[go: up one dir, main page]

WO2025203348A1 - Optical connector and method for manufacturing optical connector plug - Google Patents

Optical connector and method for manufacturing optical connector plug

Info

Publication number
WO2025203348A1
WO2025203348A1 PCT/JP2024/012370 JP2024012370W WO2025203348A1 WO 2025203348 A1 WO2025203348 A1 WO 2025203348A1 JP 2024012370 W JP2024012370 W JP 2024012370W WO 2025203348 A1 WO2025203348 A1 WO 2025203348A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable resin
waveguide
face
optical
connector plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/012370
Other languages
French (fr)
Japanese (ja)
Inventor
千里 深井
良 小山
幾太郎 大串
由希子 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Inc
Original Assignee
NTT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Inc filed Critical NTT Inc
Priority to PCT/JP2024/012370 priority Critical patent/WO2025203348A1/en
Publication of WO2025203348A1 publication Critical patent/WO2025203348A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Definitions

  • This disclosure relates to a method for manufacturing an optical connector and an optical connector plug.
  • one method of increasing transmission capacity is mode multiplexing transmission technology, which places multiple propagation modes in a single core and transmits different signals in each mode, thereby increasing capacity.
  • an interface such as fine-in-fan-out is used to use each mode in each core as a different signal transmission path, thereby increasing transmission capacity.
  • Non-Patent Document 2 describes a technique for connecting specific combinations of multi-core fibers using self-forming waveguides. However, because optical connectors are required to be able to connect any combination, cores must be positioned in standardized design target positions, but the document does not describe a method for positioning cores in the design target positions.
  • Mode multiplexing transmission with multiple core propagation modes When connecting cores with multiple propagation modes, mode conversion may occur at the optical connection point even if no optical loss occurs.
  • mode multiplexing transmission different signals are transmitted in each mode, so if mode conversion occurs, the signals will interfere with each other, leading to signal degradation.
  • Non-Patent Document 1 discloses an average connection performance of 0.07 dB when connecting single-mode cores. For example, if this is a two-mode core, and the connection loss between the fundamental modes is 0.07 dB, and this loss is due to mode conversion from the fundamental mode to a higher-order mode, then the extinction ratio, i.e., the ratio of the light propagating in the fundamental mode before the connection point to the light converted to the higher-order mode, is -18 dB. For example, in wavelength multiplexing transmission, an extinction ratio of -30 dB or less is required in wavelength multiplexing/demultiplexing devices, and an extinction ratio of -18 dB can be said to be high for multiplexed transmission. As described above, the technology in Non-Patent Document 1 has issues with mode conversion.
  • Non-Patent Document 2 requires that cores be placed at the design target positions of the optical connector, but does not describe how to place the cores at the design target positions.
  • This disclosure has been made in consideration of the above circumstances, and its purpose is to provide an optical connector that can connect optical fibers with low loss, and a method for manufacturing an optical connector plug.
  • One aspect of the present disclosure is an optical connector having a waveguide formed using a photocurable resin, one end of the waveguide being connected to the core end face of an optical fiber inserted and fixed into an optical connector plug, and capable of transmitting an optical signal from the core of the optical fiber to the other end, the end face of the other end being formed according to the position and size of the core end face of a reference optical fiber on the detachable end face side of a reference connector plug used to fabricate the waveguide.
  • This disclosure provides an optical connector capable of connecting optical fibers with low loss, and a method for manufacturing an optical connector plug.
  • FIG. 1 is a diagram showing the structure of an optical connector plug of an optical connector.
  • FIG. 2 shows a modified example of the sealing material of the optical connector plug.
  • FIG. 3 is a diagram showing an example of the arrangement of a plurality of optical fibers in an optical connector plug.
  • FIG. 4 is a diagram showing a modified example of the optical connector plug arrangement member.
  • FIG. 5 is a diagram showing an example of a connection configuration of an optical connector.
  • FIG. 6 is a diagram showing another example of the connection configuration of the optical connector.
  • 7A to 7C are diagrams illustrating a first method for producing an optical connector plug.
  • FIG. 8 is a diagram showing a waveguide of the optical connector plug shown in FIG.
  • FIG. 9 is a diagram showing a modification of the first method for producing an optical connector plug.
  • FIG. 8 is a diagram showing a waveguide of the optical connector plug shown in FIG.
  • FIG. 9 is a diagram showing a modification of the first method for producing an optical connector plug.
  • FIG. 10 is a diagram illustrating a second method for producing an optical connector plug.
  • FIG. 11 is a diagram illustrating a method for producing an optical connector plug for connecting a multi-core fiber.
  • FIG. 12 is a diagram showing a waveguide of the optical connector plug shown in FIG.
  • FIG. 13 is a diagram showing an example of an optical connector plug structure of a single-fiber optical connector.
  • FIG. 14 is a diagram showing a modified example of the sealing material of the optical connector plug of the single-fiber optical connector.
  • FIG. 15 is a diagram showing an example of a connection configuration of a single-fiber optical connector.
  • FIG. 16 is a diagram illustrating a first method for producing an optical connector plug for a single-fiber optical connector.
  • FIG. 17 is a diagram showing a waveguide of the optical connector plug shown in FIG.
  • FIG. 18 is a diagram illustrating a second method for producing an optical connector plug for a single-fiber optical connector.
  • FIG. 19 is a diagram illustrating a method for producing an optical connector plug of a single-core optical connector for connecting a multi-core fiber.
  • FIG. 20 is an enlarged view of a portion of the optical connector plug shown in FIG.
  • the first and second embodiments describe single-mode embodiments, and the third and fourth embodiments describe multi-mode embodiments.
  • Fig. 1 is a diagram showing an example of the structure of a connector plug of an optical connector according to a first embodiment.
  • Fig. 1 is a cross-sectional view (side cross-sectional view) of an optical connector plug 100 taken along a plane parallel to the longitudinal direction of an optical fiber 10.
  • the optical connector of this embodiment includes optical connector plugs 100, each of which has a waveguide formed using photocurable resin 13.
  • One end of the waveguide is connected to the core end face of an optical fiber 10 inserted and fixed in the optical connector plug 100, and the optical signal from the core of the optical fiber 10 can be transmitted to the other end.
  • the end face at the other end of the waveguide may be formed according to the position and size of the core end face of a reference optical fiber on the detachable end face side of a reference connector plug used for waveguide fabrication.
  • the end face at the other end of the waveguide may also be formed according to the position and size of a light-transmitting hole in a photomask used for waveguide fabrication.
  • the optical connector plug 100 may include a ferrule 11 capable of holding the connecting end of the optical fiber 10 and the photocurable resin 13, and a sealant 14 that forms the detachable end face of the ferrule 11 and prevents the photocurable resin from leaking out.
  • the photocurable resin 13 is filled into the ferrule 11 so as to abut against the connecting end of the optical fiber 10.
  • the optical connector plug 100 shown in the figure comprises the connection ends of multiple optical fibers 10 inserted and fixed into the ferrule 11, the ferrule 11, adhesive 12, a photocurable resin 13 that forms a self-forming optical waveguide (hereinafter referred to as "waveguide"), a sealing material 14, and an alignment member 16.
  • the end face 15 of the ferrule 11 may be formed at an angle.
  • the optical connector plug 100 is a multi-core optical connector plug, and may be, for example, an F12-type multi-core optical fiber connector (MT connector).
  • the optical connector plug 100 may also be an F13-type multi-core optical fiber connector (MPO connector).
  • MPO connector F13-type multi-core optical fiber connector
  • the end face of the MT ferrule may be formed at an angle.
  • the MT ferrule is housed in an MPO plug housing, and the MPO plug is connected within an MPO adapter.
  • the multi-core optical connector is not limited to MT connectors or MPO connectors, as long as it can connect multiple optical fibers in a detachable manner.
  • the sealing material 14 is provided on the ferrule end surface 15 and prevents the photocurable resin 13 from leaking out of the ferrule 11.
  • the sealing material 14 holds the photocurable resin 13 inside the ferrule 11.
  • the sealing material 14 forms the detachable end surface of the ferrule 11.
  • the sealing material 14 is also referred to as the detachable end surface.
  • the sealing material 14 may be arranged so that it protrudes from the ferrule end face 15.
  • a portion of the ferrule end face 15 may be recessed, and the sealing material 14 may be embedded in the ferrule end face 15.
  • the sealing material 14 may be arranged in any shape and in any manner, as long as it is possible to prevent the photocurable resin 13 from leaking out from the ferrule end face 15.
  • glass or resin can be used for the sealing material 14.
  • the sealing material 14 may have any shape that allows it to emit light propagating through the waveguide formed in the photocurable resin 13, or to propagate incident light through the waveguide.
  • the waveguide formed in the photocurable resin 53 and the waveguide capable of transmitting optical signals may be formed in the sealing material 14 by laser drawing.
  • Figure 3 is a diagram illustrating multiple optical fibers 10 arranged in an optical connector plug 100.
  • Figure 3 is a cross-sectional view of the optical connector plug 100 cut along a plane perpendicular to the longitudinal direction of the optical fibers 10. The cross-sectional view shown is a cross-sectional view of the area where the adhesive 12 and the alignment member 16 are present.
  • Multiple optical fibers 10 are arranged at equal intervals by an alignment member 16 toward the ferrule end face 15, and are fixed to the ferrule 11 with adhesive 12.
  • the adhesive 12 is injected through a hole (not shown) provided in the top of the ferrule 11.
  • the arrangement member 16 is formed with, for example, V-grooves, semicircular grooves, circular holes, etc.
  • the shape of the arrangement member 16 may be any shape that allows the optical fibers 10 to be arranged at equal intervals. In the example shown in Figure 3, eight optical fibers 10 are arranged, but the number of optical fibers 10 is not limited to eight, as long as it is two or more.
  • the alignment member 16 may have a tapered shape to make it easier to insert the optical fiber 10.
  • the optical fiber 10 may be, for example, a single-core fiber, a multi-core fiber, or a polarization-maintaining fiber, as long as it is an optical fiber that transmits light of any wavelength.
  • Figure 5 shows an example of the connection configuration of the optical connector 200 of this embodiment.
  • axial alignment is achieved by inserting a guide pin (not shown) into a guide hole (not shown) located on the ferrule end face 15, and a spring (not shown) applies pressure to the opposing optical connector plugs 100, causing the sealing materials 14 (detachable end faces) to tightly adhere to each other, thereby forming the optical connector 200.
  • This allows the optical fiber 10 inserted and fixed in the opposing optical connector plugs 100 to be connected with low loss.
  • a refractive index matching material 18 may be applied between the opposing sealing materials 14.
  • the refractive index matching material 18 may be in a gel or solid state. If a solid refractive index matching material 18 is used, there is no need to remove and reapply the refractive index matching material 18 when connecting or disconnecting the optical connector, which reduces the amount of work required to connect or disconnect the optical connector.
  • Figure 7 is a diagram illustrating a first manufacturing method for the optical connector plug 100 used in the optical connector 200 of this embodiment.
  • the end face of the reference optical fiber 30 inserted and fixed in the reference connector plug 300 is positioned opposite the detachable end face 14 of the ferrule 11, and light of a wavelength that increases the refractive index of the photocurable resin 13 and hardens it is irradiated from the core of the optical fiber 10 onto the photocurable resin 13, while light of the same wavelength is irradiated from the core of the reference optical fiber 30 onto the photocurable resin 13, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 13, thereby forming the waveguide 20.
  • the end face of the waveguide 20 on the detachable end face side is formed according to the position and size of the core end face of the reference optical fiber 30 on the detachable end face side of the reference connector plug 300.
  • FIG. 8 is an enlarged view of a portion of the cross-sectional view of the optical connector plug 100 shown in Figure 1.
  • the end face on the detachable end face side of the waveguide 20 produced by the first production method is formed according to the core end face of the reference connector plug 300, so the end face on the detachable end face side of the waveguide 20 of an optical connector plug 100 produced using the same reference connector plug 300 has the same shape and size and is formed in the same position on the ferrule end face 15. Therefore, by connecting two optical connector plugs 100 produced by the first production method, it is possible to produce an optical connector that can connect optical fibers with low loss.
  • a cladding 21 may be formed around the waveguide 20.
  • the photocurable resin 13 may be removed from the portion where the waveguide 20 is not formed, and the ferrule 11 may be filled with another photocurable resin 13b capable of forming a cladding with a lower refractive index than the waveguide 20.
  • Light of a wavelength that hardens the other photocurable resin 13b may then be irradiated from the ferrule end face 15 side to harden the other photocurable resin 13b, thereby forming a cladding 21 around the waveguide 20.
  • the photocurable resin 13 is removed from the injection port 22 provided in the ferrule 11, and instead photocurable resin 13b is injected, which can form a cladding 21 with a lower refractive index than the waveguide 20 when irradiated with light.
  • a light source 37 with a wavelength that causes the photocurable resin 13b to harden can be positioned near the ferrule end face 15, and the cladding 21 can be formed by irradiating the photocurable resin 13b with light 37a of that wavelength from the light source 37.
  • An injection port 22 can be provided in advance in the ferrule 11 for removing the photocurable resin 13 and injecting the photocurable resin 13b.
  • the reference connector plug 300 may be an optical connector plug used in high-precision optical connectors manufactured with minimal deviation from the optical connector's design target.
  • a reference connector specified by the IEC International Electrotechnical Commission
  • an optical connector with low connection loss may be selected, for example, using the following procedure.
  • a plurality of optical connectors are fabricated in which the core positions are aligned using image alignment or other methods to minimize error from the design target, and those with the smallest error are selected from these to extract sample group A.
  • Another plurality of optical connectors are fabricated in which the core positions are aligned, and those with the smallest error are selected from these to extract sample group B, which is different from sample group A.
  • a plurality of optical connectors are fabricated in which the core positions are aligned, and those with the smallest error are selected from these to extract sample group C, which is different from sample groups A and B.
  • the optical connectors of sample groups A, B, and C are then connected together to select an optical connector that achieves even lower connection loss.
  • the optical connector plug of the optical connector selected in this manner may be used as the reference connector plug 300.
  • photolithography technology using a photomask 42 and light source 38 is used.
  • Photocurable resin 13 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 11 and the ferrule end face 15 (detachable end face 14).
  • a photomask 42 and a light source 38 with a wavelength that increases the refractive index of the photocurable resin 13 and hardens it are placed near the ferrule end face 15 of the optical connector plug 100.
  • a light source 19 with a wavelength that increases the refractive index of the photocurable resin 13 and hardens it is connected to the optical fiber 10 of the optical connector plug 100.
  • the refractive index of the irradiated portion of the photocurable resin 13 increases and hardens, creating the waveguide 20.
  • the photomask 42 has light-transmitting holes corresponding to the core size at locations corresponding to the core design positions of the optical connector.
  • the photomask 42 has a structure in which the light-transmitting holes allow light to pass through, while the remaining areas block light.
  • the photomask 42 can be made, for example, of a metal plate with holes drilled, or of a glass plate with metal vapor-deposited on its surface.
  • the end face of the waveguide 20 on the detachable end face 14 side is formed according to the position and size of the light-transmitting holes in the photomask 42. After the waveguide 20 is created, the photomask 42 and light sources 19 and 38 are removed to produce the optical connector plug 100.
  • the end face on the detachable end face of the waveguide 20 produced by the second production method is formed according to the light-transmitting holes of the photomask 42, so the end face on the detachable end face of the waveguide 20 of an optical connector plug 100 produced using the same photomask 42 will have the same shape and size and be formed in the same position on the ferrule end face 15. Therefore, by connecting two optical connector plugs 100 produced by the second production method, an optical connector capable of connecting optical fibers with low loss can be produced.
  • the cladding 21 may also be formed in the second production method in the same way as in the first production method.
  • Figure 11 is a diagram illustrating a method for fabricating an optical connector plug 100 for connecting a multicore fiber.
  • a reference connector plug 300 is connected to the optical connector plug 100.
  • the optical fiber 10 of the optical connector plug 100 and the optical fiber 30 of the reference connector plug 300 are each connected to a single-core fiber 40 via a fan-out 41.
  • Light sources 19, 39 with a wavelength that increases the refractive index and hardens the photo-curable resin 13 are connected to each single-core fiber 40, and light of that wavelength is irradiated from the cores 10a, 30a of the optical fibers 10, 30.
  • the optical connector plug 100 is produced by removing the reference connector plug 300 and the fan-out 41. By connecting two optical connector plugs 100 made using the same reference connector plug 300, an optical connector capable of connecting optical fibers with low loss can be produced.
  • Figures 11 and 12 show an example of a multicore fiber with four cores, but the multicore fiber may have two or more cores, and the core arrangement may be any desired arrangement.
  • FIG. 13 is a diagram showing an example of a connector plug structure of an optical connector according to the second embodiment.
  • Fig. 13 is a cross-sectional view (side cross-sectional view) of an optical connector plug 500 taken along a plane parallel to the longitudinal direction of the optical fiber 50.
  • the optical connector of this embodiment includes optical connector plugs 500, each of which has a waveguide formed using photocurable resin 53.
  • One end of the waveguide is connected to the core end face of an optical fiber 50 inserted and fixed in the optical connector plug 500, and the optical signal from the core of the optical fiber 50 can be transmitted to the other end.
  • the end face at the other end of the waveguide may be formed according to the position and size of the core end face of a reference optical fiber on the detachable end face side of a reference connector plug used for waveguide fabrication.
  • the end face at the other end of the waveguide may also be formed according to the position and size of a light-transmitting hole in a photomask used for waveguide fabrication.
  • the optical connector plug 500 may include a ferrule 51 capable of holding the connecting end of the optical fiber 50 and the photocurable resin 53, and a sealant 54 that forms the detachable end face of the ferrule 51 and prevents the photocurable resin from leaking out.
  • the photocurable resin 53 is filled into the ferrule 51 so as to abut against the connecting end of the optical fiber 50.
  • the optical connector plug 500 shown is a single-core optical connector plug, and includes the connection end of a single optical fiber 50 inserted and fixed into the ferrule 51, the ferrule 51, a plug frame 52, a photocurable resin 53 that forms a self-forming optical waveguide (waveguide), a sealant 54, a tab 56, a flange 57, a spring 58, and a stop ring 59.
  • the sealant 54 is placed on the ferrule end face 55 to prevent the photocurable resin 53 filled in the ferrule 51 from leaking out.
  • the optical connector plug 500 may have any shape that allows the single-core optical fiber 50 adhesively fixed to the ferrule 51 to be connected to an opposing optical fiber via an adapter (not shown).
  • an adapter not shown
  • the presence or absence of the flange 57, spring 58, stop ring 59, plug frame 52, and knob 56, as well as their shapes, are not limited to those shown in Figure 13.
  • the single-core optical connector of this embodiment is not limited to an SC connector or an MU connector, as long as it can connect a single-core optical fiber in a detachable manner.
  • the photocurable resin 53 is connected to the optical fiber 50 inside the ferrule 51, and is used to form a self-forming optical waveguide capable of transmitting optical signals.
  • the photocurable resin 53 is prevented from flowing out of the ferrule end face 55 by the sealing material 54, and is held inside the ferrule 51.
  • the sealing material 54 may be arranged so as to protrude from the ferrule end face 55 as shown in FIG. 13, or may be arranged so as to be embedded in the ferrule end face 55 by making the ferrule end face 55 concave as shown in FIG. 14.
  • the sealing material 54 may be of any shape and arrangement as long as it can prevent the photocurable resin 53 from leaking out from the ferrule end face 55.
  • glass or resin may be used for the sealing material 54.
  • the sealing material 54 may have any shape as long as it can emit light propagating through the waveguide formed in the photocurable resin 53 or propagate incident light into the waveguide.
  • the waveguide formed in the photocurable resin 53 and the waveguide capable of transmitting optical signals may be formed in the sealing material 54 by laser drawing.
  • the single-core optical fiber 50 may be, for example, a single-core fiber, a multi-core fiber, or a polarization-maintaining fiber, as long as it is an optical fiber capable of transmitting light of any wavelength.
  • Figure 15 shows an example of a connection configuration for an optical connector according to the second embodiment.
  • Axial alignment is achieved by inserting two opposing ferrules 51 into a sleeve 63 attached to an adapter (not shown). Then, a pressing force is applied to the optical fiber 50 and the ferrule end face 55 by a spring 58, forming an optical connector 600 in a configuration in which the sealing materials 54 are in close contact with each other, and connecting the optical fiber 50.
  • a refractive index matching material (not shown) may be applied between the sealing materials 54.
  • the refractive index matching material may be in gel or solid form. If a solid refractive index matching material is used, there is no need to remove and reapply the matching material when connecting or disconnecting the optical connector, which reduces the amount of work required to connect or disconnect the optical connector.
  • FIG. 16 is a diagram illustrating a first method for manufacturing the optical connector plug 500 of the second embodiment.
  • the end face of the reference optical fiber 70 inserted and fixed in the reference connector plug 700 is positioned opposite the detachable end face 54 of the ferrule 51, and light of a wavelength that increases the refractive index of the photocurable resin 53 and hardens it is irradiated from the core of the optical fiber 50 onto the photocurable resin 53.
  • light of the same wavelength is irradiated from the core of the reference optical fiber 70 onto the photocurable resin 53, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 53, thereby forming a waveguide 60.
  • the end face of the waveguide 60 on the detachable end face side is formed according to the position and size of the core end face of the reference optical fiber 70 on the detachable end face side of the reference connector plug 700.
  • photocurable resin 53 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 51 and the ferrule end face 55 (detachable end face 54). Then, a reference connector plug 700 is connected to the optical connector plug 500. Light sources 69 and 89 with a wavelength that increases the refractive index of the photocurable resin 53 and hardens it are connected to the optical fiber 50 of the optical connector plug 500 and the optical fiber 70 of the reference connector plug 700, respectively. Light of this wavelength is irradiated onto the photocurable resin 53 from the cores 50a and 70a of the optical fibers 50 and 70.
  • the reference connector plug 700 and the light source 69 are removed to create the optical connector plug 500.
  • the end face on the detachable end face of the waveguide 60 produced by the first production method is formed according to the core end face of the reference connector plug 700, and therefore the end face on the detachable end face of the waveguide 60 of an optical connector plug 500 produced using the same reference connector plug 700 has the same shape and size and is formed in the same position on the ferrule end face 55. Therefore, by connecting two optical connector plugs 500 produced by the first production method, it is possible to produce an optical connector that can connect optical fibers with low loss.
  • an optical connector with low connection loss may be selected, for example, using the following procedure.
  • a plurality of optical connectors are fabricated in which the core positions are aligned using image alignment or other methods to minimize error from the design target, and those with the smallest error are selected from these to extract sample group A.
  • a further plurality of optical connectors are fabricated in which the core positions are aligned, and those with the smallest error are selected from these to extract sample group B, which is different from sample group A.
  • a further plurality of optical connectors are fabricated in which the core positions are aligned, and those with the smallest error are selected from these to extract sample group C, which is different from sample groups A and B.
  • the optical connectors of sample groups A, B, and C are then connected together to select an optical connector that achieves even lower connection loss.
  • the optical connector plug of the optical connector selected in this manner may be used as the reference connector plug 700.
  • Figure 19 is a diagram illustrating a method for fabricating an optical connector plug 500 for connecting a multicore fiber.
  • a method for fabricating the optical connector plug 500 using the first fabrication method described above is described.
  • a reference connector plug 700 is connected to the optical connector plug 500.
  • FIG. 19 and 20 show an example of a multicore fiber with four cores, but the multicore fiber may have two or more cores, and the core arrangement may be any desired arrangement.
  • the optical connector plug 500 of the illustrated embodiment is a single-core optical connector plug, and includes a single optical fiber 50, a ferrule 51, a plug frame 52, a photocurable resin 53 that forms a self-forming optical waveguide (waveguide), a sealant 54 (detachable end face), a knob 56 (housing), a flange 57, a spring 58, and a stop ring 59.
  • the sealant 54 is placed on the ferrule end face 55 to prevent the photocurable resin 53 filled in the ferrule 51 from leaking out.
  • the single-core optical connector plug 500 can be, for example, an SC connector, an MU connector, or other optical connector plug, but is not limited to these.
  • the optical connector plug 500 may have any shape that allows the single-core optical fiber 50 adhesively fixed to the ferrule 51 to be connected to an opposing optical fiber via an adapter (not shown).
  • an adapter not shown
  • the presence or absence of the flange 57, spring 58, stop ring 59, plug frame 52, and knob 56, as well as their shapes, are not limited to those shown in Figure 16.
  • the single-core optical connector of this embodiment is not limited to an SC connector or an MU connector, as long as it can connect a single-core optical fiber in a detachable manner.
  • a first manufacturing method for the optical connector plug of this embodiment will be described using Figure 16.
  • the end face of the reference optical fiber 70 inserted and fixed in the reference connector plug 700 is positioned opposite the detachable end face 54 of the ferrule 51, and light of a wavelength that increases the refractive index of the photocurable resin 53 and hardens it is irradiated from the core of the optical fiber 50 onto the photocurable resin 53.
  • Light of the same wavelength is also irradiated from the core of the reference optical fiber 70 onto the photocurable resin 53, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 53, thereby forming a waveguide 60.
  • the end face of the waveguide 60 on the detachable end face side is formed according to the position and size of the core end face of the reference optical fiber 70 on the detachable end face side of the reference connector plug 700.
  • the end face on the detachable end face of the waveguide 60 produced by the first production method is formed according to the core end face of the reference connector plug 700, and therefore the end face on the detachable end face of the waveguide 60 of an optical connector plug 500 produced using the same reference connector plug 700 has the same shape and size and is formed in the same position on the ferrule end face 55. Therefore, by connecting two optical connector plugs 500 produced by the first production method, it is possible to produce an optical connector that can connect optical fibers with low loss.
  • photocurable resin 13 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 11 and the ferrule end face 15 (detachable end face 14).
  • a reference connector plug 300 is connected to the optical connector plug 100.
  • the reference connector plug 300 comprises multiple optical fibers 30, a ferrule 31, an adhesive 32, and an alignment member 36.
  • Light sources 19, 39 with a wavelength that increases the refractive index of the photocurable resin 13 and hardens it are connected to the optical fibers 10 of the optical connector plug 100 and the optical fibers 30 of the reference connector plug 300, respectively, and light of that wavelength is irradiated onto the photocurable resin 13 from the cores 10a, 30a of the optical fibers 10, 30.
  • the end face on the detachable end face side of the waveguide 20 produced by the first production method is formed according to the core end face of the reference connector plug 300, so the end face on the detachable end face side of the waveguide 20 of an optical connector plug 100 produced using the same reference connector plug 300 has the same shape and size and is formed in the same position on the ferrule end face 15. Therefore, by connecting two optical connector plugs 100 produced by the first production method, it is possible to produce an optical connector that can connect optical fibers with low loss.
  • the light from light sources 19 and 39 may have the same wavelength as the communication light to be transmitted through the optical connector, and the light may be propagated in the same propagation mode as that used for communication to generate waveguide 20.
  • a cladding 21 may be formed around the waveguide 20.
  • the photocurable resin 13 is removed through an injection port 22 provided in the ferrule 11, and instead photocurable resin 13b is injected, which can form a cladding 21 with a lower refractive index than the waveguide 20 when irradiated with light.
  • a light source 37 with a wavelength that hardens the photocurable resin 13b is prepared, and the cladding 21 may be formed by irradiating light 37a of said wavelength from the light source 37.
  • An injection port 22 may be provided in advance in the ferrule 11 for removing the photocurable resin 13 and injecting the photocurable resin 13b.
  • a high-precision connector manufactured with minimal error from the design target core position may be used as the reference connector plug 700.
  • a suitable high-precision connector is not available, for example, as described in the second embodiment, multiple optical connectors may be manufactured with the core position aligned by image alignment or the like so that there is minimal error from the design target, and from these, those with minimal error may be selected using end face image inspection or the like to extract three sample groups A, B, and C.
  • the optical connectors in each sample group may be connected to select connector combinations that achieve the lowest connection loss, and the optical connector plugs of the selected optical connectors may be used as the reference connector plug 700.
  • a second manufacturing method for the optical connector plug 100 of the fourth embodiment will be described using Figure 10.
  • the photocurable resin 13 is irradiated with light of a wavelength that increases the refractive index and hardens the photocurable resin 13 from the core of the optical fiber 10, and light of the same wavelength is also irradiated onto the photocurable resin 13 from the detachable end face side through a photomask 42, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 13, thereby forming the waveguide 20.
  • the end face of the waveguide 20 on the detachable end face side is formed according to the position and size of the light-transmitting hole in the photomask 42.
  • Light with the wavelength is then irradiated from the core 10a of the optical fiber and the photomask 42, respectively, causing an increase in the refractive index and hardening of the irradiated portion of the photocurable resin 13, thereby creating a waveguide 20.
  • the light sources 19 and 38 may have the same wavelength as the communication light to be transmitted through the optical connector, and the light from the light sources 19 and 38 may be propagated in the same propagation mode as the propagation mode used for communication to generate the optical waveguide 20.
  • this embodiment provides an optical connector that can connect single-mode and multi-mode optical fibers with low loss, and also makes it possible to easily manufacture an optical connector plug for this optical connector.
  • optical connector plugs 100 in which waveguides are formed using the same reference connector or the same photomask a low-loss optical connector can be provided. Furthermore, according to this embodiment, an optical connector plug for an optical connector that does not require precise core alignment can be easily manufactured.

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

To provide an optical connector capable of connecting an optical fiber with low loss, and a method for manufacturing the optical connector plug. An optical connector (200) has a waveguide (20) formed using a photocurable resin (13). The waveguide (20) is connected to a core end surface of an optical fiber (10), one end of which is fixedly inserted in an optical connector plug (100), and can transmit an optical signal of a core of the optical fiber (10) to the other end. An end surface of the other end of the waveguide (20) is formed in accordance with a position and size of a core end surface of a reference optical fiber (70) on an attachment/detachment end surface side of a reference connector plug (300) for waveguide production.

Description

光コネクタ及び光コネクタプラグの製造方法Optical connector and method of manufacturing optical connector plug

 本開示は、光コネクタ及び光コネクタプラグの製造方法に関する。 This disclosure relates to a method for manufacturing an optical connector and an optical connector plug.

 情報ネットワークは、インターネットが普及し、年々伝送容量が拡大している。光ファイバにおける伝送容量を拡大する方法として、時分割多重伝送技術、波長分割多重伝送技術、空間分割多重伝送技術などがある。特に、空間分割多重伝送技術は、光ファイバ1心に複数のコアまたは複数のモードを配置することによって大容量化を実現する技術である。シングルモードの非結合型マルチコアファイバでは、ファインインファンアウトなどのインターフェースを使用することにより、従来の送受信装置をそのまま使用して伝送容量を拡大することが可能である。 With the spread of the Internet, the transmission capacity of information networks is expanding year by year. Methods for increasing transmission capacity in optical fiber include time division multiplexing, wavelength division multiplexing, and space division multiplexing. In particular, space division multiplexing is a technology that achieves high capacity by placing multiple cores or multiple modes in a single optical fiber. With single-mode uncoupled multicore fiber, by using an interface such as fine-in-fan-out, it is possible to increase transmission capacity without changing the configuration of conventional transceiver equipment.

 さらに、伝送容量を拡大する方法として、1つのコアに複数の伝搬モードを配置し、それぞれのモードで異なる信号を伝送することで大容量化するモード多重伝送技術がある。この技術では、ファインインファンアウトなどのインターフェースを使用することにより、各コアにおいてモード毎に異なる信号伝送路として使用して、伝送容量を拡大する。 Furthermore, one method of increasing transmission capacity is mode multiplexing transmission technology, which places multiple propagation modes in a single core and transmits different signals in each mode, thereby increasing capacity. With this technology, an interface such as fine-in-fan-out is used to use each mode in each core as a different signal transmission path, thereby increasing transmission capacity.

 空間分割多重伝送技術をデータセンタ、アクセスネットワークなどで利用するためには、空間分割多重伝送の伝送路となるマルチコアファイバの光ケーブルを敷設する必要がある。マルチコアファイバケーブル敷設の拡張性を保持するために、マルチコアファイバを接続可能な光コネクタが必要である。マルチコアファイバのコネクタ技術では、ファイバコアがファイバ外径に対して中心以外の位置に配置されるため、低接続損失を実現のために回転調心して実装する必要がある。低接続損失を実現のための技術として、非特許文献1、2が提案されている。 In order to use space division multiplexing transmission technology in data centers, access networks, etc., it is necessary to lay multicore fiber optical cables that serve as transmission paths for space division multiplexing transmission. To maintain the scalability of laying multicore fiber cables, optical connectors that can connect multicore fibers are required. With multicore fiber connector technology, the fiber cores are positioned off-center relative to the outer diameter of the fiber, so they must be mounted with rotational alignment to achieve low connection loss. Non-patent documents 1 and 2 have proposed technologies for achieving low connection loss.

森島 哲、齊藤侑季、島川 修、真鍋 賢、中西 哲也、佐野 知巳、林 哲也、“マルチコアファイバの接続技術,”信学総大、BCI-1-5、2021.Morishima, T., Saito, Y., Shimakawa, Osamu, Manabe, K., Nakanishi, T., Sano, T., Hayashi, T., "Multicore fiber connection technology," IEICE General University, BCI-1-5, 2021. 寺澤英孝、行川 毅、近藤圭祐、杉原興浩、“近赤外自己形成光導波路の作製とマルチチャネル光導波路への応用,”信学総大、C-13-2、2013.Hidetaka Terazawa, Takeshi Yukikawa, Keisuke Kondo, and Okihiro Sugihara, "Fabrication of near-infrared self-written optical waveguides and their application to multi-channel optical waveguides," IEICE General University, C-13-2, 2013.

 (1)コアの伝搬モードが一つのシングルモードについて
 非特許文献1の技術では、マルチコアファイバを接続する単心または多心のコネクタプラグを作製する際の回転ずれの抑制方法について記載されている。しかしながら、この技術では回転調心を含む精密な調心をする必要があり、従来のコネクタより高精度な部品や回転調心法を用いなければいけないという課題がある。
(1) Regarding single-mode connectors with one core propagation mode Non-Patent Document 1 describes a method for suppressing rotational misalignment when fabricating a single-core or multi-core connector plug for connecting multicore fibers. However, this technology requires precise alignment, including rotational alignment, and has the problem of requiring the use of parts and rotational alignment methods with higher precision than conventional connectors.

 非特許文献2の技術では、マルチコアファイバの特定の組み合わせにおいて自己形成導波路を用いて接続する技術が記載されている。しかしながら、光コネクタは、任意の組み合わせで接続可能であることが求められるため、標準化された設計目標位置にコアを配置する必要があるが、設計目標位置にコアを配置する方法については記載されていない。 Non-Patent Document 2 describes a technique for connecting specific combinations of multi-core fibers using self-forming waveguides. However, because optical connectors are required to be able to connect any combination, cores must be positioned in standardized design target positions, but the document does not describe a method for positioning cores in the design target positions.

 (2)コアの伝搬モードが複数のモード多重伝送について
 複数の伝搬モードを持つコア同士の接続においては、光接続点で光損失は生じずともモード変換が生じている場合がある。モード多重伝送では、モード毎に異なる信号が伝送されるため、モード変換が生じると信号同士が混信することとなり、信号劣化につながる。
(2) Mode multiplexing transmission with multiple core propagation modes When connecting cores with multiple propagation modes, mode conversion may occur at the optical connection point even if no optical loss occurs. In mode multiplexing transmission, different signals are transmitted in each mode, so if mode conversion occurs, the signals will interfere with each other, leading to signal degradation.

 非特許文献1の技術では、シングルモードコアの接続で平均0.07dBという接続性能が記載されている。例えば、これが2モードコアであり、基底モードどうしの接続損失が0.07dBでその損失分が基底モードから高次モードにモード変換するとした場合、接続点の前の基底モードの伝搬光と高次モードに変換した光の割合、すなわち消光比は-18dBとなる。例えば波長多重伝送などでは波長合分波デバイスなどでの消光比は-30dB以下が求められており、-18dBという消光比は多重伝送としては大きいと言える。以上のように、非特許文献1の技術ではモード変換に課題がある。 The technology in Non-Patent Document 1 discloses an average connection performance of 0.07 dB when connecting single-mode cores. For example, if this is a two-mode core, and the connection loss between the fundamental modes is 0.07 dB, and this loss is due to mode conversion from the fundamental mode to a higher-order mode, then the extinction ratio, i.e., the ratio of the light propagating in the fundamental mode before the connection point to the light converted to the higher-order mode, is -18 dB. For example, in wavelength multiplexing transmission, an extinction ratio of -30 dB or less is required in wavelength multiplexing/demultiplexing devices, and an extinction ratio of -18 dB can be said to be high for multiplexed transmission. As described above, the technology in Non-Patent Document 1 has issues with mode conversion.

 また、非特許文献2の技術では、光コネクタの設計目標位置にコアを配置する必要があるが、設計目標位置にコアを配置する方法については記載されていない。 Furthermore, the technology in Non-Patent Document 2 requires that cores be placed at the design target positions of the optical connector, but does not describe how to place the cores at the design target positions.

 本開示は上記事情に鑑みてなされたものであって、本開示の目的は、低損失で光ファイバを接続可能な光コネクタ、および、光コネクタプラグの製造方法を提供することにある。 This disclosure has been made in consideration of the above circumstances, and its purpose is to provide an optical connector that can connect optical fibers with low loss, and a method for manufacturing an optical connector plug.

 本開示の一態様は、光コネクタであって、光硬化性樹脂を用いて形成された導波路を有し、前記導波路は、一端が光コネクタプラグに挿入固定された光ファイバのコア端面と接続され、前記光ファイバのコアの光信号を他端へと伝送可能な導波路であって、前記他端の端面は、導波路作製用の基準コネクタプラグの着脱端面側の基準光ファイバのコア端面の位置および大きさに応じて形成された。 One aspect of the present disclosure is an optical connector having a waveguide formed using a photocurable resin, one end of the waveguide being connected to the core end face of an optical fiber inserted and fixed into an optical connector plug, and capable of transmitting an optical signal from the core of the optical fiber to the other end, the end face of the other end being formed according to the position and size of the core end face of a reference optical fiber on the detachable end face side of a reference connector plug used to fabricate the waveguide.

 本開示の一態様は、光コネクタであって、光硬化性樹脂を用いて形成された導波路を有し、前記導波路は、一端が光コネクタプラグに挿入固定された光ファイバのコア端面と接続され、光ファイバコアの光信号を他端へと伝送可能な導波路であって、前記導波路の他端の端面は、導波路作製用のフォトマスクの光透過穴の位置および大きさに応じて形成された。 One aspect of the present disclosure is an optical connector having a waveguide formed using a photocurable resin, one end of the waveguide being connected to the core end face of an optical fiber inserted and fixed in an optical connector plug, and capable of transmitting an optical signal from the optical fiber core to the other end, the end face of the other end of the waveguide being formed according to the position and size of a light-transmitting hole in a photomask used to fabricate the waveguide.

 本開示の一態様は、光コネクタに用いる光コネクタプラグの製造方法であって、前記光コネクタプラグは、光ファイバの接続端と光硬化性樹脂を保持可能なフェルールと、前記フェルール内に挿入固定された前記光ファイバの接続端と、前記光ファイバの接続端と当接するようにフェルール内に充填された光硬化性樹脂と、前記フェルールの着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材と、を有し、前記フェルールの着脱端面に、基準コネクタプラグに挿入固定された基準光ファイバの端面を対向して配置し、前記光ファイバのコアから前記光硬化性樹脂の屈折率上昇と硬化を生じる波長の光を前記光硬化性樹脂に照射するとともに、前記基準光ファイバのコアから前記波長の光を前記光硬化性樹脂に照射することで、前記光硬化性樹脂の光照射された部分に屈折率上昇と硬化を生じさせて導波路を形成し、前記導波路の着脱端面側の端面は、前記基準コネクタプラグの着脱端面側の前記基準光ファイバのコア端面の位置および大きさに応じて形成された。 One aspect of the present disclosure is a method for manufacturing an optical connector plug for use in an optical connector, the optical connector plug comprising: a ferrule capable of holding a connection end of an optical fiber and photocurable resin; the connection end of the optical fiber inserted and fixed within the ferrule; photocurable resin filled within the ferrule so as to abut against the connection end of the optical fiber; and a sealant forming a detachable end face of the ferrule and preventing the photocurable resin from leaking out; an end face of a reference optical fiber inserted and fixed in a reference connector plug is positioned opposite the detachable end face of the ferrule; the core of the optical fiber is irradiated with light of a wavelength that increases the refractive index of the photocurable resin and hardens it, and light of the same wavelength is irradiated from the core of the reference optical fiber onto the photocurable resin, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin, thereby forming a waveguide; the end face of the waveguide on the detachable end face side is formed according to the position and size of the core end face of the reference optical fiber on the detachable end face side of the reference connector plug.

 本開示の一態様は、光コネクタに用いる光コネクタプラグの製造方法であって、前記光コネクタプラグは、光ファイバの接続端と光硬化性樹脂を保持可能なフェルールと、前記フェルール内に挿入固定された前記光ファイバの接続端と、前記光ファイバの接続端と当接するようにフェルール内に充填された光硬化性樹脂と、前記フェルールの着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材と、を有し、前記光ファイバのコアから前記光硬化性樹脂の屈折率上昇と硬化を生じる波長の光を前記光硬化性樹脂に照射するとともに、前記着脱端面側から、フォトマスクを介して前記波長の光を前記光硬化性樹脂に照射することで、前記光硬化性樹脂の光照射された部分に屈折率上昇と硬化を生じさせて導波路を形成し、前記導波路の着脱端面側の端面は、前記フォトマスクの光透過穴の位置および大きさに応じて形成された。 One aspect of the present disclosure is a method for manufacturing an optical connector plug for use in an optical connector, the optical connector plug comprising: a ferrule capable of holding a connection end of an optical fiber and photocurable resin; the connection end of the optical fiber inserted and fixed within the ferrule; photocurable resin filled within the ferrule so as to abut against the connection end of the optical fiber; and a sealant forming a detachable end face of the ferrule and preventing the photocurable resin from leaking out; the method irradiates the photocurable resin with light of a wavelength that increases the refractive index of the photocurable resin and hardens it from the core of the optical fiber, and irradiates the photocurable resin with light of the same wavelength from the detachable end face side through a photomask, thereby increasing the refractive index of the irradiated portion of the photocurable resin and hardening it, thereby forming a waveguide; and the end face of the waveguide on the detachable end face side is formed according to the position and size of the light-transmitting hole in the photomask.

 本開示によれば、低損失で光ファイバを接続可能な光コネクタ、および、光コネクタプラグの製造方法を提供することができる。 This disclosure provides an optical connector capable of connecting optical fibers with low loss, and a method for manufacturing an optical connector plug.

図1は、光コネクタの光コネクタプラグの構造を示す図である。FIG. 1 is a diagram showing the structure of an optical connector plug of an optical connector. 図2は、光コネクタプラグの封止材の変形例を示す図である。FIG. 2 shows a modified example of the sealing material of the optical connector plug. 図3は、光コネクタプラグにおける複数の光ファイバ配置例を示す図である。FIG. 3 is a diagram showing an example of the arrangement of a plurality of optical fibers in an optical connector plug. 図4は、光コネクタプラグの配列部材の変形例を示す図である。FIG. 4 is a diagram showing a modified example of the optical connector plug arrangement member. 図5は、光コネクタの接続形態の一例を示す図である。FIG. 5 is a diagram showing an example of a connection configuration of an optical connector. 図6は、光コネクタの接続形態の他の例を示す図である。FIG. 6 is a diagram showing another example of the connection configuration of the optical connector. 図7は、光コネクタプラグの第1の作製方法を説明する図である。7A to 7C are diagrams illustrating a first method for producing an optical connector plug. 図8は、図7に示す光コネクタプラグの導波路を示す図である。FIG. 8 is a diagram showing a waveguide of the optical connector plug shown in FIG. 図9は、光コネクタプラグの第1の作製方法の変形例を示す図である。FIG. 9 is a diagram showing a modification of the first method for producing an optical connector plug. 図10は、光コネクタプラグの第2の作製方法を説明する図である。FIG. 10 is a diagram illustrating a second method for producing an optical connector plug. 図11は、マルチコアファイバを接続する光コネクタプラグの作製方法を説明する図である。FIG. 11 is a diagram illustrating a method for producing an optical connector plug for connecting a multi-core fiber. 図12は、図11に示す光コネクタプラグの導波路を示す図である。FIG. 12 is a diagram showing a waveguide of the optical connector plug shown in FIG. 図13は、単心光コネクタの光コネクタプラグ構造の一例を示す図である。FIG. 13 is a diagram showing an example of an optical connector plug structure of a single-fiber optical connector. 図14は、単心光コネクタの光コネクタプラグの封止材の変形例を示す図である。FIG. 14 is a diagram showing a modified example of the sealing material of the optical connector plug of the single-fiber optical connector. 図15は、単心光コネクタの接続形態の一例を示す図である。FIG. 15 is a diagram showing an example of a connection configuration of a single-fiber optical connector. 図16は、単心光コネクタの光コネクタプラグの第1の作製方法を説明する図である。FIG. 16 is a diagram illustrating a first method for producing an optical connector plug for a single-fiber optical connector. 図17は、図16に示す光コネクタプラグの導波路を示す図である。FIG. 17 is a diagram showing a waveguide of the optical connector plug shown in FIG. 図18は、単心光コネクタの光コネクタプラグの第2の作製方法を説明する図である。FIG. 18 is a diagram illustrating a second method for producing an optical connector plug for a single-fiber optical connector. 図19は、マルチコアファイバを接続する、単心光コネクタの光コネクタプラグの作製方法を説明する図である。FIG. 19 is a diagram illustrating a method for producing an optical connector plug of a single-core optical connector for connecting a multi-core fiber. 図20は、図19に示す光コネクタプラグの一部を拡大した図である。FIG. 20 is an enlarged view of a portion of the optical connector plug shown in FIG.

 次に、図面を参照して、いくつかの実施形態を詳細に説明する。説明において、同一のものには同一符号を付して重複説明を省略する。 Next, several embodiments will be described in detail with reference to the drawings. In the description, identical components will be assigned the same reference numerals and duplicate explanations will be omitted.

 第1の実施形態および第2の実施形態に、シングルモードの実施形態を記載し、第3の実施形態および第4の実施形態に、マルチモードの実施形態を記載する。 The first and second embodiments describe single-mode embodiments, and the third and fourth embodiments describe multi-mode embodiments.

 [第1実施形態]
 図1は、第1実施形態に係る光コネクタのコネクタプラグの構造例を示す図である。図1は、光コネクタプラグ100を、光ファイバ10の長手方向に平行な平面で切断した断面図(側面断面図)である。
[First embodiment]
Fig. 1 is a diagram showing an example of the structure of a connector plug of an optical connector according to a first embodiment. Fig. 1 is a cross-sectional view (side cross-sectional view) of an optical connector plug 100 taken along a plane parallel to the longitudinal direction of an optical fiber 10.

 本実施形態の光コネクタは、光コネクタプラグ100を含み、各光コネクタプラグ100は、光硬化性樹脂13を用いて形成された導波路を有し、前記導波路は、一端が当該光コネクタプラグ100に挿入固定された光ファイバ10のコア端面と接続され、前記光ファイバ10のコアの光信号を他端へと伝送可能な導波路である。導波路の他端の端面は、導波路作製用の基準コネクタプラグの着脱端面側の基準光ファイバのコア端面の位置および大きさに応じて形成されてもよい。また、前記導波路の他端の端面は、導波路作製用のフォトマスクの光透過穴の位置および大きさに応じて形成されてもよい。光コネクタプラグ100は、光ファイバ10の接続端と光硬化性樹脂13を保持可能なフェルール11と、フェルール11の着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材14と、を有してもよい。光硬化性樹脂13は、光ファイバ10の接続端と当接するようにフェルール11内に充填される。 The optical connector of this embodiment includes optical connector plugs 100, each of which has a waveguide formed using photocurable resin 13. One end of the waveguide is connected to the core end face of an optical fiber 10 inserted and fixed in the optical connector plug 100, and the optical signal from the core of the optical fiber 10 can be transmitted to the other end. The end face at the other end of the waveguide may be formed according to the position and size of the core end face of a reference optical fiber on the detachable end face side of a reference connector plug used for waveguide fabrication. The end face at the other end of the waveguide may also be formed according to the position and size of a light-transmitting hole in a photomask used for waveguide fabrication. The optical connector plug 100 may include a ferrule 11 capable of holding the connecting end of the optical fiber 10 and the photocurable resin 13, and a sealant 14 that forms the detachable end face of the ferrule 11 and prevents the photocurable resin from leaking out. The photocurable resin 13 is filled into the ferrule 11 so as to abut against the connecting end of the optical fiber 10.

 図示する光コネクタプラグ100は、フェルール11内に挿入固定された複数の光ファイバ10の接続端と、フェルール11と、接着剤12と、自己形成光導波路(以下、「導波路」)を形成する光硬化性樹脂13と、封止材14と、配列部材16とを備える。なお、フェルール11の端面15は、斜めに形成されていてもよい。 The optical connector plug 100 shown in the figure comprises the connection ends of multiple optical fibers 10 inserted and fixed into the ferrule 11, the ferrule 11, adhesive 12, a photocurable resin 13 that forms a self-forming optical waveguide (hereinafter referred to as "waveguide"), a sealing material 14, and an alignment member 16. The end face 15 of the ferrule 11 may be formed at an angle.

 光コネクタプラグ100は、多心光コネクタプラグであって、例えば、F12形多心光ファイバコネクタ(MTコネクタ)の光コネクタプラグを使用してもよい。また、光コネクタプラグ100には、F13形多心光ファイバコネクタ(MPOコネクタ)の光コネクタプラグを使用してもよい。この場合には、MTフェルールの端面は、斜めに形成されてもよい。MTフェルールは、MPOプラグハウジングに内蔵され、MPOプラグはMPOアダプタ内で接続される。多心光コネクタは、複数の光ファイバを一括で着脱可能な形態で接続されればよく、MTコネクタ及びMPOコネクタには限定されない。 The optical connector plug 100 is a multi-core optical connector plug, and may be, for example, an F12-type multi-core optical fiber connector (MT connector). The optical connector plug 100 may also be an F13-type multi-core optical fiber connector (MPO connector). In this case, the end face of the MT ferrule may be formed at an angle. The MT ferrule is housed in an MPO plug housing, and the MPO plug is connected within an MPO adapter. The multi-core optical connector is not limited to MT connectors or MPO connectors, as long as it can connect multiple optical fibers in a detachable manner.

 光硬化性樹脂13は、フェルール11内部で光ファイバ10と接続される。光硬化性樹脂13には、光信号伝送可能な導波路が形成される。フェルール11には、光硬化性樹脂13が充填される。 The photocurable resin 13 is connected to the optical fiber 10 inside the ferrule 11. A waveguide capable of transmitting optical signals is formed in the photocurable resin 13. The ferrule 11 is filled with the photocurable resin 13.

 封止材14は、フェルール端面15に設けられ、光硬化性樹脂13がフェルール11から流出することを防止する。封止材14により、光硬化性樹脂13は、フェルール11の内部に保持される。封止材14は、フェルール11の着脱端面を形成する。なお、封止材14は、着脱端面ともいう。 The sealing material 14 is provided on the ferrule end surface 15 and prevents the photocurable resin 13 from leaking out of the ferrule 11. The sealing material 14 holds the photocurable resin 13 inside the ferrule 11. The sealing material 14 forms the detachable end surface of the ferrule 11. The sealing material 14 is also referred to as the detachable end surface.

 封止材14は、図1に示すように、フェルール端面15から突き出る形状に配置してもよい。あるいは、図2に示すように、フェルール端面15の一部を凹形状として、フェルール端面15に封止材14を埋め込んでもよい。封止材14は、フェルール端面15から光硬化性樹脂13が流出することを防ぐことが可能であれば、どのような形状で、どのように配置されていてもよい。 As shown in Figure 1, the sealing material 14 may be arranged so that it protrudes from the ferrule end face 15. Alternatively, as shown in Figure 2, a portion of the ferrule end face 15 may be recessed, and the sealing material 14 may be embedded in the ferrule end face 15. The sealing material 14 may be arranged in any shape and in any manner, as long as it is possible to prevent the photocurable resin 13 from leaking out from the ferrule end face 15.

 封止材14には、例えばガラス材、樹脂材などを用いることができる。封止材14は、光硬化性樹脂13に形成された導波路を伝搬する光を出射、または、入射した光を導波路に伝搬可能な形状であればよい。封止材14にガラス材を用いる場合、光硬化性樹脂53に形成した導波路と光信号伝送可能な導波路を、レーザ描画によって封止材14に形成してもよい。 For example, glass or resin can be used for the sealing material 14. The sealing material 14 may have any shape that allows it to emit light propagating through the waveguide formed in the photocurable resin 13, or to propagate incident light through the waveguide. When using glass for the sealing material 14, the waveguide formed in the photocurable resin 53 and the waveguide capable of transmitting optical signals may be formed in the sealing material 14 by laser drawing.

 図3は、光コネクタプラグ100に配置された複数の光ファイバ10を説明するための図である。図3は、光コネクタプラグ100を、光ファイバ10の長手方向に垂直な平面で切断した断面図である。図示する断面図は、接着剤12および配列部材16が存在する部位の断面図である。 Figure 3 is a diagram illustrating multiple optical fibers 10 arranged in an optical connector plug 100. Figure 3 is a cross-sectional view of the optical connector plug 100 cut along a plane perpendicular to the longitudinal direction of the optical fibers 10. The cross-sectional view shown is a cross-sectional view of the area where the adhesive 12 and the alignment member 16 are present.

 複数の光ファイバ10は、フェルール端面15に向かって配列部材16により等間隔に配置され、接着剤12によってフェルール11に接着固定される。接着剤12は、フェルール11上部に設けられた孔(不図示)より注入される。 Multiple optical fibers 10 are arranged at equal intervals by an alignment member 16 toward the ferrule end face 15, and are fixed to the ferrule 11 with adhesive 12. The adhesive 12 is injected through a hole (not shown) provided in the top of the ferrule 11.

 配列部材16には、光ファイバ10を等間隔に配置するために、例えば、V溝、半円形状の溝、円形の孔などが形成される。配列部材16に形成される形状は、光ファイバ10を等間隔に配置可能な形状であれば、どのような形状でもよい。図3に示す例では、8心の光ファイバ10を配置しているが、光ファイバ10は2心以上あればよく、8心に限らない。 In order to arrange the optical fibers 10 at equal intervals, the arrangement member 16 is formed with, for example, V-grooves, semicircular grooves, circular holes, etc. The shape of the arrangement member 16 may be any shape that allows the optical fibers 10 to be arranged at equal intervals. In the example shown in Figure 3, eight optical fibers 10 are arranged, but the number of optical fibers 10 is not limited to eight, as long as it is two or more.

 図4に示すように、配列部材16は、光ファイバ10が挿入しやすいようにテーパ形状であってもよい。光ファイバ10には、例えば、シングルコアファイバ、マルチコアファイバ、偏波保持ファイバなどが用いられ、任意の波長の光を伝送する光ファイバであればよい。 As shown in Figure 4, the alignment member 16 may have a tapered shape to make it easier to insert the optical fiber 10. The optical fiber 10 may be, for example, a single-core fiber, a multi-core fiber, or a polarization-maintaining fiber, as long as it is an optical fiber that transmits light of any wavelength.

 図5は、本実施形態の光コネクタ200の接続形態の一例を示す図である。ここでは、フェルール端面15に配置したガイド孔(不図示)にガイドピン(図示せず)を挿入することで軸合わせを行い、ばね(図示せず)により対向する光コネクタプラグ100に押圧力を加えて、封止材14(着脱端面)同士を密着させて光コネクタ200を構成する。これにより、対向する光コネクタプラグ100に挿入固定された光ファイバ10を、低損失に接続することができる。 Figure 5 shows an example of the connection configuration of the optical connector 200 of this embodiment. Here, axial alignment is achieved by inserting a guide pin (not shown) into a guide hole (not shown) located on the ferrule end face 15, and a spring (not shown) applies pressure to the opposing optical connector plugs 100, causing the sealing materials 14 (detachable end faces) to tightly adhere to each other, thereby forming the optical connector 200. This allows the optical fiber 10 inserted and fixed in the opposing optical connector plugs 100 to be connected with low loss.

 反射減衰量を低減するため、図6に示すように、対向する封止材14の間に屈折率整合材18を塗布してもよい。屈折率整合材18は、ジェル状または固形状態でもよい。固形状態の屈折率整合材18を用いる場合、光コネクタ着脱の際に屈折率整合材18の除去と再塗布を必要とせず、光コネクタ着脱作業における稼働を削減できる。 To reduce return loss, as shown in Figure 6, a refractive index matching material 18 may be applied between the opposing sealing materials 14. The refractive index matching material 18 may be in a gel or solid state. If a solid refractive index matching material 18 is used, there is no need to remove and reapply the refractive index matching material 18 when connecting or disconnecting the optical connector, which reduces the amount of work required to connect or disconnect the optical connector.

 図7は、本実施形態の光コネクタ200に用いる光コネクタプラグ100の第1の作製方法を説明する図である。第1の作製方法では、フェルール11の着脱端面14に、基準コネクタプラグ300に挿入固定された基準光ファイバ30の端面を対向して配置し、光ファイバ10のコアから光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光を光硬化性樹脂13に照射するとともに、基準光ファイバ30のコアから前記波長の光を光硬化性樹脂13に照射することで、光硬化性樹脂13の光照射された部分に屈折率上昇と硬化を生じさせて導波路20を形成する。導波路20の着脱端面側の端面は、基準コネクタプラグ300の着脱端面側の基準光ファイバ30のコア端面の位置および大きさに応じて形成される。 Figure 7 is a diagram illustrating a first manufacturing method for the optical connector plug 100 used in the optical connector 200 of this embodiment. In the first manufacturing method, the end face of the reference optical fiber 30 inserted and fixed in the reference connector plug 300 is positioned opposite the detachable end face 14 of the ferrule 11, and light of a wavelength that increases the refractive index of the photocurable resin 13 and hardens it is irradiated from the core of the optical fiber 10 onto the photocurable resin 13, while light of the same wavelength is irradiated from the core of the reference optical fiber 30 onto the photocurable resin 13, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 13, thereby forming the waveguide 20. The end face of the waveguide 20 on the detachable end face side is formed according to the position and size of the core end face of the reference optical fiber 30 on the detachable end face side of the reference connector plug 300.

 具体的には、フェルール11に配置された光ファイバの端面と、フェルール端面15(着脱端面14)とを繋ぐ中空部に、光硬化性樹脂13を充填する。そして、光コネクタ200の光コネクタプラグ100に、導波路作製用の基準コネクタプラグ300を接続する。基準コネクタプラグ300は、複数の光ファイバ30(基準光ファイバ)と、フェルール31と、接着剤32と、配列部材36とを備える。光ファイバ30は、コア30aとクラッド30bとを有する。 Specifically, a photocurable resin 13 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 11 and the ferrule end face 15 (detachable end face 14). Then, a reference connector plug 300 for fabricating a waveguide is connected to the optical connector plug 100 of the optical connector 200. The reference connector plug 300 includes multiple optical fibers 30 (reference optical fibers), a ferrule 31, an adhesive 32, and an alignment member 36. The optical fiber 30 has a core 30a and a cladding 30b.

 そして、光コネクタプラグ100の光ファイバ10と、基準コネクタプラグ300の光ファイバ30に、光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光源19、39をそれぞれ接続する。そして、各光ファイバ10、30のコア10a、30aから前記波長の光を照射する。これにより、光硬化性樹脂13の光照射された部分の屈折率上昇と硬化が生じて、図8に示すような導波路20が生成される。図8は、図1に示す光コネクタプラグ100の断面図の一部を拡大した図である。すなわち、導波路20の着脱端面側の端面は、基準コネクタプラグ300の着脱端面側の光ファイバ30のコア端面の位置および大きさに応じて形成される。導波路20を生成後、基準コネクタプラグ300と、光源19とを取り外すことにより、光コネクタプラグ100が作製される。 Then, light sources 19 and 39 with wavelengths that increase the refractive index and harden the photocurable resin 13 are connected to the optical fiber 10 of the optical connector plug 100 and the optical fiber 30 of the reference connector plug 300, respectively. Light of this wavelength is then irradiated from the cores 10a and 30a of each optical fiber 10 and 30. This increases the refractive index and hardens the irradiated portion of the photocurable resin 13, resulting in the creation of a waveguide 20 as shown in Figure 8. Figure 8 is an enlarged view of a portion of the cross-sectional view of the optical connector plug 100 shown in Figure 1. That is, the end face of the waveguide 20 on the detachable end face side is formed according to the position and size of the core end face of the optical fiber 30 on the detachable end face side of the reference connector plug 300. After the waveguide 20 is created, the reference connector plug 300 and the light source 19 are removed, and the optical connector plug 100 is completed.

 このように第1の作製方法で作製された導波路20の着脱端面側の端面は、基準コネクタプラグ300のコア端面に応じて形成されるため、同じ基準コネクタプラグ300を用いて作製した光コネクタプラグ100の導波路20の着脱端面側の端面は、同様の形状・大きさで、フェルール端面15の同様の位置に形成される。したがって、第1の作製方法で作製された2つの光コネクタプラグ100を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。 In this way, the end face on the detachable end face side of the waveguide 20 produced by the first production method is formed according to the core end face of the reference connector plug 300, so the end face on the detachable end face side of the waveguide 20 of an optical connector plug 100 produced using the same reference connector plug 300 has the same shape and size and is formed in the same position on the ferrule end face 15. Therefore, by connecting two optical connector plugs 100 produced by the first production method, it is possible to produce an optical connector that can connect optical fibers with low loss.

 図9に示すように、導波路20の周囲にクラッド21を形成してもよい。導波路20を形成後に、導波路20が形成されない部分の光硬化性樹脂13を取り除き、導波路20よりも屈折率の低いクラッドを形成可能な他の光硬化性樹脂13bをフェルール11に充填し、フェルール端面15側から、他の光硬化性樹脂13bの硬化を生じさせる波長の光を照射することで、他の光硬化性樹脂13bに硬化を生じさせて、導波路20の周囲にクラッド21を形成してもよい。 As shown in Figure 9, a cladding 21 may be formed around the waveguide 20. After forming the waveguide 20, the photocurable resin 13 may be removed from the portion where the waveguide 20 is not formed, and the ferrule 11 may be filled with another photocurable resin 13b capable of forming a cladding with a lower refractive index than the waveguide 20. Light of a wavelength that hardens the other photocurable resin 13b may then be irradiated from the ferrule end face 15 side to harden the other photocurable resin 13b, thereby forming a cladding 21 around the waveguide 20.

 具体的には、フェルール11に設けられた注入口22から光硬化性樹脂13を取り除き、代わりに光照射によって導波路20よりも屈折率の低いクラッド21を形成可能な光硬化性樹脂13bを注入する。そして、光硬化性樹脂13bの硬化を生じる波長の光源37を、フェルール端面15の近傍に配置し、光源37から前記波長の光37aを光硬化性樹脂13bに照射することでクラッド21を形成してもよい。光硬化性樹脂13の除去と、光硬化性樹脂13bの注入のために、フェルール11にあらかじめ注入口22を設けてもよい。 Specifically, the photocurable resin 13 is removed from the injection port 22 provided in the ferrule 11, and instead photocurable resin 13b is injected, which can form a cladding 21 with a lower refractive index than the waveguide 20 when irradiated with light. Then, a light source 37 with a wavelength that causes the photocurable resin 13b to harden can be positioned near the ferrule end face 15, and the cladding 21 can be formed by irradiating the photocurable resin 13b with light 37a of that wavelength from the light source 37. An injection port 22 can be provided in advance in the ferrule 11 for removing the photocurable resin 13 and injecting the photocurable resin 13b.

 基準コネクタプラグ300には、光コネクタの設計目標からの誤差が少なく製造された高精度な光コネクタに用いられる光コネクタプラグを用いてもよい。シングルコアファイバコネクタの場合、IEC(国際電気標準会議)で規定される基準コネクタを用いてもよい。 The reference connector plug 300 may be an optical connector plug used in high-precision optical connectors manufactured with minimal deviation from the optical connector's design target. In the case of single-core fiber connectors, a reference connector specified by the IEC (International Electrotechnical Commission) may be used.

 基準コネクタのないマルチコアファイバコネクタの場合、例えば、以下のような手順で接続損失が低い光コネクタを選別してもよい。画像調心などによりコア位置が設計目標から少ない誤差となるように調心した複数の光コネクタを作製し、その中から誤差が小さいものを選別してサンプル群Aを抽出する。また、コア位置を調心した別の複数の光コネクタを作製し、その中から誤差が小さいものを選別してサンプル群Aとは異なるサンプル群Bを抽出する。また、コア位置を調心した別の複数の光コネクタを作製し、その中から誤差が小さいものを選別して、サンプル群A、Bとは異なるサンプル群Cを抽出する。そして、各サンプル群A,B,Cの光コネクタ同士を接続してより低い接続損失を実現する光コネクタを選別する。このようにして選別した光コネクタの光コネクタプラグを、基準コネクタプラグ300として用いてもよい。 In the case of a multicore fiber connector without a reference connector, an optical connector with low connection loss may be selected, for example, using the following procedure. A plurality of optical connectors are fabricated in which the core positions are aligned using image alignment or other methods to minimize error from the design target, and those with the smallest error are selected from these to extract sample group A. Another plurality of optical connectors are fabricated in which the core positions are aligned, and those with the smallest error are selected from these to extract sample group B, which is different from sample group A. A plurality of optical connectors are fabricated in which the core positions are aligned, and those with the smallest error are selected from these to extract sample group C, which is different from sample groups A and B. The optical connectors of sample groups A, B, and C are then connected together to select an optical connector that achieves even lower connection loss. The optical connector plug of the optical connector selected in this manner may be used as the reference connector plug 300.

 図10は、第1実施形態における光コネクタプラグ100の第2の作製方法を説明する図である。第2の作製方法では、光ファイバ10のコアから光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光を光硬化性樹脂13に照射するとともに、着脱端面側からフォトマスク42を介して前記波長の光を光硬化性樹脂13に照射することで、光硬化性樹脂13の光照射された部分に屈折率上昇と硬化を生じさせて導波路20を形成する。導波路20の着脱端面側の端面は、フォトマスク42の光透過穴の位置および大きさに応じて形成される。 Figure 10 is a diagram illustrating a second manufacturing method for the optical connector plug 100 of the first embodiment. In the second manufacturing method, light of a wavelength that increases the refractive index of the photocurable resin 13 and hardens it is irradiated onto the photocurable resin 13 from the core of the optical fiber 10, and light of the same wavelength is irradiated onto the photocurable resin 13 from the detachable end face side through a photomask 42, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 13, thereby forming the waveguide 20. The end face of the waveguide 20 on the detachable end face side is formed according to the position and size of the light-transmitting hole in the photomask 42.

 具体的には、第2の作製方法では、基準コネクタプラグ300を使用する代わりに、フォトマスク42と光源38とよるフォトリソグラフィ技術を使用する。フェルール11に配置された光ファイバの端面と、フェルール端面15(着脱端面14)とを繋ぐ中空部に、光硬化性樹脂13を充填する。そして、光コネクタプラグ100のフェルール端面15近傍に、フォトマスク42と、光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光源38とを配置する。また、光コネクタプラグ100の光ファイバ10に、光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光源19を接続する。 Specifically, in the second manufacturing method, instead of using the reference connector plug 300, photolithography technology using a photomask 42 and light source 38 is used. Photocurable resin 13 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 11 and the ferrule end face 15 (detachable end face 14). Then, a photomask 42 and a light source 38 with a wavelength that increases the refractive index of the photocurable resin 13 and hardens it are placed near the ferrule end face 15 of the optical connector plug 100. In addition, a light source 19 with a wavelength that increases the refractive index of the photocurable resin 13 and hardens it is connected to the optical fiber 10 of the optical connector plug 100.

 光ファイバ10のコア10aとフォトマスク42から、それぞれ光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光を照射することにより、光硬化性樹脂13の光照射された部分の屈折率上昇と硬化が生じて、導波路20が生成される。 By irradiating the photocurable resin 13 with light of a wavelength that increases the refractive index and hardens it from the core 10a of the optical fiber 10 and the photomask 42, the refractive index of the irradiated portion of the photocurable resin 13 increases and hardens, creating the waveguide 20.

 フォトマスク42には、光コネクタのコア設計位置に相当する場所に、コアサイズに相当する光透過穴が設けられている。フォトマスク42は、光透過穴が光を透過する構造であって、それ以外の部位が光を遮断する構造であればよい。フォトマスク42には、例えば金属板に穴を空けた構造、ガラス板の表面に金属を蒸着した構造などを使用することが可能である。導波路20の着脱端面14側の端面は、フォトマスク42の光透過穴の位置および大きさに応じて形成される。導波路20を生成後、フォトマスク42と、光源19、38とを取り外すことにより、光コネクタプラグ100が作製される。 The photomask 42 has light-transmitting holes corresponding to the core size at locations corresponding to the core design positions of the optical connector. The photomask 42 has a structure in which the light-transmitting holes allow light to pass through, while the remaining areas block light. The photomask 42 can be made, for example, of a metal plate with holes drilled, or of a glass plate with metal vapor-deposited on its surface. The end face of the waveguide 20 on the detachable end face 14 side is formed according to the position and size of the light-transmitting holes in the photomask 42. After the waveguide 20 is created, the photomask 42 and light sources 19 and 38 are removed to produce the optical connector plug 100.

 このように第2の作製方法で作製された導波路20の着脱端面側の端面は、フォトマスク42の光透過穴に応じて形成されるため、同じフォトマスク42を用いて作製した光コネクタプラグ100の導波路20の着脱端面側の端面は、同様の形状・大きさで、フェルール端面15の同様の位置に形成される。したがって、第2の作製方法で作製された2つの光コネクタプラグ100を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。なお、第2の作製方法においても、第1の作製方法と同様にクラッド21を形成してもよい。 In this way, the end face on the detachable end face of the waveguide 20 produced by the second production method is formed according to the light-transmitting holes of the photomask 42, so the end face on the detachable end face of the waveguide 20 of an optical connector plug 100 produced using the same photomask 42 will have the same shape and size and be formed in the same position on the ferrule end face 15. Therefore, by connecting two optical connector plugs 100 produced by the second production method, an optical connector capable of connecting optical fibers with low loss can be produced. Note that the cladding 21 may also be formed in the second production method in the same way as in the first production method.

 本実施形態では、基準コネクタプラグ300またはフォトリソグラフィ技術を使用して、導波路20を形成したが、導波路20を作製する際に、光コネクタプラグ100のコア位置が設計目標から少ない誤差となるように作製することが可能であればこれらの方法に限らない。 In this embodiment, the waveguide 20 was formed using the reference connector plug 300 or photolithography technology, but these methods are not limiting as long as the waveguide 20 can be fabricated in such a way that the core position of the optical connector plug 100 has minimal error from the design target.

 図11は、マルチコアファイバを接続する光コネクタプラグ100を作製する方法を説明する図である。ここでは、一例として前述の第1の作製方法を用いて光コネクタプラグ100を作成する方法を説明する。光コネクタプラグ100に、基準コネクタプラグ300を接続する。光コネクタプラグ100の光ファイバ10と、基準コネクタプラグ300の光ファイバ30は、それぞれファンアウト41を介してシングルコアファイバ40に接続される。各シングルコアファイバ40に、光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光源19、39を接続し、光ファイバ10、30のコア10a、30aから前記波長の光を照射する。 Figure 11 is a diagram illustrating a method for fabricating an optical connector plug 100 for connecting a multicore fiber. Here, a method for fabricating the optical connector plug 100 using the first fabrication method described above will be described as an example. A reference connector plug 300 is connected to the optical connector plug 100. The optical fiber 10 of the optical connector plug 100 and the optical fiber 30 of the reference connector plug 300 are each connected to a single-core fiber 40 via a fan-out 41. Light sources 19, 39 with a wavelength that increases the refractive index and hardens the photo-curable resin 13 are connected to each single-core fiber 40, and light of that wavelength is irradiated from the cores 10a, 30a of the optical fibers 10, 30.

 これにより、光照射された部分の光硬化性樹脂13に屈折率上昇と硬化が生じて、図12に示すように複数の導波路20が形成される。導波路20を生成後、基準コネクタプラグ300と、ファンアウト41とを取り外すことにより、光コネクタプラグ100が作製される。同じ基準コネクタプラグ300を用いて作製した、2つの光コネクタプラグ100を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。図11及び図12では、4つのコアを有するマルチコアファイバの例を示したが、マルチコアファイバのコア数は2個以上であればよく、そのコア配置も任意のコア配置でよい。 This causes the refractive index of the photocurable resin 13 to increase and harden in the irradiated areas, forming multiple waveguides 20 as shown in Figure 12. After the waveguides 20 are created, the optical connector plug 100 is produced by removing the reference connector plug 300 and the fan-out 41. By connecting two optical connector plugs 100 made using the same reference connector plug 300, an optical connector capable of connecting optical fibers with low loss can be produced. Figures 11 and 12 show an example of a multicore fiber with four cores, but the multicore fiber may have two or more cores, and the core arrangement may be any desired arrangement.

 [第2実施形態]
 図13は、第2実施形態に係る光コネクタのコネクタプラグ構造の一例を示す図である。図13は、光コネクタプラグ500を、光ファイバ50の長手方向に平行な平面で切断した断面図(側面断面図)である。
Second Embodiment
Fig. 13 is a diagram showing an example of a connector plug structure of an optical connector according to the second embodiment. Fig. 13 is a cross-sectional view (side cross-sectional view) of an optical connector plug 500 taken along a plane parallel to the longitudinal direction of the optical fiber 50.

 本実施形態の光コネクタは、光コネクタプラグ500を含み、各光コネクタプラグ500は、光硬化性樹脂53を用いて形成された導波路を有し、前記導波路は、一端が当該光コネクタプラグ500に挿入固定された光ファイバ50のコア端面と接続され、前記光ファイバ50のコアの光信号を他端へと伝送可能な導波路である。導波路の他端の端面は、導波路作製用の基準コネクタプラグの着脱端面側の基準光ファイバのコア端面の位置および大きさに応じて形成されてもよい。また、前記導波路の他端の端面は、導波路作製用のフォトマスクの光透過穴の位置および大きさに応じて形成されてもよい。光コネクタプラグ500は、光ファイバ50の接続端と光硬化性樹脂53を保持可能なフェルール51と、フェルール51の着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材54と、を有してもよい。光硬化性樹脂53は、光ファイバ50の接続端と当接するようにフェルール51内に充填される。 The optical connector of this embodiment includes optical connector plugs 500, each of which has a waveguide formed using photocurable resin 53. One end of the waveguide is connected to the core end face of an optical fiber 50 inserted and fixed in the optical connector plug 500, and the optical signal from the core of the optical fiber 50 can be transmitted to the other end. The end face at the other end of the waveguide may be formed according to the position and size of the core end face of a reference optical fiber on the detachable end face side of a reference connector plug used for waveguide fabrication. The end face at the other end of the waveguide may also be formed according to the position and size of a light-transmitting hole in a photomask used for waveguide fabrication. The optical connector plug 500 may include a ferrule 51 capable of holding the connecting end of the optical fiber 50 and the photocurable resin 53, and a sealant 54 that forms the detachable end face of the ferrule 51 and prevents the photocurable resin from leaking out. The photocurable resin 53 is filled into the ferrule 51 so as to abut against the connecting end of the optical fiber 50.

 図示する光コネクタプラグ500は、単心光コネクタプラグであり、フェルール51内に挿入固定された一心の光ファイバ50の接続端と、フェルール51と、プラグフレーム52と、自己形成光導波路(導波路)を形成する光硬化性樹脂53と、封止材54と、つまみ56と、フランジ57と、スプリング58と、ストップリング59と、を有する。封止材54は、フェルール51に充填された光硬化性樹脂53が流出しないように、フェルール端面55に配置される。 The optical connector plug 500 shown is a single-core optical connector plug, and includes the connection end of a single optical fiber 50 inserted and fixed into the ferrule 51, the ferrule 51, a plug frame 52, a photocurable resin 53 that forms a self-forming optical waveguide (waveguide), a sealant 54, a tab 56, a flange 57, a spring 58, and a stop ring 59. The sealant 54 is placed on the ferrule end face 55 to prevent the photocurable resin 53 filled in the ferrule 51 from leaking out.

 単心用の光コネクタプラグ500には、F04形光ファイバコネクタ(SCコネクタ)の光コネクタプラグを使用してもよい。また、光コネクタプラグ500には、SCコネクタに代えて、F14形光ファイバコネクタ(MUコネクタ)の光コネクタプラグを使用してもよい。 The single-core optical connector plug 500 may be an F04 type optical fiber connector (SC connector). Also, instead of an SC connector, the optical connector plug 500 may be an F14 type optical fiber connector (MU connector).

 光コネクタプラグ500は、フェルール51に接着固定した一心の光ファイバ50が、アダプタ(不図示)を介して対向する光ファイバと接続可能な形状であればよい。すなわち、フランジ57、スプリング58、ストップリング59、プラグフレーム52及びつまみ56の有無、また、これらの形状は、図13に限定されない。本実施形態の単心光コネクタは、一心の光ファイバを着脱可能な形態で接続できればよく、SCコネクタ及びMUコネクタに限定されない。 The optical connector plug 500 may have any shape that allows the single-core optical fiber 50 adhesively fixed to the ferrule 51 to be connected to an opposing optical fiber via an adapter (not shown). In other words, the presence or absence of the flange 57, spring 58, stop ring 59, plug frame 52, and knob 56, as well as their shapes, are not limited to those shown in Figure 13. The single-core optical connector of this embodiment is not limited to an SC connector or an MU connector, as long as it can connect a single-core optical fiber in a detachable manner.

 光硬化性樹脂53は、フェルール51内部で光ファイバ50と接続され、光信号伝送可能な自己形成光導波路を形成するための樹脂である。光硬化性樹脂53は、封止材54によってフェルール端面55からの流出が防止され、フェルール51内部に保持される。 The photocurable resin 53 is connected to the optical fiber 50 inside the ferrule 51, and is used to form a self-forming optical waveguide capable of transmitting optical signals. The photocurable resin 53 is prevented from flowing out of the ferrule end face 55 by the sealing material 54, and is held inside the ferrule 51.

 封止材54は、図13に示すようにフェルール端面55から突き出る形状で配置されてもよく、あるいは、図14に示すようにフェルール端面55を凹形状としてフェルール端面55に埋め込まれた形状で配置してもよい。封止材54は、フェルール端面55から光硬化性樹脂53が流出することを防止可能であれば、どのような形状および配置であってもよい。封止材54には、例えばガラス材、樹脂材などを用いることが可能である。封止材54は、光硬化性樹脂53に形成した導波路を伝搬する光を出射、または、入射した光を導波路に伝搬可能な形状であればよい。封止材54にガラス材を用いる場合、光硬化性樹脂53に形成した導波路と光信号伝送可能な導波路を、レーザ描画によって封止材14に形成してもよい。 The sealing material 54 may be arranged so as to protrude from the ferrule end face 55 as shown in FIG. 13, or may be arranged so as to be embedded in the ferrule end face 55 by making the ferrule end face 55 concave as shown in FIG. 14. The sealing material 54 may be of any shape and arrangement as long as it can prevent the photocurable resin 53 from leaking out from the ferrule end face 55. For example, glass or resin may be used for the sealing material 54. The sealing material 54 may have any shape as long as it can emit light propagating through the waveguide formed in the photocurable resin 53 or propagate incident light into the waveguide. When glass is used for the sealing material 54, the waveguide formed in the photocurable resin 53 and the waveguide capable of transmitting optical signals may be formed in the sealing material 54 by laser drawing.

 一心の光ファイバ50には、例えば、シングルコアファイバ、マルチコアファイバ、偏波保持ファイバなどが用いられ、任意の波長の光を伝送する光ファイバであればよい。 The single-core optical fiber 50 may be, for example, a single-core fiber, a multi-core fiber, or a polarization-maintaining fiber, as long as it is an optical fiber capable of transmitting light of any wavelength.

 図15は、第2実施形態に係る光コネクタの接続形態の一例を示す図である。対向する2つのフェルール51を、アダプタ(図示せず)に取り付けたスリーブ63に挿入することで軸合わせを行う。そして、ばね58により光ファイバ50及びフェルール端面55に押圧力を加えて、封止材54同士が密着する形態で光コネクタ600を構成し、光ファイバ50を接続する。 Figure 15 shows an example of a connection configuration for an optical connector according to the second embodiment. Axial alignment is achieved by inserting two opposing ferrules 51 into a sleeve 63 attached to an adapter (not shown). Then, a pressing force is applied to the optical fiber 50 and the ferrule end face 55 by a spring 58, forming an optical connector 600 in a configuration in which the sealing materials 54 are in close contact with each other, and connecting the optical fiber 50.

 反射減衰量を低減するため、封止材54の間に屈折率整合材(不図示)を塗布してもよい。屈折率整合材は、ジェル状または固形状態でもよい。固形状態の屈折率整合材を用いる場合、光コネクタ着脱の際に整合材の除去と再塗布を必要とせず、光コネクタ着脱作業における稼働を削減できる。 To reduce return loss, a refractive index matching material (not shown) may be applied between the sealing materials 54. The refractive index matching material may be in gel or solid form. If a solid refractive index matching material is used, there is no need to remove and reapply the matching material when connecting or disconnecting the optical connector, which reduces the amount of work required to connect or disconnect the optical connector.

 図16は、第2実施形態の光コネクタプラグ500の第1の作製方法を説明する図である。第1の作製方法では、フェルール51の着脱端面54に、基準コネクタプラグ700に挿入固定された基準光ファイバ70の端面を対向して配置し、光ファイバ50のコアから光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光を光硬化性樹脂53に照射するとともに、基準光ファイバ70のコアから前記波長の光を光硬化性樹脂53に照射することで、光硬化性樹脂53の光照射された部分に屈折率上昇と硬化を生じさせて導波路60を形成する。導波路60の着脱端面側の端面は、基準コネクタプラグ700の着脱端面側の基準光ファイバ70のコア端面の位置および大きさに応じて形成される。 16 is a diagram illustrating a first method for manufacturing the optical connector plug 500 of the second embodiment. In the first manufacturing method, the end face of the reference optical fiber 70 inserted and fixed in the reference connector plug 700 is positioned opposite the detachable end face 54 of the ferrule 51, and light of a wavelength that increases the refractive index of the photocurable resin 53 and hardens it is irradiated from the core of the optical fiber 50 onto the photocurable resin 53. At the same time, light of the same wavelength is irradiated from the core of the reference optical fiber 70 onto the photocurable resin 53, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 53, thereby forming a waveguide 60. The end face of the waveguide 60 on the detachable end face side is formed according to the position and size of the core end face of the reference optical fiber 70 on the detachable end face side of the reference connector plug 700.

 具体的には、フェルール51に配置された光ファイバの端面と、フェルール端面55(着脱端面54)とを繋ぐ中空部に、光硬化性樹脂53を充填する。そして、光コネクタプラグ500に、基準コネクタプラグ700を接続する。光コネクタプラグ500の光ファイバ50と、基準コネクタプラグ700の光ファイバ70に、光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光源69、89をそれぞれ接続し、各光ファイバ50、70のコア50a、70aから、前記波長の光を光硬化性樹脂53照射する。これにより、光硬化性樹脂53の光照射された部分の屈折率上昇と硬化が生じて、図17に示すように導波路60が形成される。すなわち、導波路60の着脱端面側の端面は、基準コネクタプラグ700の着脱端面側の光ファイバ70のコア端面の位置および大きさに応じて形成される。導波路60を生成後、基準コネクタプラグ700と、光源69を取り外すことにより、光コネクタプラグ500が作製される。 Specifically, photocurable resin 53 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 51 and the ferrule end face 55 (detachable end face 54). Then, a reference connector plug 700 is connected to the optical connector plug 500. Light sources 69 and 89 with a wavelength that increases the refractive index of the photocurable resin 53 and hardens it are connected to the optical fiber 50 of the optical connector plug 500 and the optical fiber 70 of the reference connector plug 700, respectively. Light of this wavelength is irradiated onto the photocurable resin 53 from the cores 50a and 70a of the optical fibers 50 and 70. This increases the refractive index of the irradiated portion of the photocurable resin 53 and hardens it, forming a waveguide 60 as shown in FIG. 17. That is, the end face of the waveguide 60 on the detachable end face side is formed according to the position and size of the core end face of the optical fiber 70 on the detachable end face side of the reference connector plug 700. After creating the waveguide 60, the reference connector plug 700 and the light source 69 are removed to create the optical connector plug 500.

 このように第1の作製方法で作製された導波路60の着脱端面側の端面は、基準コネクタプラグ700のコア端面に応じて形成されるため、同じ基準コネクタプラグ700を用いて作製した光コネクタプラグ500の導波路60の着脱端面側の端面は、同様の形状・大きさで、フェルール端面55の同様の位置に形成される。したがって、第1の作製方法で作製された2つの光コネクタプラグ500を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。 In this way, the end face on the detachable end face of the waveguide 60 produced by the first production method is formed according to the core end face of the reference connector plug 700, and therefore the end face on the detachable end face of the waveguide 60 of an optical connector plug 500 produced using the same reference connector plug 700 has the same shape and size and is formed in the same position on the ferrule end face 55. Therefore, by connecting two optical connector plugs 500 produced by the first production method, it is possible to produce an optical connector that can connect optical fibers with low loss.

 導波路60を生成後に、第1実施形態の第1の作製方法と同様に、クラッドを形成してもよい。具体的には、導波路を生成後に、フェルール51に形成された注入口(不図示)から光硬化性樹脂53を取り除き、代わりに光照射によって導波路よりも屈折率の低いクラッドを形成可能な光硬化性樹脂を注入する。クラッド用の光硬化性樹脂の硬化を生じる波長の光源を用意し、光源から光を照射することでクラッドを形成してもよい。 After the waveguide 60 is created, a cladding may be formed in the same manner as in the first manufacturing method of the first embodiment. Specifically, after the waveguide is created, the photocurable resin 53 is removed from an injection port (not shown) formed in the ferrule 51, and instead a photocurable resin capable of forming a cladding with a lower refractive index than the waveguide by light irradiation is injected. A light source with a wavelength that causes the photocurable resin for the cladding to harden may be prepared, and the cladding may be formed by irradiating light from the light source.

 基準コネクタプラグ700に、光コネクタの設計目標からの誤差が少なく製造された高精度な光コネクタに用いられる光コネクタプラグを用いてもよい。シングルコアファイバコネクタの場合、IEC(国際電気標準会議)で規定される基準コネクタを用いてもよい。 The reference connector plug 700 may be an optical connector plug used in high-precision optical connectors manufactured with minimal deviation from the optical connector's design target. In the case of single-core fiber connectors, a reference connector specified by the IEC (International Electrotechnical Commission) may be used.

 基準コネクタのないマルチコアファイバコネクタの場合、例えば、以下のような手順で接続損失が低い光コネクタを選別してもよい。画像調心などによりコア位置が設計目標から少ない誤差となるように調心した複数の光コネクタを作製し、その中から誤差が小さいものを選別してサンプル群Aを抽出する。また、コア位置を調心した別の複数の光コネクタを作製し、その中から誤差が小さいものを選別してサンプル群Aとは異なるサンプル群Bを抽出する。また、コア位置を調心した別の複数の光コネクタを作製し、その中から誤差が小さいものを選別して、サンプル群A、Bとは異なるサンプル群Cを抽出する。そして、各サンプル群A,B,Cの光コネクタ同士を接続してより低い接続損失を実現する光コネクタを選別する。このようにして選別した光コネクタの光コネクタプラグを、基準コネクタプラグ700として用いてもよい。 In the case of a multi-core fiber connector without a reference connector, an optical connector with low connection loss may be selected, for example, using the following procedure. A plurality of optical connectors are fabricated in which the core positions are aligned using image alignment or other methods to minimize error from the design target, and those with the smallest error are selected from these to extract sample group A. A further plurality of optical connectors are fabricated in which the core positions are aligned, and those with the smallest error are selected from these to extract sample group B, which is different from sample group A. A further plurality of optical connectors are fabricated in which the core positions are aligned, and those with the smallest error are selected from these to extract sample group C, which is different from sample groups A and B. The optical connectors of sample groups A, B, and C are then connected together to select an optical connector that achieves even lower connection loss. The optical connector plug of the optical connector selected in this manner may be used as the reference connector plug 700.

 図18は、第2実施形態の光コネクタプラグ500の第2の作製方法を説明する図である。第2の作製方法では、光ファイバ50のコアから光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光を光硬化性樹脂53に照射するとともに、着脱端面側からフォトマスク62を介して前記波長の光を光硬化性樹脂53に照射することで、光硬化性樹脂53の光照射された部分に屈折率上昇と硬化を生じさせて導波路60を形成する。導波路60の着脱端面側の端面は、フォトマスク62の光透過穴の位置および大きさに応じて形成される。 Figure 18 is a diagram illustrating a second manufacturing method for the optical connector plug 500 of the second embodiment. In the second manufacturing method, light of a wavelength that increases the refractive index of the photocurable resin 53 and hardens it is irradiated onto the photocurable resin 53 from the core of the optical fiber 50, and light of the same wavelength is irradiated onto the photocurable resin 53 from the detachable end face side through a photomask 62, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 53, thereby forming the waveguide 60. The end face of the waveguide 60 on the detachable end face side is formed according to the position and size of the light-transmitting hole in the photomask 62.

 具体的には、第2の作製方法では、基準コネクタプラグ700を使用する代わりにフォトマスク62と光源88によるフォトリソグラフィ技術を使用する。フェルール51に配置された光ファイバの端面と、フェルール端面55(着脱端面54)とを繋ぐ中空部に、光硬化性樹脂53を充填する。そして、光コネクタプラグ500のフェルール端面55近傍に、フォトマスク62と、光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光源88を配置する。また、光コネクタプラグ500の光ファイバ50に、光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光源69を接続する。 Specifically, the second manufacturing method uses photolithography with a photomask 62 and light source 88 instead of using a reference connector plug 700. Photocurable resin 53 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 51 and the ferrule end face 55 (detachable end face 54). Then, a photomask 62 and a light source 88 with a wavelength that increases the refractive index of the photocurable resin 53 and hardens it are placed near the ferrule end face 55 of the optical connector plug 500. In addition, a light source 69 with a wavelength that increases the refractive index of the photocurable resin 53 and hardens it is connected to the optical fiber 50 of the optical connector plug 500.

 光ファイバ50のコア50aとフォトマスク62から、それぞれ光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光を照射することにより、光硬化性樹脂53の光照射された部分の屈折率上昇と硬化が生じて、導波路60が生成される。 By irradiating light of a wavelength that increases the refractive index of the photocurable resin 53 and hardens it from the core 50a of the optical fiber 50 and the photomask 62, respectively, the refractive index of the irradiated portion of the photocurable resin 53 increases and hardens, creating a waveguide 60.

 フォトマスク62には、光コネクタのコア設計位置に相当する場所に、コアサイズに相当する光透過穴が設けられている。フォトマスク62は、光透過穴が光を透過する構造であって、それ以外の部位が光を遮断する構造であればよい。フォトマスク62には、例えば金属板に穴を空けた構造、ガラス板の表面に金属を蒸着した構造などを使用することが可能である。導波路60の着脱端面54側の端面は、フォトマスク62の光透過穴の位置および大きさに応じて形成される。導波路60を生成後、フォトマスク62と、光源69、88とを取り外すことにより、光コネクタプラグ500が作製される。 The photomask 62 has light-transmitting holes corresponding to the core size at locations corresponding to the core design positions of the optical connector. The photomask 62 has a structure in which the light-transmitting holes allow light to pass through, while the remaining areas block light. The photomask 62 can be made, for example, of a metal plate with holes drilled, or of a glass plate with metal vapor-deposited on its surface. The end face of the waveguide 60 on the detachable end face 54 side is formed according to the position and size of the light-transmitting holes in the photomask 62. After the waveguide 60 is created, the photomask 62 and light sources 69 and 88 are removed to produce the optical connector plug 500.

 このように第2の作製方法で作製された導波路60の着脱端面側の端面は、フォトマスク62の光透過穴に応じて形成されるため、同じフォトマスク62を用いて作製した光コネクタプラグ500の導波路60の着脱端面側の端面は、同様の形状・大きさで、フェルール端面55の同様の位置に形成される。したがって、第2の作製方法で作製された2つの光コネクタプラグ500を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。なお、第2の作製方法においても、第1の作製方法と同様にクラッドを形成してもよい。 In this way, the end face on the detachable end face of the waveguide 60 produced by the second production method is formed according to the light-transmitting holes of the photomask 62, and therefore the end face on the detachable end face of the waveguide 60 of an optical connector plug 500 produced using the same photomask 62 has the same shape and size and is formed in the same position on the ferrule end face 55. Therefore, by connecting two optical connector plugs 500 produced by the second production method, an optical connector capable of connecting optical fibers with low loss can be produced. Note that the cladding may also be formed in the second production method, as in the first production method.

 本実施形態では、基準コネクタプラグ700またはフォトリソグラフィ技術を使用して導波路20を形成したが、導波路20を作製する際に、光コネクタプラグ100のコア位置が設計目標から少ない誤差となるように作製することが可能であればこれらの方法に限定されない。 In this embodiment, the waveguide 20 was formed using the reference connector plug 700 or photolithography technology, but the method is not limited to these, as long as it is possible to fabricate the waveguide 20 so that the core position of the optical connector plug 100 has minimal error from the design target.

 図19は、マルチコアファイバを接続する光コネクタプラグ500を作製する方法を説明する図である。ここでは、一例として前述の第1の作製方法を用いて光コネクタプラグ500を作成する方法を説明する。光コネクタプラグ500に、基準コネクタプラグ700を接続する。 Figure 19 is a diagram illustrating a method for fabricating an optical connector plug 500 for connecting a multicore fiber. Here, as an example, a method for fabricating the optical connector plug 500 using the first fabrication method described above is described. A reference connector plug 700 is connected to the optical connector plug 500.

 光コネクタプラグ500の光ファイバ50と、基準コネクタプラグ700の光ファイバ70は、それぞれファンアウト61を介してシングルコアファイバ80に接続される。各シングルコアファイバ80に、光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光源69、89を接続し、光ファイバ50、70のコア50a、70aから前記波長の光を光硬化性樹脂53に照射する。 The optical fiber 50 of the optical connector plug 500 and the optical fiber 70 of the reference connector plug 700 are each connected to a single-core fiber 80 via a fan-out 61. Light sources 69, 89 with a wavelength that increases the refractive index and hardens the photocurable resin 53 are connected to each single-core fiber 80, and light of that wavelength is irradiated onto the photocurable resin 53 from the cores 50a, 70a of the optical fibers 50, 70.

 これにより、光照射された部分の光硬化性樹脂13に屈折率上昇と硬化が生じて、図20に示すように複数の導波路60が生成される。導波路60を生成後、基準コネクタプラグ700と、ファンアウト61とを取り外すことにより、光コネクタプラグ500が作製される。同じ基準コネクタプラグ700を用いて作製した、2つの光コネクタプラグ500を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。図19及び図20では4つのコアを有するマルチコアファイバの例を示したが、マルチコアファイバのコア数は2個以上であればよく、そのコア配置も任意のコア配置でよい。 This causes the refractive index of the photocurable resin 13 in the irradiated area to increase and harden, creating multiple waveguides 60 as shown in Figure 20. After the waveguides 60 are created, the reference connector plug 700 and fan-out 61 are removed to create the optical connector plug 500. By connecting two optical connector plugs 500 created using the same reference connector plug 700, an optical connector that can connect optical fibers with low loss can be created. Figures 19 and 20 show an example of a multicore fiber with four cores, but the multicore fiber may have two or more cores, and the core arrangement may be any desired arrangement.

 [第3実施形態]
 図13は、第3実施形態に係る光コネクタのコネクタプラグ構造の一例を示す図である。本実施形態のコネクタプラグ構造は、前述の第2実施形態のコネクタプラグ構造と同様である。すなわち、本実施形態の光コネクタプラグ500は、光硬化性樹脂53を用いて形成された導波路を有し、前記導波路は、一端が当該光コネクタプラグ500に挿入固定された光ファイバ50のコア端面と接続され、前記光ファイバ50のコアの光信号を他端へと伝送可能な導波路である。導波路の他端の端面は、導波路作製用の基準コネクタプラグの着脱端面側の基準光ファイバのコア端面の位置および大きさに応じて形成されてもよい。また、前記導波路の他端の端面は、導波路作製用のフォトマスクの光透過穴の位置および大きさに応じて形成されてもよい。光コネクタプラグ500は、光ファイバ50の接続端と光硬化性樹脂53を保持可能なフェルール51と、フェルール51の着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材54と、を有してもよい。光硬化性樹脂53は、光ファイバ50の接続端と当接するようにフェルール51内に充填される。
[Third embodiment]
FIG. 13 is a diagram showing an example of a connector plug structure of an optical connector according to a third embodiment. The connector plug structure of this embodiment is similar to the connector plug structure of the second embodiment described above. That is, the optical connector plug 500 of this embodiment has a waveguide formed using a photocurable resin 53, one end of which is connected to the core end face of an optical fiber 50 inserted and fixed in the optical connector plug 500, and which is capable of transmitting an optical signal from the core of the optical fiber 50 to the other end. The end face of the other end of the waveguide may be formed according to the position and size of the core end face of a reference optical fiber on the detachable end face side of a reference connector plug used for waveguide fabrication. Furthermore, the end face of the other end of the waveguide may be formed according to the position and size of a light-transmitting hole in a photomask used for waveguide fabrication. The optical connector plug 500 may also have a ferrule 51 capable of holding the connection end of the optical fiber 50 and the photocurable resin 53, and a sealant 54 that forms the detachable end face of the ferrule 51 and prevents the photocurable resin from leaking. The photocurable resin 53 is filled into the ferrule 51 so as to abut against the connection end of the optical fiber 50 .

 図示する本実施形態の光コネクタプラグ500は、単心光コネクタプラグであり、一心の光ファイバ50と、フェルール51と、プラグフレーム52と、自己形成光導波路(導波路)を形成する光硬化性樹脂53と、封止材54(着脱端面)と、つまみ56(ハウジング)と、フランジ57と、スプリング58と、ストップリング59とを、有する。封止材54は、フェルール51に充填された光硬化性樹脂53が流出しないように、フェルール端面55に配置される。単心用の光コネクタプラグ500には、例えばSCコネクタ、MUコネクタなどの光コネクタプラグを使用することができるが、これらに限定されない。 The optical connector plug 500 of the illustrated embodiment is a single-core optical connector plug, and includes a single optical fiber 50, a ferrule 51, a plug frame 52, a photocurable resin 53 that forms a self-forming optical waveguide (waveguide), a sealant 54 (detachable end face), a knob 56 (housing), a flange 57, a spring 58, and a stop ring 59. The sealant 54 is placed on the ferrule end face 55 to prevent the photocurable resin 53 filled in the ferrule 51 from leaking out. The single-core optical connector plug 500 can be, for example, an SC connector, an MU connector, or other optical connector plug, but is not limited to these.

 光コネクタプラグ500は、フェルール51に接着固定した一心の光ファイバ50が、アダプタ(不図示)を介して対向する光ファイバと接続可能な形状であればよい。すなわち、フランジ57、スプリング58、ストップリング59、プラグフレーム52及びつまみ56の有無、また、これらの形状は、図16に限定されない。本実施形態の単心光コネクタは、一心の光ファイバを着脱可能な形態で接続できればよく、SCコネクタ及びMUコネクタに限定されない。 The optical connector plug 500 may have any shape that allows the single-core optical fiber 50 adhesively fixed to the ferrule 51 to be connected to an opposing optical fiber via an adapter (not shown). In other words, the presence or absence of the flange 57, spring 58, stop ring 59, plug frame 52, and knob 56, as well as their shapes, are not limited to those shown in Figure 16. The single-core optical connector of this embodiment is not limited to an SC connector or an MU connector, as long as it can connect a single-core optical fiber in a detachable manner.

 光硬化性樹脂53は、フェルール51内部で光ファイバ50と接続され、光信号伝送可能な自己形成光導波路を形成するための樹脂である。光硬化性樹脂53は、封止材54によってフェルール端面55からの流出が防止され、フェルール51内部に保持される。 The photocurable resin 53 is connected to the optical fiber 50 inside the ferrule 51, and is used to form a self-forming optical waveguide capable of transmitting optical signals. The photocurable resin 53 is prevented from leaking out of the ferrule end face 55 by the sealing material 54, and is held inside the ferrule 51.

 導波路の一端は光ファイバ50のコア端面に接続され、もう一端は着脱端面である封止材54に接続されている。すなわち、光硬化性樹脂53内の光導波路は、着脱端面54上の光コネクタコア位置の設計目標位置と光ファイバ50の端面と結ぶように形成されている。 One end of the waveguide is connected to the core end face of the optical fiber 50, and the other end is connected to the sealing material 54, which is the detachable end face. In other words, the optical waveguide in the photocurable resin 53 is formed so as to connect the end face of the optical fiber 50 to the design target position of the optical connector core on the detachable end face 54.

 封止材54は、図16に示すようにフェルール端面55から突き出る形状で配置されてもよく、あるいは、図17に示すようにフェルール端面55を凹形状としてフェルール端面55に埋め込まれた形状で配置してもよい。封止材54は、フェルール端面55から光硬化性樹脂53が流出することを防止可能であれば、どのような形状および配置であってもよい。封止材54には、例えばガラス材、樹脂材などを用いることが可能である。封止材54は、光硬化性樹脂53に形成した導波路を伝搬する光を出射、または、入射した光を導波路に伝搬可能な形状であればよい。封止材54に、光硬化性樹脂53に形成した導波路と光信号伝送可能な導波路を、レーザ描画によって形成してもよい。 The sealing material 54 may be arranged so as to protrude from the ferrule end face 55 as shown in FIG. 16, or may be arranged so as to be embedded in the ferrule end face 55 by making the ferrule end face 55 concave as shown in FIG. 17. The sealing material 54 may be of any shape and arrangement as long as it can prevent the photocurable resin 53 from leaking out from the ferrule end face 55. For example, glass or resin may be used for the sealing material 54. The sealing material 54 may have any shape as long as it can emit light propagating through the waveguide formed in the photocurable resin 53 or propagate incident light into the waveguide. The waveguide formed in the photocurable resin 53 and a waveguide capable of transmitting optical signals may be formed in the sealing material 54 by laser drawing.

 本実施形態の一心の光ファイバ50には、例えば、例えば、シングルコアマルチモードファイバ、マルチコアマルチモードファイバが用いられ、任意の波長の光を複数の伝搬モードで伝送する光ファイバであればよい。本実施形態では、マルチコアマルチモードファイバを用いた場合について説明する。 The single-core optical fiber 50 of this embodiment may be, for example, a single-core multimode fiber or a multi-core multimode fiber, as long as it is an optical fiber that transmits light of any wavelength in multiple propagation modes. In this embodiment, we will explain the case where a multi-core multimode fiber is used.

 図16を用いて、本実施形態の光コネクタプラグの第1の作製方法を説明する。第1の作製方法では、フェルール51の着脱端面54に、基準コネクタプラグ700に挿入固定された基準光ファイバ70の端面を対向して配置し、光ファイバ50のコアから光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光を光硬化性樹脂53に照射するとともに、基準光ファイバ70のコアから前記波長の光を光硬化性樹脂53に照射することで、光硬化性樹脂53の光照射された部分に屈折率上昇と硬化を生じさせて導波路60を形成する。導波路60の着脱端面側の端面は、基準コネクタプラグ700の着脱端面側の基準光ファイバ70のコア端面の位置および大きさに応じて形成される。 A first manufacturing method for the optical connector plug of this embodiment will be described using Figure 16. In the first manufacturing method, the end face of the reference optical fiber 70 inserted and fixed in the reference connector plug 700 is positioned opposite the detachable end face 54 of the ferrule 51, and light of a wavelength that increases the refractive index of the photocurable resin 53 and hardens it is irradiated from the core of the optical fiber 50 onto the photocurable resin 53. Light of the same wavelength is also irradiated from the core of the reference optical fiber 70 onto the photocurable resin 53, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 53, thereby forming a waveguide 60. The end face of the waveguide 60 on the detachable end face side is formed according to the position and size of the core end face of the reference optical fiber 70 on the detachable end face side of the reference connector plug 700.

 具体的には、フェルール51に配置された光ファイバの端面と、フェルール端面55(着脱端面54)とを繋ぐ中空部に、光硬化性樹脂53を充填する。そして、光コネクタプラグ500に、基準コネクタプラグ700を接続する。光コネクタプラグ500の光ファイバ50と、基準コネクタプラグ700の光ファイバ70に、光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光源69、89をそれぞれ接続し、各光ファイバ50、70のコア50a、70aから前記波長の光を光硬化性樹脂53に照射する。これにより、光硬化性樹脂53の光照射された部分に屈折率上昇と硬化が生じて、図17に示すような導波路60が形成される。すなわち、導波路60の着脱端面側の端面は、基準コネクタプラグ700の着脱端面側の光ファイバ70のコア端面の位置および大きさに応じて形成される。導波路60を生成後、基準コネクタプラグ700と、光源69を取り外すことにより、光コネクタプラグ500が作製される。 Specifically, photocurable resin 53 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 51 and the ferrule end face 55 (detachable end face 54). Then, a reference connector plug 700 is connected to the optical connector plug 500. Light sources 69 and 89 with a wavelength that increases the refractive index of the photocurable resin 53 and hardens it are connected to the optical fiber 50 of the optical connector plug 500 and the optical fiber 70 of the reference connector plug 700, respectively, and light of that wavelength is irradiated onto the photocurable resin 53 from the cores 50a and 70a of the optical fibers 50 and 70. This increases the refractive index and hardens the irradiated portion of the photocurable resin 53, forming a waveguide 60 as shown in FIG. 17. That is, the end face of the waveguide 60 on the detachable end face side is formed according to the position and size of the core end face of the optical fiber 70 on the detachable end face side of the reference connector plug 700. After creating the waveguide 60, the reference connector plug 700 and the light source 69 are removed to create the optical connector plug 500.

 このように第1の作製方法で作製された導波路60の着脱端面側の端面は、基準コネクタプラグ700のコア端面に応じて形成されるため、同じ基準コネクタプラグ700を用いて作製した光コネクタプラグ500の導波路60の着脱端面側の端面は、同様の形状・大きさで、フェルール端面55の同様の位置に形成される。したがって、第1の作製方法で作製された2つの光コネクタプラグ500を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。 In this way, the end face on the detachable end face of the waveguide 60 produced by the first production method is formed according to the core end face of the reference connector plug 700, and therefore the end face on the detachable end face of the waveguide 60 of an optical connector plug 500 produced using the same reference connector plug 700 has the same shape and size and is formed in the same position on the ferrule end face 55. Therefore, by connecting two optical connector plugs 500 produced by the first production method, it is possible to produce an optical connector that can connect optical fibers with low loss.

 基準コネクタプラグ700に、光コネクタのコア位置が設計目標から誤差が少なく製造された高精度なコネクタを用いてもよい。適当な高精度コネクタがない場合、例えば、第2実施形態で記載したように、画像調心などによりコア位置が設計目標から少ない誤差となるように調心した複数の光コネクタを作製し、その中から端面画像検査などにより誤差が小さいものを選別して3つのサンプル群A、B、Cを抽出し、各サンプル群における光コネクタ同士を接続してより低い接続損失を実現するコネクタ組み合わせを選別し、選別した光コネクタの光コネクタプラグを基準コネクタプラグ700として用いてもよい。 A high-precision connector manufactured with minimal error from the design target core position may be used as the reference connector plug 700. If a suitable high-precision connector is not available, for example, as described in the second embodiment, multiple optical connectors may be manufactured with the core position aligned by image alignment or the like so that there is minimal error from the design target, and from these, those with minimal error may be selected using end face image inspection or the like to extract three sample groups A, B, and C. The optical connectors in each sample group may be connected to select connector combinations that achieve the lowest connection loss, and the optical connector plugs of the selected optical connectors may be used as the reference connector plug 700.

 光源69、89は、光コネクタに疎通予定の通信光と同じ波長とし、通信に使用する伝搬モードと同じ伝搬モードで伝搬させて導波路60を生成してもよい。この方法として、例えば、LP01モード、LP11モード、LP02モードの3つの伝搬モードを使用するマルチモードファイバを接続する場合、最初に光源69、89から出力される光が、光ファイバ50においてLP01モードで伝搬するようにして光硬化性樹脂53を硬化させ、次にLP11モードで伝搬するようにして光硬化性樹脂53を硬化させ、次にLP02モードで伝搬するようにして光硬化性樹脂53を硬化させる、といった方法がある。 The light sources 69, 89 may have the same wavelength as the communication light to be transmitted through the optical connector, and may be propagated in the same propagation mode as the propagation mode used for communication to generate the waveguide 60. For example, when connecting a multimode fiber that uses the three propagation modes of LP01, LP11, and LP02, one method is to first propagate the light output from the light sources 69, 89 in the optical fiber 50 in the LP01 mode to harden the photocurable resin 53, then propagate it in the LP11 mode to harden the photocurable resin 53, and then propagate it in the LP02 mode to harden the photocurable resin 53.

 導波路を生成後に、光硬化性樹脂53を取り除き、光照射によって導波路よりも屈折率の低いクラッドを形成可能な光硬化性樹脂を注入し、注入した光硬化性樹脂の硬化を生じる波長の光源を用意し、注入した光硬化性樹脂の硬化を生じさせる波長の光を照射することによりクラッドを形成することも可能である。 After creating the waveguide, it is also possible to remove the photocurable resin 53, inject a photocurable resin that can be irradiated with light to form a cladding with a lower refractive index than the waveguide, prepare a light source with a wavelength that will harden the injected photocurable resin, and irradiate the injected photocurable resin with light of a wavelength that will harden the injected photocurable resin to form the cladding.

 また、異なる2つ以上の波長で硬化する特徴を持つ光硬化性樹脂53を用い、導波路を形成した後に、導波路を形成したときとは異なる波長の光源を用いて、残りの硬化してない光硬化性樹脂53を硬化することで屈折率の低いクラッドを形成しても良い。 Alternatively, a photocurable resin 53 that is cured at two or more different wavelengths may be used, and after forming the waveguide, a cladding with a low refractive index may be formed by curing the remaining uncured photocurable resin 53 using a light source with a wavelength different from that used when forming the waveguide.

 以上に述べたクラッドを硬化する、硬化しない、また硬化する場合には注入する光硬化性樹脂の物性および硬化に使用する波長によって、クラッドの屈折率は変化する。クラッドの屈折率が変わると形成した導波路を伝搬する光のモードフィールド径が変化する。これを利用して、導波路を形成した後、損失やモード変換の状態を測定し、必要に応じてクラッドの屈折率を変えることで導波路のモードフィールド径を変えて、損失やモード変換の状態を改善することができる。 The refractive index of the cladding changes depending on whether or not the cladding is cured, and if it is cured, the physical properties of the photocurable resin injected and the wavelength used for curing. If the refractive index of the cladding changes, the mode field diameter of the light propagating through the formed waveguide changes. This can be used to measure the loss and mode conversion state after forming the waveguide, and by changing the refractive index of the cladding as necessary, the mode field diameter of the waveguide can be changed and the loss and mode conversion state can be improved.

 形成された導波路は、非常に微細な構造であり外力が加わると破壊される恐れがある。しかしながら、本実施形態の導波路は、フェルール51および封止材54の中に形成されるため、フェルール51によって外力から守られる。フェルール51は、プラグフレーム52により外力から守られる。プラグフレーム52は、つまみ56で外力から守られる。このように、本実施形態では、導波路が壊れにくい光コネクタを提供することができる。 The formed waveguide has an extremely fine structure and is at risk of being destroyed when external forces are applied. However, in this embodiment, the waveguide is formed within the ferrule 51 and sealing material 54, and is therefore protected from external forces by the ferrule 51. The ferrule 51 is protected from external forces by the plug frame 52. The plug frame 52 is protected from external forces by the knob 56. In this way, this embodiment can provide an optical connector in which the waveguide is less likely to be damaged.

 図15を用いて、第3実施形態に係る光コネクタの接続形態の一例を説明する。対向する2つのフェルール51を、アダプタ(図示せず)に取り付けたスリーブ63に挿入することで軸合わせを行う。そして、ばね58により光ファイバ50及びフェルール端面55に押圧力を加えて、着脱端面54同士が密着する形態で光コネクタ600を構成し、光ファイバ50を接続する。反射減衰量を低減するため、着脱端面54の間に屈折率整合材を塗布してもよい。 An example of the connection configuration of the optical connector according to the third embodiment will be described using Figure 15. Axial alignment is achieved by inserting two opposing ferrules 51 into a sleeve 63 attached to an adapter (not shown). Then, a pressing force is applied to the optical fiber 50 and ferrule end face 55 by a spring 58, forming an optical connector 600 in such a way that the detachable end faces 54 are in close contact with each other, and connecting the optical fiber 50. A refractive index matching material may be applied between the detachable end faces 54 to reduce return loss.

 スリーブ63とフェルール51を用いる際に、例えば国際標準IEC 61755-3-1に準拠した部品を用いれば光ファイバコア軸ずれは最大でも2.0μmとなる。 When using the sleeve 63 and ferrule 51, if components complying with the international standard IEC 61755-3-1 are used, the maximum optical fiber core misalignment will be 2.0 μm.

 例えば、コアを自己形成光導波路で2.0μmずらすには20μm程度の短い距離の導波路で十分である。導波路が短いことから導波路を伝搬することによる光損失がほとんど発生しない。 For example, to shift the core by 2.0 μm in a self-written optical waveguide, a waveguide with a short distance of about 20 μm is sufficient. Because the waveguide is short, there is almost no optical loss due to propagation through the waveguide.

 以上述べた通り、本実施形態の光コネクタ600を用いることで、光ファイバ50の軸ずれ量を小さくすることが可能である。その結果、光コネクタプラグ500における、必要となる導波路の長さを短くでき、導波路での光損失を抑制できる。また、本実施形態では、光ファイバ50のコアから出射する通信光と同じ波長で同じ伝搬モードの光を用いて導波路を形成する。これにより、通信光の形状に沿った形状の導波路が形成されることから、導波路内での伝搬モード変換が抑制される。 As described above, by using the optical connector 600 of this embodiment, it is possible to reduce the amount of axial misalignment of the optical fiber 50. As a result, the length of the waveguide required in the optical connector plug 500 can be shortened, and optical loss in the waveguide can be suppressed. Furthermore, in this embodiment, the waveguide is formed using light of the same wavelength and propagation mode as the communication light emitted from the core of the optical fiber 50. This allows the waveguide to be formed in a shape that follows the shape of the communication light, thereby suppressing propagation mode conversion within the waveguide.

 図15を用いて、本実施形態の光コネクタプラグの第2の作製方法を説明する。第2の作製方法では、光ファイバ50のコアから光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光を光硬化性樹脂53に照射するとともに、着脱端面側からフォトマスク62を介して前記波長の光を光硬化性樹脂53に照射することで、光硬化性樹脂53の光照射された部分に屈折率上昇と硬化を生じさせて導波路60を形成する。導波路60の着脱端面側の端面は、フォトマスク62の光透過穴の位置および大きさに応じて形成される。 A second manufacturing method for the optical connector plug of this embodiment will be described using Figure 15. In the second manufacturing method, light of a wavelength that increases the refractive index of the photocurable resin 53 and hardens it is irradiated onto the photocurable resin 53 from the core of the optical fiber 50, and light of the same wavelength is irradiated onto the photocurable resin 53 from the detachable end face side through a photomask 62, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 53, thereby forming a waveguide 60. The end face of the waveguide 60 on the detachable end face side is formed according to the position and size of the light-transmitting hole in the photomask 62.

 具体的には、第2の作製方法では、基準コネクタプラグ700を使用する代わりにフォトマスク62と光源88によるフォトリソグラフィ技術を使用する。フェルール51に配置された光ファイバの端面と、フェルール端面55(着脱端面54)とを繋ぐ中空部に、光硬化性樹脂53を充填する。そして、光コネクタプラグ500のフェルール端面55近傍に、フォトマスク62と、光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光源88を配置する。また、光コネクタプラグ500の光ファイバ50に、光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光源69を接続する。 Specifically, the second manufacturing method uses photolithography with a photomask 62 and light source 88 instead of using a reference connector plug 700. Photocurable resin 53 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 51 and the ferrule end face 55 (detachable end face 54). Then, a photomask 62 and a light source 88 with a wavelength that increases the refractive index of the photocurable resin 53 and hardens it are placed near the ferrule end face 55 of the optical connector plug 500. In addition, a light source 69 with a wavelength that increases the refractive index of the photocurable resin 53 and hardens it is connected to the optical fiber 50 of the optical connector plug 500.

 光ファイバ50のコア50aとフォトマスク62からそれぞれ前記波長の光を照射することにより、光硬化性樹脂53の光照射された部分に屈折率上昇と硬化が生じて、導波路60が生成される。導波路60を生成後、フォトマスク62と、光源69、88を取り外すことにより、光コネクタプラグ500が作製される。 By irradiating the core 50a of the optical fiber 50 and the photomask 62 with light of the above wavelength, the refractive index of the irradiated portion of the photocurable resin 53 increases and hardens, creating the waveguide 60. After the waveguide 60 is created, the photomask 62 and light sources 69 and 88 are removed, and the optical connector plug 500 is produced.

 フォトマスク62には、光コネクタのコア設計位置に相当する場所に、コアサイズに相当する光透過穴が設けられている。フォトマスク62は、光透過穴が光を透過する構造であって、それ以外の部位が光を遮断する構造であればよい。フォトマスク62には、例えば金属板に穴を空けた構造、ガラス板の表面に金属を蒸着した構造などを使用することが可能である。導波路60の着脱端面54側の端面は、フォトマスク62の光透過穴の位置および大きさに応じて形成される。 The photomask 62 has light-transmitting holes corresponding to the core size at locations corresponding to the core design positions of the optical connector. The photomask 62 is designed so that the light-transmitting holes allow light to pass through, while the remaining areas block light. The photomask 62 can be, for example, a metal plate with holes drilled, or a glass plate with metal vapor-deposited on its surface. The end face of the waveguide 60 on the detachable end face 54 side is formed according to the position and size of the light-transmitting holes in the photomask 62.

 このように第2の作製方法で作製された導波路60の着脱端面側の端面は、フォトマスク62の光透過穴に応じて形成されるため、同じフォトマスク62を用いて作製した光コネクタプラグ500の導波路60の着脱端面側の端面は、同様の形状・大きさで、フェルール端面55の同様の位置に形成される。したがって、第2の作製方法で作製された2つの光コネクタプラグ500を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。なお、第2の作製方法においても、第1の作製方法と同様にクラッドを形成してもよい。 In this way, the end face on the detachable end face of the waveguide 60 produced by the second production method is formed according to the light-transmitting holes of the photomask 62, and therefore the end face on the detachable end face of the waveguide 60 of an optical connector plug 500 produced using the same photomask 62 has the same shape and size and is formed in the same position on the ferrule end face 55. Therefore, by connecting two optical connector plugs 500 produced by the second production method, an optical connector capable of connecting optical fibers with low loss can be produced. Note that the cladding may also be formed in the second production method, as in the first production method.

 前記光源69、88は光コネクタに疎通予定の通信光と同じ波長とし、前記光源69、88からの光は通信に使用する伝搬モードと同じ伝搬モードで伝搬させて光導波路60を生成してもよい。 The light sources 69 and 88 may have the same wavelength as the communication light to be transmitted through the optical connector, and the light from the light sources 69 and 88 may be propagated in the same propagation mode as the propagation mode used for communication to generate the optical waveguide 60.

 図19は、マルチコアファイバを接続する光コネクタプラグ500を作製する方法を説明する図である。ここでは、一例として前述の第1の作製方法を用いて光コネクタプラグ500を作成する方法を説明する。光コネクタプラグ500に、基準コネクタプラグ700を接続する。 Figure 19 is a diagram illustrating a method for fabricating an optical connector plug 500 for connecting a multicore fiber. Here, as an example, a method for fabricating the optical connector plug 500 using the first fabrication method described above is described. A reference connector plug 700 is connected to the optical connector plug 500.

 光コネクタプラグ500の光ファイバ50と、基準コネクタプラグ700の光ファイバ70は、それぞれファンアウト61を介してシングルコアファイバ80に接続される。各シングルコアファイバ80に、光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光源69、89を接続し、光ファイバ50、70のコア50a、70aから前記波長の光を光硬化性樹脂53に照射する。 The optical fiber 50 of the optical connector plug 500 and the optical fiber 70 of the reference connector plug 700 are each connected to a single-core fiber 80 via a fan-out 61. Light sources 69, 89 with a wavelength that increases the refractive index and hardens the photocurable resin 53 are connected to each single-core fiber 80, and light of that wavelength is irradiated onto the photocurable resin 53 from the cores 50a, 70a of the optical fibers 50, 70.

 これにより、光照射された部分の光硬化性樹脂53に屈折率上昇と硬化が生じて、図20に示すように複数の導波路60が生成される。導波路60を生成後、基準コネクタプラグ700と、ファンアウト61とを取り外すことにより、光コネクタプラグ500が作製される。同じ基準コネクタプラグ700を用いて作製した、2つの光コネクタプラグ500を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。図19及び図20では4つのコアを有するマルチコアファイバの例を示したが、マルチコアファイバのコア数は2個以上であればよく、そのコア配置も任意のコア配置でよい。 This causes the refractive index of the photocurable resin 53 in the irradiated area to increase and harden, creating multiple waveguides 60 as shown in Figure 20. After the waveguides 60 are created, the reference connector plug 700 and fan-out 61 are removed to create the optical connector plug 500. By connecting two optical connector plugs 500 created using the same reference connector plug 700, an optical connector that can connect optical fibers with low loss can be created. Figures 19 and 20 show an example of a multicore fiber with four cores, but the number of cores in the multicore fiber may be two or more, and the core arrangement may be any desired arrangement.

 [第4実施形態]
 図1は、第4実施形態に係る光コネクタのコネクタプラグ構造の一例を示す図である。本実施形態の光コネクタプラグ100は、第1実施形態の光コネクタプラグ100と同様の多心光コネクタプラグである。本実施形態の光コネクタプラグ100は、光硬化性樹脂13を用いて形成された導波路を有し、前記導波路は、一端が当該光コネクタプラグ100に挿入固定された光ファイバ10のコア端面と接続され、前記光ファイバ10のコアの光信号を他端へと伝送可能な導波路である。導波路の他端の端面は、導波路作製用の基準コネクタプラグの着脱端面側の基準光ファイバのコア端面の位置および大きさに応じて形成されてもよい。また、前記導波路の他端の端面は、導波路作製用のフォトマスクの光透過穴の位置および大きさに応じて形成されてもよい。
[Fourth embodiment]
FIG. 1 is a diagram showing an example of a connector plug structure of an optical connector according to a fourth embodiment. The optical connector plug 100 of this embodiment is a multi-fiber optical connector plug similar to the optical connector plug 100 of the first embodiment. The optical connector plug 100 of this embodiment has a waveguide formed using a photocurable resin 13, one end of which is connected to a core end face of an optical fiber 10 inserted and fixed into the optical connector plug 100, and which is capable of transmitting an optical signal from the core of the optical fiber 10 to the other end. The end face at the other end of the waveguide may be formed according to the position and size of the core end face of a reference optical fiber on the detachable end face side of a reference connector plug for waveguide fabrication. Furthermore, the end face at the other end of the waveguide may be formed according to the position and size of a light-transmitting hole in a photomask for waveguide fabrication.

 光コネクタプラグ100は、光ファイバ10の接続端と光硬化性樹脂13を保持可能なフェルール11と、フェルール11の着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材14と、を有してもよい。光硬化性樹脂13は、光ファイバ10の接続端と当接するようにフェルール11内に充填される。 The optical connector plug 100 may have a ferrule 11 capable of holding the connection end of the optical fiber 10 and the photocurable resin 13, and a sealant 14 that forms the detachable end face of the ferrule 11 and prevents the photocurable resin from leaking out. The photocurable resin 13 is filled inside the ferrule 11 so that it abuts against the connection end of the optical fiber 10.

 図示する光コネクタプラグ100は、フェルール11内に挿入固定された複数の光ファイバ10の接続端、フェルール11、接着剤12、自己形成光導波路を形成する光硬化性樹脂13、封止材14(着脱端面)、配列部材16を有する。多心光コネクタは、複数の光ファイバを一括で着脱可能な形態で接続されればよく、MTコネクタ及びMPOコネクタなどの多心光コネクタに限定されない。 The optical connector plug 100 shown in the figure has connection ends of multiple optical fibers 10 inserted and fixed into a ferrule 11, the ferrule 11, adhesive 12, a photocurable resin 13 that forms a self-forming optical waveguide, a sealing material 14 (detachable end face), and an alignment member 16. A multi-fiber optical connector is sufficient if it can connect multiple optical fibers in a detachable manner all at once, and is not limited to multi-fiber optical connectors such as MT connectors and MPO connectors.

 光硬化性樹脂13は、フェルール11内部で光ファイバ10と接続されており、光硬化性樹脂13には光信号伝送可能な導波路20が形成されている。導波路20の一端は、光ファイバ10のコア10a端面に接続され、もう一端は着脱端面14に接続されている。光硬化性樹脂13内の導波路20は、着脱端面14上の光コネクタコア位置の設計目標位置と光ファイバ10のコア10a端面とを結ぶように形成されている。 The photocurable resin 13 is connected to the optical fiber 10 inside the ferrule 11, and a waveguide 20 capable of transmitting optical signals is formed in the photocurable resin 13. One end of the waveguide 20 is connected to the end face of the core 10a of the optical fiber 10, and the other end is connected to the detachable end face 14. The waveguide 20 in the photocurable resin 13 is formed to connect the design target position of the optical connector core on the detachable end face 14 with the end face of the core 10a of the optical fiber 10.

 封止材14は、図1に示すようにフェルール端面15から突き出る形状に配置してもよく、あるいは、図2に示すようにフェルール端面15を凹形状としてフェルール端面15に埋め込む形状に配置してもよい。封止材14は、フェルール端面15から光硬化性樹脂13が流出することを防ぐことが可能な形状であればよい。封止材14には、例えばガラス材、樹脂材などを用いることが可能であり、光硬化性樹脂13に形成した導波路20を伝搬する光を出射、または、入射した光を光硬化性樹脂13に形成した導波路20に伝搬可能な形状であればよい。封止材14にガラス材を用いる場合、光硬化性樹脂53に形成した導波路と光信号伝送可能な導波路を、レーザ描画によって封止材14に形成してもよい。 The sealing material 14 may be arranged so as to protrude from the ferrule end face 15 as shown in FIG. 1, or may be arranged so as to be embedded in the ferrule end face 15 by making the ferrule end face 15 concave as shown in FIG. 2. The sealing material 14 may have any shape that prevents the photocurable resin 13 from leaking out from the ferrule end face 15. The sealing material 14 may be made of, for example, glass or resin, and may have any shape that allows light propagating through the waveguide 20 formed in the photocurable resin 13 to be emitted, or allows incident light to propagate to the waveguide 20 formed in the photocurable resin 13. When a glass material is used for the sealing material 14, the waveguide formed in the photocurable resin 53 and a waveguide capable of transmitting optical signals may be formed in the sealing material 14 by laser drawing.

 図3に示すように、複数の光ファイバ10は、フェルール端面15に向かって配列部材16で等間隔に配置され、フェルール11上部に設けられた孔(不図示)より注入された接着剤12によってフェルール11に接着固定される。配列部材16は、光ファイバ10を等間隔に配置するために、例えば、V溝、半円形状の溝、円形の孔などが設けられる。ただし、配列部材16に設けられる溝、孔は、光ファイバ10を等間隔に配置可能であれば、どのような形状でもよい。図4では、8心の光ファイバを配置しているが、光ファイバ10は2心以上あればよく、8心に限らない。 As shown in Figure 3, multiple optical fibers 10 are arranged at equal intervals by an arranging member 16 toward the ferrule end face 15, and are adhered and fixed to the ferrule 11 by adhesive 12 injected through a hole (not shown) provided in the top of the ferrule 11. In order to arrange the optical fibers 10 at equal intervals, the arranging member 16 is provided with, for example, a V-groove, a semicircular groove, or a circular hole. However, the grooves and holes provided in the arranging member 16 may have any shape as long as they can arrange the optical fibers 10 at equal intervals. In Figure 4, eight optical fibers are arranged, but the number of optical fibers 10 is not limited to eight, as long as it is two or more.

 複数の光ファイバ10は、例えば、シングルコアマルチモードファイバ、マルチコアマルチモードファイバが用いられ、任意の波長の光を複数の伝搬モードで伝送する光ファイバであればよい。本実施形態では、マルチコアマルチモードファイバを用いた場合について説明する。 The multiple optical fibers 10 may be, for example, single-core multimode fibers or multi-core multimode fibers, and may be optical fibers that transmit light of any wavelength in multiple propagation modes. In this embodiment, we will explain the case where a multi-core multimode fiber is used.

 図5を用いて、本実施形態の光コネクタ200の接続形態の一例を説明する。ここでは、フェルール端面15に配置したガイド孔(不図示)にガイドピン(図示せず)を挿入することで軸合わせを行い、ばね(図示せず)により対向する光コネクタプラグ100に押圧力を加えて、封止材14(着脱端面)同士を密着させて光コネクタ200を構成する。これにより、対向する光コネクタプラグ100に挿入固定された光ファイバ10を、低損失に接続することができる。反射減衰量を低減するため、封止材14の間に屈折率整合材を塗布してもよい。 An example of the connection configuration of the optical connector 200 of this embodiment will be described using Figure 5. Here, axial alignment is performed by inserting a guide pin (not shown) into a guide hole (not shown) located on the ferrule end face 15, and a spring (not shown) applies pressure to the opposing optical connector plugs 100, causing the sealing materials 14 (detachable end faces) to tightly adhere to each other, thereby forming the optical connector 200. This allows the optical fibers 10 inserted and fixed in the opposing optical connector plugs 100 to be connected with low loss. A refractive index matching material may be applied between the sealing materials 14 to reduce return loss.

 図7を用いて、第4実施形態の光コネクタプラグの第1の作製方法を説明する。第1の作製方法では、フェルール11の着脱端面14に、基準コネクタプラグ300に挿入固定された基準光ファイバ30の端面を対向して配置し、光ファイバ10のコアから光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光を光硬化性樹脂13に照射するとともに、基準光ファイバ30のコアから前記波長の光を光硬化性樹脂13に照射することで、光硬化性樹脂13の光照射された部分に屈折率上昇と硬化を生じさせて導波路20を形成する。導波路20の着脱端面側の端面は、基準コネクタプラグ300の着脱端面側の基準光ファイバ30のコア端面の位置および大きさに応じて形成される。 A first manufacturing method for the optical connector plug of the fourth embodiment will be described using Figure 7. In the first manufacturing method, the end face of the reference optical fiber 30 inserted and fixed in the reference connector plug 300 is positioned opposite the detachable end face 14 of the ferrule 11, and light of a wavelength that increases the refractive index of the photocurable resin 13 and hardens it is irradiated from the core of the optical fiber 10 onto the photocurable resin 13, while light of the same wavelength is irradiated from the core of the reference optical fiber 30 onto the photocurable resin 13, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 13, thereby forming a waveguide 20. The end face of the waveguide 20 on the detachable end face side is formed according to the position and size of the core end face of the reference optical fiber 30 on the detachable end face side of the reference connector plug 300.

 具体的には、フェルール11に配置された光ファイバの端面と、フェルール端面15(着脱端面14)とを繋ぐ中空部に、光硬化性樹脂13を充填する。そして、光コネクタプラグ100に、基準コネクタプラグ300を接続する。基準コネクタプラグ300は、複数の光ファイバ30と、フェルール31と、接着剤32と、配列部材36とを備える。光コネクタプラグ100の光ファイバ10と、基準コネクタプラグ300の光ファイバ30に、光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光源19、39をそれぞれ接続し、光ファイバ10、30のコア10a、30aから前記波長の光を光硬化性樹脂13に照射する。これにより、光硬化性樹脂13の光照射された部分に屈折率上昇と硬化が生じて、図8に示すように導波路20が形成される。すなわち、導波路20の着脱端面側の端面は、基準コネクタプラグ300の着脱端面側の光ファイバ30のコア端面の位置および大きさに応じて形成される。導波路20を生成後、基準コネクタプラグ300と、光源19とを取り外すことにより、光コネクタプラグ100が作製される。 Specifically, photocurable resin 13 is filled into the hollow space connecting the end face of the optical fiber placed in the ferrule 11 and the ferrule end face 15 (detachable end face 14). Then, a reference connector plug 300 is connected to the optical connector plug 100. The reference connector plug 300 comprises multiple optical fibers 30, a ferrule 31, an adhesive 32, and an alignment member 36. Light sources 19, 39 with a wavelength that increases the refractive index of the photocurable resin 13 and hardens it are connected to the optical fibers 10 of the optical connector plug 100 and the optical fibers 30 of the reference connector plug 300, respectively, and light of that wavelength is irradiated onto the photocurable resin 13 from the cores 10a, 30a of the optical fibers 10, 30. This increases the refractive index and hardens the irradiated portion of the photocurable resin 13, forming a waveguide 20 as shown in FIG. 8. That is, the end face of the waveguide 20 on the detachable end face side is formed according to the position and size of the core end face of the optical fiber 30 on the detachable end face side of the reference connector plug 300. After creating the waveguide 20, the reference connector plug 300 and the light source 19 are removed to produce the optical connector plug 100.

 このように第1の作製方法で作製された導波路20の着脱端面側の端面は、基準コネクタプラグ300のコア端面に応じて形成されるため、同じ基準コネクタプラグ300を用いて作製した光コネクタプラグ100の導波路20の着脱端面側の端面は、同様の形状・大きさで、フェルール端面15の同様の位置に形成される。したがって、第1の作製方法で作製された2つの光コネクタプラグ100を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。 In this way, the end face on the detachable end face side of the waveguide 20 produced by the first production method is formed according to the core end face of the reference connector plug 300, so the end face on the detachable end face side of the waveguide 20 of an optical connector plug 100 produced using the same reference connector plug 300 has the same shape and size and is formed in the same position on the ferrule end face 15. Therefore, by connecting two optical connector plugs 100 produced by the first production method, it is possible to produce an optical connector that can connect optical fibers with low loss.

 光源19、39の光は、光コネクタに疎通予定の通信光と同じ波長とし、通信に使用する伝搬モードと同じ伝搬モードで前記光を伝搬させて導波路20を生成してもよい。 The light from light sources 19 and 39 may have the same wavelength as the communication light to be transmitted through the optical connector, and the light may be propagated in the same propagation mode as that used for communication to generate waveguide 20.

 また、図9に示すように、導波路20の周囲にクラッド21を形成してもよい。具体的には、導波路20を生成後に、フェルール11に設けられえた注入口22から光硬化性樹脂13を取り除き、代わりに光照射によって導波路20よりも屈折率の低いクラッド21を形成可能な光硬化性樹脂13bを注入する。そして、光硬化性樹脂13bの硬化を生じる波長の光源37を用意し、光源37から前記波長の光37aを照射することでクラッド21を形成してもよい。光硬化性樹脂13の除去と、光硬化性樹脂13bの注入のために、フェルール11にあらかじめ注入口22を設けてもよい。 Alternatively, as shown in FIG. 9, a cladding 21 may be formed around the waveguide 20. Specifically, after the waveguide 20 is created, the photocurable resin 13 is removed through an injection port 22 provided in the ferrule 11, and instead photocurable resin 13b is injected, which can form a cladding 21 with a lower refractive index than the waveguide 20 when irradiated with light. Then, a light source 37 with a wavelength that hardens the photocurable resin 13b is prepared, and the cladding 21 may be formed by irradiating light 37a of said wavelength from the light source 37. An injection port 22 may be provided in advance in the ferrule 11 for removing the photocurable resin 13 and injecting the photocurable resin 13b.

 基準コネクタプラグ700に、光コネクタのコア位置が設計目標から誤差が少なく製造された高精度なコネクタを用いてもよい。適当な高精度コネクタがない場合、例えば、第2実施形態で記載したように、画像調心などによりコア位置が設計目標から少ない誤差となるように調心した複数の光コネクタを作製し、その中から端面画像検査などにより誤差が小さいものを選別して3つのサンプル群A、B、Cを抽出し、各サンプル群における光コネクタ同士を接続してより低い接続損失を実現するコネクタ組み合わせを選別し、選別した光コネクタの光コネクタプラグを基準コネクタプラグ700として用いてもよい。 A high-precision connector manufactured with minimal error from the design target core position may be used as the reference connector plug 700. If a suitable high-precision connector is not available, for example, as described in the second embodiment, multiple optical connectors may be manufactured with the core position aligned by image alignment or the like so that there is minimal error from the design target, and from these, those with minimal error may be selected using end face image inspection or the like to extract three sample groups A, B, and C. The optical connectors in each sample group may be connected to select connector combinations that achieve the lowest connection loss, and the optical connector plugs of the selected optical connectors may be used as the reference connector plug 700.

 図10を用いて、第4実施形態における光コネクタプラグ100の第2の作製方法を説明する。第2の作製方法では、光ファイバ10のコアから光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光を光硬化性樹脂13に照射するとともに、着脱端面側からフォトマスク42を介して前記波長の光を光硬化性樹脂13に照射することで、光硬化性樹脂13の光照射された部分に屈折率上昇と硬化を生じさせて導波路20を形成する。導波路20の着脱端面側の端面は、フォトマスク42の光透過穴の位置および大きさに応じて形成される。 A second manufacturing method for the optical connector plug 100 of the fourth embodiment will be described using Figure 10. In the second manufacturing method, the photocurable resin 13 is irradiated with light of a wavelength that increases the refractive index and hardens the photocurable resin 13 from the core of the optical fiber 10, and light of the same wavelength is also irradiated onto the photocurable resin 13 from the detachable end face side through a photomask 42, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin 13, thereby forming the waveguide 20. The end face of the waveguide 20 on the detachable end face side is formed according to the position and size of the light-transmitting hole in the photomask 42.

 具体的には、第2の作製方法では、基準コネクタプラグ300を使用する代わりに、フォトマスク42と光源38とによるフォトリソグラフィ技術を使用する。フェルール11に配置された光ファイバの端面と、フェルール端面15(着脱端面14)とを繋ぐ中空部に、光硬化性樹脂13を充填する。そして、光コネクタプラグ100のフェルール端面15近傍に、フォトマスク42と、光硬化性樹脂53の屈折率上昇と硬化を生じる波長の光源38を配置する。また、光コネクタプラグ100の光ファイバ10に、光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光源19を接続する。そして、光ファイバのコア10aとフォトマスク42からそれぞれ前記波長の光を照射することにより、光硬化性樹脂13の光照射された部分に屈折率上昇と硬化が生じて、導波路20が生成される。 Specifically, the second fabrication method uses photolithography with a photomask 42 and light source 38 instead of using a reference connector plug 300. The hollow space connecting the end face of the optical fiber placed in the ferrule 11 and the ferrule end face 15 (detachable end face 14) is filled with photocurable resin 13. A photomask 42 and a light source 38 with a wavelength that increases the refractive index of the photocurable resin 53 and hardens it are then placed near the ferrule end face 15 of the optical connector plug 100. A light source 19 with a wavelength that increases the refractive index of the photocurable resin 13 and hardens it is connected to the optical fiber 10 of the optical connector plug 100. Light with the wavelength is then irradiated from the core 10a of the optical fiber and the photomask 42, respectively, causing an increase in the refractive index and hardening of the irradiated portion of the photocurable resin 13, thereby creating a waveguide 20.

 フォトマスク42には、光コネクタのコア設計位置に相当する場所に、コアサイズに相当する光透過穴が設けられている。フォトマスク42は、光透過穴が光を透過する構造であって、それ以外の部位が光を遮断する構造であればよい。フォトマスク42には、例えば金属板に穴を空けた構造、ガラス板の表面に金属を蒸着した構造などを使用することが可能である。導波路20の着脱端面14側の端面は、フォトマスク42の光透過穴の位置および大きさに応じて形成される。導波路20を生成後、フォトマスク42と、光源19、38とを取り外すことにより、光コネクタプラグ100が作製される。 The photomask 42 has light-transmitting holes corresponding to the core size at locations corresponding to the core design positions of the optical connector. The photomask 42 has a structure in which the light-transmitting holes allow light to pass through, while the remaining areas block light. The photomask 42 can be made, for example, of a metal plate with holes drilled, or of a glass plate with metal vapor-deposited on its surface. The end face of the waveguide 20 on the detachable end face 14 side is formed according to the position and size of the light-transmitting holes in the photomask 42. After the waveguide 20 is created, the photomask 42 and light sources 19 and 38 are removed to produce the optical connector plug 100.

 このように第2の作製方法で作製された導波路20の着脱端面側の端面は、フォトマスク42の光透過穴に応じて形成されるため、同じフォトマスク42を用いて作製した光コネクタプラグ100の導波路20の着脱端面側の端面は、同様の形状・大きさで、フェルール端面15の同様の位置に形成される。したがって、第2の作製方法で作製された2つの光コネクタプラグ100を接続することで、低損失で光ファイバを接続可能な光コネクを作製することができる。なお、第2の作製方法においても、第1の作製方法と同様にクラッド21を形成してもよい。 In this way, the end face on the detachable end face of the waveguide 20 produced by the second production method is formed according to the light-transmitting holes of the photomask 42, so the end face on the detachable end face of the waveguide 20 of an optical connector plug 100 produced using the same photomask 42 will have the same shape and size and be formed in the same position on the ferrule end face 15. Therefore, by connecting two optical connector plugs 100 produced by the second production method, it is possible to produce an optical connector that can connect optical fibers with low loss. Note that the cladding 21 may also be formed in the second production method in the same way as in the first production method.

 前記光源19、38は光コネクタに疎通予定の通信光と同じ波長とし、前記光源19、38からの光は通信に使用する伝搬モードと同じ伝搬モードで伝搬させて光導波路20を生成してもよい。 The light sources 19 and 38 may have the same wavelength as the communication light to be transmitted through the optical connector, and the light from the light sources 19 and 38 may be propagated in the same propagation mode as the propagation mode used for communication to generate the optical waveguide 20.

 本実施形態では、基準コネクタプラグ300またはフォトリソグラフィ技術を使用して、導波路20を形成したが、導波路20を作製する際に、光コネクタプラグ100のコア位置が設計目標から少ない誤差となるように作製することが可能であればこれらの方法に限らない。 In this embodiment, the waveguide 20 was formed using the reference connector plug 300 or photolithography technology, but these methods are not limiting as long as the waveguide 20 can be fabricated in such a way that the core position of the optical connector plug 100 has minimal error from the design target.

 図11を用いて、マルチコアファイバを接続する光コネクタプラグ100を作製する方法を説明する。ここでは、一例として前述の第1の作製方法を用いて光コネクタプラグ100を作成する方法を説明する。光コネクタプラグ100に、基準コネクタプラグ300を接続する。 Using Figure 11, we will explain a method for manufacturing an optical connector plug 100 for connecting a multicore fiber. Here, we will explain a method for creating the optical connector plug 100 using the first manufacturing method described above as an example. A reference connector plug 300 is connected to the optical connector plug 100.

 光コネクタプラグ100の光ファイバ10と、基準コネクタプラグ300の光ファイバ30は、それぞれファンアウト41を介してシングルコアファイバ40に接続される。各シングルコアファイバ40に、光硬化性樹脂13の屈折率上昇と硬化を生じる波長の光源19、39を接続し、光ファイバ10、30のコア10a、30aから前記波長の光を光硬化性樹脂13に照射する。 The optical fiber 10 of the optical connector plug 100 and the optical fiber 30 of the reference connector plug 300 are each connected to a single-core fiber 40 via a fan-out 41. A light source 19, 39 with a wavelength that increases the refractive index of the photocurable resin 13 and hardens it is connected to each single-core fiber 40, and light of that wavelength is irradiated onto the photocurable resin 13 from the cores 10a, 30a of the optical fibers 10, 30.

 これにより、光照射された部分の光硬化性樹脂13に屈折率上昇と硬化が生じて、図12に示すように複数の導波路20が形成される。導波路20を生成後、基準コネクタプラグ300と、ファンアウト41とを取り外すことにより、光コネクタプラグ100が作製される。
同じ基準コネクタプラグ300を用いて作製した、2つの光コネクタプラグ100を接続することで、低損失で光ファイバを接続可能な光コネクタを作製することができる。図11及び図12では、4つのコアを有するマルチコアファイバの例を示したが、マルチコアファイバのコア数は2個以上であればよく、そのコア配置も任意のコア配置でよい。
This causes the refractive index of the photocurable resin 13 to increase and harden in the irradiated portion, forming a plurality of waveguides 20 as shown in Fig. 12. After the waveguides 20 are formed, the reference connector plug 300 and the fan-out 41 are removed, thereby producing the optical connector plug 100.
An optical connector capable of connecting optical fibers with low loss can be fabricated by connecting two optical connector plugs 100 fabricated using the same standard connector plug 300. Although an example of a multi-core fiber having four cores is shown in Figures 11 and 12, the number of cores in the multi-core fiber may be two or more, and the core arrangement may be any arrangement.

 以上説明した、第1から第4の実施形態の光コネクタは、光硬化性樹脂を用いて形成された導波路を有し、前記導波路は、一端が光コネクタプラグに挿入固定された光ファイバのコア端面と接続され、前記光ファイバのコアの光信号を他端へと伝送可能な導波路であって、前記他端の端面は、導波路作製用の基準コネクタプラグの着脱端面側の基準光ファイバのコア端面の位置および大きさに応じて形成された。 The optical connectors of the first to fourth embodiments described above have a waveguide formed using a photocurable resin, one end of which is connected to the core end face of an optical fiber inserted and fixed in an optical connector plug, and which is capable of transmitting an optical signal from the core of the optical fiber to the other end, with the end face of the other end being formed according to the position and size of the core end face of the reference optical fiber on the detachable end face side of the reference connector plug used to fabricate the waveguide.

 第1から第4の実施形態の光コネクタは、光硬化性樹脂を用いて形成された導波路を有し、前記導波路は、一端が光コネクタプラグに挿入固定された光ファイバのコア端面と接続され、光ファイバコアの光信号を他端へと伝送可能な導波路であって、前記導波路の他端の端面は、導波路作製用のフォトマスクの光透過穴の位置および大きさに応じて形成された。 The optical connectors of the first to fourth embodiments have a waveguide formed using a photocurable resin, one end of which is connected to the core end face of an optical fiber inserted and fixed in an optical connector plug, and which is capable of transmitting an optical signal from the optical fiber core to the other end, and the end face of the other end of the waveguide is formed according to the position and size of the light-transmitting hole in a photomask used to fabricate the waveguide.

 第1から第4の実施形態の光コネクタに用いる光コネクタプラグの第1の作製方法(製造方法)において、前記光コネクタプラグは、光ファイバの接続端と光硬化性樹脂を保持可能なフェルールと、前記フェルール内に挿入固定された前記光ファイバの接続端と、前記光ファイバの接続端と当接するようにフェルール内に充填された光硬化性樹脂と、前記フェルールの着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材と、を有し、前記フェルールの着脱端面に、基準コネクタプラグに挿入固定された基準光ファイバの端面を対向して配置し、前記光ファイバのコアから前記光硬化性樹脂の屈折率上昇と硬化を生じる波長の光を前記光硬化性樹脂に照射するとともに、前記基準光ファイバのコアから前記波長の光を前記光硬化性樹脂に照射することで、前記光硬化性樹脂の光照射された部分に屈折率上昇と硬化を生じさせて導波路を形成し、前記導波路の着脱端面側の端面は、前記基準コネクタプラグの着脱端面側の前記基準光ファイバのコア端面の位置および大きさに応じて形成された。 In a first method for producing (manufacturing) an optical connector plug for use in the optical connectors of the first to fourth embodiments, the optical connector plug includes a ferrule capable of holding a connection end of an optical fiber and photocurable resin, the connection end of the optical fiber inserted and fixed within the ferrule, photocurable resin filled within the ferrule so as to abut against the connection end of the optical fiber, and a sealant that forms a detachable end face of the ferrule and prevents the photocurable resin from leaking out. The end face of a reference optical fiber inserted and fixed in a reference connector plug is positioned opposite the detachable end face of the ferrule, and light of a wavelength that increases the refractive index of the photocurable resin and hardens it is irradiated from the core of the optical fiber onto the photocurable resin, and light of the same wavelength is irradiated from the core of the reference optical fiber onto the photocurable resin, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin, thereby forming a waveguide. The end face of the waveguide on the detachable end face side is formed according to the position and size of the core end face of the reference optical fiber on the detachable end face side of the reference connector plug.

 第1から第4の実施形態の光コネクタに用いる光コネクタプラグの第2の作製方法(製造方法)において、前記光コネクタプラグは、光ファイバの接続端と光硬化性樹脂を保持可能なフェルールと、前記フェルール内に挿入固定された前記光ファイバの接続端と、前記光ファイバの接続端と当接するようにフェルール内に充填された光硬化性樹脂と、前記フェルールの着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材と、を有し、前記光ファイバのコアから前記光硬化性樹脂の屈折率上昇と硬化を生じる波長の光を前記光硬化性樹脂に照射するとともに、前記着脱端面側から、フォトマスクを介して前記波長の光を前記光硬化性樹脂に照射することで、前記光硬化性樹脂の光照射された部分に屈折率上昇と硬化を生じさせて導波路を形成し、前記導波路の着脱端面側の端面は、前記フォトマスクの光透過穴の位置および大きさに応じて形成された。 In a second method for producing (manufacturing) an optical connector plug for use in the optical connectors of the first to fourth embodiments, the optical connector plug includes a ferrule capable of holding a connection end of an optical fiber and photocurable resin, the connection end of the optical fiber inserted and fixed within the ferrule, photocurable resin filled within the ferrule so as to abut against the connection end of the optical fiber, and a sealant that forms the detachable end face of the ferrule and prevents the photocurable resin from leaking out. Light of a wavelength that increases the refractive index of the photocurable resin and hardens it is irradiated from the core of the optical fiber onto the photocurable resin, and light of the same wavelength is irradiated onto the photocurable resin from the detachable end face side through a photomask, thereby increasing the refractive index and hardening the irradiated portion of the photocurable resin, thereby forming a waveguide. The end face of the waveguide on the detachable end face side is formed according to the position and size of the light-transmitting hole in the photomask.

 これにより、本実施形態では、シングルモードおよびマルチモードの光ファイバを、低損失に接続可能な光コネクタを提供することができ、また、前記光コネクタの光コネクタプラグを簡易に作製することができる。 As a result, this embodiment provides an optical connector that can connect single-mode and multi-mode optical fibers with low loss, and also makes it possible to easily manufacture an optical connector plug for this optical connector.

 具体的には、同じ基準コネクタまたは同じフォトマスクを用いて導波路を形成した光コネクタプラグ100を組み合わせて光コネクタを作成することで、低損失な光コネクタを提供することができる。また、本実施形態によれば、精密なコア調心を不要とする光コネクタの光コネクタプラグを簡易に作製することができる。 Specifically, by combining optical connector plugs 100 in which waveguides are formed using the same reference connector or the same photomask, a low-loss optical connector can be provided. Furthermore, according to this embodiment, an optical connector plug for an optical connector that does not require precise core alignment can be easily manufactured.

 なお、本開示は、上記実施形態に限定されるものでなく、様々な変形、および組み合わせが可能である。 Note that this disclosure is not limited to the above embodiments, and various modifications and combinations are possible.

 10、30、50、70 光ファイバ
 10a、30a、50a、70a コア
 10b、30b、50b、70b クラッド
 100、500 光コネクタプラグ
 11、31、51、71 フェルール
 12、32 接着剤
 13、13b、53 光硬化性樹脂
 14、54 封止材(着脱端面)
 15、55 フェルール端面
 16、36 配列部材
 18 屈折率整合材
 19、37、38、39、69、88、89 光源
 20、60 導波路(自己形成光導波路)
 200、600 光コネクタ
 21 クラッド
 22 注入口
 300、700 基準コネクタプラグ
 37a 38a、88a 光
 40、80 シングルコアファイバ
 41、61 ファンアウト
 42、62 フォトマスク
 52、72 プラグフレーム
 56、76 つまみ
 57、77 フランジ
 58、78 スプリング
 59、79 ストップリング
 63 スリーブ
10, 30, 50, 70 Optical fiber 10a, 30a, 50a, 70a Core 10b, 30b, 50b, 70b Cladding 100, 500 Optical connector plug 11, 31, 51, 71 Ferrule 12, 32 Adhesive 13, 13b, 53 Photocurable resin 14, 54 Sealant (detachable end face)
15, 55 Ferrule end face 16, 36 Arrangement member 18 Refractive index matching material 19, 37, 38, 39, 69, 88, 89 Light source 20, 60 Waveguide (self-written optical waveguide)
200, 600 Optical connector 21 Cladding 22 Inlet 300, 700 Reference connector plug 37a 38a, 88a Light 40, 80 Single-core fiber 41, 61 Fan-out 42, 62 Photomask 52, 72 Plug frame 56, 76 Knob 57, 77 Flange 58, 78 Spring 59, 79 Stop ring 63 Sleeve

Claims (8)

 光硬化性樹脂を用いて形成された導波路を有し、
 前記導波路は、一端が光コネクタプラグに挿入固定された光ファイバのコア端面と接続され、前記光ファイバのコアの光信号を他端へと伝送可能な導波路であって、前記導波路の他端の端面は、導波路作製用の基準コネクタプラグの着脱端面側の基準光ファイバのコア端面の位置および大きさに応じて形成された
 光コネクタ。
a waveguide formed using a photocurable resin;
The waveguide has one end connected to the core end face of an optical fiber inserted and fixed in an optical connector plug, and is capable of transmitting an optical signal from the core of the optical fiber to the other end, and the end face of the other end of the waveguide is formed in accordance with the position and size of the core end face of a reference optical fiber on the detachable end face side of a reference connector plug for waveguide fabrication.
 光硬化性樹脂を用いて形成された導波路を有し、
 前記導波路は、一端が光コネクタプラグに挿入固定された光ファイバのコア端面と接続され、光ファイバコアの光信号を他端へと伝送可能な導波路であって、前記導波路の他端の端面は、導波路作製用のフォトマスクの光透過穴の位置および大きさに応じて形成された
 光コネクタ。
a waveguide formed using a photocurable resin;
The waveguide has one end connected to the core end face of an optical fiber inserted and fixed in an optical connector plug, and is capable of transmitting an optical signal from the optical fiber core to the other end, and the end face of the other end of the waveguide is formed according to the position and size of the light-transmitting hole in a photomask used to fabricate the waveguide.
 前記光コネクタプラグは、
 前記光ファイバの接続端と前記光硬化性樹脂を保持可能なフェルールと、
 前記フェルールの着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材と、を有する
 請求項1または2に記載の光コネクタ。
The optical connector plug comprises:
a ferrule capable of holding the connection end of the optical fiber and the photocurable resin;
3. The optical connector according to claim 1, further comprising: a sealant that forms a detachable end face of the ferrule and prevents the photocurable resin from leaking out.
 光コネクタに用いる光コネクタプラグの製造方法であって、
 前記光コネクタプラグは、
 光ファイバの接続端と光硬化性樹脂を保持可能なフェルールと、
 前記フェルール内に挿入固定された前記光ファイバの接続端と、
 前記光ファイバの接続端と当接するようにフェルール内に充填された光硬化性樹脂と、
 前記フェルールの着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材と、を有し、
 前記フェルールの着脱端面に、基準コネクタプラグに挿入固定された基準光ファイバの端面を対向して配置し、
 前記光ファイバのコアから前記光硬化性樹脂の屈折率上昇と硬化を生じる波長の光を前記光硬化性樹脂に照射するとともに、前記基準光ファイバのコアから前記波長の光を前記光硬化性樹脂に照射することで、前記光硬化性樹脂の光照射された部分に屈折率上昇と硬化を生じさせて導波路を形成し、
 前記導波路の着脱端面側の端面は、前記基準コネクタプラグの着脱端面側の前記基準光ファイバのコア端面の位置および大きさに応じて形成された
 光コネクタプラグの製造方法。
A method for manufacturing an optical connector plug for use in an optical connector, comprising:
The optical connector plug comprises:
a ferrule capable of holding a connection end of an optical fiber and a photocurable resin;
a connection end of the optical fiber inserted and fixed in the ferrule;
a photocurable resin filled in the ferrule so as to abut against the connection end of the optical fiber;
a sealing material that forms a detachable end surface of the ferrule and prevents the photocurable resin from leaking out,
an end face of a reference optical fiber inserted and fixed in a reference connector plug is arranged opposite the detachable end face of the ferrule;
a waveguide is formed by irradiating the photocurable resin with light of a wavelength that increases the refractive index of the photocurable resin and hardens the resin from the core of the optical fiber, and by irradiating the photocurable resin with light of the same wavelength from the core of the reference optical fiber, thereby increasing the refractive index of the light-irradiated portion of the photocurable resin and hardening the resin;
the end face of the waveguide on the detachable end face side is formed in accordance with the position and size of the core end face of the reference optical fiber on the detachable end face side of the reference connector plug.
 光コネクタに用いる光コネクタプラグの製造方法であって、
 前記光コネクタプラグは、
 光ファイバの接続端と光硬化性樹脂を保持可能なフェルールと、
 前記フェルール内に挿入固定された前記光ファイバの接続端と、
 前記光ファイバの接続端と当接するようにフェルール内に充填された光硬化性樹脂と、
 前記フェルールの着脱端面を形成し、前記光硬化性樹脂の流出を防止する封止材と、を有し、
 前記光ファイバのコアから前記光硬化性樹脂の屈折率上昇と硬化を生じる波長の光を前記光硬化性樹脂に照射するとともに、前記着脱端面側から、フォトマスクを介して前記波長の光を前記光硬化性樹脂に照射することで、前記光硬化性樹脂の光照射された部分に屈折率上昇と硬化を生じさせて導波路を形成し、
 前記導波路の着脱端面側の端面は、前記フォトマスクの光透過穴の位置および大きさに応じて形成された
 光コネクタプラグの製造方法。
A method for manufacturing an optical connector plug for use in an optical connector, comprising:
The optical connector plug comprises:
a ferrule capable of holding a connection end of an optical fiber and a photocurable resin;
a connection end of the optical fiber inserted and fixed in the ferrule;
a photocurable resin filled in the ferrule so as to abut against the connection end of the optical fiber;
a sealing material that forms a detachable end surface of the ferrule and prevents the photocurable resin from leaking out,
light having a wavelength that increases the refractive index of the photocurable resin and hardens the resin is irradiated onto the photocurable resin from the core of the optical fiber, and light of the wavelength is irradiated onto the photocurable resin from the detachable end face side through a photomask, thereby increasing the refractive index of the light-irradiated portion of the photocurable resin and hardening the resin, thereby forming a waveguide;
the end face of the waveguide on the attachment/detachment end face side is formed in accordance with the position and size of the light transmitting hole of the photomask.
 前記導波路を形成後に、前記導波路が形成されない部分の前記光硬化性樹脂を取り除き、前記導波路よりも屈折率の低いクラッドを形成可能な他の光硬化性樹脂を前記フェルールに充填し、
 前記着脱端面側から、前記他の光硬化性樹脂の硬化を生じさせる波長の光を照射することで、前記他の光硬化性樹脂に硬化を生じさせて、前記導波路の周囲に前記クラッドを形成する
 請求項4または5に記載の光コネクタプラグの製造方法。
After forming the waveguide, the photocurable resin is removed from a portion where the waveguide is not formed, and another photocurable resin capable of forming a clad having a refractive index lower than that of the waveguide is filled into the ferrule;
6. The method for manufacturing an optical connector plug according to claim 4, further comprising irradiating the other photocurable resin with light of a wavelength that causes the other photocurable resin to harden from the detachable end face side, thereby hardening the other photocurable resin and forming the cladding around the waveguide.
 前記光ファイバのコアから照射する光、および、前記基準光ファイバのコアから照射する光に、前記光コネクタに疎通予定の通信光と同じ波長の光で、同じ伝搬モードの光を用いる
 請求項4に記載の光コネクタプラグの製造方法。
5. The method for manufacturing an optical connector plug according to claim 4, wherein the light irradiated from the core of the optical fiber and the light irradiated from the core of the reference optical fiber have the same wavelength and propagation mode as the communication light to be transmitted through the optical connector.
 前記光ファイバのコアから照射する光、および、前記フォトマスクを介して照射する光に、前記光コネクタに疎通予定の通信光と同じ波長の光で、同じ伝搬モードの光を用いる
 請求項5に記載の光コネクタプラグの製造方法。
6. The method for manufacturing an optical connector plug according to claim 5, wherein the light irradiated from the core of the optical fiber and the light irradiated through the photomask have the same wavelength and propagation mode as the communication light to be transmitted through the optical connector.
PCT/JP2024/012370 2024-03-27 2024-03-27 Optical connector and method for manufacturing optical connector plug Pending WO2025203348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/012370 WO2025203348A1 (en) 2024-03-27 2024-03-27 Optical connector and method for manufacturing optical connector plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/012370 WO2025203348A1 (en) 2024-03-27 2024-03-27 Optical connector and method for manufacturing optical connector plug

Publications (1)

Publication Number Publication Date
WO2025203348A1 true WO2025203348A1 (en) 2025-10-02

Family

ID=97220084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/012370 Pending WO2025203348A1 (en) 2024-03-27 2024-03-27 Optical connector and method for manufacturing optical connector plug

Country Status (1)

Country Link
WO (1) WO2025203348A1 (en)

Similar Documents

Publication Publication Date Title
CN112255740B (en) Multi-core optical fiber connector and manufacturing method thereof
US11333828B2 (en) Optical connection component
US11782216B2 (en) Optical connector and optical connector manufacturing method
WO2020235576A1 (en) Optical coupling device and method for manufacturing optical coupling device
JP7487810B2 (en) Optical connection structure
JP3888942B2 (en) Optical fiber parts
US9229170B1 (en) Two-port optical devices using mini-collimators
WO2020209365A1 (en) Optical connector and method for manufacturing optical connector
EP3338124A1 (en) Ferrule assembly with sacrificial optical fiber
CN114265151A (en) Optical fiber collimator and method of making the same
WO2025203348A1 (en) Optical connector and method for manufacturing optical connector plug
WO2025203344A1 (en) Optical connector and method for manufacturing optical connector plug
JP6654553B2 (en) Optical fiber connection method and connection structure
JP2023048327A (en) Optical fiber module and manufacturing method therefor
Wang et al. A robust strategy for realizing highly-efficient passive alignment of fiber ribbons to integrated polymer waveguides
WO2022244039A1 (en) Optical connector and method for manufacturing same
US20250004204A1 (en) System for coupling a multi-core optical fiber with at least one single-core optical fiber, and corresponding coupling method
US20120106904A1 (en) Molding of optical connectors using a core pin
Hawk et al. Low loss splicing and connection of optical waveguide cables
JP7576514B2 (en) Optical connector and manufacturing method thereof
US20250189717A1 (en) Multicore optical fiber, optical combiner, and method of measuring fiber characteristics
US11086075B2 (en) Fiber array units with mode-field diameter conversion, and fabrication method
WO2024166205A1 (en) Optical fiber coupler, optical fiber coupler production method, and optical multiplexing/demultiplexing method
JP2007121503A (en) Optical fiber connection method
Kajikawa et al. 16-core MCF with standard-coating-diameter for 1,600 Gbps data center communication