WO2025104826A1 - Electrochemical cell - Google Patents
Electrochemical cell Download PDFInfo
- Publication number
- WO2025104826A1 WO2025104826A1 PCT/JP2023/040983 JP2023040983W WO2025104826A1 WO 2025104826 A1 WO2025104826 A1 WO 2025104826A1 JP 2023040983 W JP2023040983 W JP 2023040983W WO 2025104826 A1 WO2025104826 A1 WO 2025104826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- hydrogen electrode
- current collecting
- support substrate
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
- C25B1/042—Hydrogen or oxygen by electrolysis of water by electrolysis of steam
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/63—Holders for electrodes; Positioning of the electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0232—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0236—Glass; Ceramics; Cermets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
Definitions
- the present invention relates to an electrochemical cell.
- Patent Document 1 discloses an anode-supported fuel cell that includes a support substrate with a through-hole, an anode embedded in the through-hole, an electrolyte layer disposed on the support substrate, and a cathode disposed on the electrolyte layer.
- the anode is embedded in a through-hole in the support substrate, which causes a problem that the supply of raw material gas to the anode is easily hindered by the support substrate.
- This problem is not limited to fuel cells, but occurs in all electrochemical cells, including electrolysis cells.
- the objective of the present invention is to provide an electrochemical cell that can improve performance.
- the electrochemical cell according to the first aspect of the present invention comprises a support substrate having a through hole, a current collecting layer having an embedded portion embedded in the through hole and a layer portion connected to the embedded portion and disposed on the support substrate, a first electrode layer disposed on the current collecting layer, a second electrode layer, and an electrolyte layer disposed between the first electrode layer and the second electrode layer.
- the layer portion includes a void in contact with the surface of the support substrate facing the first electrode layer.
- the electrochemical cell according to the second aspect of the present invention relates to the first aspect, and the support substrate has a beam member having the surface.
- the beam member extends in a first direction perpendicular to the thickness direction of the support substrate.
- the void is in contact with a central region of the surface in a second direction perpendicular to the thickness direction.
- the electrochemical cell according to the third aspect of the present invention is the same as the second aspect, and the thickness of the void becomes thinner the further away from the center of the surface in the second direction.
- the present invention provides an electrochemical cell that can improve performance.
- FIG. 1 is a cross-sectional view of an electrolysis cell device according to an embodiment.
- FIG. 2 is a partially enlarged view of FIG.
- FIG. 1 is a cross-sectional view showing the configuration of an electrolysis cell device 1 according to an embodiment.
- the electrolytic cell device 1 includes an electrolytic cell 10, a separator 20, a current collecting member 25, and a sealing portion 30.
- the electrolytic cell 10 is an example of an "electrochemical cell” according to the present invention.
- a cell stack (not shown) can be formed by stacking multiple electrolytic cell devices 1 in the Z-axis direction perpendicular to the X-axis direction and the Y-axis direction.
- the electrolysis cell 10 includes a support substrate 12, a hydrogen electrode current collecting layer 13, a hydrogen electrode active layer 14, an electrolyte layer 15, a reaction prevention layer 16, and an oxygen electrode layer 17.
- the hydrogen electrode current collecting layer 13, the hydrogen electrode active layer 14, the electrolyte layer 15, the reaction prevention layer 16, and the oxygen electrode layer 17 are stacked in this order in the Z-axis direction.
- the hydrogen electrode current collecting layer 13 is an example of a "current collecting layer” according to the present invention.
- the hydrogen electrode active layer 14 is an example of a "first electrode layer” according to the present invention.
- the oxygen electrode layer 17 is an example of a "second electrode layer” according to the present invention.
- the support substrate 12, hydrogen electrode current collecting layer 13, hydrogen electrode active layer 14, electrolyte layer 15, and oxygen electrode layer 17 are essential components, while the reaction prevention layer 16 is optional.
- the support substrate 12 functions as a support for the electrolysis cell 10 together with the hydrogen electrode current collecting layer 13.
- the support substrate 12 has a plurality of through holes 40, beam portions 50, and a frame portion 60.
- Each through hole 40 penetrates the support substrate 12. Each through hole 40 extends along the thickness direction (Z-axis direction) of the support substrate 12. Each through hole 40 is formed inside the beam portion 50 or between the beam portion 50 and the frame portion 60. At least a portion of the hydrogen electrode current collecting layer 13 is embedded in each through hole 40.
- the beam portion 50 is disposed inside the frame portion 60.
- the beam portion 50 may be substantially integral with the frame portion 60.
- the beam section 50 is composed of multiple beam members 51.
- Each beam member 51 is formed in a rod shape.
- the ends of each beam member 51 are connected to the inner peripheral surface of the frame section 60.
- the multiple beam members 51 are connected to each other in a lattice pattern, but the number and positions of each beam member 51 can be changed as appropriate.
- the beam portion 50 can be made of, for example, forsterite (Mg 2 SiO 4 ), magnesium silicate (MgSiO 3 ), zirconia (including ZrO 2 and partially stabilized zirconia), magnesia (MgO), spinel (MgAl 2 O 4 , NiAl 2 O 4 ), yttria stabilized zirconia (YSZ), calcia stabilized zirconia (CSZ), nickel (Ni), nickel oxide (NiO), alumina (Al 2 O 3 ), nickel oxide-magnesia solid solution (Mg x Ni (1-x) O[0 ⁇ x ⁇ 1]), and a mixed material of two or more of these.
- forsterite Mg 2 SiO 4
- zirconia including ZrO 2 and partially stabilized zirconia
- magnesia MgO
- spinel MgAl 2 O 4 , NiAl 2 O 4
- YSZ
- the porosity of the beam portion 50 is not particularly limited, but can be, for example, 0.1% or more and 15% or less.
- the porosity of the beam portion 50 may be lower than the porosity of the hydrogen electrode current collecting layer 13. It is preferable that the porosity of the beam portion 50 is 5% or less. This can improve the rigidity of the beam portion 50.
- the electronic conductivity of the beam portion 50 may be lower than that of the hydrogen electrode current collecting layer 13.
- the beam portion 50 may have electronic insulation.
- the electronic conductivity of the beam portion 50 is not particularly limited, but may be, for example, 10 ⁇ 1 S/m or less at 800° C. or less.
- the method for forming the beam portion 50 is not particularly limited, and methods such as extrusion molding, tape casting, printing lamination, casting, and dry pressing can be used.
- the frame portion 60 is formed in an annular shape.
- the frame portion 60 surrounds the beam portion 50 and the hydrogen electrode current collecting layer 13.
- the frame portion 60 is disposed on the separator 20.
- the frame portion 60 is positioned by the sealing portion 30.
- the frame 60 can be made of, for example, forsterite (Mg 2 SiO 4 ), magnesium silicate (MgSiO 3 ), zirconia (including ZrO 2 and partially stabilized zirconia), magnesia (MgO), spinel (MgAl 2 O 4 , NiAl 2 O 4 ), yttria stabilized zirconia (YSZ), calcia stabilized zirconia (CSZ), nickel (Ni), nickel oxide (NiO), alumina (Al 2 O 3 ), nickel oxide-magnesia solid solution (Mg x Ni (1-x) O[0 ⁇ x ⁇ 1]), and a mixed material of two or more of these.
- the frame 60 may be made of the same material as the beam 50. In this case, the frame 60 may be substantially integral with the beam 50.
- the frame 60 may be made of a material different from that of the beam 50.
- the porosity of the frame 60 can be, for example, 0.1% or more and 15% or less.
- the porosity of the frame 60 may be lower than the porosity of the hydrogen electrode current collecting layer 13.
- the porosity of the frame 60 is preferably 5% or less. This provides the frame 60 with gas sealing properties, thereby preventing the raw material gas supplied from the hydrogen electrode side space S1 to the hydrogen electrode current collecting layer 13 from returning to the hydrogen electrode side space S1 via the frame 60.
- the electronic conductivity of the frame 60 may be lower than the electronic conductivity of the hydrogen electrode current collecting layer 13.
- the frame 60 may have electronic insulation properties.
- the electronic conductivity of the frame 60 is not particularly limited, but can be, for example, 10 ⁇ 1 S/m or less at 800° C. or less.
- the method for forming the frame portion 60 is not particularly limited, and methods such as extrusion molding, tape casting, printing lamination, casting, dry pressing, etc. can be used.
- the hydrogen electrode current collecting layer 13 together with the support substrate 12, functions as a support for the electrolysis cell 10.
- the hydrogen electrode current collecting layer 13 has a plurality of embedded portions 70, first layer portions 80, and second layer portions 90.
- One of the embedded portions 70, the first layer portions 80, and the second layer portions 90 is a required component, and the other of the first layer portions 80 and the second layer portions 90 is an optional component.
- Each embedded portion 70 is embedded in each through hole 40 of the support substrate 12. Each embedded portion 70 is connected to the first layer portion 80. Each embedded portion 70 is connected to the second layer portion 90. Each embedded portion 70 is disposed between the first layer portion 80 and the second layer portion 90 in the thickness direction (Z-axis direction) of the support substrate 12.
- the first layer portion 80 is disposed between each embedded portion 70 and the hydrogen electrode active layer 14.
- the first layer portion 80 is formed integrally with each embedded portion 70.
- the first layer portion 80 is disposed on the beam portion 50.
- the first layer portion 80 covers the hydrogen electrode active layer 14 side of the beam portion 50 of the support substrate 12.
- the second layer portion 90 is disposed on the opposite side of the first layer portion 80 with respect to each embedded portion 70.
- the second layer portion 90 is formed integrally with each embedded portion 70.
- the second layer portion 90 is disposed on the beam portion 50.
- the second layer portion 90 covers the side of the support substrate 12 opposite the hydrogen electrode active layer 14 of the beam portion 50.
- the hydrogen electrode current collecting layer 13 is a porous body having electronic conductivity.
- the hydrogen electrode current collecting layer 13 contains nickel (Ni).
- Ni nickel
- Ni also functions as a thermal catalyst that promotes the thermal reaction between the generated H 2 and CO 2 contained in the raw material gas to maintain an appropriate gas composition for methanation, reverse water gas shift reaction, etc.
- Ni is basically present in the form of metal Ni, but may also be partially present in the form of nickel oxide (NiO).
- the hydrogen electrode current collecting layer 11 contains a ceramic in addition to nickel (Ni).
- the ceramic may have ion conductivity.
- examples of the ceramic that can be used include yttria (Y 2 O 3 ), magnesia (MgO), iron oxide (Fe 2 O 3 ), zirconia (ZrO 2 , including partially stabilized zirconia), yttria stabilized zirconia (YSZ), calcia stabilized zirconia (CSZ), scandia stabilized zirconia (ScSZ), gadolinium doped ceria (GDC), samarium doped ceria (SDC), and a mixed material of two or more of these.
- the porosity of the hydrogen electrode current collecting layer 13 is not particularly limited, but can be, for example, 20% to 40%.
- the thickness of the hydrogen electrode current collecting layer 13 is not particularly limited, but can be, for example, 150 ⁇ m to 1000 ⁇ m. In the Z-axis direction, the thickness of the hydrogen electrode current collecting layer 13 may be greater than the thickness of each of the hydrogen electrode active layer 14, the electrolyte layer 15, the reaction prevention layer 16, and the oxygen electrode layer 17.
- the hydrogen electrode active layer 14 functions as a cathode.
- the hydrogen electrode active layer 14 is disposed on the hydrogen electrode current collecting layer 13.
- the hydrogen electrode active layer 14 is covered with an electrolyte layer 15.
- a source gas is supplied to the hydrogen electrode active layer 14 through the hydrogen electrode current collecting layer 13.
- the source gas contains at least H2O .
- the hydrogen electrode active layer 14 produces H 2 from the source gas in accordance with the electrochemical reaction of water electrolysis shown in the following formula (1).
- Hydrogen electrode active layer 14 H2O+2e- ⁇ H2+O2-...(1)
- the hydrogen electrode active layer 14 produces H 2 , CO, and O 2 ⁇ from the source gas in accordance with the co-electrochemical reactions shown in the following formulas (2), (3), and (4 ) .
- ⁇ Hydrogen electrode active layer 14 CO 2 +H 2 O+4e ⁇ ⁇ CO+H 2 +2O 2 ⁇ (2) Electrochemical reaction of H 2 O: H 2 O + 2e ⁇ ⁇ H 2 + O 2 ⁇ (3) Electrochemical reaction of CO2 : CO2 + 2e- ⁇ CO + O2 -... (4)
- the hydrogen electrode active layer 14 is a porous body having electronic conductivity.
- the hydrogen electrode active layer 14 may have ion conductivity.
- the hydrogen electrode active layer 14 may be composed of, for example, YSZ, CSZ, ScSZ, GDC, (SDC), (La, Sr) (Cr, Mn) O 3 , (La, Sr) TiO 3 , Sr 2 (Fe, Mo) 2 O 6 , (La, Sr) VO 3 , (La, Sr) FeO 3 , a mixed material of two or more of these, or a composite of one or more of these and NiO.
- the porosity of the hydrogen electrode active layer 14 is not particularly limited, but can be, for example, 20% to 40%.
- the thickness of the hydrogen electrode active layer 14 is not particularly limited, but can be, for example, 5 ⁇ m to 50 ⁇ m.
- the method for forming the hydrogen electrode active layer 14 is not particularly limited, and tape casting, screen printing, casting, dry pressing, etc. can be used.
- the electrolyte layer 15 is disposed between the hydrogen electrode active layer 14 and the oxygen electrode layer 17.
- the reaction prevention layer 16 is disposed between the electrolyte layer 15 and the oxygen electrode layer 17, so that the electrolyte layer 15 is sandwiched between the hydrogen electrode active layer 14 and the reaction prevention layer 16.
- the electrolyte layer 15 covers the hydrogen electrode active layer 14. As shown in FIG. 1, it is preferable that the electrolyte layer 15 covers the entire surface of the hydrogen electrode active layer 14. The outer periphery of the electrolyte layer 15 is connected to the frame portion 60.
- the electrolyte layer 15 has a function of transmitting O 2- generated in the hydrogen electrode active layer 14 to the oxygen electrode layer 17.
- the electrolyte layer 15 is a dense body that has ionic conductivity but no electronic conductivity.
- the electrolyte layer 15 can be made of, for example, YSZ, GDC, ScSZ, SDC, lanthanum gallate (LSGM), or the like.
- the porosity of the electrolyte layer 15 is not particularly limited, but can be, for example, 0.1% to 7%.
- the thickness of the electrolyte layer 15 is not particularly limited, but can be, for example, 1 ⁇ m to 100 ⁇ m.
- the method for forming the electrolyte layer 15 is not particularly limited, and tape casting, screen printing, casting, dry pressing, etc. can be used.
- reaction prevention layer 16 The reaction prevention layer 16 is disposed between the electrolyte layer 15 and the oxygen electrode layer 17. The reaction prevention layer 16 is disposed on the opposite side of the electrolyte layer 15 to the hydrogen electrode active layer 14. The reaction prevention layer 16 prevents the constituent elements of the electrolyte layer 15 from reacting with the constituent elements of the oxygen electrode layer 17 to form a layer with high electrical resistance.
- the reaction prevention layer 16 is made of an ion-conductive material.
- the reaction prevention layer 16 can be made of GDC, SDC, etc.
- the porosity of the reaction prevention layer 16 is not particularly limited, but can be, for example, 0.1% to 50%.
- the thickness of the reaction prevention layer 16 is not particularly limited, but can be, for example, 1 ⁇ m to 50 ⁇ m.
- the method for forming the reaction prevention layer 16 is not particularly limited, and tape casting, screen printing, casting, dry pressing, etc. can be used.
- the oxygen electrode layer 17 functions as an anode.
- the oxygen electrode layer 17 is disposed on the opposite side of the hydrogen electrode active layer 14 with respect to the electrolyte layer 15. In this embodiment, since the reaction prevention layer 16 is disposed between the electrolyte layer 15 and the oxygen electrode layer 17, the oxygen electrode layer 17 is connected to the reaction prevention layer 16. If the reaction prevention layer 16 is not disposed between the electrolyte layer 15 and the oxygen electrode layer 17, the oxygen electrode layer 17 is connected to the electrolyte layer 15.
- the oxygen electrode layer 17 generates O2 from O2- transferred from the hydrogen electrode active layer 14 through the electrolyte layer 15, according to the chemical reaction of the following formula (5).
- the O2 generated in the oxygen electrode layer 17 is released into the oxygen electrode side space S2.
- Oxygen electrode layer 17 2O 2 ⁇ ⁇ O 2 +4e ⁇ (5)
- the oxygen electrode layer 17 is a porous body having ionic and electronic conductivity, and may be made of a composite material of one or more of (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr) CoO3 and an ion conductive material (such as GDC).
- the porosity of the oxygen electrode layer 17 is not particularly limited, but can be, for example, 20% or more and 60% or less.
- the thickness of the oxygen electrode layer 17 is not particularly limited, but can be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
- the method for forming the oxygen electrode layer 17 is not particularly limited, and tape casting, screen printing, casting, dry pressing, etc. can be used.
- the separator 20 is electrically connected to the hydrogen electrode current collecting layer 13 via the current collecting member 25.
- the separator 20 has a connection portion 20a that contacts the current collecting member 25.
- the separator 20 is made of a metal material that has electronic conductivity.
- the separator 20 can be made of an alloy material that contains Cr (chromium), for example. Examples of such alloy materials include Fe-Cr alloy steel (stainless steel, etc.) and Ni-Cr alloy steel.
- the Cr content in the separator 20 is not particularly limited, but can be 4% by mass or more and 30% by mass or less.
- the separator 20 may contain Ti (titanium) or Zr (zirconium).
- the Ti content in the separator 20 is not particularly limited, but may be 0.01 mol% or more and 1.0 mol% or less.
- the Al content in the separator 20 is not particularly limited, but may be 0.01 mol% or more and 0.4 mol% or less.
- the separator 20 may contain Ti as TiO2 (titania) and Zr as ZrO2 (zirconia).
- At least a portion of the surface of the separator 20 may be covered with an oxide film formed by oxidation of the constituent elements of the separator 20.
- a typical example of the oxide film is a chromium oxide film.
- the current collecting member 25 electrically connects the hydrogen electrode current collecting layer 13 and the connection portion 20a of the separator 20. As shown in FIG.
- the current collecting member 25 has electronic conductivity and breathability.
- a porous material such as nickel, a nickel alloy, or stainless steel can be used as the current collecting member 25.
- the size, shape, and position of the current collecting member 25 can be changed as appropriate.
- the current collecting member 25 is in contact with the hydrogen electrode current collecting layer 13 and the frame 60, but it does not have to be in contact with the frame 60.
- the sealing portion 30 positions the frame portion 60 relative to the separator 20.
- the sealing portion 30 is a dense body.
- the sealing portion 30 seals the gap between the electrolysis cell 10 and the separator 20. This prevents gas from mixing between the hydrogen electrode side space S1 and the oxygen electrode side space S2.
- the sealing portion 30 is connected to the electrolyte layer 15 and the frame portion 60 of the support substrate 12, but if the beam portion 50 does not have breathability, the sealing portion 30 does not need to be connected to the electrolyte layer 15.
- the sealing portion 30 preferably has electronic insulation properties. This can prevent a short circuit from occurring between the hydrogen electrode current collecting layer 13 and the separator 20.
- the sealing portion 30 can be made of, for example, glass, glass ceramics (crystallized glass), a composite of glass and ceramics, etc.
- Fig. 2 is a partially enlarged view of Fig. 1.
- Fig. 2 shows a cross section perpendicular to the Y-axis direction.
- Each beam member 51 extends in a rod-like shape along the Y-axis direction (i.e., the direction perpendicular to the paper surface of FIG. 2).
- the Y-axis direction is perpendicular to the thickness direction (Z-axis direction).
- the Y-axis direction is an example of the "first direction" according to the present invention.
- each beam member 51 has a first surface T1, a second surface T2, and a third surface T3.
- the first surface T1 is the surface of the beam member 51 on the hydrogen electrode active layer 14 side.
- the first surface T1 faces the hydrogen electrode active layer 14.
- the first surface T1 includes a central region a1, a first end region a2, and a second end region a3.
- the central region a1, the first end region a2, and the second end region a3 are defined by dividing the first surface T1 into three equal parts in the X-axis direction.
- the first end region a2 and the second end region a3 are each an example of an "end region” according to the present invention.
- the X-axis direction is a direction perpendicular to the thickness direction (Z-axis direction) and the Y-axis direction.
- the X-axis direction is an example of a "second direction" according to the present invention.
- the second surface T2 is the surface of the beam member 51 on the hydrogen electrode side space S1 side.
- the second surface T2 is the surface of the beam member 51 opposite the hydrogen electrode active layer 14.
- the second surface T2 is provided on the opposite side of the first surface T1.
- the third surface T3 is the inner circumferential surface of the through hole 40.
- the third surface T3 is connected to the first surface T1 and the second surface T2.
- the hydrogen electrode current collecting layer 13 has a plurality of embedded portions 70, a first layer portion 80, and a second layer portion 90.
- the first layer portion 80 has a void 81.
- the void 81 is in contact with the first surface T1 of the beam member 51 on the hydrogen electrode active layer 14 side.
- the first layer portion 80 has a void 81 in contact with the first surface T1 of the beam member 51, which makes it easier for the raw material gas that has passed through the through hole 40 to diffuse throughout the first layer portion 80. This makes it possible to prevent the supply of raw material gas from being hindered by the support substrate 12, thereby improving the performance of the electrolysis cell device 1.
- the first layer portion 80 has only one void 81 in FIG. 2, the number and position of the voids 81 can be changed as appropriate.
- the void 81 is in contact with the central region a1 of the first surface T1. Therefore, the raw material gas can be smoothly supplied to the region of the hydrogen electrode active layer 14 located directly above the central region a1, which is the farthest from the through hole 40 and to which the raw material gas is least likely to be supplied.
- the void 81 is also in contact with the first end region a2 and the second end region a3 of the first surface T1. However, the void 81 does not have to be in contact with both or either of the first end region a2 and the second end region a3.
- the thickness of the gap 81 becomes thinner the further away from the center C1 of the first surface T1 in the X-axis direction. In other words, both ends of the gap 81 are tapered in the direction away from the center C1 of the first surface T1. Therefore, the raw material gas can be preferentially supplied to the region of the hydrogen electrode active layer 14 located directly above the central region a1, which is the furthest from the through-hole 40 and where a shortage of raw material gas is likely to occur.
- the hydrogen electrode current collecting layer 13 having the above configuration can be fabricated as follows. First, each through hole 40 of the support substrate 12 is filled with a paste containing the constituent material of the hydrogen electrode current collecting layer 13. Next, a pore-forming material is placed at a desired position on one surface of each beam member 51 of the support substrate 12. Next, the paste containing the constituent material of the hydrogen electrode current collecting layer 13 is applied so as to cover one surface of each beam member 51. Next, a pore-forming material is placed at a desired position on the other surface of each beam member 51 of the support substrate 12. Next, the paste containing the constituent material of the hydrogen electrode current collecting layer 13 is applied so as to cover the other surface of each beam member 51.
- the paste is subjected to a heat treatment (350°C or higher, 1 hour or longer) to form the hydrogen electrode current collecting layer 13.
- a heat treatment 350°C or higher, 1 hour or longer
- the pore-forming material disappears due to the heat treatment, and the voids 81 and the second voids 91 are formed.
- the hydrogen electrode current collecting layer 13 has the first layer portion 80 and the second layer portion 90 , but it is not necessary for the hydrogen electrode current collecting layer 13 to have one of the first layer portion 80 and the second layer portion 90 .
- the gap 81 of the first layer portion 80 is in contact with the central region a1 of the first surface T1, but it may be in contact with only one of the first end region a2 and the second end region a3.
- the gap 81 in the first layer-shaped portion 80 has both ends tapered in the X-axis direction, but the shape of the gap 81 can be appropriately changed.
- the gap 81 may have a shape similar to that of the second gap 91.
- the second gap 91 of the second layer portion 90 is in contact with the first end region b2 of the second surface T2, but it does not have to be in contact with the first end region b2.
- the second gap 91 of the second layer portion 90 has one end portion in the X-axis direction that is tapered, but the shape of the second gap 91 can be appropriately changed.
- the second gap 91 may have a shape similar to that of the gap 81.
- the hydrogen electrode current collecting layer 13 has a plurality of embedded portions 70, but the number of embedded portions 70 may be one or more.
- the support substrate 12 has the frame portion 60 , but it does not have to have the frame portion 60 .
- the hydrogen electrode active layer 14 functions as a cathode and the oxygen electrode layer 17 functions as an anode, but the hydrogen electrode active layer 14 may function as an anode and the oxygen electrode layer 17 may function as a cathode.
- the constituent materials of the hydrogen electrode active layer 14 and the oxygen electrode layer 17 are switched, and a source gas is caused to flow on the outer surface of the hydrogen electrode active layer 14.
- the hydrogen electrode current collecting layer 13 functions as an oxygen electrode current collecting layer, but the configuration and function of the oxygen electrode current collecting layer are the same as those of the hydrogen electrode current collecting layer 13 described in the above embodiment.
- the electrolysis cell 10 has been described as an example of an electrochemical cell, but the electrochemical cell is not limited to an electrolysis cell.
- An electrochemical cell is a general term for an element in which a pair of electrodes are arranged so that an electromotive force is generated from an overall oxidation-reduction reaction in order to convert electrical energy into chemical energy, and an element for converting chemical energy into electrical energy. Therefore, the electrochemical cell includes, for example, a fuel cell that uses oxide ions or protons as a carrier.
- 1...electrolysis cell device 10...electrolysis cell, 12...support substrate, 13...hydrogen electrode current collecting layer, 14...hydrogen electrode active layer, 15...electrolyte layer, 16...reaction prevention layer, 17...oxygen electrode layer, 20...separator, 25...current collecting member, 30...sealing portion, 40...through hole, 50...beam portion, 51...beam member, T1...first surface, T2...second surface, T3...third surface, a1...central region, a2...first end region, a3...second end region, 60...frame portion, 70...embedded portion, 80...first layer portion, 81...void, 90...second layer portion
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
本発明は、電気化学セルに関する。 The present invention relates to an electrochemical cell.
特許文献1には、貫通孔を有する支持基板と、貫通孔に埋設されたアノードと、支持基板上に配置された電解質層と、電解質層上に配置されたカソードとを備えるアノード支持型の燃料電池セルが開示されている。 Patent Document 1 discloses an anode-supported fuel cell that includes a support substrate with a through-hole, an anode embedded in the through-hole, an electrolyte layer disposed on the support substrate, and a cathode disposed on the electrolyte layer.
特許文献1に記載の燃料電池セルでは、アノードが支持基板の貫通孔に埋設されているため、アノードへの原料ガスの供給が支持基板によって阻害されやすいという問題がある。この問題は、燃料電池セルに限らず、電解セルを含む電気化学セル全般で生じるものである。 In the fuel cell described in Patent Document 1, the anode is embedded in a through-hole in the support substrate, which causes a problem that the supply of raw material gas to the anode is easily hindered by the support substrate. This problem is not limited to fuel cells, but occurs in all electrochemical cells, including electrolysis cells.
本発明の課題は、性能を向上可能な電気化学セルを提供することにある。 The objective of the present invention is to provide an electrochemical cell that can improve performance.
本発明の第1の側面に係る電気化学セルは、貫通孔を有する支持基板と、前記貫通孔に埋設された埋設部と、前記埋設部に連なり、前記支持基板上に配置される層状部とを有する集電層と、前記集電層上に配置される第1電極層と、第2電極層と、前記第1電極層と前記第2電極層の間に配置される電解質層とを備える。前記層状部は、前記支持基板のうち前記第1電極層側の表面に接する空隙を含む。 The electrochemical cell according to the first aspect of the present invention comprises a support substrate having a through hole, a current collecting layer having an embedded portion embedded in the through hole and a layer portion connected to the embedded portion and disposed on the support substrate, a first electrode layer disposed on the current collecting layer, a second electrode layer, and an electrolyte layer disposed between the first electrode layer and the second electrode layer. The layer portion includes a void in contact with the surface of the support substrate facing the first electrode layer.
本発明の第2の側面に係る電気化学セルは、第1の側面に係り、前記支持基板は、前記表面を有する梁部材を有する。前記梁部材は、前記支持基板の厚み方向に垂直な第1方向に延びている。前記第1方向に垂直な断面において、前記空隙は、前記厚み方向に垂直な第2方向における前記表面の中央領域に接している。 The electrochemical cell according to the second aspect of the present invention relates to the first aspect, and the support substrate has a beam member having the surface. The beam member extends in a first direction perpendicular to the thickness direction of the support substrate. In a cross section perpendicular to the first direction, the void is in contact with a central region of the surface in a second direction perpendicular to the thickness direction.
本発明の第3の側面に係る電気化学セルは、第2の側面に係り、前記空隙の厚みは、前記第2方向における前記表面の中央から離れるほど薄くなっている。 The electrochemical cell according to the third aspect of the present invention is the same as the second aspect, and the thickness of the void becomes thinner the further away from the center of the surface in the second direction.
本発明によれば、性能を向上可能な電気化学セルを提供することができる。 The present invention provides an electrochemical cell that can improve performance.
(電解セル装置1)
図1は、実施形態に係る電解セル装置1の構成を示す断面図である。
(Electrolytic cell device 1)
FIG. 1 is a cross-sectional view showing the configuration of an electrolysis cell device 1 according to an embodiment.
電解セル装置1は、電解セル10、セパレータ20、集電部材25及び封止部30を備える。電解セル10は、本発明に係る「電気化学セル」の一例である。X軸方向及びY軸方向に垂直なZ軸方向に電解セル装置1を複数積層することによって、セルスタック(不図示)を形成することができる。
The electrolytic cell device 1 includes an
(電解セル10)
図1に示すように、電解セル10は、支持基板12、水素極集電層13、水素極活性層14、電解質層15、反応防止層16、及び酸素極層17を備える。水素極集電層13、水素極活性層14、電解質層15、反応防止層16、及び酸素極層17は、Z軸方向において、この順で積層されている。
(Electrolytic cell 10)
1, the
水素極集電層13は、本発明に係る「集電層」の一例である。水素極活性層14は、本発明に係る「第1電極層」の一例である。酸素極層17は、本発明に係る「第2電極層」の一例である。
The hydrogen electrode current collecting
支持基板12、水素極集電層13、水素極活性層14、電解質層15、及び酸素極層17は必須の構成であり、反応防止層16は任意の構成である。
The
[支持基板12]
支持基板12は、水素極集電層13とともに電解セル10の支持体として機能する。支持基板12は、複数の貫通孔40、梁部50及び枠部60を有する。
[Support substrate 12]
The
各貫通孔40は、支持基板12を貫通する。各貫通孔40は、支持基板12の厚み方向(Z軸方向)に沿って延びる。各貫通孔40は、梁部50の内部、又は、梁部50と枠部60の間に形成される。各貫通孔40には水素極集電層13の少なくとも一部が埋設される。
Each through
梁部50は、枠部60の内側に配置される。梁部50は、枠部60と実質的に一体であってもよい。
The
梁部50は、複数の梁部材51によって構成されている。各梁部材51は棒状に形成される。各梁部材51の端部は、枠部60の内周面に連結されている。本実施形態において、複数の梁部材51は格子状に互いに連結されているが、各梁部材51の数及び位置は適宜変更可能である。
The
梁部50は、例えば、フォルステライト(Mg2SiO4)、ケイ酸マグネシウム(MgSiO3)、ジルコニア(ZrO2,部分安定化ジルコニア含む)、マグネシア(MgO)、スピネル(MgAl2O4、NiAl2O4)、イットリア安定化ジルコニア(YSZ)、カルシア安定化ジルコニア(CSZ)、ニッケル(Ni)、酸化ニッケル(NiO)、アルミナ(Al2O3)、酸化ニッケル-マグネシア固溶体(MgxNi(1-x)O[0<x<1])及びこれらのうち2つ以上を組み合わせた混合材料などによって構成することができる。
The
梁部50の気孔率は特に限られないが、例えば0.1%以上15%以下とすることができる。梁部50の気孔率は、水素極集電層13の気孔率より低くてもよい。梁部50の気孔率は、5%以下であることが好ましい。これによって、梁部50の剛性を向上させることができる。
The porosity of the
梁部50の電子伝導性は、水素極集電層13の電子伝導性より低くてもよい。梁部50は、電子絶縁性を有していてもよい。梁部50の電子伝導率は特に制限されないが、例えば800℃以下で10-1S/m以下とすることができる。
The electronic conductivity of the
梁部50の形成方法は特に制限されず、押出成形法、テープ成形法、印刷積層法、鋳込み法、乾式プレス法などを用いることができる。
The method for forming the
枠部60は、環状に形成される。枠部60は、梁部50及び水素極集電層13を取り囲む。本実施形態において、枠部60は、セパレータ20上に配置される。枠部60は、封止部30によって位置決めされている。
The
枠部60は、例えば、フォルステライト(Mg2SiO4)、ケイ酸マグネシウム(MgSiO3)、ジルコニア(ZrO2,部分安定化ジルコニア含む)、マグネシア(MgO)、スピネル(MgAl2O4、NiAl2O4)、イットリア安定化ジルコニア(YSZ)、カルシア安定化ジルコニア(CSZ)、ニッケル(Ni)、酸化ニッケル(NiO)、アルミナ(Al2O3)、酸化ニッケル-マグネシア固溶体(MgxNi(1-x)O[0<x<1])及びこれらのうち2つ以上を組み合わせた混合材料などによって構成することができる。枠部60は、梁部50と同じ材料によって構成されていてもよい。この場合、枠部60は、梁部50と実質的に一体であってもよい。枠部60は、梁部50と異なる材料によって構成されていてもよい。
The
枠部60の気孔率は、例えば0.1%以上15%以下とすることができる。枠部60の気孔率は、水素極集電層13の気孔率より低くてもよい。枠部60の気孔率は、5%以下であることが好ましい。これによって、枠部60にガス封止性を付与できるため、水素極側空間S1から水素極集電層13に供給された原料ガスが枠部60を介して水素極側空間S1に戻ることを抑制できる。
The porosity of the
枠部60の電子伝導性は、水素極集電層13の電子伝導性より低くてもよい。枠部60は、電子絶縁性を有していてもよい。枠部60の電子伝導率は特に制限されないが、例えば800℃以下で10-1S/m以下とすることができる。
The electronic conductivity of the
枠部60の形成方法は特に制限されず、押出成形法、テープ成形法、印刷積層法、鋳込み法、乾式プレス法などを用いることができる。
The method for forming the
[水素極集電層13]
水素極集電層13は、支持基板12とともに電解セル10の支持体として機能する。水素極集電層13は、複数の埋設部70、第1層状部80及び第2層状部90を有する。埋設部70と第1層状部80及び第2層状部90のうち一方は必須の構成あり、第1層状部80及び第2層状部90のうち他方は任意の構成である。
[Hydrogen electrode current collecting layer 13]
The hydrogen electrode
各埋設部70は、支持基板12の各貫通孔40に埋設される。各埋設部70は、第1層状部80に連なる。各埋設部70は、第2層状部90に連なる。各埋設部70は、支持基板12の厚み方向(Z軸方向)において、第1層状部80と第2層状部90の間に配置される。
Each embedded
第1層状部80は、各埋設部70と水素極活性層14の間に配置される。第1層状部80は、各埋設部70と一体的に形成される。第1層状部80は、梁部50上に配置される。第1層状部80は、支持基板12のうち梁部50の水素極活性層14側を覆っている。
The
第2層状部90は、各埋設部70を基準として第1層状部80の反対側に配置される。第2層状部90は、各埋設部70と一体的に形成される。第2層状部90は、梁部50上に配置される。第2層状部90は、支持基板12のうち梁部50の水素極活性層14の反対側を覆っている。
The
水素極集電層13の詳細構成については後述する。
The detailed structure of the hydrogen electrode
水素極集電層13は、電子伝導性を有する多孔体である。水素極集電層13は、ニッケル(Ni)を含有する。共電解の場合、Niは、生成されるH2と原料ガスに含まれるCO2との熱的反応を促進してメタネーションや逆水性ガスシフト反応などに適切なガス組成を維持する熱触媒としても機能する。Niは、電解セル10の作動中、基本的には金属Niの状態で存在しているが、一部は酸化ニッケル(NiO)の状態で存在していてもよい。
The hydrogen electrode
水素極集電層11は、ニッケル(Ni)以外にセラミックを含む。セラミックは、イオン伝導性を有していてもよい。セラミックとしては、例えば、イットリア(Y2O3)、マグネシア(MgO)、酸化鉄(Fe2O3)、ジルコニア(ZrO2,部分安定化ジルコニア含む)、イットリア安定化ジルコニア(YSZ)、カルシア安定化ジルコニア(CSZ)、スカンジア安定化ジルコニア(ScSZ)、ガドリニウムドープセリア(GDC)、サマリウムドープセリア(SDC)、及びこれらのうち2つ以上を組み合わせた混合材料などを用いることができる。 The hydrogen electrode current collecting layer 11 contains a ceramic in addition to nickel (Ni). The ceramic may have ion conductivity. Examples of the ceramic that can be used include yttria (Y 2 O 3 ), magnesia (MgO), iron oxide (Fe 2 O 3 ), zirconia (ZrO 2 , including partially stabilized zirconia), yttria stabilized zirconia (YSZ), calcia stabilized zirconia (CSZ), scandia stabilized zirconia (ScSZ), gadolinium doped ceria (GDC), samarium doped ceria (SDC), and a mixed material of two or more of these.
水素極集電層13の気孔率は特に制限されないが、例えば20%以上40%以下とすることができる。水素極集電層13の厚さは特に制限されないが、例えば150μm以上1000μm以下とすることができる。Z軸方向において、水素極集電層13の厚みは、水素極活性層14、電解質層15、反応防止層16及び酸素極層17それぞれの厚みより大きくてもよい。
The porosity of the hydrogen electrode
[水素極活性層14]
水素極活性層14は、カソードとして機能する。水素極活性層14は、水素極集電層13上に配置される。水素極活性層14は、電解質層15によって覆われる。
[Hydrogen electrode active layer 14]
The hydrogen electrode active layer 14 functions as a cathode. The hydrogen electrode active layer 14 is disposed on the hydrogen electrode
水素極活性層14には、水素極集電層13を介して原料ガスが供給される。本実施形態において、原料ガスは少なくともH2Oを含む。
A source gas is supplied to the hydrogen electrode active layer 14 through the hydrogen electrode
原料ガスがH2Oのみを含む場合、水素極活性層14は、下記(1)式に示す水電解の電気化学反応に従って、原料ガスからH2を生成する。 When the source gas contains only H 2 O, the hydrogen electrode active layer 14 produces H 2 from the source gas in accordance with the electrochemical reaction of water electrolysis shown in the following formula (1).
・水素極活性層14:H2O+2e-→H2+O2-・・・(1) Hydrogen electrode active layer 14: H2O+2e-→H2+O2-...(1)
原料ガスがH2Oに加えてCO2を含む場合、水素極活性層14は、下記(2)、(3)、(4)式に示す共電解の電気化学反応に従って、原料ガスからH2、CO及びO2-を生成する。 When the source gas contains CO 2 in addition to H 2 O, the hydrogen electrode active layer 14 produces H 2 , CO, and O 2− from the source gas in accordance with the co-electrochemical reactions shown in the following formulas (2), (3), and (4 ) .
・水素極活性層14:CO2+H2O+4e-→CO+H2+2O2-・・・(2)
・H2Oの電気化学反応:H2O+2e-→H2+O2-・・・(3)
・CO2の電気化学反応:CO2+2e-→CO+O2-・・・(4)
・Hydrogen electrode active layer 14: CO 2 +H 2 O+4e − →CO+H 2 +2O 2− (2)
Electrochemical reaction of H 2 O: H 2 O + 2e − → H 2 + O 2− (3)
Electrochemical reaction of CO2 : CO2 + 2e- → CO + O2 -... (4)
水素極活性層14は、電子伝導性を有する多孔体である。水素極活性層14は、イオン伝導性を有していてもよい。水素極活性層14は、例えば、YSZ、CSZ、ScSZ、GDC、(SDC)、(La,Sr)(Cr,Mn)O3、(La,Sr)TiO3、Sr2(Fe,Mo)2O6、(La,Sr)VO3、(La,Sr)FeO3、及びこれらのうち2つ以上を組み合わせた混合材料、或いは、これらのうち1つ以上とNiOとの複合物によって構成することができる。 The hydrogen electrode active layer 14 is a porous body having electronic conductivity. The hydrogen electrode active layer 14 may have ion conductivity. The hydrogen electrode active layer 14 may be composed of, for example, YSZ, CSZ, ScSZ, GDC, (SDC), (La, Sr) (Cr, Mn) O 3 , (La, Sr) TiO 3 , Sr 2 (Fe, Mo) 2 O 6 , (La, Sr) VO 3 , (La, Sr) FeO 3 , a mixed material of two or more of these, or a composite of one or more of these and NiO.
水素極活性層14の気孔率は特に制限されないが、例えば20%以上40%以下とすることができる。水素極活性層14の厚みは特に制限されないが、例えば5μm以上50μm以下とすることができる。 The porosity of the hydrogen electrode active layer 14 is not particularly limited, but can be, for example, 20% to 40%. The thickness of the hydrogen electrode active layer 14 is not particularly limited, but can be, for example, 5 μm to 50 μm.
水素極活性層14の形成方法は特に制限されず、テープ成形、スクリーン印刷、鋳込み成形、乾式プレス法などを用いることができる。 The method for forming the hydrogen electrode active layer 14 is not particularly limited, and tape casting, screen printing, casting, dry pressing, etc. can be used.
[電解質層15]
電解質層15は、水素極活性層14及び酸素極層17の間に配置される。本実施形態では、電解質層15及び酸素極層17の間に反応防止層16が配置されているので、電解質層15は、水素極活性層14及び反応防止層16の間に挟まれている。
[Electrolyte layer 15]
The electrolyte layer 15 is disposed between the hydrogen electrode active layer 14 and the oxygen electrode layer 17. In this embodiment, the reaction prevention layer 16 is disposed between the electrolyte layer 15 and the oxygen electrode layer 17, so that the electrolyte layer 15 is sandwiched between the hydrogen electrode active layer 14 and the reaction prevention layer 16.
電解質層15は、水素極活性層14を覆う。図1に示すように、電解質層15は、水素極活性層14の表面全体を覆っていることが好ましい。電解質層15の外周部は、枠部60に接続されている。
The electrolyte layer 15 covers the hydrogen electrode active layer 14. As shown in FIG. 1, it is preferable that the electrolyte layer 15 covers the entire surface of the hydrogen electrode active layer 14. The outer periphery of the electrolyte layer 15 is connected to the
電解質層15は、水素極活性層14において生成されたO2-を酸素極層17側に伝達させる機能を有する。電解質層15は、イオン伝導性を有し且つ電子伝導性を有さない緻密体である。電解質層15は、例えば、YSZ、GDC、ScSZ、SDC、ランタンガレート(LSGM)などによって構成することができる。 The electrolyte layer 15 has a function of transmitting O 2- generated in the hydrogen electrode active layer 14 to the oxygen electrode layer 17. The electrolyte layer 15 is a dense body that has ionic conductivity but no electronic conductivity. The electrolyte layer 15 can be made of, for example, YSZ, GDC, ScSZ, SDC, lanthanum gallate (LSGM), or the like.
電解質層15の気孔率は特に制限されないが、例えば0.1%以上7%以下とすることができる。電解質層15の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。 The porosity of the electrolyte layer 15 is not particularly limited, but can be, for example, 0.1% to 7%. The thickness of the electrolyte layer 15 is not particularly limited, but can be, for example, 1 μm to 100 μm.
電解質層15の形成方法は特に制限されず、テープ成形、スクリーン印刷、鋳込み成形、乾式プレス法などを用いることができる。 The method for forming the electrolyte layer 15 is not particularly limited, and tape casting, screen printing, casting, dry pressing, etc. can be used.
[反応防止層16]
反応防止層16は、電解質層15及び酸素極層17の間に配置される。反応防止層16は、電解質層15を基準として水素極活性層14の反対側に配置される。反応防止層16は、電解質層15の構成元素が酸素極層17の構成元素と反応して電気抵抗の大きい層が形成されることを抑制する。
[Reaction prevention layer 16]
The reaction prevention layer 16 is disposed between the electrolyte layer 15 and the oxygen electrode layer 17. The reaction prevention layer 16 is disposed on the opposite side of the electrolyte layer 15 to the hydrogen electrode active layer 14. The reaction prevention layer 16 prevents the constituent elements of the electrolyte layer 15 from reacting with the constituent elements of the oxygen electrode layer 17 to form a layer with high electrical resistance.
反応防止層16は、イオン伝導性材料によって構成される。反応防止層16は、GDC、SDCなどによって構成することができる。 The reaction prevention layer 16 is made of an ion-conductive material. The reaction prevention layer 16 can be made of GDC, SDC, etc.
反応防止層16の気孔率は特に制限されないが、例えば0.1%以上50%以下とすることができる。反応防止層16の厚みは特に制限されないが、例えば1μm以上50μm以下とすることができる。 The porosity of the reaction prevention layer 16 is not particularly limited, but can be, for example, 0.1% to 50%. The thickness of the reaction prevention layer 16 is not particularly limited, but can be, for example, 1 μm to 50 μm.
反応防止層16の形成方法は特に制限されず、テープ成形、スクリーン印刷、鋳込み成形、乾式プレス法などを用いることができる。 The method for forming the reaction prevention layer 16 is not particularly limited, and tape casting, screen printing, casting, dry pressing, etc. can be used.
[酸素極層17]
酸素極層17は、アノードとして機能する。酸素極層17は、電解質層15を基準として水素極活性層14の反対側に配置される。本実施形態では、電解質層15及び酸素極層17の間に反応防止層16が配置されているので、酸素極層17は反応防止層16に接続される。電解質層15及び酸素極層17の間に反応防止層16が配置されない場合、酸素極層17は電解質層15に接続される。
[Oxygen electrode layer 17]
The oxygen electrode layer 17 functions as an anode. The oxygen electrode layer 17 is disposed on the opposite side of the hydrogen electrode active layer 14 with respect to the electrolyte layer 15. In this embodiment, since the reaction prevention layer 16 is disposed between the electrolyte layer 15 and the oxygen electrode layer 17, the oxygen electrode layer 17 is connected to the reaction prevention layer 16. If the reaction prevention layer 16 is not disposed between the electrolyte layer 15 and the oxygen electrode layer 17, the oxygen electrode layer 17 is connected to the electrolyte layer 15.
酸素極層17は、下記(5)式の化学反応に従って、水素極活性層14から電解質層15を介して伝達されるO2-からO2を生成する。酸素極層17において生成されたO2は、酸素極側空間S2に放出される。 The oxygen electrode layer 17 generates O2 from O2- transferred from the hydrogen electrode active layer 14 through the electrolyte layer 15, according to the chemical reaction of the following formula (5). The O2 generated in the oxygen electrode layer 17 is released into the oxygen electrode side space S2.
・酸素極層17:2O2-→O2+4e-・・・(5) Oxygen electrode layer 17: 2O 2− →O 2 +4e − (5)
酸素極層17は、イオン伝導性及び電子伝導性を有する多孔体である。酸素極層17は、例えば(La,Sr)(Co,Fe)O3、(La,Sr)FeO3、La(Ni,Fe)O3、(La,Sr)CoO3、及び(Sm,Sr)CoO3のうち1つ以上とイオン伝導材料(GDCなど)との複合材料によって構成することができる。 The oxygen electrode layer 17 is a porous body having ionic and electronic conductivity, and may be made of a composite material of one or more of (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr) CoO3 and an ion conductive material (such as GDC).
酸素極層17の気孔率は特に制限されないが、例えば20%以上60%以下とすることができる。酸素極層17の厚みは特に制限されないが、例えば1μm以上100μm以下とすることができる。 The porosity of the oxygen electrode layer 17 is not particularly limited, but can be, for example, 20% or more and 60% or less. The thickness of the oxygen electrode layer 17 is not particularly limited, but can be, for example, 1 μm or more and 100 μm or less.
酸素極層17の形成方法は特に制限されず、テープ成形、スクリーン印刷、鋳込み成形、乾式プレス法などを用いることができる。 The method for forming the oxygen electrode layer 17 is not particularly limited, and tape casting, screen printing, casting, dry pressing, etc. can be used.
(セパレータ20)
セパレータ20は、集電部材25を介して水素極集電層13と電気的に接続される。セパレータ20は、集電部材25と接触する接続部20aを有する。
(Separator 20)
The
セパレータ20は、電子伝導性を有する金属材料によって構成される。セパレータ20は、例えば、Cr(クロム)を含有する合金材料によって構成することができる。このような合金材料としては、Fe-Cr系合金鋼(ステンレス鋼など)やNi-Cr系合金鋼などが挙げられる。セパレータ20におけるCrの含有率は特に制限されないが、4質量%以上30質量%以下とすることができる。
The
セパレータ20は、Ti(チタン)やZr(ジルコニウム)を含有していてもよい。セパレータ20におけるTiの含有率は特に制限されないが、0.01mol%以上1.0mol%以下とすることができる。セパレータ20におけるAlの含有率は特に制限されないが、0.01mol%以上0.4mol%以下とすることができる。セパレータ20は、TiをTiO2(チタニア)として含有していてもよいし、ZrをZrO2(ジルコニア)として含有していてもよい。
The
セパレータ20の表面の少なくとも一部は、セパレータ20の構成元素が酸化することによって形成される酸化皮膜によって覆われていてもよい。酸化皮膜としては、例えば酸化クロム膜が代表的である。
At least a portion of the surface of the
(集電部材25)
集電部材25は、水素極集電層13とセパレータ20の接続部20aを電気的に接続する。図1に示すように、集電部材25は、水素極集電層13とセパレータ20の間の水素極側空間S1に配置される。
(Current collecting member 25)
The current collecting
集電部材25は、電子伝導性及び通気性を有する。集電部材25としては、例えば、ニッケルやニッケル合金、ステンレス等の多孔性部材を用いることができる。集電部材25のサイズ、形状及び位置は適宜変更可能である。例えば、本実施形態において、集電部材25は、水素極集電層13及び枠部60と接触しているが、枠部60とは接触していなくてもよい。
The current collecting
(封止部30)
封止部30は、セパレータ20に対して枠部60を位置決めする。封止部30は、緻密体である。封止部30は、電解セル10とセパレータ20の隙間を封止する。これによって、水素極側空間S1と酸素極側空間S2の間におけるガスの混合が防止される。
(Sealing portion 30)
The sealing
本実施形態において、封止部30は、電解質層15と支持基板12の枠部60とに接続されているが、梁部50が通気性を有していなければ、封止部30は電解質層15に接続されていなくてもよい。
In this embodiment, the sealing
封止部30は、電子絶縁性を有することが好ましい。これによって、水素極集電層13とセパレータ20の間に短絡が生じることを防止できる。封止部30は、例えばガラス、ガラスセラミックス(結晶化ガラス)、ガラスとセラミックスの複合物などによって構成することができる。
The sealing
(水素極集電層13の詳細構成)
水素極集電層13の詳細構成について、図2を参照しながら説明する。図2は、図1の部分拡大図である。図2では、Y軸方向に垂直な断面が図示されている。
(Detailed configuration of hydrogen electrode current collecting layer 13)
The detailed configuration of the hydrogen electrode
各梁部材51は、Y軸方向(すなわち、図2の紙面に垂直な方向)に沿って棒状に延びている。Y軸方向は、厚み方向(Z軸方向)に垂直な方向である。Y軸方向は、本発明に係る「第1方向」の一例である。
Each
各梁部材51の断面は矩形である。各梁部材51は、第1表面T1、第2表面T2、及び第3表面T3を有する。
The cross section of each
第1表面T1は、梁部材51のうち水素極活性層14側の表面である。第1表面T1は、水素極活性層14と対向する。第1表面T1は、中央領域a1、第1端部領域a2及び第2端部領域a3を含む。中央領域a1、第1端部領域a2及び第2端部領域a3は、第1表面T1をX軸方向に3等分することによって規定される。第1端部領域a2及び第2端部領域a3は、それぞれ本発明に係る「端部領域」の一例である。X軸方向は、厚み方向(Z軸方向)及びY軸方向に垂直な方向である。X軸方向は、本発明に係る「第2方向」の一例である。
The first surface T1 is the surface of the
第2表面T2は、梁部材51のうち水素極側空間S1側の表面である。第2表面T2は、梁部材51のうち水素極活性層14と反対側の表面である。第2表面T2は、第1表面T1の反対側に設けられる。
The second surface T2 is the surface of the
第3表面T3は、貫通孔40の内周面である。第3表面T3は、第1表面T1及び第2表面T2に連なる。
The third surface T3 is the inner circumferential surface of the through
上述の通り、水素極集電層13は、複数の埋設部70、第1層状部80及び第2層状部90を有する。
As described above, the hydrogen electrode
図2に示すように、第1層状部80は空隙81を有している。空隙81は、梁部材51のうち水素極活性層14側の第1表面T1に接している。このように、第1層状部80が梁部材51の第1表面T1に接する空隙81を有していることによって、貫通孔40を通過した原料ガスを第1層状部80全体に拡散しやすくなる。よって、原料ガスの供給が支持基板12によって阻害されることを抑制できるため、電解セル装置1の性能を向上させることができる。なお、図2では、第1層状部80が空隙81を1つだけ有しているが、空隙81の数及び位置は適宜変更可能である。
2, the
図2に示すように、空隙81は、第1表面T1のうち中央領域a1に接している。そのため、水素極活性層14のうち、貫通孔40から最も遠く最も原料ガスが供給されにくい中央領域a1の直上に位置する領域へ、原料ガスをスムーズに供給することができる。本実施形態において、空隙81は、第1表面T1のうち第1端部領域a2及び第2端部領域a3にも接している。ただし、空隙81は、第1端部領域a2及び第2端部領域a3の両方又は一方には接していなくてもよい。
As shown in FIG. 2, the void 81 is in contact with the central region a1 of the first surface T1. Therefore, the raw material gas can be smoothly supplied to the region of the hydrogen electrode active layer 14 located directly above the central region a1, which is the farthest from the through
空隙81の厚みは、X軸方向における第1表面T1の中央C1から離れるほど薄くなっている。すなわち、空隙81の両端部は、第1表面T1の中央C1から離れる向きに向かってテーパー状に形成されている。そのため、水素極活性層14のうち、貫通孔40から最も遠く原料ガスの欠乏が起きやすい中央領域a1の直上に位置する領域へ、原料ガスを優先して供給することができる。
The thickness of the
以上のような構成を有する水素極集電層13は、次のように作製することができる。まず、支持基板12の各貫通孔40に水素極集電層13の構成材料を含むペーストを充填する。次に、支持基板12の各梁部材51の一方の表面上の所望位置に造孔材を配置する。次に、水素極集電層13の構成材料を含むペーストを各梁部材51の一方の表面を覆うように塗布する。次に、支持基板12の各梁部材51の他方の表面上の所望位置に造孔材を配置する。次に、水素極集電層13の構成材料を含むペーストを各梁部材51の他方の表面を覆うように塗布する。次に、ペーストに熱処理(350℃以上、1時間以上)を施すことによって水素極集電層13を形成する。この際、熱処理によって造孔材が消失することによって空隙81や第2空隙91が形成される。
The hydrogen electrode
(実施形態の変形例)
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
(Modification of the embodiment)
Although the embodiments of the present invention have been described above, the present invention is not limited to these, and various modifications are possible without departing from the spirit of the present invention.
[変形例1]
上記実施形態において、水素極集電層13は、第1層状部80及び第2層状部90を有することとしたが、第1層状部80及び第2層状部90のうち一方を有していなくてもよい。
[Modification 1]
In the above embodiment, the hydrogen electrode
[変形例2]
上記実施形態において、第1層状部80が有する空隙81は、第1表面T1のうち中央領域a1に接することとしたが、第1端部領域a2及び第2端部領域a3の一方にのみ接していてもよい。
[Modification 2]
In the above embodiment, the
[変形例3]
上記実施形態において、第1層状部80が有する空隙81は、X軸方向における両端部がテーパー状であることとしたが、空隙81の形状は適宜変更可能である。例えば、空隙81は第2空隙91に類似する形状であってもよい。
[Modification 3]
In the above embodiment, the
[変形例4]
上記実施形態において、第2層状部90が有する第2空隙91は、第2表面T2のうち第1端部領域b2に接することとしたが、第1端部領域b2に接していなくてもよい。
[Modification 4]
In the above embodiment, the second gap 91 of the
[変形例5]
上記実施形態において、第2層状部90が有する第2空隙91は、X軸方向における一端部がテーパー状であることとしたが、第2空隙91の形状は適宜変更可能である。例えば、第2空隙91は空隙81に類似する形状であってもよい。
[Modification 5]
In the above embodiment, the second gap 91 of the
[変形例6]
上記実施形態において、水素極集電層13は、複数の埋設部70を有することとしたが、埋設部70の数は1以上であればよい。
[Modification 6]
In the above embodiment, the hydrogen electrode
[変形例7]
上記実施形態において、支持基板12は、枠部60を有することとしたが、枠部60を有していなくてもよい。
[Modification 7]
In the above embodiment, the
[変形例8]
上記実施形態において、水素極活性層14はカソードとして機能し、酸素極層17はアノードとして機能することとしたが、水素極活性層14がアノードとして機能し、酸素極層17がカソードとして機能してもよい。この場合、水素極活性層14と酸素極層17の構成材料を入れ替えるとともに、水素極活性層14の外表面に原料ガスを流すことになる。なお、水素極集電層13は、酸素極集電層として機能することになるが、酸素極集電層の構成及び機能は上記実施形態において説明した水素極集電層13の構成及び機能と同じである。
[Modification 8]
In the above embodiment, the hydrogen electrode active layer 14 functions as a cathode and the oxygen electrode layer 17 functions as an anode, but the hydrogen electrode active layer 14 may function as an anode and the oxygen electrode layer 17 may function as a cathode. In this case, the constituent materials of the hydrogen electrode active layer 14 and the oxygen electrode layer 17 are switched, and a source gas is caused to flow on the outer surface of the hydrogen electrode active layer 14. The hydrogen electrode
[変形例9]
上記実施形態では、電気化学セルの一例として電解セル10について説明したが、電気化学セルは電解セルに限られない。電気化学セルとは、電気エネルギーを化学エネルギーに変えるため、全体的な酸化還元反応から起電力が生じるように一対の電極が配置された素子と、化学エネルギーを電気エネルギーに変えるための素子との総称である。従って、電気化学セルには、例えば、酸化物イオン或いはプロトンをキャリアとする燃料電池セルが含まれる。
[Modification 9]
In the above embodiment, the
1…電解セル装置、10…電解セル、12…支持基板、13…水素極集電層、14…水素極活性層、15…電解質層、16…反応防止層、17…酸素極層、20…セパレータ、25…集電部材、30…封止部、40…貫通孔、50…梁部、51…梁部材、T1…第1表面、T2…第2表面、T3…第3表面、a1…中央領域、a2…第1端部領域、a3…第2端部領域、60…枠部、70…埋設部、80…第1層状部、81…空隙、90…第2層状部 1...electrolysis cell device, 10...electrolysis cell, 12...support substrate, 13...hydrogen electrode current collecting layer, 14...hydrogen electrode active layer, 15...electrolyte layer, 16...reaction prevention layer, 17...oxygen electrode layer, 20...separator, 25...current collecting member, 30...sealing portion, 40...through hole, 50...beam portion, 51...beam member, T1...first surface, T2...second surface, T3...third surface, a1...central region, a2...first end region, a3...second end region, 60...frame portion, 70...embedded portion, 80...first layer portion, 81...void, 90...second layer portion
Claims (3)
前記貫通孔に埋設された埋設部と、前記埋設部に連なり、前記支持基板上に配置される層状部とを有する集電層と、
前記集電層上に配置される第1電極層と、
第2電極層と、
前記第1電極層と前記第2電極層の間に配置される電解質層と、
を備え、
前記層状部は、前記支持基板のうち前記第1電極層側の表面に接する空隙を含む、
電気化学セル。 A support substrate having a through hole;
a current collecting layer including a buried portion buried in the through hole and a layer portion connected to the buried portion and disposed on the support substrate;
a first electrode layer disposed on the current collecting layer;
A second electrode layer;
an electrolyte layer disposed between the first electrode layer and the second electrode layer;
Equipped with
the layer portion includes a gap in contact with a surface of the support substrate on the side of the first electrode layer,
Electrochemical cell.
前記梁部材は、前記支持基板の厚み方向に垂直な第1方向に延びており、
前記第1方向に垂直な断面において、前記空隙は、前記厚み方向に垂直な第2方向における前記表面の中央領域に接している、
請求項1に記載の電気化学セル。 the supporting substrate has a beam member having the surface,
The beam member extends in a first direction perpendicular to a thickness direction of the support substrate,
In a cross section perpendicular to the first direction, the void is in contact with a central region of the surface in a second direction perpendicular to the thickness direction.
10. The electrochemical cell of claim 1.
請求項2に記載の電気化学セル。 The thickness of the gap becomes thinner as it moves away from the center of the surface in the second direction.
3. The electrochemical cell of claim 2.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/040983 WO2025104826A1 (en) | 2023-11-14 | 2023-11-14 | Electrochemical cell |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/040983 WO2025104826A1 (en) | 2023-11-14 | 2023-11-14 | Electrochemical cell |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025104826A1 true WO2025104826A1 (en) | 2025-05-22 |
Family
ID=95742130
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/040983 Pending WO2025104826A1 (en) | 2023-11-14 | 2023-11-14 | Electrochemical cell |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025104826A1 (en) |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02257571A (en) * | 1989-03-30 | 1990-10-18 | Nkk Corp | Solid electrolyte type fuel cell and manufacture thereof |
| US20040072057A1 (en) * | 2002-10-10 | 2004-04-15 | Christopher Beatty | Fuel cell assembly and method of making the same |
| JP2005347095A (en) * | 2004-06-03 | 2005-12-15 | Nissan Motor Co Ltd | Solid oxide fuel cell substrate and solid oxide fuel cell |
| JP2006032239A (en) * | 2004-07-21 | 2006-02-02 | Nissan Motor Co Ltd | Gas permeable substrate and solid oxide fuel cell using the same |
| JP2007035321A (en) * | 2005-07-22 | 2007-02-08 | Nissan Motor Co Ltd | Solid oxide fuel cell |
| JP2008135360A (en) * | 2006-10-24 | 2008-06-12 | Ngk Insulators Ltd | Thin plate for single cell of solid oxide fuel cell |
| JP2010073631A (en) * | 2008-09-22 | 2010-04-02 | Nissan Motor Co Ltd | Fuel cell power generation unit and fuel cell stack |
| JP2013201061A (en) * | 2012-03-26 | 2013-10-03 | Miura Co Ltd | Anode-supported solid oxide fuel cell unit cell and method for manufacturing the same |
| US20140234751A1 (en) * | 2013-02-21 | 2014-08-21 | Samsung Electro-Mechanics Co., Ltd. | Solid oxide fuel cell and manufacturing method thereof |
| JP2017157476A (en) * | 2016-03-03 | 2017-09-07 | 株式会社デンソー | Fuel battery single cell |
-
2023
- 2023-11-14 WO PCT/JP2023/040983 patent/WO2025104826A1/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02257571A (en) * | 1989-03-30 | 1990-10-18 | Nkk Corp | Solid electrolyte type fuel cell and manufacture thereof |
| US20040072057A1 (en) * | 2002-10-10 | 2004-04-15 | Christopher Beatty | Fuel cell assembly and method of making the same |
| JP2005347095A (en) * | 2004-06-03 | 2005-12-15 | Nissan Motor Co Ltd | Solid oxide fuel cell substrate and solid oxide fuel cell |
| JP2006032239A (en) * | 2004-07-21 | 2006-02-02 | Nissan Motor Co Ltd | Gas permeable substrate and solid oxide fuel cell using the same |
| JP2007035321A (en) * | 2005-07-22 | 2007-02-08 | Nissan Motor Co Ltd | Solid oxide fuel cell |
| JP2008135360A (en) * | 2006-10-24 | 2008-06-12 | Ngk Insulators Ltd | Thin plate for single cell of solid oxide fuel cell |
| JP2010073631A (en) * | 2008-09-22 | 2010-04-02 | Nissan Motor Co Ltd | Fuel cell power generation unit and fuel cell stack |
| JP2013201061A (en) * | 2012-03-26 | 2013-10-03 | Miura Co Ltd | Anode-supported solid oxide fuel cell unit cell and method for manufacturing the same |
| US20140234751A1 (en) * | 2013-02-21 | 2014-08-21 | Samsung Electro-Mechanics Co., Ltd. | Solid oxide fuel cell and manufacturing method thereof |
| JP2017157476A (en) * | 2016-03-03 | 2017-09-07 | 株式会社デンソー | Fuel battery single cell |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU713760B2 (en) | Electrode substrate for fuel cell | |
| JP5208518B2 (en) | Method for producing a reversible solid oxide fuel cell | |
| JP4850980B1 (en) | Fuel cell structure | |
| US20140017596A1 (en) | Fuel cell | |
| AU3618601A (en) | Method of fabricating an assembly comprising an anode-supported electrolyte, and ceramic cell comprising such an assembly | |
| CN105409044A (en) | Fuel cell system with interconnect | |
| JP7637833B1 (en) | Electrochemical Cell | |
| JP5075268B1 (en) | Fuel cell structure | |
| WO2025104826A1 (en) | Electrochemical cell | |
| WO2025104825A1 (en) | Electrochemical cell | |
| JP7705570B2 (en) | Electrochemical Cell | |
| WO2025104824A1 (en) | Electrochemical cell | |
| WO2025104823A1 (en) | Electrochemical cell | |
| US20250266471A1 (en) | Electrochemical cell and separator-equipped electrochemical cell | |
| US20240332565A1 (en) | Electrochemical cell | |
| US20250263851A1 (en) | Electrochemical cell and separator-equipped electrochemical cell | |
| US20240328006A1 (en) | Electrochemical cell | |
| JP7659705B1 (en) | Electrochemical Cell | |
| US20240332566A1 (en) | Electrochemical cell | |
| JP7657379B1 (en) | Electrochemical Cell | |
| JP7696497B2 (en) | Electrochemical Cell | |
| WO2025104822A1 (en) | Electrochemical cell, and electrochemical cell with separator | |
| JP7649929B2 (en) | Electrochemical Cell | |
| JP7692539B2 (en) | Electrochemical Cell | |
| US20240332559A1 (en) | Electrochemical cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23958835 Country of ref document: EP Kind code of ref document: A1 |