CN114426256A - A gas-phase hydrogen sulfide coupled hydrogen production system and method - Google Patents
A gas-phase hydrogen sulfide coupled hydrogen production system and method Download PDFInfo
- Publication number
- CN114426256A CN114426256A CN202210243288.XA CN202210243288A CN114426256A CN 114426256 A CN114426256 A CN 114426256A CN 202210243288 A CN202210243288 A CN 202210243288A CN 114426256 A CN114426256 A CN 114426256A
- Authority
- CN
- China
- Prior art keywords
- gas
- hydrogen
- communicated
- inlet
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910000037 hydrogen sulfide Inorganic materials 0.000 title claims abstract description 28
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 26
- 239000001257 hydrogen Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000000034 method Methods 0.000 title abstract description 16
- 238000010574 gas phase reaction Methods 0.000 claims abstract description 29
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 25
- 239000007789 gas Substances 0.000 claims abstract description 17
- 230000008878 coupling Effects 0.000 claims abstract description 11
- 238000010168 coupling process Methods 0.000 claims abstract description 11
- 238000005859 coupling reaction Methods 0.000 claims abstract description 11
- 239000002253 acid Substances 0.000 claims abstract description 10
- 238000010521 absorption reaction Methods 0.000 claims abstract description 6
- 238000000926 separation method Methods 0.000 claims abstract description 6
- 229910052740 iodine Inorganic materials 0.000 claims description 37
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 36
- 239000011630 iodine Substances 0.000 claims description 36
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 18
- 229910000043 hydrogen iodide Inorganic materials 0.000 claims description 17
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 239000011593 sulfur Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000003054 catalyst Substances 0.000 claims description 4
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- 238000005485 electric heating Methods 0.000 claims description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims 7
- 238000010438 heat treatment Methods 0.000 claims 3
- 238000001816 cooling Methods 0.000 claims 2
- 238000004891 communication Methods 0.000 claims 1
- 239000007792 gaseous phase Substances 0.000 claims 1
- -1 wherein Chemical compound 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- GOIGHUHRYZUEOM-UHFFFAOYSA-N [S].[I] Chemical compound [S].[I] GOIGHUHRYZUEOM-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/02—Preparation of sulfur; Purification
- C01B17/04—Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
- C01B17/0404—Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
- C01B17/046—Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明属于化工环保技术领域,涉及一种气相硫化氢耦合制氢系统及方法。The invention belongs to the technical field of chemical environmental protection, and relates to a gas-phase hydrogen sulfide coupling hydrogen production system and method.
背景技术Background technique
硫在煤炭、石油、天然气中伴生存在,在煤化工、石油裂解、天然气生产等过程中大多生成副产品硫化氢,硫化氢是剧毒气体,也是化工行业的重要污染源,最终需将硫化氢进行回收处理。硫化氢回收的方法有多种。Sulfur co-exists in coal, oil and natural gas. In the process of coal chemical industry, oil cracking, and natural gas production, most of the by-product hydrogen sulfide is generated. Hydrogen sulfide is a highly toxic gas and an important source of pollution in the chemical industry. Finally, hydrogen sulfide needs to be recovered. deal with. There are various methods for recovering hydrogen sulfide.
目前硫碘循环高温水解制氢是绿色制氢研究热点之一,反应式见式(1-3),采用制氢工艺需要在850℃以上高温,将硫酸热解为二氧化硫,水、二氧化硫和碘在常温下产生碘化氢,碘化氢在300℃以上温度分解为碘和氢气。该工艺实现的难点在于:At present, hydrogen production by high-temperature hydrolysis of sulfur-iodine cycle is one of the hot spots in green hydrogen production research. Hydrogen iodide is generated at room temperature, and hydrogen iodide is decomposed into iodine and hydrogen at temperatures above 300 °C. The difficulty in realizing this process is:
1)将硫酸热解所需要的850℃的高温,能耗较高,难以满足;1) The high temperature of 850°C required for the pyrolysis of sulfuric acid has high energy consumption and is difficult to meet;
2)硫酸是腐蚀性极强的物质,能够耐高温腐蚀的材料价格非常昂贵;2) Sulfuric acid is a very corrosive substance, and materials that can withstand high temperature corrosion are very expensive;
3)硫酸和氢碘酸属于共沸物,分离困难;3) Sulfuric acid and hydroiodic acid belong to azeotrope and are difficult to separate;
4)热解硫酸制氢的经济性较差。4) The economical efficiency of pyrolysis of sulfuric acid for hydrogen production is poor.
2H2SO4=2SO2+O2+2H2O2H 2 SO 4 =2SO 2 +O 2 +2H 2 O
SO2+2H2O+I2=H2SO4+2HISO 2 +2H 2 O+I 2 =H 2 SO 4 +2HI
2HI=H2+I2。2HI=H 2 +I 2 .
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服上述现有技术的缺点,提供了一种气相硫化氢耦合制氢系统及方法,该系统及方法具有能耗低;成本低、分离简单以及经济性好的特点。The purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a gas-phase hydrogen sulfide coupled hydrogen production system and method, the system and method have the characteristics of low energy consumption, low cost, simple separation and good economy.
为达到上述目的,本发明所述的气相硫化氢耦合制氢气的系统包括酸性气输入管道、气相反应塔、旋风分离器、一级加热器、二级加热器、分解塔、一级冷凝器及二级冷凝器;In order to achieve the above-mentioned purpose, the system of the gas phase hydrogen sulfide coupling hydrogen production system of the present invention comprises an acid gas input pipeline, a gas phase reaction tower, a cyclone separator, a primary heater, a secondary heater, a decomposition tower, a primary condenser and secondary condenser;
旋风分离器的顶部出口与一级加热器的吸热侧入口相连通,一级加热器的吸热侧出口与二级加热器的入口相连通,二级加热器的出口与分解塔的入口相连通,分解塔的底部出口与一级冷凝器的放热侧入口相连通,一级冷凝器的放热侧出口与二级冷凝器的入口相连通,二级冷凝器的出口与气相反应塔的入口相连通,酸性气输入管道与气相反应塔的入口相连通。The top outlet of the cyclone separator is connected with the heat-absorbing side inlet of the primary heater, the heat-absorbing side outlet of the primary heater is connected with the inlet of the secondary heater, and the outlet of the secondary heater is connected with the inlet of the decomposition tower The bottom outlet of the decomposition tower is communicated with the exothermic side inlet of the primary condenser, the exothermic side outlet of the primary condenser is communicated with the inlet of the secondary condenser, and the outlet of the secondary condenser is communicated with the outlet of the gas phase reaction column. The inlet is communicated, and the acid gas input pipeline is communicated with the inlet of the gas-phase reaction tower.
一级加热器的放热侧与一级冷凝器的吸热侧相连通。The heat release side of the primary heater communicates with the heat absorption side of the primary condenser.
气相反应塔采用列管式反应器。The gas phase reaction tower adopts a tubular reactor.
二级加热器采用高温蒸汽或电加热方式。The secondary heater adopts high temperature steam or electric heating.
二级冷凝器采用循环水进行冷却。The secondary condenser is cooled with circulating water.
二级冷凝器的出口经液碘泵与气相反应塔的入口相连通。The outlet of the secondary condenser is communicated with the inlet of the gas phase reaction tower through a liquid iodine pump.
本发明所述的气相硫化氢耦合制氢气的方法包括以下步骤:The method for producing hydrogen by coupling gas-phase hydrogen sulfide according to the present invention comprises the following steps:
硫化氢与碘蒸汽在气相反应塔内反应生成硫单质及碘化氢,其中,反应生成的碘化氢、硫单质及过量的碘蒸汽混合进入旋风分离器中进行分离,其中,分离出来的硫单质排出,分离出来的碘化氢和过量的碘蒸汽进入一级加热器中升温,再进入二级加热器中加热升温,最后进入到分解塔中,并在催化剂的作用下碘化氢发生分解,生成碘蒸汽及氢气,其中,生成的氢气从分解塔的顶部排出,生成的碘蒸汽经分解塔的底部排出进入到一级冷凝器中降温,再进入到二级冷凝器中降温,以成为液态碘,然后输送至气相反应塔中。Hydrogen sulfide and iodine vapor react in a gas-phase reaction tower to generate elemental sulfur and hydrogen iodide, wherein the hydrogen iodide, elemental sulfur and excess iodine vapor generated by the reaction are mixed into a cyclone for separation, wherein the separated sulfur The elemental substance is discharged, and the separated hydrogen iodide and excess iodine vapor enter the primary heater to heat up, then enter the secondary heater to heat up and heat up, and finally enter the decomposition tower, and the hydrogen iodide is decomposed under the action of the catalyst. , generate iodine vapor and hydrogen, wherein, the generated hydrogen is discharged from the top of the decomposition tower, and the generated iodine vapor is discharged from the bottom of the decomposition tower into the primary condenser to cool down, and then enters the secondary condenser to cool down to become The liquid iodine is then sent to the gas phase reaction tower.
气相反应塔内碘与硫化氢的摩尔量比值为3-5。The molar ratio of iodine to hydrogen sulfide in the gas-phase reaction tower is 3-5.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明所述的气相硫化氢耦合制氢系统及方法在具体操作时,采用气相反应塔和分解塔作为反应器,与硫碘循环制氢工艺相比,无硫酸与氢碘酸的分离工艺,无硫酸的分解工艺,设备简单,运行维护成本降低。本发明与常温下液态硫化氢与碘溶液反应工艺相比,设备较为简单。另外,本发明与硫碘循环高温水解制氢相比,无需硫酸热解所需要的850℃的高温,能耗降低。同时需要说明的是,本发明在整个过程中不会产生硫酸,也不会产生其他污染,制造和运行成本较低;同时本发明利用硫化氢耦合绿色制氢工艺,将剧毒废物再利用,变废为宝,具有较高的环保效益。The gas-phase hydrogen sulfide coupled hydrogen production system and method of the present invention adopts the gas-phase reaction tower and the decomposition tower as the reactor during the specific operation. The decomposition process without sulfuric acid, the equipment is simple, and the operation and maintenance cost is reduced. Compared with the reaction process of liquid hydrogen sulfide and iodine solution at normal temperature, the device of the invention is relatively simple. In addition, compared with the sulfur-iodine cycle high-temperature hydrolysis to produce hydrogen, the present invention does not require a high temperature of 850° C. required by sulfuric acid pyrolysis, and reduces energy consumption. At the same time, it should be noted that the present invention will not produce sulfuric acid or other pollution in the whole process, and the manufacturing and operating costs are low; Turning waste into treasure has high environmental protection benefits.
附图说明Description of drawings
图1为本发明的结构示意图。FIG. 1 is a schematic structural diagram of the present invention.
其中,1为气相反应塔、2为旋风分离器、3为一级加热器、4为二级加热器、5为分解塔、6为一级冷凝器、7为二级冷凝器、8为液碘泵。Wherein, 1 is a gas phase reaction tower, 2 is a cyclone separator, 3 is a primary heater, 4 is a secondary heater, 5 is a decomposition tower, 6 is a primary condenser, 7 is a secondary condenser, and 8 is a liquid Iodine pump.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only The embodiments are part of the present invention, not all of the embodiments, and are not intended to limit the scope of the present disclosure. Furthermore, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts disclosed in the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在附图中示出了根据本发明公开实施例的结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。The accompanying drawings show a schematic structural diagram of an embodiment according to the disclosure of the present invention. The figures are not to scale, some details have been exaggerated for clarity, and some details may have been omitted. The shapes of various regions and layers shown in the figures and their relative sizes and positional relationships are only exemplary, and in practice, there may be deviations due to manufacturing tolerances or technical limitations, and those skilled in the art should Regions/layers with different shapes, sizes, relative positions can be additionally designed as desired.
参考图1,本发明所述的气相硫化氢耦合制氢气的系统包括酸性气输入管道、气相反应塔1、旋风分离器2、一级加热器3、二级加热器4、分解塔5、一级冷凝器6、二级冷凝器7及液碘泵8;Referring to Fig. 1 , the system for coupling gas-phase hydrogen sulfide to hydrogen production according to the present invention comprises an acid gas input pipeline, a gas-phase reaction tower 1, a
旋风分离器2的顶部出口与一级加热器3的吸热侧入口相连通,一级加热器3的吸热侧出口与二级加热器4的入口相连通,二级加热器4的出口与分解塔5的入口相连通,分解塔5的底部出口与一级冷凝器6的放热侧入口相连通,一级冷凝器6的放热侧出口与二级冷凝器7的入口相连通,二级冷凝器7的出口经液碘泵8与气相反应塔1的入口相连通,一级加热器3的放热侧与一级冷凝器6的吸热侧相连通,酸性气输入管道与气相反应塔1的入口相连通。The top outlet of the
需要说明的是,本发明中,气相反应塔1用于酸性气中的H2S与I2蒸汽反应生成HI和S单质,反应温度控制在(120℃-180℃),气相反应塔1可以采用列管式反应器或其他类型的反应器,控制碘与硫化氢的摩尔量比值为3-5。It should be noted that, in the present invention, the gas phase reaction tower 1 is used for the reaction of H 2 S and I 2 steam in the acid gas to generate HI and S elemental substances, and the reaction temperature is controlled at (120°C-180°C), and the gas phase reaction tower 1 can Using a tubular reactor or other types of reactors, the molar ratio of iodine to hydrogen sulfide is controlled to be 3-5.
旋风分离器2用于将硫磺颗粒与其他气体分离,其中,碘化氢、硫磺小颗粒及过量的碘蒸汽从气相反应塔1混合输出,再进入旋风分离器2中,将硫磺颗粒与其他气体分离,硫磺在旋风分离器2的底部沉积后排出。The
一级加热器3用于将分解后的高温碘蒸汽(400℃-480℃)加热为碘化氢,同时对高温碘蒸汽降温,升热后的碘化氢温度约320℃-480℃,碘蒸汽温度降低至200℃-280℃,利用系统自身的热量换热,节约能耗。The first-
二级加热器4用于将一级加热器3输出的碘化氢再次加热至400℃-480℃,二级加热器4采用高温蒸汽或电加热等方式。The
分解塔5用于将高温碘化氢(400℃-480℃)在压力0.1MPa-2.7MPa和催化剂的条件下分解成氢气及碘蒸汽,其中,氢气从分解塔5的顶部排出,高温碘蒸汽从分解塔5的底部排出;The
一级冷凝器6用于将高温碘蒸汽(400℃-480℃)的热量传递给一级加热器3;The
二级冷凝器7用于将一级冷凝器6输出的碘蒸汽进一步降温至130℃-170℃,以成为液态碘,二级冷凝器7采用循环水或其他方式降温。The secondary condenser 7 is used to further cool the iodine vapor output from the
本发明的具体工作过程为:The concrete working process of the present invention is:
气相反应塔1内的温度在120℃到180℃之间,压力在0.1MPa-2.7MPa之间,硫化氢与碘蒸汽反应生成硫单质及碘化氢,其中,反应生成的碘化氢、硫单质及过量的碘蒸汽混合进入旋风分离器2中进行分离,其中,分离出来的硫单质排出,分离出来的120℃-180℃碘化氢和过量的碘蒸汽进入一级加热器3中升温至320℃-380℃,再进入二级加热器4中加热升温至400℃-480℃,最后进入到分解塔5中,并在催化剂的作用下碘化氢发生分解,生成碘蒸汽及氢气,其中,生成的氢气从分解塔5的顶部排出,生成的碘蒸汽经分解塔5的底部排出进入到一级冷凝器6中降温至200℃-280℃,再进入到二级冷凝器7中降温至130℃-170℃之间,以成为液态碘,然后经液碘泵8输送至气相反应塔1中,在气相反应塔1内扩容后成为碘蒸汽与酸性气中的硫化氢反应,完成一个循环过程。The temperature in the gas phase reaction tower 1 is between 120°C and 180°C, and the pressure is between 0.1MPa and 2.7MPa. The hydrogen sulfide reacts with the iodine vapor to generate elemental sulfur and hydrogen iodide. The elemental substance and the excess iodine vapor are mixed into the
其中,本发明涉及的化学反应为:Wherein, the chemical reaction involved in the present invention is:
H2S+I2=2HI+S↓ (1)H 2 S+I 2 =2HI+S↓ (1)
2HI=H2+I2 (2)2HI=H 2 +I 2 (2)
I2+I-=I3 - (3)。I 2 +I − =I 3 − (3).
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210243288.XA CN114426256B (en) | 2022-03-11 | 2022-03-11 | Gas phase hydrogen sulfide coupling hydrogen production system and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210243288.XA CN114426256B (en) | 2022-03-11 | 2022-03-11 | Gas phase hydrogen sulfide coupling hydrogen production system and method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114426256A true CN114426256A (en) | 2022-05-03 |
| CN114426256B CN114426256B (en) | 2023-06-30 |
Family
ID=81312358
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210243288.XA Active CN114426256B (en) | 2022-03-11 | 2022-03-11 | Gas phase hydrogen sulfide coupling hydrogen production system and method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114426256B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS512697A (en) * | 1974-06-27 | 1976-01-10 | Mitsubishi Heavy Ind Ltd | MIZUNOTADANBUNKAINYORU SUISONO SEIZOHOHO |
| US4066739A (en) * | 1976-03-30 | 1978-01-03 | Chen Wu Chi | Process for recovering hydrogen and elemental sulfur from hydrogen sulfide and/or mercaptans-containing gases |
| US4094962A (en) * | 1977-04-01 | 1978-06-13 | Societa' Italiana Resine S.I.R. S.P.A. | Process for producing hydrogen and sulfur from hydrogen sulfide |
| CN101028920A (en) * | 2006-02-28 | 2007-09-05 | 中国石油大学(北京) | Method for recovering sulfur and making hydrogen from hydrogen sulfide |
| CN103562126A (en) * | 2011-02-18 | 2014-02-05 | 西门子能量股份有限公司 | H2s conversion to sulfur using a regenerated iodine solution |
| CN113401920A (en) * | 2021-06-25 | 2021-09-17 | 国能经济技术研究院有限责任公司 | CO based on iodine-sulfur semi-open cycle hydrogen production2Zero-emission ammonia synthesis system, method and application |
-
2022
- 2022-03-11 CN CN202210243288.XA patent/CN114426256B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS512697A (en) * | 1974-06-27 | 1976-01-10 | Mitsubishi Heavy Ind Ltd | MIZUNOTADANBUNKAINYORU SUISONO SEIZOHOHO |
| US4066739A (en) * | 1976-03-30 | 1978-01-03 | Chen Wu Chi | Process for recovering hydrogen and elemental sulfur from hydrogen sulfide and/or mercaptans-containing gases |
| US4094962A (en) * | 1977-04-01 | 1978-06-13 | Societa' Italiana Resine S.I.R. S.P.A. | Process for producing hydrogen and sulfur from hydrogen sulfide |
| CN101028920A (en) * | 2006-02-28 | 2007-09-05 | 中国石油大学(北京) | Method for recovering sulfur and making hydrogen from hydrogen sulfide |
| CN103562126A (en) * | 2011-02-18 | 2014-02-05 | 西门子能量股份有限公司 | H2s conversion to sulfur using a regenerated iodine solution |
| CN113401920A (en) * | 2021-06-25 | 2021-09-17 | 国能经济技术研究院有限责任公司 | CO based on iodine-sulfur semi-open cycle hydrogen production2Zero-emission ammonia synthesis system, method and application |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114426256B (en) | 2023-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112811983B (en) | A system and method for producing methanol using boiler sulfur-containing flue gas | |
| CN105731405B (en) | One kind has the recoverable phosphorous acid production by BEP device of Low Temperature Thermal | |
| WO2023202139A1 (en) | System and method for hydrogen and power cogeneration of coal-fired boiler | |
| CN109987587B (en) | Sulfuric acid preparation equipment and process | |
| CN110575792A (en) | A kind of heat exchange type sulfuric acid catalytic decomposition reactor and catalytic method | |
| CN116768157A (en) | Natural gas reforming hydrogen production system and method | |
| CN218210930U (en) | Acid-absorbing waste heat recovery device of acid making system | |
| CN109650331A (en) | Hydrogen production process and hydrogen generating system based on silicon powder and silicon material | |
| CN114426256B (en) | Gas phase hydrogen sulfide coupling hydrogen production system and method | |
| CN101565172A (en) | Method for recovering sulfur from byproduct of acid gas generated in production of rubber chemicals | |
| CN216785728U (en) | System for recycling hydrogen sulfide and coupling green hydrogen production | |
| CN112794340B (en) | System and method for preparing ammonia by using boiler sulfur-containing flue gas | |
| CN206208041U (en) | It is a kind of for pyrite-based sulfuric acid production system and the heat reclamation device of non-ferrous metal metallurgy industry sulfate system | |
| CN211078472U (en) | Device for improving sulfur recovery efficiency | |
| CN212687569U (en) | Equipment for producing high-concentration sulfuric acid or fuming sulfuric acid by dry-wet combination technology | |
| CN216191110U (en) | A system for producing ammonia gas from boiler sulfur-containing flue gas | |
| CN104370775B (en) | Device and technique for recovering melamine exhaust by using urea unit | |
| CN111167382B (en) | Gas heat exchange type reactor and sulfuric acid catalytic decomposition method | |
| CN203359988U (en) | High-efficiency sulfur recovery device for exhaust gas containing hydrogen sulfide | |
| CN112851463A (en) | System and method for preparing methane by using sulfur-containing flue gas of boiler | |
| CN207748852U (en) | A kind of system for preparing sulfuric acid and the waste water treatment system being made from it | |
| CN102745653B (en) | Technology for producing sulphuric acid purification feed gas by high concentration waste acid | |
| CN223412506U (en) | Hydrogen chloride synthetic furnace waste heat utilization system | |
| CN205575648U (en) | Thermal phosphoric acid apparatus for producing with low temperature heat recovery | |
| US12303832B2 (en) | Method for recycling electronic-grade and industrial-grade sulfuric acid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |