CN108958348B - A kind of band gap reference of high PSRR - Google Patents
A kind of band gap reference of high PSRR Download PDFInfo
- Publication number
- CN108958348B CN108958348B CN201810915216.9A CN201810915216A CN108958348B CN 108958348 B CN108958348 B CN 108958348B CN 201810915216 A CN201810915216 A CN 201810915216A CN 108958348 B CN108958348 B CN 108958348B
- Authority
- CN
- China
- Prior art keywords
- tube
- pmos tube
- module
- connects
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 101100076863 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mnh1 gene Proteins 0.000 claims description 31
- 239000003990 capacitor Substances 0.000 claims description 25
- 102100036285 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Human genes 0.000 claims description 20
- 101000875403 Homo sapiens 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Proteins 0.000 claims description 20
- 102100037224 Noncompact myelin-associated protein Human genes 0.000 claims description 10
- 101710184695 Noncompact myelin-associated protein Proteins 0.000 claims description 10
- 230000000284 resting effect Effects 0.000 abstract 1
- 102000004213 Neuropilin-2 Human genes 0.000 description 12
- 108090000770 Neuropilin-2 Proteins 0.000 description 12
- 101000704557 Homo sapiens Sulfiredoxin-1 Proteins 0.000 description 11
- 102100031797 Sulfiredoxin-1 Human genes 0.000 description 11
- 102000004207 Neuropilin-1 Human genes 0.000 description 8
- 108090000772 Neuropilin-1 Proteins 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/575—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明属于电子电路技术领域,具体涉及到一种高电源抑制比的带隙基准电路的设计。The invention belongs to the technical field of electronic circuits, and in particular relates to the design of a bandgap reference circuit with high power supply rejection ratio.
背景技术Background technique
在高性能模拟集成电路、数模混合、数字和电源管理系统设计领域,基准电压源是非常重要且常用的模块,常应用在模拟与数字转换器、功率转换器、功率放大器等电路中,其性能好坏直接影响整个系统的精度及稳定。由于带隙基准源电路的输出与误差放大器或者是运算放大器连接在一起,并且成为误差放大器差分输入的一部分,如果电源纹波或噪声在带隙基准电路中不能够得到好的抑制,那么纹波电压以及电源噪声会成为误差放大器的输入信号的一部分,继而被放大严重影响电路的输出信号。在电源管理芯片应用中,目前的趋势逐渐走向低电源工作电压和低功耗。而随着工作电压的降低,信号噪声对带隙基准的精度将显得越发突出。因此,在越来越低的电源电压下,高电源抑制PSR的带隙基准源变得越来越重要。In the design fields of high-performance analog integrated circuits, digital-analog hybrids, digital and power management systems, reference voltage sources are very important and commonly used modules, and are often used in circuits such as analog and digital converters, power converters, and power amplifiers. Performance directly affects the accuracy and stability of the entire system. Since the output of the bandgap reference circuit is connected to the error amplifier or operational amplifier and becomes part of the differential input of the error amplifier, if the power supply ripple or noise cannot be well suppressed in the bandgap reference circuit, then the ripple Voltage and power supply noise will become part of the input signal to the error amplifier, and then be amplified and seriously affect the output signal of the circuit. In the application of power management chips, the current trend is gradually moving towards low power supply operating voltage and low power consumption. As the operating voltage decreases, the accuracy of the signal-to-noise vs. bandgap reference becomes more prominent. Therefore, at lower and lower supply voltages, bandgap references with high power supply rejection PSR become more and more important.
传统的带隙基准源如图1所示,包括误差放大器A1,PMOS管M1、M2和M3构成的镜像电流源,电阻R14、R15以及PNP型双极型晶体管Q1、Q2、Q3。则得到的基准电压VREF的表达式为:The traditional bandgap reference source is shown in Figure 1, including error amplifier A1, mirror current source composed of PMOS transistors M1, M2, and M3, resistors R14, R15, and PNP bipolar transistors Q1, Q2, and Q3. Then the expression of the obtained reference voltage V REF is:
其中VEBQ3是双极型晶体管Q3的发射极与基极电压差;K是波尔兹曼常数,q是单位电荷的电量,T是温度,N为PNP型双极型晶体管Q1和Q2的尺寸比。通过调节电阻R14、R15的比值R15/R14,可以得到一个基本与温度无关的基准电压VREF。Where V EBQ3 is the voltage difference between the emitter and the base of the bipolar transistor Q3; K is Boltzmann's constant, q is the quantity of electricity per unit charge, T is temperature, and N is the size ratio of PNP bipolar transistors Q1 and Q2. By adjusting the ratio R 15 /R 14 of the resistors R14 and R15, a reference voltage V REF that is basically independent of temperature can be obtained.
传统的带隙基准电路本身具有良好的电源抑制特性,在实际电路中,电源抑制比(Power Supply Rejection Ratio,PSRR)性能的频率特性在整个输入电压范围内并不相同,厄尔利电压和沟道长度调制效应一般都会导致电源抑制比PSRR的变化。也就是说晶体管的输出阻抗随着稳态偏置情况(漏极-源极电压或者集电极-发射极电压)的变化而变化。提高电源抑制比PSRR的核心思想是增大基准输出电压VREF到输入电源电压VDD的有效阻抗。如果要设计出高精度的完整带隙基准电路,通常需要加入额外的电路来提高电路的电源电压抑制能力,这种方法将导致电路的复杂性增加以及额外的功耗引入;另一方面,在传统带运放带隙基准产生电路中,由于不对称,运放会受到输入“失调”的影响,该“失调”会影响电路的整体性能,同时还会限制其精度。The traditional bandgap reference circuit itself has good power supply rejection characteristics. In the actual circuit, the frequency characteristics of the power supply rejection ratio (Power Supply Rejection Ratio, PSRR) performance are not the same in the entire input voltage range. Early voltage and trench Track length modulation effects generally lead to changes in power supply rejection ratio PSRR. That is, the output impedance of the transistor varies with steady-state bias conditions (drain-source voltage or collector-emitter voltage). The core idea of improving the power supply rejection ratio PSRR is to increase the effective impedance from the reference output voltage V REF to the input power supply voltage VDD. If you want to design a high-precision complete bandgap reference circuit, you usually need to add additional circuits to improve the power supply voltage suppression capability of the circuit. This method will lead to increased circuit complexity and additional power consumption; on the other hand, in In conventional bandgap reference generation circuits with op amps, due to asymmetry, the op amp suffers from input "offset" that affects the overall performance of the circuit while also limiting its accuracy.
发明内容Contents of the invention
本发明的目的,就是针对上述传统带隙基准电路需要额外加入电路用于提高电源电压抑制比而导致的电路复杂化以及功耗增大的问题,提出一种高电源抑制比的带隙基准源,在带隙基准源内部电路中提高电源抑制比,同时本发明提出的带隙基准源可以不采用运放结构,避免了运放输入失调的引入而限制带隙基准源精度的问题。The purpose of the present invention is to propose a bandgap reference source with a high power supply rejection ratio for the above-mentioned traditional bandgap reference circuit that needs to add additional circuits to improve the power supply voltage rejection ratio, resulting in circuit complexity and increased power consumption. , the power supply rejection ratio is improved in the internal circuit of the bandgap reference source, and the bandgap reference source proposed by the present invention may not use an operational amplifier structure, which avoids the problem of limiting the accuracy of the bandgap reference source due to the introduction of input offset of the operational amplifier.
本发明的技术方案为:Technical scheme of the present invention is:
一种高电源抑制比的带隙基准源,包括电源自偏置模块、启动模块、带隙基准核心模块和偏置模块,A bandgap reference source with high power supply rejection ratio, including a power supply self-bias module, a startup module, a bandgap reference core module and a bias module,
所述电源自偏置模块包括第一电阻R1、第二电阻R2、第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3、第一电容C1、第二电容C2、第七NMOS管MNH1和第一开关管,The power supply self-bias module includes a first resistor R1, a second resistor R2, a first PMOS transistor MP1, a second PMOS transistor MP2, a third PMOS transistor MP3, a first capacitor C1, a second capacitor C2, and a seventh NMOS transistor MNH1 and the first switching tube,
电源电压VDD通过第一电阻R1和第二电阻R2的串联结构后产生第七NMOS管MNH1的栅极偏置信号连接第七NMOS管MNH1的栅极并通过第一电容C1后接地GND;The power supply voltage VDD passes through the series structure of the first resistor R1 and the second resistor R2 to generate a gate bias signal of the seventh NMOS transistor MNH1, which is connected to the gate of the seventh NMOS transistor MNH1 and grounded to GND after passing through the first capacitor C1;
第七NMOS管MNH1的漏极连接电源电压VDD,其源极输出第一电源轨信号VDD1作为所述偏置模块的电源轨;The drain of the seventh NMOS transistor MNH1 is connected to the power supply voltage VDD, and its source outputs the first power rail signal VDD1 as the power rail of the bias module;
第一PMOS管MP1、第二PMOS管MP2和第三PMOS管MP3接成二极管连接形式并依次串联,第七NMOS管MNH1的栅极偏置信号经过第一PMOS管MP1、第二PMOS管MP2和第三PMOS管MP3的串联结构再流经第一开关管后接地GND;The first PMOS transistor MP1, the second PMOS transistor MP2 and the third PMOS transistor MP3 are connected in a diode connection form and connected in series in sequence, and the gate bias signal of the seventh NMOS transistor MNH1 passes through the first PMOS transistor MP1, the second PMOS transistor MP2 and The series structure of the third PMOS transistor MP3 flows through the first switch transistor and then grounded to GND;
第二电容C2接在第一开关管的控制端和地GND之间;The second capacitor C2 is connected between the control terminal of the first switch tube and the ground GND;
所述启动模块包括第二开关管和第三开关管以及包括第三电阻R3、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第九电阻R9和第十电阻R10的电阻网络,The starting module includes a second switch tube and a third switch tube, and includes a third resistor R3, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, a ninth resistor R9 and a tenth resistor R10 the resistor network,
第二开关管和第三开关管分别与第一开关管构成电流镜,在上电阶段导通第二开关管和第三开关管从而产生第一启动信号和第二启动信号,上电完成后关断第二开关管和第三开关管;The second switch tube and the third switch tube form a current mirror with the first switch tube respectively, and the second switch tube and the third switch tube are turned on during the power-on stage to generate the first start signal and the second start signal. After power-on is completed Turn off the second switch tube and the third switch tube;
第三电阻R3的一端连接所述第二启动信号,其另一端连接第五电阻R5的一端并作为所述电阻网络的输入端;One end of the third resistor R3 is connected to the second start signal, and the other end is connected to one end of the fifth resistor R5 and used as the input end of the resistor network;
第六电阻R6的一端连接第五电阻R5的另一端和所述第一启动信号,其另一端连接第七电阻R7的一端和第八电阻R8的一端;One end of the sixth resistor R6 is connected to the other end of the fifth resistor R5 and the first start signal, and the other end is connected to one end of the seventh resistor R7 and one end of the eighth resistor R8;
第九电阻R9的一端连接第十电阻R10的一端、第七电阻R7的另一端和第八电阻R8的另一端,其另一端连接第十电阻R10的另一端并接地GND;One end of the ninth resistor R9 is connected to one end of the tenth resistor R10, the other end of the seventh resistor R7 and the other end of the eighth resistor R8, and the other end is connected to the other end of the tenth resistor R10 and grounded to GND;
所述电源自偏置模块和所述启动模块为所述偏置模块建立偏置,所述偏置模块为所述带隙基准核心模块提供偏置;The power supply self-bias module and the start-up module establish a bias for the bias module, and the bias module provides a bias for the bandgap reference core module;
所述带隙基准核心模块用于产生正温度系数电压和负温度系数电流,所述负温度系数电流连接所述电阻网络的输入端并在所述电阻网络上产生负温度系数电压,所述负温度系数电压与所述正温度系数电压叠加产生基准电压VREF。The bandgap reference core module is used to generate a positive temperature coefficient voltage and a negative temperature coefficient current, the negative temperature coefficient current is connected to the input end of the resistance network and generates a negative temperature coefficient voltage on the resistance network, the negative temperature coefficient The temperature coefficient voltage is superimposed with the positive temperature coefficient voltage to generate a reference voltage V REF .
具体的,所述第七NMOS管MNH1为耐压管。Specifically, the seventh NMOS transistor MNH1 is a pressure-resistant transistor.
具体的,所述偏置模块包括第四PMOS管MP4、第五PMOS管MP5、第六PMOS管MP6、第十一PMOS管MP11、第三NMOS管MN3、第四NMOS管MN4、第五NMOS管MN5、第六NMOS管MN6、第六NPN型三极管NPN6、第十一电阻R11、第十二电阻R12和第十三电阻R13,Specifically, the bias module includes a fourth PMOS transistor MP4, a fifth PMOS transistor MP5, a sixth PMOS transistor MP6, an eleventh PMOS transistor MP11, a third NMOS transistor MN3, a fourth NMOS transistor MN4, a fifth NMOS transistor MN5, the sixth NMOS transistor MN6, the sixth NPN transistor NPN6, the eleventh resistor R11, the twelfth resistor R12 and the thirteenth resistor R13,
第四PMOS管MP4的源极连接第五PMOS管MP5、第六PMOS管MP6和第十一PMOS管MP11的源极并连接所述第一电源轨信号VDD1,其漏极连接第七NMOS管MNH1的栅极偏置信号经过第一PMOS管MP1、第二PMOS管MP2和第三PMOS管MP3的串联结构后的信号,其栅极连接第十一PMOS管MP11的栅极和漏极以及第三NMOS管MN3的漏极;The source of the fourth PMOS transistor MP4 is connected to the sources of the fifth PMOS transistor MP5, the sixth PMOS transistor MP6 and the eleventh PMOS transistor MP11 and connected to the first power rail signal VDD1, and its drain is connected to the seventh NMOS transistor MNH1 The gate bias signal of the signal after passing through the series structure of the first PMOS transistor MP1, the second PMOS transistor MP2 and the third PMOS transistor MP3, the gate of which is connected to the gate and drain of the eleventh PMOS transistor MP11 and the third The drain of the NMOS transistor MN3;
第六PMOS管MP6的栅极连接第六NMOS管MN6的漏极以及第五PMOS管MP5的栅极和漏极并连接所述启动模块的电流镜,其漏极连接第六NMOS管MN6的栅极并产生第二电源轨信号VDD2为所述带隙基准核心模块提供偏置;The gate of the sixth PMOS transistor MP6 is connected to the drain of the sixth NMOS transistor MN6 and the gate and drain of the fifth PMOS transistor MP5 and connected to the current mirror of the startup module, and its drain is connected to the gate of the sixth NMOS transistor MN6 pole and generate a second power rail signal VDD2 to provide bias for the bandgap reference core module;
第三NMOS管MN3的栅极连接第四NMOS管MN4的栅极和漏极并通过第十一电阻R11后连接所述第一电源轨信号VDD1,其源极通过第十二电阻R12后接地GND;The gate of the third NMOS transistor MN3 is connected to the gate and drain of the fourth NMOS transistor MN4 and connected to the first power rail signal VDD1 after passing through the eleventh resistor R11, and its source is grounded to GND after passing through the twelfth resistor R12. ;
第五NMOS管MN5的栅漏短接并连接第四NMOS管MN4的源极,其源极接地GND;The gate-drain of the fifth NMOS transistor MN5 is short-circuited and connected to the source of the fourth NMOS transistor MN4, and its source is grounded to GND;
第六NPN型三极管NPN6的基极连接所述基准电压VREF,其集电极连接第六NMOS管MN6的源极,其发射极通过第十三电阻R13后接地GND。The base of the sixth NPN transistor NPN6 is connected to the reference voltage V REF , its collector is connected to the source of the sixth NMOS transistor MN6 , and its emitter is grounded to GND after passing through the thirteenth resistor R13 .
具体的,所述第一开关管为第一NPN型三极管NPN1,第一NPN型三极管NPN1的基极和集电极互连并连接第七NMOS管MNH1的栅极偏置信号经过第一PMOS管MP1、第二PMOS管MP2和第三PMOS管MP3的串联结构后的信号,其发射极接地。Specifically, the first switch tube is a first NPN transistor NPN1, the base and collector of the first NPN transistor NPN1 are interconnected and connected to the gate bias signal of the seventh NMOS transistor MNH1 through the first PMOS transistor MP1 , The signal after the series structure of the second PMOS transistor MP2 and the third PMOS transistor MP3, the emitter of which is grounded.
具体的,所述带隙基准核心模块包括第四NPN型三极管NPN4、第五NPN型三极管NPN5、第四电阻R4、第三电容C3、第四电容C4、第一NMOS管MN1、第二NMOS管MN2、第七PMOS管MP7、第八PMOS管MP8、第九PMOS管MP9和第十PMOS管MP10,Specifically, the bandgap reference core module includes a fourth NPN transistor NPN4, a fifth NPN transistor NPN5, a fourth resistor R4, a third capacitor C3, a fourth capacitor C4, a first NMOS transistor MN1, a second NMOS transistor MN2, the seventh PMOS transistor MP7, the eighth PMOS transistor MP8, the ninth PMOS transistor MP9 and the tenth PMOS transistor MP10,
第四NPN型三极管NPN4的基极连接第五NPN型三极管NPN5的基极、第一NMOS管MN1的漏极以及第十PMOS管MP10的栅极和漏极并输出所述基准电压VREF,其集电极连接第七PMOS管MP7的栅极和漏极以及第八PMOS管MP8的栅极并通过第三电容C3后接地GND,其发射极通过第四电阻R4后连接第五NPN型三极管NPN5的发射极;The base of the fourth NPN transistor NPN4 is connected to the base of the fifth NPN transistor NPN5, the drain of the first NMOS transistor MN1, and the gate and drain of the tenth PMOS transistor MP10 to output the reference voltage V REF , which The collector is connected to the gate and drain of the seventh PMOS transistor MP7 and the gate of the eighth PMOS transistor MP8 and grounded to GND after passing through the third capacitor C3, and its emitter is connected to the fifth NPN transistor NPN5 after passing through the fourth resistor R4 emitter;
第八PMOS管MP8的源极连接第七PMOS管MP7、第九PMOS管MP9和第十PMOS管MP10的源极并连接所述第二电源轨信号VDD2,其漏极连接第五NPN型三极管NPN5的集电极和第九PMOS管MP9的栅极并通过第四电容C4后接地GND;The source of the eighth PMOS transistor MP8 is connected to the sources of the seventh PMOS transistor MP7, the ninth PMOS transistor MP9 and the tenth PMOS transistor MP10 and connected to the second power rail signal VDD2, and its drain is connected to the fifth NPN transistor NPN5 The collector and the gate of the ninth PMOS transistor MP9 are grounded to GND after passing through the fourth capacitor C4;
第二NMOS管MN2的栅漏短接并连接第一NMOS管MN1的栅极和第九PMOS管MP9的漏极,其源极连接第一NMOS管MN1的源极并接地GND。The gate-drain of the second NMOS transistor MN2 is short-circuited and connected to the gate of the first NMOS transistor MN1 and the drain of the ninth PMOS transistor MP9, and its source is connected to the source of the first NMOS transistor MN1 and grounded to GND.
具体的,所述第二开关管为第二NPN型三极管NPN2,所述第三开关管为第三NPN型三极管NPN3,Specifically, the second switch tube is a second NPN type transistor NPN2, and the third switch tube is a third NPN type transistor NPN3,
第二NPN型三极管NPN2的基极连接所述第一开关管的控制端,其发射极输出所述第一启动信号,其集电极连接所述偏置模块中第五PMOS管MP5的栅极为所述偏置模块建立偏置信号;The base of the second NPN transistor NPN2 is connected to the control terminal of the first switching tube, its emitter outputs the first start signal, and its collector is connected to the gate of the fifth PMOS transistor MP5 in the bias module. The bias module establishes a bias signal;
第三NPN型三极管NPN3的基极连接所述第一开关管的控制端,其发射极输出所述第二启动信号,其集电极连接所述带隙基准核心模块中第四NPN型三极管NPN4的集电极,第四NPN型三极管NPN4的发射极通过第四电阻R4后连接所述电阻网络的输入端。The base of the third NPN transistor NPN3 is connected to the control terminal of the first switching tube, its emitter outputs the second startup signal, and its collector is connected to the fourth NPN transistor NPN4 in the bandgap reference core module. The collector and the emitter of the fourth NPN transistor NPN4 are connected to the input terminal of the resistor network after passing through the fourth resistor R4.
本发明的工作原理为:Working principle of the present invention is:
本发明中电源自偏置模块将电源电压VDD通过第七NMOS管MNH1转换为第一电源轨信号VDD1作为偏置模块的电源轨,偏置模块再根据第一电源轨信号VDD1为带隙基准核心模块提供偏置;启动模块的第二开关管和第三开关管在电源建立的时候工作防止整个电路停留在零状态,在电路进入正常工作状态之后退出;电源自偏置模块和启动模块一起为所述偏置模块建立偏置;启动电路还通过电阻网络调整带隙基准核心模块产生的负温度系数电压,调整之后的负温度系数电压与带隙基准核心模块产生的正温度系数电压叠加从而产生一个与温度无关的基准电压VREF;由于带隙基准核心模块的第二电源轨信号VDD2是通过偏置模块中的第六PMOS管MP6与第一电源轨信号VDD1隔离,而第一电源轨信号VDD1是通过第七NMOS管MNH1与电源电压VDD隔离,使得产生的基准电压VREF具有更高的电源抑制比。In the present invention, the power supply self-bias module converts the power supply voltage VDD into the first power rail signal VDD1 through the seventh NMOS transistor MNH1 as the power rail of the bias module, and the bias module is then used as the bandgap reference core according to the first power rail signal VDD1 The module provides bias; the second switch tube and the third switch tube of the startup module work when the power supply is established to prevent the entire circuit from staying in the zero state, and exit after the circuit enters a normal working state; the power supply self-bias module and the startup module together are The bias module establishes a bias; the startup circuit also adjusts the negative temperature coefficient voltage generated by the bandgap reference core module through a resistor network, and the adjusted negative temperature coefficient voltage is superimposed on the positive temperature coefficient voltage generated by the bandgap reference core module to generate A temperature-independent reference voltage V REF ; since the second power rail signal VDD2 of the bandgap reference core module is isolated from the first power rail signal VDD1 through the sixth PMOS transistor MP6 in the bias module, and the first power rail signal VDD1 is isolated from the power supply voltage VDD through the seventh NMOS transistor MNH1, so that the generated reference voltage V REF has a higher power supply rejection ratio.
本发明的有益效果为:本发明产生的基准电压VREF由于与电源电压VDD隔离而不会受到来自电源电压VDD的噪声影响,具有更高的电源抑制PSR能力;通过在带隙基准核心模块中增加负反馈环路稳定了基准电压VREF的电压值,进一步提高了带隙基准源的电源抑制比;本发明电路结构简单,且避免了使用运放结构带来的运放输入失调引入而限制带隙基准源精度的问题。The beneficial effects of the present invention are: the reference voltage V REF produced by the present invention is isolated from the power supply voltage VDD and will not be affected by noise from the power supply voltage VDD, and has higher power supply suppression PSR capability; through the bandgap reference core module Increasing the negative feedback loop stabilizes the voltage value of the reference voltage V REF and further improves the power supply rejection ratio of the bandgap reference source; the circuit structure of the present invention is simple, and avoids the limitation caused by the input offset of the operational amplifier caused by the use of the operational amplifier structure The problem of the accuracy of the bandgap reference source.
附图说明Description of drawings
图1为传统带运放结构的带隙基准源的原理图。Figure 1 is a schematic diagram of a traditional bandgap reference source with an operational amplifier structure.
图2为本发明提出的一种高电源抑制比的带隙基准源在实施例中的一种实现电路结构图。FIG. 2 is a circuit structure diagram of an implementation of a high power supply rejection ratio bandgap reference source in an embodiment of the present invention.
图3为本发明提出的一种高电源抑制比的带隙基准源的电源抑制比仿真结果图。FIG. 3 is a diagram of the simulation results of the power supply rejection ratio of a high power supply rejection ratio bandgap reference source proposed by the present invention.
图4为本发明提出的一种高电源抑制比的带隙基准源的温度特性仿真结果图。FIG. 4 is a simulation result diagram of temperature characteristics of a bandgap reference source with a high power supply rejection ratio proposed by the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细的描述。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明提出的一种高电源抑制比的带隙基准源,包括电源自偏置模块、启动模块、带隙基准核心模块和偏置模块,其中电源自偏置模块的结构如图2所示,电源自偏置模块包括第一电阻R1、第二电阻R2、第一PMOS管MP1、第二PMOS管MP2、第三PMOS管MP3、第一电容C1、第二电容C2、第七NMOS管MNH1和第一开关管,电源电压VDD通过第一电阻R1和第二电阻R2的串联结构后产生第七NMOS管MNH1的栅极偏置信号连接第七NMOS管MNH1的栅极并通过第一电容C1后接地GND;第七NMOS管MNH1的漏极连接电源电压VDD,其源极输出第一电源轨信号VDD1作为偏置模块的电源轨;第一PMOS管MP1、第二PMOS管MP2和第三PMOS管MP3接成二极管连接形式并依次串联,第七NMOS管MNH1的栅极偏置信号经过第一PMOS管MP1、第二PMOS管MP2和第三PMOS管MP3的串联结构再流经第一开关管后接地GND;第二电容C2接在第一开关管的控制端和地GND之间。A bandgap reference source with a high power supply rejection ratio proposed by the present invention includes a power supply self-bias module, a start-up module, a bandgap reference core module and a bias module, wherein the structure of the power supply self-bias module is shown in Figure 2, The power supply self-bias module includes a first resistor R1, a second resistor R2, a first PMOS transistor MP1, a second PMOS transistor MP2, a third PMOS transistor MP3, a first capacitor C1, a second capacitor C2, a seventh NMOS transistor MNH1 and The first switching tube, the power supply voltage VDD passes through the series structure of the first resistor R1 and the second resistor R2 to generate a gate bias signal of the seventh NMOS transistor MNH1, which is connected to the gate of the seventh NMOS transistor MNH1 and passed through the first capacitor C1 Ground GND; the drain of the seventh NMOS transistor MNH1 is connected to the power supply voltage VDD, and its source outputs the first power rail signal VDD1 as the power rail of the bias module; the first PMOS transistor MP1, the second PMOS transistor MP2 and the third PMOS transistor MP3 is connected in a diode connection form and serially connected in series, the gate bias signal of the seventh NMOS transistor MNH1 passes through the series structure of the first PMOS transistor MP1, the second PMOS transistor MP2 and the third PMOS transistor MP3, and then flows through the first switch transistor ground GND; the second capacitor C2 is connected between the control terminal of the first switch tube and the ground GND.
启动电路的结构如图2所示,包括第二开关管和第三开关管以及包括第三电阻R3、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第九电阻R9和第十电阻R10的电阻网络,第二开关管和第三开关管分别与第一开关管构成电流镜,在上电阶段导通第二开关管和第三开关管从而产生第一启动信号和第二启动信号,上电完成后关断第二开关管和第三开关管;第三电阻R3的一端记为结点C连接第二启动信号,其另一端记为结点D连接第五电阻R5的一端并作为电阻网络的输入端连接带隙基准核心模块产生的负温度系数电流,通过调节电阻网络调节带隙基准核心模块中的负温度系数电压;第六电阻R6的一端记为结点B连接第五电阻R5的另一端和第一启动信号,其另一端连接第七电阻R7的一端和第八电阻R8的一端;第九电阻R9的一端连接第十电阻R10的一端、第七电阻R7的另一端和第八电阻R8的另一端,其另一端连接第十电阻R10的另一端并接地GND。The structure of the start-up circuit is shown in Figure 2, including the second switch tube and the third switch tube as well as the third resistor R3, the fifth resistor R5, the sixth resistor R6, the seventh resistor R7, the eighth resistor R8, and the ninth resistor The resistance network of R9 and the tenth resistor R10, the second switch tube and the third switch tube form a current mirror with the first switch tube respectively, and the second switch tube and the third switch tube are turned on during the power-on stage to generate the first startup signal and the second start signal, turn off the second switch tube and the third switch tube after the power-on is completed; one end of the third resistor R3 is marked as node C connected to the second start signal, and the other end is marked as node D connected to the fifth One end of the resistor R5 is connected to the negative temperature coefficient current generated by the core module of the bandgap reference as the input terminal of the resistor network, and the negative temperature coefficient voltage in the core module of the bandgap reference is adjusted by adjusting the resistor network; one end of the sixth resistor R6 is marked as junction Point B is connected to the other end of the fifth resistor R5 and the first start signal, and the other end is connected to one end of the seventh resistor R7 and one end of the eighth resistor R8; one end of the ninth resistor R9 is connected to one end of the tenth resistor R10, the seventh The other end of the resistor R7 and the other end of the eighth resistor R8 are connected to the other end of the tenth resistor R10 and grounded to GND.
其中第一开关管、第二开关管和第三开关管可以使用三极管形式或MOS管形式,本实施例以NPN型三极管形式为例,如图2所示,第一开关管为第一NPN型三极管NPN1,第一NPN型三极管NPN1的基极和集电极互连记为结点A并连接第七NMOS管MNH1的栅极偏置信号经过第一PMOS管MP1、第二PMOS管MP2和第三PMOS管MP3的串联结构后的信号,其发射极接地。第二开关管为第二NPN型三极管NPN2,第三开关管为第三NPN型三极管NPN3,第二NPN型三极管NPN2的基极连接第一开关管的控制端,其发射极输出第一启动信号,其集电极连接偏置模块并帮助所述偏置模块建立偏置信号;第三NPN型三极管NPN3的基极连接第一开关管的控制端,其发射极输出第二启动信号,其集电极连接带隙基准核心模块中第四NPN型三极管NPN4的集电极,第四NPN型三极管NPN4的发射极通过第四电阻R4后连接电阻网络的输入端。Wherein the first switch tube, the second switch tube and the third switch tube can be in the form of a triode or a MOS tube. This embodiment takes the form of an NPN triode as an example. As shown in FIG. Transistor NPN1, the base and collector interconnection of the first NPN type triode NPN1 is marked as node A and connected to the gate bias signal of the seventh NMOS transistor MNH1 through the first PMOS transistor MP1, the second PMOS transistor MP2 and the third The emitter of the signal after the series structure of the PMOS transistor MP3 is grounded. The second switching tube is the second NPN transistor NPN2, the third switching tube is the third NPN transistor NPN3, the base of the second NPN transistor NPN2 is connected to the control terminal of the first switching tube, and its emitter outputs the first start signal , its collector is connected to the bias module and helps the bias module to establish a bias signal; the base of the third NPN transistor NPN3 is connected to the control terminal of the first switching tube, its emitter outputs the second start signal, and its collector Connect the collector of the fourth NPN transistor NPN4 in the bandgap reference core module, and the emitter of the fourth NPN transistor NPN4 pass through the fourth resistor R4 and connect to the input end of the resistor network.
电源自偏置模块和启动模块可以看做一条支路,在电源VDD上电、电路启动过程中,当电源电压VDD上电超过第一PMOS管MP1、第二PMOS管MP2和第三PMOS管的栅源电压与第一NPN型三极管NPN1的基极发射极电压之和3Vgs+Vbe后,这条支路就可以导通,电路的工作点开始建立,直到电源电压VDD上电完成,该条支路的电流和各结点电压就可以确定。The power supply self-bias module and the start-up module can be regarded as a branch circuit. When the power supply VDD is powered on and the circuit is started, when the power supply voltage VDD is powered on and exceeds the first PMOS transistor MP1, the second PMOS transistor MP2 and the third PMOS transistor After the sum of the gate-source voltage and the base-emitter voltage of the first NPN transistor NPN1 is 3V gs +V be , this branch can be turned on, and the operating point of the circuit begins to be established until the power supply voltage VDD is powered on. The current of each branch and the voltage of each node can be determined.
考虑到电路的应用条件,电源自偏置模块和启动模块这条支路的电源轨可以选择为VDD=12V,而如果采用0.35um的BCD工艺,标准的电源电压为5V,即第一电源轨信号VDD1可以选择为5V,此时实现电压转换的第七NMOS管MNH1需要为耐压管,优选为耐压LDMOS管。Considering the application conditions of the circuit, the power rail of the power supply self-bias module and the start module branch can be selected as VDD=12V, and if the BCD process of 0.35um is used, the standard power supply voltage is 5V, that is, the first power rail The signal VDD1 can be selected as 5V, and the seventh NMOS transistor MNH1 for voltage conversion needs to be a voltage-resistant transistor, preferably a voltage-resistant LDMOS transistor.
偏置模块在电源自偏置模块和启动模块的控制下建立偏置信号为带隙基准核心模块提供偏置,如图2所示给出了偏置模块的一种实现形式,包括第四PMOS管MP4、第五PMOS管MP5、第六PMOS管MP6、第十一PMOS管MP11、第三NMOS管MN3、第四NMOS管MN4、第五NMOS管MN5、第六NMOS管MN6、第六NPN型三极管NPN6、第十一电阻R11、第十二电阻R12和第十三电阻R13,第四PMOS管MP4的源极连接第五PMOS管MP5、第六PMOS管MP6和第十一PMOS管MP11的源极并连接第一电源轨信号VDD1,其漏极连接第七NMOS管MNH1的栅极偏置信号经过第一PMOS管MP1、第二PMOS管MP2和第三PMOS管MP3的串联结构后的信号,其栅极连接第十一PMOS管MP11的栅极和漏极以及第三NMOS管MN3的漏极;第六PMOS管MP6的栅极连接第六NMOS管MN6的漏极以及第五PMOS管MP5的栅极和漏极并连接启动模块中第二NPN型三极管NPN2的集电极,其漏极连接第六NMOS管MN6的栅极并产生第二电源轨信号VDD2为带隙基准核心模块提供偏置;第三NMOS管MN3的栅极连接第四NMOS管MN4的栅极和漏极并通过第十一电阻R11后连接第一电源轨信号VDD1,其源极通过第十二电阻R12后接地GND;第五NMOS管MN5的栅漏短接并连接第四NMOS管MN4的源极,其源极接地GND;第六NPN型三极管NPN6的基极连接基准电压VREF,其集电极连接第六NMOS管MN6的源极,其发射极通过第十三电阻R13后接地GND。The bias module establishes a bias signal under the control of the power supply self-bias module and the start-up module to provide bias for the bandgap reference core module. As shown in Figure 2, an implementation form of the bias module is given, including the fourth PMOS Tube MP4, fifth PMOS tube MP5, sixth PMOS tube MP6, eleventh PMOS tube MP11, third NMOS tube MN3, fourth NMOS tube MN4, fifth NMOS tube MN5, sixth NMOS tube MN6, sixth NPN type The transistor NPN6, the eleventh resistor R11, the twelfth resistor R12 and the thirteenth resistor R13, the source of the fourth PMOS transistor MP4 is connected to the source of the fifth PMOS transistor MP5, the sixth PMOS transistor MP6 and the eleventh PMOS transistor MP11 The pole is connected to the first power rail signal VDD1, and its drain is connected to the signal after the gate bias signal of the seventh NMOS transistor MNH1 passes through the series structure of the first PMOS transistor MP1, the second PMOS transistor MP2 and the third PMOS transistor MP3, Its gate is connected to the gate and drain of the eleventh PMOS transistor MP11 and the drain of the third NMOS transistor MN3; the gate of the sixth PMOS transistor MP6 is connected to the drain of the sixth NMOS transistor MN6 and the drain of the fifth PMOS transistor MP5 The gate and the drain are connected to the collector of the second NPN transistor NPN2 in the startup module, and the drain is connected to the gate of the sixth NMOS transistor MN6 to generate the second power rail signal VDD2 to provide bias for the bandgap reference core module; The gate of the third NMOS transistor MN3 is connected to the gate and drain of the fourth NMOS transistor MN4 and connected to the first power rail signal VDD1 after passing through the eleventh resistor R11, and its source is grounded to GND after passing through the twelfth resistor R12; The gate-drain of the fifth NMOS transistor MN5 is short-circuited and connected to the source of the fourth NMOS transistor MN4, and its source is grounded to GND; the base of the sixth NPN transistor NPN6 is connected to the reference voltage V REF , and its collector is connected to the sixth NMOS transistor MN6 The source, the emitter of which is grounded to GND after passing through the thirteenth resistor R13.
带隙基准核心模块用于产生正温度系数电压和负温度系数电流,负温度系数电流连接启动模块中电阻网络的输入端,在电阻网络上产生负温度系数电压,产生的负温度系数电压与正温度系数电压叠加产生基准电压VREF,如图2所示给出了带隙基准核心模块的一种实现形式,包括第四NPN型三极管NPN4、第五NPN型三极管NPN5、第四电阻R4、第三电容C3、第四电容C4、第一NMOS管MN1、第二NMOS管MN2、第七PMOS管MP7、第八PMOS管MP8、第九PMOS管MP9和第十PMOS管MP10,第四NPN型三极管NPN4的基极连接第五NPN型三极管NPN5的基极、第一NMOS管MN1的漏极以及第十PMOS管MP10的栅极和漏极并输出基准电压VREF,其集电极连接第七PMOS管MP7的栅极和漏极以及第八PMOS管MP8的栅极并通过第三电容C3后接地GND,其发射极通过第四电阻R4后连接第五NPN型三极管NPN5的发射极;第八PMOS管MP8的源极连接第七PMOS管MP7、第九PMOS管MP9和第十PMOS管MP10的源极并连接第二电源轨信号VDD2,其漏极连接第五NPN型三极管NPN5的集电极和第九PMOS管MP9的栅极并通过第四电容C4后接地GND;第二NMOS管MN2的栅漏短接并连接第一NMOS管MN1的栅极和第九PMOS管MP9的漏极,其源极连接第一NMOS管MN1的源极并接地GND。The bandgap reference core module is used to generate positive temperature coefficient voltage and negative temperature coefficient current. The negative temperature coefficient current is connected to the input terminal of the resistor network in the startup module, and the negative temperature coefficient voltage is generated on the resistor network. The generated negative temperature coefficient voltage is the same as the positive temperature coefficient voltage. The temperature coefficient voltage is superimposed to generate the reference voltage V REF . As shown in Figure 2, an implementation form of the bandgap reference core module is given, including the fourth NPN transistor NPN4, the fifth NPN transistor NPN5, the fourth resistor R4, and the fourth resistor R4. The third capacitor C3, the fourth capacitor C4, the first NMOS transistor MN1, the second NMOS transistor MN2, the seventh PMOS transistor MP7, the eighth PMOS transistor MP8, the ninth PMOS transistor MP9 and the tenth PMOS transistor MP10, the fourth NPN transistor The base of NPN4 is connected to the base of the fifth NPN transistor NPN5, the drain of the first NMOS transistor MN1 and the gate and drain of the tenth PMOS transistor MP10 to output the reference voltage V REF , and its collector is connected to the seventh PMOS transistor The gate and drain of MP7 and the gate of the eighth PMOS transistor MP8 are grounded to GND after passing through the third capacitor C3, and its emitter is connected to the emitter of the fifth NPN transistor NPN5 after passing through the fourth resistor R4; the eighth PMOS transistor The source of MP8 is connected to the source of the seventh PMOS transistor MP7, the ninth PMOS transistor MP9 and the tenth PMOS transistor MP10 and connected to the second power rail signal VDD2, and its drain is connected to the collector of the fifth NPN transistor NPN5 and the ninth The gate of the PMOS transistor MP9 is grounded to GND after passing through the fourth capacitor C4; the gate-drain of the second NMOS transistor MN2 is short-circuited and connected to the gate of the first NMOS transistor MN1 and the drain of the ninth PMOS transistor MP9, and its source is connected to The source of the first NMOS transistor MN1 is grounded to GND.
本实施例的工作过程和工作原理如下。The working process and working principle of this embodiment are as follows.
电源自偏置模块为第七NMOS管MNH1提供恒定栅极偏置电压,降低一个第七NMOS管MNH1的栅源电压Vgs产生第一电源轨信号VDD1。当第一电源轨信号VDD1建立完成,偏置模块通过两个二极管连接的第四NMOS管MN4和第五NMOS管MN5产生两个栅源电压Vgs电压,从而在第十二电阻R12上产生一股偏置电流,为第十一PMOS管MP11提供偏置点。流过第四PMOS管MP4的电流与电源自偏置模块的电流叠加在基极-集电极短接的第一NPN型三极管NPN1产生基极电压,通过电流镜结构为第二NPN型三极管NPN2和第三NPN型三极管NPN3建立基极偏置。第一NPN型三极管NPN1与第二NPN型三极管NPN2和结点B到地的电阻构成Wildar电流镜,镜像电源自偏置模块的电流到二极管连接的第五PMOS管MP5,从而为偏置模块建立第五PMOS管MP5和第六PMOS管MP6的栅极电压偏置。第一NPN型三极管NPN1与第三NPN型三极管NPN3和C结点到地的电阻同样构成Wildar电流镜,同样为与之相连的MOS管提供栅极偏置,一些实施例中威尔逊电流镜可以改为共源共栅电流镜。由第六PMOS管MP6镜像的电流分向带隙基准核心模块的4条支路,通过二极管连接的MOS管分别为带隙基准核心模块中的MOS管栅极和三极管基极提供偏置电压。The power supply self-bias module provides a constant gate bias voltage for the seventh NMOS transistor MNH1, and reduces a gate-source voltage Vgs of a seventh NMOS transistor MNH1 to generate a first power rail signal VDD1. When the first power rail signal VDD1 is established, the bias module generates two gate-source voltages Vgs voltage through the fourth NMOS transistor MN4 and the fifth NMOS transistor MN5 connected by two diodes, thereby generating a primary voltage on the twelfth resistor R12 The bias current provides a bias point for the eleventh PMOS transistor MP11. The current flowing through the fourth PMOS transistor MP4 and the current of the self-bias module of the power supply are superimposed on the base-collector short-circuited first NPN-type transistor NPN1 to generate a base voltage, and the current mirror structure is the second NPN-type transistor NPN2 and The third NPN transistor NPN3 establishes a base bias. The first NPN transistor NPN1, the second NPN transistor NPN2, and the resistance from node B to ground constitute a Wildar current mirror, mirroring the current from the bias module of the power supply to the fifth PMOS transistor MP5 connected to the diode, thereby establishing a bias module The gate voltages of the fifth PMOS transistor MP5 and the sixth PMOS transistor MP6 are biased. The first NPN transistor NPN1 and the third NPN transistor NPN3 and the resistance from the C node to the ground also form a Wildar current mirror, which also provides grid bias for the MOS tube connected to it. In some embodiments, the Wilson current mirror can be changed. is a cascode current mirror. The current mirrored by the sixth PMOS transistor MP6 is divided into four branches of the bandgap reference core module, and the MOS transistors connected through diodes provide bias voltages for the gate of the MOS transistor and the base of the triode in the core module of the bandgap reference.
启动模块中,第二NPN型三极管NPN2和第三NPN型三极管NPN3为启动管,随着电源电压VDD上电,流过第二NPN型三极管NPN2和第三NPN型三极管NPN3的电流也随之变大,B、C结点即产生的第一启动信号和第二启动信号的电压随之抬高;最终启动完成后第二NPN型三极管NPN2和第三NPN型三极管NPN3会关断,所以稳态下,流过第二NPN型三极管NPN2和第三NPN型三极管NPN3的电流为0。In the startup module, the second NPN transistor NPN2 and the third NPN transistor NPN3 are startup transistors. As the power supply voltage VDD is powered on, the current flowing through the second NPN transistor NPN2 and the third NPN transistor NPN3 also changes accordingly. Large, the voltages of the first start signal and the second start signal generated by nodes B and C will increase accordingly; after the final start is completed, the second NPN transistor NPN2 and the third NPN transistor NPN3 will be turned off, so the steady state Next, the current flowing through the second NPN transistor NPN2 and the third NPN transistor NPN3 is 0.
带隙基准核心模块的工作原理如下:The bandgap reference core module works as follows:
第四NPN型三极管NPN4、第五NPN型三极管NPN5和第四电阻R4用于产生正温度系数PTAT电流接入启动模块中的电阻网络。第四电阻R4两端压降即为第四NPN型三极管NPN4和第五NPN型三极管NPN5的基极-发射极电压之差ΔVBE,一般选择第四NPN型三极管NPN4和第五NPN型三极管NPN5的并联数为8:1,所以流过第四电阻R4的电流的表达式为:The fourth NPN transistor NPN4, the fifth NPN transistor NPN5 and the fourth resistor R4 are used to generate a positive temperature coefficient PTAT current and connect it to the resistor network in the startup module. The voltage drop across the fourth resistor R4 is the base-emitter voltage difference ΔV BE between the fourth NPN transistor NPN4 and the fifth NPN transistor NPN5. Generally, the fourth NPN transistor NPN4 and the fifth NPN transistor NPN5 are selected. The number of parallel connections is 8:1, so the expression of the current flowing through the fourth resistor R4 is:
由于稳态下流过第二NPN型三极管NPN2和第三NPN型三极管NPN3的电流为0,D结点输出的电流仅为流过第四NPN型三极管NPN4和第五NPN型三极管NPN5的电流之和。本实施例中将第七PMOS管MP7和第八PMOS管MP8组成的电流镜镜像比设置为1:1,所以这两条支路电流相同。所以结点D上的电压为一个负温度系数电压Since the current flowing through the second NPN transistor NPN2 and the third NPN transistor NPN3 is 0 in a steady state, the current output by the D node is only the sum of the currents flowing through the fourth NPN transistor NPN4 and the fifth NPN transistor NPN5 . In this embodiment, the mirror ratio of the current mirror composed of the seventh PMOS transistor MP7 and the eighth PMOS transistor MP8 is set to 1:1, so the currents of the two branches are the same. So the voltage on node D is a negative temperature coefficient voltage
RD为D结点(即电阻网络的输入端)到地的电阻。带隙基准电压为一个负温度系数电压和一个正温度系数电压按比例系数相加得到。由于三极管的基极-发射极电压VBE具有负温度系数特性,所以由D点电压再叠加上第五NPN型三极管NPN5的基极-发射极电压就可以得到带隙基准电压VREF,即第四NPN型三极管NPN4和第五NPN型三极管NPN5的基极电压就为带隙基准电压即本发明产生的基准电压VREF:R D is the resistance from the D node (that is, the input end of the resistor network) to the ground. The bandgap reference voltage is obtained by adding a negative temperature coefficient voltage and a positive temperature coefficient voltage according to a proportional coefficient. Since the base-emitter voltage V BE of the triode has a negative temperature coefficient characteristic, the bandgap reference voltage V REF can be obtained by superimposing the voltage at point D on the base-emitter voltage of the fifth NPN transistor NPN5, that is, The base voltages of the four NPN transistors NPN4 and the fifth NPN transistor NPN5 are the bandgap reference voltage, which is the reference voltage V REF produced by the present invention:
根据电路工艺NPN三极管ΔVbe和Vbe的温度系数为According to the circuit technology, the temperature coefficients of NPN transistor ΔV be and V be are
根据公式的比例系数调整电阻的比值可以得到与温度无关的带隙基准电压VREF,即电阻网络中结点B到地的等效电阻用于修调并改变上式中的D结点到地的电阻RD,从而调整带隙基准核心模块中的负温度系数电压。Adjusting the ratio of the resistors according to the proportional coefficient of the formula can obtain the temperature-independent bandgap reference voltage V REF , that is, the equivalent resistance from node B to ground in the resistor network is used to trim and change the node D to ground in the above formula Resistor R D , thereby adjusting the negative temperature coefficient voltage in the bandgap reference core block.
带隙基准核心模块中第五NPN型三极管NPN5、第九PMOS管MP9、第一NMOS管MN1和第二NMOS管MN2构成一条负反馈环,用于稳定基准电压VREF的电压值,防止基准电压VREF在电源抖动或负载变化时产生较大的波动。当基准电压VREF电压值受到干扰而产生变化时,通过负反馈环路的作用快速把基准电压VREF拉回原值。第四电容C4用于负反馈环路的频率稳定性补偿。The fifth NPN transistor NPN5, the ninth PMOS transistor MP9, the first NMOS transistor MN1 and the second NMOS transistor MN2 in the bandgap reference core module form a negative feedback loop, which is used to stabilize the voltage value of the reference voltage V REF and prevent the reference voltage from V REF fluctuates greatly when the power supply fluctuates or the load changes. When the voltage value of the reference voltage V REF is disturbed and changes, the reference voltage V REF is quickly pulled back to the original value through the action of the negative feedback loop. The fourth capacitor C4 is used for frequency stability compensation of the negative feedback loop.
带隙基准源实现高电源抑制PSR的核心思想是希望从电源电压VDD的小信号扰动尽可能少的通过晶体管传递到基准电压VREF处,对于传统的由运放钳位构成的带隙基准电路,提高基准的PSR就需要提高运放的增益和运放的PSR,而本电路提高基准电路的PSR主要通过第七NMOS管MNH1和偏置模块中的第六PMOS管MP6实现。电源电压VDD通过第七NMOS管MNH1降低一个漏源电压Vgs得到第一电源轨信号VDD1,当电源电压VDD存在噪声产生小信号扰动时,噪声被第七NMOS管MNH1通过漏端与第一电源轨信号VDD1隔离开,从而不会串扰到第一电源轨信号VDD1上;第一电源轨信号VDD1再通过第六PMOS管MP6产生第二电源轨信号VDD2形成隔离,进一步保证第二电源轨信号VDD2不会随电源电压VDD的串扰而变化,所以本发明产生的基准电压VREF基本不会受到来自电源电压VDD的噪声影响,具有高好的电源抑制PSR能力。The core idea of the bandgap reference source to achieve high power supply rejection PSR is to transfer the small signal disturbance from the power supply voltage VDD to the reference voltage V REF through the transistor as little as possible. For the traditional bandgap reference circuit composed of op amp clamps , improving the PSR of the reference requires increasing the gain of the operational amplifier and the PSR of the operational amplifier, and this circuit improves the PSR of the reference circuit mainly through the seventh NMOS transistor MNH1 and the sixth PMOS transistor MP6 in the bias module. The power supply voltage VDD is reduced by a drain-source voltage Vgs through the seventh NMOS transistor MNH1 to obtain the first power rail signal VDD1. When there is noise in the power supply voltage VDD and a small signal disturbance occurs, the noise is passed through the drain terminal of the seventh NMOS transistor MNH1 and the first power rail The signal VDD1 is isolated so as not to interfere with the first power rail signal VDD1; the first power rail signal VDD1 generates the second power rail signal VDD2 through the sixth PMOS transistor MP6 to form isolation, further ensuring that the second power rail signal VDD2 does not It will change with the crosstalk of the power supply voltage VDD, so the reference voltage V REF generated by the present invention is basically not affected by the noise from the power supply voltage VDD, and has high power supply suppression PSR capability.
图3为本发明提出的带隙基准源的电源抑制能力的仿真情况,可以看出本发明提出的带隙基准源的电源抑制比PSRR低频时能达到127B,在1MHz的情况下仍有47dB,具有非常好的电源抑制PSR性能。Fig. 3 is the simulation situation of the power supply rejection capability of the bandgap reference source proposed by the present invention, it can be seen that the power supply rejection ratio PSRR of the bandgap reference source proposed by the present invention can reach 127B at low frequencies, and still has 47dB under the situation of 1MHz, Has very good power supply rejection PSR performance.
图4为本发明提出的带隙基准源的温度特性仿真情况,在-40℃~125℃温度范围内,带隙基准源的温度系数为:Fig. 4 is the simulation situation of the temperature characteristics of the bandgap reference source proposed by the present invention. In the temperature range of -40°C to 125°C, the temperature coefficient of the bandgap reference source is:
其中VMAX和VMIN分别表示图4中基准电压VREF的最大值和最小值。Among them, V MAX and V MIN represent the maximum and minimum values of the reference voltage V REF in FIG. 4 , respectively.
综上所述,本发明提出的带隙基准源,通过两层隔离将电源电压VDD与产生的基准电压VREF隔离开,使得本发明产生的基准电压VREF基本不会受到来自电源电压VDD的噪声影响,具有更好的电源抑制PSR能力;通过启动模块的电阻网络调整带隙基准核心模块的负温度系数电压,带隙基准核心模块中增加了负反馈环路的设计,用于稳定基准电压VREF的电压值,进一步提高带隙基准源的电源抑制比;没有增加额外的电路就能实现提高电源抑制比的作用,电路结构简单,且避免了使用运放结构带来的运放输入失调引入而限制带隙基准源精度的问题。In summary, the bandgap reference source proposed by the present invention isolates the power supply voltage VDD from the generated reference voltage V REF through two layers of isolation, so that the reference voltage V REF generated by the present invention is basically not affected by the power supply voltage VDD. Noise effect, better power supply suppression PSR ability; adjust the negative temperature coefficient voltage of the bandgap reference core module through the resistor network of the start-up module, and add a negative feedback loop design to the bandgap reference core module to stabilize the reference voltage The voltage value of V REF further improves the power supply rejection ratio of the bandgap reference source; the effect of improving the power supply rejection ratio can be achieved without adding additional circuits, the circuit structure is simple, and the input offset of the op amp caused by the use of the op amp structure is avoided. The problem of introducing and limiting the accuracy of the bandgap reference source.
本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810915216.9A CN108958348B (en) | 2018-08-13 | 2018-08-13 | A kind of band gap reference of high PSRR |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810915216.9A CN108958348B (en) | 2018-08-13 | 2018-08-13 | A kind of band gap reference of high PSRR |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108958348A CN108958348A (en) | 2018-12-07 |
| CN108958348B true CN108958348B (en) | 2019-11-01 |
Family
ID=64469586
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810915216.9A Expired - Fee Related CN108958348B (en) | 2018-08-13 | 2018-08-13 | A kind of band gap reference of high PSRR |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108958348B (en) |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111324168B (en) * | 2018-12-17 | 2022-02-15 | 比亚迪半导体股份有限公司 | Band gap reference source |
| CN109917842B (en) * | 2019-04-16 | 2021-11-02 | 卓捷创芯科技(深圳)有限公司 | Clamp feedback starting circuit for eliminating self-biased bandgap reference degeneration metastable state |
| CN110320954B (en) * | 2019-08-16 | 2020-05-01 | 电子科技大学 | A Low-Temperature Drift Bandgap Reference Circuit Based on Concave-convex Curvature Compensation |
| CN111240395B (en) * | 2020-01-20 | 2021-12-21 | 中国电子科技集团公司第二十四研究所 | Reference voltage source with high power supply rejection ratio |
| CN112882526B (en) * | 2020-07-23 | 2025-05-06 | 苏州纳芯微电子股份有限公司 | Signal transmission circuit for analog optocoupler |
| CN112234946B (en) * | 2020-10-29 | 2023-04-28 | 电子科技大学 | Switch capacitor amplifier |
| CN113031689A (en) * | 2021-03-02 | 2021-06-25 | 河南科技大学 | Band-gap reference voltage source circuit for response surface optimization, optimization method and application thereof |
| CN112947667B (en) * | 2021-03-15 | 2022-04-19 | 清华大学 | A bandgap voltage reference circuit |
| CN113220057B (en) * | 2021-04-21 | 2021-12-31 | 电子科技大学 | High-noise-resistance floating band-gap reference source |
| CN115220523A (en) * | 2021-04-21 | 2022-10-21 | 南京志行聚能科技有限责任公司 | VREG voltage and reference voltage generation circuit |
| CN113067466B (en) * | 2021-05-19 | 2022-06-24 | 上海鸿晔电子科技股份有限公司 | Voltage source circuit and power management chip |
| CN115421549B (en) * | 2021-06-01 | 2024-07-05 | 上海艾为电子技术股份有限公司 | Self-bias band-gap reference circuit, control method thereof, power supply circuit and electronic equipment |
| CN113485512B (en) * | 2021-07-26 | 2022-03-25 | 大连理工大学 | Low-power-consumption improved band-gap reference temperature reading circuit |
| CN113885634B (en) * | 2021-11-02 | 2022-10-04 | 苏州华矽共创信息技术合伙企业(有限合伙) | Band-gap reference voltage source suitable for low-current gain type NPN triode |
| CN113934249B (en) * | 2021-11-02 | 2022-10-28 | 苏州中科华矽半导体科技有限公司 | Band-gap reference voltage source suitable for low-current gain type NPN triode |
| CN114253338B (en) * | 2021-12-14 | 2022-10-18 | 上海富芮坤微电子有限公司 | Bandgap Reference Voltage Generation Circuit |
| CN114115423B (en) * | 2021-12-17 | 2022-12-20 | 贵州振华风光半导体股份有限公司 | Band-gap reference current source circuit with digital control |
| CN114115433B (en) * | 2021-12-29 | 2023-04-18 | 苏州锴威特半导体股份有限公司 | Band gap reference circuit |
| CN114675707B (en) * | 2022-04-27 | 2023-06-13 | 珠海天威技术开发有限公司 | Band gap reference circuit and chip |
| CN115016581B (en) * | 2022-05-31 | 2024-02-02 | 电子科技大学长三角研究院(湖州) | Band-gap reference circuit structure with starting circuit |
| CN115016592B (en) * | 2022-06-29 | 2023-08-11 | 北京领创医谷科技发展有限责任公司 | Band gap reference source circuit |
| CN115756074B (en) * | 2022-11-10 | 2025-07-11 | 南京邮电大学 | A bias circuit with high and low voltage connection and protection functions |
| CN117008676B (en) * | 2023-08-17 | 2024-05-31 | 荣湃半导体(上海)有限公司 | Self-starting circuit for band-gap reference circuit |
| CN116954299A (en) * | 2023-08-23 | 2023-10-27 | 中国电子科技集团公司第二十四研究所 | Low-temperature drift voltage reference circuit with control end |
| CN120353292B (en) * | 2025-06-25 | 2025-08-26 | 江苏展芯半导体技术股份有限公司 | Low temperature drift reference circuit |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101004617A (en) * | 2005-10-27 | 2007-07-25 | 瑞昱半导体股份有限公司 | A starting circuit for starting a bandgap voltage generating circuit and related methods |
| KR20090014591A (en) * | 2007-08-06 | 2009-02-11 | (주)태진기술 | Bandgap Reference Generator Using CMOS |
| CN102053645A (en) * | 2011-01-31 | 2011-05-11 | 成都瑞芯电子有限公司 | Wide-input voltage high-power supply rejection ratio reference voltage source |
| CN103809647A (en) * | 2014-03-13 | 2014-05-21 | 苏州芯动科技有限公司 | Reference voltage source with high power supply rejection ratio |
| CN104503530A (en) * | 2015-01-09 | 2015-04-08 | 中国科学技术大学 | High-performance high-reliability reference voltage source of low-voltage complementary metal oxide semiconductor (CMOS) |
| CN105786075A (en) * | 2016-04-20 | 2016-07-20 | 广东工业大学 | Pre-regulator circuit capable of increasing band-gap reference power supply rejection ratio |
-
2018
- 2018-08-13 CN CN201810915216.9A patent/CN108958348B/en not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101004617A (en) * | 2005-10-27 | 2007-07-25 | 瑞昱半导体股份有限公司 | A starting circuit for starting a bandgap voltage generating circuit and related methods |
| KR20090014591A (en) * | 2007-08-06 | 2009-02-11 | (주)태진기술 | Bandgap Reference Generator Using CMOS |
| CN102053645A (en) * | 2011-01-31 | 2011-05-11 | 成都瑞芯电子有限公司 | Wide-input voltage high-power supply rejection ratio reference voltage source |
| CN103809647A (en) * | 2014-03-13 | 2014-05-21 | 苏州芯动科技有限公司 | Reference voltage source with high power supply rejection ratio |
| CN104503530A (en) * | 2015-01-09 | 2015-04-08 | 中国科学技术大学 | High-performance high-reliability reference voltage source of low-voltage complementary metal oxide semiconductor (CMOS) |
| CN105786075A (en) * | 2016-04-20 | 2016-07-20 | 广东工业大学 | Pre-regulator circuit capable of increasing band-gap reference power supply rejection ratio |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108958348A (en) | 2018-12-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108958348B (en) | A kind of band gap reference of high PSRR | |
| CN109947169B (en) | A High Power Supply Rejection Ratio Bandgap Reference Circuit with Preregulated Structure | |
| CN106959723B (en) | A kind of bandgap voltage reference of wide input range high PSRR | |
| CN105320205B (en) | A Bandgap Reference Source with Low Offset Voltage and High PSRR | |
| CN101226413B (en) | Reference circuit for restraining misadjusted CMOS energy gap | |
| CN105955382B (en) | A kind of automatic biasing high PSRR reference circuit | |
| CN102053645B (en) | Wide-input voltage high-power supply rejection ratio reference voltage source | |
| CN104238611B (en) | Current-mode band gap current reference | |
| CN106909192B (en) | A kind of high-order temperature compensated voltage-reference | |
| CN104111688B (en) | A kind of BiCMOS with temperature-monitoring function is without amplifier band gap voltage reference source | |
| CN106406410A (en) | Band-gap reference source circuit with self-biased structure | |
| CN111045470B (en) | A Bandgap Reference Circuit with Low Offset Voltage and High Power Supply Rejection Ratio | |
| CN108536210B (en) | A Smooth Temperature Compensated Bandgap Reference Source Circuit | |
| CN208335046U (en) | A kind of smoothed temperature compensation band gap reference source circuit | |
| CN106055011B (en) | A kind of self-starting power supply circuit | |
| CN201936216U (en) | Reference voltage source with wide input voltage and high power supply rejection ratio | |
| CN114020089A (en) | Band-gap reference voltage source suitable for low-current gain type NPN triode | |
| CN116880644A (en) | High-order curvature temperature compensation band gap reference circuit | |
| CN109343641A (en) | A High Precision Current Reference Circuit | |
| CN114967811B (en) | A LDO without Off-Chip Capacitor for Improving PSR Performance | |
| CN108427468A (en) | A kind of Low Drift Temperature fast transient response high PSRR bandgap voltage reference | |
| CN106940580B (en) | A low power consumption bandgap reference source and power supply device | |
| CN105630063A (en) | Reference power supply generating circuit | |
| CN107450652A (en) | A kind of voltage reference source circuit | |
| Cao et al. | A wide input voltage range, low quiescent current LDO using combination structure of bandgap and error amplifier |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20191101 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |