[go: up one dir, main page]

CN108122757B - Semiconductor structure and method of making the same - Google Patents

Semiconductor structure and method of making the same Download PDF

Info

Publication number
CN108122757B
CN108122757B CN201611073169.5A CN201611073169A CN108122757B CN 108122757 B CN108122757 B CN 108122757B CN 201611073169 A CN201611073169 A CN 201611073169A CN 108122757 B CN108122757 B CN 108122757B
Authority
CN
China
Prior art keywords
layer
semiconductor structure
metal layer
ferroelectric
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611073169.5A
Other languages
Chinese (zh)
Other versions
CN108122757A (en
Inventor
张海洋
刘盼盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201611073169.5A priority Critical patent/CN108122757B/en
Publication of CN108122757A publication Critical patent/CN108122757A/en
Application granted granted Critical
Publication of CN108122757B publication Critical patent/CN108122757B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • H10D30/0241Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET] doping of vertical sidewalls, e.g. using tilted or multi-angled implants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • H10D30/6215Fin field-effect transistors [FinFET] having multiple independently-addressable gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/517Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
    • H10D64/519Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their top-view geometrical layouts

Landscapes

  • Thin Film Transistor (AREA)

Abstract

本发明揭示了一种半导体结构及其制造方法。在本发明提供的半导体结构的制造方法中,包括提供一衬底;在所述衬底上形成鳍式结构;在所述衬底上暴露的所述鳍式结构的两侧形成硅锗层;在所述硅锗层背离所述鳍式结构的一侧形成侧墙;在所述侧墙背离所述硅锗层的一侧形成第一栅极金属层;在所述第一栅极金属层背离所述侧墙的一侧形成铁电层;以及在所述铁电层背离所述第一栅极金属层的一侧形成第二栅极金属层。由此获得的半导体结构,能够改善现有技术中短沟道的掺杂物浓度大,对半导体结构的短沟道产生短沟道损伤(SCE)的状况,并且可以降低接触电阻,从而获得更低的电源电压(Vdd),显著提高了半导体结构的性能。

The invention discloses a semiconductor structure and a manufacturing method thereof. In the manufacturing method of the semiconductor structure provided by the present invention, it includes providing a substrate; forming a fin structure on the substrate; forming a silicon germanium layer on both sides of the fin structure exposed on the substrate; A spacer is formed on the side of the silicon germanium layer away from the fin structure; a first gate metal layer is formed on the side of the spacer away from the silicon germanium layer; and a first gate metal layer is formed on the first gate metal layer A ferroelectric layer is formed on a side away from the spacer; and a second gate metal layer is formed on a side of the ferroelectric layer away from the first gate metal layer. The semiconductor structure thus obtained can improve the situation of short channel damage (SCE) caused by the high dopant concentration of the short channel in the prior art, and can reduce the contact resistance, so as to obtain more The low power supply voltage (Vdd) significantly improves the performance of the semiconductor structure.

Description

半导体结构及其制造方法Semiconductor structure and method of making the same

技术领域technical field

本发明涉及半导体技术领域,特别是涉及一种半导体结构及其制造方法。The present invention relates to the technical field of semiconductors, and in particular, to a semiconductor structure and a manufacturing method thereof.

背景技术Background technique

在先进互补金属氧化物半导体(CMOS)产业中,随着22nm及更小尺寸的到来,为了改善短沟道效应并提高器件的性能,鳍式场效应晶体管(Fin Field-effect transistor,FinFET)由其独特的结构被广泛的采用。In the advanced complementary metal-oxide-semiconductor (CMOS) industry, with the arrival of 22nm and smaller dimensions, in order to improve the short-channel effect and improve the performance of the device, the Fin Field-effect transistor (FinFET) is composed of Its unique structure is widely adopted.

FinFET是一种特殊的金属氧化物半导体场效应管,其结构通常是在绝缘体上硅基片上形成,包括狭窄而独立的硅条,作为垂直的沟道结构,也称为鳍片,在鳍片的两侧设置有栅极结构。具体如图1所示,现有技术中的一种FinFET的结构包括:衬底10、源极11、漏极12、鳍片13及围绕在鳍片13两侧及上方的栅极结构14。FinFET is a special metal-oxide-semiconductor field-effect transistor whose structure is usually formed on a silicon-on-insulator substrate, including narrow and independent silicon strips as a vertical channel structure, also known as a fin, in the fin Gate structures are provided on both sides of the . Specifically, as shown in FIG. 1 , a FinFET structure in the prior art includes: a substrate 10 , a source electrode 11 , a drain electrode 12 , a fin 13 , and a gate structure 14 surrounding and above the fin 13 .

但是,FinFET依旧存在着需要被改善之处,例如,接触电阻较高,在制造过程中会造成短沟道损伤等。However, FinFETs still have areas that need to be improved, such as high contact resistance and short-channel damage during fabrication.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种半导体结构及其制造方法,改善短沟道损伤,降低接触电阻。The purpose of the present invention is to provide a semiconductor structure and a manufacturing method thereof, which can improve short channel damage and reduce contact resistance.

为解决所述技术问题,本发明提供一种半导体结构的制造方法,包括:In order to solve the technical problem, the present invention provides a method for manufacturing a semiconductor structure, including:

提供一衬底;providing a substrate;

在所述衬底上形成鳍式结构;forming a fin structure on the substrate;

在所述衬底上暴露的所述鳍式结构的两侧形成硅锗层;forming silicon germanium layers on both sides of the exposed fin structure on the substrate;

在所述硅锗层背离所述鳍式结构的一侧形成侧墙;forming a spacer on a side of the silicon germanium layer away from the fin structure;

在所述侧墙背离所述硅锗层的一侧形成第一栅极金属层;forming a first gate metal layer on the side of the spacer away from the silicon germanium layer;

在所述第一栅极金属层背离所述侧墙的一侧形成铁电层;以及forming a ferroelectric layer on a side of the first gate metal layer facing away from the spacer; and

在所述铁电层背离所述第一栅极金属层的一侧形成第二栅极金属层。A second gate metal layer is formed on the side of the ferroelectric layer away from the first gate metal layer.

可选的,对于所述的半导体结构的制造方法,所述硅锗层的宽度为5nm-50nm。Optionally, for the manufacturing method of the semiconductor structure, the width of the silicon germanium layer is 5 nm-50 nm.

可选的,对于所述的半导体结构的制造方法,所述衬底上具有第一氧化层,所述鳍式结构贯穿所述第一氧化层,所述鳍式结构的上表面高于所述第一氧化层的上表面。Optionally, for the manufacturing method of the semiconductor structure, the substrate has a first oxide layer, the fin structure penetrates the first oxide layer, and the upper surface of the fin structure is higher than the the upper surface of the first oxide layer.

可选的,对于所述的半导体结构的制造方法,在所述硅锗层背离所述鳍式结构的一侧形成侧墙的步骤包括:Optionally, for the manufacturing method of the semiconductor structure, the step of forming a spacer on the side of the silicon germanium layer away from the fin structure includes:

在所述鳍式结构上形成掩膜层;forming a mask layer on the fin structure;

形成侧墙材料层,所述侧墙材料层覆盖所述掩膜层、硅锗层及所述第一氧化层;forming a spacer material layer, the spacer material layer covering the mask layer, the silicon germanium layer and the first oxide layer;

形成牺牲层,所述牺牲层覆盖所述侧墙材料层;forming a sacrificial layer covering the sidewall material layer;

去除位于所述第一氧化层上的牺牲层和侧墙材料层,并去除位于掩膜层上方的牺牲层,剩余的侧墙材料层覆盖所述掩膜层和硅锗层,剩余的牺牲层位于所述侧墙材料层背离所述硅锗层的一侧;removing the sacrificial layer and the spacer material layer on the first oxide layer, and removing the sacrificial layer above the mask layer, the remaining spacer material layer covers the mask layer and the silicon germanium layer, and the remaining sacrificial layer on the side of the sidewall material layer away from the silicon germanium layer;

在所述第一氧化层上形成第二氧化层;forming a second oxide layer on the first oxide layer;

去除所述牺牲层高于所述鳍式结构的部分和侧墙材料层高于所述鳍式结构的部分,暴露出所述掩膜层,剩余的所述侧墙材料层形成侧墙。A portion of the sacrificial layer higher than the fin structure and a portion of the spacer material layer higher than the fin structure are removed to expose the mask layer, and the remaining spacer material layer forms a spacer.

可选的,对于所述的半导体结构的制造方法,在所述侧墙背离所述硅锗层的一侧形成第一栅极金属层的步骤包括:Optionally, for the manufacturing method of the semiconductor structure, the step of forming a first gate metal layer on the side of the sidewall spacer away from the silicon germanium layer includes:

去除所述牺牲层以形成开口;removing the sacrificial layer to form an opening;

在所述开口中形成第一栅极金属层。A first gate metal layer is formed in the opening.

可选的,对于所述的半导体结构的制造方法,所述第一栅极金属层的宽度为 Optionally, for the manufacturing method of the semiconductor structure, the width of the first gate metal layer is

可选的,对于所述的半导体结构的制造方法,在所述第一栅极金属层背离所述侧墙的一侧形成铁电层的步骤包括:Optionally, for the manufacturing method of the semiconductor structure, the step of forming a ferroelectric layer on the side of the first gate metal layer away from the spacer includes:

减薄所述第二氧化层的部分厚度;reducing a part of the thickness of the second oxide layer;

采用原子层沉积工艺在所述第二氧化层上形成铁电材料层;Using an atomic layer deposition process to form a ferroelectric material layer on the second oxide layer;

刻蚀所述铁电材料层形成所述铁电层。The ferroelectric layer is formed by etching the ferroelectric material layer.

可选的,对于所述的半导体结构的制造方法,所述铁电层的材料为铁酸铋或钽酸锂。Optionally, for the manufacturing method of the semiconductor structure, the material of the ferroelectric layer is bismuth ferrite or lithium tantalate.

可选的,对于所述的半导体结构的制造方法,所述铁电层的宽度为1nm-20nm。Optionally, for the manufacturing method of the semiconductor structure, the width of the ferroelectric layer is 1 nm-20 nm.

可选的,对于所述的半导体结构的制造方法,所述第二栅极金属层的宽度为 Optionally, for the manufacturing method of the semiconductor structure, the width of the second gate metal layer is

本发明还提供一种半导体结构,包括:The present invention also provides a semiconductor structure, comprising:

一衬底,a substrate,

位于所述衬底上的鳍式结构;a fin structure on the substrate;

位于所述衬底上暴露的所述鳍式结构两侧的硅锗层;silicon germanium layers on both sides of the fin structure exposed on the substrate;

位于所述硅锗层背离所述鳍式结构的一侧的侧墙;a spacer on the side of the silicon germanium layer away from the fin structure;

位于所述侧墙背离所述硅锗层的一侧的第一栅极金属层;a first gate metal layer on the side of the spacer away from the silicon germanium layer;

位于所述第一栅极金属层背离所述侧墙的一侧的铁电层;a ferroelectric layer on the side of the first gate metal layer facing away from the spacer;

位于所述铁电层背离所述第一栅极金属层的一侧的第二栅极金属层。a second gate metal layer on the side of the ferroelectric layer away from the first gate metal layer.

可选的,对于所述的半导体结构,所述硅锗层的宽度为5nm-50nm。Optionally, for the semiconductor structure, the width of the silicon germanium layer is 5 nm-50 nm.

可选的,对于所述的半导体结构,所述衬底上具有第一氧化层,所述鳍式结构贯穿所述第一氧化层,所述鳍式结构的上表面高于所述第一氧化层的上表面。Optionally, for the semiconductor structure, the substrate has a first oxide layer, the fin structure penetrates the first oxide layer, and the upper surface of the fin structure is higher than the first oxide layer the upper surface of the layer.

可选的,对于所述的半导体结构,所述第一栅极金属层的宽度为 Optionally, for the semiconductor structure, the width of the first gate metal layer is

可选的,对于所述的半导体结构,所述铁电层的材料为铁酸铋或钽酸锂。Optionally, for the semiconductor structure, the material of the ferroelectric layer is bismuth ferrite or lithium tantalate.

可选的,对于所述的半导体结构,所述铁电层的宽度为1nm-20nm。Optionally, for the semiconductor structure, the ferroelectric layer has a width of 1 nm-20 nm.

可选的,对于所述的半导体结构,所述第二栅极金属层的宽度为 Optionally, for the semiconductor structure, the width of the second gate metal layer is

本发明提供的半导体结构的制造方法中,包括提供一衬底;在所述衬底上形成鳍式结构;在所述衬底上暴露的所述鳍式结构的两侧形成硅锗层;在所述硅锗层背离所述鳍式结构的一侧形成侧墙;在所述侧墙背离所述硅锗层的一侧形成第一栅极金属层;在所述第一栅极金属层背离所述侧墙的一侧形成铁电层;以及在所述铁电层背离所述第一栅极金属层的一侧形成第二栅极金属层。由此获得的半导体结构,能够改善现有技术中短沟道的掺杂物浓度大,对半导体结构的短沟道产生短沟道损伤(SCE)的状况,并且可以降低接触电阻,从而获得更低的电源电压(Vdd),显著提高了半导体结构的性能。The method for manufacturing a semiconductor structure provided by the present invention includes providing a substrate; forming a fin structure on the substrate; forming a silicon germanium layer on both sides of the fin structure exposed on the substrate; A sidewall spacer is formed on the side of the silicon germanium layer away from the fin structure; a first gate metal layer is formed on the side of the sidewall spacer away from the silicon germanium layer; and a first gate metal layer is formed on the side away from the first gate metal layer A ferroelectric layer is formed on one side of the spacer; and a second gate metal layer is formed on a side of the ferroelectric layer away from the first gate metal layer. The semiconductor structure thus obtained can improve the situation of short channel damage (SCE) caused by the high dopant concentration of the short channel in the prior art, and can reduce the contact resistance, so as to obtain more The low power supply voltage (Vdd) significantly improves the performance of the semiconductor structure.

附图说明Description of drawings

图1为现有技术中FinFET器件结构的示意图;1 is a schematic diagram of a FinFET device structure in the prior art;

图2为本发明中半导体结构的制造方法的流程图;Fig. 2 is the flow chart of the manufacturing method of the semiconductor structure in the present invention;

图3为本发明中一实施例中提供的衬底的示意图;3 is a schematic diagram of a substrate provided in an embodiment of the present invention;

图4为本发明中一实施例中形成鳍式结构的示意图;4 is a schematic diagram of forming a fin structure in an embodiment of the present invention;

图5为本发明中一实施例中在鳍式结构两侧形成硅锗层的示意图;5 is a schematic diagram of forming silicon germanium layers on both sides of the fin structure in an embodiment of the present invention;

图6-图8为本发明中一实施例中形成侧墙的示意图;6-8 are schematic diagrams of forming sidewalls in an embodiment of the present invention;

图9为本发明中一实施例中形成第一栅极金属层的示意图;9 is a schematic diagram of forming a first gate metal layer in an embodiment of the present invention;

图10为本发明一实施例中形成铁电层的示意图;10 is a schematic diagram of forming a ferroelectric layer in an embodiment of the present invention;

图11为本发明一实施例中形成第二栅极金属层的示意图。FIG. 11 is a schematic diagram of forming a second gate metal layer according to an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合示意图对本发明的半导体结构及其制造方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。The semiconductor structure of the present invention and its manufacturing method will be described in more detail below with reference to schematic diagrams, wherein preferred embodiments of the present invention are shown. It should be understood that those skilled in the art can modify the present invention described herein and still realize the present invention. beneficial effect. Therefore, the following description should be construed as widely known to those skilled in the art and not as a limitation of the present invention.

在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The invention is described in more detail by way of example in the following paragraphs with reference to the accompanying drawings. The advantages and features of the present invention will become apparent from the following description and claims. It should be noted that, the accompanying drawings are all in a very simplified form and in inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.

本发明的核心思想是,提供一种半导体结构的制造方法,以提高半导体结构(例如CMOS结构)的性能。所述半导体结构的制造方法包括:The core idea of the present invention is to provide a method for fabricating a semiconductor structure, so as to improve the performance of the semiconductor structure (eg, a CMOS structure). The manufacturing method of the semiconductor structure includes:

步骤S11,提供一衬底;Step S11, providing a substrate;

步骤S12,在所述衬底上形成鳍式结构;Step S12, forming a fin structure on the substrate;

步骤S13,在所述衬底上暴露的所述鳍式结构的两侧形成硅锗层;Step S13, forming silicon germanium layers on both sides of the exposed fin structure on the substrate;

步骤S14,在所述硅锗层背离所述鳍式结构的一侧形成侧墙;Step S14, forming a sidewall on the side of the silicon germanium layer away from the fin structure;

步骤S15,在所述侧墙背离所述硅锗层的一侧形成第一栅极金属层;Step S15, forming a first gate metal layer on the side of the sidewall spacer away from the silicon germanium layer;

步骤S16,在所述第一栅极金属层背离所述侧墙的一侧形成铁电层;以及Step S16, forming a ferroelectric layer on the side of the first gate metal layer away from the spacer; and

步骤S17,在所述铁电层背离所述第一栅极金属层的一侧形成第二栅极金属层。Step S17, forming a second gate metal layer on the side of the ferroelectric layer away from the first gate metal layer.

下面结合图2-图11对本发明的半导体结构及其制造方法进行详细说明。其中图2为本发明一实施例中的半导体结构的制造方法的流程图;图3-图11为本发明一实施例中半导体结构的制造方法在制造过程中的结构示意图。The semiconductor structure and the manufacturing method thereof of the present invention will be described in detail below with reference to FIGS. 2 to 11 . 2 is a flowchart of a method for manufacturing a semiconductor structure in an embodiment of the present invention; FIGS. 3-11 are schematic structural diagrams of a method for manufacturing a semiconductor structure in an embodiment of the present invention during the manufacturing process.

请参考图2和图3,在本发明的半导体结构的制造方法中,具体的,对于步骤S11,所述衬底100的构成材料可以采用未掺杂的单晶硅、掺杂有杂质的单晶硅、绝缘体上硅(SOI)等。作为示例,在本实施例中,衬底100选用单晶硅材料构成。在所述衬底100中还可以形成有埋层(图中未示出)等。此外,对于PMOS而言,所述衬底100中还可以形成有N阱(图中未示出),并且在形成栅极结构之前,可以对整个N阱进行一次或多次小剂量硼注入,用于调整PMOS的阈值电压Vth。Please refer to FIG. 2 and FIG. 3 , in the manufacturing method of the semiconductor structure of the present invention, specifically, for step S11 , the constituent material of the substrate 100 can be undoped single crystal silicon, impurity-doped single crystal silicon Crystalline silicon, silicon-on-insulator (SOI), etc. As an example, in this embodiment, the substrate 100 is made of a single crystal silicon material. A buried layer (not shown in the figure) and the like may also be formed in the substrate 100 . In addition, for PMOS, an N well (not shown in the figure) may also be formed in the substrate 100, and before the gate structure is formed, one or more small doses of boron implantation may be performed on the entire N well, Used to adjust the threshold voltage Vth of the PMOS.

如图4所示,所述步骤S12为在所述衬底100上形成鳍式结构102;具体的,可以首先在所述衬底100上形成一掩膜层101,所述掩膜层位于将要形成鳍式结构102的区域处,然后以该掩膜层101为掩膜,刻蚀所述衬底100,形成一突起作为鳍式结构102,之后,在所述衬底100上形成第一氧化层103,例如为氧化硅,所述第一氧化层103可以是沉积工艺形成,也可以是热氧化工艺形成。所述第一氧化层103覆盖所述鳍式结构102的部分厚度,即所述鳍式结构102贯穿所述第一氧化层103,所述鳍式结构102的上表面高于所述第一氧化层103的上表面。根据需要,还可以对所述鳍式结构102进行重掺杂处理,当然,掺杂剂量在此并不做限定,本领域技术人员可以依据需要灵活选择。As shown in FIG. 4 , the step S12 is to form the fin structure 102 on the substrate 100 ; specifically, a mask layer 101 may be formed on the substrate 100 first, and the mask layer is located on the At the area where the fin structure 102 is formed, the mask layer 101 is used as a mask to etch the substrate 100 to form a protrusion as the fin structure 102 , and then a first oxide is formed on the substrate 100 The layer 103 is, for example, silicon oxide, and the first oxide layer 103 can be formed by a deposition process or a thermal oxidation process. The first oxide layer 103 covers part of the thickness of the fin structure 102, that is, the fin structure 102 penetrates the first oxide layer 103, and the upper surface of the fin structure 102 is higher than the first oxide layer upper surface of layer 103 . According to needs, the fin structure 102 can also be heavily doped. Of course, the doping dose is not limited here, and those skilled in the art can flexibly choose according to needs.

然后,请参考图5,步骤S13为在所述衬底100上暴露的所述鳍式结构102两侧形成硅锗(SiGe)层104;本步骤S13可以采用现有技术完成,例如利用含硅气体与含锗气体进行化学气相沉积(CVD)来完成。例如,所述硅锗层104的宽度(即图中所示在横向的尺寸,下同)可以为5nm-50nm,以较佳的实现其调整应力的作用。Then, please refer to FIG. 5 , step S13 is to form a silicon germanium (SiGe) layer 104 on both sides of the fin structure 102 exposed on the substrate 100 ; this step S13 can be completed by using the prior art, such as using silicon-containing This is accomplished by chemical vapor deposition (CVD) of the gas with a germanium-containing gas. For example, the width of the silicon germanium layer 104 (ie, the dimension in the lateral direction as shown in the figure, the same below) can be 5 nm-50 nm, so as to better realize the effect of adjusting the stress.

步骤S14为在所述硅锗层104背离所述鳍式结构102的一侧形成侧墙106;具体的,请参考图6,首先形成侧墙材料层1051,所述侧墙材料层1051覆盖所述掩膜层101、硅锗层104及所述第一氧化层103;所述侧墙材料层1051例如为高K介质层,介电常数可以是大于等于10。这里所述侧墙材料层1051主要形成在靠近所述硅锗层104处,如图6所示,在远离硅锗层104处的第一氧化层103上的侧墙材料层1051并不多。Step S14 is to form a sidewall spacer 106 on the side of the silicon germanium layer 104 away from the fin structure 102 ; specifically, please refer to FIG. 6 , firstly, a sidewall material layer 1051 is formed, and the sidewall material layer 1051 covers the The mask layer 101 , the silicon germanium layer 104 and the first oxide layer 103 ; the spacer material layer 1051 is, for example, a high-K dielectric layer, and the dielectric constant can be greater than or equal to 10. Here, the spacer material layer 1051 is mainly formed near the silicon germanium layer 104 , as shown in FIG.

然后,形成牺牲层106,所述牺牲层106覆盖所述侧墙材料层1051;在本发明实施例中,所述牺牲层106的材料例如为多晶硅,所述牺牲层106将在之后去除,以便于形成第一栅极金属层108(如图9所示)。Then, a sacrificial layer 106 is formed, and the sacrificial layer 106 covers the spacer material layer 1051; in the embodiment of the present invention, the material of the sacrificial layer 106 is, for example, polysilicon, and the sacrificial layer 106 will be removed later, so as to After forming the first gate metal layer 108 (as shown in FIG. 9 ).

当然,也可以是在侧墙材料层1051形成后,执行一步刻蚀过程,将位于第一氧化层103上的一薄层去除,再形成牺牲层106。Of course, after the sidewall material layer 1051 is formed, a one-step etching process may be performed to remove a thin layer on the first oxide layer 103, and then the sacrificial layer 106 is formed.

接着,请参考图7,去除位于所述第一氧化层103上的牺牲层106和侧墙材料层1051,并去除位于掩膜层101上方的牺牲层106,剩余的侧墙材料层1051覆盖所述掩膜层101和硅锗层104,剩余的牺牲层106位于所述侧墙材料层1051背离所述硅锗层104的一侧,形成如图7所示的结构,这一过程可以经由湿法刻蚀形成。在此,由于牺牲层106下方的侧墙材料层较薄,且不会对后续工艺产生不良影响,故并未图示。Next, referring to FIG. 7 , the sacrificial layer 106 and the spacer material layer 1051 on the first oxide layer 103 are removed, and the sacrificial layer 106 above the mask layer 101 is removed, and the remaining spacer material layer 1051 covers the The mask layer 101 and the silicon germanium layer 104 are formed, and the remaining sacrificial layer 106 is located on the side of the spacer material layer 1051 away from the silicon germanium layer 104 to form the structure shown in FIG. formed by etching. Here, since the sidewall material layer under the sacrificial layer 106 is relatively thin and will not adversely affect subsequent processes, it is not shown in the figure.

之后,请参考图8,在所述第一氧化层103上形成第二氧化层107;所述第二氧化层107的材料可以与第一氧化层103一致,例如为氧化硅。After that, referring to FIG. 8 , a second oxide layer 107 is formed on the first oxide layer 103 ; the material of the second oxide layer 107 may be the same as that of the first oxide layer 103 , such as silicon oxide.

在形成第二氧化层107之后,执行一步平台化工艺,去除所述牺牲层106高于所述鳍式结构102的部分和侧墙材料层1051高于所述鳍式结构102的部分,暴露出所述掩膜层101,剩余的所述侧墙材料层1051形成侧墙105。After the second oxide layer 107 is formed, a platforming process is performed to remove the part of the sacrificial layer 106 higher than the fin structure 102 and the part of the spacer material layer 1051 higher than the fin structure 102, exposing the The mask layer 101 and the remaining sidewall material layer 1051 form sidewall spacers 105 .

具体的,对于步骤S15,请参考图9,在所述侧墙105背离所述硅锗层104的一侧形成第一栅极金属层108,可以是先将所述牺牲层106去除以形成开口,例如可以是采用湿法刻蚀完成;然后在所述开口中形成第一栅极金属层108,可以采用溅射工艺形成,所述第一栅极金属层108的宽度为 Specifically, for step S15 , please refer to FIG. 9 , the first gate metal layer 108 is formed on the side of the spacer 105 away from the silicon germanium layer 104 , and the sacrificial layer 106 may be removed first to form an opening , for example, it can be done by wet etching; then a first gate metal layer 108 is formed in the opening, which can be formed by a sputtering process, and the width of the first gate metal layer 108 is

之后,如图10所示,对于步骤S16,在所述第一栅极金属层108背离所述侧墙105的一侧形成铁电层109,可以是减薄所述第二氧化107层的部分厚度,可以采用湿法刻蚀完成,然后采用原子层沉积工艺在所述第二氧化层107上形成铁电材料层,之后进一步刻蚀铁电材料层形成所述铁电层109。具体的,所述铁电层的宽度为1nm-20nm,所述铁电层109的材料可以为铁酸铋(BiFeO3)或钽酸锂(LiTaO3),当然,也可以是其他的铁电物质,本发明在此不进行一一列举。After that, as shown in FIG. 10 , for step S16 , a ferroelectric layer 109 is formed on the side of the first gate metal layer 108 away from the spacer 105 , which may be a part of thinning the second oxide layer 107 The thickness can be achieved by wet etching, and then an atomic layer deposition process is used to form a ferroelectric material layer on the second oxide layer 107 , and then the ferroelectric material layer is further etched to form the ferroelectric layer 109 . Specifically, the width of the ferroelectric layer is 1 nm-20 nm, the material of the ferroelectric layer 109 may be bismuth ferrite (BiFeO 3 ) or lithium tantalate (LiTaO 3 ), and of course, other ferroelectric layers may also be used. Substances, the present invention will not list them all here.

最后,请参考图11,进行步骤S17,在所述铁电层109背离所述第一栅极金属层108的一侧形成第二栅极金属层110,所述第二栅极金属层110的宽度为 Finally, referring to FIG. 11 , step S17 is performed to form a second gate metal layer 110 on the side of the ferroelectric layer 109 away from the first gate metal layer 108 . width is

至此,本发明的半导体结构制造完成,请继续参考图11,本发明的半导体结构包括:So far, the fabrication of the semiconductor structure of the present invention is completed. Please continue to refer to FIG. 11 . The semiconductor structure of the present invention includes:

一衬底100;a substrate 100;

位于所述衬底100上的第一氧化层103;a first oxide layer 103 on the substrate 100;

位于所述衬底100上贯穿所述第一氧化层103的鳍式结构102;the fin structure 102 on the substrate 100 penetrating the first oxide layer 103;

位于所述衬底100上暴露的所述鳍式结构102两侧的硅锗层104,具体的,所述硅锗层104的宽度为5nm-50nm;The silicon germanium layer 104 on both sides of the fin structure 102 exposed on the substrate 100, specifically, the width of the silicon germanium layer 104 is 5nm-50nm;

位于所述硅锗层104背离所述鳍式结构102的一侧的侧墙105;the sidewall spacer 105 on the side of the silicon germanium layer 104 away from the fin structure 102;

位于所述侧墙105背离所述硅锗层104的一侧的第一栅极金属层108,具体的,所述第一栅极金属层108的宽度为 The first gate metal layer 108 is located on the side of the sidewall spacer 105 away from the silicon germanium layer 104 . Specifically, the width of the first gate metal layer 108 is

位于所述第一氧化层103上的第二氧化层107;a second oxide layer 107 on the first oxide layer 103;

位于所述衬底100上(具体是位于所述第二氧化层107上)第一栅极金属层108背离所述侧墙105的一侧的铁电层109,具体的,所述铁电层109的材料为铁酸铋或钽酸锂,所述铁电层的宽度为1nm-20nm;The ferroelectric layer 109 on the side of the first gate metal layer 108 facing away from the sidewall spacer 105 on the substrate 100 (specifically, on the second oxide layer 107 ), specifically, the ferroelectric layer The material of 109 is bismuth ferrite or lithium tantalate, and the width of the ferroelectric layer is 1nm-20nm;

位于铁电层109背离所述第一栅极金属层108的一侧的第二栅极金属层110,具体的,所述第二栅极金属层110的宽度为 The second gate metal layer 110 located on the side of the ferroelectric layer 109 away from the first gate metal layer 108, specifically, the width of the second gate metal layer 110 is

综上所述,本发明提供的半导体结构的制造方法中,包括提供一衬底;在所述衬底上形成鳍式结构;在所述衬底上暴露的所述鳍式结构的两侧形成硅锗层;在所述硅锗层背离所述鳍式结构的一侧形成侧墙;在所述侧墙背离所述硅锗层的一侧形成第一栅极金属层;在所述第一栅极金属层背离所述侧墙的一侧形成铁电层;以及在所述铁电层背离所述第一栅极金属层的一侧形成第二栅极金属层。由此获得的半导体结构,能够改善现有技术中短沟道的掺杂物浓度大,对半导体结构的短沟道产生短沟道损伤(SCE)的状况,并且可以降低接触电阻,从而获得更低的电源电压(Vdd),显著提高了半导体结构的性能。To sum up, the method for manufacturing a semiconductor structure provided by the present invention includes providing a substrate; forming a fin structure on the substrate; forming two sides of the fin structure exposed on the substrate a silicon germanium layer; a sidewall spacer is formed on the side of the silicon germanium layer away from the fin structure; a first gate metal layer is formed on the side of the sidewall spacer away from the silicon germanium layer; A ferroelectric layer is formed on the side of the gate metal layer facing away from the spacer; and a second gate metal layer is formed on the side of the ferroelectric layer facing away from the first gate metal layer. The semiconductor structure thus obtained can improve the situation of short channel damage (SCE) caused by the high dopant concentration of the short channel in the prior art, and can reduce the contact resistance, so as to obtain more The low power supply voltage (Vdd) significantly improves the performance of the semiconductor structure.

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.

Claims (17)

1. a kind of manufacturing method of semiconductor structure, comprising:
One substrate is provided;
Fin structure is formed over the substrate;
The two sides of the fin structure of exposure form germanium-silicon layer over the substrate;
Side wall is formed away from the side of the fin structure in the germanium-silicon layer;
First grid metal layer is formed away from the side of the germanium-silicon layer in the side wall;
Ferroelectric layer is formed away from the side of the side wall in the first grid metal layer;And
Second grid metal layer is formed away from the side of the first grid metal layer in the ferroelectric layer.
2. the manufacturing method of semiconductor structure as described in claim 1, which is characterized in that the width of the germanium-silicon layer is 5nm- 50nm。
3. the manufacturing method of semiconductor structure as described in claim 1, which is characterized in that have the first oxidation on the substrate Layer, the fin structure run through first oxide layer, and the upper surface of the fin structure is higher than the upper of first oxide layer Surface.
4. the manufacturing method of semiconductor structure as claimed in claim 3, which is characterized in that deviate from the fin in the germanium-silicon layer The side of formula structure forms the step of side wall and includes:
Mask layer is formed in the fin structure;
Spacer material layer is formed, the spacer material layer covers the mask layer, germanium-silicon layer and first oxide layer;
Sacrificial layer is formed, the sacrificial layer covers the spacer material layer;
Removal is located at sacrificial layer and spacer material layer in first oxide layer, and removes the sacrifice being located above mask layer Layer, remaining spacer material layer covers the mask layer and germanium-silicon layer, remaining sacrificial layer are located at the spacer material layer and deviate from The side of the germanium-silicon layer;
The second oxide layer is formed in first oxide layer;
The part that the sacrificial layer is higher than the fin structure higher than the part of the fin structure and spacer material layer is removed, cruelly Expose the mask layer, the remaining spacer material layer forms side wall.
5. the manufacturing method of semiconductor structure as claimed in claim 4, which is characterized in that deviate from the SiGe in the side wall Layer side formed first grid metal layer the step of include:
The sacrificial layer is removed to form opening;
First grid metal layer is formed in said opening.
6. the manufacturing method of semiconductor structure as claimed in claim 1 or 5, which is characterized in that the first grid metal layer Width be
7. the manufacturing method of semiconductor structure as claimed in claim 4, which is characterized in that carried on the back in the first grid metal layer Side from the side wall forms the step of ferroelectric layer and includes:
The segment thickness of second oxide layer is thinned;
Ferroelectric material layer is formed in second oxide layer using atom layer deposition process;
It etches the ferroelectric material layer and forms the ferroelectric layer.
8. the manufacturing method of semiconductor structure as described in claim 1, which is characterized in that the material of the ferroelectric layer is ferrous acid Bismuth or lithium tantalate.
9. the manufacturing method of semiconductor structure as described in claim 1, which is characterized in that the width of the ferroelectric layer is 1nm- 20nm。
10. the manufacturing method of semiconductor structure as described in claim 1, which is characterized in that the second grid metal layer Width is
11. a kind of semiconductor structure, comprising:
One substrate,
Fin structure on the substrate;
The germanium-silicon layer of the fin structure two sides of exposure on the substrate;
Positioned at the germanium-silicon layer away from the side wall of the side of the fin structure;
Positioned at the side wall away from the first grid metal layer of the side of the germanium-silicon layer;
Positioned at the first grid metal layer away from the ferroelectric layer of the side of the side wall;
Positioned at the ferroelectric layer away from the second grid metal layer of the side of the first grid metal layer.
12. semiconductor structure as claimed in claim 11, which is characterized in that the width of the germanium-silicon layer is 5nm-50nm.
13. semiconductor structure as claimed in claim 11, which is characterized in that there is the first oxide layer on the substrate, it is described Fin structure runs through first oxide layer, and the upper surface of the fin structure is higher than the upper surface of first oxide layer.
14. semiconductor structure as claimed in claim 11, which is characterized in that the width of the first grid metal layer is
15. semiconductor structure as claimed in claim 11, which is characterized in that the material of the ferroelectric layer is bismuth ferrite or tantalic acid Lithium.
16. semiconductor structure as claimed in claim 11, which is characterized in that the width of the ferroelectric layer is 1nm-20nm.
17. semiconductor structure as claimed in claim 11, which is characterized in that the width of the second grid metal layer is
CN201611073169.5A 2016-11-29 2016-11-29 Semiconductor structure and method of making the same Active CN108122757B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611073169.5A CN108122757B (en) 2016-11-29 2016-11-29 Semiconductor structure and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611073169.5A CN108122757B (en) 2016-11-29 2016-11-29 Semiconductor structure and method of making the same

Publications (2)

Publication Number Publication Date
CN108122757A CN108122757A (en) 2018-06-05
CN108122757B true CN108122757B (en) 2019-07-02

Family

ID=62226690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611073169.5A Active CN108122757B (en) 2016-11-29 2016-11-29 Semiconductor structure and method of making the same

Country Status (1)

Country Link
CN (1) CN108122757B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103243A (en) * 2020-11-03 2020-12-18 晶芯成(北京)科技有限公司 Semiconductor structure and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081761B (en) * 2019-12-16 2022-05-03 电子科技大学 Low-power transistor device with radiation-hardened structure and method of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091551B1 (en) * 2005-04-13 2006-08-15 International Business Machines Corporation Four-bit FinFET NVRAM memory device
CN102881724A (en) * 2011-07-15 2013-01-16 中国科学院微电子研究所 Multi-gate transistor and method of manufacturing the same
US8889500B1 (en) * 2013-08-06 2014-11-18 Globalfoundries Inc. Methods of forming stressed fin channel structures for FinFET semiconductor devices
CN104425599A (en) * 2013-08-27 2015-03-18 中芯国际集成电路制造(上海)有限公司 Fin-type field effect transistor and formation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855411B2 (en) * 2007-05-25 2010-12-21 Macronix International Co., Ltd. Memory cell
KR20150034980A (en) * 2013-09-27 2015-04-06 에스케이하이닉스 주식회사 Semiconductor devie and method for manufacturing semiconductor devie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091551B1 (en) * 2005-04-13 2006-08-15 International Business Machines Corporation Four-bit FinFET NVRAM memory device
CN102881724A (en) * 2011-07-15 2013-01-16 中国科学院微电子研究所 Multi-gate transistor and method of manufacturing the same
US8889500B1 (en) * 2013-08-06 2014-11-18 Globalfoundries Inc. Methods of forming stressed fin channel structures for FinFET semiconductor devices
CN104425599A (en) * 2013-08-27 2015-03-18 中芯国际集成电路制造(上海)有限公司 Fin-type field effect transistor and formation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103243A (en) * 2020-11-03 2020-12-18 晶芯成(北京)科技有限公司 Semiconductor structure and preparation method thereof
CN112103243B (en) * 2020-11-03 2021-02-19 晶芯成(北京)科技有限公司 Semiconductor structure and preparation method thereof

Also Published As

Publication number Publication date
CN108122757A (en) 2018-06-05

Similar Documents

Publication Publication Date Title
US8648400B2 (en) FinFET semiconductor device with germanium (GE) fins
US8202768B2 (en) Method of fabricating a semiconductor device
CN104253046B (en) Fin formula field effect transistor and forming method thereof
CN103928327B (en) Fin formula field effect transistor and forming method thereof
CN103730363B (en) Semiconductor structure and manufacturing method thereof
JP2006522488A (en) Method for forming a structure in a FINFET device
JP6173083B2 (en) Method for manufacturing a field effect semiconductor device
CN104752214A (en) Fin type field-effect transistor forming method
US20160190236A1 (en) Finfet and method of manufacturing the same
CN102983079B (en) semiconductor process
CN103794560A (en) Semiconductor structure and manufacturing method thereof
US9530841B1 (en) Gate-all-around nanowire field-effect transistor device
CN103151269A (en) Method for preparing source drain quasi-SOI (silicon-on-insulator) multi-grid structural element
US9331159B1 (en) Fabricating transistor(s) with raised active regions having angled upper surfaces
CN108122757B (en) Semiconductor structure and method of making the same
CN108807179B (en) Semiconductor structure and method of forming the same
CN103779229B (en) Semiconductor structure and manufacturing method thereof
TW202339262A (en) Horizontal gaa nano-wire and nano-slab transistors
CN104347508B (en) Semiconductor structure and formation method thereof
US11374116B2 (en) Semiconductor devices
CN104347416A (en) Finned field-effect transistor (FET) and forming method thereof
CN106206316A (en) A kind of manufacture method of mos field effect transistor
CN107978527B (en) Semiconductor structure and manufacturing method thereof
CN107978526B (en) Manufacturing method of semiconductor structure
CN106328531A (en) Fin-type field effect transistor formation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant