[go: up one dir, main page]

Compare the Top LLM Evaluation Tools in Europe as of October 2025

What are LLM Evaluation Tools in Europe?

LLM (Large Language Model) evaluation tools are designed to assess the performance and accuracy of AI language models. These tools analyze various aspects, such as the model's ability to generate relevant, coherent, and contextually accurate responses. They often include metrics for measuring language fluency, factual correctness, bias, and ethical considerations. By providing detailed feedback, LLM evaluation tools help developers improve model quality, ensure alignment with user expectations, and address potential issues. Ultimately, these tools are essential for refining AI models to make them more reliable, safe, and effective for real-world applications. Compare and read user reviews of the best LLM Evaluation tools in Europe currently available using the table below. This list is updated regularly.

  • 1
    Vertex AI
    LLM Evaluation in Vertex AI focuses on assessing the performance of large language models to ensure their effectiveness across various natural language processing tasks. Vertex AI provides tools for evaluating LLMs in tasks like text generation, question-answering, and language translation, allowing businesses to fine-tune models for better accuracy and relevance. By evaluating these models, businesses can optimize their AI solutions and ensure they meet specific application needs. New customers receive $300 in free credits to explore the evaluation process and test large language models in their own environment. This functionality enables businesses to enhance the performance of LLMs and integrate them into their applications with confidence.
    Starting Price: Free ($300 in free credits)
  • 2
    Ango Hub

    Ango Hub

    iMerit

    Ango Hub is a quality-focused, enterprise-ready data annotation platform for AI teams, available on cloud and on-premise. It supports computer vision, medical imaging, NLP, audio, video, and 3D point cloud annotation, powering use cases from autonomous driving and robotics to healthcare AI. Built for AI fine-tuning, RLHF, LLM evaluation, and human-in-the-loop workflows, Ango Hub boosts throughput with automation, model-assisted pre-labeling, and customizable QA while maintaining accuracy. Features include centralized instructions, review pipelines, issue tracking, and consensus across up to 30 annotators. With nearly twenty labeling tools—such as rotated bounding boxes, label relations, nested conditional questions, and table-based labeling—it supports both simple and complex projects. It also enables annotation pipelines for chain-of-thought reasoning and next-gen LLM training and enterprise-grade security with HIPAA compliance, SOC 2 certification, and role-based access controls.
  • 3
    LM-Kit.NET
    LM-Kit.NET is a cutting-edge, high-level inference SDK designed specifically to bring the advanced capabilities of Large Language Models (LLM) into the C# ecosystem. Tailored for developers working within .NET, LM-Kit.NET provides a comprehensive suite of powerful Generative AI tools, making it easier than ever to integrate AI-driven functionality into your applications. The SDK is versatile, offering specialized AI features that cater to a variety of industries. These include text completion, Natural Language Processing (NLP), content retrieval, text summarization, text enhancement, language translation, and much more. Whether you are looking to enhance user interaction, automate content creation, or build intelligent data retrieval systems, LM-Kit.NET offers the flexibility and performance needed to accelerate your project.
    Leader badge">
    Starting Price: Free (Community) or $1000/year
    Partner badge
  • 4
    Langfuse

    Langfuse

    Langfuse

    Langfuse is an open source LLM engineering platform to help teams collaboratively debug, analyze and iterate on their LLM Applications. Observability: Instrument your app and start ingesting traces to Langfuse Langfuse UI: Inspect and debug complex logs and user sessions Prompts: Manage, version and deploy prompts from within Langfuse Analytics: Track metrics (LLM cost, latency, quality) and gain insights from dashboards & data exports Evals: Collect and calculate scores for your LLM completions Experiments: Track and test app behavior before deploying a new version Why Langfuse? - Open source - Model and framework agnostic - Built for production - Incrementally adoptable - start with a single LLM call or integration, then expand to full tracing of complex chains/agents - Use GET API to build downstream use cases and export data
    Starting Price: $29/month
  • 5
    Opik

    Opik

    Comet

    Confidently evaluate, test, and ship LLM applications with a suite of observability tools to calibrate language model outputs across your dev and production lifecycle. Log traces and spans, define and compute evaluation metrics, score LLM outputs, compare performance across app versions, and more. Record, sort, search, and understand each step your LLM app takes to generate a response. Manually annotate, view, and compare LLM responses in a user-friendly table. Log traces during development and in production. Run experiments with different prompts and evaluate against a test set. Choose and run pre-configured evaluation metrics or define your own with our convenient SDK library. Consult built-in LLM judges for complex issues like hallucination detection, factuality, and moderation. Establish reliable performance baselines with Opik's LLM unit tests, built on PyTest. Build comprehensive test suites to evaluate your entire LLM pipeline on every deployment.
    Starting Price: $39 per month
  • 6
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 7
    Giskard

    Giskard

    Giskard

    Giskard provides interfaces for AI & Business teams to evaluate and test ML models through automated tests and collaborative feedback from all stakeholders. Giskard speeds up teamwork to validate ML models and gives you peace of mind to eliminate risks of regression, drift, and bias before deploying ML models to production.
    Starting Price: $0
  • 8
    Latitude

    Latitude

    Latitude

    Latitude is an open-source prompt engineering platform designed to help product teams build, evaluate, and deploy AI models efficiently. It allows users to import and manage prompts at scale, refine them with real or synthetic data, and track the performance of AI models using LLM-as-judge or human-in-the-loop evaluations. With powerful tools for dataset management and automatic logging, Latitude simplifies the process of fine-tuning models and improving AI performance, making it an essential platform for businesses focused on deploying high-quality AI applications.
    Starting Price: $0
  • 9
    PromptLayer

    PromptLayer

    PromptLayer

    The first platform built for prompt engineers. Log OpenAI requests, search usage history, track performance, and visually manage prompt templates. manage Never forget that one good prompt. GPT in prod, done right. Trusted by over 1,000 engineers to version prompts and monitor API usage. Start using your prompts in production. To get started, create an account by clicking “log in” on PromptLayer. Once logged in, click the button to create an API key and save this in a secure location. After making your first few requests, you should be able to see them in the PromptLayer dashboard! You can use PromptLayer with LangChain. LangChain is a popular Python library aimed at assisting in the development of LLM applications. It provides a lot of helpful features like chains, agents, and memory. Right now, the primary way to access PromptLayer is through our Python wrapper library that can be installed with pip.
    Starting Price: Free
  • 10
    Athina AI

    Athina AI

    Athina AI

    Athina is a collaborative AI development platform that enables teams to build, test, and monitor AI applications efficiently. It offers features such as prompt management, evaluation tools, dataset handling, and observability, all designed to streamline the development of reliable AI systems. Athina supports integration with various models and services, including custom models, and ensures data privacy through fine-grained access controls and self-hosted deployment options. The platform is SOC-2 Type 2 compliant, providing a secure environment for AI development. Athina's user-friendly interface allows both technical and non-technical team members to collaborate effectively, accelerating the deployment of AI features.
    Starting Price: Free
  • 11
    Okareo

    Okareo

    Okareo

    Okareo is an AI development platform designed to help teams build, test, and monitor AI agents with confidence. It offers automated simulations to uncover edge cases, system conflicts, and failure points before deployment, ensuring that AI features are robust and reliable. With real-time error tracking and intelligent safeguards, Okareo helps prevent hallucinations and maintains accuracy in production environments. Okareo continuously fine-tunes AI using domain-specific data and live performance insights, boosting relevance, effectiveness, and user satisfaction. By turning agent behaviors into actionable insights, Okareo enables teams to surface what's working, what's not, and where to focus next, driving business value beyond mere logs. Designed for seamless collaboration and scalability, Okareo supports both small and large-scale AI projects, making it an essential tool for AI teams aiming to deliver high-quality AI applications efficiently.
    Starting Price: $199 per month
  • 12
    HumanSignal

    HumanSignal

    HumanSignal

    HumanSignal's Label Studio Enterprise is a comprehensive platform designed for creating high-quality labeled data and evaluating model outputs with human supervision. It supports labeling and evaluating multi-modal data, image, video, audio, text, and time series, all in one place. It offers customizable labeling interfaces with pre-built templates and powerful plugins, allowing users to tailor the UI and workflows to specific use cases. Label Studio Enterprise integrates seamlessly with popular cloud storage providers and ML/AI models, facilitating pre-annotation, AI-assisted labeling, and prediction generation for model evaluation. The Prompts feature enables users to leverage LLMs to swiftly generate accurate predictions, enabling instant labeling of thousands of tasks. It supports various labeling use cases, including text classification, named entity recognition, sentiment analysis, summarization, and image captioning.
    Starting Price: $99 per month
  • 13
    Label Studio

    Label Studio

    Label Studio

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Configurable layouts and templates adapt to your dataset and workflow. Detect objects on images, boxes, polygons, circular, and key points supported. Partition the image into multiple segments. Use ML models to pre-label and optimize the process. Webhooks, Python SDK, and API allow you to authenticate, create projects, import tasks, manage model predictions, and more. Save time by using predictions to assist your labeling process with ML backend integration. Connect to cloud object storage and label data there directly with S3 and GCP. Prepare and manage your dataset in our Data Manager using advanced filters. Support multiple projects, use cases, and data types in one platform. Start typing in the config, and you can quickly preview the labeling interface. At the bottom of the page, you have live serialization updates of what Label Studio expects as an input.
  • 14
    Portkey

    Portkey

    Portkey.ai

    Launch production-ready apps with the LMOps stack for monitoring, model management, and more. Replace your OpenAI or other provider APIs with the Portkey endpoint. Manage prompts, engines, parameters, and versions in Portkey. Switch, test, and upgrade models with confidence! View your app performance & user level aggregate metics to optimise usage and API costs Keep your user data secure from attacks and inadvertent exposure. Get proactive alerts when things go bad. A/B test your models in the real world and deploy the best performers. We built apps on top of LLM APIs for the past 2 and a half years and realised that while building a PoC took a weekend, taking it to production & managing it was a pain! We're building Portkey to help you succeed in deploying large language models APIs in your applications. Regardless of you trying Portkey, we're always happy to help!
    Starting Price: $49 per month
  • 15
    Pezzo

    Pezzo

    Pezzo

    Pezzo is the open-source LLMOps platform built for developers and teams. In just two lines of code, you can seamlessly troubleshoot and monitor your AI operations, collaborate and manage your prompts in one place, and instantly deploy changes to any environment.
    Starting Price: $0
  • 16
    RagaAI

    RagaAI

    RagaAI

    RagaAI is the #1 AI testing platform that helps enterprises mitigate AI risks and make their models secure and reliable. Reduce AI risk exposure across cloud or edge deployments and optimize MLOps costs with intelligent recommendations. A foundation model specifically designed to revolutionize AI testing. Easily identify the next steps to fix dataset and model issues. The AI-testing methods used by most today increase the time commitment and reduce productivity while building models. Also, they leave unforeseen risks, so they perform poorly post-deployment and thus waste both time and money for the business. We have built an end-to-end AI testing platform that helps enterprises drastically improve their AI development pipeline and prevent inefficiencies and risks post-deployment. 300+ tests to identify and fix every model, data, and operational issue, and accelerate AI development with comprehensive testing.
  • 17
    DagsHub

    DagsHub

    DagsHub

    DagsHub is a collaborative platform designed for data scientists and machine learning engineers to manage and streamline their projects. It integrates code, data, experiments, and models into a unified environment, facilitating efficient project management and team collaboration. Key features include dataset management, experiment tracking, model registry, and data and model lineage, all accessible through a user-friendly interface. DagsHub supports seamless integration with popular MLOps tools, allowing users to leverage their existing workflows. By providing a centralized hub for all project components, DagsHub enhances transparency, reproducibility, and efficiency in machine learning development. DagsHub is a platform for AI and ML developers that lets you manage and collaborate on your data, models, and experiments, alongside your code. DagsHub was particularly designed for unstructured data for example text, images, audio, medical imaging, and binary files.
    Starting Price: $9 per month
  • 18
    Teammately

    Teammately

    Teammately

    Teammately is an autonomous AI agent designed to revolutionize AI development by self-iterating AI products, models, and agents to meet your objectives beyond human capabilities. It employs a scientific approach, refining and selecting optimal combinations of prompts, foundation models, and knowledge chunking. To ensure reliability, Teammately synthesizes fair test datasets and constructs dynamic LLM-as-a-judge systems tailored to your project, quantifying AI capabilities and minimizing hallucinations. The platform aligns with your goals through Product Requirement Docs (PRD), enabling focused iteration towards desired outcomes. Key features include multi-step prompting, serverless vector search, and deep iteration processes that continuously refine AI until objectives are achieved. Teammately also emphasizes efficiency by identifying the smallest viable models, reducing costs, and enhancing performance.
    Starting Price: $25 per month
  • 19
    Benchable

    Benchable

    Benchable

    Benchable is a dynamic AI tool designed for businesses and tech enthusiasts to effectively compare the performance, cost, and quality of various AI models. It allows users to benchmark leading models like GPT-4, Claude, and Gemini through custom tests, providing real-time results to help make informed decisions. With its user-friendly interface and robust analytics, Benchable streamlines the evaluation process, ensuring you find the most suitable AI solution for your needs.
    Starting Price: $0
  • 20
    Keywords AI

    Keywords AI

    Keywords AI

    Keywords AI is the leading LLM monitoring platform for AI startups. Thousands of engineers use Keywords AI to get complete LLM observability and user analytics. With 1 line of code change, you can easily integrate 200+ LLMs into your codebase. Keywords AI allows you to monitor, test, and improve your AI apps with minimal effort.
    Starting Price: $0/month
  • 21
    Symflower

    Symflower

    Symflower

    Symflower enhances software development by integrating static, dynamic, and symbolic analyses with Large Language Models (LLMs). This combination leverages the precision of deterministic analyses and the creativity of LLMs, resulting in higher quality and faster software development. Symflower assists in identifying the most suitable LLM for specific projects by evaluating various models against real-world scenarios, ensuring alignment with specific environments, workflows, and requirements. The platform addresses common LLM challenges by implementing automatic pre-and post-processing, which improves code quality and functionality. By providing the appropriate context through Retrieval-Augmented Generation (RAG), Symflower reduces hallucinations and enhances LLM performance. Continuous benchmarking ensures that use cases remain effective and compatible with the latest models. Additionally, Symflower accelerates fine-tuning and training data curation, offering detailed reports.
  • 22
    SwarmOne

    SwarmOne

    SwarmOne

    SwarmOne is an autonomous infrastructure platform designed to streamline the entire AI lifecycle, from training to deployment, by automating and optimizing AI workloads across any environment. With just two lines of code and a one-click hardware installation, users can initiate instant AI training, evaluation, and deployment. It supports both code and no-code workflows, enabling seamless integration with any framework, IDE, or operating system, and is compatible with any GPU brand, quantity, or generation. SwarmOne's self-setting architecture autonomously manages resource allocation, workload orchestration, and infrastructure swarming, eliminating the need for Docker, MLOps, or DevOps. Its cognitive infrastructure layer and burst-to-cloud engine ensure optimal performance, whether on-premises or in the cloud. By automating tasks that typically hinder AI model development, SwarmOne allows data scientists to focus exclusively on scientific work, maximizing GPU utilization.
  • 23
    Tasq.ai

    Tasq.ai

    Tasq.ai

    Tasq.ai delivers a powerful, no-code platform for building hybrid AI workflows that combine state-of-the-art machine learning with global, decentralized human guidance, ensuring unmatched scalability, control, and precision. It enables teams to configure AI pipelines visually, breaking tasks into micro-workflows that layer automated inference and quality-assured human review. This decoupled orchestration supports diverse use cases across text, computer vision, audio, video, and structured data, with rapid deployment, adaptive sampling, and consensus-based validation built in. Key capabilities include global deployment of highly screened contributors (“Tasqers”) for unbiased, high-accuracy annotations; granular task routing and judgment aggregation to meet confidence thresholds; and seamless integration into ML ops pipelines via drag-and-drop customization.
  • Previous
  • You're on page 1
  • Next