CN105097528A - FINFET manufacturing method - Google Patents
FINFET manufacturing method Download PDFInfo
- Publication number
- CN105097528A CN105097528A CN201410185412.7A CN201410185412A CN105097528A CN 105097528 A CN105097528 A CN 105097528A CN 201410185412 A CN201410185412 A CN 201410185412A CN 105097528 A CN105097528 A CN 105097528A
- Authority
- CN
- China
- Prior art keywords
- fin
- forming
- layer
- barrier layer
- semiconductor substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000010410 layer Substances 0.000 claims abstract description 88
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 230000004888 barrier function Effects 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000004065 semiconductor Substances 0.000 claims abstract description 34
- 239000012535 impurity Substances 0.000 claims abstract description 22
- 238000002955 isolation Methods 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000011229 interlayer Substances 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 230000035515 penetration Effects 0.000 abstract description 11
- 238000005468 ion implantation Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000005530 etching Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 238000001894 space-charge-limited current method Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
- H10D30/0241—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET] doping of vertical sidewalls, e.g. using tilted or multi-angled implants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供了一种FINFET的制造方法,包括:a.提供半导体衬底,在所述衬底上形成第一鳍片;b.在所述第一鳍片上覆盖掩膜层;c.在所述半导体衬底中形成穿通阻挡层;d.以第一鳍片和掩膜层为掩膜依次对所述通阻挡层和所述半导体衬底的一部分进行刻蚀,将所述第一鳍片扩展成第二鳍片,并去除掩膜;e.在所述半导体衬底上形成沟槽隔离结构,在第二鳍片上形成源漏区,在所述半导体衬底和第二鳍片上形成栅极叠层和层间介质层本发明采用侧向散射的方法形成穿通阻挡层,同时利用衬底材料作为散射杂质的载体,在形成穿通阻挡层之后形成隔离层,有效地解决了侧向散射时引入的杂质和损伤,极大地改善了器件性能。
The invention provides a FINFET manufacturing method, comprising: a. providing a semiconductor substrate, and forming a first fin on the substrate; b. covering the first fin with a mask layer; c. Form a pass-through barrier layer in the semiconductor substrate; d. use the first fin and the mask layer as a mask to etch the pass-through barrier layer and a part of the semiconductor substrate in sequence, and the first fin Expanding into a second fin, and removing the mask; e. forming a trench isolation structure on the semiconductor substrate, forming a source and drain region on the second fin, and forming a gate on the semiconductor substrate and the second fin Pole stack and interlayer dielectric layer The present invention adopts the method of side scattering to form the penetration barrier layer, and at the same time, the substrate material is used as the carrier of scattering impurities, and the isolation layer is formed after forming the penetration barrier layer, which effectively solves the problem of side scattering. The introduced impurities and damage greatly improve the device performance.
Description
技术领域technical field
本发明涉及一种半导体器件制造方法,具体地,涉及一种FINFET制造方法。The invention relates to a method for manufacturing a semiconductor device, in particular to a method for manufacturing a FINFET.
技术背景technical background
随着半导体器件的尺寸按比例缩小,出现了阈值电压随沟道长度减小而下降的问题,也即,在半导体器件中产生了短沟道效应。为了应对来自半导体涉及和制造方面的挑战,导致了鳍片场效应晶体管,即FinFET的发展。As the size of the semiconductor device is scaled down, there arises a problem that the threshold voltage decreases with the decrease of the channel length, that is, a short channel effect is generated in the semiconductor device. To meet the challenges from semiconductor design and manufacturing, led to the development of Fin Field Effect Transistor, or FinFET.
沟道穿通效应(Channelpunch-througheffect)是场效应晶体管的源结与漏结的耗尽区相连通的一种现象。当沟道穿通,就使源/漏间的势垒显著降低,则从源往沟道即注入大量载流子,并漂移通过源-漏间的空间电荷区、形成一股很大的电流;此电流的大小将受到空间电荷的限制,是所谓空间电荷限制电流。这种空间电荷限制电流是与栅压控制的沟道电流相并联的,因此沟道穿通将使得通过器件的总电流大大增加;并且在沟道穿通情况下,即使栅电压低于阈值电压,源-漏间也会有电流通过。这种效应是在小尺寸场效应晶体管中有可能发生的一种效应,且随着沟道宽度的进一步减小,其对器件特性的影响也越来越显著。Channel punch-through effect (Channelpunch-througheffect) is a phenomenon that the source junction and the depletion region of the drain junction of the field effect transistor are connected. When the channel is penetrated, the potential barrier between the source and the drain is significantly reduced, and a large number of carriers are injected from the source to the channel, and drift through the space charge region between the source and the drain to form a large current; The size of this current will be limited by the space charge, which is the so-called space charge limited current. This space charge limited current is in parallel with the channel current controlled by the gate voltage, so the channel penetration will greatly increase the total current through the device; and in the case of channel penetration, even if the gate voltage is lower than the threshold voltage, the source - There will also be current passing through the drain. This effect is an effect that may occur in small-scale field effect transistors, and its influence on device characteristics becomes more and more significant as the channel width is further reduced.
在FinFET中,通常采用对沟道下方的鳍片部分进行重掺杂来抑制沟道穿通效应。目前通用的掺杂方法是离子注入形成所需重掺杂区,然而,离子注入的深度难以精确控制,同时会对沟道表面造成损伤,为了消除损伤,通常会在沟道表面形成一层薄氧化层,增加了工艺复杂度。In FinFETs, heavy doping of the portion of the fin below the channel is often used to suppress the channel punch-through effect. The current general doping method is ion implantation to form the required heavily doped region. However, the depth of ion implantation is difficult to control precisely, and at the same time it will cause damage to the channel surface. In order to eliminate the damage, a thin layer is usually formed on the channel surface. The oxide layer increases the process complexity.
另一种形成穿通阻挡层的方法是侧向散射,即不直接向沟道底部注入杂质,而是向鳍片两侧的隔离层注入所需杂质,通过侧向散射在沟道底部形成穿通阻挡层。这种方法有效的减小了直接离子注入在沟道中引入的缺陷和杂质,改善了器件的性能,然而,由于形成散射所需的离子注入能量和剂量都比较大,这种方法会不可避免的损伤形成隔离层的电介质特性。Another way to form a penetration barrier is side scattering, that is, instead of implanting impurities directly into the bottom of the channel, the required impurities are injected into the isolation layers on both sides of the fin, and a penetration barrier is formed at the bottom of the channel through side scattering. layer. This method effectively reduces the defects and impurities introduced in the channel by direct ion implantation, and improves the performance of the device. However, due to the relatively large ion implantation energy and dose required to form scattering, this method will inevitably Damage forms the dielectric properties of the isolation layer.
发明内容Contents of the invention
针对上述问题,本发明提供了一种FINFET制作方法,能有效的抑制穿通电流而不影响器件其他特性。具体地,本发明提供的制造方法包括以下步骤:In view of the above problems, the present invention provides a FINFET manufacturing method, which can effectively suppress the punch-through current without affecting other characteristics of the device. Specifically, the manufacturing method provided by the invention comprises the following steps:
a.提供半导体衬底,在所述衬底上形成第一鳍片;a. providing a semiconductor substrate on which a first fin is formed;
b.在所述第一鳍片上覆盖掩膜层;b. covering the first fin with a mask layer;
c.在所述半导体衬底中形成穿通阻挡层;c. forming a punch-through barrier layer in the semiconductor substrate;
d.以第一鳍片和掩膜层为掩膜依次对所述通阻挡层和所述半导体衬底的一部分进行刻蚀,将所述第一鳍片扩展成第二鳍片,并去除掩膜;d. using the first fin and the mask layer as a mask to sequentially etch the pass barrier layer and a part of the semiconductor substrate, expand the first fin into a second fin, and remove the mask membrane;
e.在所述半导体衬底上形成沟槽隔离结构,在第二鳍片上形成源漏区,在所述半导体衬底和第二鳍片上形成栅极叠层和层间介质层。e. forming a trench isolation structure on the semiconductor substrate, forming a source and drain region on the second fin, and forming a gate stack and an interlayer dielectric layer on the semiconductor substrate and the second fin.
其中,在步骤a中,所述第一鳍片的高度取决于要形成的第二鳍片的预定高度与隔离层的高度差;所述第一鳍片的高度为30~50nm,厚度为10~30nm。Wherein, in step a, the height of the first fin depends on the height difference between the predetermined height of the second fin to be formed and the height of the isolation layer; the height of the first fin is 30-50 nm, and the thickness is 10 nm. ~30nm.
其中,在步骤b中,形成所述掩膜层的材料为氮化硅和/或氧化硅。其中,在步骤c中,所述穿通阻挡层位于第一鳍片底部,其靠近衬底的边界设定为位于要形成的第二鳍片之内。Wherein, in step b, the material for forming the mask layer is silicon nitride and/or silicon oxide. Wherein, in step c, the penetration barrier layer is located at the bottom of the first fin, and its boundary close to the substrate is set to be located within the second fin to be formed.
其中,在步骤c中,形成穿通阻挡层的方法为侧向散射;形成所述穿通阻挡层的杂质类型与衬底相同;所述穿通阻挡层的杂质浓度为1e17cm-3~1e19cm-3。Wherein, in step c, the method of forming the punch-through barrier layer is side scattering; the type of impurity forming the punch-through barrier layer is the same as that of the substrate; the impurity concentration of the punch-through barrier layer is 1e17cm -3 -1e19cm -3 .
根据本发明提供的FINFET制作方法,分两次刻蚀鳍片,第一次刻蚀使得鳍片高度等于沟道有效高度,保留其余部分的硅材料,以氮化硅为掩膜对其进行掺杂离子注入,并退火形成穿通阻挡层;第二次刻蚀使鳍片达到实际需要的高度,之后再形成隔离层、源漏区等部分。本发明采用掺杂离子的侧向散射的方法形成穿通阻挡层,同时利用衬底材料作为散射杂质的载体,并在形成穿通阻挡层之后去除该部分材料而形成隔离层,有效地解决了侧向散射时引入隔离层的杂质和损伤,极大地改善了器件性能。According to the FINFET manufacturing method provided by the present invention, the fins are etched twice, the first etching makes the height of the fins equal to the effective height of the channel, and the rest of the silicon material is reserved, and it is doped with silicon nitride as a mask. Miscellaneous ion implantation and annealing to form a punch-through barrier layer; the second etching makes the fin reach the actual required height, and then forms the isolation layer, source and drain regions and other parts. The present invention adopts the method of lateral scattering of doped ions to form a penetration barrier layer, and at the same time uses the substrate material as a carrier for scattering impurities, and removes this part of the material after forming the penetration barrier layer to form an isolation layer, which effectively solves the problem of lateral Impurities and damage introduced to the isolation layer during scattering greatly improve device performance.
附图说明Description of drawings
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1~图6为根据本发明的一个具体实施方式的MOS器件各个制造阶段的剖面图;1 to 6 are cross-sectional views of various manufacturing stages of a MOS device according to a specific embodiment of the present invention;
图7为本发明的一个具体实施方式的FinFET的在制作完成后的三维立体图;FIG. 7 is a three-dimensional perspective view of a FinFET according to a specific embodiment of the present invention after fabrication;
附图中相同或相似的附图标记代表相同或相似的部件。The same or similar reference numerals in the drawings represent the same or similar components.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施例作详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
本发明的实施例提供了一种FINFET制作方法,能有效的抑制穿通电流而不影响器件其他特性。具体地,该方法包括以下步骤:The embodiment of the present invention provides a FINFET manufacturing method, which can effectively suppress the punch-through current without affecting other characteristics of the device. Specifically, the method includes the following steps:
a.提供半导体衬底100,在所述衬底上形成第一鳍片201;a. providing a semiconductor substrate 100 on which a first fin 201 is formed;
b.在所述第一鳍片201上覆盖掩膜层202;b. Covering the mask layer 202 on the first fin 201;
c.在所述半导体衬底100表中中形成穿通阻挡层300;c. forming a punch-through barrier layer 300 in the surface of the semiconductor substrate 100;
d.以第一鳍片201和掩膜层202为掩膜对所述半导体衬底100进行进一步刻蚀,形成第二鳍片200,并去除掩膜202;d. Using the first fin 201 and the mask layer 202 as a mask to further etch the semiconductor substrate 100 to form the second fin 200, and remove the mask 202;
e.在所述半导体衬底100和第二鳍片200上依次形成隔离层400、源漏区、层间介质层500和栅极叠层600。具体来说在所述半导体衬底上形成沟槽隔离结构,在第二鳍片上形成源漏区,在所述半导体衬底和第二鳍片上形成栅极叠层和层间介质层。e. Forming an isolation layer 400 , source and drain regions, an interlayer dielectric layer 500 and a gate stack 600 sequentially on the semiconductor substrate 100 and the second fin 200 . Specifically, a trench isolation structure is formed on the semiconductor substrate, a source-drain region is formed on the second fin, and a gate stack and an interlayer dielectric layer are formed on the semiconductor substrate and the second fin.
其中,在步骤a中,所述第一鳍片201的高度等于第二鳍片200与隔离层400的高度差;所述第一鳍片201的高度为30~50nm,厚度为10~30nm。Wherein, in step a, the height of the first fin 201 is equal to the height difference between the second fin 200 and the isolation layer 400; the height of the first fin 201 is 30-50 nm, and the thickness is 10-30 nm.
其中,在步骤b中,形成所述掩膜层202的材料为氮化硅和/或氧化硅。其中,在步骤c中,所述穿通阻挡层300位于第一鳍片201底部,其靠近衬底100的边界位于第二鳍片200之内。Wherein, in step b, the material for forming the mask layer 202 is silicon nitride and/or silicon oxide. Wherein, in step c, the penetration barrier layer 300 is located at the bottom of the first fin 201 , and its border close to the substrate 100 is located within the second fin 200 .
其中,在步骤c中,形成穿通阻挡层300的方法为侧向散射;形成所述穿通阻挡层300的杂质类型与衬底相同;所述穿通阻挡层300的杂质浓度为1e17cm-3~1e19cm-3。Wherein, in step c, the method of forming the punch-through barrier layer 300 is side scattering; the type of impurity forming the punch-through barrier layer 300 is the same as that of the substrate; the impurity concentration of the punch-through barrier layer 300 is 1e17cm −3 to 1e19cm −3 3 .
根据本发明提供的FINFET制造方法,分两次刻蚀鳍片,第一次刻蚀使得鳍片高度等于沟道有效高度,保留其余部分的硅材料,以氮化硅为掩膜对其进行离子注入,并退火形成穿通阻挡层;第二次刻蚀使鳍片达到实际需要的高度,之后再形成隔离层、源漏区等部分。有效地解决了侧向散射时引入隔离层的杂质和损伤,极大地改善了器件性能。According to the FINFET manufacturing method provided by the present invention, the fins are etched twice, the first etching makes the height of the fins equal to the effective height of the channel, and the rest of the silicon material is retained, and the silicon nitride is used as a mask to ionize the fins. Implantation and annealing form a punch-through barrier layer; the second etching makes the fin reach the actual required height, and then forms the isolation layer, source and drain regions and other parts. The impurity and damage introduced into the isolation layer during side scattering are effectively solved, and the performance of the device is greatly improved.
下面结合附图对本发明的制作方法进行详细说明,包括以下步骤。需要说明的是,本发明各个实施例的附图仅是为了示意的目的,因此没有必要按比例绘制。The manufacturing method of the present invention will be described in detail below in conjunction with the accompanying drawings, including the following steps. It should be noted that the drawings of the various embodiments of the present invention are only for illustrative purposes, and therefore are not necessarily drawn to scale.
参见图1,首先制作位于衬底100上方的第一鳍片201。仅仅作为示例,衬底100和第一鳍片201都由硅组成。通过在衬底100表面外延生长半导体层并刻蚀该半导体层而形成第一鳍片201,所述外延生长方法可以是分子束外延法(MBE)或其他方法,所述刻蚀方法可以是干法刻蚀或干法/湿法刻蚀。第一鳍片201高度为30~50nm,其底部位于穿通电流产生的位置。Referring to FIG. 1 , firstly, the first fin 201 located above the substrate 100 is fabricated. Merely by way of example, both the substrate 100 and the first fin 201 are composed of silicon. The first fin 201 is formed by epitaxially growing a semiconductor layer on the surface of the substrate 100 and etching the semiconductor layer. The epitaxial growth method may be molecular beam epitaxy (MBE) or other methods, and the etching method may be dry etching or dry/wet etching. The height of the first fin 201 is 30-50 nm, and the bottom of the fin 201 is located at the position where the through current is generated.
接下来,在所述第一鳍片201表面覆盖掩膜层202,如图2所示。掩膜202的作用是在接下来的离子注入中保护第一鳍片201,避免在鳍片中引入杂质。作为示例,本实施例中形成所述掩膜202的材料为氮化硅,其厚度可根据粒子注入的离子和能量调节,为20~60nm。Next, a mask layer 202 is covered on the surface of the first fin 201 , as shown in FIG. 2 . The function of the mask 202 is to protect the first fin 201 in the subsequent ion implantation, and avoid introducing impurities into the fin. As an example, the material for forming the mask 202 in this embodiment is silicon nitride, and its thickness can be adjusted according to the ions and energy of particle implantation, and is 20-60 nm.
接下来,如图3所示,进行离子注入,在未被第一鳍片201覆盖的半导体衬底100中注入杂质。由于FinFET的鳍片很薄,在离子注入的过程中,由于散射作用,射入第一鳍片两侧衬底中的杂质离子很容易的通过热运动到达鳍片下方的衬底中,形成所需要的掺杂分布,因此,不需要经过鳍片就可以在沟道底部穿通电流产生的地方形成穿通阻挡层。在本实施例中,对于N型器件,形成穿通阻挡层300的粒子为As;对于P型器件,程序穿通阻挡层300粒子为B;所述穿通阻挡层300的杂质浓度为1e17cm-3~1e19cm-3。形成的穿通阻挡层300均匀的分布在第一鳍片201下方,如图4所示。Next, as shown in FIG. 3 , ion implantation is performed to implant impurities into the semiconductor substrate 100 not covered by the first fins 201 . Because the fins of FinFET are very thin, during the ion implantation process, due to the scattering effect, the impurity ions injected into the substrate on both sides of the first fin can easily reach the substrate under the fin through thermal movement, forming the The required doping profile, therefore, the punch-through barrier layer can be formed at the bottom of the channel where the punch-through current occurs without going through the fin. In this embodiment, for an N-type device, the particles forming the punch-through barrier layer 300 are As; for a P-type device, the particles for programming the punch-through barrier layer 300 are B; the impurity concentration of the punch-through barrier layer 300 is 1e17cm −3 to 1e19cm -3 . The formed penetration barrier layer 300 is uniformly distributed under the first fin 201 , as shown in FIG. 4 .
接下来,如图5所示,以第一鳍片201和掩膜层202为掩膜,对第一鳍片201进行进一步刻蚀,形成最终的第二鳍片200。具体刻蚀方法与形成第一鳍片201的方法相同,直至达到实际需要的鳍片高度。在此步骤中,仅有位于第一鳍片201下方的衬底区域连同其中的穿通阻挡层300被保留了下来,与第一鳍片201一起形成了最终的第二鳍片200。经过上述步骤,完成刻蚀后,形成的第二鳍片200中依然包含穿通阻挡层,且其分布集中,位于沟道底部穿通电流产生的地方,有效的抑制了穿通电流;同时,采用侧向散射的方法形成穿通阻挡层,有效的避免了在沟道中引入杂质和缺陷,优化了器件性能。Next, as shown in FIG. 5 , using the first fin 201 and the mask layer 202 as a mask, the first fin 201 is further etched to form the final second fin 200 . The specific etching method is the same as the method for forming the first fins 201 until the actual required height of the fins is reached. In this step, only the substrate region under the first fin 201 together with the punch-through barrier layer 300 therein remains, forming the final second fin 200 together with the first fin 201 . After the above steps, after the etching is completed, the formed second fin 200 still contains a punch-through barrier layer, and its distribution is concentrated, located at the place where the punch-through current is generated at the bottom of the channel, effectively suppressing the punch-through current; at the same time, using the lateral The method of scattering forms a punch-through barrier layer, which effectively avoids the introduction of impurities and defects in the channel, and optimizes device performance.
接下来,如图6所示,在对所述半导体结构进上形成行隔离层400。优选地,首先在第二鳍片200上成氮化硅和缓冲二氧化硅图形,作为沟槽腐蚀的掩膜。接下来在衬底100上腐蚀出具有一定深度和侧墙角度的沟槽。然后生长一层薄二氧化硅,以圆滑沟槽的顶角并且去掉刻蚀过程中在硅表面引入的损伤。氧化之后进行沟槽填充,填充介质可以是二氧化硅。接下来使用CMP工艺对半导体衬底表面进行平坦化,露出第二鳍片200顶部的掩膜层202,并以其为掩膜进行各向异性刻蚀,露出第二鳍片200。Next, as shown in FIG. 6 , a row isolation layer 400 is formed on the semiconductor structure. Preferably, silicon nitride and buffer silicon dioxide are first patterned on the second fin 200 as a mask for trench etching. Next, trenches with a certain depth and sidewall angles are etched on the substrate 100 . A thin layer of silicon dioxide is then grown to round the top corners of the trenches and remove damage introduced to the silicon surface during the etch process. Oxidation is followed by trench filling, and the filling medium may be silicon dioxide. Next, a CMP process is used to planarize the surface of the semiconductor substrate to expose the mask layer 202 on the top of the second fin 200 , and use it as a mask to perform anisotropic etching to expose the second fin 200 .
接下来,形成伪栅结构,所述伪栅结构与第二鳍片200垂直,其宽度等于所述半导体结构鳍片上的沟道长度。具体的,所述伪栅叠层可以是单层的,也可以是多层的。伪栅叠层可以包括聚合物材料、非晶硅、多晶硅或TiN,厚度可以为10-100nm。可以采用热氧化、化学气相沉积(CVD)、原子层沉积(ALD)等工艺来形成伪栅叠层。可选地,在栅极堆叠的侧壁上形成侧墙,用于将栅极隔开。侧墙可以由氮化硅、氧化硅、氮氧化硅、碳化硅及其组合,和/或其他合适的材料形成。侧墙可以具有多层结构。侧墙可以通过包括沉积刻蚀工艺形成,其厚度范围可以是10nm-100nm,如30nm、50nm或80nm。Next, a dummy gate structure is formed, the dummy gate structure is perpendicular to the second fin 200 and its width is equal to the channel length on the fin of the semiconductor structure. Specifically, the dummy gate stack may be single-layer or multi-layer. The dummy gate stack may include polymer material, amorphous silicon, polysilicon or TiN, and the thickness may be 10-100 nm. Processes such as thermal oxidation, chemical vapor deposition (CVD), and atomic layer deposition (ALD) can be used to form the dummy gate stack. Optionally, sidewalls are formed on the sidewalls of the gate stack to separate the gates. The sidewalls may be formed of silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, combinations thereof, and/or other suitable materials. The side walls may have a multi-layer structure. The sidewall can be formed by deposition and etching process, and its thickness range can be 10nm-100nm, such as 30nm, 50nm or 80nm.
接下来在伪栅叠层两侧形成源漏区。具体的,以伪栅结构作为掩膜,对所述半导体结构进行离子注入,隔离层400作为离子注入的保护层,避免杂质离子射入第二鳍片200时在鳍片表面形成损伤。由于硅和二氧化硅对离子注入时杂质入射深度的影响差别不大,因此,离子注入完成之后,会在未被伪栅结构所覆盖的第二鳍片200和隔离层400处形成重掺杂区。接下来,对所述半导体结构进行退火,具体的,退火温度为950℃,退火时间为15~30分钟,激活第二鳍片200,源漏区的杂质,形成均匀的源漏掺杂区。Next, source and drain regions are formed on both sides of the dummy gate stack. Specifically, the dummy gate structure is used as a mask to perform ion implantation on the semiconductor structure, and the isolation layer 400 serves as a protective layer for ion implantation to avoid damage to the surface of the fin 200 when impurity ions are injected into the second fin 200 . Since silicon and silicon dioxide have little difference in the impact of the impurity incident depth during ion implantation, after the ion implantation is completed, heavy doping will be formed at the second fin 200 and the isolation layer 400 not covered by the dummy gate structure. district. Next, annealing is performed on the semiconductor structure. Specifically, the annealing temperature is 950° C. and the annealing time is 15-30 minutes to activate the second fin 200 and remove impurities in the source and drain regions to form a uniform source and drain doped region.
接下来,淀积层间介质层500,并并行平坦化,露出伪栅叠层。具体的,层间介质层500可以通过CVD、高密度等离子体CVD、旋涂或其他合适的方法形成。层间介质层500的材料可以采用包括SiO2、碳掺杂SiO2、BPSG、PSG、UGS、氮氧化硅、低k材料或其组合。层间介质层500的厚度范围可以是40nm-150nm,如80nm、100nm或120nm。接下来,执行平坦化处理,使伪栅叠层暴露出来,并与层间介质层500齐平(本发明中的术语“齐平”指的是两者之间的高度差在工艺误差允许的范围内)。Next, an interlayer dielectric layer 500 is deposited and planarized in parallel to expose the dummy gate stack. Specifically, the interlayer dielectric layer 500 can be formed by CVD, high density plasma CVD, spin coating or other suitable methods. The material of the interlayer dielectric layer 500 may include SiO 2 , carbon-doped SiO 2 , BPSG, PSG, UGS, silicon oxynitride, low-k materials or combinations thereof. The thickness range of the interlayer dielectric layer 500 may be 40nm-150nm, such as 80nm, 100nm or 120nm. Next, a planarization process is performed to expose the dummy gate stack and be flush with the interlayer dielectric layer 500 (the term "flush" in the present invention refers within the range).
接下来,去除伪栅叠层,以形成伪栅空位,暴露出伪栅叠层下方的隔离层400表面。具体的,伪栅结构可以采用干刻除去。接下来,去除伪栅空位下方的隔离层300,露出沟道部分。具体的,伪栅结构可以采用湿刻和/或干刻除去。在一个实施例中,采用等离子体刻蚀。接下来,在伪栅空位中形成栅极结构600,栅极结构600包括栅介质层、功函数调节层和栅极金属层栅极结构600形成之后,半导体结构如图7所示。Next, the dummy gate stack is removed to form dummy gate vacancies, exposing the surface of the isolation layer 400 below the dummy gate stack. Specifically, the dummy gate structure can be removed by dry etching. Next, the isolation layer 300 under the dummy gate vacancy is removed to expose the channel portion. Specifically, the dummy gate structure can be removed by wet etching and/or dry etching. In one embodiment, plasma etching is used. Next, a gate structure 600 is formed in the dummy gate vacancy. The gate structure 600 includes a gate dielectric layer, a work function adjustment layer and a gate metal layer. After the gate structure 600 is formed, the semiconductor structure is shown in FIG. 7 .
上述实施例采用的是后栅工艺制作FinFET,但不限于所述实施例,本发明同样可适用于先栅工艺中。The above embodiments use the gate-last process to fabricate FinFETs, but are not limited to the above-mentioned embodiments, and the present invention is also applicable to the gate-first process.
根据本发明提供的FINFET结构,在形成层间介质层之后刻蚀掉侧墙,在栅极与源漏区上方的层间介质层中形成空位,用空气取代之前的侧墙材料,有效地减小了外部边缘区域材料的介电常数,同时削弱了源漏区与栅极之间的电容耦合效应,从而有效地减小了寄生电容,优化了器件性能。According to the FINFET structure provided by the present invention, after the interlayer dielectric layer is formed, the sidewall is etched away, vacancies are formed in the interlayer dielectric layer above the gate and the source and drain regions, and the previous sidewall material is replaced with air, effectively reducing the The dielectric constant of the material in the outer edge region is reduced, and the capacitive coupling effect between the source drain region and the gate is weakened, thereby effectively reducing parasitic capacitance and optimizing device performance.
虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。Although the example embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made to these embodiments without departing from the spirit and scope of the invention as defined by the appended claims. For other examples, those of ordinary skill in the art will readily understand that the order of process steps may be varied while remaining within the scope of the present invention.
此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、结构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易理解,对于目前已存在或者以后即将开发出的工艺、结构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、结构、制造、物质组成、手段、方法或步骤包含在其保护范围内。In addition, the scope of application of the present invention is not limited to the process, structure, manufacture, material composition, means, methods and steps of the specific embodiments described in the specification. From the disclosure of the present invention, those of ordinary skill in the art will easily understand that for the processes, structures, manufacturing, material compositions, means, methods or steps that currently exist or will be developed in the future, where they are implemented in accordance with the description of the present invention Corresponding embodiments that perform substantially the same function or achieve substantially the same results can be applied in accordance with the present invention. Therefore, the appended claims of the present invention are intended to include such processes, structures, manufactures, compositions of matter, means, methods or steps within their protection scope.
Claims (8)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410185412.7A CN105097528A (en) | 2014-05-04 | 2014-05-04 | FINFET manufacturing method |
| PCT/CN2014/088572 WO2015169052A1 (en) | 2014-05-04 | 2014-10-14 | Finfet manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410185412.7A CN105097528A (en) | 2014-05-04 | 2014-05-04 | FINFET manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN105097528A true CN105097528A (en) | 2015-11-25 |
Family
ID=54392082
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410185412.7A Pending CN105097528A (en) | 2014-05-04 | 2014-05-04 | FINFET manufacturing method |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN105097528A (en) |
| WO (1) | WO2015169052A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106229258A (en) * | 2016-08-22 | 2016-12-14 | 曹蕊 | A kind of FinFET manufacture method and the FinFET structure of correspondence |
| CN107045982A (en) * | 2016-02-05 | 2017-08-15 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor structure |
| CN113571418A (en) * | 2021-05-31 | 2021-10-29 | 上海华力集成电路制造有限公司 | Super well forming method of FinFET |
| CN114446869A (en) * | 2020-11-06 | 2022-05-06 | 长鑫存储技术有限公司 | Method for forming semiconductor structure and semiconductor structure |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112447603B (en) * | 2019-08-30 | 2023-12-19 | 长鑫存储技术有限公司 | Method for forming semiconductor memory |
| CN113851529A (en) * | 2021-09-07 | 2021-12-28 | 上海集成电路装备材料产业创新中心有限公司 | Fin type semiconductor device and manufacturing method thereof |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6413802B1 (en) * | 2000-10-23 | 2002-07-02 | The Regents Of The University Of California | Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture |
| CN102347349A (en) * | 2010-07-28 | 2012-02-08 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
| CN102629627A (en) * | 2012-04-16 | 2012-08-08 | 清华大学 | Heterogeneous gate tunneling transistor and forming method thereof |
| CN103107089A (en) * | 2011-11-14 | 2013-05-15 | 联华电子股份有限公司 | Method for manufacturing non-planar transistor |
| CN103390644A (en) * | 2012-05-08 | 2013-11-13 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
| CN103531477A (en) * | 2012-07-05 | 2014-01-22 | 台湾积体电路制造股份有限公司 | FinFET method and structure with embedded underlying anti-punch through layer |
| US20140117462A1 (en) * | 2012-10-31 | 2014-05-01 | International Business Machines Corporation | Bulk finfet with punchthrough stopper region and method of fabrication |
-
2014
- 2014-05-04 CN CN201410185412.7A patent/CN105097528A/en active Pending
- 2014-10-14 WO PCT/CN2014/088572 patent/WO2015169052A1/en active Application Filing
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6413802B1 (en) * | 2000-10-23 | 2002-07-02 | The Regents Of The University Of California | Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture |
| CN102347349A (en) * | 2010-07-28 | 2012-02-08 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
| CN103107089A (en) * | 2011-11-14 | 2013-05-15 | 联华电子股份有限公司 | Method for manufacturing non-planar transistor |
| CN102629627A (en) * | 2012-04-16 | 2012-08-08 | 清华大学 | Heterogeneous gate tunneling transistor and forming method thereof |
| CN103390644A (en) * | 2012-05-08 | 2013-11-13 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
| CN103531477A (en) * | 2012-07-05 | 2014-01-22 | 台湾积体电路制造股份有限公司 | FinFET method and structure with embedded underlying anti-punch through layer |
| US20140117462A1 (en) * | 2012-10-31 | 2014-05-01 | International Business Machines Corporation | Bulk finfet with punchthrough stopper region and method of fabrication |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107045982A (en) * | 2016-02-05 | 2017-08-15 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor structure |
| CN106229258A (en) * | 2016-08-22 | 2016-12-14 | 曹蕊 | A kind of FinFET manufacture method and the FinFET structure of correspondence |
| CN114446869A (en) * | 2020-11-06 | 2022-05-06 | 长鑫存储技术有限公司 | Method for forming semiconductor structure and semiconductor structure |
| CN114446869B (en) * | 2020-11-06 | 2024-06-07 | 长鑫存储技术有限公司 | Method for forming semiconductor structure and semiconductor structure |
| CN113571418A (en) * | 2021-05-31 | 2021-10-29 | 上海华力集成电路制造有限公司 | Super well forming method of FinFET |
| CN113571418B (en) * | 2021-05-31 | 2024-03-08 | 上海华力集成电路制造有限公司 | A method of forming super wells for FinFET |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2015169052A1 (en) | 2015-11-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104576383B (en) | FinFET structure and manufacturing method thereof | |
| US9508853B2 (en) | Channel cladding last process flow for forming a channel region on a FinFET device having a reduced size fin in the channel region | |
| CN105470135B (en) | Semiconductor device manufacturing method | |
| CN105097527B (en) | A kind of FinFET manufacturing method | |
| WO2014110852A1 (en) | Semiconductor device and manufacturing method thereof | |
| US9478634B2 (en) | Methods of forming replacement gate structures on finFET devices and the resulting devices | |
| CN105097528A (en) | FINFET manufacturing method | |
| CN105470133B (en) | Semiconductor device manufacturing method | |
| CN105551959A (en) | Fin structures and multi-Vt scheme based on tapered fin and method to form | |
| WO2014071653A1 (en) | Semiconductor device and manufacturing method therefor | |
| CN107785313A (en) | Semiconductor structure and forming method thereof | |
| CN104576386B (en) | A kind of FinFET and its manufacturing method | |
| CN105390497A (en) | CMOS device including charged body sidewall and method of fabricating the same | |
| CN105225956A (en) | FinFET manufacturing method | |
| CN105632930A (en) | FinFET device and manufacturing method thereof | |
| CN105405890B (en) | Semiconductor device including charged body sidewall and method of manufacturing the same | |
| CN104183500A (en) | Method for forming ion-implantation side wall protection layer on FinFET device | |
| CN106558498B (en) | Semiconductor structure and forming method thereof | |
| CN103377931A (en) | Semiconductor structure and manufacturing method thereof | |
| CN105336617B (en) | FinFET manufacturing method | |
| CN104576384A (en) | FinFET structure and manufacturing method thereof | |
| CN105590961B (en) | FINFET structure and manufacturing method thereof | |
| CN106910685A (en) | A kind of semiconductor devices and preparation method thereof, electronic installation | |
| CN104167363A (en) | Method for forming ion injection side wall protecting layer on FinFET device | |
| CN107564863B (en) | Semiconductor device and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151125 |