CN102279476B - High-speed electrically-modulating terahertz modulator - Google Patents
High-speed electrically-modulating terahertz modulator Download PDFInfo
- Publication number
- CN102279476B CN102279476B CN 201110198257 CN201110198257A CN102279476B CN 102279476 B CN102279476 B CN 102279476B CN 201110198257 CN201110198257 CN 201110198257 CN 201110198257 A CN201110198257 A CN 201110198257A CN 102279476 B CN102279476 B CN 102279476B
- Authority
- CN
- China
- Prior art keywords
- electron mobility
- speed
- terahertz
- mobility transistor
- high electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 239000010408 film Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 7
- 239000010409 thin film Substances 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 230000000694 effects Effects 0.000 abstract description 8
- 230000005540 biological transmission Effects 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000004038 photonic crystal Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Thin Film Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种高速电调控太赫兹调制器,包括介质基板(4),所述介质基板(4)是对太赫兹波透明的材料,且所述介质基板表面分布高电子迁移率晶体管(3)形成的阵列,该介质基板表面以及高电子迁移率晶体管阵列表面还附着有频率选择表面结构(2),所述频率选择表面结构是具有带通滤波结构的图形化导电薄膜,所述导电薄膜对应于每一高电子迁移率晶体管局部分别构成该高电子迁移率晶体管的源极(b)、漏极(c)和栅极(a);所述高电子迁移率晶体管的电子迁移率在1500cm2/Vs以上。本发明实现了以电调制方式对太赫兹波幅值的高速调制效应,调制速度可大于10MHz,相对调制深度大于50%。
The invention discloses a high-speed electrical control terahertz modulator, comprising a dielectric substrate (4), the dielectric substrate (4) is a material transparent to terahertz waves, and high electron mobility transistors ( 3) The formed array, the surface of the dielectric substrate and the surface of the high electron mobility transistor array are also attached with a frequency selective surface structure (2), the frequency selective surface structure is a patterned conductive film with a bandpass filter structure, and the conductive The thin film corresponds to each high electron mobility transistor and forms the source (b), drain (c) and gate (a) of the high electron mobility transistor respectively; the electron mobility of the high electron mobility transistor is in 1500cm 2 /Vs or more. The invention realizes the high-speed modulation effect on the terahertz wave amplitude in the electric modulation mode, the modulation speed can be greater than 10MHz, and the relative modulation depth is greater than 50%.
Description
技术领域 technical field
本发明特别涉及一种能够通过电调控方式高速、高效调制太赫兹波幅值的装置,其可应用于太赫兹通讯和太赫兹成像等领域。 The invention particularly relates to a device capable of high-speed and high-efficiency modulation of the terahertz wave amplitude through an electrical control method, which can be applied to the fields of terahertz communication, terahertz imaging and the like.
背景技术 Background technique
太赫兹(THz)波是频率在0.1 THz到10 THz范围的电磁波,波长在30 μm到3 mm范围,介于毫米与红外之间,与其他波段的电磁波相比,太赫兹波具有光子能量低、穿透力强等优异特性,在物理、化学和医药科学等基础研究领域,以及安全检查、环境监测、通信等应用研究领域均具有巨大的科学研究价值和广阔的市场前景。随着THz科技的迅速发展,THz间隙的空白逐渐被填补,半导体材料结合光子学和电子学应用于THz技术都为这一领域的发展实现了重大突破,如量子级联激光器,肖特基二极管和Bolometer。在发展相应THz光源和高灵敏度探测器的同时,高速调制器是不可缺少的核心器件,然而,人们在控制和操纵THz波技术方面仍相对滞后,实现高速THz调制器显得非常迫切。 Terahertz (THz) waves are electromagnetic waves with a frequency in the range of 0.1 THz to 10 THz, and wavelengths in the range of 30 μm to 3 mm, between millimeters and infrared. Compared with electromagnetic waves in other bands, terahertz waves have low photon energy It has great scientific research value and broad market prospects in basic research fields such as physics, chemistry, and medical science, as well as applied research fields such as safety inspection, environmental monitoring, and communication. With the rapid development of THz technology, the gap in the THz gap is gradually being filled, and semiconductor materials combined with photonics and electronics applied to THz technology have achieved major breakthroughs in the development of this field, such as quantum cascade lasers, Schottky diodes and Bolometer. While developing corresponding THz light sources and high-sensitivity detectors, high-speed modulators are indispensable core devices. However, people are still relatively lagging behind in controlling and manipulating THz wave technology, so it is very urgent to realize high-speed THz modulators.
传统的THz调制器主要是机械式调制方式的斩波器,调制频率从几Hz 至几kHz。近年来,人们又发展出了基于光子晶体和特异材料(Metamaterials)等人造电磁材料的THz波的带隙迁移型THz调制器,其调制深度可达30 dB,调制速度约为10 kHz,然而,这些THz调制器的带隙边缘很难达到陡峭,调制深度和插入损耗等指标都不是很理想。而基于Metamaterials人工结构的THz调制器也是目前的研究热点,但是此类器件的调制速度仍较低,且性能指标难以提升。事实上,目前通过电调控方式的THz调制器调制速度都只有几百Hz ~kHz,这很难满足太赫兹在通讯和成像领域应用的要求,所以,如何提升调制速度成为进一步发展THz调制器技术的关键。 The traditional THz modulator is mainly a mechanical modulation chopper, and the modulation frequency is from several Hz to several kHz. In recent years, people have developed bandgap shifting THz modulators based on THz waves of artificial electromagnetic materials such as photonic crystals and metamaterials. The modulation depth can reach 30 dB and the modulation speed is about 10 kHz. However, The bandgap edges of these THz modulators are difficult to achieve steepness, and indicators such as modulation depth and insertion loss are not very ideal. The THz modulator based on the artificial structure of Metamaterials is also a research hotspot at present, but the modulation speed of such devices is still low, and the performance index is difficult to improve. In fact, at present, the modulation speed of THz modulators through electrical control is only a few hundred Hz ~ kHz, which is difficult to meet the requirements of THz applications in the field of communication and imaging. key.
发明内容 Contents of the invention
本发明的目的在于提出一种高速电调控太赫兹调制器,其调制深度>50%,调制速度>10 MHz,从而克服了现有技术中的不足。 The purpose of the present invention is to propose a high-speed electrically controlled terahertz modulator with a modulation depth of >50% and a modulation speed of >10 MHz, thereby overcoming the deficiencies in the prior art.
为实现上述发明目的,本发明采用了如下技术方案: In order to realize the above-mentioned purpose of the invention, the present invention has adopted following technical scheme:
一种高速电调控太赫兹调制器,包括介质基板,所述介质基板由对太赫兹波透明的材料形成,其特征在于:所述介质基板表面分布由复数个高电子迁移率晶体管形成的阵列,该介质基板表面以及高电子迁移率晶体管阵列表面还附着有频率选择表面结构,所述频率选择表面结构包括具有带通滤波结构的图形化导电薄膜,所述导电薄膜对应于每一高电子迁移率晶体管局部分别构成该高电子迁移率晶体管的源极、漏极和栅极; A high-speed electrically regulated terahertz modulator, comprising a dielectric substrate formed of a material transparent to terahertz waves, characterized in that: the surface of the dielectric substrate is distributed with an array formed by a plurality of high electron mobility transistors, A frequency selective surface structure is also attached to the surface of the dielectric substrate and the surface of the high electron mobility transistor array, and the frequency selective surface structure includes a patterned conductive film with a bandpass filter structure, and the conductive film corresponds to each high electron mobility Transistor parts respectively constitute the source, drain and gate of the high electron mobility transistor;
所述高电子迁移率晶体管的电子迁移率在1500 cm2/Vs以上; The electron mobility of the high electron mobility transistor is above 1500 cm 2 /Vs;
所述高速电调控太赫兹调制器的调制速度达到10MHz以上。 The modulation speed of the high-speed electrically controlled terahertz modulator reaches above 10 MHz.
具体而言,所述频率选择表面结构是金属薄膜形成的网状方格结构,所述网状方格结构的边对应于每一高电子迁移率晶体管分别构成该高电子迁移率晶体管的源极、漏极和栅极;所述源极和漏极的宽度分别为1μm, 栅极的宽度为7μm。 Specifically, the frequency selective surface structure is a grid-like grid structure formed by a metal film, and the sides of the grid-like grid structure correspond to each high electron mobility transistor and form the source of the high electron mobility transistor respectively. , a drain and a gate; the widths of the source and drain are 1 μm, respectively, and the width of the gate is 7 μm.
所述高电子迁移率晶体管的跨导在300 mS/mm以上。 The transconductance of the high electron mobility transistor is above 300 mS/mm.
一种高速电调控太赫兹调制装置,其特征在于,它包括: A high-speed electrical control terahertz modulation device is characterized in that it includes:
如上所述的高速电调控太赫兹调制器; High-speed electrically regulated terahertz modulators as described above;
以及,用于对高速电调控太赫兹调制器中的高电子迁移率晶体管栅极输入调控沟道电导的电压信号的调制信号源。 And, a modulation signal source for inputting a voltage signal for regulating channel conductance to the gate of the high electron mobility transistor in the high-speed electric regulation terahertz modulator.
本发明采用频率选择表面结构与高电子迁移率晶体管相结合,晶体管设计为频率选择表面结构的组成部分,通过将脉冲电压信号施加于晶体管栅极调控沟道电导导通和断开的高速变化,从而动态切换具有滤波作用频率选择表面结构的变换,进而实现对电磁波的反射和传输的控制。 The invention adopts the combination of the frequency selective surface structure and the high electron mobility transistor. The transistor is designed as a component of the frequency selective surface structure. By applying the pulse voltage signal to the gate of the transistor to control the high-speed change of the channel conductance on and off, In this way, the transformation of the frequency selective surface structure with filtering effect can be dynamically switched, and then the control of the reflection and transmission of electromagnetic waves can be realized.
进一步的讲,本发明采用孔径型频率选择表面结构调制THz波,对于谐振情况下入射的电磁波,孔径型FSS表现出全透射的特征,形成带通型滤波结构。滤波机理可描述为如下:当低频电磁波照射孔径型频率选择表面时,将激发大范围的电子移动,使得电子吸收大部分能量,且沿缝隙的感应电流很小,导致透射系数比较小。随着入射波频率的不断升高,这种电子移动的范围将逐渐较小,沿缝隙流动的电流在不断增加,从而透射系数得到改善。当入射电磁波的频率达到一定值时,槽两侧的电子刚好在入射波电场矢量的驱动下来回移动,在缝隙周围形成较大的感应电流。由于电子吸收大量入射波的能量,同时也在向外辐射能量。运动的电子透过偶极子槽的缝隙向透射方向辐射电场,此时的偶极子槽阵列反射系数最低,透射系数最高。当入射波频率继续升高时,将导致电子的运动范围减小,在缝隙周围的电流将分成若干段,电子透过槽缝隙辐射出去的电磁波减小,透射系数降低。而对于在远离缝隙的金属板上所产生的感应电流则向反射方向辐射电磁场,并且由于高频电磁波的电场变化周期的限制了电子的运动,辐射能量有限。 Furthermore, the present invention uses an aperture-type frequency-selective surface structure to modulate THz waves. For the incident electromagnetic wave under resonance, the aperture-type FSS exhibits the characteristics of total transmission, forming a band-pass filter structure. The filtering mechanism can be described as follows: when low-frequency electromagnetic waves irradiate the aperture-type frequency-selective surface, a large range of electron movement will be excited, so that the electrons absorb most of the energy, and the induced current along the gap is small, resulting in a relatively small transmission coefficient. As the frequency of the incident wave continues to rise, the range of electron movement will gradually become smaller, and the current flowing along the gap will continue to increase, thereby improving the transmission coefficient. When the frequency of the incident electromagnetic wave reaches a certain value, the electrons on both sides of the slot just move back and forth driven by the electric field vector of the incident wave, forming a large induced current around the gap. Since electrons absorb a large amount of energy from the incident wave, they also radiate energy outward. The moving electrons radiate the electric field to the transmission direction through the gaps of the dipole slots. At this time, the reflection coefficient of the dipole slot array is the lowest, and the transmission coefficient is the highest. When the frequency of the incident wave continues to increase, the range of motion of the electrons will decrease, and the current around the gap will be divided into several segments. The electromagnetic waves radiated by the electrons through the slot gap will decrease, and the transmission coefficient will decrease. For the induced current generated on the metal plate far away from the gap, the electromagnetic field is radiated in the reflection direction, and because the electric field change cycle of the high-frequency electromagnetic wave restricts the movement of electrons, the radiation energy is limited.
与现有技术相比,本发明至少具有如下优点:充分结合了频率选择表面结构对太赫兹滤波作用和高电子迁移率晶体管高速栅极电调控特性,实现以电调制方式对太赫兹波幅值的高速调制效应,相比现有的机械式调制方式的斩波器、光子晶体和特异材料等太赫兹调制器,本发明太赫兹调制器调制速度可大于10 MHz,相对调制深度大于50%,即,实现了对太赫兹波的高速调制。 Compared with the prior art, the present invention has at least the following advantages: it fully combines the frequency-selective surface structure’s effect on terahertz filtering and the high-speed gate electrical control characteristics of high-electron mobility transistors, and realizes the adjustment of terahertz wave amplitude by electrical modulation. Compared with the existing terahertz modulators such as choppers, photonic crystals and metamaterials with mechanical modulation methods, the modulation speed of the terahertz modulator of the present invention can be greater than 10 MHz, and the relative modulation depth is greater than 50%. That is, high-speed modulation of terahertz waves is realized.
附图说明 Description of drawings
图1是本发明一较佳实施例中高速太赫兹调制器的结构示意图; Fig. 1 is a schematic structural diagram of a high-speed terahertz modulator in a preferred embodiment of the present invention;
图2是图1中高电子迁移率晶体管的结构示意图; Fig. 2 is a schematic structural diagram of the high electron mobility transistor in Fig. 1;
图3是以图1所示高速太赫兹调制器进行测试时的原理示意图; Figure 3 is a schematic diagram of the principle of testing the high-speed terahertz modulator shown in Figure 1;
图4是本发明一较佳实施例中通过脉冲电压信号施加于晶体管栅极调控沟道电导率变化的曲线图; Fig. 4 is a graph showing the change in channel conductivity controlled by a pulse voltage signal applied to the gate of a transistor in a preferred embodiment of the present invention;
图5是本发明一较佳实施例中高速太赫兹调制器的模拟结果曲线图; Fig. 5 is a graph of simulation results of a high-speed terahertz modulator in a preferred embodiment of the present invention;
以上各图中所示各组件及其附图标记分别为:太赫兹波光源1、频率选择表面2、高电子迁移率晶体管3、介质基板4、调制信号源5、太赫兹探测器6、栅极a、源极b、漏极c。
The components shown in the above figures and their reference signs are: terahertz wave light source 1, frequency
具体实施方式 Detailed ways
本发明的高速电调制太赫兹调制器包括介质基板,介质基板上的高电子迁移率晶体管阵列以及附着于介质基板和晶体管表面的频率选择表面结构。 The high-speed electrical modulation terahertz modulator of the present invention includes a dielectric substrate, a high electron mobility transistor array on the dielectric substrate, and a frequency-selective surface structure attached to the dielectric substrate and the surface of the transistor.
前述的介质基板由对太赫兹波有较高透射率的介质材料形成,,并易于高电子迁移率晶体管和金属材料的生长。 The foregoing dielectric substrate is formed of a dielectric material with relatively high transmittance to terahertz waves, and is easy to grow high electron mobility transistors and metal materials.
前述的高电子迁移率晶体管阵列是由多个相同形状和尺寸的晶体管构成的单元阵列,阵列周期与频率选择表面结构相匹配。该等晶体管可通过分子束外延等方法在介质基板制备获得,并通过感应耦合等离子体刻蚀、光刻工艺等制备成阵列结构。 The aforementioned high electron mobility transistor array is a cell array composed of multiple transistors of the same shape and size, and the array period matches the frequency selective surface structure. These transistors can be prepared on a dielectric substrate by methods such as molecular beam epitaxy, and prepared into an array structure by inductively coupled plasma etching, photolithography, and the like.
前述的频率选择表面结构是由一定尺寸的金属薄膜按特殊布局形成的网状结构,例如可以是采用电子束蒸发技术制备金薄膜,通过微纳加工工艺将金薄膜光刻成一定线宽并按特定布局形成的网状结构,其中,微纳加工工艺包括清洗介质基板、裂片、减薄抛光、电子束蒸发和UV光刻等。 The aforementioned frequency-selective surface structure is a network structure formed by a metal film of a certain size according to a special layout. For example, a gold film can be prepared by electron beam evaporation technology, and the gold film can be photoetched into a certain line width by micro-nano processing technology. A network structure formed by a specific layout, wherein the micro-nano processing technology includes cleaning dielectric substrates, splitting, thinning and polishing, electron beam evaporation and UV lithography, etc.
具体来看该高速太赫兹调制器的结构特征及功能: Specifically, let’s look at the structural features and functions of the high-speed terahertz modulator:
前述频率选择表面的作用是对太赫兹波形成带通滤波效应,本发明设计频率选择表面结构的带通频率范围优选为0.82-0.92 THz; The function of the aforementioned frequency selective surface is to form a band-pass filter effect on the terahertz wave, and the band-pass frequency range of the frequency selective surface structure designed in the present invention is preferably 0.82-0.92 THz;
高电子迁移率晶体管的作用是在栅极电压调控下沟道电导呈现导通和断开两种状态,实现快速切换两种不同频率选择表面结构; The role of the high electron mobility transistor is that the channel conductance presents two states of on and off under the regulation of the gate voltage, and realizes fast switching between two different frequency-selective surface structures;
介质基板的作用是承载调制器核心单元晶体管和频率选择表面结构,并且对太赫兹波有较高的透射率; The role of the dielectric substrate is to carry the core unit transistor of the modulator and the frequency selective surface structure, and has a high transmittance to the terahertz wave;
调制信号源的作用是对高电子迁移率晶体管栅极输入调控沟道电导的高频电压信号。 The role of the modulation signal source is to input a high-frequency voltage signal to the gate of the high electron mobility transistor to regulate the conductance of the channel.
以下结合附图及一较佳实施例对本发明的技术方案作进一步的说明。 The technical solution of the present invention will be further described below in conjunction with the accompanying drawings and a preferred embodiment.
参阅图1-2,本实施例的高速太赫兹调制器包括蓝宝石单晶介质基片4以及外延生长于介质基片表面的AlGaN/GaN高电子迁移率晶体管阵列,介质基片4和晶体管阵列附着有频率选择表面结构2,该频率选择表面结构2系图形化的金属薄膜,其对应于每一晶体管的部分分别构成晶体的源极b、漏极c和栅极a。
Referring to Figures 1-2, the high-speed terahertz modulator of this embodiment includes a sapphire single crystal dielectric substrate 4 and an AlGaN/GaN high electron mobility transistor array epitaxially grown on the surface of the dielectric substrate, and the dielectric substrate 4 and the transistor array are attached There is a frequency
该高速电调制太赫兹调制器的制备和测试分析过程如下: The preparation, testing and analysis process of the high-speed electrical modulation terahertz modulator is as follows:
步骤一:利用基于时域有限差分的软件FDTD Solution,建立太赫兹波调制器的模型结构,其中金属性频率选择表面结构2设置为200纳米厚的金。通过优化栅极G、源极S和漏极D尺寸,模拟获得栅控高电子迁移率晶体管中沟道电导导通和断开时最大的相对调制深度。获得最佳参数为:源极宽度S=1微米,漏极宽度D=1微米和栅极宽度G=7微米,周期单元间距d=50微米,调制器在频率范围0.82-0.92 THz 相对调制深度为75%。
Step 1: Using the software FDTD Solution based on the finite difference in time domain, establish the model structure of the terahertz wave modulator, in which the metallic frequency
步骤二:制备光刻板,利用感应耦合等离子体刻蚀方法,刻蚀晶体管基片台面,用光刻胶为掩模,刻蚀出晶体管单元阵列,如图1所示,每一个晶体管3面积为6×8微米2。
Step 2: Prepare a photolithography plate, use the inductively coupled plasma etching method, etch the transistor substrate mesa, use photoresist as a mask, etch out the transistor cell array, as shown in Figure 1, the area of each
步骤三:采用紫外曝光光刻技术,在已刻蚀的晶体管基片台面上制备与频率选择表面结构反型的光刻胶,厚度约为1.5微米。 Step 3: Using ultraviolet exposure photolithography technology, prepare a photoresist inverse to the frequency selective surface structure on the etched transistor substrate mesa, with a thickness of about 1.5 microns.
步骤四:利用电子束蒸发金属技术,在制备好光刻胶的基片上沉积约200nm厚的金薄膜。 Step 4: Deposit a gold film with a thickness of about 200 nm on the prepared photoresist substrate by using electron beam evaporation metal technology.
步骤五:将制备好金薄膜的基片置于丙酮中清洗约30分钟,将光刻胶及其上面金薄膜洗去,留下频率选择表面金属结构。 Step 5: The substrate prepared with the gold film is cleaned in acetone for about 30 minutes, and the photoresist and the gold film on it are washed away, leaving the frequency selective surface metal structure.
步骤六:介质基片采用蓝宝石单晶基片,该材料介电常数约为11.9,裂片面积为10×10 毫米2,减薄厚度至约为90 微米。 Step 6: The dielectric substrate is a sapphire single crystal substrate, the dielectric constant of this material is about 11.9, the area of the split is 10×10 mm 2 , and the thickness is reduced to about 90 microns.
步骤七:将调制器固定并置于太赫兹光源1和探测器6中间,调制器电调控信号由信号源5输出,通过同轴线和金属引线加载到晶体管3栅极上,调控高电子迁移率晶体管中沟道电导的导通和断开。太赫兹探测器灵敏探测通过调制器的太赫兹波信号。
Step 7: Fix the modulator and place it between the terahertz light source 1 and the detector 6. The electrical control signal of the modulator is output from the signal source 5, and loaded to the gate of the
图4所示是本实施例通过脉冲电压信号施加于晶体管栅极调控沟道电导率变化的曲线,其中,沟道电导率变化等效于两种频率选择表面结构A和B的转换。这也正是本发明的核心思想所在,即,运用了频率选择表面结构对太赫兹波的滤波作用和高电子迁移率晶体管栅压对沟道电导的高速调控性能,设计两种分别对电磁波具有反射效应的周期结构A和透射效应的周期结构B,高电子迁移率晶体管设计为周期结构的组成部分,通过栅极调制信号(Vg-Vb,Vg+Va)调控沟道电导G率的变化(G=0~4000 S/cm),实现结构A和B之间高速动态切换,进行对太赫兹波幅值的高速电调制。 FIG. 4 shows the curve of channel conductivity change controlled by applying a pulse voltage signal to the gate of the transistor in this embodiment, wherein the change of channel conductivity is equivalent to the conversion of two frequency selective surface structures A and B. This is also the core idea of the present invention, that is, using the filtering effect of the frequency selective surface structure on the terahertz wave and the high-speed regulation performance of the gate voltage of the high electron mobility transistor on the channel conductance, the design of two The periodic structure A of the reflection effect and the periodic structure B of the transmission effect, the high electron mobility transistor is designed as a component of the periodic structure, and the channel conductance G is regulated by the gate modulation signal (V g -V b , V g +V a ) The rate change (G=0~4000 S/cm) realizes high-speed dynamic switching between structures A and B, and high-speed electrical modulation of the terahertz wave amplitude.
图5给出了本实施例的模拟计算结果,在设计的0.82-0.92 THz频率范围,当源极和漏极宽度为1微米,栅极宽度为7微米时,调制器调制深度达到75%。栅极调制信号频率10 MHz在透射信号上能清晰反映,表明栅极调制速度至少可达到10 MHz。 Figure 5 shows the simulation calculation results of this embodiment. In the designed frequency range of 0.82-0.92 THz, when the source and drain widths are 1 micron and the gate width is 7 microns, the modulation depth of the modulator reaches 75%. The grid modulation signal frequency of 10 MHz can be clearly reflected in the transmission signal, indicating that the grid modulation speed can reach at least 10 MHz.
参阅图3,当光源1发射的太赫兹波垂直入射调制器平面时,因频率选择表面的带通滤波效应,只有频率范围为0.82-0.92 THz的电磁波可以通过,当频率低于0.82 THz时,传输率很低接近为零(参阅图5),当频率升高至设计频段时,电磁波可通过调制器,传输率迅速提高,随着电磁波频率继续升高,一定波长电磁波与频率选择表面结构发生谐振,电磁波传输率达到极大。从模拟和实验结果看,采用本发明设计的频率选择表面结构尺寸,调制器相对调制深度达到75%,施加于栅极的10 MHz调制信号能清晰地反映在射频频谱上,说明该调制器调制速度已达到10 MHz,亦即,本发明所述的“高速”。 Referring to Figure 3, when the terahertz wave emitted by the light source 1 is vertically incident on the modulator plane, only electromagnetic waves with a frequency range of 0.82-0.92 THz can pass through due to the band-pass filtering effect of the frequency selective surface. When the frequency is lower than 0.82 THz, The transmission rate is very low and close to zero (see Figure 5). When the frequency increases to the design frequency band, the electromagnetic wave can pass through the modulator, and the transmission rate increases rapidly. As the frequency of the electromagnetic wave continues to increase, the electromagnetic wave of a certain wavelength and the frequency selective surface structure occur. Resonance, the electromagnetic wave transmission rate reaches a maximum. From simulation and experiment result, adopt the frequency selective surface structure size that the present invention designs, modulator relative modulation depth reaches 75%, is applied to the 10 MHz modulation signal of gate and can clearly reflect on the radio frequency spectrum, illustrates that this modulator modulation The speed has reached 10 MHz, that is, "high speed" as described in this invention.
本发明高速电调制太赫兹调制器,充分结合了高电子迁移率晶体管的高速栅控调制特性和频率选择表面结构滤波特性的优点,具有调制速度高和调制深度大等特点,可以弥补现有高速太赫兹调制器的不足。该高速电调制太赫兹调制器装置操作简单,成本较低,易于集成,在太赫兹通讯和太赫兹成像等方面具有较大的科学研究价值和市场前景。 The high-speed electrical modulation terahertz modulator of the present invention fully combines the advantages of high-speed gate-controlled modulation characteristics of high-electron mobility transistors and frequency-selective surface structure filtering characteristics, has the characteristics of high modulation speed and large modulation depth, and can make up for the existing high-speed Shortcomings of terahertz modulators. The high-speed electrical modulation terahertz modulator device is simple to operate, low in cost, easy to integrate, and has great scientific research value and market prospects in terahertz communication and terahertz imaging.
当然,本发明还可采用其他具有高电子迁移率和高栅控能力的晶体管,如AlGaAs /GaAs 或Si 等半导体材料组成的晶体管等,因此,前述较佳实施例不能视为对本发明保护范围的任何限制。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。 Certainly, the present invention can also adopt other transistors with high electron mobility and high gate control capability, such as transistors composed of semiconductor materials such as AlGaAs/GaAs or Si, etc. any restrictions. All equivalent changes or modifications made according to the spirit of the present invention shall fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110198257 CN102279476B (en) | 2011-07-15 | 2011-07-15 | High-speed electrically-modulating terahertz modulator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201110198257 CN102279476B (en) | 2011-07-15 | 2011-07-15 | High-speed electrically-modulating terahertz modulator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102279476A CN102279476A (en) | 2011-12-14 |
| CN102279476B true CN102279476B (en) | 2013-06-12 |
Family
ID=45105014
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201110198257 Active CN102279476B (en) | 2011-07-15 | 2011-07-15 | High-speed electrically-modulating terahertz modulator |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102279476B (en) |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103346406B (en) * | 2013-05-20 | 2015-04-29 | 电子科技大学 | High electron mobility transistor-based terahertz wave spatial external modulator |
| CN104635358B (en) * | 2013-11-06 | 2017-12-01 | 中国科学院苏州纳米技术与纳米仿生研究所 | Terahertz modulator based on ferroelectric thin film and preparation method thereof |
| CN103984124B (en) * | 2014-05-15 | 2017-01-25 | 东南大学 | Multi-frequency response TeraHertz wave modulator |
| CN105372850B (en) * | 2015-12-07 | 2018-02-13 | 电子科技大学 | A kind of THz wave fast modulator based on co-planar waveguide binding crystal pipe |
| CN105652475B (en) * | 2016-01-14 | 2018-06-19 | 电子科技大学 | A kind of terahertz wave modulator based on co-planar waveguide binding crystal pipe |
| CN105739130B (en) * | 2016-03-14 | 2018-09-18 | 苏州科技学院 | Light regulates and controls Terahertz modulator |
| CN106405883A (en) * | 2016-04-12 | 2017-02-15 | 电子科技大学 | Frequency point-adjustable THz wave modulator based on transistor with high electronic mobility |
| CN108061981A (en) * | 2016-11-07 | 2018-05-22 | 中国科学院苏州纳米技术与纳米仿生研究所 | Terahertz modulator and preparation method thereof |
| US10615094B2 (en) * | 2017-01-28 | 2020-04-07 | Zhanming LI | High power gallium nitride devices and structures |
| CN107144985B (en) * | 2017-06-21 | 2019-06-21 | 电子科技大学 | A HEMT Array Electronically Controlled Terahertz Wave Modulator with Mesh Dislocation Distribution |
| CN109855732B (en) * | 2018-11-30 | 2021-03-16 | 天津大学 | THz detector based on periodic grating drain metal gate MOSFET |
| CN109632094B (en) * | 2018-11-30 | 2021-02-05 | 天津大学 | MOSFET terahertz detector based on periodic grating grid drain electrode |
| CN109633772A (en) * | 2018-12-26 | 2019-04-16 | 苏州耶拿微电子有限公司 | The passive superconduction Terahertz human body security check system of 110GHz |
| CN109633774A (en) * | 2018-12-26 | 2019-04-16 | 苏州耶拿微电子有限公司 | The passive superconduction Terahertz human body security check system of 340GHz |
| CN109633773A (en) * | 2018-12-26 | 2019-04-16 | 苏州耶拿微电子有限公司 | The passive superconduction Terahertz human body security check system of 220GHz |
| CN114122703B (en) * | 2021-11-22 | 2022-12-23 | 电子科技大学 | Terahertz independent electric control coding antenna |
| CN115084842B (en) * | 2022-06-29 | 2024-05-14 | 四川太赫兹通信有限公司 | Terahertz is automatically controlled coding antenna unit and terahertz is automatically controlled coding antenna now |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5661594A (en) * | 1992-06-08 | 1997-08-26 | Texas Instruments Incorporated | Controllable optical periodic surface filters |
| CN1963598A (en) * | 2006-11-21 | 2007-05-16 | 中国计量学院 | Modulator apparatus for terahertz wave of photon crystal and its method |
| JP2007242746A (en) * | 2006-03-07 | 2007-09-20 | Nippon Telegr & Teleph Corp <Ntt> | Dual-gate HEMT structure semiconductor modulation element and manufacturing method thereof |
| US7420225B1 (en) * | 2005-11-30 | 2008-09-02 | Sandia Corporation | Direct detector for terahertz radiation |
| CN101694558A (en) * | 2009-10-21 | 2010-04-14 | 电子科技大学 | Metamaterial structure for modulating terahertz wave |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7915641B2 (en) * | 2004-09-13 | 2011-03-29 | Kyushu Institute Of Technology | Terahertz electromagnetic wave radiation element and its manufacturing method |
| US8836439B2 (en) * | 2007-10-12 | 2014-09-16 | Los Alamos National Security Llc | Dynamic frequency tuning of electric and magnetic metamaterial response |
-
2011
- 2011-07-15 CN CN 201110198257 patent/CN102279476B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5661594A (en) * | 1992-06-08 | 1997-08-26 | Texas Instruments Incorporated | Controllable optical periodic surface filters |
| US7420225B1 (en) * | 2005-11-30 | 2008-09-02 | Sandia Corporation | Direct detector for terahertz radiation |
| JP2007242746A (en) * | 2006-03-07 | 2007-09-20 | Nippon Telegr & Teleph Corp <Ntt> | Dual-gate HEMT structure semiconductor modulation element and manufacturing method thereof |
| CN1963598A (en) * | 2006-11-21 | 2007-05-16 | 中国计量学院 | Modulator apparatus for terahertz wave of photon crystal and its method |
| CN101694558A (en) * | 2009-10-21 | 2010-04-14 | 电子科技大学 | Metamaterial structure for modulating terahertz wave |
Non-Patent Citations (4)
| Title |
|---|
| Room-temperature operation of an electrically driven terahertz modulator;T.Kleine-Ostmann等;《APPLIED PHYSICS LETTERS》;20040503;第84卷(第18期);3555-3557 * |
| T.Kleine-Ostmann等.Room-temperature operation of an electrically driven terahertz modulator.《APPLIED PHYSICS LETTERS》.2004,第84卷(第18期),3555-3557. |
| 卢俊.红外与微波波段的周期电磁带隙结构.《长春理工大学学报》.2003,第26卷(第2期), |
| 红外与微波波段的周期电磁带隙结构;卢俊;《长春理工大学学报》;20030630;第26卷(第2期);40-42 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102279476A (en) | 2011-12-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102279476B (en) | High-speed electrically-modulating terahertz modulator | |
| JP6431978B2 (en) | Terahertz modulator, method for modulating high-speed terahertz wave, and method for manufacturing terahertz modulator with symmetrical dielectric resonance cavity | |
| US20160233379A1 (en) | Terahertz source chip, source device and source assembly, and manufacturing methods thereof | |
| Sensale-Rodriguez et al. | Graphene for reconfigurable terahertz optoelectronics | |
| CN103135151B (en) | Composite structures based on metamaterials and semiconductor low-dimensional quantum materials and their applications | |
| JP4423429B2 (en) | Terahertz electromagnetic wave radiation element and manufacturing method thereof | |
| Kang et al. | Dual-controlled tunable terahertz coherent perfect absorption using Dirac semimetal and vanadium dioxide | |
| CN110416862B (en) | Terahertz radiation source based on van der Waals heterojunction | |
| Fang et al. | Single-and dual-band convertible terahertz absorber based on bulk Dirac semimetal | |
| CN103034014A (en) | THz (Terahertz) wave modulator | |
| CN105824138A (en) | Light-operated terahertz modulator based on graphene/silicon-doped compound double-layer structure | |
| CN103984124A (en) | Multi-frequency response TeraHertz wave modulator | |
| Rodrigues et al. | Smart terahertz graphene antenna: operation as an omnidirectional dipole and as a reconfigurable directive antenna | |
| CN110441929A (en) | Based on tunable THz wave transmitter of magneto-electronics array and preparation method thereof | |
| CN107885007A (en) | A kind of Terahertz modulator based on graphene and grating composite construction | |
| CN113009746A (en) | Terahertz second harmonic generation device based on metamaterial | |
| CN104166249B (en) | Terahertz wave optical modulation device, method and equipment | |
| CN103457669A (en) | Schottky gate array type terahertz modulator | |
| CN110690569A (en) | Terahertz photoconductive transmit antenna with integrated microstructure on transmission line | |
| CN104422517B (en) | THz wave frequency spectrum detector | |
| Gholami et al. | Terahertz photoconductive antennas based on arrays of metal nanoparticle structures | |
| CN107069432A (en) | Annular chamber surface launching difference frequency terahertz quantum cascade laser structure | |
| CN111564678A (en) | Terahertz switch and method based on symmetry breaking microdisk array | |
| CN116666949B (en) | A photoconductive antenna with enhanced resonant coupling | |
| Xia et al. | Solid-state intensity modulator based on a single-layer graphene-loaded metasurface operating at 2.2 THz |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |