Al-Qudah et al., 2009 - Google Patents
Anycast-aware transport for content delivery networksAl-Qudah et al., 2009
View PDF- Document ID
- 1393877646418192657
- Author
- Al-Qudah Z
- Lee S
- Rabinovich M
- Spatscheck O
- Van der Merwe J
- Publication year
- Publication venue
- Proceedings of the 18th international conference on World wide web
External Links
Snippet
Anycast-based content delivery networks (CDNs) have many properties that make them ideal for the large scale distribution of content on the Internet. However, because routing changes can result in a change of the endpoint that terminates the TCP session, TCP …
- 235000010384 tocopherol 0 abstract description 57
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/1002—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
- H04L67/1004—Server selection in load balancing
- H04L67/1008—Server selection in load balancing based on parameters of servers, e.g. available memory or workload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
- H04L47/193—Flow control or congestion control at layers above network layer at transport layer, e.g. TCP related
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1458—Denial of Service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/163—Adaptation of TCP data exchange control procedures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
- H04L69/161—Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L29/00—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
- H04L29/02—Communication control; Communication processing contains provisionally no documents
- H04L29/06—Communication control; Communication processing contains provisionally no documents characterised by a protocol
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
- H04L69/322—Aspects of intra-layer communication protocols among peer entities or protocol data unit [PDU] definitions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/80—QoS aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/02—Network-specific arrangements or communication protocols supporting networked applications involving the use of web-based technology, e.g. hyper text transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/40—Techniques for recovering from a failure of a protocol instance or entity, e.g. failover routines, service redundancy protocols, protocol state redundancy or protocol service redirection in case of a failure or disaster recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/14—Multichannel or multilink protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/10—Signalling, control or architecture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements or network protocols for addressing or naming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Snoeren et al. | Fine-Grained Failover Using Connection Migration. | |
| Bonaventure et al. | Use cases and operational experience with multipath TCP | |
| Caro et al. | SCTP: A proposed standard for robust Internet data transport | |
| Yi et al. | A case for stateful forwarding plane | |
| CN101410819B (en) | Reliable, high-throughput, high-performance transport and routing mechanisms for arbitrary data streams | |
| US8306039B2 (en) | Methods and systems for automatic transport path selection for multi-homed entities in stream control transmission protocol | |
| EP2424177B1 (en) | Method and system for network data flow management | |
| US11895009B2 (en) | Intelligently routing internet traffic | |
| US20150222444A1 (en) | System and method for reliable multicast data transport | |
| JP7086179B2 (en) | Packet transmission methods, network components, and computer-readable storage media | |
| Al-Fares et al. | Overclocking the Yahoo! CDN for faster Web page loads | |
| Al-Qudah et al. | Anycast-aware transport for content delivery networks | |
| Dreibholz et al. | A new scheme for IP-based Internet-mobility | |
| Landa et al. | Staying alive: Connection path reselection at the edge | |
| Ahmad et al. | Enhancing fast TCP’s performance using single TCP connection for parallel traffic flows to prevent head-of-line blocking | |
| Potys et al. | NetInf TP: A receiver-driven protocol for ICN data transport | |
| Yoshida | Dynamic CDN against flash crowds | |
| Habib et al. | Improving application QoS with residential multihoming | |
| Cao et al. | Background Traffic‐Based Retransmission Algorithm for Multimedia Streaming Transfer over Concurrent Multipaths | |
| Bonaventure et al. | RFC 8041: Use cases and operational experience with multipath TCP | |
| Islam et al. | Throughput Analysis of SCTP over a Multi-homed Association | |
| Anjum | TCP algorithms and multiple paths: Considerations for the future of the Internet | |
| Camarillo et al. | Signalling transport protocols | |
| Rajput et al. | Comparing stream control and datagram congestion control with traditional transmission control protocol | |
| Bagnulo et al. | An incremental approach to IPv6 multihoming |