CN106409960A - Solar cell and manufacturing method thereof - Google Patents
Solar cell and manufacturing method thereof Download PDFInfo
- Publication number
- CN106409960A CN106409960A CN201510446663.0A CN201510446663A CN106409960A CN 106409960 A CN106409960 A CN 106409960A CN 201510446663 A CN201510446663 A CN 201510446663A CN 106409960 A CN106409960 A CN 106409960A
- Authority
- CN
- China
- Prior art keywords
- semiconductor layer
- layer
- substrate
- groove
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 120
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims description 76
- 238000005530 etching Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims 6
- 238000005304 joining Methods 0.000 claims 2
- 238000010276 construction Methods 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 25
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 23
- 229920005591 polysilicon Polymers 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000002425 crystallisation Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 6
- 238000000059 patterning Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 238000005422 blasting Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/215—Geometries of grid contacts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
公开了一种太阳能电池及其制造方法。本发明涉及的太阳能电池,包含:基板,排列有单位太阳能电池区域,该单位太阳能电池区域由电池单元区域和配线区域构成;第一半导体层,形成在基板上,并且在基板的配线区域上形成第一沟槽;第二半导体层,形成在第一半导体层上,并且在基板的配线区域上形成第二沟槽,以露出第一半导体层的一部分;第三半导体层,形成在第二半导体层上,并且在基板的配线区域上形成第三沟槽,以露出第二半导体层的一部分;侧壁绝缘层,埋入在第一沟槽内部,使基板的电池单元区域上的第一、第二、第三半导体层相互绝缘;电极层,形成在第三半导体层上,通过第二沟槽与第一半导体层连接。
A solar cell and a manufacturing method thereof are disclosed. A solar cell according to the present invention includes: a substrate on which a unit solar cell area is arranged, and the unit solar cell area is composed of a cell area and a wiring area; a first semiconductor layer is formed on the substrate, and is formed on the wiring area of the substrate A first trench is formed on the first semiconductor layer; a second semiconductor layer is formed on the first semiconductor layer, and a second trench is formed on the wiring region of the substrate to expose a part of the first semiconductor layer; a third semiconductor layer is formed on the On the second semiconductor layer, and form a third trench on the wiring area of the substrate to expose a part of the second semiconductor layer; the side wall insulating layer is embedded in the first trench to make the battery cell area of the substrate The first, second and third semiconductor layers are insulated from each other; the electrode layer is formed on the third semiconductor layer and connected to the first semiconductor layer through the second groove.
Description
技术领域technical field
本发明涉及太阳能电池及其制造方法。更具体地,本发明涉及一种能够简化构图工序和串联连接结构且有效防止电池单元之间的电气干扰的太阳能电池及其制造方法。The present invention relates to solar cells and methods for their manufacture. More particularly, the present invention relates to a solar cell capable of simplifying a patterning process and a series connection structure and effectively preventing electrical interference between battery cells and a method of manufacturing the same.
背景技术Background technique
以往的薄膜型太阳能电池,由于其光电转换效率大致小于10%,所以实际商业化存在很多困难。为了解决所述问题,开发出了以串联方式电连接多个光电元件从而实现优良的光电转换效率的技术。Since the photoelectric conversion efficiency of conventional thin-film solar cells is approximately less than 10%, there are many difficulties in practical commercialization. In order to solve the problem, a technique of electrically connecting a plurality of photoelectric elements in series to realize excellent photoelectric conversion efficiency has been developed.
这种串联方式的太阳能电池,通过电极(配线)串联连接水平排列的多个光电元件,从而获得所需的电力。In this series-connected solar cell, multiple photoelectric elements arranged horizontally are connected in series through electrodes (wiring) to obtain the required power.
但是,为了制造以往串联方式的太阳能电池,为了进行至少3次的蚀刻(图案化)工序,要进行反复反转基板的过程,因此工序以及设备复杂,并且在反转基板的过程中造成物理干扰,具有产生不良的问题。However, in order to manufacture solar cells of the conventional tandem type, in order to perform at least three etching (patterning) processes, the process of repeatedly inverting the substrate is performed, so the process and equipment are complicated, and physical interference is caused in the process of inverting the substrate , which has the problem of generating bad.
而且,以往串联方式的太阳能电池,具有由在下部电极和上部电极之间层叠光电元件构成的太阳能电池单元相互串联连接的结构,因此,结构复杂,且由于电池单元之间的电气干扰,具有降低光电转换效率的问题。Moreover, conventional solar cells in series have a structure in which solar cells composed of stacked photoelectric elements between the lower electrode and the upper electrode are connected in series. Therefore, the structure is complicated, and the electrical interference between the cells has reduced The problem of photoelectric conversion efficiency.
发明内容Contents of the invention
所要解决的问题problem to be solved
因此,本发明为了解决如上所述的以往技术的诸多问题而提出,其目的在于,提供一种能够在基板前面上进行多个蚀刻工序的太阳能电池及其制造方法。Therefore, the present invention was made in order to solve the problems of the prior art as described above, and an object of the present invention is to provide a solar cell capable of performing multiple etching steps on the front surface of a substrate and a method of manufacturing the same.
此外,本发明的另一目的在于,提供一种串联连接时无需单独的下部电极的太阳能电池及其制造方法。In addition, another object of the present invention is to provide a solar cell that does not require a separate lower electrode when connected in series, and a method for manufacturing the same.
此外,本发明的另一目的在于,提供一种包含用于电气分离电池单元之间的侧壁绝缘层的太阳能电池及其制造方法。In addition, another object of the present invention is to provide a solar cell including a sidewall insulating layer for electrically separating battery cells and a manufacturing method thereof.
解决问题的技术方案Technical solution to the problem
根据本发明的一种太阳能电池,包含:基板,排列有单位太阳能电池区域,该单位太阳能电池区域由电池单元区域和配线区域构成;第一半导体层,形成在所述基板上,并且在所述基板的所述配线区域上形成第一沟槽;第二半导体层,形成在所述第一半导体层上,并且在所述基板的所述配线区域上形成第二沟槽,以露出所述第一半导体层的一部分;第三半导体层,形成在所述第二半导体层上,并且在所述基板的所述配线区域上形成第三沟槽,以露出所述第二半导体层的一部分;侧壁绝缘层,埋入在所述第一沟槽内部,使所述基板的所述电池单元区域上的所述第一半导体层、第二半导体层、第三半导体层相互绝缘;电极层,形成在所述第三半导体层上,通过所述第二沟槽,与所述第一半导体层连接。A solar cell according to the present invention includes: a substrate on which a unit solar cell region is arranged, the unit solar cell region consisting of a cell region and a wiring region; a first semiconductor layer formed on the substrate, and on the substrate. A first trench is formed on the wiring region of the substrate; a second semiconductor layer is formed on the first semiconductor layer, and a second trench is formed on the wiring region of the substrate to expose A part of the first semiconductor layer; a third semiconductor layer formed on the second semiconductor layer, and forming a third groove on the wiring region of the substrate to expose the second semiconductor layer A part of a sidewall insulating layer, embedded in the first trench, to insulate the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer on the battery cell area of the substrate from each other; The electrode layer is formed on the third semiconductor layer and connected to the first semiconductor layer through the second trench.
此时,在所述基板和所述第一半导体层之间还可以形成抗反射层。At this time, an anti-reflection layer may also be formed between the substrate and the first semiconductor layer.
所述抗反射层可以是氧化硅(SiOx)或氮化硅(SiNx)。The anti-reflection layer may be silicon oxide (SiO x ) or silicon nitride (SiN x ).
所述第一半导体层、第二半导体层、第三半导体层可以是n、i、p或p、i、n。The first semiconductor layer, the second semiconductor layer and the third semiconductor layer may be n, i, p or p, i, n.
此外,本发明的所述目的可以通过太阳能电池的制造方法实现,该方法包括如下步骤:步骤(a),提供排列有单位太阳能电池区域的基板,该单位太阳能电池区域由电池单元区域和配线区域构成;步骤(b),在所述基板上依次形成第一半导体层、第二半导体层、第三半导体层;步骤(c),第一蚀刻工序:在所述配线区域上蚀刻第一半导体层、第二半导体层、第三半导体层,以形成与相邻的其他单位太阳能电池区域分离的第一沟槽;步骤(d),埋入所述第一沟槽,以形成侧壁绝缘层;步骤(e),第二蚀刻工序:在所述第三半导体层以及所述侧壁绝缘层上形成第一掩膜层,并且在所述配线区域上,利用所述第一掩膜层同时蚀刻所述第三半导体层以及所述第二半导体层,以形成露出所述第一半导体层的一部分的第二沟槽;步骤(f),去除所述第一掩膜层,并在所述第三半导体层以及所述侧壁绝缘层上形成电极层;步骤(g),第三蚀刻工序:在所述电极层上形成第二掩膜层,并且在所述配线区域上,利用所述第二掩膜层同时蚀刻所述电极层以及所述第三半导体层,以形成露出所述第二半导体层的一部分的第三沟槽;步骤(h),去除所述第二掩膜层。In addition, the object of the present invention can be achieved by a method for manufacturing a solar cell, which includes the following steps: step (a), providing a substrate on which unit solar cell areas are arranged, and the unit solar cell areas are composed of battery cell areas and wiring Regional composition; step (b), sequentially forming a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer on the substrate; step (c), a first etching process: etching a first semiconductor layer on the wiring region a semiconductor layer, a second semiconductor layer, and a third semiconductor layer to form a first trench separated from other adjacent unit solar cell regions; step (d), burying the first trench to form sidewall insulation layer; step (e), a second etching process: forming a first mask layer on the third semiconductor layer and the sidewall insulating layer, and using the first mask layer on the wiring region Etching the third semiconductor layer and the second semiconductor layer simultaneously to form a second trench exposing a part of the first semiconductor layer; step (f), removing the first mask layer, and Forming an electrode layer on the third semiconductor layer and the sidewall insulating layer; step (g), a third etching process: forming a second mask layer on the electrode layer, and on the wiring region, Etching the electrode layer and the third semiconductor layer simultaneously by using the second mask layer to form a third groove exposing a part of the second semiconductor layer; step (h), removing the second mask film layer.
此时,还可以包括如下步骤,在所述基板和所述第一半导体层之间形成抗反射层。At this time, the step of forming an anti-reflection layer between the substrate and the first semiconductor layer may also be included.
所述抗反射层可以由氧化硅(SiOx)或氮化硅(SiNx)形成。The anti-reflection layer may be formed of silicon oxide (SiO x ) or silicon nitride (SiN x ).
所述第一沟槽可以通过激光划片方法蚀刻。The first groove may be etched by a laser scribing method.
所述第二沟槽以及所述第三沟槽可以通过湿蚀刻法蚀刻。The second trench and the third trench may be etched by wet etching.
所述第一、第二、第三蚀刻工序可以在所述基板的上部进行。The first, second, and third etching processes may be performed on the upper portion of the substrate.
所述电极层可以由透明导电材料或金属材料或者它们的层叠结构形成。The electrode layer may be formed of transparent conductive material or metal material or their laminated structure.
所述第一半导体层、第二半导体层、第三半导体层可以形成为n、i、p或p、i、n。The first semiconductor layer, the second semiconductor layer, and the third semiconductor layer can be formed as n, i, p or p, i, n.
发明效果Invention effect
根据本发明,可以在基板的前面进行多个蚀刻过程,因此无需反转(翻转)基板的过程,能够简化工序以及设备,防止产生不合格品。According to the present invention, multiple etching processes can be performed on the front of the substrate, so there is no need to invert (turn over) the substrate, the process and equipment can be simplified, and defective products can be prevented.
此外,根据本发明,串联连接时无需单独的下部电极,可获得简化结构以及工序的效果。In addition, according to the present invention, a separate lower electrode is not required for series connection, and the effect of simplifying the structure and process can be obtained.
此外,根据本发明,包含能够用于防止电池单元之间电气干扰的侧壁绝缘层,可提高光电转换效率。Furthermore, according to the present invention, the photoelectric conversion efficiency can be improved by including a side wall insulating layer that can be used to prevent electrical interference between battery cells.
附图说明Description of drawings
图1至图9是按顺序示出本发明的一实施例涉及的太阳能电池的制造过程的示意图。1 to 9 are schematic diagrams sequentially showing a manufacturing process of a solar cell according to an embodiment of the present invention.
图10以及图11是示出本发明的一实施例涉及的光电元件部的详细结构的示意图。10 and 11 are schematic diagrams showing a detailed configuration of a photoelectric element unit according to an embodiment of the present invention.
附图标记reference sign
100:基板100: Substrate
200:抗反射层200: anti-reflection layer
310:第一半导体层(第一非晶硅层)310: first semiconductor layer (first amorphous silicon layer)
311:第一多晶硅层311: first polysilicon layer
320:第二半导体层(第二非晶硅层)320: second semiconductor layer (second amorphous silicon layer)
321:第二多晶硅层321: second polysilicon layer
330:第三半导体层(第三非晶硅层)330: third semiconductor layer (third amorphous silicon layer)
331:第三多晶硅层331: the third polysilicon layer
400:侧壁绝缘层400: sidewall insulation
500:电极层500: electrode layer
具体实施方式detailed description
后述的对本发明的详细说明,参照将能够实施本发明的特定实施例作为示例进行图示的附图。充分详细说明这些实施例,使得本领域的技术人员能够实施本发明。应理解为,本发明的各种实施例相互不同,但相互并不排斥。例如,这里记载的一实施例的具体形状、结构及特性,在不超出本发明的精神及范围的情况下,可以由其他实施例来实现。另外,应理解为,各自公开的实施例中的个别构成要素的位置或配置,在不超出本发明的精神以及范围的情况下,能够进行变更。因此,后述的详细说明并非用作限定的意思,准确地说明,本发明的保护范围仅以权利要求书所记载的内容为准,包含与其权利要求所主张内容的等同的所有范围。在附图中,类似的附图标记在多个方面指代相同或类似的功能,为了便于理解也有可能夸张表示长度、面积、厚度等和其形状。The detailed description of the present invention to be described later refers to the accompanying drawings, which illustrate specific embodiments in which the present invention can be carried out. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the invention differ from each other, but are not mutually exclusive. For example, the specific shape, structure and characteristics of an embodiment described herein can be implemented by other embodiments without departing from the spirit and scope of the present invention. In addition, it should be understood that the positions and arrangements of individual components in the respective disclosed embodiments can be changed without departing from the spirit and scope of the present invention. Therefore, the following detailed description is not intended to be limiting, and it is accurately stated that the protection scope of the present invention is based only on the contents described in the claims, and includes all equivalent scopes to the claims. In the drawings, similar reference numerals refer to the same or similar functions in various respects, and the length, area, thickness, etc., and their shapes may also be exaggerated for easy understanding.
下面,参照附图,详细说明本发明的优选实施例,以便本发明所属技术领域的普通技术人员能够容易实施本发明。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that those skilled in the art to which the present invention pertains can easily implement the present invention.
本发明的优选实施例Preferred Embodiments of the Invention
本说明书中,电池单元区域A是指,光电元件(包含第一半导体层、第二半导体层以及第三半导体层)位于电极之间(第一半导体层和电极层之间)从而实质进行太阳能电池的光电转换的基板上的区域。In this specification, the battery cell region A means that the photovoltaic element (including the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer) is located between the electrodes (between the first semiconductor layer and the electrode layer) so that the solar cell is substantially formed. area on the substrate for photoelectric conversion.
另外,本说明书中,配线区域B是指,位于电池单元区域A之间并分离电池单元彼此之间的同时发挥电连接(例如,串联连接)功能的基板上的区域,可理解为,实质不会发生太阳能电池的光电转换的死区(dead region)。In addition, in this specification, the wiring region B refers to a region on the substrate that is located between the battery cell regions A and separates the battery cells from each other while performing the function of electrical connection (for example, series connection). A dead region of photoelectric conversion of the solar cell does not occur.
如上所述的一个电池单元区域A和一个配线区域B聚集构成单位太阳能电池区域A、B,在这样的单位太阳能电池区域A、B上,通过本发明的实施例涉及的制造工序形成能够进行光电转换和配线功能的单位太阳能电池。As described above, one battery cell region A and one wiring region B are aggregated to form unit solar cell regions A and B, and on such unit solar cell regions A and B, formation can be performed through the manufacturing process according to the embodiment of the present invention. A unit solar cell with photoelectric conversion and wiring functions.
作为一例,在基板上,多个单位太阳能电池区域A、B可以布置为行和列的方向,在任一行中,第n个(n为自然数)单位太阳能电池区域可以包括电池单元区域An和配线区域Bn。As an example, on the substrate, a plurality of unit solar cell regions A, B can be arranged in the direction of rows and columns, and in any row, the nth (n is a natural number) unit solar cell region can include battery cell regions A n and configuration Line area B n .
此时,与第n个单位太阳能电池区域An、Bn相邻的一侧区域中,按照第n+1个单位太阳能电池区域(电池单元区域An+1和配线区域Bn+1)、第n+2个单位太阳能电池区域(电池单元区域An+2和配线区域Bn+2)的顺序排列单位太阳能电池区域。At this time, in one side region adjacent to the nth unit solar cell region A n , B n , the n+1th unit solar cell region (battery cell region A n+1 and wiring region B n+1 ), the n+2th unit solar cell region (battery cell region A n+2 and wiring region B n+2 ) sequentially arrange the unit solar cell regions.
此外,与第n个单位太阳能电池区域相邻的另一侧区域中,按照第n-1个单位太阳能电池区域(电池单元区域An-1和配线区域Bn-1)、第n-2个单位太阳能电池区域(电池单元区域An-2和配线区域Bn-2)的顺序排列至第1个单位太阳能电池区域。In addition, in the other side region adjacent to the n-th unit solar cell region, the n-1th unit solar cell region (battery cell region A n-1 and wiring region B n-1 ), the n-th Two unit solar cell regions (battery cell region A n-2 and wiring region B n-2 ) are sequentially arranged up to the first unit solar cell region.
在以下的实施例中,为了方便说明,以基板上的多个单位太阳能电池区域中的第n个单位太阳能电池区域(电池单元区域An和配线区域Bn)为中心,图示其截面进行说明。In the following examples, for convenience of description, a cross section of the n-th unit solar cell region (battery cell region A n and wiring region B n ) among the plurality of unit solar cell regions on the substrate is shown as the center. Be explained.
图1至图9是按顺序表示本发明的一实施例涉及的太阳能电池的制造过程的示意图。1 to 9 are schematic diagrams sequentially showing a manufacturing process of a solar cell according to an embodiment of the present invention.
首先,参照图1,可以提供排列有由电池单元区域A和配线区域B构成的单位太阳能电池区域A、B的基板100。基板100的材料可使用透明的玻璃基板,但是本发明不限定于此。例如,根据接收光的方向,基板100可以使用玻璃、塑料等透明材料或者硅、金属(例如,SUS(Stainless Steel))等不透明材料。First, referring to FIG. 1 , a substrate 100 in which unit solar cell regions A and B composed of a cell region A and a wiring region B are arranged may be provided. The material of the substrate 100 may be a transparent glass substrate, but the present invention is not limited thereto. For example, the substrate 100 may be made of transparent materials such as glass and plastic or opaque materials such as silicon and metal (eg, SUS (Stainless Steel)) according to the direction in which light is received.
接下来,可以在基板100的表面上进行纹理处理(texturing)。本发明的纹理处理是为了防止入射到太阳能电池基板表面上的光被反射而导致光学损失从而降低其特性的现象。即,将基板表面做成粗糙是指在基板表面形成凹凸图案(未图示)。例如,如果通过纹理处理使基板表面粗糙,则在表面反射一次的光可向太阳能电池方向再反射,因此能够减少光损失,增加光捕获量,从而能够提高太阳能电池的光电转换效率。Next, texturing may be performed on the surface of the substrate 100 . The texture treatment of the present invention is to prevent the phenomenon that the light incident on the surface of the solar cell substrate is reflected to cause optical loss and reduce its characteristics. That is, roughening the substrate surface means forming a concavo-convex pattern (not shown) on the substrate surface. For example, if the surface of the substrate is roughened by texture treatment, the light once reflected on the surface can be reflected again toward the solar cell, thereby reducing light loss and increasing the amount of light captured, thereby improving the photoelectric conversion efficiency of the solar cell.
此时,作为代表性的纹理处理方法,可采用喷砂处理方法。本发明中的喷砂处理包括用压缩空气喷射蚀刻粒子而进行蚀刻的干喷砂处理和液体和蚀刻粒子一同喷射而进行蚀刻的湿喷砂处理。另一方面,用于本发明喷砂处理的蚀刻粒子可无限制地使用如沙子、小金属等通过物理冲击在基板上形成凹凸的粒子。At this time, as a representative texture processing method, a sandblasting method can be used. The blasting treatment in the present invention includes dry blasting treatment in which etching particles are sprayed with compressed air to perform etching, and wet blasting treatment in which etching is performed by jetting liquid and etching particles together. On the other hand, as the etching particles used in the blasting treatment of the present invention, particles such as sand, small metals, etc. that form unevenness on the substrate by physical impact can be used without limitation.
接下来,可以在基板100上形成抗反射层200。抗反射层200发挥如下作用,通过基板100入射的太阳光不被在之后形成的光电元件(半导体层)吸收而直接反射至外部,从而防止太阳能电池效率降低。抗反射层的材料可以是氧化硅(SiOx)、氮化硅(SiNx),但并不限定于此。Next, an anti-reflection layer 200 may be formed on the substrate 100 . The anti-reflection layer 200 functions to prevent sunlight incident on the substrate 100 from being absorbed by a photovoltaic element (semiconductor layer) formed later and directly reflected to the outside, thereby preventing a reduction in the efficiency of the solar cell. The material of the anti-reflection layer may be silicon oxide (SiO x ), silicon nitride (SiN x ), but not limited thereto.
抗反射层的形成方法包括低压化学气相沉积法(LPCVD:Low PressureChemical Vapor Deposition)以及等离子化学气相沉积法(PECVD:PlasmaEnhanced Chemical Vapor Deposition)等。The formation methods of the anti-reflection layer include low pressure chemical vapor deposition (LPCVD: Low Pressure Chemical Vapor Deposition) and plasma chemical vapor deposition (PECVD: Plasma Enhanced Chemical Vapor Deposition).
接下来,在抗反射层200的上部表面上依次形成第一半导体层310、第二导体层320、第三半导体层330。下面,第一、第二、第三半导体层300:310、320、330可作为将光能转换为电能的光电元件部发挥其功能。Next, the first semiconductor layer 310 , the second conductor layer 320 , and the third semiconductor layer 330 are sequentially formed on the upper surface of the antireflection layer 200 . Next, the first, second, and third semiconductor layers 300 : 310 , 320 , and 330 can function as photoelectric elements that convert light energy into electrical energy.
这样的第一、第二、第三半导体层300:310、320、330可以是通常使用的硅(Si),但并不限定于此,可以无限制地使用已知的半导体材料。作为一例,可以依次形成p型、i型、n型的半导体层300。Such first, second, and third semiconductor layers 300 : 310 , 320 , and 330 may be commonly used silicon (Si), but are not limited thereto, and known semiconductor materials may be used without limitation. As an example, p-type, i-type, and n-type semiconductor layers 300 may be sequentially formed.
半导体层300的形成方法可以包括PECVD或LPCVD等化学气相沉积法,半导体层300可以执行通过后续工序从电池单元区域A接收光而产生电力的光电元件的功能。具体地,可通过参照图10以及图11的以下详细说明,便可理解。The formation method of the semiconductor layer 300 may include chemical vapor deposition methods such as PECVD or LPCVD, and the semiconductor layer 300 may perform the function of a photoelectric element that receives light from the battery cell region A through a subsequent process to generate electricity. Specifically, it can be understood by referring to the following detailed description with reference to FIG. 10 and FIG. 11 .
接着,参照图2,在基板100上的配线区域B上,第一蚀刻(即,蚀刻P1宽度)第一、第二、第三半导体层300:310、320、330的一部分,形成第一沟槽T1。Next, referring to FIG. 2, on the wiring region B on the substrate 100, first etch (that is, etch P1 width) part of the first, second, and third semiconductor layers 300: 310, 320, and 330 to form the first Trench T1.
更加详细说明,通过第一蚀刻工序P1,由电池单元区域A以及配线区域B构成的多个单位太阳能电池区域A、B可相互分离。例如,第n个单位太阳能电池区域(电池单元区域An和配线区域Bn)可与相邻一侧区域的第n+1个单位太阳能电池区域(电池单元区域An+1和配线区域Bn+1)和另一侧区域的第n-1个单位太阳能电池区域(电池单元区域An-1和配线区域Bn-1)物理性、电气性分离。More specifically, the plurality of unit solar cell regions A and B composed of the cell region A and the wiring region B can be separated from each other by the first etching step P1. For example, the nth unit solar cell area (cell area A n and wiring area B n ) can be connected to the n+1th unit solar cell area (battery cell area A n+1 and wiring area B n ) in the adjacent side area. Region Bn+1 ) is physically and electrically separated from the n-1th unit solar cell region (battery cell region A n-1 and wiring region Bn-1 ) in the other region.
这样的第一蚀刻工序P1的方法可以使用利用激光的激光划片方法,例如,可以是紫外线(ultraviolet)或绿色(green)波长的激光。Such a method of the first etching step P1 may use a laser scribing method using a laser, for example, a laser with an ultraviolet (ultraviolet) or green (green) wavelength.
但是,本发明不限定于此,可无限制地使用包括已知的光刻法的蚀刻方法。使用激光划片方法时,激光的照射方向可以在基板100上侧或下侧照射,但在本发明中,优选的是,如图所示,从基板100的上侧进行照射,以便在在前面进行构图工序。However, the present invention is not limited thereto, and etching methods including known photolithography methods may be used without limitation. When using the laser scribing method, the irradiation direction of the laser light can be irradiated on the upper side or the lower side of the substrate 100, but in the present invention, it is preferable to irradiate from the upper side of the substrate 100 as shown in the figure so that the laser can be irradiated on the front side. Carry out the composition process.
接着,参照图3,在第三半导体层330上,在第一沟槽T1内部埋入绝缘性物质以形成侧壁绝缘层400。这样的侧壁绝缘层400可使电池单元区域A的第一半导体层310、第二半导体层320、第三半导体层、330相互绝缘。Next, referring to FIG. 3 , on the third semiconductor layer 330 , an insulating substance is embedded in the first trench T1 to form a sidewall insulating layer 400 . Such a sidewall insulating layer 400 can insulate the first semiconductor layer 310 , the second semiconductor layer 320 , the third semiconductor layer, and 330 of the battery cell region A from each other.
形成侧壁绝缘层400的材料可以使用氧化硅(SiOx)、氮化硅(SiNx)、聚合物、树脂(resin)中的任一种或混合它们中的至少两种使用,此外,也可以使用各种已知材料。侧壁绝缘层400的形成方法可以使用由喷嘴构成的喷头喷射规定墨水的喷墨印刷法(ink jet printing),但并不限定于此,可无限制地使用已知的光刻法、丝网印刷法(screen printing)、辊涂法(roller coating)等。The material for forming the sidewall insulating layer 400 may be any one of silicon oxide (SiO x ), silicon nitride (SiN x ), polymer, resin (resin) or a mixture of at least two of them. Various known materials can be used. The formation method of the side wall insulating layer 400 can use the inkjet printing method (ink jet printing) that ejects predetermined ink with the head that consists of nozzles, but is not limited to this, can use known photolithography method, screen printing method without limitation. Screen printing, roller coating, etc.
这样的侧壁绝缘层400由于是埋入在形成一定空间的沟槽内部而形成的结构,因此,减少了向侧面扩散的现象,能够最大限度地减小整个宽度。即,以往的侧壁绝缘层通过喷射规定墨水的喷墨印刷法(ink jet printing)形成,由此导致墨水不必要的向侧面扩散现象,从而整体宽度增加,但是,本发明涉及的侧壁绝缘层400通过第一沟槽T1能够防止这些现象,从而可以相对减小宽度。Since such a side wall insulating layer 400 is embedded in a trench forming a certain space, the phenomenon of diffusion to the side is reduced, and the entire width can be minimized. That is, the conventional side wall insulating layer is formed by ink jet printing by ejecting a predetermined ink, which causes ink to spread unnecessarily to the side, thereby increasing the overall width. However, the side wall insulating layer according to the present invention The layer 400 can prevent these phenomena by the first trench T1, so that the width can be relatively reduced.
因此,在整个基板100中,接收光并产生电能的电池单元区域A的面积比相对增加,从而可实现具有优良光电转换效率的太阳能电池。Therefore, in the entire substrate 100, the area ratio of the cell region A that receives light and generates electricity is relatively increased, so that a solar cell having excellent photoelectric conversion efficiency may be realized.
接着,参照图4,可以在包含第三半导体层330的基板100上形成第一掩膜层10。这样的第一掩膜层10可以是树脂(resin),例如,可使用光刻工序时使用的已知的光致抗蚀剂(photoresist)。Next, referring to FIG. 4 , a first mask layer 10 may be formed on the substrate 100 including the third semiconductor layer 330 . Such a first mask layer 10 may be a resin, for example, a known photoresist used in a photolithography process may be used.
接下来,在基板100上的配线区域B上,对第一掩膜层10的一部分进行构图,如图所示,可形成具有规定图案的第一掩膜层10。第一掩膜层10的构图可以是激光构图或喷墨构图,但并不限定于此,可使用已知的各种构图方法。Next, a part of the first mask layer 10 is patterned on the wiring region B on the substrate 100 to form the first mask layer 10 having a predetermined pattern as shown in the figure. The patterning of the first mask layer 10 may be laser patterning or inkjet patterning, but is not limited thereto, and various known patterning methods may be used.
然后,参照图5,在配线区域B上,用具有规定图案的第一掩膜层10,第二蚀刻(即,蚀刻P2宽度)第二半导体层320以及第三半导体层330,以形成露出第一半导体层310的一部分的第二沟槽T2。Then, referring to FIG. 5 , on the wiring region B, using the first mask layer 10 having a predetermined pattern, the second semiconductor layer 320 and the third semiconductor layer 330 are etched (that is, the width of P2 is etched) to form an exposed A part of the second trench T2 of the first semiconductor layer 310 .
这种第二蚀刻工序P2的方法,可以采用利用由树脂(resin)构成的本发明的第一掩膜层10来无损伤地仅露出第一半导体层310的蚀刻选择性优良的湿蚀刻法,但是,本发明并不限定于此,可无限制地使用包括干蚀刻法的已知蚀刻方法。As the method of the second etching step P2, a wet etching method with excellent etching selectivity in which only the first semiconductor layer 310 is exposed without damage by using the first mask layer 10 of the present invention made of resin (resin), can be used. However, the present invention is not limited thereto, and known etching methods including dry etching methods may be used without limitation.
接下来,可进行去除第一掩膜层10的工序,可无限制地使用已知的树脂(resin)剥离工序技术。Next, a process of removing the first mask layer 10 may be performed, and known resin stripping process techniques may be used without limitation.
接下来,参照图6,可以在包含第三半导体层300以及侧壁绝缘层400的基板100上形成电极层500。这样的电极层500的材料可无限制地使用导电材料。例如,透明导电层时可使用TCO,可以是AZO(ZnO:Al)、ITO(Indium-Tin-Oxide)、GZO(ZnO:Ga)、BZO(ZnO:B)以及FTO(SnO2:F)中的任一种。此外,不透明导电层时,可使用普通的金属材料,可以是铝(Al)、银(Ag)、金(Au)、铜(Cu)、锌(Zn)、钛(Ti)等金属及其合金。Next, referring to FIG. 6 , an electrode layer 500 may be formed on the substrate 100 including the third semiconductor layer 300 and the sidewall insulating layer 400 . A material of such an electrode layer 500 may use a conductive material without limitation. For example, TCO can be used for the transparent conductive layer, which can be AZO (ZnO:Al), ITO (Indium-Tin-Oxide), GZO (ZnO:Ga), BZO (ZnO:B) and FTO (SnO 2 :F) of any kind. In addition, for the opaque conductive layer, ordinary metal materials can be used, such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), zinc (Zn), titanium (Ti) and other metals and their alloys .
此外,电极层500可形成为透明导电层和金属层层叠的结构,例如,可以是BZO(ZnO:B)/Al。In addition, the electrode layer 500 may be formed as a stacked structure of a transparent conductive layer and a metal layer, for example, may be BZO(ZnO:B)/Al.
电极层500的形成方法包括热蒸发法(Thermal Evaporation)、电子束蒸发法(E-beam Evaporation)、溅射法(sputtering)等物理气相沉积法(PVD:Physical Vapor Deposition)以及LPCVD、PECVD、金属有机化学气相沉积法(MOCVD:Metal Organic Chemical Vapor Deposition)等化学气相沉积法(CVD:Chemical Vapor Deposition)。The formation method of the electrode layer 500 includes physical vapor deposition (PVD: Physical Vapor Deposition) such as thermal evaporation (Thermal Evaporation), electron beam evaporation (E-beam Evaporation), sputtering (sputtering), LPCVD, PECVD, metal A chemical vapor deposition method (CVD: Chemical Vapor Deposition) such as an organic chemical vapor deposition method (MOCVD: Metal Organic Chemical Vapor Deposition).
另一方面,电极层500在电池单元区域A可利用导电性能发挥上部电极的功能。On the other hand, the electrode layer 500 can function as an upper electrode in the battery cell region A by utilizing its conductivity.
接下来,参照图7,可以在电极层500上形成第二掩膜层20。这样的第二掩膜层20与参照图5详细说明的第一掩膜层10相同,可以进行构图,以具有规定图案。Next, referring to FIG. 7 , the second mask layer 20 may be formed on the electrode layer 500 . Such a second mask layer 20 can be patterned to have a predetermined pattern similarly to the first mask layer 10 described in detail with reference to FIG. 5 .
接下来,参照图8,可以在配线区域B上,用具有规定图案的第二掩膜层20,第三蚀刻(即,蚀刻P3宽度)电极层500以及第三半导体层330,以形成露出第二半导体层320的一部分的第三沟槽T3。Next, referring to FIG. 8 , on the wiring region B, the electrode layer 500 and the third semiconductor layer 330 can be etched thirdly (that is, the width of P3 is etched) with the second mask layer 20 having a predetermined pattern to form an exposed A part of the third trench T3 of the second semiconductor layer 320 .
这种第三蚀刻工序P3的方法,可采用利用由树脂(resin)构成的本发明的第二掩膜层20来无损伤地仅露出第二半导体层320的蚀刻选择性优良的湿蚀刻法,但是,本发明并不限定于此,可无限制地使用包括干蚀刻法的已知蚀刻方法。In the method of the third etching step P3, a wet etching method with excellent etching selectivity in which only the second semiconductor layer 320 is exposed without damage by using the second mask layer 20 of the present invention made of resin can be used. However, the present invention is not limited thereto, and known etching methods including dry etching methods may be used without limitation.
最后,参照图9,可进行去除第二掩膜层20的工序,可无限制地使用已知的树脂(resin)剥离工序技术。Finally, referring to FIG. 9 , a process of removing the second mask layer 20 may be performed, and known resin stripping process techniques may be used without limitation.
因此,电极层500可实现电连接通过第二沟槽T2露出的第一半导体层310和相邻的其他单位太阳能电池区域上的第三半导体层330的串联方式的太阳能电池。Therefore, the electrode layer 500 can implement solar cells in a series manner in which the first semiconductor layer 310 exposed through the second trench T2 is electrically connected to the third semiconductor layer 330 on other adjacent unit solar cell regions.
作为一例,电极层500的一端,可以在第n个单位太阳能电池区域An、Bn的配线区域Bn上,通过第二沟槽T2,与第一半导体层310连接。另外,电极层500的另一端,可以覆盖侧壁绝缘层400的同时,与相邻的第n-1个单位太阳能电池区域An-1、Bn-1的电池单元区域An-1上的第三半导体层330的上部连接。As an example, one end of the electrode layer 500 may be connected to the first semiconductor layer 310 through the second trench T2 on the wiring region B n of the n-th unit solar cell regions A n and B n . In addition, the other end of the electrode layer 500 may cover the side wall insulating layer 400 and at the same time be connected to the cell area A n-1 of the adjacent n-1th unit solar cell area A n-1 and B n- 1 . The upper part of the third semiconductor layer 330 is connected.
由此,第n个单位太阳能电池An、Bn能够与在一侧区域相邻的第n-1个单位太阳能电池An-1、Bn-1串联连接,与此相同,也与在另一侧区域相邻的第n+1个单位太阳能电池An+1、Bn+1串联连接,从而实现串联方式的太阳能电池。Thus, the n-th unit solar cell A n , B n can be connected in series with the n-1 th unit solar cell A n-1 , B n-1 adjacent to one side area. The n+1th unit solar cells A n+1 and B n+1 adjacent to the other side area are connected in series, so as to realize solar cells in series.
如上所述,本发明的太阳能电池可以在基板100的上部依次进行激光划片以及蚀刻工序(例如,湿蚀刻),从而减少工序以及工序设备。As described above, the solar cell of the present invention can sequentially perform laser scribing and etching processes (eg, wet etching) on the upper portion of the substrate 100 , thereby reducing processes and process equipment.
此外,无需其他的下部电极,也能够实现串联连接,从而能够获得简化结构以及缩短工序的效果。In addition, series connection can be realized without another lower electrode, and the effects of simplifying the structure and shortening the process can be obtained.
此外,包含电气分离电池单元之间的侧壁绝缘层,从而实现光电转换效率优良的太阳能电池。In addition, a solar cell having excellent photoelectric conversion efficiency is realized by including a side wall insulating layer that electrically separates battery cells.
光电元件部的结构Structure of the photoelectric element section
图10以及图11是示出本发明的一实施例涉及的光电元件部的详细结构的示意图。10 and 11 are schematic diagrams showing a detailed configuration of a photoelectric element unit according to an embodiment of the present invention.
首先,参照图10,作为一例,光电元件部300可以由三层的非晶硅层310、320、330形成。更具体地说,可以在基板100上形成第一非晶硅层310,接着,可以在第一非晶硅层310上形成第二非晶硅层320,接着,可以在第二非晶硅层320上形成第三非晶硅层330,从而构成一个光电元件。此时,第一、第二、第三非晶硅层310、320、330的形成方法可利用PECVD或LPCVD等化学气相沉积法来形成。First, referring to FIG. 10 , as an example, the photoelectric element unit 300 may be formed of three amorphous silicon layers 310 , 320 , and 330 . More specifically, a first amorphous silicon layer 310 may be formed on the substrate 100, then a second amorphous silicon layer 320 may be formed on the first amorphous silicon layer 310, and then a second amorphous silicon layer may be formed on the second amorphous silicon layer The third amorphous silicon layer 330 is formed on the 320 to form a photoelectric element. In this case, the first, second and third amorphous silicon layers 310, 320 and 330 can be formed by chemical vapor deposition methods such as PECVD or LPCVD.
接下来,参照图11,作为一例,光电元件部300可以由三层的多晶硅层311、321、331形成。更具体地说,可以在基板100上形成第一多晶硅层311,接着,可以在第一多晶硅层311上形成第二多晶硅层321,接着,可以在第二多晶硅层321上形成第三多晶硅层331,从而构成一个光电元件。Next, referring to FIG. 11 , as an example, the photoelectric element unit 300 may be formed of three polysilicon layers 311 , 321 , and 331 . More specifically, a first polysilicon layer 311 may be formed on the substrate 100, then a second polysilicon layer 321 may be formed on the first polysilicon layer 311, and then a second polysilicon layer 321 may be formed on the second polysilicon layer The third polysilicon layer 331 is formed on the 321 to form a photoelectric element.
此时,作为第一、第二、第三多晶硅层311、321、331的形成方法,可进行对图10的第一、第二、第三非晶硅层310、320、330进行热处理而使其结晶化的过程。即,第一非晶硅层310可结晶化为第一多晶硅层311,第二非晶硅层320可结晶化为第二多晶硅层321,第三非晶硅层330可结晶化为第三多晶硅层331。At this time, as a method for forming the first, second, and third polysilicon layers 311, 321, and 331, heat treatment may be performed on the first, second, and third amorphous silicon layers 310, 320, and 330 shown in FIG. and the process of crystallization. That is, the first amorphous silicon layer 310 can be crystallized into the first polysilicon layer 311, the second amorphous silicon layer 320 can be crystallized into the second polysilicon layer 321, and the third amorphous silicon layer 330 can be crystallized. is the third polysilicon layer 331 .
此时,第一、第二、第三非晶硅层310、320、330的结晶化方法可以使用SPC(Solid Phase Crystallization:固相晶化)、ELA(Excimer LaserAnnealing:受激准分子激光退火)、SLS(Sequential Lateral Solidification:循序性侧向结晶)、MIC(Metal Induced Crystallization:金属诱导晶化)以及MILC(Metal Induced Lateral Crystallization:金属诱导横向晶化)中的任一种方法。所述非晶硅的结晶化方法为已知技术,在本说明书中省略关于此的详细说明。At this time, SPC (Solid Phase Crystallization: solid phase crystallization), ELA (Excimer Laser Annealing: excimer laser annealing) can be used to crystallize the first, second, and third amorphous silicon layers 310, 320, and 330. , SLS (Sequential Lateral Solidification: Sequential Lateral Crystallization), MIC (Metal Induced Crystallization: Metal Induced Crystallization), and MILC (Metal Induced Lateral Crystallization: Metal Induced Lateral Crystallization). The crystallization method of amorphous silicon is a known technique, and a detailed description thereof will be omitted in this specification.
在上述说明中,说明了形成第一、第二、第三非晶硅层310、320、330之后对这些层同时进行结晶化的情况,但并不限定于此。例如,每一个非晶硅层可以单独进行结晶化工序,或者,两个非晶硅层也可以同时进行结晶化工序,而剩余一个非晶硅层可单独进行结晶化工序。In the above description, the case where the first, second, and third amorphous silicon layers 310 , 320 , and 330 are formed and crystallized simultaneously is described, but the present invention is not limited thereto. For example, each amorphous silicon layer can be crystallized separately, or two amorphous silicon layers can be crystallized simultaneously, and the remaining amorphous silicon layer can be crystallized separately.
其结果,在基板100上形成由第一非晶硅层310、第二非晶硅层320、第三非晶硅层、330或者第一多晶硅层311、第二多晶硅层321、第三多晶硅层331构成的光电元件。但是,并不限定于此,根据需要,也可以使用由微晶(microcrystalline)硅层构成的光电元件。此外,作为太阳能电池的光吸收层的材料,可无限制地使用硅以外的已知的材料。As a result, the first amorphous silicon layer 310, the second amorphous silicon layer 320, the third amorphous silicon layer, 330 or the first polysilicon layer 311, the second polysilicon layer 321, The photoelectric element formed by the third polysilicon layer 331 . However, the present invention is not limited thereto, and a photovoltaic element made of a microcrystalline silicon layer may be used as needed. In addition, as the material of the light absorbing layer of the solar cell, known materials other than silicon can be used without limitation.
这样的光电元件可以为依次层积p型、i型、n型硅层的p-i-n二极管的结构,上述p型、i型、n型硅层可以通过接收光产生的光伏电力生产电。其中,i型意味着未掺杂杂质的固有的(intrinsic)。此外,n型或p型掺杂,优选在形成非晶硅层时在原位(in situ)掺杂杂质。在p型掺杂时,作为杂质一般使用硼(B),n型掺杂时,作为杂质一般使用磷(P)或砷(As),但并不限定于此,可无限制地使用已知的技术。Such a photoelectric element may be a p-i-n diode structure in which p-type, i-type, and n-type silicon layers are sequentially stacked. The above-mentioned p-type, i-type, and n-type silicon layers can generate electricity by receiving photovoltaic power generated by light. Here, i-type means intrinsic (intrinsic) not doped with impurities. In addition, for n-type or p-type doping, it is preferable to dope impurities in situ when forming the amorphous silicon layer. In the case of p-type doping, boron (B) is generally used as an impurity, and in the case of n-type doping, phosphorus (P) or arsenic (As) is generally used as an impurity. Technology.
另一方面,除了p、i、n型以外,光电元件也可以由p+、i、n+型、n、i、p型(特别是n+、i、p+)、p、p、n型(特别是p+、p-、n+)、p、n、n型(特别是p+、n-、n+)或n、n、p型(特别是n+、n-、p+)的硅层形成。其中,+和-的意思是,表示掺杂浓度的相对差,+比-具有高浓度的掺杂浓度。例如,n+意味着比n-高浓度的掺杂。未标有+或-的情况是指,掺杂浓度没有特别的限制。另外,位于p和n型之间的半导体层发挥光吸收层(例如i型)的功能。On the other hand, in addition to p, i, n types, photoelectric elements can also be made of p+, i, n+ type, n, i, p type (especially n+, i, p+), p, p, n type (especially p+, p-, n+), p, n, n-type (especially p+, n-, n+) or n, n, p-type (especially n+, n-, p+) silicon layer formation. Wherein, the meanings of + and - represent the relative difference of doping concentration, and + has a higher concentration of doping concentration than -. For example, n+ means a higher concentration of doping than n-. The case where + or - is not indicated means that the doping concentration is not particularly limited. In addition, the semiconductor layer positioned between p-type and n-type functions as a light-absorbing layer (for example, i-type).
另一方面,为了提高第一多晶硅层311、第二多晶硅层321、第三多晶硅层331的各种特性,还可以进行在规定温度下对这些多晶硅层进行额外热处理而消除缺陷的缺陷消除工序,或者对这些多晶硅层进行氢等离子处理而去除多晶硅层内存在的悬空键的氢钝化(hydrogen passivation)工序。On the other hand, in order to improve the various characteristics of the first polysilicon layer 311, the second polysilicon layer 321, and the third polysilicon layer 331, additional heat treatment can be performed on these polysilicon layers at a specified temperature to eliminate A defect removal process of defects, or a hydrogen passivation (hydrogen passivation) process of removing dangling bonds present in the polysilicon layer by subjecting these polysilicon layers to hydrogen plasma treatment.
作为另一例,光电元件部300也可以是一个光电元件上还形成另一个光电元件的层叠结构(即,串联(tandem)结构)。即,光电元件部可以是多晶光电元件层和非晶形光电元件层层叠的结构、微晶形光电元件层和非晶形光电元件层层叠的结构等,但应理解为,包括层叠为双层以上的结构。As another example, the photoelectric element unit 300 may have a stacked structure (ie, a tandem structure) in which one photoelectric element is further formed on another photoelectric element. That is, the photoelectric element part may have a structure in which a polycrystalline photoelectric element layer and an amorphous photoelectric element layer are stacked, a structure in which a microcrystalline photoelectric element layer and an amorphous photoelectric element layer are stacked, etc., but it should be understood that it includes stacking two or more layers. Structure.
参照图9,将其应用到本发明如下。将配置在下部的光电元件称作第一、第二、第三半导体层,配置在上部的光电元件称作第四、第五、第六半导体层时,在图9中,用附图标记310图示的半导体层可配置第一半导体层,用附图标记320图示的半导体层可配置第二、第三、第四、第五半导体层,用附图标记330图示的半导体层可配置第六半导体层,由此形成串联结构。Referring to Fig. 9, it is applied to the present invention as follows. When the photoelectric elements arranged in the lower part are referred to as the first, second, and third semiconductor layers, and the photoelectric elements arranged in the upper part are referred to as the fourth, fifth, and sixth semiconductor layers, in FIG. 9, reference numerals 310 The illustrated semiconductor layer can be configured with the first semiconductor layer, the semiconductor layer illustrated with reference numeral 320 can be configured with the second, third, fourth, and fifth semiconductor layers, and the semiconductor layer illustrated with reference numeral 330 can be configured with The sixth semiconductor layer, thereby forming a series structure.
另一方面,在串联结构的光电元件部300中,在一个光电元件和另一个光电元件之间,增加形成作为透明导电体的连接层(未图示)。所述连接层使层叠的光电元件之间(例如,多晶光电元件和非晶形光电元件之间)形成欧姆接触(ohmic contact),从而具有能够提高太阳能电池的光电转换效率的作用。优选,所述连接层是在ZnO中少量添加Al的AZO(ZnO:Al),但并不限定于此,可以无特别限制地使用普通的ITO、ZnO、IZO、FTO(SnO2:F)、BZO等透明导电材料。On the other hand, in the photoelectric element unit 300 having a series structure, a connecting layer (not shown) as a transparent conductor is additionally formed between one photoelectric element and the other photoelectric element. The connecting layer forms an ohmic contact between stacked photovoltaic elements (for example, between a polycrystalline photovoltaic element and an amorphous photovoltaic element), thereby improving the photoelectric conversion efficiency of the solar cell. Preferably, the connection layer is AZO (ZnO:Al) in which a small amount of Al is added to ZnO, but it is not limited thereto, and ordinary ITO, ZnO, IZO, FTO (SnO 2 :F), Transparent conductive materials such as BZO.
在以上的详细说明中,本发明通过具体构成要素等特定事项和有限的实施例以及图进行了说明,但是,这些是为了有助于整体理解本发明而提供,本发明并不限定于所述实施例,本发明所属技术领域的普通技术人员通过所述记载可进行各种修改以及变形。因此,本发明的思想并非局限在上述说明的实施例,不仅是后述的权利要求书,与其权利要求范围等同或等价的变形均属于本发明的思想范畴。In the above detailed description, the present invention has been described using specific matters such as specific constituent elements and limited examples and drawings. However, these are provided to facilitate an overall understanding of the present invention, and the present invention is not limited to the above-described Examples, various modifications and variations can be made by those skilled in the art to which the present invention pertains based on the description. Therefore, the idea of the present invention is not limited to the above-described embodiments, not only the claims described later, but also modifications equal to or equivalent to the scope of the claims all belong to the scope of the idea of the present invention.
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510446663.0A CN106409960A (en) | 2015-07-27 | 2015-07-27 | Solar cell and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510446663.0A CN106409960A (en) | 2015-07-27 | 2015-07-27 | Solar cell and manufacturing method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106409960A true CN106409960A (en) | 2017-02-15 |
Family
ID=58008671
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510446663.0A Pending CN106409960A (en) | 2015-07-27 | 2015-07-27 | Solar cell and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106409960A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113175957A (en) * | 2021-05-27 | 2021-07-27 | 马鞍山绿丞复合材料产业工程研究院有限公司 | Monitoring equipment for rail transit |
| WO2024036556A1 (en) * | 2022-08-18 | 2024-02-22 | Triumph Science & Technology Group Co., Ltd | Solar module |
-
2015
- 2015-07-27 CN CN201510446663.0A patent/CN106409960A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113175957A (en) * | 2021-05-27 | 2021-07-27 | 马鞍山绿丞复合材料产业工程研究院有限公司 | Monitoring equipment for rail transit |
| WO2024036556A1 (en) * | 2022-08-18 | 2024-02-22 | Triumph Science & Technology Group Co., Ltd | Solar module |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6106403B2 (en) | Photoelectric conversion element and method for producing photoelectric conversion element | |
| JP4999937B2 (en) | Solar cell element and method for manufacturing solar cell element | |
| US10916667B2 (en) | Solar cell and production method therefor, and solar cell module | |
| EP2315262A2 (en) | Solar cell and method for manufacturing same | |
| JP2009152222A (en) | Method for manufacturing solar cell element | |
| JP5566502B2 (en) | Solar cell element | |
| US20250120186A1 (en) | Heterojunction solar cell and manufacturing method thereof, and photovoltaic module | |
| CN114038922A (en) | Back contact heterojunction solar cell capable of improving insulation and isolation effects and manufacturing method thereof | |
| JP6141670B2 (en) | Manufacturing method of solar cell | |
| KR101039149B1 (en) | Solar cell and manufacturing method | |
| US8283199B2 (en) | Solar cell patterning and metallization | |
| KR101011228B1 (en) | Solar cell and manufacturing method | |
| KR101047170B1 (en) | Solar cell and manufacturing method | |
| KR101011222B1 (en) | Solar cell and manufacturing method | |
| CN106409960A (en) | Solar cell and manufacturing method thereof | |
| KR101098325B1 (en) | Solar cell and method for fabricating the same | |
| CN106409927A (en) | Solar cell and manufacturing method thereof | |
| KR101542209B1 (en) | Solar cell and method for fabricating the same | |
| KR101044680B1 (en) | Solar cell and manufacturing method | |
| KR101090780B1 (en) | Solar cell and method for fabricating the same | |
| KR101541773B1 (en) | Solar cell and method for fabricating the same | |
| KR101114345B1 (en) | Solar cell and manufacturing method | |
| KR101505188B1 (en) | Solar cell and method for fabricating the same | |
| KR101039148B1 (en) | Solar cell and manufacturing method | |
| KR101112081B1 (en) | Solar cell and method for fabricating the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170215 |