[go: up one dir, main page]

CN103617811B - Error correction circuit of SRAM type memory - Google Patents

Error correction circuit of SRAM type memory Download PDF

Info

Publication number
CN103617811B
CN103617811B CN201310642317.0A CN201310642317A CN103617811B CN 103617811 B CN103617811 B CN 103617811B CN 201310642317 A CN201310642317 A CN 201310642317A CN 103617811 B CN103617811 B CN 103617811B
Authority
CN
China
Prior art keywords
module
error correction
transmission gate
correction circuit
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310642317.0A
Other languages
Chinese (zh)
Other versions
CN103617811A (en
Inventor
刘鑫
赵发展
韩郑生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhongke Micro Investment Management Co ltd
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201310642317.0A priority Critical patent/CN103617811B/en
Publication of CN103617811A publication Critical patent/CN103617811A/en
Application granted granted Critical
Publication of CN103617811B publication Critical patent/CN103617811B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Error Detection And Correction (AREA)
  • Detection And Correction Of Errors (AREA)

Abstract

本发明提供一种SRAM型存储器的纠错电路,其中,包括:编码模块,第一传输门模块,第二传输门模块和异或操作模块,纠错电路模块。利用编码模块来进行译码操作,添加控制信号,对编码和译码操作进行时分复用。使得电路面积小,同时存储器读写时间快、纠错准确。

The invention provides an error correction circuit of SRAM memory, which includes: a coding module, a first transmission gate module, a second transmission gate module, an exclusive OR operation module, and an error correction circuit module. Utilize the encoding module to perform decoding operation, add control signals, and time-division multiplex the encoding and decoding operations. The circuit area is small, and at the same time, the reading and writing time of the memory is fast, and the error correction is accurate.

Description

一种SRAM型存储器的纠错电路A kind of error correction circuit of SRAM memory

技术领域technical field

本发明涉及存储器数据可靠性,尤其涉及确保存储器读写数据可靠的电路。The invention relates to memory data reliability, in particular to a circuit for ensuring reliability of memory read and write data.

背景技术Background technique

众的所周知,空间辐射环境中高能粒子能够引起VLSI器件内部多个单元产生瞬时错误,在SRAM型存储器中,这种多个单元产生瞬时错误的表现即为多位翻转。由于空间环境中的粒子分布具有高能量低通量的特点,因此发生存储器的多位翻转主要是由于单个高能粒子击中器件敏感区,产生的电荷发生扩散作用,引起器件的多个单元出现瞬时错误。It is well known that high-energy particles in the space radiation environment can cause transient errors in multiple units inside the VLSI device. In SRAM memory, the performance of such transient errors in multiple units is multi-bit flipping. Since the particle distribution in the space environment has the characteristics of high energy and low flux, the multi-bit flip of the memory is mainly due to the single high-energy particle hitting the sensitive area of the device, and the charge generated is diffused, causing multiple units of the device to appear instantaneous. mistake.

随着集成电路制造工艺的不断发展,SRAM结构器件的工艺尺寸不断缩小,核心电压不断降低,因此出现这种错误的概率逐渐增大。通常对SRAM型存储器件的数据操作都是按基本字节进行,因此实际影响应用的是单个基本自己多位翻转错误(SMU)。With the continuous development of the integrated circuit manufacturing process, the process size of the SRAM structure device is continuously reduced, and the core voltage is continuously reduced, so the probability of this error is gradually increasing. Usually, data operations on SRAM memory devices are carried out by basic bytes, so what actually affects the application is a single basic multi-bit flip error (SMU).

当前主要是通过以下几种方法解决存储器的SMU问题:一是在器件级的进行工艺加固,二是将逻辑相邻位在物理上进行分散设置,三是通过BISC+SEC-DED方法进行多位错误的纠正,四是通过编码的方法进行多位错的检测与纠正,前三种方法都需要再器件级进行防护设计,从而带来器件布局布线的复杂性,增加了器件的功率消耗,同时增加了器件的生产成本。因此现有技术中多采用编码方法的对SRAM型存储器进行系统级的防护。At present, the following methods are mainly used to solve the SMU problem of the memory: one is to strengthen the process at the device level, the other is to physically disperse the logic adjacent bits, and the third is to use the BISC+SEC-DED method to implement multi-bit For error correction, the fourth is to detect and correct multiple bit errors through coding methods. The first three methods all require protection design at the device level, which brings complexity in device layout and wiring, increases device power consumption, and at the same time The production cost of the device is increased. Therefore, in the prior art, an encoding method is mostly used for system-level protection of the SRAM type memory.

汉明码是一种常用的纠错编码方法,其以具有较少的冗余校验位,而得到了广泛的应用。传统的汉明码,信息位不等于2的幂,因此需要缩短,删除部分信息位,才能广泛地使用在存储器上。如图1所示,现有的缩短汉明码编码电路和译码电路分开,这样增加了电路面积的开销。另一方面,SRAM不能同时读写,导致编码电路和译码电路的独立不能提高读写速度。The Hamming code is a commonly used error correction coding method, which has been widely used because it has fewer redundant check bits. In the traditional Hamming code, the information bit is not equal to the power of 2, so it needs to be shortened and part of the information bit deleted before it can be widely used in the memory. As shown in FIG. 1 , the existing shortened Hamming code encoding circuit is separated from the decoding circuit, which increases the overhead of the circuit area. On the other hand, SRAM cannot read and write at the same time, resulting in the independence of the encoding circuit and decoding circuit cannot improve the read and write speed.

发明内容Contents of the invention

本发明要解决的技术问题是设计一种电路面积小、读写时间快、纠错准确的SRAM型存储器的纠错电路The technical problem to be solved by the present invention is to design an error correction circuit for an SRAM type memory with small circuit area, fast read and write time, and accurate error correction

本发明提供一种SRAM型存储器的纠错电路,其中,包括:The present invention provides a kind of error correction circuit of SRAM memory, wherein, comprise:

编码模块,用于将数据信号运算生成校验位;The encoding module is used to generate a check bit by calculating the data signal;

第一传输门模块,根据所述检验位与写操作控制信号运算生成伴随信息位的校验位;The first transmission gate module generates a check bit accompanying the information bit according to the check bit and the write operation control signal;

第二传输门模块和异或操作模块,根据所述校验位与读操作控制信号运算生成检验向量;The second transmission gate module and the XOR operation module generate a check vector according to the operation of the check bit and the read operation control signal;

纠错电路模块,根据校验向量查寻出错位,并进行纠错译码。The error correction circuit module looks up error bits according to the check vector, and performs error correction decoding.

优选的,所述编码模块内部为汉明码编码规则。Preferably, the inside of the coding module is a Hamming code coding rule.

优选的,所述编码模块的输入端连接数据信号输入端及其反相信号输入端,所述编码模块的输出端输出运算生成的校验位。Preferably, the input terminal of the coding module is connected to the data signal input terminal and its inversion signal input terminal, and the output terminal of the coding module outputs the check bit generated by the operation.

优选的,所述第一传输门的两个输入端分别连接所述编码模块的输出端以及写操作控制信号端,所述第一传输门的输出端输出伴随信息位的检验位。Preferably, the two input terminals of the first transmission gate are respectively connected to the output terminal of the encoding module and the write operation control signal terminal, and the output terminal of the first transmission gate outputs a check bit accompanying the information bit.

优选的,所述第二传输门模块的两个输入端分别连接连接所述编码模块的输出端以及读操作控制信号端,所述第二传输门的输出端、数据信号输入端和其反相信号输入端连接所述异或操作模块的输入端,所述异或操作模块的输出端输出校验向量。Preferably, the two input terminals of the second transmission gate module are respectively connected to the output terminal of the encoding module and the read operation control signal terminal, the output terminal of the second transmission gate, the data signal input terminal and its inversion The signal input end is connected to the input end of the XOR operation module, and the output end of the XOR operation module outputs a check vector.

优选的,所述纠错电路模块的输入端连接所述异或操作模块的输出端,所述纠错电路模块的输出端连接数据信号输入端及其反相信号输入端。Preferably, the input end of the error correction circuit module is connected to the output end of the XOR operation module, and the output end of the error correction circuit module is connected to the data signal input end and its inversion signal input end.

利用编码模块来进行译码操作,添加控制信号,对编码和译码操作进行时分复用。若存储器是数据写入操作,则使用第一传输门将编码模块输出的检验位与写操作控制信号生成伴随信息位的校验位进行输出,则此时编码模块与第一传输门以及写操作信号相当于编码电路的作用;若存储器是数据读取操作时,第二传输门模块和异或操作模块将编码模块输出的检验位与读操作控制信号运算生成检验位向量,并配合纠错电路模块完成纠错译码。此时复用了编码模块,使其同时使用在了编码和译码电路中,使得电路面积小,同时存储器读写时间快、纠错准确。The coding module is used to perform the decoding operation, and the control signal is added to time-division multiplex the coding and decoding operations. If the memory is a data write operation, use the first transmission gate to generate the check bit output by the encoding module and the write operation control signal with the check bit accompanying the information bit for output, then the encoding module and the first transmission gate and the write operation signal at this time Equivalent to the function of the encoding circuit; if the memory is used for data reading operations, the second transmission gate module and the XOR operation module will calculate the check bit output by the encoding module and the read operation control signal to generate a check bit vector, and cooperate with the error correction circuit module Complete error correction decoding. At this time, the encoding module is reused, so that it is used in the encoding and decoding circuits at the same time, so that the circuit area is small, and the read and write time of the memory is fast, and the error correction is accurate.

附图说明Description of drawings

下面结合附图和具体实施方式对本发明作进一步的详细说明:Below in conjunction with accompanying drawing and specific embodiment the present invention will be described in further detail:

图1是现有技术中一种SRAM型存储器的电路示意图;Fig. 1 is a schematic circuit diagram of a kind of SRAM type memory in the prior art;

图2是本发明SRAM型存储器的纠错电路的实施例1的电路示意图。FIG. 2 is a schematic circuit diagram of Embodiment 1 of the error correction circuit of the SRAM type memory of the present invention.

具体实施方式detailed description

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明,使本发明的上述及其它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部分。并未刻意按比例绘制附图,重点在于示出本发明的主旨。In order to make the above-mentioned purposes, features and advantages of the present invention more obvious and understandable, the specific implementation modes of the present invention will be described in detail below in conjunction with the accompanying drawings, so that the above-mentioned and other purposes, features and advantages of the present invention will be clearer. Like reference numerals designate like parts throughout the drawings. The drawings have not been drawn to scale, emphasis instead being placed upon illustrating the gist of the invention.

如图2所示,本发明提供一种SRAM型存储器的纠错电路,其中,包括:编码模块Encoder,第一传输门模块TG,第二传输门模块和异或操作模块TG&XOR,纠错电路模块Locating error。As shown in Figure 2, the present invention provides an error correction circuit for SRAM memory, which includes: an encoding module Encoder, a first transmission gate module TG, a second transmission gate module and an exclusive OR operation module TG&XOR, and an error correction circuit module Locating error.

在本实施例中,编码模块Encoder的输入端连接数据信号O输入端及其反相信号OB输入端,编码模块Encoder的输出端输出运算生成的校验给第一传输门和第二传输门;第一传输门TG的两个输入端分别连接编码模块Encoder的输出端以及写操作控制信号Write端,第一传输门TG的输出端输出伴随信息位的检验位;第二传输门模块TG的两个输入端分别连接连接编码模块Encoder的输出端以及读操作控制信号Read端,第二传输门TG的输出端、数据信号输入端O和其反相信号OB输入端分别连接异或操作模块XOR的输入端,所述异或操作模块的输出端输出校验向量给纠错电路模块Locating error,纠错电路模块Locatingerror的输出端连接数据信号O输入端及其反相信号OB输入端。In this embodiment, the input end of the encoding module Encoder is connected to the input end of the data signal O and the input end of the inversion signal OB, and the output end of the encoding module Encoder outputs the verification generated by the operation to the first transmission gate and the second transmission gate; The two input terminals of the first transmission gate TG are respectively connected to the output terminal of the encoding module Encoder and the write operation control signal Write terminal, and the output terminal of the first transmission gate TG outputs the check bit accompanying the information bit; the two terminals of the second transmission gate module TG The two input terminals are respectively connected to the output terminal of the encoding module Encoder and the read operation control signal Read terminal, and the output terminal of the second transmission gate TG, the data signal input terminal O and the input terminal of its inversion signal OB are respectively connected to the exclusive OR operation module XOR. The input terminal, the output terminal of the XOR operation module outputs the check vector to the error correction circuit module Locating error, and the output terminal of the error correction circuit module Locatingerror is connected to the input terminal of the data signal O and the input terminal of the inversion signal OB.

本实施例的工作原理:The working principle of this embodiment:

对于包括汉明码在内的线性分组码,将一个k维消息向量乘以k×n矩阵,生成一个n维码字(word)For linear block codes including Hamming codes, a k-dimensional message vector is multiplied by a k×n matrix to generate an n-dimensional codeword (word)

如(38,32)缩短汉明码的32×38维生成矩阵如下:For example, the 32×38-dimensional generator matrix of (38, 32) shortened Hamming code is as follows:

G=[G=[

11000010000000000000000000000000000000;11000010000000000000000000000000000000;

10100001000000000000000000000000000000;10100001000000000000000000000000000000;

01100000100000000000000000000000000000;01100000100000000000000000000000000000;

11100000010000000000000000000000000000;11100000010000000000000000000000000000;

10010000001000000000000000000000000000;10010000001000000000000000000000000000;

01010000000100000000000000000000000000;01010000000100000000000000000000000000;

11010000000010000000000000000000000000;11010000000010000000000000000000000000;

00110000000001000000000000000000000000;00110000000001000000000000000000000000;

10110000000000100000000000000000000000;10110000000000100000000000000000000000;

01110000000000010000000000000000000000;01110000000000010000000000000000000000;

11110000000000001000000000000000000000;11110000000000001000000000000000000000;

10001000000000000100000000000000000000;10001000000000000100000000000000000000;

01001000000000000010000000000000000000;01001000000000000010000000000000000000;

11001000000000000001000000000000000000;11001000000000000001000000000000000000;

00101000000000000000100000000000000000;00101000000000000000100000000000000000;

10101000000000000000010000000000000000;10101000000000000000010000000000000000;

01101000000000000000001000000000000000;01101000000000000000001000000000000000;

11101000000000000000000100000000000000;11101000000000000000000100000000000000;

00011000000000000000000010000000000000;00011000000000000000000010000000000000;

10011000000000000000000001000000000000;10011000000000000000000001000000000000;

01011000000000000000000000100000000000;01011000000000000000000000100000000000;

11011000000000000000000000010000000000;11011000000000000000000000010000000000;

00111000000000000000000000001000000000;00111000000000000000000000001000000000;

10111000000000000000000000000100000000;10111000000000000000000000000100000000;

01111000000000000000000000000010000000;01111000000000000000000000000010000000;

11111000000000000000000000000001000000;11111000000000000000000000000001000000;

10000100000000000000000000000000100000;10000100000000000000000000000000100000;

01000100000000000000000000000000010000;01000100000000000000000000000000010000;

11000100000000000000000000000000001000;11000100000000000000000000000000001000;

00100100000000000000000000000000000100;00100100000000000000000000000000000100;

10100100000000000000000000000000000010;10100100000000000000000000000000000010;

0110010000000000000000000000000000000101100100000000000000000000000000000001

];];

(38,32)缩短汉明码的校验矩阵如下:(38, 32) The parity check matrix of the shortened Hamming code is as follows:

H=[H=[

10000011011010101101010101010101101010;10000011011010101101010101010101101010;

01000010110110011011001100110011011001;01000010110110011011001100110011011001;

00100001110001111000111100001111000111;00100001110001111000111100001111000111;

00010000001111111000000011111111000000;00010000001111111000000011111111000000;

00001000000000000111111111111111000000;00001000000000000111111111111111000000;

0000010000000000000000000000000011111100000100000000000000000000000000111111

];];

译码时,将n维码字乘以校验矩阵的转置(n×m维)生成m维校验子向量,其中m是校验位数目。When decoding, the n-dimensional codeword is multiplied by the transposition of the parity check matrix (n×m dimension) to generate an m-dimensional syndrome vector, where m is the number of parity bits.

校正子计算方式:s=rHT;其中r为读出的n维码字。其中生成矩阵和校验矩阵的形式满足:Syndrome calculation method: s=rH T ; where r is the read n-dimensional codeword. The forms of the generation matrix and check matrix satisfy:

Gk×n=[PIk],G k×n =[PI k ],

Hm×n=[ImPT].H m×n =[I m P T ].

对任意一个由生成矩阵G生成的码字,其低位为校验位,高位为信息位。若v是写入时生成的码字,则有:For any code word generated by the generator matrix G, the low bit is the check bit, and the high bit is the information bit. If v is a codeword generated during writing, then:

v=(s0,s1,...sm-1,u0,u1,...,uk-1)v=(s 0 ,s 1 ,...s m-1 ,u 0 ,u 1 ,...,u k-1 )

通过码字v、生成矩阵G和校验矩阵H的形式可以发现,码字乘以H形成的新校正子,实际上等于原先将k位信息向量写入存储器生成的校正子,异或上读出k位信息位重新生成的校正子。因此可以利用原先的编码电路来进行译码操作。添加控制信号,对编码和译码操作进行时分复用。Through the form of codeword v, generator matrix G and check matrix H, it can be found that the new syndrome formed by multiplying the codeword by H is actually equal to the syndrome generated by writing the k-bit information vector into the memory, XOR read Syndromes regenerated from k-bit information bits. Therefore, the original encoding circuit can be used to perform the decoding operation. Add control signals to time multiplex the encoding and decoding operations.

因此,在实施例中,输入数据信号O及其反相信号OB的高k位信息位经编码模块Encoder生成校验位。如果是写入存储器操作,则写操作控制信号write为高电平,作为一个使能信号,控制第一传输门TG模块,将编码模块输出的校验位作为伴随信息位的校验位输出存入存储器,一共m位;如果是读取操作,则读操作控制信号read为高,编码模块Encoder输出的校验位通过一个高有效的读使能信号控制的传输门和异或操作模块,与原来输入数据信号O及其反相信号OB的低m位自带的校验位异或,生成一个用于纠错电路模块Locatingerror校验位向量。纠错电路模块根据校验向量找到某一比特出错位,使输入数据信号O及其反相信号OB的高k位中的某一信息位发生翻转。最终输出高k位信息位。Therefore, in the embodiment, the upper k-bit information bits of the input data signal O and its inverted signal OB are generated by the encoding module Encoder to generate a check bit. If it is a write operation to the memory, the write operation control signal write is at a high level, as an enable signal, controls the first transmission gate TG module, and stores the check digit output by the encoding module as the check digit accompanying the information bit. into the memory, a total of m bits; if it is a read operation, the read operation control signal read is high, and the check digit output by the encoding module Encoder is controlled by a high-effective read enable signal and an exclusive OR operation module, and Originally, the original input data signal O and the lower m bits of the inverted signal OB are XORed to generate a check bit vector for the error correction circuit module Locatingerror. The error correction circuit module finds a certain error bit according to the check vector, and flips a certain information bit in the upper k bits of the input data signal O and its inverted signal OB. Finally, the high k-bit information bits are output.

利用编码模块来进行译码操作,添加控制信号,对编码和译码操作进行时分复用。若存储器是数据写入操作,则使用第一传输门将编码模块输出的检验位与写操作控制信号生成伴随信息位的校验位进行输出,则此时编码模块与第一传输门以及写操作信号相当于编码电路的作用;若存储器是数据读取操作时,第二传输门模块和异或操作模块将编码模块输出的检验位与读操作控制信号运算生成检验位向量,并配合纠错电路模块完成纠错译码。此时复用了编码模块,使其同时使用在了编码和译码电路中,使得电路面积小,同时存储器读写时间快、纠错准确。The coding module is used to perform the decoding operation, and the control signal is added to time-division multiplex the coding and decoding operations. If the memory is a data write operation, use the first transmission gate to generate the check bit output by the encoding module and the write operation control signal with the check bit accompanying the information bit for output, then the encoding module and the first transmission gate and the write operation signal at this time Equivalent to the function of the encoding circuit; if the memory is used for data reading operations, the second transmission gate module and the XOR operation module will calculate the check bit output by the encoding module and the read operation control signal to generate a check bit vector, and cooperate with the error correction circuit module Complete error correction decoding. At this time, the encoding module is reused, so that it is used in the encoding and decoding circuits at the same time, so that the circuit area is small, and the read and write time of the memory is fast, and the error correction is accurate.

在以上的描述中阐述了很多具体细节以便于充分理解本发明。但是以上描述仅是本发明的较佳实施例而已,本发明能够以很多不同于在此描述的其它方式来实施,因此本发明不受上面公开的具体实施的限制。同时任何熟悉本领域技术人员在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。In the foregoing description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, the above descriptions are only preferred embodiments of the present invention, and the present invention can be implemented in many other ways different from those described here, so the present invention is not limited by the specific implementations disclosed above. At the same time, any person skilled in the art can use the methods and technical content disclosed above to make many possible changes and modifications to the technical solution of the present invention without departing from the scope of the technical solution of the present invention, or modify it into an equivalent implementation of equivalent changes example. All the content that does not deviate from the technical solution of the present invention, any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the present invention still belong to the protection scope of the technical solution of the present invention.

Claims (2)

1. a kind of error correction circuit of SRAM type memory, it is characterised in that including:
Coding module, for data-signal computing to be generated into check bit;
First transmission gate module, the check bit with information bit is generated according to the check bit and the computing of write operation control signal;
Second transmission gate module and xor operation module, according to the check bit and read operation control signal computing generation examine to Amount;
Error correction circuit module, searches error bit, and carry out error-correcting decoding according to inspection vector;
Wherein, if the memory is data write operation, the verification for being exported coding module using the first transmission gate module Position generates with write operation control signal and exported with the check bit of information bit;If memory is data read operation, the The check bit that two transmission gate modules and xor operation module export coding module is generated with read operation control signal computing and examined Vector, and coordinate error correction circuit module to complete error-correcting decoding;The coding module input connection data signal input and Its inversion signal input, the check bit of the output end output computing generation of the coding module;The first transmission gate module Two inputs connect the output end and write operation control signal end of the coding module, the first transmission gate mould respectively The check bit of the adjoint information bit of output end output of block;It is Hamming code coding rule inside the coding module;Described second passes Two inputs of defeated door module connect output end and the read operation control signal end of the coding module, described second respectively Output end, data signal input and its inversion signal input of transmission gate module connect the input of the xor operation module Vector is examined in end, the output end output of the xor operation module.
2. the error correction circuit of SRAM type memory according to claim 1, it is characterised in that the error correction circuit module Input connects the output end of the xor operation module, the output end connection data signal input of the error correction circuit module And its inversion signal input.
CN201310642317.0A 2013-12-03 2013-12-03 Error correction circuit of SRAM type memory Active CN103617811B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310642317.0A CN103617811B (en) 2013-12-03 2013-12-03 Error correction circuit of SRAM type memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310642317.0A CN103617811B (en) 2013-12-03 2013-12-03 Error correction circuit of SRAM type memory

Publications (2)

Publication Number Publication Date
CN103617811A CN103617811A (en) 2014-03-05
CN103617811B true CN103617811B (en) 2017-08-29

Family

ID=50168514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310642317.0A Active CN103617811B (en) 2013-12-03 2013-12-03 Error correction circuit of SRAM type memory

Country Status (1)

Country Link
CN (1) CN103617811B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306213A (en) * 2011-07-19 2012-01-04 西安电子科技大学 Anti-single particle irradiating method and anti-single particle irradiating system based on frame data processing
CN102651240A (en) * 2011-02-25 2012-08-29 阿尔特拉公司 Error Detection and Correction Circuitry
CN202856718U (en) * 2012-07-20 2013-04-03 天津工大瑞工光电技术有限公司 Multiple bits up set resistant RS code error detection and correction system based on FPGA

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080256419A1 (en) * 2007-04-13 2008-10-16 Microchip Technology Incorporated Configurable Split Storage of Error Detecting and Correcting Codes
CN102682826A (en) * 2011-03-10 2012-09-19 中国科学院微电子研究所 Coding and decoding storage device and method for multiplexing coder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651240A (en) * 2011-02-25 2012-08-29 阿尔特拉公司 Error Detection and Correction Circuitry
CN102306213A (en) * 2011-07-19 2012-01-04 西安电子科技大学 Anti-single particle irradiating method and anti-single particle irradiating system based on frame data processing
CN202856718U (en) * 2012-07-20 2013-04-03 天津工大瑞工光电技术有限公司 Multiple bits up set resistant RS code error detection and correction system based on FPGA

Also Published As

Publication number Publication date
CN103617811A (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US11349496B2 (en) Memory controller and method of data bus inversion using an error detection correction code
US11740960B2 (en) Detection and correction of data bit errors using error correction codes
CN106856103A (en) For the turbine product code with non-flash
US10498364B2 (en) Error correction circuits and memory controllers including the same
CN107659382A (en) Method and apparatus for coding information
Pontarelli et al. Low delay single symbol error correction codes based on reed solomon codes
US10741212B2 (en) Error correction code (ECC) encoders, ECC encoding methods capable of encoding for one clock cycle, and memory controllers including the ECC encoders
KR20160090054A (en) Flash memory system and operating method thereof
CN104409103A (en) Novel two-dimensional coding reinforcing method and circuit arrangement for aerospace memory
CN103413571B (en) Storer and utilize this storer to realize the method for error-detection error-correction
US8683304B2 (en) Error-correcting code and process for fast read-error correction
CN104733051A (en) Decoding method of parity check code, memory storage device and control circuit unit
CN105553485A (en) FPGA-based BCH encoding and decoding device and encoding and decoding method thereof
CN102761340B (en) Broadcast channel (BCH) parallel coding circuit
CN111124741B (en) Enhanced type checking and error correcting device facing memory characteristics
Song et al. SEC-BADAEC: An efficient ECC with no vacancy for strong memory protection
TW202329147A (en) Memory device, error correction code circuit and operation method thereof
Athira et al. FPGA implementation of an area efficient matrix code with encoder reuse method
CN103617811B (en) Error correction circuit of SRAM type memory
US20160364293A1 (en) Apparatuses and methods for encoding using error protection codes
KR20240082072A (en) Error correction code circuit, memory device including error correction code circuit, and operation method of error correction code
Moon et al. A Novel Prediction-Based Two-Tiered ECC for Mitigating SWD Errors in HBM
JP2023552994A (en) Programmable error correction code encoding and decoding logic
JP3743915B2 (en) Spotty byte error correction / detection method and apparatus
Yin et al. High Logic Density Cyclic Redundancy Check and Forward Error Correction Logic Sharing Encoding Circuit for JESD204C Controller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220829

Address after: Room 108, floor 1, building 4, No. 2 dacuodeng Hutong, Dongcheng District, Beijing 100010

Patentee after: Beijing Zhongke micro Investment Management Co.,Ltd.

Address before: 100029 Beijing city Chaoyang District Beitucheng West Road No. 3

Patentee before: Institute of Microelectronics of the Chinese Academy of Sciences