[go: up one dir, main page]

CN104638069A - Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof - Google Patents

Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof Download PDF

Info

Publication number
CN104638069A
CN104638069A CN201510058505.8A CN201510058505A CN104638069A CN 104638069 A CN104638069 A CN 104638069A CN 201510058505 A CN201510058505 A CN 201510058505A CN 104638069 A CN104638069 A CN 104638069A
Authority
CN
China
Prior art keywords
layer
current blocking
blocking layer
electrode
led chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510058505.8A
Other languages
Chinese (zh)
Inventor
张琼
吕孟岩
童玲
张宇
李起鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enraytek Optoelectronics Co Ltd
Original Assignee
Enraytek Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enraytek Optoelectronics Co Ltd filed Critical Enraytek Optoelectronics Co Ltd
Priority to CN201510058505.8A priority Critical patent/CN104638069A/en
Publication of CN104638069A publication Critical patent/CN104638069A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0137Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • H10H20/8162Current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates
    • H10H20/82Roughened surfaces, e.g. at the interface between epitaxial layers

Landscapes

  • Led Devices (AREA)

Abstract

本发明提供一种垂直型LED芯片结构及其制作方法,所述垂直型LED芯片结构由下至上依次包括:导电衬底、金属键合层、反射层、电流阻挡层、P-GaN层、多量子阱层、N-GaN层及N电极。通过在所述P-GaN层表面上制备具有与所述N电极不同形状的电流阻挡层,可以将N电极到所述P-GaN层区域的纵向扩展电流扩散开,有效地阻挡N电极下方的电流拥挤效应,使得垂直型LED电流扩散更加均匀,从而提高LED芯片的光电性能。

The present invention provides a vertical LED chip structure and a manufacturing method thereof. The vertical LED chip structure comprises from bottom to top: a conductive substrate, a metal bonding layer, a reflective layer, a current blocking layer, a P-GaN layer, a multilayer Quantum well layer, N-GaN layer and N electrode. By preparing a current blocking layer with a shape different from that of the N electrode on the surface of the P-GaN layer, the longitudinal expansion current from the N electrode to the P-GaN layer region can be diffused, effectively blocking the current under the N electrode. The current crowding effect makes the vertical LED current spread more evenly, thereby improving the photoelectric performance of the LED chip.

Description

垂直型LED芯片结构及其制作方法Vertical LED chip structure and manufacturing method thereof

技术领域technical field

本发明属于LED芯片制造领域,涉及一种垂直型LED芯片结构及其制作方法。The invention belongs to the field of LED chip manufacturing, and relates to a vertical LED chip structure and a manufacturing method thereof.

背景技术Background technique

发光二极管(Light Emitting Diode)是一种可发光的半导体元件,LED具有体积小,消耗功率低,使用寿命长等特性。如今LED正逐步取代传统光源,在这注重环保的时代中,LED就扮演很重要的角色。高亮度的LED需求越来越迫切,而垂直结构LED能够解决传统LED的电流拥挤,局部发热量高,限制了驱动电流的缺点,保证在一定的发光效率的前提下,能采用较大的电流去驱动。因此,垂直结构LED必然会加速LED应用于普通照明领域的进程,是市场所向,是半导体照明发展的必然趋势。为了要持续提升亮度及寿命就必须使电流散布更均匀,较传统的做法会增加电流阻挡层来缓解电流拥挤效应,达到使电流扩展更均匀,光效更高的目的。Light Emitting Diode (Light Emitting Diode) is a semiconductor element that can emit light. LED has the characteristics of small size, low power consumption and long service life. Nowadays, LEDs are gradually replacing traditional light sources. In this era of environmental protection, LEDs play a very important role. The demand for high-brightness LEDs is becoming more and more urgent, and vertical structure LEDs can solve the shortcomings of traditional LEDs, such as current congestion and high local heat generation, which limit the driving current and ensure that a larger current can be used under the premise of a certain luminous efficiency. to drive. Therefore, the vertical structure LED will inevitably accelerate the process of LED application in the field of general lighting, which is the direction of the market and the inevitable trend of the development of semiconductor lighting. In order to continuously improve the brightness and lifespan, it is necessary to make the current distribution more uniform. Compared with the traditional method, the current blocking layer is added to alleviate the current crowding effect, so as to achieve the purpose of making the current spread more uniform and the light efficiency higher.

在常规器件中,金属电极下方存在电流分布,因此该区域会有一定数目的光子产生。而金属电极为不透光材料,这部分光无法被正常提取,会以热的形式被吸收,对器件的发光性能和可靠性存在潜在危害。在电极下边加一层电流阻挡层会阻碍电流流经电极下方区域,阻碍该区域光子的产生,从而减少了注入电流的浪费,使电流主要集中于未被金属电极遮挡而可以进行正常光提取的出光区,会间接使得芯片中出光区的电流密度增大。在外延片内量子效率一定的情况下,电流密度的增大使得芯片中出光区中产生的光子数目增多,这就使得提取出的光通量增加,对提高光电转换效率具有明显的积极影响。In conventional devices, there is a current distribution under the metal electrode, so a certain number of photons are generated in this area. The metal electrode is an opaque material, and this part of the light cannot be extracted normally, and will be absorbed in the form of heat, which has potential hazards to the luminous performance and reliability of the device. Adding a layer of current blocking layer under the electrode will prevent the current from flowing through the area under the electrode and hinder the generation of photons in this area, thereby reducing the waste of injected current and making the current mainly concentrated in the area that is not blocked by the metal electrode and can perform normal light extraction. The light emitting area will indirectly increase the current density of the light emitting area in the chip. In the case of a certain quantum efficiency in the epitaxial wafer, the increase of the current density increases the number of photons generated in the light-emitting area of the chip, which increases the extracted luminous flux, which has a significant positive impact on improving the photoelectric conversion efficiency.

在垂直结构中,由于电流直接从N-GaN散布至整个P-GaN,而P-GaN更容易产生电流拥挤,在N-PAD(N电极)下面,尤其是电极插值交叠区域,电流拥挤效应明显,严重影响了出光效率,在N电极插值附近有效增加一定形状的电流阻挡层(current blocking layerCBL),缓解电极下方的电流拥挤效应,使得P面电流扩散更加均匀,从而提高光电效率。In the vertical structure, because the current spreads directly from N-GaN to the whole P-GaN, and P-GaN is more prone to current crowding, under the N-PAD (N electrode), especially in the electrode interpolation overlapping area, the current crowding effect Obviously, the light extraction efficiency is seriously affected, and a certain shape of current blocking layer (current blocking layer CBL) is effectively added near the interpolation of the N electrode to alleviate the current crowding effect under the electrode, so that the current diffusion on the P surface is more uniform, thereby improving the photoelectric efficiency.

发明内容Contents of the invention

鉴于以上所述现有技术的缺点,本发明的目的在于提供一种垂直型LED芯片结构及其制作方法,用于解决现有技术中存在的在电流直接从N-GaN散布至整个P-GaN时,P-GaN更容易产生电流拥挤,在N-PAD(N电极)下面,尤其是电极插值交叠区域,电流拥挤效应明显,严重影响了出垂直型LED芯片结构光效率的问题。In view of the above-mentioned shortcomings of the prior art, the object of the present invention is to provide a vertical LED chip structure and its manufacturing method, which is used to solve the problem in the prior art that the current is directly distributed from N-GaN to the entire P-GaN , P-GaN is more prone to current crowding. Under the N-PAD (N electrode), especially in the electrode interpolation overlapping area, the current crowding effect is obvious, which seriously affects the light efficiency of the vertical LED chip structure.

为实现上述目的及其他相关目的,本发明提供一种垂直型LED芯片结构的制作方法,所述垂直LED芯片结构至少包括以下步骤:In order to achieve the above purpose and other related purposes, the present invention provides a method for manufacturing a vertical LED chip structure, the vertical LED chip structure at least includes the following steps:

提供生长衬底,在所述生长衬底上形成外延层,所述外延层包括由下至上依次形成的未掺杂GaN层、N-GaN层、多量子阱层及P-GaN层;A growth substrate is provided, and an epitaxial layer is formed on the growth substrate, and the epitaxial layer includes an undoped GaN layer, an N-GaN layer, a multi-quantum well layer, and a P-GaN layer sequentially formed from bottom to top;

在所述P-GaN层上形成接触层,并对所述接触层进行光刻、刻蚀形成电流阻挡层;forming a contact layer on the P-GaN layer, and performing photolithography and etching on the contact layer to form a current blocking layer;

在所述外延层及所述电流阻挡层上形成反射层;forming a reflective layer on the epitaxial layer and the current blocking layer;

在所述外延层及所述反射层上形成金属键合层;forming a metal bonding layer on the epitaxial layer and the reflective layer;

将形成所述金属键合层的衬底与导电衬底键合,并去除所述生长衬底;bonding the substrate forming the metal bonding layer to a conductive substrate, and removing the growth substrate;

刻蚀所述未掺杂GaN层至暴露出所述N-GaN层;etching the undoped GaN layer to expose the N-GaN layer;

在所述N-GaN层上形成N电极。An N electrode is formed on the N-GaN layer.

优选地,所述衬底为蓝宝石衬底、硅衬底、碳化硅衬底或图形化衬底。Preferably, the substrate is a sapphire substrate, a silicon substrate, a silicon carbide substrate or a patterned substrate.

优选地,所述电流阻挡层的厚度为200埃~6000埃,所述电流阻挡层的材质为ITO,ZnO或Ni/Ag。Preferably, the thickness of the current blocking layer is 200 angstroms to 6000 angstroms, and the material of the current blocking layer is ITO, ZnO or Ni/Ag.

优选地,所述电流阻挡层包括至少一个由一第一电流阻挡层结构及多个第二电流阻挡层结构组成的图形化结构;所述第一电流阻挡层结构的形状与所述N电极的形状相同,所述第一电流阻挡层结构的中心与所述N电极的中心上下对应,且所述第一电流阻挡层的横向尺寸大于或等于所述N电极的横向尺寸;所述第二电流阻挡层结构对称地分布在所述第一电流阻挡层结构的周围。Preferably, the current blocking layer includes at least one patterned structure consisting of a first current blocking layer structure and a plurality of second current blocking layer structures; the shape of the first current blocking layer structure is consistent with that of the N electrode The shape is the same, the center of the first current blocking layer structure corresponds up and down to the center of the N electrode, and the lateral dimension of the first current blocking layer is greater than or equal to the lateral dimension of the N electrode; the second current blocking layer The blocking layer structures are symmetrically distributed around the first current blocking layer structure.

优选地,所述第一电流阻挡层结构为大圆形结构,所述第二电流阻挡层结构为小圆形结构。Preferably, the first current blocking layer structure is a large circular structure, and the second current blocking layer structure is a small circular structure.

优选地,所述大圆形结构的直径为50μm~150μm,所述小圆形结构的直径为5μm~50μm。Preferably, the diameter of the large circular structure is 50 μm to 150 μm, and the diameter of the small circular structure is 5 μm to 50 μm.

优选地,所述反射层的横向尺寸小于所述垂直型LED芯片的横向尺寸;所述反射层的材质为Ag、Al或Rh。Preferably, the lateral dimension of the reflective layer is smaller than that of the vertical LED chip; the material of the reflective layer is Ag, Al or Rh.

优选地,所述金属键合层的材质为Au、Sn或AuSn合金。Preferably, the metal bonding layer is made of Au, Sn or AuSn alloy.

优选地,在去除所述生长衬底之后,形成所述N电极之前,首先采用湿法或干法刻蚀工艺对所述未掺杂GaN层进行刻蚀,直至暴露出所述N-GaN层;其次对所述N-GaN层进行粗化处理以形成粗糙面,所述粗化处理使用的溶液为KOH或H2SO4Preferably, after removing the growth substrate and before forming the N electrode, the undoped GaN layer is firstly etched using a wet or dry etching process until the N-GaN layer is exposed ; Secondly, the roughening treatment is performed on the N-GaN layer to form a rough surface, and the solution used in the roughening treatment is KOH or H 2 SO 4 .

优选地,所述N电极的材质为Ni/Au、Al/Ti/Pt/Au、或Cr/Pt/Au。Preferably, the material of the N electrode is Ni/Au, Al/Ti/Pt/Au, or Cr/Pt/Au.

本发明还提供一种垂直型LED芯片结构,所述垂直型LED芯片结构由下至上依次至少包括:导电衬底、金属键合层、反射层、电流阻挡层、P-GaN层、多量子阱层、N-GaN层及N电极;其中,所述N-GaN层靠近所述N电极的表面形成有粗糙面,所述粗糙面暴露出所述N电极。The present invention also provides a vertical LED chip structure. The vertical LED chip structure at least includes: a conductive substrate, a metal bonding layer, a reflective layer, a current blocking layer, a P-GaN layer, and multiple quantum wells from bottom to top. layer, an N-GaN layer, and an N electrode; wherein, a rough surface is formed on the surface of the N-GaN layer close to the N electrode, and the rough surface exposes the N electrode.

优选地,所述电流阻挡层包括至少一个由一第一电流阻挡层结构及多个第二电流阻挡层结构组成的图形化结构;所述第一电流阻挡层结构的形状与所述N电极的形状相同,所述第一电流阻挡层结构的中心与所述N电极的中心上下对应,且所述第一电流阻挡层的横向尺寸大于或等于所述N电极的横向尺寸;所述第二电流阻挡层结构对称地分布在所述第一电流阻挡层结构的周围。Preferably, the current blocking layer includes at least one patterned structure consisting of a first current blocking layer structure and a plurality of second current blocking layer structures; the shape of the first current blocking layer structure is consistent with that of the N electrode The shape is the same, the center of the first current blocking layer structure corresponds up and down to the center of the N electrode, and the lateral dimension of the first current blocking layer is greater than or equal to the lateral dimension of the N electrode; the second current blocking layer The blocking layer structures are symmetrically distributed around the first current blocking layer structure.

优选地,所述第一电流阻挡层结构为大圆形结构,所述第二电流阻挡层结构为小圆形结构。Preferably, the first current blocking layer structure is a large circular structure, and the second current blocking layer structure is a small circular structure.

优选地,所述大圆形结构的直径为50μm~150μm,所述小圆形结构的直径为5μm~50μm;一个所述图形化结构中所述小圆形结构的总数为4的倍数。Preferably, the diameter of the large circular structure is 50 μm-150 μm, and the diameter of the small circular structure is 5 μm-50 μm; the total number of the small circular structures in one patterned structure is a multiple of 4.

如上所述,本发明的垂直型LED芯片结构及其制作方法,具有以下有益效果:通过在所述P-GaN层表面上制备具有与所述N电极不同形状的电流阻挡层,即所述电流阻挡层不仅包括与所述N电极上下对应的第一电流阻挡层结构,还包括对称地分布在所述第一电流阻挡层结构周围的所述第二电流阻挡层结构,可以将N-PAD(N电极)到所述P-GaN层区域的纵向扩展电流扩散开,有效地阻挡N电极下方的电流拥挤效应,使得垂直型LED电流扩散更加均匀,从而提高LED芯片结构的光电性能。As mentioned above, the vertical LED chip structure and its manufacturing method of the present invention have the following beneficial effects: by preparing a current blocking layer having a shape different from that of the N electrode on the surface of the P-GaN layer, that is, the current The blocking layer not only includes the first current blocking layer structure corresponding to the upper and lower sides of the N electrode, but also includes the second current blocking layer structure symmetrically distributed around the first current blocking layer structure, and the N-PAD ( N electrode) to the longitudinal expansion of the P-GaN layer region, effectively blocking the current crowding effect under the N electrode, making the vertical LED current diffusion more uniform, thereby improving the photoelectric performance of the LED chip structure.

附图说明Description of drawings

图1显示为本发明的垂直型LED芯片结构的制作方法的流程图。FIG. 1 is a flow chart showing a method for fabricating a vertical LED chip structure of the present invention.

图2至图10显示为本发明的垂直型LED芯片结构制作过程中的结构示意图。FIG. 2 to FIG. 10 are schematic structural diagrams during the fabrication process of the vertical LED chip structure of the present invention.

元件标号说明Component designation description

20      生长衬底20 growth substrate

21      外延层21 epitaxial layer

211     未掺杂GaN层211 undoped GaN layer

212     N-GaN层212 N-GaN layer

213     多量子阱层213 multiple quantum well layer

214     P-GaN层214 P-GaN layer

22      电流阻挡层22 current blocking layer

221     图形化结构221 Graphical structure

2211    第一电流阻挡层结构2211 The first current blocking layer structure

2212    第二电流阻挡层结构2212 Second current blocking layer structure

23      反射层23 reflective layer

24      金属键合层24 metal bonding layer

25      导电衬底25 Conductive substrate

26      N电极26 N electrode

27      粗糙面27 rough surface

具体实施方式Detailed ways

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.

请参阅图1至图10。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。See Figures 1 through 10. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic concept of the present invention, although only the components related to the present invention are shown in the diagrams rather than the number, shape and Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.

实施例一Embodiment one

请参阅图1至图10,本发明提供一种垂直型LED芯片结构的制作方法,所述垂直型LED芯片结构的制作方法至少包括以下步骤:Please refer to FIG. 1 to FIG. 10, the present invention provides a method for manufacturing a vertical LED chip structure, the method for manufacturing a vertical LED chip structure at least includes the following steps:

S1:提供生长衬底20,在所述生长衬底20上形成外延层21,所述外延层21包括由下至上依次形成的未掺杂GaN层211、N-GaN层212、多量子阱层213及P-GaN层214;S1: Provide a growth substrate 20, and form an epitaxial layer 21 on the growth substrate 20, and the epitaxial layer 21 includes an undoped GaN layer 211, an N-GaN layer 212, and a multi-quantum well layer formed sequentially from bottom to top 213 and a P-GaN layer 214;

S2:在所述P-GaN层214上形成接触层,并对所述接触层进行光刻、刻蚀形成电流阻挡层22;S2: forming a contact layer on the P-GaN layer 214, and performing photolithography and etching on the contact layer to form a current blocking layer 22;

S3:在所述外延层21及所述电流阻挡层22上形成反射层23;S3: forming a reflective layer 23 on the epitaxial layer 21 and the current blocking layer 22;

S4:在所述外延层21及所述反射层23上形成金属键合层24;S4: forming a metal bonding layer 24 on the epitaxial layer 21 and the reflective layer 23;

S5:将所述金属键合层24的衬底与所述导电衬底25键合,并去除所述生长衬底20;S5: bonding the substrate of the metal bonding layer 24 to the conductive substrate 25, and removing the growth substrate 20;

S6:刻蚀所述未掺杂GaN层211至暴露出所述N-GaN层212;S6: Etching the undoped GaN layer 211 to expose the N-GaN layer 212;

S7:在所述N-GaN层212上形成N电极26。S7: forming an N electrode 26 on the N—GaN layer 212 .

在步骤S1中,请参阅图1中的S1步骤及图2,提供生长衬底20,在所述生长衬底20上形成外延层21,所述外延层21包括由下至上依次形成的未掺杂GaN层211、N-GaN层212、多量子阱层213及P-GaN层214。In step S1, referring to step S1 in FIG. 1 and FIG. 2, a growth substrate 20 is provided, and an epitaxial layer 21 is formed on the growth substrate 20, and the epitaxial layer 21 includes undoped GaN layer 211 , N-GaN layer 212 , multiple quantum well layer 213 and P-GaN layer 214 .

具体的,所述生长衬底20可以为蓝宝石衬底、硅衬底、碳化硅衬底或图形化衬底。Specifically, the growth substrate 20 may be a sapphire substrate, a silicon substrate, a silicon carbide substrate or a patterned substrate.

具体的,所述外延层21可以采用MOCVD(金属有机气相沉积,Metal Organic ChemicalVapor Deposition)和/或MBE(分子束外延,Molecular Beam Epitaxy)等生长工艺形成。Specifically, the epitaxial layer 21 can be formed by growth processes such as MOCVD (Metal Organic Chemical Vapor Deposition) and/or MBE (Molecular Beam Epitaxy).

在步骤S2中,请参阅图1中的S2步骤及图3至图4,在所述P-GaN层214上形成接触层,并对所述接触层进行光刻、刻蚀形成电流阻挡层22;其中图3为在所述P-GaN层214上形成电流阻挡层22的俯视示意图,图4为图3沿AA’方向的剖面示意图。In step S2, referring to step S2 in FIG. 1 and FIG. 3 to FIG. 4, a contact layer is formed on the P-GaN layer 214, and the contact layer is photolithographically and etched to form a current blocking layer 22. ; Wherein FIG. 3 is a schematic top view of forming a current blocking layer 22 on the P-GaN layer 214, and FIG. 4 is a schematic cross-sectional view of FIG. 3 along the direction AA'.

具体的,所述电流阻挡层22的厚度为200埃~6000埃,所述电流阻挡层22的材质可以为ITO,ZnO或Ni/Ag。Specifically, the thickness of the current blocking layer 22 is 200 angstroms to 6000 angstroms, and the material of the current blocking layer 22 may be ITO, ZnO or Ni/Ag.

具体的,首先在所述P-GaN层214上形成一层接触层,然后使用湿法刻蚀工艺或干法刻蚀工艺刻蚀所述接触层以形成所需的电流阻挡层22。Specifically, a contact layer is first formed on the P-GaN layer 214 , and then the contact layer is etched using a wet etching process or a dry etching process to form the required current blocking layer 22 .

具体的,如图3所示,所述电流阻挡层22包括至少一个由一第一电流阻挡层结构2211及多个第二电流阻挡层结构2212组成的图形化结构221;所述第一电流阻挡层结构2211的形状与所述N电极26的形状相同,所述第一电流阻挡层结构2211的中心与所述N电极26的中心上下对应,且所述第一电流阻挡层2211的横向尺寸大于或等于所述N电极26的横向尺寸;所述第二电流阻挡层结构2212对称地分布在所述第一电流阻挡层结构2211的周围。优选地,本实施例中,所述第一电流阻挡层结构2211为大圆形结构,所述第二电流阻挡层结构2212为小圆形结构。Specifically, as shown in FIG. 3, the current blocking layer 22 includes at least one patterned structure 221 composed of a first current blocking layer structure 2211 and a plurality of second current blocking layer structures 2212; The shape of the layer structure 2211 is the same as that of the N electrode 26, the center of the first current blocking layer structure 2211 corresponds up and down to the center of the N electrode 26, and the lateral dimension of the first current blocking layer 2211 is larger than Or equal to the lateral dimension of the N electrode 26 ; the second current blocking layer structure 2212 is symmetrically distributed around the first current blocking layer structure 2211 . Preferably, in this embodiment, the first current blocking layer structure 2211 is a large circular structure, and the second current blocking layer structure 2212 is a small circular structure.

具体的,所述大圆形结构的直径为50μm~150μm,所述小圆形结构的直径为5μm~50μm。Specifically, the diameter of the large circular structure is 50 μm˜150 μm, and the diameter of the small circular structure is 5 μm˜50 μm.

具体的,可以根据实际需要在所述图形化结构221内设置一个所述第一电流阻挡层结构2211周围的所述第二电流阻挡层结构2212的数量;优选地,本实施例中,一个所述图形化结构221中所述第二电流阻挡层结构2212的总数为4的倍数,即在一个所述图形化结构221内的所述大圆形结构周围的所述小圆形结构的总数可以为4个、8个、12个等等。Specifically, the number of the second current blocking layer structures 2212 around the first current blocking layer structure 2211 can be set in the patterned structure 221 according to actual needs; preferably, in this embodiment, one of the The total number of the second current blocking layer structures 2212 in the patterned structure 221 is a multiple of 4, that is, the total number of the small circular structures around the large circular structure in one patterned structure 221 can be For 4, 8, 12 and so on.

具体的,所述电流阻挡层22可以包括多个所述图形化结构221,所述多个图形化结构221呈阵列分布。Specifically, the current blocking layer 22 may include a plurality of patterned structures 221 , and the plurality of patterned structures 221 are distributed in an array.

通过在所述P-GaN层214表面上生长具有与所述N电极26不同形状的电流阻挡层22,即所述电流阻挡层22不仅包括与所述N电极26上下对应的第一电流阻挡层结构2211,还包括对称地分布在所述第一电流阻挡层结构2211周围的所述第二电流阻挡层结构2212,可以将N-PAD(N电极)到所述P-GaN层214区域的纵向扩展电流扩散开,有效地阻挡N电极下方的电流拥挤效应,使得垂直型LED电流扩散更加均匀,从而提高LED芯片结构的光电性能。By growing a current blocking layer 22 having a shape different from that of the N electrode 26 on the surface of the P-GaN layer 214, that is, the current blocking layer 22 not only includes the first current blocking layer corresponding to the top and bottom of the N electrode 26 The structure 2211 also includes the second current blocking layer structure 2212 symmetrically distributed around the first current blocking layer structure 2211, which can connect the N-PAD (N electrode) to the longitudinal direction of the P-GaN layer 214 region The extended current spreads out, effectively blocking the current crowding effect under the N electrode, making the vertical LED current spread more evenly, thereby improving the photoelectric performance of the LED chip structure.

在步骤S3中,请参阅图1中的S3步骤及图5,在所述外延层21及所述电流阻挡层22上形成反射层23。In step S3 , referring to step S3 in FIG. 1 and FIG. 5 , a reflective layer 23 is formed on the epitaxial layer 21 and the current blocking layer 22 .

具体的,所述反射层23的材质可以为Ag、Al或Rh;所述反射层23的厚度大于所述电流阻挡层22的厚度,以确保所述反射层23完全包裹所述电流阻挡层22。Specifically, the material of the reflective layer 23 can be Ag, Al or Rh; the thickness of the reflective layer 23 is greater than the thickness of the current blocking layer 22, so as to ensure that the reflective layer 23 completely wraps the current blocking layer 22 .

具体的,所述反射层23的横向尺寸根据所述垂直型LED芯片的横向尺寸而定。优选地,本实施例中,采用负胶剥离(Lift-off)技术在固定区域蒸镀形成所述反射层23,以使得所述反射层23的横向尺寸小于所述垂直型LED芯片的横向尺寸,即使得所述反射层23暴露出所述外延层21的边缘,便于后续形成阻挡层全面对所述反射层23进行保护。Specifically, the lateral dimension of the reflective layer 23 is determined according to the lateral dimension of the vertical LED chip. Preferably, in this embodiment, the reflective layer 23 is formed by vapor deposition in a fixed area using lift-off technology, so that the lateral dimension of the reflective layer 23 is smaller than the lateral dimension of the vertical LED chip , that is, the reflective layer 23 exposes the edge of the epitaxial layer 21 , which facilitates subsequent formation of a barrier layer to fully protect the reflective layer 23 .

在步骤S4中,请参阅图1中的S4步骤及图6,在所述外延层21及所述反射层23上形成金属键合层24。In step S4 , referring to step S4 in FIG. 1 and FIG. 6 , a metal bonding layer 24 is formed on the epitaxial layer 21 and the reflective layer 23 .

具体的,所述金属键合层24的材质为Au、Sn或AuSn合金,所述金属键合层24用于与后续形成的导电衬底进行键合;所述金属键合层24的厚度大于所述反射层23的厚度,以确保所述金属键合层24完全包裹所述反射层23。Specifically, the material of the metal bonding layer 24 is Au, Sn or AuSn alloy, and the metal bonding layer 24 is used to bond with the subsequently formed conductive substrate; the thickness of the metal bonding layer 24 is greater than The thickness of the reflective layer 23 is to ensure that the metal bonding layer 24 completely covers the reflective layer 23 .

在步骤S5中,请参阅图1的S5步骤及图7,将所述金属键合层24的衬底与所述导电衬底25键合,并去除所述生长衬底20。In step S5 , referring to step S5 of FIG. 1 and FIG. 7 , the substrate of the metal bonding layer 24 is bonded to the conductive substrate 25 , and the growth substrate 20 is removed.

具体的,所述导电衬底25的材质为Si、Cu或MoCu等导电且散热良好的衬底。Specifically, the conductive substrate 25 is made of Si, Cu or MoCu, which is conductive and has good heat dissipation.

具体的,可以采用激光剥离或化学剥离去除所述生长衬底20。由于所述生长衬底与所述未掺杂GaN层相接触,在使用激光剥离去除所述生长衬底20时,激光剥离会使所述未掺杂GaN层在表面形成一层金属Ga。因此,在使用激光剥离去除所述生长衬底20以后,还需要采用酸溶液或碱溶液等去除所述金属Ga,所采用的去除所述金属Ga的溶液可以为HCl或KOH。Specifically, the growth substrate 20 may be removed by laser lift-off or chemical lift-off. Since the growth substrate is in contact with the undoped GaN layer, when the growth substrate 20 is removed by laser liftoff, the laser liftoff will cause a layer of metal Ga to be formed on the surface of the undoped GaN layer. Therefore, after removing the growth substrate 20 by laser lift-off, it is necessary to use acid solution or alkali solution to remove the metal Ga, and the solution used to remove the metal Ga may be HCl or KOH.

在步骤S6中,请参阅图1的S6步骤及图8,刻蚀所述未掺杂GaN层211至暴露出所述N-GaN层212。In step S6 , referring to step S6 of FIG. 1 and FIG. 8 , the undoped GaN layer 211 is etched to expose the N-GaN layer 212 .

具体的,可以采用湿法刻蚀工艺或干法刻蚀工艺对所述未掺杂GaN层211进行刻蚀,直至暴露出所述N-GaN层212。在刻蚀的过程中,可以对所述未掺杂GaN211进行整面刻蚀或图形化刻蚀,即所述未掺杂GaN层211可以被完全刻蚀去除,也可以仅仅去除一部分。Specifically, the undoped GaN layer 211 may be etched using a wet etching process or a dry etching process until the N-GaN layer 212 is exposed. During the etching process, the undoped GaN 211 may be etched entirely or patterned, that is, the undoped GaN layer 211 may be etched completely or only partially removed.

具体的,刻蚀所述未掺杂GaN层211至暴露出所述N-GaN层212以后,还包括对所述N-GaN层212进行粗化处理以形成粗糙面27的步骤。对所述N-GaN层212进行粗化处理并形成所述粗糙面27,可以增加所述N-GaN层212的表面积,进而增加出光的面积,从而提高垂直型LED芯片结构的出光效率。Specifically, after etching the undoped GaN layer 211 to expose the N-GaN layer 212 , a step of roughening the N-GaN layer 212 to form a rough surface 27 is also included. Roughening the N-GaN layer 212 and forming the rough surface 27 can increase the surface area of the N-GaN layer 212 , thereby increasing the light emitting area, thereby improving the light emitting efficiency of the vertical LED chip structure.

具体的,可以采用湿法刻蚀工艺对所述N-GaN层212进行粗化处理,湿法刻蚀工艺中所使用的溶液可以为KOH或H2SO4Specifically, the N-GaN layer 212 may be roughened by using a wet etching process, and the solution used in the wet etching process may be KOH or H 2 SO 4 .

在步骤S7中,请参阅图1的S7步骤及图9及图10,在所述N-GaN层212上形成N电极26;其中,图9为在所述N-GaN层212上形成N电极26的俯视示意图,图10为图9沿BB’方向的剖面示意图。In step S7, referring to step S7 of FIG. 1 and FIG. 9 and FIG. 10, an N electrode 26 is formed on the N-GaN layer 212; wherein, FIG. 9 is an N electrode formed on the N-GaN layer 212 26 is a schematic top view, and FIG. 10 is a schematic cross-sectional view along the direction BB' of FIG. 9 .

具体的,采用蒸镀工艺在所述N-GaN层212上形成所述N电极26,所述N电极26的上表面高于所述粗糙面27的上表面以暴露出所述N电极26;所述N电极26的材质可以为Ni/Au、Al/Ti/Pt/Au、或Cr/Pt/Au。Specifically, an evaporation process is used to form the N-electrode 26 on the N-GaN layer 212, the upper surface of the N-electrode 26 is higher than the upper surface of the rough surface 27 to expose the N-electrode 26; The material of the N electrode 26 can be Ni/Au, Al/Ti/Pt/Au, or Cr/Pt/Au.

具体的,所述N电极26的形状可以根据实际需要进行设计,在本实施例中,所述第一电流阻挡层2211为圆形电流阻挡层的前提下,所述N电极26为圆形电极,所述N电极的圆心与所述第一电流阻挡层结构2211的圆心上下对应;所述N电极26的半径小于或等于所述第一电流阻挡层结构2211的半径,且所述第一电流阻挡层结构2211与所述N电极26的半径差小于或等于10μm。Specifically, the shape of the N electrode 26 can be designed according to actual needs. In this embodiment, on the premise that the first current blocking layer 2211 is a circular current blocking layer, the N electrode 26 is a circular electrode , the center of the N electrode corresponds up and down to the center of the first current blocking layer structure 2211; the radius of the N electrode 26 is less than or equal to the radius of the first current blocking layer structure 2211, and the first current The radius difference between the barrier layer structure 2211 and the N electrode 26 is less than or equal to 10 μm.

具体的,在所述N-GaN层212上形成N电极26之后,还可以包括一在所述粗糙面27上形成钝化层(未示出)的步骤。所述钝化层用于保护整个芯片结构,形成的所述钝化层暴露出所述N电极212。Specifically, after forming the N electrode 26 on the N-GaN layer 212 , a step of forming a passivation layer (not shown) on the rough surface 27 may also be included. The passivation layer is used to protect the entire chip structure, and the formed passivation layer exposes the N electrode 212 .

实施例二Embodiment two

请继续参阅图3及图9至图10,本发明还提供一种垂直型LED芯片结构,所述垂直型LED芯片结构由下至上依次至少包括:导电衬底25、金属键合层24、反射层23、电流阻挡层22、P-GaN层214、多量子阱层213、N-GaN层212及N电极26;其中,所述N-GaN层212靠近所述N电极26的表面形成有粗糙面27,所述粗糙面27暴露出所述N电极26。在所述N-GaN层212形成所述粗糙面27,可以增加所述N-GaN层212的表面积,进而增加出光的面积,从而提高垂直型LED芯片结构的出光效率。Please continue to refer to FIG. 3 and FIG. 9 to FIG. 10, the present invention also provides a vertical LED chip structure, the vertical LED chip structure at least includes: a conductive substrate 25, a metal bonding layer 24, a reflective Layer 23, current blocking layer 22, P-GaN layer 214, multi-quantum well layer 213, N-GaN layer 212 and N electrode 26; wherein, the surface of the N-GaN layer 212 close to the N electrode 26 is formed with a rough The rough surface 27 exposes the N electrode 26 . Forming the rough surface 27 on the N-GaN layer 212 can increase the surface area of the N-GaN layer 212, thereby increasing the light emitting area, thereby improving the light emitting efficiency of the vertical LED chip structure.

具体的,所述电流阻挡层22的厚度为200埃~6000埃,所述电流阻挡层22的材质可以为ITO,ZnO或Ni/Ag。Specifically, the thickness of the current blocking layer 22 is 200 angstroms to 6000 angstroms, and the material of the current blocking layer 22 may be ITO, ZnO or Ni/Ag.

具体的,如图3所示,所述电流阻挡层22包括至少一个由一第一电流阻挡层结构2211及多个第二电流阻挡层结构2212组成的图形化结构221;所述第一电流阻挡层结构2211的形状与所述N电极26的形状相同,所述第一电流阻挡层结构2211的中心与所述N电极26的中心上下对应,且所述第一电流阻挡层2211的横向尺寸大于或等于所述N电极26的横向尺寸;所述第二电流阻挡层结构2212对称地分布在所述第一电流阻挡层结构2211的周围。优选地,本实施例中,所述第一电流阻挡层结构2211为大圆形结构,所述第二电流阻挡层结构2212为小圆形结构。Specifically, as shown in FIG. 3, the current blocking layer 22 includes at least one patterned structure 221 composed of a first current blocking layer structure 2211 and a plurality of second current blocking layer structures 2212; The shape of the layer structure 2211 is the same as that of the N electrode 26, the center of the first current blocking layer structure 2211 corresponds up and down to the center of the N electrode 26, and the lateral dimension of the first current blocking layer 2211 is larger than Or equal to the lateral dimension of the N electrode 26 ; the second current blocking layer structure 2212 is symmetrically distributed around the first current blocking layer structure 2211 . Preferably, in this embodiment, the first current blocking layer structure 2211 is a large circular structure, and the second current blocking layer structure 2212 is a small circular structure.

具体的,所述大圆形结构的直径为50μm~150μm,所述小圆形结构的直径为5μm~50μm。Specifically, the diameter of the large circular structure is 50 μm˜150 μm, and the diameter of the small circular structure is 5 μm˜50 μm.

具体的,可以根据实际需要在所述图形化结构221内设置一个所述第一电流阻挡层结构2211周围的所述第二电流阻挡层结构2212的数量;优选地,本实施例中,一个所述图形化结构221中所述第二电流阻挡层结构2212的总数为4的倍数,即在一个所述图形化结构221内的所述大圆形结构周围的所述小圆形结构的总数可以为4个、8个、12个等等。Specifically, the number of the second current blocking layer structures 2212 around the first current blocking layer structure 2211 can be set in the patterned structure 221 according to actual needs; preferably, in this embodiment, one of the The total number of the second current blocking layer structures 2212 in the patterned structure 221 is a multiple of 4, that is, the total number of the small circular structures around the large circular structure in one patterned structure 221 can be For 4, 8, 12 and so on.

具体的,所述电流阻挡层22可以包括多个所述图形化结构221,所述多个图形化结构221呈阵列分布。Specifically, the current blocking layer 22 may include a plurality of patterned structures 221 , and the plurality of patterned structures 221 are distributed in an array.

具体的,所述N电极26的形状可以根据实际需要进行设计,如图9所示,在本实施例中,所述第一电流阻挡层2211为圆形电流阻挡层的前提下,所述N电极26为圆形电极,所述N电极的圆心与所述第一电流阻挡层结构2211的圆心上下对应;所述N电极26的半径小于或等于所述第一电流阻挡层结构2211的半径,且所述第一电流阻挡层结构2211与所述N电极26的半径差小于或等于10μm。Specifically, the shape of the N electrode 26 can be designed according to actual needs. As shown in FIG. 9, in this embodiment, on the premise that the first current blocking layer 2211 is a circular current blocking layer, the N The electrode 26 is a circular electrode, and the center of the N electrode corresponds up and down to the center of the first current blocking layer structure 2211; the radius of the N electrode 26 is less than or equal to the radius of the first current blocking layer structure 2211, And the radius difference between the first current blocking layer structure 2211 and the N electrode 26 is less than or equal to 10 μm.

通过在所述P-GaN层214表面上制备具有与所述N电极26不同形状的电流阻挡层22,即所述电流阻挡层22不仅包括与所述N电极26上下对应的第一电流阻挡层结构2211,还包括对称地分布在所述第一电流阻挡层结构2211周围的所述第二电流阻挡层结构2212,可以将N-PAD(N电极)到所述P-GaN层214区域的纵向扩展电流扩散开,有效地阻挡N电极下方的电流拥挤效应,使得垂直型LED电流扩散更加均匀,从而提高LED芯片结构的光电性能。By preparing a current blocking layer 22 having a shape different from that of the N electrode 26 on the surface of the P-GaN layer 214, that is, the current blocking layer 22 not only includes the first current blocking layer corresponding to the top and bottom of the N electrode 26 The structure 2211 also includes the second current blocking layer structure 2212 symmetrically distributed around the first current blocking layer structure 2211, which can connect the N-PAD (N electrode) to the longitudinal direction of the P-GaN layer 214 region The extended current spreads out, effectively blocking the current crowding effect under the N electrode, making the vertical LED current spread more evenly, thereby improving the photoelectric performance of the LED chip structure.

综上所述,本发明提供一种垂直型LED芯片结构及其制作方法,所述垂直型LED芯片结构由下至上依次至少包括:导电衬底25、金属键合层24、反射层23、欧姆接触层23、电流阻挡层22、P-GaN层214、多量子阱层213、N-GaN层212及N电极26。通过在所述P-GaN层214表面上制备具有与所述N电极26不同形状的电流阻挡层22,即所述电流阻挡层22不仅包括与所述N电极26上下对应的第一电流阻挡层结构2211,还包括对称地分布在所述第一电流阻挡层结构2211周围的所述第二电流阻挡层结构2212,可以将N-PAD(N电极)到所述P-GaN层214区域的纵向扩展电流扩散开,有效地阻挡N电极下方的电流拥挤效应,使得垂直型LED电流扩散更加均匀,从而提高LED芯片结构的光电性能。To sum up, the present invention provides a vertical LED chip structure and its manufacturing method. The vertical LED chip structure at least includes: a conductive substrate 25, a metal bonding layer 24, a reflective layer 23, an ohmic The contact layer 23 , the current blocking layer 22 , the P-GaN layer 214 , the multi-quantum well layer 213 , the N-GaN layer 212 and the N electrode 26 . By preparing a current blocking layer 22 having a shape different from that of the N electrode 26 on the surface of the P-GaN layer 214, that is, the current blocking layer 22 not only includes the first current blocking layer corresponding to the top and bottom of the N electrode 26 The structure 2211 also includes the second current blocking layer structure 2212 symmetrically distributed around the first current blocking layer structure 2211, which can connect the N-PAD (N electrode) to the longitudinal direction of the P-GaN layer 214 region The extended current spreads out, effectively blocking the current crowding effect under the N electrode, making the vertical LED current spread more evenly, thereby improving the photoelectric performance of the LED chip structure.

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.

Claims (14)

1.一种垂直型LED芯片结构的制作方法,其特征在于:包括以下步骤: 1. A method for making a vertical LED chip structure, characterized in that: comprising the following steps: 提供生长衬底,在所述生长衬底上形成外延层,所述外延层包括由下至上依次形成的未掺杂GaN层、N-GaN层、多量子阱层及P-GaN层; A growth substrate is provided, and an epitaxial layer is formed on the growth substrate, and the epitaxial layer includes an undoped GaN layer, an N-GaN layer, a multi-quantum well layer, and a P-GaN layer sequentially formed from bottom to top; 在所述P-GaN层上形成接触层,并对所述接触层进行光刻、刻蚀形成电流阻挡层; forming a contact layer on the P-GaN layer, and performing photolithography and etching on the contact layer to form a current blocking layer; 在所述外延层及所述电流阻挡层上形成反射层; forming a reflective layer on the epitaxial layer and the current blocking layer; 在所述外延层及所述反射层上形成金属键合层; forming a metal bonding layer on the epitaxial layer and the reflective layer; 将形成所述金属键合层的衬底与导电衬底键合,并去除所述生长衬底; bonding the substrate forming the metal bonding layer to a conductive substrate, and removing the growth substrate; 刻蚀所述未掺杂GaN层至暴露出所述N-GaN层; etching the undoped GaN layer to expose the N-GaN layer; 在所述N-GaN层上形成N电极。 An N electrode is formed on the N-GaN layer. 2.根据权利要求1所述的垂直型LED芯片结构的制作方法,其特征在于:所述衬底为蓝宝石衬底、硅衬底、碳化硅衬底或图形化衬底。 2. The method for manufacturing a vertical LED chip structure according to claim 1, wherein the substrate is a sapphire substrate, a silicon substrate, a silicon carbide substrate or a patterned substrate. 3.根据权利要求1所述的垂直型LED芯片结构的制作方法,其特征在于:所述电流阻挡层的厚度为200埃~6000埃,所述电流阻挡层的材质为ITO,ZnO或Ni/Ag。 3. The manufacturing method of the vertical LED chip structure according to claim 1, characterized in that: the thickness of the current blocking layer is 200 angstroms to 6000 angstroms, and the material of the current blocking layer is ITO, ZnO or Ni/ Ag. 4.根据权利要求1所述的垂直型LED芯片结构的制作方法,其特征在于:所述电流阻挡层包括至少一个由一第一电流阻挡层结构及多个第二电流阻挡层结构组成的图形化结构;所述第一电流阻挡层结构的形状与所述N电极的形状相同,所述第一电流阻挡层结构的中心与所述N电极的中心上下对应,且所述第一电流阻挡层的横向尺寸大于或等于所述N电极的横向尺寸;所述第二电流阻挡层结构对称地分布在所述第一电流阻挡层结构的周围。 4. The method for manufacturing a vertical LED chip structure according to claim 1, wherein the current blocking layer comprises at least one pattern consisting of a first current blocking layer structure and a plurality of second current blocking layer structures structure; the shape of the first current blocking layer structure is the same as that of the N electrode, the center of the first current blocking layer structure corresponds up and down to the center of the N electrode, and the first current blocking layer The lateral dimension is greater than or equal to the lateral dimension of the N electrode; the second current blocking layer structure is symmetrically distributed around the first current blocking layer structure. 5.根据权利要求4所述的垂直型LED芯片结构的制作方法,其特征在于:所述第一电流阻挡层结构为大圆形结构,所述第二电流阻挡层结构为小圆形结构。 5. The method for manufacturing a vertical LED chip structure according to claim 4, wherein the first current blocking layer structure is a large circular structure, and the second current blocking layer structure is a small circular structure. 6.根据权利要求5所述的垂直型LED芯片结构的制作方法,其特征在于:所述大圆形结构的直径为50μm~150μm,所述小圆形结构的直径为5μm~50μm。 6 . The method for manufacturing a vertical LED chip structure according to claim 5 , wherein the diameter of the large circular structure is 50 μm˜150 μm, and the diameter of the small circular structure is 5 μm˜50 μm. 7.根据权利要求1所述的垂直型LED芯片结构的制作方法,其特征在于:所述反射层的横向尺寸小于所述垂直型LED芯片的横向尺寸;所述反射层的材质为Ag、Al或Rh。 7. The manufacturing method of the vertical LED chip structure according to claim 1, characterized in that: the lateral dimension of the reflective layer is smaller than the lateral dimension of the vertical LED chip; the material of the reflective layer is Ag, Al or Rh. 8.根据权利要求1所述的垂直型LED芯片结构的制作方法,其特征在于:所述金属键合层的材质为Au、Sn或AuSn合金。 8. The method for manufacturing a vertical LED chip structure according to claim 1, wherein the metal bonding layer is made of Au, Sn or AuSn alloy. 9.根据权利要求1所述的垂直型LED芯片结构的制作方法,其特征在于:在去除所述生长衬底之后,形成所述N电极之前,首先采用湿法或干法刻蚀工艺对所述未掺杂GaN层进行刻蚀,直至暴露出所述N-GaN层;其次对所述N-GaN层进行粗化处理以形成粗糙面,所述粗化处理使用的溶液为KOH或H2SO49. The method for manufacturing a vertical LED chip structure according to claim 1, characterized in that: after removing the growth substrate and before forming the N electrode, the wet or dry etching process is first used to etch the The undoped GaN layer is etched until the N-GaN layer is exposed; secondly, the N-GaN layer is roughened to form a rough surface, and the solution used for the roughening treatment is KOH or H 2 SO 4 . 10.根据权利要求1所述的垂直型LED芯片结构的制作方法,其特征在于:所述N电极的材质为Ni/Au、Al/Ti/Pt/Au、或Cr/Pt/Au。 10. The method for manufacturing a vertical LED chip structure according to claim 1, wherein the material of the N electrode is Ni/Au, Al/Ti/Pt/Au, or Cr/Pt/Au. 11.一种垂直型LED芯片结构,其特征在于,所述垂直型LED芯片结构由下至上依次包括:导电衬底、金属键合层、反射层、电流阻挡层、P-GaN层、多量子阱层、N-GaN层及N电极; 11. A vertical LED chip structure, characterized in that the vertical LED chip structure comprises from bottom to top: a conductive substrate, a metal bonding layer, a reflective layer, a current blocking layer, a P-GaN layer, a multi-quantum Well layer, N-GaN layer and N electrode; 其中,所述N-GaN层靠近所述N电极的表面形成有粗糙面,所述粗糙面暴露出所述N电极。 Wherein, a rough surface is formed on the surface of the N-GaN layer close to the N electrode, and the N electrode is exposed by the rough surface. 12.根据权利要求11所述的垂直型LED芯片结构,其特征在于:所述电流阻挡层包括至少一个由一第一电流阻挡层结构及多个第二电流阻挡层结构组成的图形化结构;所述第一电流阻挡层结构的形状与所述N电极的形状相同,所述第一电流阻挡层结构的中心与所述N电极的中心上下对应,且所述第一电流阻挡层的横向尺寸大于或等于所述N电极的横向尺寸;所述第二电流阻挡层结构对称地分布在所述第一电流阻挡层结构的周围。 12. The vertical LED chip structure according to claim 11, wherein the current blocking layer comprises at least one patterned structure consisting of a first current blocking layer structure and a plurality of second current blocking layer structures; The shape of the first current blocking layer structure is the same as that of the N electrode, the center of the first current blocking layer structure corresponds up and down to the center of the N electrode, and the lateral dimension of the first current blocking layer greater than or equal to the lateral size of the N electrode; the second current blocking layer structure is symmetrically distributed around the first current blocking layer structure. 13.根据权利要求12所述的垂直型LED芯片结构,其特征在于:所述第一电流阻挡层结构为大圆形结构,所述第二电流阻挡层结构为小圆形结构。 13. The vertical LED chip structure according to claim 12, wherein the first current blocking layer structure is a large circular structure, and the second current blocking layer structure is a small circular structure. 14.根据权利要求13所述的垂直型LED芯片结构,其特征在于:所述大圆形结构的直径为50μm~150μm,所述小圆形结构的直径为5μm~50μm。 14. The vertical LED chip structure according to claim 13, wherein the diameter of the large circular structure is 50 μm˜150 μm, and the diameter of the small circular structure is 5 μm˜50 μm.
CN201510058505.8A 2015-02-04 2015-02-04 Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof Pending CN104638069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510058505.8A CN104638069A (en) 2015-02-04 2015-02-04 Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510058505.8A CN104638069A (en) 2015-02-04 2015-02-04 Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN104638069A true CN104638069A (en) 2015-05-20

Family

ID=53216576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510058505.8A Pending CN104638069A (en) 2015-02-04 2015-02-04 Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN104638069A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609596A (en) * 2015-09-11 2016-05-25 映瑞光电科技(上海)有限公司 LED vertical chip possessing current blocking structure and manufacturing method thereof
CN105742417A (en) * 2016-03-09 2016-07-06 映瑞光电科技(上海)有限公司 Perpendicular LED chip structure and preparation method therefor
CN105742445A (en) * 2016-03-09 2016-07-06 映瑞光电科技(上海)有限公司 Vertical light emitting diode (LED) chip structure and fabrication method thereof
CN106328776A (en) * 2016-08-31 2017-01-11 中联西北工程设计研究院有限公司 Preparation method of vertical-structure purple light LED chip
CN106449899A (en) * 2016-08-31 2017-02-22 中联西北工程设计研究院有限公司 Fabrication method of vertical-structure blue-light LED chip
CN107026220A (en) * 2016-01-29 2017-08-08 映瑞光电科技(上海)有限公司 Vertical LED chip structure and preparation method thereof
CN111261762A (en) * 2020-03-20 2020-06-09 西安唐晶量子科技有限公司 Gallium nitride-based vertical structure light-emitting diode with current blocking layer and manufacturing method thereof
TWI833439B (en) * 2020-12-29 2024-02-21 晶元光電股份有限公司 Light-emitting device and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740695A (en) * 2008-11-24 2010-06-16 Lg伊诺特有限公司 Light emitting device and method for manufacturing the same
US20110248298A1 (en) * 2008-04-30 2011-10-13 Hyung Jo Park Light emitting device and method for manufacturing the same
CN102751409A (en) * 2012-07-09 2012-10-24 厦门市三安光电科技有限公司 Vertical gallium nitride light-emitting diode and manufacturing method thereof
CN102810550A (en) * 2011-06-02 2012-12-05 Lg伊诺特有限公司 Light emitting device
CN103000779A (en) * 2012-09-24 2013-03-27 安徽三安光电有限公司 Vertical light emitting diode with current blocking function and method for manufacturing vertical light emitting diode
TW201320396A (en) * 2011-11-08 2013-05-16 Tyntek Corp Chunan Branch LED structure with current blocking layer having a plurality of through holes
CN104064642A (en) * 2014-07-04 2014-09-24 映瑞光电科技(上海)有限公司 Vertical type LED manufacturing method
TW201448267A (en) * 2013-06-14 2014-12-16 Lextar Electronics Corp Light-emitting diode structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248298A1 (en) * 2008-04-30 2011-10-13 Hyung Jo Park Light emitting device and method for manufacturing the same
CN101740695A (en) * 2008-11-24 2010-06-16 Lg伊诺特有限公司 Light emitting device and method for manufacturing the same
CN102810550A (en) * 2011-06-02 2012-12-05 Lg伊诺特有限公司 Light emitting device
TW201320396A (en) * 2011-11-08 2013-05-16 Tyntek Corp Chunan Branch LED structure with current blocking layer having a plurality of through holes
CN102751409A (en) * 2012-07-09 2012-10-24 厦门市三安光电科技有限公司 Vertical gallium nitride light-emitting diode and manufacturing method thereof
CN103000779A (en) * 2012-09-24 2013-03-27 安徽三安光电有限公司 Vertical light emitting diode with current blocking function and method for manufacturing vertical light emitting diode
TW201448267A (en) * 2013-06-14 2014-12-16 Lextar Electronics Corp Light-emitting diode structure
CN104064642A (en) * 2014-07-04 2014-09-24 映瑞光电科技(上海)有限公司 Vertical type LED manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609596A (en) * 2015-09-11 2016-05-25 映瑞光电科技(上海)有限公司 LED vertical chip possessing current blocking structure and manufacturing method thereof
CN107026220A (en) * 2016-01-29 2017-08-08 映瑞光电科技(上海)有限公司 Vertical LED chip structure and preparation method thereof
CN105742417A (en) * 2016-03-09 2016-07-06 映瑞光电科技(上海)有限公司 Perpendicular LED chip structure and preparation method therefor
CN105742445A (en) * 2016-03-09 2016-07-06 映瑞光电科技(上海)有限公司 Vertical light emitting diode (LED) chip structure and fabrication method thereof
CN105742417B (en) * 2016-03-09 2018-09-18 映瑞光电科技(上海)有限公司 A kind of vertical LED chip structure and preparation method thereof
CN105742445B (en) * 2016-03-09 2019-01-18 映瑞光电科技(上海)有限公司 A kind of vertical LED chip structure and preparation method thereof
CN106328776A (en) * 2016-08-31 2017-01-11 中联西北工程设计研究院有限公司 Preparation method of vertical-structure purple light LED chip
CN106449899A (en) * 2016-08-31 2017-02-22 中联西北工程设计研究院有限公司 Fabrication method of vertical-structure blue-light LED chip
CN106328776B (en) * 2016-08-31 2019-04-09 中联西北工程设计研究院有限公司 A kind of preparation method of vertical structure violet LED chip
CN106449899B (en) * 2016-08-31 2019-07-02 中联西北工程设计研究院有限公司 A kind of preparation method of vertical structure blue LED chip
CN111261762A (en) * 2020-03-20 2020-06-09 西安唐晶量子科技有限公司 Gallium nitride-based vertical structure light-emitting diode with current blocking layer and manufacturing method thereof
TWI833439B (en) * 2020-12-29 2024-02-21 晶元光電股份有限公司 Light-emitting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN104638069A (en) Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof
CN110088922B (en) A light-emitting diode chip structure and fabrication method thereof
KR101150861B1 (en) Light emitting diode having multi-cell structure and its manufacturing method
CN101026213B (en) Light emitting device and method of manufacturing the same
CN102751410B (en) LED (Light Emitting Diode) chip provided with stepped current blocking structure and fabricating method thereof
CN101794849B (en) A Wet Erosion Stripping Method of GaN-based LED on SiC Substrate
CN105355743B (en) Light emitting diode and preparation method thereof
CN105514230B (en) GaN base LED vertical chip structure and preparation method thereof
WO2019174396A1 (en) Light-emitting diode chip structure and manufacturing method therefor
CN104300065A (en) Light-emitting diode with novel extension electrode structure and manufacturing method thereof
JP2007281037A (en) Semiconductor light emitting element, and its manufacturing method
JP2011060966A (en) Light-emitting device
CN104659178A (en) Power type three-dimensional LED light-emitting device and manufacturing method thereof
CN102544246A (en) Method for manufacturing light emitting diode (LED) grains
CN112750931B (en) Micro light-emitting diode, micro light-emitting diode array substrate and manufacturing method thereof
WO2012058961A1 (en) Light-emitting diode and method for manufacturing same
KR101126300B1 (en) Light emitting diode with hole-pattern filled with CNT and manufacturing method of the same
CN104218134A (en) A LED vertical chip structure with special roughened morphology and its preparation method
TWI593137B (en) Light-emitting element having heterogeneous material structure and method of manufacturing the same
CN104617191A (en) LED vertical chip with current block structure and preparation method thereof
CN104993024A (en) Light-emitting diode chip, manufacturing method thereof and encapsulation method of light-emitting diode chip
CN103811608B (en) A kind of manufacture method of light emitting diode
TWI453968B (en) Semiconductor light emitting structure
CN220324473U (en) Flip-chip light-emitting element and light-emitting device
CN104393138B (en) A light-emitting diode with electrode light output

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150520