[go: up one dir, main page]

WO2025127065A1 - METHOD FOR PRODUCING CATALYST, AND METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID AND α, β-UNSATURATED CARBOXYLIC ACID ESTER USING SAID CATALYST - Google Patents

METHOD FOR PRODUCING CATALYST, AND METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID AND α, β-UNSATURATED CARBOXYLIC ACID ESTER USING SAID CATALYST Download PDF

Info

Publication number
WO2025127065A1
WO2025127065A1 PCT/JP2024/043830 JP2024043830W WO2025127065A1 WO 2025127065 A1 WO2025127065 A1 WO 2025127065A1 JP 2024043830 W JP2024043830 W JP 2024043830W WO 2025127065 A1 WO2025127065 A1 WO 2025127065A1
Authority
WO
WIPO (PCT)
Prior art keywords
producing
catalyst
raw material
carboxylic acid
unsaturated carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/043830
Other languages
French (fr)
Japanese (ja)
Inventor
翔悟 早川
拓朗 渡邉
堅吾 岡田
拓真 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of WO2025127065A1 publication Critical patent/WO2025127065A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium

Definitions

  • the present invention relates to a method for producing a catalyst using a grinder, and a method for producing ⁇ , ⁇ -unsaturated carboxylic acids and ⁇ , ⁇ -unsaturated carboxylic acid esters using the catalyst.
  • Heteropolyacids are condensed oxygen acids composed of oxides of multiple coordinating atoms called polyatoms and oxides of a central atom called a heteroatom.
  • Heteropolyacids include proton-type heteropolyacids, in which the counter cation is a proton, and heteropolyacid salts in which some of the protons are replaced by cations other than protons, such as ammonium cations.
  • Heteropolyacid salts are known to be used as industrial catalysts, and Patent Document 1 discloses a Keggin-type heteropolyacid salt as a catalyst for the production of methacrylic acid.
  • a method for producing a Keggin-type heteropolyacid salt includes a method of removing water by drying from an aqueous slurry obtained by heating and mixing raw materials in water.
  • Non-Patent Document 1 shows a method for producing Keggin-type heteropolyacid salts by mechanochemical synthesis using a vibration mill.
  • Mechanochemical synthesis is a method for inducing a chemical reaction by applying physical energy such as impact, shear, or friction using a grinding machine such as a ball mill or a vibration mill.
  • Non-Patent Document 1 In the method shown in Patent Document 1, in which raw materials are heated and mixed in water and then dried to remove moisture, a large amount of water is used and a large amount of energy is consumed for heating and drying. Therefore, this method is undesirable from the viewpoint of resources and energy.
  • the present invention aims to provide a method for producing a catalyst that can produce a high-purity catalyst in a simple manner using only raw materials and a small amount of solvent.
  • a method for producing a catalyst comprising: (i) mixing raw material powders using a first pulverizer to obtain a mixture; and (ii) adding a solvent containing water to the mixture and mixing the mixture using a second pulverizer, wherein the raw material powder contains a molybdenum raw material.
  • a flow aid or an anti-caking agent is added to and mixed with the raw material powder.
  • a high-purity catalyst can be produced in a simple method using only raw materials and a small amount of solvent. Furthermore, according to the present invention, ⁇ , ⁇ -unsaturated carboxylic acids and ⁇ , ⁇ -unsaturated carboxylic acid esters can be produced using the high-purity catalyst obtained by such a method.
  • a numerical range expressed using " ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as the lower and upper limits, and "A ⁇ B" means A or more and B or less.
  • means a range that includes the numerical values written before and after " ⁇ " as the lower and upper limits
  • a ⁇ B means A or more and B or less.
  • the method for producing a catalyst according to the present invention is characterized in that after a step (i) of mixing only powders (raw powders) of the raw compound (optional additives may be added) using a pulverizer (hereinafter also referred to as a “dry pulverization step”), a solvent containing water is added to the obtained mixture and further mixed using a pulverizer (hereinafter also referred to as a “wet pulverization step”) (ii) is carried out to produce a catalyst.
  • a step (i) of mixing only powders (raw powders) of the raw compound (optional additives may be added) using a pulverizer hereinafter also referred to as a "dry pulverization step”
  • a solvent containing water is added to the obtained mixture and further mixed using a pulverizer (hereinafter also referred to as a “wet pulverization step”) (ii) is carried out to produce a catalyst.
  • the first pulverizer (hereinafter, simply referred to as “pulverizer”) is not limited as long as it can mix and pulverize raw material powders and the like.
  • pulverizers include, but are not limited to, planetary ball mills, rotary mills, vibration mills, bead mills, roller mills, jet mills, high-speed rotary pulverizers, container-driven mills, kneaders, and crushers.
  • planetary ball mills include PULVERISETTE 7 (trade name, manufactured by FRITSCH).
  • a specific pulverization method is to first put the raw material powder to be pulverized and the pulverization medium into the pulverizer, specifically, into the pulverizer's pulverization vessel.
  • the raw material powder is pulverized by applying a force such as gravity, vibration, or centrifugal force to the pulverizer, causing the raw material powder to collide violently with the pulverization medium, or by generating friction between the raw material powder, the pulverization medium, and the pulverization vessel.
  • the gravitational acceleration applied to the raw material powder in this pulverization process is not particularly limited. However, by applying a gravitational acceleration of 0.5 G or more, it becomes easier to pulverize the raw material powder uniformly.
  • the raw material powder preferably further contains a phosphorus raw material and an ammonium raw material in addition to the molybdenum raw material.
  • a phosphorus raw material and an ammonium raw material in addition to the molybdenum raw material.
  • raw material powders other than the molybdenum raw material, the phosphorus raw material, and the ammonium raw material may be mixed as additional catalytically active components.
  • the raw material powder is not particularly limited and can be selected from nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxoacids, and oxoacid salts of each element. These may be used alone or in combination of two or more.
  • Examples of phosphorus raw materials include phosphoric acid, phosphorus pentoxide, and phosphates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium phosphate.
  • Examples of molybdenum raw materials include molybdenum oxides such as molybdenum trioxide, ammonium molybdates such as ammonium paramolybdate and ammonium dimolybdate, and molybdenum chloride.
  • Examples of ammonium raw materials include ammonium carbonates such as ammonium hydrogen carbonate and ammonium carbonate, and ammonium chloride, in addition to the above-mentioned ammonium phosphate and ammonium molybdate.
  • a grinding container containing the raw powder and any additives is placed in a grinding machine and mixed to obtain a ground product (mixture) of the raw powder.
  • the processing time for the dry grinding process is preferably short, taking into consideration wear on the container. Specifically, the processing time is preferably 60 minutes or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less. There is no particular lower limit to the processing time as long as the raw powder is sufficiently ground, and it is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 15 minutes or more.
  • the revolution speed of the grinder in the dry grinding process can be set appropriately, and can be, for example, 100 rpm to 800 rpm.
  • Step (ii): Wet grinding step In the wet grinding step, a solvent containing water is added to the grinding vessel containing the mixture after the dry grinding step, and then the grinding vessel is set in a second grinder to perform mixing, thereby obtaining a catalyst.
  • this step is described as a "wet grinding step", it is sufficient to at least mix the mixture after the dry grinding step with the solvent, and it may also be a "wet mixing step”.
  • the second grinder one similar to the first grinder in the dry grinding step can be used.
  • the second grinder used in the wet grinding step may be the same grinder as the first grinder used in the dry grinding step, or may be a different grinder.
  • the grinding vessel may be the same as the grinding vessel used in the dry grinding step, or a different grinding vessel may be used. However, from the viewpoint of work efficiency, it is preferable to use the grinding vessel used in the dry grinding step as it is in the wet grinding step.
  • solvent In the wet grinding step, a solvent containing at least water is added, and the mixture after the dry grinding step is mixed with the solvent.
  • the solvent may be only water, or two or more solvents containing at least water may be used. Examples of solvents other than water include methanol, ethanol, phosphoric acid, and aqueous ammonia.
  • the proportion of water in the entire solvent is preferably 70% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the amount of solvent added is preferably 60% by mass or less, more preferably 30% by mass or less, based on the mass of the entire raw material powder.
  • the amount of liquid (solvent) added in the wet grinding step the less the amount of liquid to be removed in the drying step described below, which is preferable.
  • the amount of solvent added is preferably 1% by mass or more, more preferably 10% by mass or more, based on the mass of the entire raw material powder.
  • the "mass of the entire raw material powder” means the mass of the entire raw material powder used in the dry grinding step, and does not include the mass of additives.
  • the catalyst manufacturing method according to the present invention can be applied even when only a small amount of water is used as the solvent. Even when a combination of solvents other than water is used as the solvent, the proportion of water in the total solvent is preferably 70 mass% or more, and the amount of solvent other than water used can be reduced.
  • the grinder may apply forces such as gravity, vibration, or centrifugal force, but this is not essential.
  • the processing time in the wet grinding process is preferably short, taking into consideration wear on the container. Specifically, the processing time is preferably 60 minutes or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less. There is no particular lower limit to the processing time, so long as the raw powder is sufficiently mixed, and it is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 15 minutes or more.
  • the revolution speed of the grinder in the wet grinding process may be set appropriately, and can be, for example, 100 rpm to 800 rpm.
  • the method for producing a catalyst according to the present invention may include a drying step of drying the wet powder, clay-like, or cake-like product (catalyst) obtained in the wet grinding step (ii) after the wet grinding step. By carrying out the drying step, the solvent contained in the catalyst can be removed.
  • the drying method is not particularly limited, and known methods such as natural drying, ventilation drying, and hot air drying can be used.
  • the drying temperature can be, for example, room temperature (20 ⁇ 5°C) to 90°C.
  • the product obtained in the wet grinding step (ii) and the dried product obtained by drying the product are collectively referred to as the "catalyst".
  • the catalyst obtained by the catalyst production method according to the present invention preferably contains a Keggin type heteropolyacid salt, and may be a Keggin type heteropolyacid salt.
  • the Keggin type heteropolyacid salt is a compound having a specific structure containing a molybdenum atom, a phosphorus atom, and an ammonium cation. Whether or not a compound has a Keggin type structure can be determined, for example, by analysis using an infrared spectrophotometer.
  • the wave number of infrared absorption changes depending on the type and substitution number of the counter cation, and the infrared light absorption attributed to the P-O antisymmetric stretching vibration of the phosphorus oxide of the heteroatom is observed at a wave number of 1062 ⁇ 10 cm -1 .
  • the infrared light absorption caused by the antisymmetric vibration of the molybdenum oxide of the polyatom is observed at wave numbers of 965 ⁇ 10 cm -1 , 870 ⁇ 10 cm -1 , and 790 ⁇ 10 cm -1 .
  • the catalyst when a catalyst is analyzed using an infrared spectrophotometer and peaks are observed at the above four wave numbers, the catalyst can be identified as a compound containing a Keggin type heteropolyacid salt. Peaks observed at wave numbers other than the above are infrared absorptions caused by impurities such as unreacted raw materials and by-products, and can be used as an index of the purity of the product.
  • a high-purity catalyst preferably a Keggin-type heteropolyacid salt
  • a dry-milling step before the wet-milling step (or wet-mixing step)
  • physically applied energy such as impact, shear, or friction causes phenomena such as pulverization of the raw material powder, exposure of crystal faces, and generation of lattice distortion and lattice defects.
  • These phenomena mechanically activate the reactivity between the raw material powders, which is believed to efficiently promote the main reaction, the generation of the Keggin-type heteropolyacid salt, and suppress the generation of by-products.
  • the catalyst obtained by the catalyst production method according to the present invention is preferably a catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid. That is, the catalyst obtained by the catalyst production method according to the present invention can be suitably used for producing an ⁇ , ⁇ -unsaturated carboxylic acid.
  • the catalyst obtained by the catalyst production method according to the present invention is a catalyst for producing an ⁇ , ⁇ -unsaturated carboxylic acid
  • the catalyst preferably has a composition represented by the following formula (I).
  • the catalyst when the catalyst is formed using a carrier, the catalyst means one that includes the carrier, and the composition represented by the following formula (I) is a composition that takes the carrier into consideration.
  • P, Mo, V, Cu, NH 4 and O represent phosphorus, molybdenum, vanadium, copper, ammonium and oxygen, respectively.
  • X represents at least one element selected from the group consisting of silicon, titanium, germanium, arsenic, antimony and bismuth.
  • Y represents at least one element selected from the group consisting of niobium, tantalum, tungsten, cerium, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium and lanthanum.
  • Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium.
  • the molar ratio of each element is a value obtained by analyzing a solution in which the catalyst is dissolved in ammonia water by ICP emission spectrometry.
  • the molar ratio of ammonium root is a value obtained by analyzing the catalyst by Kjeldahl method.
  • ammonium root refers to a general term for ammonia (NH 3 ) that can become ammonium ion (NH 4 +) and ammonium contained in ammonium-containing compounds such as ammonium salts.
  • a catalyst obtained by the method for producing a catalyst according to the present invention is used to produce a corresponding ⁇ , ⁇ -unsaturated carboxylic acid from an ⁇ , ⁇ -unsaturated aldehyde.
  • an ⁇ , ⁇ -unsaturated aldehyde is subjected to gas-phase catalytic oxidation with molecular oxygen in the presence of a catalyst obtained by the method for producing a catalyst according to the present invention to produce an ⁇ , ⁇ -unsaturated carboxylic acid.
  • the method for producing an ⁇ , ⁇ -unsaturated carboxylic acid according to the present invention can also be said to be a method in which a catalyst is produced by the method for producing a catalyst according to the present invention, and an ⁇ , ⁇ -unsaturated aldehyde is subjected to gas-phase catalytic oxidation with molecular oxygen using the catalyst to produce an ⁇ , ⁇ -unsaturated carboxylic acid.
  • a catalyst is produced by the method for producing a catalyst according to the present invention, and an ⁇ , ⁇ -unsaturated aldehyde is subjected to gas-phase catalytic oxidation with molecular oxygen using the catalyst to produce an ⁇ , ⁇ -unsaturated carboxylic acid.
  • an ⁇ , ⁇ -unsaturated carboxylic acid can be produced in a high yield by carrying out a gas-phase catalytic oxidation reaction using a catalyst with high purity.
  • Examples of the ⁇ , ⁇ -unsaturated aldehyde raw material include (meth)acrolein, crotonaldehyde ( ⁇ -methylacrolein), and cinnamaldehyde ( ⁇ -phenylacrolein).
  • the ⁇ , ⁇ -unsaturated aldehyde is preferably (meth)acrolein, and more preferably methacrolein.
  • the resulting ⁇ , ⁇ -unsaturated carboxylic acid is an ⁇ , ⁇ -unsaturated carboxylic acid in which the aldehyde group of the ⁇ , ⁇ -unsaturated aldehyde is converted to a carboxyl group.
  • (meth)acrylic acid when the ⁇ , ⁇ -unsaturated aldehyde is (meth)acrolein, (meth)acrylic acid is obtained.
  • (meth)acrolein refers to acrolein and methacrolein
  • (meth)acrylic acid refers to acrylic acid and methacrylic acid.
  • ⁇ Method of producing ⁇ , ⁇ -unsaturated carboxylic acid ester In the method for producing an ⁇ , ⁇ -unsaturated carboxylic acid ester according to the present invention, an ⁇ , ⁇ -unsaturated carboxylic acid ester is produced using the ⁇ , ⁇ -unsaturated carboxylic acid obtained by the method for producing an ⁇ , ⁇ -unsaturated carboxylic acid according to the present invention.
  • the alcohol to be reacted with the ⁇ , ⁇ -unsaturated carboxylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol, and isobutanol.
  • Example 1 (Dry grinding process) 100 parts of molybdenum trioxide, 10.7 parts of ammonium dihydrogen phosphate, and 5.5 parts of ammonium hydrogen carbonate were mixed in a mortar with 2.7 parts of ammonium metavanadate, 11.2 parts of cesium hydrogen carbonate, and 0.4 parts of copper oxide as additional components to obtain a mixture of raw material powders. Next, grinding balls made of high hardness stainless steel with a ball diameter of 10 mm were added as grinding media to a grinding container (made of high hardness stainless steel, capacity: 12 mL) so as to be 26.2 volume %.
  • Example 2 A powder was obtained in the same manner as in Example 1, except that the processing time of the dry grinding step and the wet grinding step was 30 minutes each.
  • the composition of the catalyst was the same as in Example 1 (the same applies to the catalysts obtained in the following Examples and Comparative Examples).
  • the obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2.
  • Example 2 A powder was obtained in the same manner as in Example 3, except that the dry grinding step was not performed. The obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2.
  • Example 3 A powder was obtained in the same manner as in Example 1, except that in the dry grinding step and the wet grinding step, instead of using a grinder, the raw material powder and stearic acid were mixed using a mortar and pestle. The gravitational acceleration in each step was about 0.2 G. The obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2.
  • Example 4 A powder was obtained in the same manner as in Example 3, except that the wet grinding step was not performed. The obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2. Note that, since the five peaks detected matched the peaks of the raw materials, these peaks were determined to be peaks due to unreacted raw materials.
  • the manufacturing method according to the present invention which has a dry grinding step and a wet grinding step, can produce a high-purity Keggin-type heteropolyacid salt with reduced amounts of unreacted raw materials and by-products.
  • an ⁇ , ⁇ -unsaturated aldehyde can be subjected to gas-phase catalytic oxidation with molecular oxygen to produce an ⁇ , ⁇ -unsaturated carboxylic acid.
  • an ⁇ , ⁇ -unsaturated carboxylic acid ester can be obtained by esterifying the obtained ⁇ , ⁇ -unsaturated carboxylic acid.
  • the present invention provides a simple method for producing a catalyst (preferably a Keggin-type heteropolyacid salt).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The present invention provides a method for producing a catalyst, with which it is possible to produce a catalyst of high purity by a simple method using only a starting material and a small amount of a solvent. This method for producing a catalyst includes: (i) a step for mixing a starting material powder using a first pulverizer so as to obtain a mixture; and (ii) a step for adding a solvent that contains water to the mixture and mixing the mixture using a second pulverizer. The starting material powder contains a molybdenum starting material.

Description

触媒の製造方法、ならびに該触媒を用いたα、β-不飽和カルボン酸およびα、β-不飽和カルボン酸エステルの製造方法Method for producing catalyst, and method for producing α,β-unsaturated carboxylic acid and α,β-unsaturated carboxylic acid ester using said catalyst

 本発明は、粉砕機を用いた触媒の製造方法、ならびに該触媒を用いたα、β-不飽和カルボン酸およびα、β-不飽和カルボン酸エステルの製造方法に関する。 The present invention relates to a method for producing a catalyst using a grinder, and a method for producing α,β-unsaturated carboxylic acids and α,β-unsaturated carboxylic acid esters using the catalyst.

 ヘテロポリ酸とは、ポリ原子と呼ばれる複数個の配位原子の酸化物と、ヘテロ原子と呼ばれる中心原子の酸化物と、によって構成される縮合酸素酸である。ヘテロポリ酸としては、対カチオンがプロトンであるプロトン型ヘテロポリ酸、およびそのプロトンの一部をアンモニウムカチオン等のプロトン以外のカチオンで置換したヘテロポリ酸塩が挙げられる。 Heteropolyacids are condensed oxygen acids composed of oxides of multiple coordinating atoms called polyatoms and oxides of a central atom called a heteroatom. Heteropolyacids include proton-type heteropolyacids, in which the counter cation is a proton, and heteropolyacid salts in which some of the protons are replaced by cations other than protons, such as ammonium cations.

 ヘテロポリ酸塩は、工業用触媒としての用途が知られており、特許文献1には、メタクリル酸製造用触媒としてのケギン型ヘテロポリ酸塩が開示されている。ケギン型ヘテロポリ酸塩の製造方法としては、特許文献1に記載されているように、水中で原料を加熱混合して得られる水性スラリーから、乾燥により水分を除去する方法がある。 Heteropolyacid salts are known to be used as industrial catalysts, and Patent Document 1 discloses a Keggin-type heteropolyacid salt as a catalyst for the production of methacrylic acid. As described in Patent Document 1, a method for producing a Keggin-type heteropolyacid salt includes a method of removing water by drying from an aqueous slurry obtained by heating and mixing raw materials in water.

 非特許文献1には、振動ミルを用いたメカノケミカル合成によるケギン型ヘテロポリ酸塩の製造方法が示されている。メカノケミカル合成とは、ボールミルや振動ミルなどの粉砕機を用いて、衝撃、剪断、または摩擦などの物理的なエネルギーを加えることによって、化学的反応を引き起こす方法である。 Non-Patent Document 1 shows a method for producing Keggin-type heteropolyacid salts by mechanochemical synthesis using a vibration mill. Mechanochemical synthesis is a method for inducing a chemical reaction by applying physical energy such as impact, shear, or friction using a grinding machine such as a ball mill or a vibration mill.

特開2003-010691号公報JP 2003-010691 A

Manuel Wilke and Nicola Casati,Chemical Science,2022,Vol.13,p.1146―1151Manuel Wilke and Nicola Casati, Chemical Science, 2022, Vol. 13, p. 1146-1151

 特許文献1に示される、水中で原料を加熱混合した後に乾燥により水分を除去する方法においては、大量の水を使用し、加熱および乾燥に大きなエネルギーを消費する。そのため、この方法は、資源およびエネルギーの面から好ましくない。一方で、非特許文献1に示されるメカノケミカル合成による方法においては、危険物であるエタノール水溶液(エタノール:水(体積比)=1:1)の添加が必要であり、工業的観点からは好ましくない。また、水のみの添加によっては、同定不能の副生物の生成が促進され、高純度のケギン型ヘテロポリ酸塩を得ることが難しい。 In the method shown in Patent Document 1, in which raw materials are heated and mixed in water and then dried to remove moisture, a large amount of water is used and a large amount of energy is consumed for heating and drying. Therefore, this method is undesirable from the viewpoint of resources and energy. On the other hand, the mechanochemical synthesis method shown in Non-Patent Document 1 requires the addition of an aqueous ethanol solution (ethanol:water (volume ratio) = 1:1), which is a hazardous material, and is undesirable from an industrial point of view. Furthermore, the addition of only water promotes the production of unidentifiable by-products, making it difficult to obtain a high-purity Keggin-type heteropolyacid salt.

 そこで、本発明は、原料と少量の溶媒のみを使用する簡便な方法において、高純度の触媒を製造することができる触媒の製造方法を提供することを目的とする。 The present invention aims to provide a method for producing a catalyst that can produce a high-purity catalyst in a simple manner using only raw materials and a small amount of solvent.

 本発明者らは、上記課題に鑑み鋭意検討を行った。その結果、少なくとも水を含む溶媒を添加して原料化合物を混合する工程の前工程として、原料化合物の粉体のみを粉砕機で混合する工程を有するメカノケミカル合成を行うことにより、上記課題が解決できることを見出し、本発明を完成させた。 The inventors of the present invention have conducted extensive research in light of the above problems. As a result, they have discovered that the above problems can be solved by performing mechanochemical synthesis that includes a process of mixing only the powders of the raw material compounds in a grinder, prior to the process of adding a solvent containing at least water and mixing the raw material compounds, and have thus completed the present invention.

 すなわち、本発明は、以下の技術的特徴を有する。
 [1](i)原料粉末を、第1の粉砕機を用いて混合し、混合物を得る工程、および(ii)前記混合物に水を含む溶媒を添加し、第2の粉砕機を用いて混合する工程、を含み、前記原料粉末がモリブデン原料を含有する、触媒の製造方法。
 [2]前記工程(i)において、前記原料粉末を前記第1の粉砕機に投入し、粉砕媒体の存在下で前記原料粉末を混合する、[1]に記載の触媒の製造方法。
 [3]前記工程(i)において、前記原料粉末に、流動助剤または固結防止剤を加えて混合する、[1]または[2]に記載の触媒の製造方法。
 [4]前記工程(i)において、前記原料粉末に対して0.5G以上の重力加速度を与える、[1]~[3]のいずれかに記載の触媒の製造方法。
 [5]前記工程(i)の処理時間が、5分以上60分以下であり、前記工程(ii)の処理時間が、5分以上60分以下である、[1]~[4]のいずれかに記載の触媒の製造方法。
 [6]前記水を含む溶媒の添加量が、前記原料粉末全体の質量に対して1質量%以上60質量%以下である、[1]~[5]のいずれかに記載の触媒の製造方法。
 [7]前記第2の粉砕機が、前記第1の粉砕機と異なる粉砕機である、[1]~[6]のいずれかに記載の触媒の製造方法。
 [8]前記原料粉末が、さらにリン原料およびアンモニウム原料を含有する、[1]~[7]のいずれかに記載の触媒の製造方法。
 [9]前記触媒がケギン型ヘテロポリ酸塩を含む、[1]~[8]のいずれかに記載の触媒の製造方法。
 [10]前記触媒がα,β-不飽和カルボン酸製造用触媒である、[1]~[9]のいずれかに記載の触媒の製造方法。
 [11]前記工程(i)において、実質的に溶媒を添加せずに前記混合物を得る、[1]~[10]のいずれかに記載の触媒の製造方法。
 [12]前記モリブデン原料が、酸化モリブデン、モリブデン酸アンモニウム、および塩化モリブデンからなる群より選択される、[1]~[11]のいずれかに記載の触媒の製造方法。
 [13]前記リン原料が、リン酸、五酸化リン、リン酸二水素アンモニウム、リン酸水素二アンモニウム、およびリン酸アンモニウムからなる群より選択される、[8]~[12]のいずれかに記載の触媒の製造方法。
 [14][1]~[13]のいずれかに記載の製造方法により製造した触媒を用いて、α,β-不飽和アルデヒドからα,β-不飽和カルボン酸を製造する、α,β-不飽和カルボン酸の製造方法。
 [15][14]に記載の製造方法により製造したα,β-不飽和カルボン酸から、α,β-不飽和カルボン酸エステルを製造する、α,β-不飽和カルボン酸エステルの製造方法。
That is, the present invention has the following technical features.
[1] A method for producing a catalyst, comprising: (i) mixing raw material powders using a first pulverizer to obtain a mixture; and (ii) adding a solvent containing water to the mixture and mixing the mixture using a second pulverizer, wherein the raw material powder contains a molybdenum raw material.
[2] The method for producing a catalyst according to [1], wherein in the step (i), the raw material powder is charged into the first pulverizer and mixed in the presence of a pulverizing medium.
[3] The method for producing a catalyst according to [1] or [2], wherein in the step (i), a flow aid or an anti-caking agent is added to and mixed with the raw material powder.
[4] The method for producing a catalyst according to any one of [1] to [3], wherein in the step (i), a gravitational acceleration of 0.5 G or more is applied to the raw material powder.
[5] The method for producing a catalyst according to any one of [1] to [4], wherein the treatment time of the step (i) is 5 minutes or more and 60 minutes or less, and the treatment time of the step (ii) is 5 minutes or more and 60 minutes or less.
[6] The method for producing a catalyst according to any one of [1] to [5], wherein the amount of the water-containing solvent added is 1 mass % or more and 60 mass % or less with respect to the total mass of the raw material powder.
[7] The method for producing a catalyst according to any one of [1] to [6], wherein the second pulverizer is a pulverizer different from the first pulverizer.
[8] The method for producing a catalyst according to any one of [1] to [7], wherein the raw material powder further contains a phosphorus raw material and an ammonium raw material.
[9] The method for producing a catalyst according to any one of [1] to [8], wherein the catalyst contains a Keggin type heteropolyacid salt.
[10] The method for producing a catalyst according to any one of [1] to [9], wherein the catalyst is a catalyst for producing an α,β-unsaturated carboxylic acid.
[11] The method for producing a catalyst according to any one of [1] to [10], wherein in the step (i), the mixture is obtained substantially without adding a solvent.
[12] The method for producing a catalyst according to any one of [1] to [11], wherein the molybdenum raw material is selected from the group consisting of molybdenum oxide, ammonium molybdate, and molybdenum chloride.
[13] The method for producing a catalyst according to any one of [8] to [12], wherein the phosphorus raw material is selected from the group consisting of phosphoric acid, phosphorus pentoxide, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium phosphate.
[14] A method for producing an α,β-unsaturated carboxylic acid, comprising producing an α,β-unsaturated carboxylic acid from an α,β-unsaturated aldehyde by using a catalyst produced by the production method according to any one of [1] to [13].
[15] A method for producing an α,β-unsaturated carboxylic acid ester, comprising producing an α,β-unsaturated carboxylic acid ester from an α,β-unsaturated carboxylic acid produced by the production method according to [14].

 本発明によれば、原料と少量の溶媒のみを用いた簡便な方法において、高純度の触媒を製造することができる。また、本発明によれば、そのような方法によって得られた高純度の触媒を用いて、α、β-不飽和カルボン酸およびα、β-不飽和カルボン酸エステルを製造することができる。 According to the present invention, a high-purity catalyst can be produced in a simple method using only raw materials and a small amount of solvent. Furthermore, according to the present invention, α,β-unsaturated carboxylic acids and α,β-unsaturated carboxylic acid esters can be produced using the high-purity catalyst obtained by such a method.

 以下、本発明に係る実施形態について説明するが、本発明は、以下の実施形態に限定されるものではない。なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値および上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。数値範囲が段階的に記載されている場合、各数値範囲の上限値および下限値、ならびに実施例に記載の数値は、任意に組み合わせることができる。 The following describes embodiments of the present invention, but the present invention is not limited to the following embodiments. In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as the lower and upper limits, and "A~B" means A or more and B or less. When a numerical range is described in stages, the upper and lower limits of each numerical range and the numerical values described in the examples can be combined in any way.

 <触媒の製造方法>
 本発明に係る触媒の製造方法は、少なくとも、(i)原料粉末を、第1の粉砕機を用いて混合し、混合物を得る工程と、(ii)前記混合物に水を含む溶媒を添加し、第2の粉砕機を用いて混合する工程と、有する。すなわち、本発明に係る触媒の製造方法は、原料化合物のうちの粉体(原料粉末)のみ(任意の添加剤を添加してもよい)を粉砕機により混合する工程(以下、「乾式粉砕工程」ともいう)(i)を経た後、得られた混合物に水を含む溶媒を添加して、さらに粉砕機を用いて混合する工程(以下、「湿式粉砕工程」ともいう)(ii)を実施することにより触媒を製造することを特徴とする。以下、各工程について詳細を説明する。
<Catalyst manufacturing method>
The method for producing a catalyst according to the present invention includes at least the steps of (i) mixing raw powders using a first pulverizer to obtain a mixture, and (ii) adding a solvent containing water to the mixture and mixing using a second pulverizer. That is, the method for producing a catalyst according to the present invention is characterized in that after a step (i) of mixing only powders (raw powders) of the raw compound (optional additives may be added) using a pulverizer (hereinafter also referred to as a "dry pulverization step"), a solvent containing water is added to the obtained mixture and further mixed using a pulverizer (hereinafter also referred to as a "wet pulverization step") (ii) is carried out to produce a catalyst. Each step will be described in detail below.

 [工程(i):乾式粉砕工程]
 乾式粉砕工程は、粉砕機(第1の粉砕機)を用いて原料粉末を混合および粉砕し、混合物を得る工程である。具体的に、本工程では、原料粉末を第1の粉砕機に投入し、粉砕媒体の存在下で、原料粉末を混合および粉砕することが好ましい。本工程は、水などの液体(溶媒)を添加せずに行う工程であり、実質的に溶媒を添加せずに原料粉末の混合物を得る工程といえる。
[Step (i): Dry grinding step]
The dry grinding process is a process in which raw material powders are mixed and ground using a grinder (first grinder) to obtain a mixture. Specifically, in this process, it is preferable to feed the raw material powders into the first grinder and mix and grind the raw material powders in the presence of a grinding medium. This process is carried out without adding a liquid (solvent) such as water, and can be said to be a process in which a mixture of raw material powders is obtained substantially without adding a solvent.

 (第1の粉砕機)
 第1の粉砕機(以下、単に「粉砕機」ともいう)としては、原料粉末等を混合および粉砕することができるものであれば限定されない。粉砕機としては、例えば、遊星型ボールミル、回転ミル、振動ミル、ビーズミル、ローラーミル、ジェットミル、高速回転粉砕機、容器駆動型ミル、ニーダー、および擂潰機などを挙げることができるが、これらに限定さるものではない。遊星型ボールミルとしては、PULVERISETTE 7(商品名、FRITSCH製)などを挙げることができる。粉砕機として遊星型ボールミルを用いた場合、具体的な粉砕方法としては、まず、粉砕対象の原料粉末と粉砕媒体とを、粉砕機、具体的には粉砕機が備える粉砕容器へ投入する。次いで、重力、振動、あるいは遠心力といった力を粉砕機にかけることにより、原料粉末と粉砕媒体とを激しく衝突させる、あるいは、原料粉末と粉砕媒体および粉砕容器との間に摩擦を生じさせることにより、原料粉末を粉砕する。本粉砕工程において原料粉末に与える重力加速度としては、特に制限されない。ただし、0.5G以上の重力加速度を与えることによって、原料粉末を均質に粉砕することが容易になる。
(First Crusher)
The first pulverizer (hereinafter, simply referred to as "pulverizer") is not limited as long as it can mix and pulverize raw material powders and the like. Examples of pulverizers include, but are not limited to, planetary ball mills, rotary mills, vibration mills, bead mills, roller mills, jet mills, high-speed rotary pulverizers, container-driven mills, kneaders, and crushers. Examples of planetary ball mills include PULVERISETTE 7 (trade name, manufactured by FRITSCH). When a planetary ball mill is used as the pulverizer, a specific pulverization method is to first put the raw material powder to be pulverized and the pulverization medium into the pulverizer, specifically, into the pulverizer's pulverization vessel. Next, the raw material powder is pulverized by applying a force such as gravity, vibration, or centrifugal force to the pulverizer, causing the raw material powder to collide violently with the pulverization medium, or by generating friction between the raw material powder, the pulverization medium, and the pulverization vessel. The gravitational acceleration applied to the raw material powder in this pulverization process is not particularly limited. However, by applying a gravitational acceleration of 0.5 G or more, it becomes easier to pulverize the raw material powder uniformly.

 (粉砕媒体)
 本工程において、原料粉末の混合および粉砕は、通常、粉砕媒体の存在下で行われる。なお、粉砕機として遊星型ボールミル等を用いた場合、上記のように、粉砕媒体を原料粉末とともに粉砕容器に入れて、該粉砕容器を回すことにより、粉砕媒体が容器内で動き回り、原料粉末が混合および粉砕される。一方で、粉砕機として擂潰機やニーダー、高速回転粉砕機等を用いた場合、粉砕媒体は擂潰棒や攪拌翼であり、擂潰棒や攪拌翼などが回転することにより原料粉末が混合および粉砕される。粉砕機として遊星型ボールミル等を用いた場合、粉砕媒体の形状は、粉砕容器内での流動性および粉砕効率の面から、球形であることが好ましい。粉砕媒体の使用量は、粉砕容器の容量に対して10体積%以上とすることが好ましく、15体積%以上とすることがより好ましい。粉砕媒体の使用量を増やすことにより、粉砕効率を上げて、処理時間を短縮することができる。一方、粉砕媒体の使用量を減らすことにより、粉砕処理可能な原料粉末の量を増やすことができる。また、粉砕媒体の使用量を粉砕容器の容量に対して50体積%以下とすることにより、粉砕容器の摩耗を低減することができる。そのため、粉砕媒体の使用量は、粉砕容器の容量に対して50体積%以下とすることが好ましく、30体積%以下とすることがより好ましい。
(Crushing media)
In this process, the mixing and grinding of the raw material powder is usually carried out in the presence of grinding media. When a planetary ball mill or the like is used as the grinder, as described above, the grinding media is placed in the grinding container together with the raw material powder, and the grinding container is rotated, so that the grinding media moves around in the container and the raw material powder is mixed and ground. On the other hand, when a crusher, kneader, high-speed rotary grinder, or the like is used as the grinder, the grinding media is a crushing rod or agitating blade, and the raw material powder is mixed and ground by the rotation of the crushing rod or agitating blade. When a planetary ball mill or the like is used as the grinder, the shape of the grinding media is preferably spherical in terms of fluidity and grinding efficiency in the grinding container. The amount of the grinding media used is preferably 10% by volume or more, more preferably 15% by volume or more, relative to the capacity of the grinding container. By increasing the amount of the grinding media used, the grinding efficiency can be increased and the processing time can be shortened. On the other hand, by reducing the amount of the grinding media used, the amount of raw material powder that can be ground can be increased. In addition, by setting the amount of grinding media to 50% or less by volume relative to the capacity of the grinding container, wear of the grinding container can be reduced. Therefore, the amount of grinding media used is preferably 50% or less by volume relative to the capacity of the grinding container, and more preferably 30% or less by volume.

 粉砕媒体および粉砕容器の材質としては、原料に対する化学的耐性および粉砕条件に対する物理的耐性を有するものであれば特に制限はない。粉砕媒体および粉砕容器の材質は、タングステンカーバイド、高硬度ステンレス、メノー、窒化ケイ素、およびジルコニアなどが好ましく、タングステンカーバイドまたは高硬度ステンレスがより好ましい。 There are no particular limitations on the materials for the grinding media and grinding vessel, so long as they are chemically resistant to the raw materials and physically resistant to the grinding conditions. Materials for the grinding media and grinding vessel are preferably tungsten carbide, high-hardness stainless steel, menthol, silicon nitride, zirconia, etc., and more preferably tungsten carbide or high-hardness stainless steel.

 (原料粉末および添加剤)
 乾式粉砕工程では、少なくともモリブデン原料を含む原料粉末を、粉砕容器へ投入する。この際、原料粉末に、添加剤として流動助剤や固結防止剤を添加して混合することが好ましい。流動助剤や固結防止剤としては、公知のものを適宜選択して用いることができる。流動助剤や固結防止剤として、具体的には、ステアリン酸およびその塩(ステアリン酸カルシウムおよびステアリン酸マグネシウムなど)、ケイ酸塩(ケイ酸カリウム、ケイ酸ナトリウム、およびケイ酸マグネシウムなど)、ならびにリン酸塩(リン酸カルシウムなど)等を挙げることができる。これらの中でも、ステアリン酸およびその塩を用いることが好ましい。これらの流動助剤または固結防止剤を添加することにより、粉砕処理中の原料粉末が押し固められにくくなり、粉砕物の回収率を高めることができる。流動助剤または固結防止剤の添加量は、原料粉末全体の質量に対して10質量%以下であることが好ましく、7質量%以下であることがより好ましい。また、流動助剤または固結防止剤の添加量は、原料粉末全体の質量に対して3質量%以上であることが好ましく、5質量%以上であることがより好ましい。流動助剤または固結防止剤の添加量を3質量%以上とすることにより、原料粉末の押し固め阻害効果が良好に発現される。
(Raw material powder and additives)
In the dry grinding process, raw powder containing at least a molybdenum raw material is charged into a grinding vessel. At this time, it is preferable to add a flow aid or an anti-caking agent as an additive to the raw powder and mix it. As the flow aid or anti-caking agent, a known one can be appropriately selected and used. Specific examples of the flow aid or anti-caking agent include stearic acid and its salts (calcium stearate, magnesium stearate, etc.), silicates (potassium silicate, sodium silicate, magnesium silicate, etc.), and phosphates (calcium phosphate, etc.). Among these, it is preferable to use stearic acid and its salts. By adding these flow aids or anti-caking agents, the raw powder during the grinding process is less likely to be compacted, and the recovery rate of the ground product can be increased. The amount of the flow aid or anti-caking agent added is preferably 10% by mass or less, more preferably 7% by mass or less, based on the mass of the entire raw powder. In addition, the amount of the flow aid or anti-caking agent added is preferably 3% by mass or more, more preferably 5% by mass or more, based on the mass of the entire raw powder. By adding the flow aid or anti-caking agent in an amount of 3 mass % or more, the effect of inhibiting compaction of the raw material powder is satisfactorily exhibited.

 原料粉末は、モリブデン原料に加え、リン原料およびアンモニウム原料をさらに含むことが好ましい。また、得られる触媒を、工業的に触媒として使用する場合は、さらなる追加の触媒活性成分として、モリブデン原料、リン原料、およびアンモニウム原料以外の原料粉末を混合してもよい。追加の触媒活性成分としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、アンチモン、ビスマス、砒素、ゲルマニウム、テルル、セレン、ケイ素、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ニオブ、タンタル、タングステン、セリウム、ジルコニウム、銀、マグネシウム、バリウム、およびランタンなどから選択される原料粉末が好ましい。 The raw material powder preferably further contains a phosphorus raw material and an ammonium raw material in addition to the molybdenum raw material. When the resulting catalyst is used industrially as a catalyst, raw material powders other than the molybdenum raw material, the phosphorus raw material, and the ammonium raw material may be mixed as additional catalytically active components. As the additional catalytically active components, raw material powders selected from lithium, sodium, potassium, rubidium, cesium, antimony, bismuth, arsenic, germanium, tellurium, selenium, silicon, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, niobium, tantalum, tungsten, cerium, zirconium, silver, magnesium, barium, lanthanum, and the like are preferable.

 原料粉末は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、およびオキソ酸塩等から選択することができる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The raw material powder is not particularly limited and can be selected from nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxoacids, and oxoacid salts of each element. These may be used alone or in combination of two or more.

 リン原料としては、例えば、リン酸、五酸化リン、ならびにリン酸二水素アンモニウム、リン酸水素二アンモニウム、およびリン酸アンモニウム等のリン酸塩等が挙げられる。モリブデン原料としては、例えば、三酸化モリブデン等の酸化モリブデン、パラモリブデン酸アンモニウムおよびジモリブデン酸アンモニウム等のモリブデン酸アンモニウム、ならびに塩化モリブデン等が挙げられる。アンモニウム原料としては、上記リン酸アンモニウムおよびモリブデン酸アンモニウムのほか、炭酸水素アンモニウム、炭酸アンモニウムなどの炭酸アンモニウムや塩化アンモニウムなどが挙げられる。 Examples of phosphorus raw materials include phosphoric acid, phosphorus pentoxide, and phosphates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium phosphate. Examples of molybdenum raw materials include molybdenum oxides such as molybdenum trioxide, ammonium molybdates such as ammonium paramolybdate and ammonium dimolybdate, and molybdenum chloride. Examples of ammonium raw materials include ammonium carbonates such as ammonium hydrogen carbonate and ammonium carbonate, and ammonium chloride, in addition to the above-mentioned ammonium phosphate and ammonium molybdate.

 粉砕媒体の存在下、原料粉末と任意の添加剤とを投入した粉砕容器を粉砕機にセットして混合することにより、原料粉末の粉砕品(混合物)を得ることができる。乾式粉砕工程の処理時間は、容器の摩耗を考慮して、短時間であることが好ましい。具体的には、処理時間は60分以下であることが好ましく、30分以下であることがより好ましく、15分以下であることがさらに好ましい。また、処理時間の下限は、原料粉末が十分に粉砕される時間であれば特に制限はなく、5分以上であることが好ましく、10分以上であることがより好ましく、15分以上であることがさらに好ましい。乾式粉砕工程における粉砕機の公転回転数は、適宜設定すればよく、例えば100rpm~800rpmとすることができる。 In the presence of grinding media, a grinding container containing the raw powder and any additives is placed in a grinding machine and mixed to obtain a ground product (mixture) of the raw powder. The processing time for the dry grinding process is preferably short, taking into consideration wear on the container. Specifically, the processing time is preferably 60 minutes or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less. There is no particular lower limit to the processing time as long as the raw powder is sufficiently ground, and it is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 15 minutes or more. The revolution speed of the grinder in the dry grinding process can be set appropriately, and can be, for example, 100 rpm to 800 rpm.

 [工程(ii):湿式粉砕工程]
 湿式粉砕工程では、乾式粉砕工程後の混合物が入った粉砕容器内へ水を含む溶媒を添加した後、該粉砕容器を第2の粉砕機にセットして混合を行うことにより、触媒を得ることができる。なお、本工程は、「湿式粉砕工程」と記載しているが、少なくとも、乾式粉砕工程後の混合物と溶媒とを混合できればよく、「湿式混合工程」であってもよい。第2の粉砕機としては、上記乾式粉砕工程における第1の粉砕機と同様のものを用いることができる。湿式粉砕工程で用いる第2の粉砕機は、乾式粉砕工程で用いる第1の粉砕機と同じ粉砕機であってもよく、異なる粉砕機であってもよい。また、粉砕容器についても、乾式粉砕工程で用いた粉砕容器と同じ粉砕容器を用いてもよく、別の粉砕容器を用いてもよい。ただし、作業効率の観点からは、乾式粉砕工程で用いた粉砕容器を、湿式粉砕工程において、そのまま使用することが好ましい。
[Step (ii): Wet grinding step]
In the wet grinding step, a solvent containing water is added to the grinding vessel containing the mixture after the dry grinding step, and then the grinding vessel is set in a second grinder to perform mixing, thereby obtaining a catalyst. Although this step is described as a "wet grinding step", it is sufficient to at least mix the mixture after the dry grinding step with the solvent, and it may also be a "wet mixing step". As the second grinder, one similar to the first grinder in the dry grinding step can be used. The second grinder used in the wet grinding step may be the same grinder as the first grinder used in the dry grinding step, or may be a different grinder. In addition, the grinding vessel may be the same as the grinding vessel used in the dry grinding step, or a different grinding vessel may be used. However, from the viewpoint of work efficiency, it is preferable to use the grinding vessel used in the dry grinding step as it is in the wet grinding step.

 (溶媒)
 湿式粉砕工程では、少なくとも水を含む溶媒を添加して、乾式粉砕工程後の混合物と該溶媒とを混合する。溶媒は、水のみであってもよく、少なくとも水を含む2種以上の溶媒を用いてもよい。水以外の溶媒としては、メタノール、エタノール、リン酸、およびアンモニア水等を挙げることができる。溶媒全体における水の割合は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。溶媒の添加量は、前記原料粉末全体の質量に対して60質量%以下であることが好ましく、30質量%以下であることがより好ましい。湿式粉砕工程における液体(溶媒)の添加量が少ないほど、後述する乾燥工程で除去すべき液体量が減少するため、好ましい。一方で、湿式粉砕工程における液体の添加量が多い場合、メカノケミカル合成の進行が速くなる傾向にある。そのため、溶媒の添加量は、前記原料粉末全体の質量に対して1質量%以上であることが好ましく、10質量%以上であることがより好ましい。なお、「原料粉末全体の質量」とは、乾式粉砕工程で用いた原料粉末全体の質量を意味し、添加剤の質量は含まない。
(solvent)
In the wet grinding step, a solvent containing at least water is added, and the mixture after the dry grinding step is mixed with the solvent. The solvent may be only water, or two or more solvents containing at least water may be used. Examples of solvents other than water include methanol, ethanol, phosphoric acid, and aqueous ammonia. The proportion of water in the entire solvent is preferably 70% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The amount of solvent added is preferably 60% by mass or less, more preferably 30% by mass or less, based on the mass of the entire raw material powder. The smaller the amount of liquid (solvent) added in the wet grinding step, the less the amount of liquid to be removed in the drying step described below, which is preferable. On the other hand, when the amount of liquid added in the wet grinding step is large, the mechanochemical synthesis tends to proceed faster. Therefore, the amount of solvent added is preferably 1% by mass or more, more preferably 10% by mass or more, based on the mass of the entire raw material powder. The "mass of the entire raw material powder" means the mass of the entire raw material powder used in the dry grinding step, and does not include the mass of additives.

 上記のように、本発明に係る触媒の製造方法は、溶媒として少量の水のみを用いた場合も適用可能である。また、溶媒として、水以外の溶媒を組み合わせて用いた場合であっても、溶媒全体における水の割合は、好ましくは70質量%以上であり、水以外の溶媒の使用量を抑えることができる。 As described above, the catalyst manufacturing method according to the present invention can be applied even when only a small amount of water is used as the solvent. Even when a combination of solvents other than water is used as the solvent, the proportion of water in the total solvent is preferably 70 mass% or more, and the amount of solvent other than water used can be reduced.

 湿式粉砕工程では、前記混合物と溶媒とを均一に混合することができればよい。そのため、乾式粉砕工程と同様に、粉砕機において、重力、振動、あるいは遠心力といった力をかけてもよいが、かけなくてもよい。湿式粉砕工程の処理時間は、容器の摩耗を考慮して、短時間であることが好ましい。具体的には、処理時間は60分以下であることが好ましく、30分以下であることがより好ましく、15分以下であることがさらに好ましい。また、処理時間の下限は、原料粉末が十分に混合される時間であれば特に制限はなく、5分以上であることが好ましく、10分以上であることがより好ましく、15分以上であることがさらに好ましい。湿式粉砕工程における粉砕機の公転回転数は、適宜設定すればよく、例えば100rpm~800rpmとすることができる。 In the wet grinding process, it is sufficient that the mixture and the solvent can be mixed uniformly. Therefore, as in the dry grinding process, the grinder may apply forces such as gravity, vibration, or centrifugal force, but this is not essential. The processing time in the wet grinding process is preferably short, taking into consideration wear on the container. Specifically, the processing time is preferably 60 minutes or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less. There is no particular lower limit to the processing time, so long as the raw powder is sufficiently mixed, and it is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 15 minutes or more. The revolution speed of the grinder in the wet grinding process may be set appropriately, and can be, for example, 100 rpm to 800 rpm.

 [乾燥工程]
 本発明に係る触媒の製造方法は、上記湿式粉砕工程(ii)の後に、該工程で得られた湿粉、粘土状、またはケーキ状の生成物(触媒)を乾燥する乾燥工程を有していてもよい。乾燥工程を行うことにより、触媒に含まれる溶媒を除去することができる。乾燥方法は特に限定されず、自然乾燥、通風乾燥、および温風乾燥等の公知の方法を用いることができる。乾燥温度は、例えば、室温(20±5℃)~90℃とすることができる。なお、本発明においては、上記湿式粉砕工程(ii)で得られる生成物および該生成物を乾燥した乾燥物を含めて「触媒」と総称する。
[Drying process]
The method for producing a catalyst according to the present invention may include a drying step of drying the wet powder, clay-like, or cake-like product (catalyst) obtained in the wet grinding step (ii) after the wet grinding step. By carrying out the drying step, the solvent contained in the catalyst can be removed. The drying method is not particularly limited, and known methods such as natural drying, ventilation drying, and hot air drying can be used. The drying temperature can be, for example, room temperature (20±5°C) to 90°C. In the present invention, the product obtained in the wet grinding step (ii) and the dried product obtained by drying the product are collectively referred to as the "catalyst".

 [触媒]
 本発明に係る触媒の製造方法によって得られる触媒は、ケギン型ヘテロポリ酸塩を含むことが好ましく、ケギン型ヘテロポリ酸塩であってもよい。ケギン型ヘテロポリ酸塩は、モリブデン原子、リン原子、およびアンモニウムカチオンを含む特定の構造を有する化合物である。なお、ケギン型構造を有する化合物であるか否かは、例えば、赤外分光光度計を用いた分析によって判別することができる。すなわち、ケギン型ヘテロポリ酸塩の1種であるリンモリブデン酸塩の場合、対カチオンの種類および置換数によって赤外吸収の波数が変化するが、ヘテロ原子のリン酸化物のP-O逆対称伸縮振動に帰属される赤外光の吸収が、波数1062±10cm-1に観測される。加えて、ポリ原子のモリブデン酸化物の逆対称振動に起因する赤外光の吸収が、波数965±10cm-1、870±10cm-1、および790±10cm-1に観測される。したがって、触媒について赤外分光光度計を用いて分析を行い、上記4つの波数にピークが観測された場合、該触媒は、ケギン型ヘテロポリ酸塩を含む化合物であると同定することができる。なお、上記波数以外の場所に観測されるピークは、未反応原料や副生物といった不純物に起因する赤外吸収であり、生成物の純度の指標とすることができる。
[catalyst]
The catalyst obtained by the catalyst production method according to the present invention preferably contains a Keggin type heteropolyacid salt, and may be a Keggin type heteropolyacid salt. The Keggin type heteropolyacid salt is a compound having a specific structure containing a molybdenum atom, a phosphorus atom, and an ammonium cation. Whether or not a compound has a Keggin type structure can be determined, for example, by analysis using an infrared spectrophotometer. That is, in the case of a phosphomolybdate, which is one type of Keggin type heteropolyacid salt, the wave number of infrared absorption changes depending on the type and substitution number of the counter cation, and the infrared light absorption attributed to the P-O antisymmetric stretching vibration of the phosphorus oxide of the heteroatom is observed at a wave number of 1062±10 cm -1 . In addition, the infrared light absorption caused by the antisymmetric vibration of the molybdenum oxide of the polyatom is observed at wave numbers of 965±10 cm -1 , 870±10 cm -1 , and 790±10 cm -1 . Therefore, when a catalyst is analyzed using an infrared spectrophotometer and peaks are observed at the above four wave numbers, the catalyst can be identified as a compound containing a Keggin type heteropolyacid salt. Peaks observed at wave numbers other than the above are infrared absorptions caused by impurities such as unreacted raw materials and by-products, and can be used as an index of the purity of the product.

 本発明において、乾式粉砕工程を湿式粉砕工程(または湿式混合工程)の前に加えることにより、高純度の触媒、好ましくはケギン型ヘテロポリ酸塩が得られる理由について、本発明者らは、以下のように推定している。すなわち、乾式粉砕工程では、衝撃、剪断、または摩擦などの物理的に加えられるエネルギーによって、原料粉末の微粉化、結晶面の露出、および格子のひずみや格子欠陥の生成といった現象が引き起こされる。そして、これらの現象により、原料粉末同士の反応性が機械的に活性化されることで、主反応であるケギン型ヘテロポリ酸塩の生成が効率的に進行し、副生物の生成が抑制されるものと考えている。 The inventors of the present invention speculate that the reason why a high-purity catalyst, preferably a Keggin-type heteropolyacid salt, can be obtained by adding a dry-milling step before the wet-milling step (or wet-mixing step) is as follows. That is, in the dry-milling step, physically applied energy such as impact, shear, or friction causes phenomena such as pulverization of the raw material powder, exposure of crystal faces, and generation of lattice distortion and lattice defects. These phenomena mechanically activate the reactivity between the raw material powders, which is believed to efficiently promote the main reaction, the generation of the Keggin-type heteropolyacid salt, and suppress the generation of by-products.

 また、本発明に係る触媒の製造方法によって得られる触媒は、α,β-不飽和カルボン酸製造用触媒であることが好ましい。すなわち、本発明に係る触媒の製造方法によって得られる触媒は、α,β-不飽和カルボン酸の製造に、好適に用いることができる。本発明に係る触媒の製造方法によって得られる触媒がα,β-不飽和カルボン酸製造用触媒である場合、該触媒は、下記式(I)で表される組成を有することが好ましい。なお、本発明において、触媒が担体を用いて形成されている場合、触媒は担体を含むものを意味し、下記式(I)で表される組成は、該担体を考慮した組成である。
   PMoCu(NH   (I)
Furthermore, the catalyst obtained by the catalyst production method according to the present invention is preferably a catalyst for producing an α,β-unsaturated carboxylic acid. That is, the catalyst obtained by the catalyst production method according to the present invention can be suitably used for producing an α,β-unsaturated carboxylic acid. When the catalyst obtained by the catalyst production method according to the present invention is a catalyst for producing an α,β-unsaturated carboxylic acid, the catalyst preferably has a composition represented by the following formula (I). In the present invention, when the catalyst is formed using a carrier, the catalyst means one that includes the carrier, and the composition represented by the following formula (I) is a composition that takes the carrier into consideration.
P a Mo b V c Cu d X e Y f Z g (NH 4 ) h O i (I)

 式(I)中、P、Mo、V、Cu、NH、およびOは、それぞれ、リン、モリブデン、バナジウム、銅、アンモニウム根、および酸素を示す。Xは、ケイ素、チタン、ゲルマニウム、砒素、アンチモン、およびビスマスからなる群より選択される少なくとも1種の元素を示す。Yは、ニオブ、タンタル、タングステン、セリウム、ジルコニウム、銀、鉄、亜鉛、クロム、マグネシウム、コバルト、マンガン、バリウム、およびランタンからなる群より選択される少なくとも1種の元素を示す。Zは、リチウム、ナトリウム、カリウム、ルビジウム、およびセシウムからなる群より選択される少なくとも1種の元素を示す。a~iは、各成分のモル比率を示し、b=12のとき、a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3、およびh=0.01~30であり、iは、前記各成分の価数を満足するために必要な酸素のモル比率である。 In formula (I), P, Mo, V, Cu, NH 4 and O represent phosphorus, molybdenum, vanadium, copper, ammonium and oxygen, respectively. X represents at least one element selected from the group consisting of silicon, titanium, germanium, arsenic, antimony and bismuth. Y represents at least one element selected from the group consisting of niobium, tantalum, tungsten, cerium, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium and lanthanum. Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium. a to i indicate the molar ratio of each component, and when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01 to 2, e = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h = 0.01 to 30, and i is the molar ratio of oxygen necessary to satisfy the valence of each of the components.

 上記各元素のモル比率は、触媒をアンモニア水に溶解した溶液を、ICP発光分析法により分析して求めた値とする。また、アンモニウム根のモル比率は、触媒をケルダール法により分析して求めた値とする。なお、本発明において「アンモニウム根」とは、アンモニウムイオン(NH+)になり得るアンモニア(NH)、およびアンモニウム塩などのアンモニウム含有化合物に含まれるアンモニウムの総称を意味する。 The molar ratio of each element is a value obtained by analyzing a solution in which the catalyst is dissolved in ammonia water by ICP emission spectrometry. The molar ratio of ammonium root is a value obtained by analyzing the catalyst by Kjeldahl method. In the present invention, "ammonium root" refers to a general term for ammonia (NH 3 ) that can become ammonium ion (NH 4 +) and ammonium contained in ammonium-containing compounds such as ammonium salts.

 <α,β-不飽和カルボン酸の製造方法>
 本発明に係るα,β-不飽和カルボン酸の製造方法においては、上記本発明に係る触媒の製造方法によって得られた触媒を用いて、α,β-不飽和アルデヒドから、対応するα,β-不飽和カルボン酸を製造する。具体的には、上記本発明に係る触媒の製造方法によって得られた触媒の存在下で、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化して、α,β-不飽和カルボン酸を製造する。また、本発明に係るα,β-不飽和カルボン酸の製造方法は、上記本発明に係る触媒の製造方法により触媒を製造し、該触媒を用いてα,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する方法ということもできる。これらの方法によれば、純度の高い触媒を用いて気相接触酸化反応を行うことにより、高い収率で、α,β-不飽和カルボン酸を製造することができる。
<Method of producing α,β-unsaturated carboxylic acid>
In the method for producing an α,β-unsaturated carboxylic acid according to the present invention, a catalyst obtained by the method for producing a catalyst according to the present invention is used to produce a corresponding α,β-unsaturated carboxylic acid from an α,β-unsaturated aldehyde. Specifically, an α,β-unsaturated aldehyde is subjected to gas-phase catalytic oxidation with molecular oxygen in the presence of a catalyst obtained by the method for producing a catalyst according to the present invention to produce an α,β-unsaturated carboxylic acid. The method for producing an α,β-unsaturated carboxylic acid according to the present invention can also be said to be a method in which a catalyst is produced by the method for producing a catalyst according to the present invention, and an α,β-unsaturated aldehyde is subjected to gas-phase catalytic oxidation with molecular oxygen using the catalyst to produce an α,β-unsaturated carboxylic acid. According to these methods, an α,β-unsaturated carboxylic acid can be produced in a high yield by carrying out a gas-phase catalytic oxidation reaction using a catalyst with high purity.

 原料のα,β-不飽和アルデヒドとしては、(メタ)アクロレイン、クロトンアルデヒド(β-メチルアクロレイン)、およびシンナムアルデヒド(β-フェニルアクロレイン)等が挙げられる。これらの中でも、目的生成物の収率の観点から、α,β-不飽和アルデヒドは、(メタ)アクロレインであることが好ましく、メタクロレインであることがより好ましい。得られるα,β-不飽和カルボン酸は、前記α,β-不飽和アルデヒドのアルデヒド基がカルボキシル基に変換されたα,β-不飽和カルボン酸である。具体的には、α,β-不飽和アルデヒドが(メタ)アクロレインである場合、(メタ)アクリル酸が得られる。なお、「(メタ)アクロレイン」は、アクロレインおよびメタクロレインを表し、「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸を表す。 Examples of the α,β-unsaturated aldehyde raw material include (meth)acrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein). Among these, from the viewpoint of the yield of the target product, the α,β-unsaturated aldehyde is preferably (meth)acrolein, and more preferably methacrolein. The resulting α,β-unsaturated carboxylic acid is an α,β-unsaturated carboxylic acid in which the aldehyde group of the α,β-unsaturated aldehyde is converted to a carboxyl group. Specifically, when the α,β-unsaturated aldehyde is (meth)acrolein, (meth)acrylic acid is obtained. Note that "(meth)acrolein" refers to acrolein and methacrolein, and "(meth)acrylic acid" refers to acrylic acid and methacrylic acid.

 以下、代表例として、本発明に係る触媒の製造方法により製造された触媒の存在下、メタクロレインを、分子状酸素を用いて気相接触酸化して、メタクリル酸を製造する方法について説明する。なお、以下に記載する方法は、メタクロレイン以外のα,β-不飽和アルデヒドを用いた場合においても適用可能である。この方法においては、メタクロレインおよび分子状酸素を含む原料ガスと、本発明に係る触媒と、を接触させることにより、メタクリル酸を製造する。この反応においては、固定床型反応器を使用することができる。反応管内に触媒を充填し、該反応器へ原料ガスを供給することにより反応を行う。触媒は、1層として充填してもよく、活性の異なる複数の触媒をそれぞれ複数の層に分けて充填してもよい。また、活性を制御するために触媒を不活性担体により希釈し充填してもよい。 Below, as a representative example, a method for producing methacrylic acid by gas-phase catalytic oxidation of methacrolein using molecular oxygen in the presence of a catalyst produced by the catalyst production method according to the present invention will be described. The method described below can also be applied to the case where an α,β-unsaturated aldehyde other than methacrolein is used. In this method, methacrylic acid is produced by contacting a raw material gas containing methacrolein and molecular oxygen with the catalyst according to the present invention. A fixed-bed reactor can be used in this reaction. The catalyst is packed in a reaction tube, and the raw material gas is supplied to the reactor to carry out the reaction. The catalyst may be packed in a single layer, or multiple catalysts with different activities may be packed separately in multiple layers. The catalyst may also be diluted with an inert carrier and packed in order to control the activity.

 原料ガス中のメタクロレインの濃度は特に限定されないが、1容量%~20容量%であることが好ましく、下限は3容量%であることがより好ましく、上限は10容量%であることがより好ましい。原料であるメタクロレインは、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいてもよい。 The concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1% to 20% by volume, more preferably with a lower limit of 3% by volume and an upper limit of 10% by volume. The raw material methacrolein may contain small amounts of impurities such as lower saturated aldehydes that do not substantially affect this reaction.

 原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4モル~4モルが好ましく、下限は0.5モルがより好ましく、上限は3モルがより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体を用いてもよい。 The concentration of molecular oxygen in the raw gas is preferably 0.4 to 4 moles per mole of methacrolein, with a lower limit of 0.5 moles being more preferable and an upper limit of 3 moles being more preferable. From an economical standpoint, air is preferred as the source of molecular oxygen. If necessary, a gas enriched in molecular oxygen by adding pure oxygen to air may be used.

 原料ガスは、メタクロレインおよび分子状酸素を、窒素や炭酸ガス等の不活性ガスにより希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1容量%~50容量%であることが好ましく、下限は1容量%であることがより好ましく、上限は40容量%であることがより好ましい。 The raw material gas may be methacrolein and molecular oxygen diluted with an inert gas such as nitrogen or carbon dioxide. Furthermore, water vapor may be added to the raw material gas. By carrying out the reaction in the presence of water vapor, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably 0.1% to 50% by volume, more preferably with a lower limit of 1% by volume and an upper limit of 40% by volume.

 原料ガスと触媒との接触時間は、1.5秒~15秒であることが好ましい。反応圧力は、0.1MPa(G)~1MPa(G)であることが好ましい。なお、(G)はゲージ圧であることを意味する。反応温度は200℃~450℃であることが好ましく、下限は250℃であることがより好ましく、上限は400℃であることがより好ましい。 The contact time between the raw material gas and the catalyst is preferably 1.5 to 15 seconds. The reaction pressure is preferably 0.1 MPa (G) to 1 MPa (G), where (G) means gauge pressure. The reaction temperature is preferably 200°C to 450°C, with a lower limit of 250°C being more preferable and an upper limit of 400°C being more preferable.

 <α,β-不飽和カルボン酸エステルの製造方法>
 本発明に係るα,β-不飽和カルボン酸エステルの製造方法においては、上記本発明に係るα,β-不飽和カルボン酸の製造方法によって得られたα,β-不飽和カルボン酸を用いて、α,β-不飽和カルボン酸エステルを製造する。α,β-不飽和カルボン酸と反応させるアルコールとしては特に限定されず、メタノール、エタノール、イソプロパノール、n-ブタノール、およびイソブタノール等を挙げることができる。得られるα,β-不飽和カルボン酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、および(メタ)アクリル酸ブチル等が挙げられる。エステル化反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。エステル化反応の反応温度は、50℃~200℃であることが好ましい。
<Method of producing α,β-unsaturated carboxylic acid ester>
In the method for producing an α,β-unsaturated carboxylic acid ester according to the present invention, an α,β-unsaturated carboxylic acid ester is produced using the α,β-unsaturated carboxylic acid obtained by the method for producing an α,β-unsaturated carboxylic acid according to the present invention. The alcohol to be reacted with the α,β-unsaturated carboxylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol, and isobutanol. Examples of the α,β-unsaturated carboxylic acid ester obtained include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and butyl (meth)acrylate. The esterification reaction can be carried out in the presence of an acid catalyst such as a sulfonic acid type cation exchange resin. The reaction temperature of the esterification reaction is preferably 50°C to 200°C.

 以下、本発明に係る触媒(ケギン型ヘテロポリ酸塩)の製造例を、比較例とともに説明する。なお、以下の実施例および比較例中の「部」は質量部を意味する。 Below, a production example of the catalyst (Keggin-type heteropolyacid salt) according to the present invention will be described together with a comparative example. Note that "parts" in the following examples and comparative examples means parts by mass.

 [生成物の分析]
 生成物の分析は、赤外分光光度計(商品名:NICOLET 6700FT-IR、Thermo electron社製)を用いて行った。生成物のサンプル1mgと臭化カリウム100mgとを混合し、ミクロ錠剤成形器(商品名:MP-1、日本分光株式会社製)により成形した成形物について透過測定を実施した。測定条件は、測定範囲:400cm-1~4000cm-1、分解能:4cm-1、スキャン回数:128回とした。得られた測定データについて、まず、ノイズ低減のため、前後10点のデータを平均した値に変換した。続いて、変換処理したデータの波数700cm-1~1200cm-1の領域に対して1階微分を行い、微分値が正の値から負の値へ変わる点を極大値、すなわちスペクトルのピークとみなして、該ピークを検出した。
[Product Analysis]
The analysis of the product was carried out using an infrared spectrophotometer (product name: NICOLET 6700FT-IR, manufactured by Thermo Electron). 1 mg of the product sample was mixed with 100 mg of potassium bromide, and the molded product was molded using a micro tablet molder (product name: MP-1, manufactured by JASCO Corporation) and the transmission measurement was carried out. The measurement conditions were: measurement range: 400 cm -1 to 4000 cm -1 , resolution: 4 cm -1 , and number of scans: 128 times. For the obtained measurement data, first, in order to reduce noise, the data of 10 points before and after were converted to an average value. Next, the first-order differentiation was performed on the region of wave numbers 700 cm -1 to 1200 cm -1 of the converted data, and the point where the differential value changes from a positive value to a negative value was regarded as the maximum value, that is, the peak of the spectrum, and the peak was detected.

[実施例1]
 (乾式粉砕工程)
 三酸化モリブデン100部、リン酸二水素アンモニウム10.7部、および炭酸水素アンモニウム5.5部と、追加の成分としてメタバナジン酸アンモニウム2.7部、炭酸水素セシウム11.2部、および酸化銅0.4部と、を乳鉢で混合することにより、原料粉末の混合品を得た。続いて、粉砕媒体として高硬度ステンレス製のボール径10mmの粉砕ボールを、粉砕容器(高硬度ステンレス製、容量:12mL)に対して26.2体積%となるように投入した。続いて、粉砕容器へ、上記原料粉末の混合品6部とステアリン酸0.4部とを投入した後、パッキンを間に挟んで蓋をした。この状態の粉砕容器を遊星型ボールミル(商品名:PULVERISETTE 7、FRITSCH製)にセットして、公転回転数500rpmにて15分間、粉砕処理を行い、混合物を得た。この工程における重力加速度は、19.1Gであった。
 (湿式粉砕工程)
 乾式粉砕工程後の粉砕容器を一旦、装置から取り外し、蓋を開けて、原料粉末全体の質量に対して30質量%の水を投入した。投入後、パッキンを間に挟んで蓋をした状態の粉砕容器を、上記遊星型ボールミルにセットして、公転回転数500rpmにて15分間、粉砕処理(混合処理)を行った。こうして得られた粉末(触媒、組成:P1.6Mo120.4Cu0.1Cs1.0(NH3.2)について、赤外分光光度計を用いて分析した。結果を表1および表2に示す。
[Example 1]
(Dry grinding process)
100 parts of molybdenum trioxide, 10.7 parts of ammonium dihydrogen phosphate, and 5.5 parts of ammonium hydrogen carbonate were mixed in a mortar with 2.7 parts of ammonium metavanadate, 11.2 parts of cesium hydrogen carbonate, and 0.4 parts of copper oxide as additional components to obtain a mixture of raw material powders. Next, grinding balls made of high hardness stainless steel with a ball diameter of 10 mm were added as grinding media to a grinding container (made of high hardness stainless steel, capacity: 12 mL) so as to be 26.2 volume %. Next, 6 parts of the mixture of raw material powders and 0.4 parts of stearic acid were added to the grinding container, and then the container was covered with a packing. The grinding container in this state was set in a planetary ball mill (trade name: PULVERISETTE 7, manufactured by FRITSCH) and ground for 15 minutes at a revolution speed of 500 rpm to obtain a mixture. The gravitational acceleration in this process was 19.1 G.
(Wet grinding process)
The grinding container after the dry grinding process was once removed from the apparatus, the lid was opened, and 30% by mass of water was added to the total mass of the raw material powder. After the addition, the grinding container with the lid and a packing was set in the planetary ball mill, and grinding (mixing) was performed for 15 minutes at a revolution speed of 500 rpm. The powder thus obtained (catalyst, composition: P 1.6 Mo 12 V 0.4 Cu 0.1 Cs 1.0 (NH 4 ) 3.2 ) was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2.

[実施例2]
 乾式粉砕工程および湿式粉砕工程の処理時間をそれぞれ30分とした以外は、実施例1と同様の方法により粉末を得た。なお、触媒の組成は実施例1と同様である(以下の実施例および比較例で得られた触媒についても同様)。得られた粉末について、赤外分光光度計を用いて分析した。結果を表1および表2に示す。
[Example 2]
A powder was obtained in the same manner as in Example 1, except that the processing time of the dry grinding step and the wet grinding step was 30 minutes each. The composition of the catalyst was the same as in Example 1 (the same applies to the catalysts obtained in the following Examples and Comparative Examples). The obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2.

[実施例3]
 乾式粉砕工程および湿式粉砕工程の処理時間をそれぞれ60分とした以外は、実施例1と同様の方法により粉末を得た。得られた粉末について、赤外分光光度計を用いて分析した。結果を表1および表2に示す。
[Example 3]
A powder was obtained in the same manner as in Example 1, except that the processing time in each of the dry grinding step and the wet grinding step was 60 minutes. The obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2.

[比較例1]
 乾式粉砕工程を実施しなかった以外は、実施例2と同様の方法により粉末を得た。得られた粉末について、赤外分光光度計を用いて分析した。結果を表1および表2に示す。
[Comparative Example 1]
A powder was obtained in the same manner as in Example 2, except that the dry grinding step was not performed. The obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2.

[比較例2]
 乾式粉砕工程を実施しなかった以外は、実施例3と同様の方法により粉末を得た。得られた粉末について、赤外分光光度計を用いて分析した。結果を表1および表2に示す。
[Comparative Example 2]
A powder was obtained in the same manner as in Example 3, except that the dry grinding step was not performed. The obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2.

[比較例3]
 乾式粉砕工程および湿式粉砕工程において、粉砕機を使用せずに、乳鉢と乳棒を用いて原料粉末およびステアリン酸を混合した以外は、実施例1と同様の方法により粉末を得た。各工程における重力加速度は、およそ0.2Gであった。得られた粉末について、赤外分光光度計を用いて分析した。結果を表1および表2に示す。
[Comparative Example 3]
A powder was obtained in the same manner as in Example 1, except that in the dry grinding step and the wet grinding step, instead of using a grinder, the raw material powder and stearic acid were mixed using a mortar and pestle. The gravitational acceleration in each step was about 0.2 G. The obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2.

[比較例4]
 湿式粉砕工程を実施しなかった以外は、実施例3と同様の方法により粉末を得た。得られた粉末について、赤外分光光度計を用いて分析した。結果を表1および表2に示す。なお、検出された5つのピークが原料のピークと一致したため、それらのピークを、未反応原料に起因するピークと判断した。
[Comparative Example 4]
A powder was obtained in the same manner as in Example 3, except that the wet grinding step was not performed. The obtained powder was analyzed using an infrared spectrophotometer. The results are shown in Tables 1 and 2. Note that, since the five peaks detected matched the peaks of the raw materials, these peaks were determined to be peaks due to unreacted raw materials.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表1および表2に示すように、乾式粉砕工程および湿式粉砕工程を有する本発明に係る製造方法によれば、未反応原料および副生物が減少した高純度のケギン型ヘテロポリ酸塩を得ることができる。なお、上記実施例で得られた触媒を用いて、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化することにより、α,β-不飽和カルボン酸を製造することができる。さらに、得られたα,β-不飽和カルボン酸をエステル化することにより、α,β-不飽和カルボン酸エステルを得ることができる。 As shown in Tables 1 and 2, the manufacturing method according to the present invention, which has a dry grinding step and a wet grinding step, can produce a high-purity Keggin-type heteropolyacid salt with reduced amounts of unreacted raw materials and by-products. Using the catalyst obtained in the above example, an α,β-unsaturated aldehyde can be subjected to gas-phase catalytic oxidation with molecular oxygen to produce an α,β-unsaturated carboxylic acid. Furthermore, an α,β-unsaturated carboxylic acid ester can be obtained by esterifying the obtained α,β-unsaturated carboxylic acid.

 本発明によれば、触媒(好ましくはケギン型ヘテロポリ酸塩)の簡便な製造方法を提供することができる。 The present invention provides a simple method for producing a catalyst (preferably a Keggin-type heteropolyacid salt).

Claims (15)

 (i)原料粉末を、第1の粉砕機を用いて混合し、混合物を得る工程、および
 (ii)前記混合物に水を含む溶媒を添加し、第2の粉砕機を用いて混合する工程、
を含み、
 前記原料粉末がモリブデン原料を含有する、触媒の製造方法。
(i) mixing raw material powders using a first pulverizer to obtain a mixture; and (ii) adding a solvent containing water to the mixture and mixing the mixture using a second pulverizer.
Including,
The method for producing a catalyst, wherein the raw material powder contains a molybdenum raw material.
 前記工程(i)において、前記原料粉末を前記第1の粉砕機に投入し、粉砕媒体の存在下で前記原料粉末を混合する、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein in step (i), the raw material powder is fed into the first grinder and mixed in the presence of a grinding medium.  前記工程(i)において、前記原料粉末に、流動助剤または固結防止剤を加えて混合する、請求項1または2に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1 or 2, wherein in step (i), a flow aid or anti-caking agent is added to and mixed with the raw material powder.  前記工程(i)において、前記原料粉末に対して0.5G以上の重力加速度を与える、請求項1~3のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 3, wherein in step (i), a gravitational acceleration of 0.5 G or more is applied to the raw material powder.  前記工程(i)の処理時間が、5分以上60分以下であり、
 前記工程(ii)の処理時間が、5分以上60分以下である、
請求項1~4のいずれか一項に記載の触媒の製造方法。
The treatment time of the step (i) is 5 minutes or more and 60 minutes or less,
The treatment time of the step (ii) is 5 minutes or more and 60 minutes or less.
A method for producing the catalyst according to any one of claims 1 to 4.
 前記水を含む溶媒の添加量が、前記原料粉末全体の質量に対して1質量%以上60質量%以下である、請求項1~5のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 5, wherein the amount of the water-containing solvent added is 1% by mass or more and 60% by mass or less with respect to the total mass of the raw material powder.  前記第2の粉砕機が、前記第1の粉砕機と異なる粉砕機である、請求項1~6のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 6, wherein the second crusher is a crusher different from the first crusher.  前記原料粉末が、さらにリン原料およびアンモニウム原料を含有する、請求項1~7のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 7, wherein the raw material powder further contains a phosphorus raw material and an ammonium raw material.  前記触媒がケギン型ヘテロポリ酸塩を含む、請求項1~8のいずれか一項に記載の触媒の製造方法。 The method for producing the catalyst according to any one of claims 1 to 8, wherein the catalyst comprises a Keggin-type heteropolyacid salt.  前記触媒がα,β-不飽和カルボン酸製造用触媒である、請求項1~9のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 9, wherein the catalyst is a catalyst for producing an α,β-unsaturated carboxylic acid.  前記工程(i)において、実質的に溶媒を添加せずに前記混合物を得る、請求項1~10のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 10, wherein in step (i), the mixture is obtained substantially without adding a solvent.  前記モリブデン原料が、酸化モリブデン、モリブデン酸アンモニウム、および塩化モリブデンからなる群より選択される、請求項1~11のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 11, wherein the molybdenum raw material is selected from the group consisting of molybdenum oxide, ammonium molybdate, and molybdenum chloride.  前記リン原料が、リン酸、五酸化リン、リン酸二水素アンモニウム、リン酸水素二アンモニウム、およびリン酸アンモニウムからなる群より選択される、請求項8~12のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 8 to 12, wherein the phosphorus raw material is selected from the group consisting of phosphoric acid, phosphorus pentoxide, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium phosphate.  請求項1~13のいずれか一項に記載の製造方法により製造した触媒を用いて、α,β-不飽和アルデヒドからα,β-不飽和カルボン酸を製造する、α,β-不飽和カルボン酸の製造方法。 A method for producing an α,β-unsaturated carboxylic acid, which produces an α,β-unsaturated carboxylic acid from an α,β-unsaturated aldehyde using a catalyst produced by the method according to any one of claims 1 to 13.  請求項14に記載の製造方法により製造したα,β-不飽和カルボン酸から、α,β-不飽和カルボン酸エステルを製造する、α,β-不飽和カルボン酸エステルの製造方法。
 
A method for producing an α,β-unsaturated carboxylic acid ester, comprising producing an α,β-unsaturated carboxylic acid ester from the α,β-unsaturated carboxylic acid produced by the production method according to claim 14.
PCT/JP2024/043830 2023-12-12 2024-12-11 METHOD FOR PRODUCING CATALYST, AND METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID AND α, β-UNSATURATED CARBOXYLIC ACID ESTER USING SAID CATALYST Pending WO2025127065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-209305 2023-12-12
JP2023209305 2023-12-12

Publications (1)

Publication Number Publication Date
WO2025127065A1 true WO2025127065A1 (en) 2025-06-19

Family

ID=96057315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/043830 Pending WO2025127065A1 (en) 2023-12-12 2024-12-11 METHOD FOR PRODUCING CATALYST, AND METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID AND α, β-UNSATURATED CARBOXYLIC ACID ESTER USING SAID CATALYST

Country Status (1)

Country Link
WO (1) WO2025127065A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501838A (en) * 2008-09-12 2012-01-26 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a geometric catalyst molded body
JP2014069128A (en) * 2012-09-28 2014-04-21 Nippon Shokubai Co Ltd Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, catalyst thereof, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
CN104190404A (en) * 2014-09-17 2014-12-10 桂林理工大学 Visible light responsive photocatalyst SmNbMo2O10 and its preparation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501838A (en) * 2008-09-12 2012-01-26 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a geometric catalyst molded body
JP2014069128A (en) * 2012-09-28 2014-04-21 Nippon Shokubai Co Ltd Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, catalyst thereof, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
CN104190404A (en) * 2014-09-17 2014-12-10 桂林理工大学 Visible light responsive photocatalyst SmNbMo2O10 and its preparation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILKE MANUEL, CASATI NICOLA: "A new route to polyoxometalates via mechanochemistry", CHEMICAL SCIENCE, vol. 13, no. 4, 26 January 2022 (2022-01-26), UK, pages 1146 - 1151, XP093323283, ISSN: 2041-6520, DOI: 10.1039/D1SC05111C *

Similar Documents

Publication Publication Date Title
CN104185617B (en) Use the method for producing acrylic acid of fixed bed multitube reactor
EP3056482B1 (en) Method for producing a supported catalyst
JP4856579B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2008000709A (en) Method for producing heteropolyacid catalyst for methacrylic acid production
JP2014226614A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
US9040450B2 (en) Process for producing composite oxide catalyst
WO2025127065A1 (en) METHOD FOR PRODUCING CATALYST, AND METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID AND α, β-UNSATURATED CARBOXYLIC ACID ESTER USING SAID CATALYST
JP6680367B2 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid and α, β-unsaturation Method for producing carboxylic acid ester
JP2004261626A (en) Method for manufacturing metal oxide catalyst
CN111437849B (en) Process for preparing a VPO catalyst
JP5100520B2 (en) Method for producing catalyst for synthesizing α, β-unsaturated carboxylic acid
JPWO2019208715A1 (en) A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and a methacrylic acid ester.
JP2000342974A (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP5915895B2 (en) Method for producing a catalyst for methacrylic acid production
JP5344753B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP6769557B2 (en) Catalyst precursor, catalyst production method, methacrylic acid and acrylic acid production method, and methacrylic acid ester and acrylic acid ester production method.
JP2008000710A (en) Method for producing heteropolyacid catalyst for methacrylic acid production
JP4943289B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5424914B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
KR102318486B1 (en) Method for preparing catalyst for preparing α,β-unsaturated carboxylic acid, method for preparing α,β-unsaturated carboxylic acid, and method for preparing α,β-unsaturated carboxylic acid ester
JP2003251187A (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP4895303B2 (en) Method for producing catalyst for producing methacrylic acid, catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5691252B2 (en) Method for producing heteropolyacid catalyst for production of methacrylic acid, and method for producing methacrylic acid
WO2024225230A1 (en) Method for producing catalyst for methacrylic acid production, and method for producing methacrylic acid and methacrylic acid ester using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24903719

Country of ref document: EP

Kind code of ref document: A1