CN111261762A - Gallium nitride-based vertical structure light-emitting diode with current blocking layer and manufacturing method thereof - Google Patents
Gallium nitride-based vertical structure light-emitting diode with current blocking layer and manufacturing method thereof Download PDFInfo
- Publication number
- CN111261762A CN111261762A CN202010201845.2A CN202010201845A CN111261762A CN 111261762 A CN111261762 A CN 111261762A CN 202010201845 A CN202010201845 A CN 202010201845A CN 111261762 A CN111261762 A CN 111261762A
- Authority
- CN
- China
- Prior art keywords
- layer
- gallium nitride
- light
- emitting diode
- vertical structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 61
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 230000000903 blocking effect Effects 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 238000003466 welding Methods 0.000 claims abstract description 19
- 230000004888 barrier function Effects 0.000 claims abstract description 17
- 238000009792 diffusion process Methods 0.000 claims abstract description 16
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000010956 nickel silver Substances 0.000 claims abstract description 7
- 238000002347 injection Methods 0.000 claims abstract description 4
- 239000007924 injection Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 13
- 229910052594 sapphire Inorganic materials 0.000 claims description 10
- 239000010980 sapphire Substances 0.000 claims description 10
- 229920002120 photoresistant polymer Polymers 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 5
- 229910052759 nickel Inorganic materials 0.000 claims 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims 2
- 238000000151 deposition Methods 0.000 claims 2
- 239000004332 silver Substances 0.000 claims 2
- 239000000853 adhesive Substances 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 claims 1
- 238000009713 electroplating Methods 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 238000001465 metallisation Methods 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 claims 1
- 238000005476 soldering Methods 0.000 abstract description 5
- 230000008859 change Effects 0.000 abstract description 2
- 238000000206 photolithography Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/835—Reflective materials
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种具有电流阻挡层的氮化镓基垂直结构发光二极管,包括:位于底层的导电衬底;位于导电衬底表面第二焊接层;位于第二焊接层表面的第一焊接层;位于第一焊接层表面的扩散阻挡层;位于扩散阻挡层表面的镍银反射层;位于扩散阻挡层表面的Al层;位于镍银反射层和Al层表面的氮化镓基发光外延层;位于发光外延层表面的n电极,Al金属层位于n电极下方的投影区,Al金属层作为电流阻挡层改变电流注入,提高发光效率。
The invention discloses a gallium nitride-based vertical structure light-emitting diode with a current blocking layer, comprising: a conductive substrate on the bottom layer; a second soldering layer on the surface of the conductive substrate; and a first soldering layer on the surface of the second soldering layer The diffusion barrier layer on the surface of the first welding layer; the nickel-silver reflective layer on the surface of the diffusion barrier layer; the Al layer on the surface of the diffusion barrier layer; the gallium nitride-based light-emitting epitaxial layer on the surface of the nickel-silver reflective layer and the Al layer; The n electrode is located on the surface of the light-emitting epitaxial layer, and the Al metal layer is located in the projection area under the n electrode. The Al metal layer acts as a current blocking layer to change the current injection and improve the luminous efficiency.
Description
技术领域technical field
本发明属于半导体领域,具体的,涉及一种具有电流阻挡层的氮化镓基垂直结构发光二极管及其制作方法。The invention belongs to the field of semiconductors, and in particular relates to a gallium nitride-based vertical structure light-emitting diode with a current blocking layer and a manufacturing method thereof.
背景技术Background technique
近年来,垂直结构LED因为其在大电流注入下良好的表现,在市场赢得了一席之地,垂直结构LED通过去除生长衬底,将氮化镓基的发光层转移至导热更好的二次衬底,提高了其大电流条件下的散热性能,此外,因为其电极为上下结构,故而不存在电流拥挤效应,相对传统正装结构LED而言,垂直结构LED在大电流下优势明显,所以,其在大功率领域,比如高亮度电筒,有着广泛应用。In recent years, vertical structure LEDs have won a place in the market because of their good performance under high current injection. Vertical structure LEDs remove the growth substrate and transfer the GaN-based light-emitting layer to a secondary substrate with better thermal conductivity. , which improves its heat dissipation performance under high current conditions. In addition, because its electrodes are upper and lower structures, there is no current crowding effect. Compared with traditional front-mounted structure LEDs, vertical structure LEDs have obvious advantages under high current conditions. High-power fields, such as high-brightness torches, are widely used.
因为垂直结构LED的n电极在上部,n电极下方的注入电流所发的光大部分被电极所阻挡,无法出射,故设计者提出了电流阻挡层的设计思路。CN200810237845专利提出的采用局部区域的扩散阻挡层和Ag通过高温退火来劣化的方案,该方案在实现时,须保证Au会扩散至电流阻挡区的表面,Au的反射率低于Ag,造成电流阻挡区域反射率下降,降低出光效率。已公开的申请号为201811636723.5的方案与本发明类似,但是结构稍显复杂,其采用一层或多层透明的介电材料作为电流阻挡层,采用介电材料作为电流阻挡层时,因半导体常用的介电材料与金属材料之间的热膨胀系数差别较大,且其与金属的粘附性不佳,键合时,键合难度较大,容易发生键合失败,导致发光层脱落。Because the n-electrode of the vertical structure LED is on the upper part, most of the light emitted by the injected current below the n-electrode is blocked by the electrode and cannot be emitted, so the designer proposes the design idea of the current blocking layer. CN200810237845 patent proposes a scheme of using local diffusion barrier layer and Ag to degrade through high temperature annealing. When this scheme is implemented, it must be ensured that Au will diffuse to the surface of the current blocking region, and the reflectivity of Au is lower than that of Ag, resulting in current blocking The regional reflectivity decreases, reducing the light extraction efficiency. The solution with the published application number 201811636723.5 is similar to the present invention, but the structure is slightly more complicated. It uses one or more layers of transparent dielectric materials as the current blocking layer. When the dielectric material is used as the current blocking layer, because semiconductors are commonly used The difference in thermal expansion coefficient between the dielectric material and the metal material is large, and its adhesion to the metal is not good. When bonding, the bonding is difficult, and the bonding failure is prone to occur, resulting in the luminescent layer falling off.
发明内容SUMMARY OF THE INVENTION
本发明所提出的具有电流阻挡层的氮化镓基垂直结构发光二极管及其制造方法,克服了上述提到的缺点,用Al金属作电流阻挡层,既实现了对发光层的电流分布调整,又实现很好的光反射,同时方法比较简单易实现。The gallium nitride-based vertical structure light-emitting diode with a current blocking layer and its manufacturing method proposed by the present invention overcome the above-mentioned shortcomings, and the use of Al metal as the current blocking layer not only realizes the adjustment of the current distribution of the light-emitting layer, It also achieves good light reflection, and at the same time, the method is relatively simple and easy to implement.
本发明是通过以下技术方案来实现:The present invention is achieved through the following technical solutions:
一种垂直结构氮化镓基发光二极管,其结构包括:A vertical structure gallium nitride-based light-emitting diode, the structure of which includes:
提供一导电衬底;providing a conductive substrate;
在导电衬底的上表面覆盖有第二焊接层;A second soldering layer is covered on the upper surface of the conductive substrate;
在第二焊接层表面覆盖有第一焊接层;The surface of the second welding layer is covered with a first welding layer;
在第一焊接层表面覆盖有扩散阻挡层;A diffusion barrier layer is covered on the surface of the first welding layer;
在扩散阻挡层表面部分区域覆盖镍银金属层作为p型欧姆接触反射金属薄膜;Covering part of the surface of the diffusion barrier layer with a nickel-silver metal layer as a p-type ohmic contact reflective metal film;
在扩散阻挡层表面部分区域覆盖Al层作为电流阻挡层,用以改变电流注入;Covering part of the surface area of the diffusion barrier layer with an Al layer as a current blocking layer to change the current injection;
在Al层和电流阻挡层表面覆盖有氮化镓基发光外延层;The surface of the Al layer and the current blocking layer is covered with a gallium nitride-based light-emitting epitaxial layer;
在氮化镓基发光外延层上表面部分区域覆盖n电极。A partial area of the upper surface of the gallium nitride-based light-emitting epitaxial layer covers the n-electrode.
上述垂直发光二极管结构中,本发明的创新之处在于n金属电极正对下方氮化镓基外延下表面区域,存在Al金属薄膜作为电流阻挡层,而非绝缘介质。In the above vertical light emitting diode structure, the innovation of the present invention is that the n metal electrode is directly facing the lower surface area of the gallium nitride-based epitaxy, and there is an Al metal film as a current blocking layer instead of an insulating medium.
为了实现上述目的,本发明还提供了一种氮化镓基垂直结构发光二极管的制作方法,包括:In order to achieve the above purpose, the present invention also provides a manufacturing method of a gallium nitride-based vertical structure light-emitting diode, including:
1)、生长氮化镓基外延层,在蓝宝石衬底上依次生长n-GaN层、MQW层和p-GaN层;1), grow a gallium nitride-based epitaxial layer, and sequentially grow an n-GaN layer, an MQW layer and a p-GaN layer on a sapphire substrate;
2)、在p-GaN层上沉积Ni/Ag层;2), deposit Ni/Ag layer on p-GaN layer;
3)、在Ni/Ag层上光刻;3), photolithography on the Ni/Ag layer;
4)、对Ni/Ag层湿法腐蚀,并且保留光刻胶;4), wet etching the Ni/Ag layer, and retain the photoresist;
5)、在带胶的晶圆表面沉积Al层;5), deposit Al layer on the wafer surface with glue;
6)、湿法剥离掉光刻胶及表面Al层;6), wet stripping off the photoresist and the surface Al layer;
7)、在Ni/Ag层和Al层表面形成扩散阻挡层;7), forming a diffusion barrier layer on the surface of the Ni/Ag layer and the Al layer;
8)、在扩散阻挡层表面形成含有Au的第一焊接层;8), forming the first welding layer containing Au on the surface of the diffusion barrier layer;
9)、提供一导电衬底,衬底表面形成含有Au的第二焊接层;9), a conductive substrate is provided, and the substrate surface forms the second welding layer containing Au;
10)、将第一焊接层和第二焊接层加压加热,使得外延层和导电衬底连接在一起;10), pressing and heating the first welding layer and the second welding layer, so that the epitaxial layer and the conductive substrate are connected together;
11)、去除蓝宝石衬底,暴露出n-GaN层;11), remove the sapphire substrate to expose the n-GaN layer;
12)、对暴露出的n-GaN层进行粗化;12), roughening the exposed n-GaN layer;
13)、在粗化后的n-GaN层上的局部区域形成n电极。13), forming an n-electrode in a local area on the roughened n-GaN layer.
本发明的上述步骤中,Al层和Ni/Ag层图形的定义是采用类似于自对准的工艺,仅仅采用一步光刻便完成两种薄膜的图形定义,这样能保证这两种薄膜不交叠,又将成本降到更低。In the above steps of the present invention, the patterns of the Al layer and the Ni/Ag layer are defined by a process similar to self-alignment, and only one step of photolithography is used to complete the pattern definition of the two thin films, which can ensure that the two thin films do not overlap. stack, and reduce the cost even lower.
附图说明Description of drawings
图1为本发明实施例的垂直结构氮化镓基发光二极管剖面图。FIG. 1 is a cross-sectional view of a vertical structure GaN-based light emitting diode according to an embodiment of the present invention.
图2-图10为实施例垂直结构氮化镓基发光二极管的制备过程剖面示意图。2-10 are cross-sectional schematic diagrams of the fabrication process of the vertical structure gallium nitride-based light emitting diode according to the embodiment.
图中部件符号说明:Description of parts symbols in the figure:
101:蓝宝石衬底101: Sapphire substrate
102:n-GaN层102: n-GaN layer
103:MQW发光层103: MQW light-emitting layer
104:p-GaN层104: p-GaN layer
120:扩散阻挡层120: Diffusion Barrier
121:第一焊接层121: The first welding layer
130:Ni/Ag层130: Ni/Ag layer
140:Al层140: Al layer
150:n电极150: n electrode
220:第二焊接层220: Second welding layer
具体实施方式Detailed ways
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。The present invention will be further described in detail below in conjunction with specific embodiments, which are to explain rather than limit the present invention.
本发明的主要目的是提供一种垂直氮化镓基发光二极管,具体结构如图1所示,本发明采用Al金属作为垂直结构氮化镓基发光二极管的电流阻挡层。用Al金属做电流阻挡层,主要是基于以下几个原因:1、在热处理温度低于320℃时,Al金属与p-GaN表面形成非欧姆接触,故Al金属可以实现对电流的阻挡;2、键合过程中需要加压加热,两者搭配时,Ag和Al热膨胀系数分别为19.5E-6/K和23.2E-6/K,大小接近,此外,Al与p-GaN粘附性好,所以容易实现高可靠性键合;3、Al在氮化镓基器件发光波段反射率较高。综上,本方案既实现了电流阻挡效果,又实现了最大的反射出光。Ni与高掺杂的p-GaN接触时,在不退火的情况下可形成较好的欧姆接触,所以Ni/Ag层可形成接触好、反射率高的反射电极。The main purpose of the present invention is to provide a vertical gallium nitride based light emitting diode, the specific structure is shown in FIG. 1 , the present invention uses Al metal as the current blocking layer of the vertical structure gallium nitride based light emitting diode. The use of Al metal as the current blocking layer is mainly based on the following reasons: 1. When the heat treatment temperature is lower than 320 °C, the Al metal forms a non-ohmic contact with the p-GaN surface, so the Al metal can block the current; 2. , During the bonding process, pressure heating is required. When the two are combined, the thermal expansion coefficients of Ag and Al are 19.5E-6/K and 23.2E-6/K, respectively, which are close in size. In addition, Al has good adhesion to p-GaN. , so it is easy to achieve high-reliability bonding; 3. Al has a high reflectivity in the light-emitting band of GaN-based devices. To sum up, this solution not only achieves the current blocking effect, but also achieves the maximum reflected light. When Ni is in contact with highly doped p-GaN, a good ohmic contact can be formed without annealing, so the Ni/Ag layer can form a reflective electrode with good contact and high reflectivity.
制作氮化镓基外延片,在101蓝宝石衬底上依次生长102n-GaN层、103MQW发光层和104p-GaN层;如图2。To make a gallium nitride-based epitaxial wafer, grow a 102n-GaN layer, a 103MQW light-emitting layer and a 104p-GaN layer on a 101 sapphire substrate in sequence; as shown in Figure 2.
在104p-GaN层上蒸镀110Ni/Ag薄膜作为反射层,厚度为1nm/200nm,并用负性光刻胶进行光刻,露出待腐蚀的区域,湿法腐蚀掉未被光刻胶覆盖的Ni/Ag层;如图3。A 110Ni/Ag thin film was evaporated on the 104p-GaN layer as a reflective layer with a thickness of 1nm/200nm, and photolithography was performed with a negative photoresist to expose the area to be etched, and the Ni that was not covered by the photoresist was etched away by wet method. /Ag layer; Figure 3.
在上一步形成的外延片表面蒸镀Al金属,然后泡有机溶剂,剥离掉光刻胶及其表面的Al金属,在电流阻挡区域形成电流阻挡层140Al层,厚度为201nm;如图4。Al metal was evaporated on the surface of the epitaxial wafer formed in the previous step, and then soaked in organic solvent, the photoresist and the Al metal on the surface were peeled off, and a current blocking layer 140Al layer was formed in the current blocking area with a thickness of 201 nm; as shown in Figure 4.
在上一步形成外延片表面依次蒸镀扩散阻挡层120Ti/Au和第一焊接层121Ti/Au,120厚度为100nm/100nm,121厚度为250nm/500nm;如图5。On the surface of the epitaxial wafer formed in the previous step, the diffusion barrier layer 120Ti/Au and the first welding layer 121Ti/Au are sequentially evaporated, the thickness of 120 is 100nm/100nm, and the thickness of 121 is 250nm/500nm; as shown in Figure 5.
在210钨铜衬底上蒸镀第二焊接层220Ti/Au/AuSn,其厚度为100nm/200nm/2500nm,其中AuSn的Au:Sn比例为80:20;如图6。A second soldering layer 220Ti/Au/AuSn was evaporated on a 210 tungsten copper substrate with a thickness of 100nm/200nm/2500nm, wherein the Au:Sn ratio of AuSn was 80:20, as shown in Figure 6.
将210钨铜衬底表面的第二金属连接层220和外延片表面的121贴合,在加热至295℃条件下,加压3000N,键合为一体;如图7。The second
利用248nm波长的激光照射外延片的蓝宝石面,激光穿透蓝宝石衬底,造成蓝宝石和氮化镓界面的氮化镓分解为Ga金属和N2,去除蓝宝石衬底101;如图8。The sapphire surface of the epitaxial wafer is irradiated with a laser with a wavelength of 248 nm, and the laser penetrates the sapphire substrate, causing the gallium nitride at the interface between the sapphire and the gallium nitride to be decomposed into Ga metal and N 2 , and the
将剥离后露出n型氮化镓的晶圆片浸泡在加热至75℃的20%KOH溶液中,使得n型氮化镓表面粗糙;如图9。The wafer with n-type gallium nitride exposed after peeling was immersed in a 20% KOH solution heated to 75° C. to make the surface of n-type gallium nitride rough; as shown in Figure 9.
通过光刻和蒸镀工艺,在102n-GaN层上与140正对区域形成n电极150Al/Ti/Au,厚度分别是250nm/150nm/2000nm;如图10。Through photolithography and evaporation process, the n-electrode 150Al/Ti/Au is formed on the 102n-GaN layer in the area opposite to 140, and the thickness is 250nm/150nm/2000nm respectively; as shown in Figure 10.
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments, and the descriptions in the above-mentioned embodiments and the description are only to illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will have Various changes and modifications fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010201845.2A CN111261762A (en) | 2020-03-20 | 2020-03-20 | Gallium nitride-based vertical structure light-emitting diode with current blocking layer and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010201845.2A CN111261762A (en) | 2020-03-20 | 2020-03-20 | Gallium nitride-based vertical structure light-emitting diode with current blocking layer and manufacturing method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111261762A true CN111261762A (en) | 2020-06-09 |
Family
ID=70951793
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010201845.2A Pending CN111261762A (en) | 2020-03-20 | 2020-03-20 | Gallium nitride-based vertical structure light-emitting diode with current blocking layer and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111261762A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101494268A (en) * | 2008-11-24 | 2009-07-29 | 厦门市三安光电科技有限公司 | Method for manufacturing vertical light-emitting diode with current blocking structure |
| CN102047454A (en) * | 2008-04-16 | 2011-05-04 | Lg伊诺特有限公司 | Light emitting device and manufacturing method thereof |
| US20130328092A1 (en) * | 2009-05-04 | 2013-12-12 | Lg Innotek Co., Ltd. | Light emitting device, light emitting device package and lighting system including the same |
| CN104638069A (en) * | 2015-02-04 | 2015-05-20 | 映瑞光电科技(上海)有限公司 | Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof |
| CN105609596A (en) * | 2015-09-11 | 2016-05-25 | 映瑞光电科技(上海)有限公司 | LED vertical chip possessing current blocking structure and manufacturing method thereof |
| CN109768137A (en) * | 2018-12-29 | 2019-05-17 | 晶能光电(江西)有限公司 | Light emitting diode (LED) chip with vertical structure and preparation method thereof |
-
2020
- 2020-03-20 CN CN202010201845.2A patent/CN111261762A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102047454A (en) * | 2008-04-16 | 2011-05-04 | Lg伊诺特有限公司 | Light emitting device and manufacturing method thereof |
| CN101494268A (en) * | 2008-11-24 | 2009-07-29 | 厦门市三安光电科技有限公司 | Method for manufacturing vertical light-emitting diode with current blocking structure |
| US20130328092A1 (en) * | 2009-05-04 | 2013-12-12 | Lg Innotek Co., Ltd. | Light emitting device, light emitting device package and lighting system including the same |
| CN104638069A (en) * | 2015-02-04 | 2015-05-20 | 映瑞光电科技(上海)有限公司 | Vertical LED (Light-Emitting Diode) chip structure and manufacturing method thereof |
| CN105609596A (en) * | 2015-09-11 | 2016-05-25 | 映瑞光电科技(上海)有限公司 | LED vertical chip possessing current blocking structure and manufacturing method thereof |
| CN109768137A (en) * | 2018-12-29 | 2019-05-17 | 晶能光电(江西)有限公司 | Light emitting diode (LED) chip with vertical structure and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI487133B (en) | Roughened high refractive index index layer / LED for high light extraction | |
| KR101064053B1 (en) | Light emitting device and manufacturing method | |
| TWI479698B (en) | Optoelectronic device | |
| CN108933187B (en) | LED chip with luminous surface in specific plane geometric figure and preparation method thereof | |
| CN112018223A (en) | Thin film flip structure Micro-LED chip with transfer printing of bonding layer and preparation method thereof | |
| CN104134723A (en) | Vertical type LED chip structure and manufacturing method thereof | |
| KR101008268B1 (en) | Vertical structure light emitting diode and its manufacturing method for improving external quantum efficiency | |
| CN102332521A (en) | Gallium nitride-based light-emitting diode with point-like distributed N electrodes and preparation method thereof | |
| CN104300065A (en) | Light-emitting diode with novel extension electrode structure and manufacturing method thereof | |
| CN103367590A (en) | Gallium nitride-based light-emitting diode and production method thereof | |
| CN110931606B (en) | Vertical light-emitting diode and method of making the same | |
| JP2002164570A (en) | Gallium nitride based compound semiconductor device | |
| JP2013034010A (en) | Vertical light-emitting device | |
| CN215184030U (en) | Deep ultraviolet light-emitting diode with vertical structure | |
| KR101018280B1 (en) | Vertical structure light emitting diode and manufacturing method | |
| CN110021689A (en) | Light emitting diode and its manufacturing method | |
| JP2012529170A (en) | Light emitting semiconductor device and manufacturing method | |
| CN104064640A (en) | Vertical LED structure and manufacturing method thereof | |
| KR101239852B1 (en) | GaN compound semiconductor light emitting element | |
| KR101203137B1 (en) | GaN compound semiconductor light emitting element and method of manufacturing the same | |
| CN112652689B (en) | Light emitting diode and manufacturing method thereof | |
| CN101159301A (en) | A semiconductor light emitting device and its manufacturing method | |
| CN210040239U (en) | Light emitting diode | |
| KR20080076344A (en) | Vertical Light Emitting Diode and Manufacturing Method Thereof | |
| CN111261762A (en) | Gallium nitride-based vertical structure light-emitting diode with current blocking layer and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200609 |