CN101645430B - Chip cooling device - Google Patents
Chip cooling device Download PDFInfo
- Publication number
- CN101645430B CN101645430B CN2009101022045A CN200910102204A CN101645430B CN 101645430 B CN101645430 B CN 101645430B CN 2009101022045 A CN2009101022045 A CN 2009101022045A CN 200910102204 A CN200910102204 A CN 200910102204A CN 101645430 B CN101645430 B CN 101645430B
- Authority
- CN
- China
- Prior art keywords
- micro
- cooling
- chip
- channel
- micropump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 109
- 239000002826 coolant Substances 0.000 claims description 18
- 238000009833 condensation Methods 0.000 claims description 7
- 230000005494 condensation Effects 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims 8
- 238000005086 pumping Methods 0.000 claims 2
- 230000000295 complement effect Effects 0.000 claims 1
- 239000012809 cooling fluid Substances 0.000 claims 1
- 239000000110 cooling liquid Substances 0.000 abstract description 59
- 230000017525 heat dissipation Effects 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 description 24
- 239000012528 membrane Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 11
- 238000009835 boiling Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000004907 flux Effects 0.000 description 7
- 239000010409 thin film Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000005459 micromachining Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本发明公开了一种芯片冷却装置,包括位于该装置底部且与芯片相匹配的冷却室、存储有冷却液的冷却液池、第一微流道、第一微泵、第二微流道、微喷嘴、第三微流道、第二微泵、第四微流道、冷凝器和微孔;第一微泵的一端通过第一微流道与冷却液池相连通,另一端通过第二微流道与微喷嘴相连通;微喷嘴设于冷却室的上方且与冷却室相连通;第二微泵的一端通过第三微流道与冷却室相连通,另一端通过第四微流道与冷凝器相连通;冷凝器位于冷却液池的上方,冷凝器的内部设有冷凝流道,冷凝流道的顶部设有散热片,冷凝流道与冷却液池通过微孔相连通。本发明体积小、散热效率高,具有很高的可控性和工作柔性,可满足芯片在不同工况下的冷却要求。
The invention discloses a chip cooling device, which comprises a cooling chamber located at the bottom of the device and matched with the chip, a cooling liquid pool storing cooling liquid, a first micro-channel, a first micro-pump, a second micro-channel, micronozzle, the third microchannel, the second micropump, the fourth microchannel, the condenser and the microhole; The micro-channel communicates with the micro-nozzle; the micro-nozzle is arranged above the cooling chamber and communicates with the cooling chamber; one end of the second micro-pump communicates with the cooling chamber through the third micro-channel, and the other end passes through the fourth micro-channel It is connected with the condenser; the condenser is located above the cooling liquid pool, and the inside of the condenser is provided with a condensing flow channel, and the top of the condensing flow channel is provided with cooling fins, and the condensing flow channel and the cooling liquid pool are connected through micropores. The invention has small volume, high heat dissipation efficiency, high controllability and working flexibility, and can meet the cooling requirements of chips under different working conditions.
Description
技术领域technical field
本发明涉及一种芯片冷却装置,尤其涉及一种用于高密度大功率芯片冷却的采用微机电系统技术的微液滴喷射芯片冷却装置。The invention relates to a chip cooling device, in particular to a chip cooling device for cooling high-density and high-power chips using micro-electromechanical system technology.
背景技术Background technique
目前的芯片冷却装置多采用外置散热片和风扇,这两种芯片冷却装置都是通过空气的对流传热来移除芯片的热量,相比之下,作为强迫对流传热的风扇散热装置效率更高,以计算机CPU所用的风扇散热装置为例,在风扇叶片高达4000r/min的转速下,基本能避免CPU的温度过高,但该装置噪声很大,而且散热能力已经达到空气对流传热的极限。随着微电子技术的快速发展,单芯片的集成功能更复杂、时钟频率快速提高、封装变薄、封装的引脚间距减小、封装的引脚数降低等因素导致单芯片不断地向大功率和小型化方向发展,传统的冷却方式已经满足不了单芯片和芯片组的散热要求。当芯片的工作频率达到800MHz以上时,最大功率可达到100W,外壳与散热装置间的平均热流密度可达到7.1W/cm2以上,当系统使用大量大功率芯片时,使用散热片或者风扇可控的温度只能在100℃左右,而通常保证芯片正常工作的温度为60℃左右。The current chip cooling devices mostly use external heat sinks and fans. These two chip cooling devices remove the heat from the chip through convective heat transfer of the air. Higher, take the fan cooling device used by the computer CPU as an example. When the fan blades rotate at a speed of up to 4000r/min, the temperature of the CPU can be basically prevented from being too high, but the device is very noisy, and the heat dissipation capacity has reached air convection heat transfer limit. With the rapid development of microelectronics technology, factors such as more complex integrated functions of a single chip, rapid increase of clock frequency, thinner package, reduced pin pitch of package, and reduced number of pins of package lead to the continuous trend of single chip to high power With the development of miniaturization, the traditional cooling method can no longer meet the heat dissipation requirements of single chip and chipset. When the operating frequency of the chip reaches above 800MHz, the maximum power can reach 100W, and the average heat flux density between the shell and the cooling device can reach above 7.1W/ cm2 . When the system uses a large number of high-power chips, use heat sink or fan to control The temperature of the chip can only be around 100°C, and the temperature that usually ensures the normal operation of the chip is around 60°C.
由此可见,高密度大功率芯片的热控制问题已经越来越突出,而在一些光电通讯设备,核、电气控制设备等等领域内,同样也面临着很多急需解决的热控制问题,解决这一问题的关键在于针对不同芯片中的高密度热源,寻求一种高效的热输运方式。由于液体的对流传热效率高于气体,目前出现了一种浸没式液冷装置,通过芯片的上表面与散热片直接接触,散热片的另一面浸在水中,液体在外部泵的作用下循环流动,从而将芯片的热量输送到大气环境,该装置虽然有较好的冷却效果,却占用较大空间,影响芯片的后序集成和封装。It can be seen that the thermal control problem of high-density and high-power chips has become more and more prominent, and in some fields of optoelectronic communication equipment, nuclear and electrical control equipment, etc., there are also many thermal control problems that need to be solved urgently. The key to this problem is to seek an efficient heat transport method for high-density heat sources in different chips. Since the convective heat transfer efficiency of liquid is higher than that of gas, an immersion liquid cooling device has appeared at present. The upper surface of the chip is in direct contact with the heat sink, and the other side of the heat sink is immersed in water, and the liquid circulates under the action of an external pump. , so that the heat of the chip is transported to the atmosphere. Although the device has a good cooling effect, it takes up a large space and affects the subsequent integration and packaging of the chip.
发明内容Contents of the invention
本发明的目的在于解决上述现有芯片冷却装置存在的不足,提供一种散热效率高的芯片冷却装置。The object of the present invention is to solve the above-mentioned shortcomings in the existing chip cooling device and provide a chip cooling device with high heat dissipation efficiency.
本发明所采取的技术方案是:芯片冷却装置主要包括冷却液池、第一微流道、第一微泵、第二微流道、微喷嘴、冷却室、第三微流道、第二微泵、第四微流道、冷凝器和微孔,所述冷却液池存储有冷却液;第一微泵的一端通过第一微流道与冷却液池相连通,第一微泵的另一端通过第二微流道与微喷嘴相连通;所述冷却室位于所述芯片冷却装置的底部且与所述芯片相匹配;所述微喷嘴设于冷却室的上方且与冷却室相连通;第二微泵的一端通过第三微流道与冷却室相连通,第二微泵的另一端通过第四微流道与冷凝器相连通;所述冷凝器位于冷却液池的上方,冷凝器的内部设有冷凝流道,冷凝流道的顶部设有散热片,所述冷凝流道与冷却液池通过微孔相连通。The technical solution adopted by the present invention is: the chip cooling device mainly includes a cooling liquid pool, a first micro-channel, a first micro-pump, a second micro-channel, a micro-nozzle, a cooling chamber, a third micro-channel, a second micro-channel pump, the fourth microchannel, condenser and microholes, the coolant pool stores coolant; one end of the first micropump communicates with the coolant pool through the first microchannel, and the other end of the first micropump The second micro flow channel communicates with the micro nozzle; the cooling chamber is located at the bottom of the chip cooling device and matches the chip; the micro nozzle is located above the cooling chamber and communicates with the cooling chamber; the second One end of the second micropump communicates with the cooling chamber through the third microchannel, and the other end of the second micropump communicates with the condenser through the fourth microchannel; A condensing channel is arranged inside, and a cooling fin is arranged on the top of the condensing channel, and the condensing channel communicates with the cooling liquid pool through micropores.
进一步地,本发明所述第一微泵内设有弹性泵膜。Further, the first micropump of the present invention is provided with an elastic pump membrane.
进一步地,本发明所述第二微泵内设有弹性泵膜。Further, the second micropump of the present invention is provided with an elastic pump membrane.
进一步地,本发明所述微喷嘴为按矩形阵列方式均匀布置的微喷嘴阵列。Further, the micro-nozzles in the present invention are micro-nozzle arrays evenly arranged in a rectangular array.
进一步地,本发明所述微孔为按矩形阵列方式均匀布置的微孔阵列。Further, the microwells in the present invention are microwell arrays uniformly arranged in a rectangular array.
使用时,将本发明芯片冷却装置安装于芯片的表面,亦即使该芯片置于冷却室内,同时使微喷嘴正对芯片的上表面。由于冷却室与芯片相匹配,因此在将芯片置于冷却室内后,通过芯片将冷却室与外部大气环境隔离,并使冷却室相对外部大气环境具有良好的密封性。芯片冷却装置对芯片进行冷却的一个循环过程如下:冷却液池中的冷却液在第一微泵的驱动下,经由第一微流道和第二微流道流入微喷嘴,并以微液滴态冷却液的形式从微喷嘴喷射进冷却室,由于冷却室位于芯片上表面的正上方,微液滴冷却液直接冲击在发热芯片的上表面;通过对第一微泵泵膜振动幅值和频率的有效控制,使喷射出的微液滴冷却液在芯片上表面形成一层适当厚度的薄膜,在固液界面上直接完成液气之间的质量与能量传递,使得界面的接触热阻达到最小,获得很高的临界热流密度值,而不存在沸腾初始滞后作用的影响,这样,芯片的表面温度可以保持在冷却液在系统压力下的饱和温度值附近,并且芯片热表面的温度分布均匀;冷却液在芯片上表面沸腾,在冷却室中吸收芯片的热量由液态转变为气态,气态冷却液在第二微泵的驱动下,经由第三微流道和第四微流道流入冷凝器,通过对第二微泵泵膜振动幅值和频率的有效控制,以保证冷却室内产生的气态冷却液及时地流入冷凝器,从而确保封闭空间内冷却循环的顺畅;在冷凝器的内部设有环形的冷凝流道,且冷凝器顶部均匀分布的翅形散热片与大气环境接触,可保证气态冷却液在冷凝流道内充分散热;由于冷却液的沸点低于大气环境温度,气态冷却液在冷凝流道内释放热量凝结成液态冷却液,液态冷却液经由环形的冷凝流道下方的微孔,形成液滴流回冷却液池,完成一个封闭空间内的冷却循环。When in use, the chip cooling device of the present invention is installed on the surface of the chip, that is, the chip is placed in the cooling chamber, and at the same time, the micro nozzle is facing the upper surface of the chip. Since the cooling chamber matches the chip, after the chip is placed in the cooling chamber, the cooling chamber is isolated from the external atmosphere through the chip, and the cooling chamber has good sealing performance relative to the external atmosphere. A cycle process of cooling the chip by the chip cooling device is as follows: the cooling liquid in the cooling liquid pool is driven by the first micro-pump, flows into the micro-nozzle through the first micro-channel and the second micro-channel, and flows into the micro-droplet The cooling liquid is sprayed into the cooling chamber from the micro-nozzle in the form of cooling liquid, and since the cooling chamber is located directly above the upper surface of the chip, the micro-droplet cooling liquid directly impacts on the upper surface of the heating chip; The effective control of the frequency makes the ejected micro-droplet cooling liquid form a film of appropriate thickness on the upper surface of the chip, and directly completes the mass and energy transfer between the liquid and gas on the solid-liquid interface, so that the contact thermal resistance of the interface reaches Minimum, high critical heat flux values are obtained without the influence of boiling initial hysteresis, so that the surface temperature of the chip can be maintained near the saturation temperature value of the coolant at system pressure, and the temperature distribution of the hot surface of the chip is uniform The cooling liquid boils on the upper surface of the chip, absorbs the heat of the chip in the cooling chamber and changes from a liquid state to a gaseous state, and the gaseous cooling liquid flows into the condenser through the third micro-channel and the fourth micro-channel driven by the second micro-pump , by effectively controlling the vibration amplitude and frequency of the second micropump pump membrane, to ensure that the gaseous cooling liquid generated in the cooling chamber flows into the condenser in time, thereby ensuring the smooth cooling cycle in the closed space; inside the condenser there is The ring-shaped condensing channel, and the evenly distributed fin-shaped fins on the top of the condenser are in contact with the atmospheric environment, which can ensure that the gaseous cooling liquid can fully dissipate heat in the condensing channel; because the boiling point of the cooling liquid is lower than the ambient temperature, the gaseous cooling liquid is condensed The heat released in the flow channel condenses into liquid cooling liquid, and the liquid cooling liquid passes through the micropores under the annular condensing flow channel to form droplets and flow back to the cooling liquid pool, completing a cooling cycle in a closed space.
综上所述,相对于现有的芯片冷却装置,本发明芯片冷却装置具有以下优点:In summary, compared with the existing chip cooling device, the chip cooling device of the present invention has the following advantages:
1.本发明芯片冷却装置把微泵作为冷却液的驱动源集成在芯片表面,使冷却装置占用空间的减少成为了可能,利用微机电系统技术中的体微加工工艺和表面微加工工艺,分层刻蚀,去除牺牲层,再通过可逆的阳极键合工艺,逐层地将冷却装置封装在电子器件芯片的表面,实现有效耦合和高效匹配,减小了占用空间,降低了对芯片后续集成和封装的负面影响。1. The chip cooling device of the present invention integrates the micropump as the driving source of the cooling liquid on the surface of the chip, which makes it possible to reduce the space occupied by the cooling device, and utilizes the bulk micromachining process and surface micromachining process in the microelectromechanical system technology. Layer etching, removal of the sacrificial layer, and then through the reversible anode bonding process, the cooling device is packaged layer by layer on the surface of the electronic device chip to achieve effective coupling and efficient matching, reducing the occupied space and reducing the subsequent integration of the chip. and encapsulation negatively.
2.本发明芯片冷却装置采用封闭的内循环冷却方式,通过第一微泵控制微液滴的成形和喷射,通过第二微泵实现气体的回收再利用,整个循环过程不需要人工干预,而且具有很高的可控性和工作柔性,以满足芯片在不同工况下的冷却要求。2. The chip cooling device of the present invention adopts a closed internal circulation cooling method, controls the formation and injection of micro-droplets through the first micropump, and realizes the recovery and reuse of gas through the second micropump. The entire circulation process does not require manual intervention, and It has high controllability and working flexibility to meet the cooling requirements of chips under different working conditions.
3.本发明芯片冷却装置通过微液滴态冷却液冲击芯片热表面,形成薄膜,获得很高的临界热流密度值,并利用高温区液体气化而在低温区气体冷凝的两相热传导技术,即冷却液的相变潜热特性,实现对高密度大功率芯片的温度控制。相比传统的自由对流传热、强迫对流传热以及浸没式冷却方式,利用液体的相变机制冷却是一种效率更高的冷却方式,其中本发明涉及的微表面喷射沸腾冷却更具有高达(500~600)W/cm2的临界热流密度值,这完全能满足现有高密度大功率芯片的冷却要求,甚至能解决未来很长一段时间内芯片发展所必须面对的热控制问题。3. The chip cooling device of the present invention impacts the hot surface of the chip through the micro-droplet cooling liquid to form a thin film to obtain a very high critical heat flux value, and utilizes the two-phase heat conduction technology that the liquid is vaporized in the high temperature area and the gas is condensed in the low temperature area, That is, the phase change latent heat characteristic of the cooling liquid realizes the temperature control of high-density and high-power chips. Compared with the traditional free convection heat transfer, forced convection heat transfer and immersion cooling method, cooling by liquid phase change mechanism is a more efficient cooling method, and the micro-surface spray boiling cooling involved in the present invention has a higher performance of up to ( The critical heat flux value of 500-600) W/cm 2 can fully meet the cooling requirements of existing high-density and high-power chips, and can even solve the thermal control problems that must be faced in chip development for a long time in the future.
附图说明Description of drawings
图1为本发明一种实施方式的部分剖视示意图;Fig. 1 is a partial cross-sectional schematic diagram of an embodiment of the present invention;
图2为本发明的工作原理图;Fig. 2 is a working principle diagram of the present invention;
其中:in:
1.冷却液池,12.第一微流道,2.第一微泵,21.第一微泵泵膜,23.第二微流道,3.微喷嘴,3a.微液滴态冷却液,4.冷却室,4a.薄膜,46.第三微流道,6.第二微泵,61.第二微泵泵膜,67.第四微流道,7.冷凝器,71.冷凝流道,72.翅形散热片,8.微孔,8a.液滴,9.芯片。1. Coolant pool, 12. First microchannel, 2. First micropump, 21. First micropump pump membrane, 23. Second microchannel, 3. Micronozzle, 3a. Microdroplet state cooling liquid, 4. cooling chamber, 4a. thin film, 46. the third microchannel, 6. the second micropump, 61. the second micropump pump membrane, 67. the fourth microchannel, 7. condenser, 71. Condensation channel, 72. Fin-shaped heat sink, 8. Microhole, 8a. Droplet, 9. Chip.
具体实施方式Detailed ways
下面结合附图对本发明芯片冷却装置进行说明。The chip cooling device of the present invention will be described below with reference to the accompanying drawings.
请参见图1、图2,其中图2中的箭头符号代表液态冷却液的流动方向,箭头符号代表气态冷却液的流动方向。本发明芯片冷却装置主要包括冷却液池1、第一微流道12、第一微泵2、第二微流道23、微喷嘴3、冷却室4、第三微流道46、第二微泵6、第四微流道67、冷凝器7、微孔8。冷却液池1存储有冷却液(图中未示出)。冷却液要求具有良好的热物理性能、电气性能,并且对芯片具有缓蚀性、安全性及稳定性。热物理性能包括合适的沸点温度,较高的汽化潜热和比热,密度较大,粘度较小。其中沸点要求在室温与芯片能保持正常工作的最高温度之间,通常沸点在40℃~60℃。电气性能主要指绝缘性和兼容性,总体要求是不致影响芯片的寿命和性能。安全性和稳定性主要指无毒、无刺激性、不燃、不溶于水、不易分解、不污染环境等。目前市场上常用的碳氟化合物能很好地满足上述要求,例如在本实施方式中,使用的冷却液为碳氟化合物中的FC-72,FC-72在一个标准大气压下的沸点为56.6℃。Please refer to Figure 1 and Figure 2, where the arrow symbol in Figure 2 Represents the flow direction of liquid coolant, the arrow symbol Indicates the flow direction of the gaseous coolant. The chip cooling device of the present invention mainly includes a
在本实施方式中,第一微泵2为无阀液体微泵,带有一个可以往复振动的弹性泵膜,即第一微泵泵膜21,第一微泵2的一端通过第一微流道12与冷却液池1相连通,另一端通过第二微流道23与微喷嘴3相连通,在第一微泵泵膜21的往复振动作用下,冷却液池1中的冷却液经由第一微流道12和第二微流道23,流入微喷嘴3,并以微液滴态冷却液3a的形式从微喷嘴3喷射出去,即喷射到与微喷嘴3相连通的冷却室4内。在本实施方式中,微喷嘴3可具有多个,以矩形阵列的形式均匀地布置在冷却室4的上方以形成微喷嘴阵列,这样可以更好地保证喷出微液滴态冷却液3a的均匀性。当然,本发明的芯片冷却装置的微喷嘴3也可以不按矩形阵列方式布置,而以其他适当的方式排列。冷却室4位于芯片冷却装置的底部,且冷却室4在其安装芯片9的位置的尺寸与芯片9相匹配,以使得在将芯片9置于冷却室4内后,可通过芯片9将冷却室4与外部大气环境隔离,并使冷却室4相对外部大气环境具有良好的密封性。若将微喷嘴3设于冷却室4的正上方,则可以确保微喷嘴3能够正对芯片9的上表面,从而使从微喷嘴3喷射出的微液滴态冷却液3a有效地冲击在芯片9的上表面。微液滴态冷却液3a在芯片9的上表面形成一层薄膜4a,并在冷却室4内沸腾,变为气态将芯片9的热量带走。In this embodiment, the
在本实施方式中,第二微泵6为无阀气体微泵,带有一个可以往复振动的弹性泵膜,即第二微泵泵膜61,第二微泵6的一端通过第三微流道46与冷却室4相连通,另一端通过第四微流道67与冷凝器7相连通,在第二微泵泵膜61的往复振动作用下,冷却室4的气态冷却液经由第三微流道46和第四微流道67,流入冷凝器7。冷凝器7位于冷却液池1的上方,冷凝器7的内部设有环形的冷凝流道71,冷凝流道71的顶部设有均匀分布的翅形散热片72,以保证气态冷却液在冷凝器7内部的冷凝流道71内充分散热,冷凝流道71通过其下方的微孔8与冷却液池1相连通,气态冷却液在冷凝流道71内凝结成液态冷却液,将热量释放到大气环境,液态冷却液通过微孔8,形成液滴8a流回冷却液池1。微孔8可具有多个,并以矩形阵列的形式均匀地布置在冷却液池1的上方以形成微孔阵列,这样可以更好地保证液滴8a及时地流回冷却液池1,以确保封闭空间内冷却循环的顺畅。当然,本发明的芯片冷却装置的微孔8也可以不按矩形阵列方式布置,而以其他适当的方式排列。In this embodiment, the
如图1、图2所示,本发明芯片冷却装置在使用时,安装于芯片9的表面,并使微喷嘴3正对芯片9的上表面,此外,还需保证冷却室4相对外部大气环境具有良好的密封性。芯片冷却装置对芯片9进行冷却的一个循环过程如下:在第一微泵泵膜21的往复振动作用下,冷却液池1中储存的冷却液流入微喷嘴3,并在第一微泵泵膜21产生的液体压力作用下,通过微喷嘴3形成微液滴态冷却液3a,并从微喷嘴3喷射进冷却室4,该微液滴态冷却液3a最终冲击在发热芯片9的上表面;通过对第一微泵泵膜21振动幅值和频率的有效控制,使喷射出的微液滴态冷却液3a在芯片9的上表面形成一层适当厚度的薄膜4a,从而在固液界面上直接完成液气之间的质量与能量传递,使得界面的接触热阻达到最小,获得很高的临界热流密度值,而不存在沸腾初始滞后作用的影响,这样芯片9的表面温度可以保持在冷却液在系统压力下的饱和温度值附近,并且芯片9热表面的温度分布均匀。冷却液在芯片9的上表面沸腾,在冷却室4中吸收芯片9的热量由液态转变为气态,在第二微泵泵膜61产生的气体压力作用下,气态冷却液流入冷凝器7,通过对第二微泵泵膜61振动幅值和频率的有效控制,可以保证气态冷却液及时地流入冷凝器7,以确保整个冷却循环的顺畅。冷凝器7的顶部均匀分布的翅形散热片72与大气环境接触,由于冷却液FC-72的沸点为56.6℃,高于大气环境温度(通常低于40℃),气态冷却液在冷凝器7内部的冷凝流道71内凝结成液态冷却液,并将热量释放到大气环境,凝结成的液态冷却液在自重和气体压力作用下,经由环形的冷凝流道71下方的微孔8,形成液滴8a流回冷却液池1,完成一个封闭空间内的冷却循环。As shown in Figures 1 and 2, the chip cooling device of the present invention is installed on the surface of the
综上所述,相对于现有的芯片冷却装置,本发明芯片冷却装置具有以下优点:In summary, compared with the existing chip cooling device, the chip cooling device of the present invention has the following advantages:
1.本发明芯片冷却装置把第一微泵2、第二微泵6分别作为液态冷却液和气态冷却液的驱动源集成在芯片9的表面,使冷却装置占用空间的减少成为了可能,利用微机电系统技术中的体微加工工艺和表面微加工工艺,分层刻蚀,去除牺牲层,再通过可逆的阳极键合工艺,逐层地将冷却装置封装在电子器件芯片9的表面,实现有效耦合和高效匹配,减小了占用空间,降低了对芯片后续集成和封装的负面影响。1. The chip cooling device of the present invention integrates the
2.本发明芯片冷却装置采用封闭的内循环冷却方式,通过第一微泵2控制微液滴的成形和喷射,通过第二微泵6实现气体的回收再利用,整个循环过程不需要人工干预,具有很高的可控性和工作柔性以满足不同功率芯片在不同工况下的冷却要求。2. The chip cooling device of the present invention adopts a closed internal circulation cooling method, controls the formation and injection of micro-droplets through the
3.本发明芯片冷却装置通过微液滴冷态却液3a冲击芯片9热表面,形成薄膜4a,获得很高的临界热流密度值,并利用高温区液体气化而在低温区气体冷凝的两相热传导技术,即冷却液的相变潜热特性,实现对高密度大功率芯片的温度控制。相比传统的自由对流传热、强迫对流传热以及浸没式冷却方式,利用液体的相变机制冷却是一种效率更高的冷却方式,其中本发明涉及的微表面喷射沸腾冷却更具有高达(500~600)W/cm2的临界热流密度值,这完全能满足现有高密度大功率芯片的冷却要求,甚至能解决未来很长一段时间内芯片发展所必须面对的热控制问题。3. The chip cooling device of the present invention impacts the hot surface of the
以上所述,仅是本发明的最佳实施方式而已,并非对本发明做任何形式上的限制。虽然本发明已以最佳实施例论述如上,然而并非以限定本发明,任何熟悉本专业的技术人员在不脱离本发明技术方案范围内,可利用上述揭示的技术内容做出些许更动或修饰以实现等效的实施方式,比如选择其它类型的冷却液替代碳氟化合物FC-72,又如改变微喷嘴阵列的布置方式,再如选取其他类型的微泵等等。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施方式所做的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above description is only the best implementation mode of the present invention, and does not limit the present invention in any form. Although the present invention has been discussed above with the best embodiment, it is not intended to limit the present invention. Any skilled person in this field can use the technical content disclosed above to make some changes or modifications without departing from the scope of the technical solution of the present invention. To achieve an equivalent implementation, for example, choose other types of cooling liquid to replace fluorocarbon FC-72, change the arrangement of micro-nozzle arrays, and select other types of micro-pumps, etc. However, any simple modifications, equivalent changes and modifications made to the above implementation methods according to the technical essence of the present invention are still within the scope of the technical solutions of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009101022045A CN101645430B (en) | 2009-09-03 | 2009-09-03 | Chip cooling device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009101022045A CN101645430B (en) | 2009-09-03 | 2009-09-03 | Chip cooling device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN101645430A CN101645430A (en) | 2010-02-10 |
| CN101645430B true CN101645430B (en) | 2011-07-27 |
Family
ID=41657232
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009101022045A Expired - Fee Related CN101645430B (en) | 2009-09-03 | 2009-09-03 | Chip cooling device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN101645430B (en) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103824826B (en) * | 2014-02-21 | 2017-01-04 | 电子科技大学 | A kind of fluid channel heat dissipating method |
| DE102015214928A1 (en) * | 2015-08-05 | 2017-02-09 | Siemens Aktiengesellschaft | Component module and power module |
| CN105540529B (en) * | 2015-12-04 | 2017-11-10 | 通富微电子股份有限公司 | Adaptive Temperature Controlling Chip micro-system |
| CN106409791B (en) * | 2016-11-29 | 2020-05-22 | 广东合一新材料研究院有限公司 | Liquid immersion type chip radiator |
| CN106871520B (en) * | 2017-02-13 | 2017-11-17 | 中国科学院合肥物质科学研究院 | A kind of efficient radiating apparatus based on array spraying |
| CN109637987B (en) * | 2018-11-15 | 2020-07-10 | 华中科技大学 | Immersed jet micro-jet direct liquid cooling heat dissipation device |
| CN110021571B (en) * | 2019-04-23 | 2022-04-29 | 扬州万方科技股份有限公司 | Radiator based on jet flow micro-channel |
| CN111965520A (en) * | 2020-07-24 | 2020-11-20 | 武汉锐科光纤激光技术股份有限公司 | Chip testing equipment |
| CN111948513A (en) * | 2020-07-24 | 2020-11-17 | 武汉锐科光纤激光技术股份有限公司 | Chip temperature control equipment |
| CN111965519A (en) * | 2020-07-24 | 2020-11-20 | 武汉锐科光纤激光技术股份有限公司 | Chip testing equipment |
| CN113262829B (en) * | 2021-05-20 | 2022-07-08 | 华南师范大学 | Droplet path planning method and device for digital microfluidic chip |
| CN115776798A (en) * | 2021-09-07 | 2023-03-10 | 英业达科技有限公司 | Cooling system and electronic device |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004256983A (en) * | 2003-02-05 | 2004-09-16 | Toray Ind Inc | Artificial leather comprising nano fiber |
| JP2009041501A (en) * | 2007-08-10 | 2009-02-26 | Alps Electric Co Ltd | Diaphragm pump |
| CN201490185U (en) * | 2009-09-03 | 2010-05-26 | 浙江大学 | A chip cooling device |
-
2009
- 2009-09-03 CN CN2009101022045A patent/CN101645430B/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004256983A (en) * | 2003-02-05 | 2004-09-16 | Toray Ind Inc | Artificial leather comprising nano fiber |
| JP2009041501A (en) * | 2007-08-10 | 2009-02-26 | Alps Electric Co Ltd | Diaphragm pump |
| CN201490185U (en) * | 2009-09-03 | 2010-05-26 | 浙江大学 | A chip cooling device |
Non-Patent Citations (1)
| Title |
|---|
| 李俊,应济等.基于MEMS的静电微泵建模与仿真.《工程设计学报》.2009,第16卷(第1期),63-67. * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101645430A (en) | 2010-02-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101645430B (en) | Chip cooling device | |
| JP6588654B2 (en) | Working medium contact cooling system for high power components and method of operating the same | |
| JP5151362B2 (en) | COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME | |
| US20090288808A1 (en) | Quick temperature-equlizing heat-dissipating device | |
| TW201115097A (en) | Direct jet impingement-assisted thermosyphon cooling apparatus and method | |
| CN111511164A (en) | Spray cooling phase change heat sink integrated evaporative cooling device | |
| CN103943576A (en) | Integrated thin film evaporation thermal spreader and planar heat pipe heat sink | |
| CN103928414B (en) | A liquid cooling system for electronic components | |
| CN1968596A (en) | Array jetting micro heat exchanger | |
| CN103188912A (en) | Lotus-type regular porous metal microchannel heat sink using liquid metal working medium | |
| CN109216302B (en) | Enhanced Immersion Cooling with Flow Diversion | |
| CN100566530C (en) | Micro droplet cooling device | |
| CN201490185U (en) | A chip cooling device | |
| CN113985989A (en) | Heat dissipation equipment | |
| CN101252822A (en) | A kind of EHD strengthened miniature cooling device | |
| JP5532113B2 (en) | COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME | |
| TWM493087U (en) | Closed circulation heat dissipation module | |
| CN217363677U (en) | High heat flux spray enhanced heat dissipation device | |
| CN110620096A (en) | High aspect ratio foam metal micro-channel phase change cooling device compounded with aluminum substrate | |
| CN114122872A (en) | A laser cooling system based on microscale heat transfer | |
| CN102157470A (en) | Micro LHP radiating system for integrated electrofluid power pump | |
| CN202134530U (en) | A Micro LHP Heat Dissipation System Integrated with Electrohydrodynamic Pump | |
| CN203760453U (en) | Liquid-cooling radiator system for electronic components | |
| CN216872468U (en) | Laser instrument cooling system based on microscale heat transfer | |
| CN105633037A (en) | Pulsation heat pipe radiating apparatus for cooling chips |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110727 Termination date: 20120903 |