CN108492905A - A kind of diamond PIM Schottky types β radiation volta effect nuclear battery - Google Patents
A kind of diamond PIM Schottky types β radiation volta effect nuclear battery Download PDFInfo
- Publication number
- CN108492905A CN108492905A CN201810519436.XA CN201810519436A CN108492905A CN 108492905 A CN108492905 A CN 108492905A CN 201810519436 A CN201810519436 A CN 201810519436A CN 108492905 A CN108492905 A CN 108492905A
- Authority
- CN
- China
- Prior art keywords
- diamond
- source
- pim
- layer
- schottky
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21H—OBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
- G21H1/00—Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
- G21H1/06—Cells wherein radiation is applied to the junction of different semiconductor materials
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了一种金刚石PIM肖特基型β辐射伏特效应核电池,其基本结构包括:纯β放射源提供载能β粒子;金刚石慢化体将纯β放射源出射的高能β粒子慢化获得低能β粒子;金刚石PIM肖特基二极管吸收载能β粒子并将其能量转换为电能;电池外壳保护电池内部结构并屏蔽未能利用的载能β粒子和次生γ射线。由于金刚石材料具有禁带宽度大、抗辐照性能强、高掺杂金刚石电学性能优良、耐高温、耐高压和极高的化学惰性等特点,基于金刚石材料的β辐射伏特效应核电池的能量转化效率高、输出稳定、使用寿命长并且防护简单。
The invention discloses a diamond PIM Schottky type beta radiation volt effect nuclear battery, the basic structure of which includes: a pure beta radiation source provides energy-carrying beta particles; a diamond moderator moderates the high-energy beta particles emitted by the pure beta radiation source Obtain low-energy β particles; diamond PIM Schottky diodes absorb energy-carrying β-particles and convert their energy into electrical energy; the battery casing protects the internal structure of the battery and shields unused energy-carrying β-particles and secondary γ-rays. Due to the characteristics of diamond materials such as large band gap, strong radiation resistance, high-doped diamond electrical properties, high temperature resistance, high pressure resistance and extremely high chemical inertness, the energy conversion of β-radiation volt effect nuclear batteries based on diamond materials High efficiency, stable output, long service life and simple protection.
Description
技术领域technical field
本发明涉及利用半导体器件将放射性核素的衰变能转化为电能的电池装置,属于核能利用技术领域。The invention relates to a battery device for converting the decay energy of radionuclides into electric energy by using semiconductor devices, and belongs to the technical field of nuclear energy utilization.
背景技术Background technique
近年来,随着科技的进步,微机电系统的研发和应用得到了飞速的发展。它们一般都具有体积小、功率小、质量轻、便于移动、性能稳定、成本低和可植入性等特点。但是,微机电系统的进一步发展却受到了缺乏微型电源的限制。常见的微型电源包括微型燃料电池、微型化学电池、微型内燃机和微型太阳能电池。不过,这些微型电池都不能很好地满足微机电设备对微型电源的要求。首先,微型燃料电池、微型化学电池和微型内燃机需要不断地从外界补充燃料或是间断性充电。同时,它们的能量转化效率低并且难于微型化到微机电系统所要求的微米甚至纳米量级。其次,虽然太阳能电池具有清洁、安全、技术成熟等特点并且采用微纳米加工工艺可将其微型化到微米甚至纳米量级,但是,它们在黑暗或者阳光不稳定的环境中是无法正常工作的。最后,核电池因具有微型化、集成化、能量密度高、使用寿命长和不依赖外界能量等特点成为微机电系统电源理想的选择。In recent years, with the advancement of science and technology, the research and development and application of MEMS have developed rapidly. They generally have the characteristics of small size, low power, light weight, easy to move, stable performance, low cost and implantability. However, further development of MEMS has been limited by the lack of tiny power sources. Common miniature power sources include miniature fuel cells, miniature chemical batteries, miniature internal combustion engines, and miniature solar cells. However, none of these tiny batteries are well suited to meet the tiny power requirements of MEMS devices. First of all, miniature fuel cells, miniature chemical batteries and miniature internal combustion engines need to be constantly supplemented with fuel from the outside or intermittently charged. At the same time, their energy conversion efficiency is low and it is difficult to miniaturize to the micron or even nanometer level required by MEMS. Secondly, although solar cells have the characteristics of cleanness, safety, and mature technology, and can be miniaturized to the micron or even nanometer level by using micro-nano processing technology, they cannot work normally in dark or unstable sunlight environments. Finally, the nuclear battery has become an ideal choice for MEMS power supply due to its characteristics of miniaturization, integration, high energy density, long service life and no dependence on external energy.
目前,基于半导体器件(PN结,PIN结和肖特基二极管)的β辐射伏特效应核电池已经在航空航天探测、深海深地探测、高山极地等环境恶劣地区气象监测、医疗仪器等领域得到了应用。这种类型核电池的工作原理是:当载能β粒子与半导体材料相互作用时会产生大量的电子-空穴对,半导体器件的内建电场会将耗尽层内的辐生电子-空穴对分离后全部扫出该区域,电荷收集效率为100%。耗尽层外的辐生电子-空穴对只有扩散到耗尽层内才能被分离而后被电极分别收集,所以,耗尽层以外区域的电荷收集效率较低。β辐射伏特效应核电池中的放射源一般都是纯β衰变并且其释放的β粒子能量比较低。纯净金刚石是良好的绝缘体,电阻率很高,但是掺杂后的金刚石电阻率会下降很多数量级而使其成为典型的半导体材料,它具有禁带宽度大,饱和载流子(电子和空穴)迁移率高,热导率以及化学惰性好,电子密度大,抗辐照性能强等优点。研究结果表明:金刚石材料的这些优点有助于提高β辐射伏特效应核电池的使用寿命和能量转化效率。特别地,金刚石肖特基二极管是β辐射伏特效应核电池理想的选择。At present, the β-radiation volt effect nuclear battery based on semiconductor devices (PN junction, PIN junction and Schottky diode) has been used in aerospace exploration, deep-sea deep-ground exploration, meteorological monitoring in harsh environments such as mountains and polar regions, and medical instruments. application. The working principle of this type of nuclear battery is: when the energy-carrying β particles interact with the semiconductor material, a large number of electron-hole pairs will be generated, and the built-in electric field of the semiconductor device will deplete the radiated electron-holes in the layer. The charge collection efficiency was 100% for all sweeping out of the region after separation. The radiant electron-hole pairs outside the depletion layer can be separated and collected by the electrodes only when they diffuse into the depletion layer. Therefore, the charge collection efficiency in the area outside the depletion layer is low. Beta radiation The radioactive source in the voltaic effect nuclear battery is generally pure beta decay and the energy of the beta particles released by it is relatively low. Pure diamond is a good insulator with high resistivity, but the resistivity of doped diamond will drop by many orders of magnitude to make it a typical semiconductor material. It has a large band gap and saturated carriers (electrons and holes) High mobility, good thermal conductivity and chemical inertness, high electron density, and strong radiation resistance. The research results show that these advantages of diamond materials are helpful to improve the service life and energy conversion efficiency of β-radiation voltaic effect nuclear batteries. In particular, diamond Schottky diodes are ideal for beta radiation voltaic effect nuclear cells.
发明内容Contents of the invention
本发明提供了一种基于金刚石PIM肖特基型β辐射伏特效应核电池,利用成熟的制备工艺将纯β放射源,金刚石慢化体和金刚石PIM肖特基二极管加工集成为一种将放射源的衰变能转化为电能的装置。这种类型的核电池因其能量转化效率高、抗辐照性能强、输出稳定并且使用寿命长而成为微机电系统理想的微型电源。The invention provides a volt effect nuclear battery based on diamond PIM Schottky type β radiation, which uses a mature preparation process to process and integrate a pure β radiation source, a diamond moderator and a diamond PIM Schottky diode into a radioactive source A device that converts decay energy into electrical energy. This type of nuclear battery has become an ideal micro power supply for MEMS because of its high energy conversion efficiency, strong radiation resistance, stable output and long service life.
为了实现上述目的,本发明的技术解决方案是:In order to achieve the above object, the technical solution of the present invention is:
一种金刚石PIM肖特基型β辐射伏特效应核电池(见附图1和附图说明)。A diamond PIM Schottky type beta radiation voltaic effect nuclear battery (see accompanying drawing 1 and accompanying drawing description).
所述纯β放射源(1)为薄片状圆柱形固态放射源。选为氚源(Ti3TX)、镍-63源(63Ni)、钷-147源(147Pm2O3)或锶-90源(90Sr)。进一步地,考虑β放射源自吸收效应,氚源(Ti3TX)的厚度小于2μm;镍-63源(63Ni)的厚度小于3μm;钷-147源(147Pm2O3)的厚度小于43μm;锶-90源(90Sr)的厚度小于1cm。The pure beta radiation source (1) is a lamellar cylindrical solid radiation source. Tritium source (Ti 3 T X ), nickel-63 source ( 63 Ni), promethium-147 source ( 147 Pm 2 O 3 ) or strontium-90 source ( 90 Sr) is selected. Further, considering that the β radiation originates from the absorption effect, the thickness of the tritium source (Ti 3 T X ) is less than 2 μm; the thickness of the nickel-63 source ( 63 Ni) is less than 3 μm; the thickness of the promethium-147 source ( 147 Pm 2 O 3 ) Less than 43 μm; the thickness of the strontium-90 source ( 90 Sr) is less than 1 cm.
所述可拆卸金刚石慢化体(2)为圆柱形,其半径与纯β放射源(1)的半径相同。改变金刚石慢化体(2)的厚度将纯β放射源出射的高能β粒子慢化获得低于金刚石PIM肖特基二极管抗辐射损伤的能量阈值并满足微机电系统输出功率要求的低能β粒子。进一步地,所述氚源(Ti3TX)、镍-63源(63Ni)、钷-147源(147Pm2O3)和锶-90源(90Sr)对应的核电池中,金刚石慢化体(2)的厚度分别小于0.2μm、23μm、50μm和3.2mm。其中,金刚石慢化体(2)主要应用于钷-147源(147Pm2O3)和锶-90源(90Sr)对应的核电池中。The detachable diamond moderator (2) is cylindrical, and its radius is the same as that of the pure beta radiation source (1). Changing the thickness of the diamond moderator (2) moderates the high-energy beta particles emitted by the pure beta radiation source to obtain low-energy beta particles that are lower than the energy threshold of the diamond PIM Schottky diode against radiation damage and meet the output power requirements of the micro-electromechanical system. Further, in the nuclear battery corresponding to the tritium source (Ti 3 T X ), nickel-63 source ( 63 Ni), promethium-147 source ( 147 Pm 2 O 3 ) and strontium-90 source ( 90 Sr), diamond The thicknesses of moderators (2) are respectively less than 0.2 μm, 23 μm, 50 μm and 3.2 mm. Among them, the diamond moderator (2) is mainly used in nuclear batteries corresponding to promethium-147 source ( 147 Pm 2 O 3 ) and strontium-90 source ( 90 Sr).
所述金刚石PIM肖特基二极管为圆柱形,其半径与纯β放射源(1)的半径相同,其内部依次层叠设置为P型高掺杂金刚石衬底层(3)、P型低掺杂金刚石缓冲层(4)、本征金刚石层(5)和肖特基电极层(6)。The diamond PIM Schottky diode is cylindrical, and its radius is the same as that of the pure beta radiation source (1), and its interior is sequentially stacked to form a P-type highly doped diamond substrate layer (3), a P-type low-doped diamond buffer layer (4), intrinsic diamond layer (5) and Schottky electrode layer (6).
所述P型高掺杂金刚石衬底层(3)为(001)取向硼掺杂金刚石层,厚度小于200nm,掺杂硼原子浓度NA>1×1018cm-3;进一步地,P型高掺杂金刚石衬底层(3)为所述核电池的植入式前置电极。The P-type highly doped diamond substrate layer (3) is a (001)-oriented boron-doped diamond layer with a thickness of less than 200nm and doped boron atomic concentration N A >1×10 18 cm -3 ; further, the P-type highly The doped diamond substrate layer (3) is the implanted front electrode of the nuclear battery.
所述P型低掺杂金刚石缓冲层(4)为(001)取向金刚石外延层,掺杂硼原子浓度NA<1×1014cm-3,厚度小于20nm。The P-type low-doped diamond buffer layer (4) is a (001)-oriented diamond epitaxial layer, doped with a concentration of boron atoms N A <1×10 14 cm -3 , and a thickness of less than 20nm.
所述氚源(Ti3TX)、镍-63源(63Ni)、钷-147源(147Pm2O3)和锶-90源(90Sr)对应的核电池中,本征金刚石(5)的厚度的厚度分别小于0.2μm、23μm、50μm和3.2mm。In the nuclear battery corresponding to the tritium source (Ti 3 T X ), nickel-63 source ( 63 Ni), promethium-147 source ( 147 Pm 2 O 3 ) and strontium-90 source ( 90 Sr), the intrinsic diamond ( 5) The thicknesses are less than 0.2 μm, 23 μm, 50 μm and 3.2 mm, respectively.
肖特基电极层(6)为场板结构,厚度小于30nm。进一步地,肖特基电极层(6)为单一金属层或由多种金属形成多个单一金属层构成的金属复合层。更进一步地,肖特基电极层(6)中与本征金刚石层(5)接触的金属层中金属材料功函数小于金刚石禁带宽度。The Schottky electrode layer (6) is a field plate structure with a thickness less than 30nm. Further, the Schottky electrode layer (6) is a single metal layer or a metal composite layer composed of a plurality of single metal layers formed from multiple metals. Furthermore, the work function of the metal material in the metal layer in the Schottky electrode layer (6) in contact with the intrinsic diamond layer (5) is smaller than the band gap of diamond.
所述的P型高掺杂金刚石衬底层(3)和肖特基电极(6)上分别对应设置第一引线和第二引线,进行退火后封装得到金刚石PIM肖特基二极管。The P-type highly doped diamond substrate layer (3) and the Schottky electrode (6) are respectively provided with a first lead and a second lead correspondingly, and after annealing, they are packaged to obtain a diamond PIM Schottky diode.
所述电池外壳(7)及其可拆卸部分(8)是正方体结构。进一步地,所述电池外壳(7)及其可拆卸部分(8)是由密度小的高分子聚乙烯塑料构成,厚度小于1.5cm。The battery case (7) and its detachable part (8) are cube structures. Further, the battery casing (7) and its detachable part (8) are made of high molecular polyethylene plastic with low density, and the thickness is less than 1.5cm.
综上所述,结合放射源的自吸收效应、放射源在换能材料中的电离作用范围、金刚石PIM肖特基二极管的制备技术及辐射防护,本发明提供了一种金刚石PIM肖特基型β辐射伏特效应核电池的技术方案。该技术方案大大提高了核电池的能量转换效率和能量输出功率,同时延长核电池的使用寿命,核电池性能稳定。In summary, combined with the self-absorption effect of the radioactive source, the ionization range of the radioactive source in the transducing material, the preparation technology and radiation protection of the diamond PIM Schottky diode, the present invention provides a diamond PIM Schottky diode A technical proposal for a β-radiation volt effect nuclear battery. The technical solution greatly improves the energy conversion efficiency and energy output power of the nuclear battery, prolongs the service life of the nuclear battery, and has stable performance of the nuclear battery.
附图说明Description of drawings
图1是所述一种金刚石PIM肖特基型β辐射伏特效应核电池的轴剖面示意图。图中标记:(1)为纯β放射源,(2)为可拆卸金刚石慢化体,(3)为P型高掺杂金刚石衬底层、(4)为P型低掺杂金刚石缓冲层、(5)为本征金刚石层、(6)为肖特基电极层、(7)为电池外壳、(8)为电池外壳可拆卸部分。Fig. 1 is a schematic axial cross-sectional view of the diamond PIM Schottky type beta radiation voltaic effect nuclear battery. Marks in the figure: (1) is a pure β radiation source, (2) is a detachable diamond moderator, (3) is a P-type highly doped diamond substrate layer, (4) is a P-type low-doped diamond buffer layer, (5) is the intrinsic diamond layer, (6) is the Schottky electrode layer, (7) is the battery case, and (8) is the detachable part of the battery case.
图2是所述一种金刚石PIM肖特基型β辐射伏特效应核电池的俯视图;Fig. 2 is the top view of described a kind of diamond PIM Schottky type beta radiation voltaic effect nuclear battery;
具体实施方式Detailed ways
β辐射伏特效应核电池研究的主要内容包括:β放射源的自吸收效应,载能β粒子在材料表面的反散射,载能β粒子在换能材料中的电离作用范围,核电池制备工艺及核电池输出性能研究。研究结果表明:金刚石肖特基二极管是β辐射伏特效应核电池理想的换能器件。The main content of the research on the β radiation volt effect nuclear battery includes: the self-absorption effect of the β radiation source, the backscattering of the energy-carrying β particles on the surface of the material, the ionization range of the energy-carrying β particles in the energy-transforming material, the preparation process of the nuclear battery and Research on output performance of nuclear battery. The research results show that: the diamond Schottky diode is an ideal transducing device for the β-radiation volt effect nuclear battery.
β放射源衰变的载能β粒子与放射源自身发生相互作用产生自吸收现象。此现象导致随着β放射源厚度的增加,其表面出射功率先是不断增加而后趋于饱和值。一般地,氚源(Ti3TX)、镍-63源(63Ni)、钷-147源(147Pm2O3)和锶-90源(90Sr)的表面出射功率达到饱和值时放射源对应的厚度分别为2μm、3μm、43μm和1cm左右。因此,本发明中所述圆柱形固态薄片状纯β放射源(1)的厚度小于其表面出射功率达到饱和值时对应的厚度。也就是说,所述氚源(Ti3TX)的厚度小于2μm;镍-63源(63Ni)的厚度小于3μm;钷-147源(147Pm2O3)的厚度小于43μm和锶-90源(90Sr)的厚度小于1cm。The energy-carrying beta particles decayed by the beta radioactive source interact with the radioactive source itself to produce self-absorption. This phenomenon leads to the fact that with the increase of the thickness of the β-radiation source, its surface output power first increases continuously and then tends to a saturated value. Generally, tritium source (Ti 3 T X ), nickel-63 source ( 63 Ni), promethium-147 source ( 147 Pm 2 O 3 ) and strontium-90 source ( 90 Sr ) emit The thickness corresponding to the source is about 2 μm, 3 μm, 43 μm and 1 cm respectively. Therefore, the thickness of the cylindrical solid sheet-shaped pure beta radiation source (1) in the present invention is smaller than the corresponding thickness when the surface output power reaches the saturation value. That is to say, the thickness of the tritium source (Ti 3 T X ) is less than 2 μm; the thickness of the nickel-63 source ( 63 Ni) is less than 3 μm; the thickness of the promethium-147 source ( 147 Pm 2 O 3 ) is less than 43 μm and the strontium- The thickness of the 90 source ( 90 Sr) is less than 1 cm.
为了将纯β放射源出射的高能β粒子慢化获得低于金刚石PIM肖特基二极管抗辐射损伤的能量阈值并满足微机电系统输出功率要求的低能β粒子,所述核电池中设置金刚石慢化体。一般地,氚源(Ti3TX)、镍-63源(63Ni)、钷-147源(147Pm2O3)和锶-90源(90Sr)在金刚石材料内的电离作用范围分别为0.2μm、23μm、50μm和3.2mm左右。因此,本发明中所述氚源(Ti3TX)、镍-63源(63Ni)、钷-147源(147Pm2O3)和锶-90源(90Sr)对应的核电池中,厚度可调的金刚石慢化体(2)的厚度分别小于0.2μm、23μm、50μm和3.2mm。更进一步地,金刚石慢化体(2)主要应用于钷-147源(147Pm2O3)和锶-90源(90Sr)对应的核电池中。In order to moderate the high-energy beta particles emitted by the pure beta radiation source to obtain low-energy beta particles that are lower than the energy threshold of the diamond PIM Schottky diode against radiation damage and meet the output power requirements of the micro-electromechanical system, diamond moderators are set in the nuclear battery body. Generally, the ionization ranges of tritium source (Ti 3 T X ), nickel-63 source ( 63 Ni), promethium-147 source ( 147 Pm 2 O 3 ) and strontium-90 source ( 90 Sr) in diamond materials are respectively It is about 0.2μm, 23μm, 50μm and 3.2mm. Therefore, in the nuclear battery corresponding to tritium source (Ti 3 T X ), nickel-63 source ( 63 Ni), promethium-147 source ( 147 Pm 2 O 3 ) and strontium-90 source ( 90 Sr) in the present invention The thicknesses of the diamond moderators (2) with adjustable thickness are respectively less than 0.2 μm, 23 μm, 50 μm and 3.2 mm. Furthermore, the diamond moderator (2) is mainly used in nuclear batteries corresponding to promethium-147 source ( 147 Pm 2 O 3 ) and strontium-90 source ( 90 Sr).
为了优化基于金刚石肖特基二极管型β辐射伏特效应核电池的性能,本发明所述的一种金刚石PIM肖特基型β辐射伏特效应核电池中利用P型高掺杂金刚石薄膜作为植入式电极来降低载能β粒子在核电池换能器件表面的反散射能量损失;进一步地,相比于N型金刚石薄膜,利用P型金刚石薄膜作为所述核电池的发射层可以有效地提高核电池内部的电荷收集效率;更进一步地,将β放射源在换能器件内部的电离作用范围与其本征层区域相匹配是提高所述核电池的关键性问题。最后,相比于功函数较高的金属,功函数较低的金属将有利于提高P-M型金刚石肖特基势垒高度,降低金刚石肖特基二极管的漏电流,提高所述核电池的开路电压和能量转化效率。In order to optimize the performance based on the diamond Schottky diode type beta radiation voltaic effect nuclear battery, a P-type highly doped diamond film is used as an implanted electrode to reduce the backscattering energy loss of energy-carrying β particles on the surface of the nuclear battery transducing device; further, compared to the N-type diamond film, using the P-type diamond film as the emission layer of the nuclear battery can effectively improve the nuclear battery Internal charge collection efficiency; Furthermore, matching the ionization range of the beta radiation source inside the transducer device with its intrinsic layer area is a key issue in improving the nuclear battery. Finally, compared to metals with higher work functions, metals with lower work functions will help increase the height of the P-M diamond Schottky barrier, reduce the leakage current of the diamond Schottky diode, and increase the open circuit voltage of the nuclear battery and energy conversion efficiency.
所述金刚石PIM肖特基二极管内部依次层叠设置为P型高掺杂金刚石衬底层(3)、P型低掺杂金刚石缓冲层(4)、本征金刚石层(5)和肖特基电极层(6),其主要制备方法如下:The diamond PIM Schottky diode is sequentially stacked to form a P-type highly doped diamond substrate layer (3), a P-type low-doped diamond buffer layer (4), an intrinsic diamond layer (5) and a Schottky electrode layer (6), its main preparation method is as follows:
步骤1:采用化学气相沉积技术合成P型高掺杂金刚石衬底层(3),其晶向为(001),厚度小于200nm,硼原子掺杂浓度NA>1×1018cm-3。进一步地,P型高掺杂金刚石衬底层(3)为所述核电池的植入式前置电极。Step 1: Synthesize a P-type highly doped diamond substrate layer (3) by chemical vapor deposition technology, its crystal orientation is (001), the thickness is less than 200nm, and the doping concentration of boron atoms is N A >1×10 18 cm -3 . Further, the P-type highly doped diamond substrate layer (3) is the implanted front electrode of the nuclear battery.
步骤2:采用化学气相沉积技术在P型高掺杂金刚石衬底层(3)上外延生长P型低掺杂金刚石缓冲层(4),掺杂硼原子浓度NA<1×1014cm-3,厚度小于20nm。Step 2: Using chemical vapor deposition technology to epitaxially grow a P-type low-doped diamond buffer layer (4) on a P-type highly-doped diamond substrate layer (3), doped with a concentration of boron atoms N A <1×10 14 cm -3 , the thickness is less than 20nm.
步骤3:采用化学气相沉积技术在步骤2中制备完成的P型低掺杂金刚石缓冲层(4)上外延生长一层本征金刚石层(5)。进一步地,将本征金刚石层(5)与所述纯β放射源在金刚石中的电离作用范围相匹配,因此,所述氚源(Ti3TX)、镍-63源(63Ni)、钷-147源(147Pm2O3)和锶-90源(90Sr)对应的核电池中,本征金刚石层(5)的厚度分别小于0.2μm、23μm、50μm和3.2mm。Step 3: using chemical vapor deposition technology to epitaxially grow an intrinsic diamond layer (5) on the P-type low-doped diamond buffer layer (4) prepared in step 2. Further, the intrinsic diamond layer (5) is matched with the ionization range of the pure β radiation source in diamond, therefore, the tritium source (Ti 3 T X ), nickel-63 source ( 63 Ni), In nuclear batteries corresponding to promethium-147 source ( 147 Pm 2 O 3 ) and strontium-90 source ( 90 Sr), the thickness of the intrinsic diamond layer (5) is less than 0.2 μm, 23 μm, 50 μm and 3.2 mm, respectively.
步骤4:将步骤3中制备完成的本征金刚石层(5)进行表面处理形成氧终止表面状态。进一步地,利用丙酮、去离子水和超声波进行表面清洗。Step 4: Surface treatment is performed on the intrinsic diamond layer (5) prepared in step 3 to form an oxygen terminated surface state. Further, the surface was cleaned with acetone, deionized water and ultrasonic waves.
步骤5:肖特基电极层6为场板结构,厚度小于30nm。采用电子束蒸发镀膜技术在步骤4中制备完成的本征金刚石层(5)表面沉积功函数小于金刚石禁带宽度的金属单一金属层(如金属铪)形成肖特基电极层(6),或在功函数小于金刚石禁带宽度的金属层(如金属铪)上沉积多个单一金属层(如钛、镍、铂、金、铝)的金属复合层构成肖特基电极层(6)。Step 5: The Schottky electrode layer 6 is a field plate structure with a thickness less than 30 nm. The surface of the intrinsic diamond layer (5) prepared by electron beam evaporation coating technology in step 4 is deposited on the surface of a metal single metal layer (such as metal hafnium) with a work function smaller than the diamond band gap width to form a Schottky electrode layer (6), or A metal composite layer of a plurality of single metal layers (such as titanium, nickel, platinum, gold, aluminum) is deposited on a metal layer (such as metal hafnium) whose work function is smaller than the band gap of diamond to form a schottky electrode layer (6).
步骤6:所述的P型高掺杂金刚石衬底层(3)和肖特基电极(6)上分别对应设置第一引线和第二引线。进一步地,在氮气气氛保护下完成所述金刚石PIM肖特基二极管退火处理。更进一步地,将所述金刚石PIM肖特基二极管进行封装。Step 6: Correspondingly setting a first lead and a second lead on the P-type highly doped diamond substrate layer (3) and the Schottky electrode (6). Further, the annealing treatment of the diamond PIM Schottky diode is completed under the protection of nitrogen atmosphere. Furthermore, the diamond PIM Schottky diode is packaged.
所述电池外壳(7)及其可拆卸部分(8)是正方体结构。进一步地,所述电池外壳(7)及其可拆卸部分(8)是由密度小的高分子聚乙烯塑料构成,厚度小于1.5cm。The battery case (7) and its detachable part (8) are cube structures. Further, the battery casing (7) and its detachable part (8) are made of high molecular polyethylene plastic with low density, and the thickness is less than 1.5cm.
本发明所述的具体实施例详细说明了一种金刚石PIM肖特基型β辐射伏特效应核电池设计的理论基础和具体的技术方案。需要说明的是,以上所述仅为本发明的具体实施例,它并不用于限制本发明所述核电池的设计和制备。进一步地,凡是在本发明的精神和原则之内,所做的任何修改、等同替换、改进等均包括在本发明的保护范围之内。更进一步地,本发明说明书中为了阐述简单和清晰,附图只是对一般性结构进行说明,省略了部分众所周知的结构以避免不必要的模糊表达,附图的横截面并非严格按照实际比例绘制。The specific embodiments described in the present invention describe in detail the theoretical basis and specific technical solutions for the design of a diamond PIM Schottky type beta radiation voltaic effect nuclear battery. It should be noted that the above descriptions are only specific examples of the present invention, and are not intended to limit the design and manufacture of the nuclear battery of the present invention. Further, within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc. are included in the protection scope of the present invention. Furthermore, for simplicity and clarity in the description of the present invention, the drawings only illustrate general structures, omitting some well-known structures to avoid unnecessary ambiguity, and the cross-sections of the drawings are not drawn strictly according to actual scale.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810519436.XA CN108492905A (en) | 2018-05-28 | 2018-05-28 | A kind of diamond PIM Schottky types β radiation volta effect nuclear battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810519436.XA CN108492905A (en) | 2018-05-28 | 2018-05-28 | A kind of diamond PIM Schottky types β radiation volta effect nuclear battery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN108492905A true CN108492905A (en) | 2018-09-04 |
Family
ID=63350913
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810519436.XA Pending CN108492905A (en) | 2018-05-28 | 2018-05-28 | A kind of diamond PIM Schottky types β radiation volta effect nuclear battery |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108492905A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112863727A (en) * | 2020-12-24 | 2021-05-28 | 吉林大学 | Nuclear battery and method for providing electric energy |
| CN112911783A (en) * | 2021-03-25 | 2021-06-04 | 四川大学 | Film energy degrader suitable for high-power beam |
| CN113707355A (en) * | 2021-08-26 | 2021-11-26 | 吉林大学 | Energy-carrying and energy-converting integrated nuclear battery |
| CN113963835A (en) * | 2021-08-29 | 2022-01-21 | 东华理工大学 | A diamond Schottky type beta radiation volt effect miniature nuclear battery |
| CN114203327A (en) * | 2021-12-13 | 2022-03-18 | 中国核动力研究设计院 | P-i-n junction, preparation method, diode and beta nuclear battery |
| TWI817365B (en) * | 2021-02-25 | 2023-10-01 | 美商西屋電器公司 | Devices, systems, and methods for power generation using irradiators and other gamma ray sources |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104617159A (en) * | 2015-01-17 | 2015-05-13 | 王宏兴 | Diamond schottky diode and manufacturing method thereof |
| CN107749316A (en) * | 2017-10-09 | 2018-03-02 | 哈尔滨工业大学 | Diamond schottky isotope battery and preparation method thereof |
-
2018
- 2018-05-28 CN CN201810519436.XA patent/CN108492905A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104617159A (en) * | 2015-01-17 | 2015-05-13 | 王宏兴 | Diamond schottky diode and manufacturing method thereof |
| CN107749316A (en) * | 2017-10-09 | 2018-03-02 | 哈尔滨工业大学 | Diamond schottky isotope battery and preparation method thereof |
Non-Patent Citations (1)
| Title |
|---|
| VITALY BORMASHOV,等: "Development of nuclear microbattery prototype based ob Schottky barrier diamond diode", 《PHYS.STATUS SOLIDI A》 * |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112863727A (en) * | 2020-12-24 | 2021-05-28 | 吉林大学 | Nuclear battery and method for providing electric energy |
| CN112863727B (en) * | 2020-12-24 | 2023-03-17 | 吉林大学 | Nuclear battery and method for providing electric energy |
| TWI817365B (en) * | 2021-02-25 | 2023-10-01 | 美商西屋電器公司 | Devices, systems, and methods for power generation using irradiators and other gamma ray sources |
| CN112911783A (en) * | 2021-03-25 | 2021-06-04 | 四川大学 | Film energy degrader suitable for high-power beam |
| CN113707355A (en) * | 2021-08-26 | 2021-11-26 | 吉林大学 | Energy-carrying and energy-converting integrated nuclear battery |
| CN113963835A (en) * | 2021-08-29 | 2022-01-21 | 东华理工大学 | A diamond Schottky type beta radiation volt effect miniature nuclear battery |
| CN114203327A (en) * | 2021-12-13 | 2022-03-18 | 中国核动力研究设计院 | P-i-n junction, preparation method, diode and beta nuclear battery |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108492905A (en) | A kind of diamond PIM Schottky types β radiation volta effect nuclear battery | |
| US11798703B2 (en) | Radiation powered devices comprising diamond material and electrical power sources for radiation powered devices | |
| US6774531B1 (en) | Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material | |
| Krasnov et al. | Advances in the development of betavoltaic power sources (a review) | |
| CN110444313A (en) | One kind radiating volta effect nuclear battery based on silicon carbide PN junction β | |
| CN103109325A (en) | Betavoltaic apparatus and method | |
| EP1590815A2 (en) | Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material | |
| CN104392761A (en) | Radiological volt isotope battery and preparation method thereof | |
| CN107210078A (en) | Generator system | |
| CN101645317B (en) | Isotope battery of carbon nano tube | |
| CN210223589U (en) | Silicon carbide PIN junction type β radiation volt effect based nuclear battery | |
| CN110459340B (en) | H-3 silicon carbide PN type isotope battery and manufacturing method thereof | |
| CN110428922A (en) | One kind radiating volta effect nuclear battery based on silicon carbide PIN junction type β | |
| CN106847361A (en) | Zinc oxide PIN-type nuclear battery | |
| CN113707355A (en) | Energy-carrying and energy-converting integrated nuclear battery | |
| CN111386578A (en) | nuclear microbattery | |
| CN113963835A (en) | A diamond Schottky type beta radiation volt effect miniature nuclear battery | |
| CN109243659B (en) | A kind of miniature nuclear battery based on silicon carbide material and preparation method thereof | |
| CN112863727B (en) | Nuclear battery and method for providing electric energy | |
| CN113963836A (en) | Nuclear battery based on silicon carbide PN junction type beta radiation volt effect | |
| CN109192350B (en) | Schottky miniature nuclear battery based on silicon carbide material and preparation method thereof | |
| US9018721B1 (en) | Beta voltaic semiconductor photodiode fabricated from a radioisotope | |
| CN110556192B (en) | A kind of Pm-147 silicon carbide graded PN isotope battery and its making method | |
| CN105448376B (en) | Using the silicon carbide Schottky junction isotope battery and its manufacture method of αsource | |
| CN114550967A (en) | Miniature nuclear battery based on nickel-63 source and gallium arsenide p-n junction device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180904 |