memory cell;
The signal processing device according to claim 5 .
 前記平均輝度算出部が算出した平均輝度に応じた画像処理を行う画像処理部を有する、
 請求項5に記載の信号処理装置。
an image processing unit that performs image processing according to the average luminance calculated by the average luminance calculation unit;
The signal processing device according to claim 5 .
 複数の前記メモリセルを含むメモリセル群を複数有し、
 前記複数のメモリセル群毎に、前記ADコンバータ及び前記プリチャージ回路が設けられている、
 請求項2に記載の信号処理装置。
A plurality of memory cell groups each including a plurality of the memory cells;
the AD converter and the precharge circuit are provided for each of the plurality of memory cell groups;
The signal processing device according to claim 2 .
 前記メモリセルは、SRAMセルであり、
 前記SRAMセルは、第1記憶ノード及び第2記憶ノードを有し、
 前記第1記憶ノードに第1ビット線が接続され、前記第2記憶ノードに第2ビット線が接続され、
 前記ADコンバータは、前記第1ビット線及び前記第2ビット線に接続され、
 前記プリチャージ回路は、前記第1ビット線及び前記第2ビット線に接続されている、
 請求項3に記載の信号処理装置。
the memory cell is an SRAM cell,
the SRAM cell having a first storage node and a second storage node;
a first bit line is connected to the first storage node, and a second bit line is connected to the second storage node;
the AD converter is connected to the first bit line and the second bit line;
the precharge circuit is connected to the first bit line and the second bit line;
The signal processing device according to claim 3 .
 前記メモリ部は、アドレスデコーダを有し、
 前記SRAMセルは、前記アドレスデコーダから延在するワード線に接続されている、
 請求項10に記載の信号処理装置。
The memory unit has an address decoder,
The SRAM cells are connected to word lines extending from the address decoder.
The signal processing device according to claim 10.
 前記メモリ部は、複数の前記メモリセルから構成されるメモリセル部を有し、
 前記メモリセル部は、1ライン又は所定ライン数分の前記画像データを記憶するラインバッファとして構成されている、
 請求項2に記載の信号処理装置。
the memory unit has a memory cell unit configured of a plurality of the memory cells,
The memory cell unit is configured as a line buffer that stores the image data for one line or a predetermined number of lines.
The signal processing device according to claim 2 .
 前記ラインバッファを構成する各メモリセルの記憶ノードに対して、前記ADコンバータ及び前記プリチャージ回路が、前記メモリセル毎に設けられたスイッチを介して接続されている、
 請求項12に記載の信号処理装置。
the AD converter and the precharge circuit are connected to a storage node of each memory cell constituting the line buffer via a switch provided for each of the memory cells;
The signal processing device according to claim 12.
 請求項1に記載の信号処理装置と、
 前記メモリ部から読み出された前記画像データを表示する表示装置と、
 を含む表示システム。
A signal processing device according to claim 1 ;
a display device that displays the image data read from the memory unit;
A display system including:
 請求項14に記載の表示システムを有する電子機器。 An electronic device having the display system according to claim 14.
PCT/JP2024/033380 2023-11-08 2024-09-19 Signal processing device, display system, and electronic apparatus Pending WO2025100106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-190597 2023-11-08
JP2023190597 2023-11-08

Publications (1)

Publication Number Publication Date
WO2025100106A1 true WO2025100106A1 (en) 2025-05-15

Family

ID=95695109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/033380 Pending WO2025100106A1 (en) 2023-11-08 2024-09-19 Signal processing device, display system, and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2025100106A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223576A (en) * 1993-01-22 1994-08-12 Oki Electric Ind Co Ltd Control method for line memory
JPH08166776A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Display device
JP2001060079A (en) * 1992-07-07 2001-03-06 Seiko Epson Corp Matrix type display device and matrix type display driving device
JP2003208303A (en) * 2002-01-11 2003-07-25 Sony Corp Semiconductor memory device, motion vector detector and motion compensation prediction and encoding device
JP2003257183A (en) * 2002-02-27 2003-09-12 Sony Corp Memory cell circuit, memory device, and motion vector detection device
JP2004159314A (en) * 2002-10-15 2004-06-03 Sony Corp Memory device, device and method for detecting motion vector
JP2008294785A (en) * 2007-05-25 2008-12-04 Sanyo Electric Co Ltd Image processor, imaging apparatus, image file, and image processing method
US20090262229A1 (en) * 2008-04-21 2009-10-22 Samsung Electronics Co., Ltd. Image sensor for high-speed data readout
JP2017121047A (en) * 2015-12-28 2017-07-06 株式会社半導体エネルギー研究所 Semiconductor devices and transmission systems
JP2021051823A (en) * 2014-03-14 2021-04-01 株式会社半導体エネルギー研究所 Semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060079A (en) * 1992-07-07 2001-03-06 Seiko Epson Corp Matrix type display device and matrix type display driving device
JPH06223576A (en) * 1993-01-22 1994-08-12 Oki Electric Ind Co Ltd Control method for line memory
JPH08166776A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Display device
JP2003208303A (en) * 2002-01-11 2003-07-25 Sony Corp Semiconductor memory device, motion vector detector and motion compensation prediction and encoding device
JP2003257183A (en) * 2002-02-27 2003-09-12 Sony Corp Memory cell circuit, memory device, and motion vector detection device
JP2004159314A (en) * 2002-10-15 2004-06-03 Sony Corp Memory device, device and method for detecting motion vector
JP2008294785A (en) * 2007-05-25 2008-12-04 Sanyo Electric Co Ltd Image processor, imaging apparatus, image file, and image processing method
US20090262229A1 (en) * 2008-04-21 2009-10-22 Samsung Electronics Co., Ltd. Image sensor for high-speed data readout
JP2021051823A (en) * 2014-03-14 2021-04-01 株式会社半導体エネルギー研究所 Semiconductor device
JP2017121047A (en) * 2015-12-28 2017-07-06 株式会社半導体エネルギー研究所 Semiconductor devices and transmission systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "SRAM <Device principle>", ROHM, 18 June 2019 (2019-06-18), pages 1 - 10, XP093312680, Retrieved from the Internet <URL:https://web.archive.org/web/20190618121511/https://www.rohm.co.jp/electronics-basics/memory/memory_what3> [retrieved on 20241016] *

Similar Documents

Publication Publication Date Title
US8094144B2 (en) Electronic circuit, optoelectronic device, method for driving optoelectronic device, and electronic apparatus
US11482146B2 (en) Display system and vehicle
US20100039356A1 (en) Driving Method of Display Device
US20070035488A1 (en) Driving method of display device
WO2025100106A1 (en) Signal processing device, display system, and electronic apparatus
WO2023243474A1 (en) Display device
WO2022270300A1 (en) Display device
WO2023182100A1 (en) Display drive circuit and display device
WO2024101213A1 (en) Display device
WO2025018102A1 (en) Display apparatus and electronic device
US20250315131A1 (en) Display device
US12374294B2 (en) Display device, electronic device, and display control method
US12367834B2 (en) Display device
WO2024203011A1 (en) Display device and electronic apparatus
WO2024048221A1 (en) Display device
WO2025069801A1 (en) Display device and electronic apparatus
WO2024084876A1 (en) Display apparatus and electronic device
JP4843914B2 (en) Electro-optical device, driving method thereof, and electronic apparatus
US20240371338A1 (en) Display device
WO2025069799A1 (en) Display apparatus and electronic device
WO2024057712A1 (en) Display device and electronic apparatus
WO2025041674A1 (en) Display device and electronic apparatus
WO2025169617A1 (en) Capacitive element, and display device
WO2025057603A1 (en) Display device
WO2024190193A1 (en) Capacitive element, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24888406

Country of ref document: EP

Kind code of ref document: A1