CN116287521A - Hydrogen-rich petrochemical tail gas coupling furnace top gas recovery method and shaft furnace loop process system - Google Patents
Hydrogen-rich petrochemical tail gas coupling furnace top gas recovery method and shaft furnace loop process system Download PDFInfo
- Publication number
- CN116287521A CN116287521A CN202310394185.8A CN202310394185A CN116287521A CN 116287521 A CN116287521 A CN 116287521A CN 202310394185 A CN202310394185 A CN 202310394185A CN 116287521 A CN116287521 A CN 116287521A
- Authority
- CN
- China
- Prior art keywords
- gas
- temperature
- rich
- hydrogen
- petrochemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007789 gas Substances 0.000 title claims abstract description 382
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 69
- 239000001257 hydrogen Substances 0.000 title claims abstract description 69
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 62
- 230000008569 process Effects 0.000 title abstract description 27
- 238000010168 coupling process Methods 0.000 title description 8
- 238000005859 coupling reaction Methods 0.000 title description 8
- 230000008878 coupling Effects 0.000 title description 7
- 238000011084 recovery Methods 0.000 title description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000004064 recycling Methods 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 15
- 230000009467 reduction Effects 0.000 claims abstract description 13
- 238000000746 purification Methods 0.000 claims abstract description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 78
- 239000000428 dust Substances 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 44
- 238000005262 decarbonization Methods 0.000 claims description 40
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 39
- 239000001569 carbon dioxide Substances 0.000 claims description 19
- 239000002737 fuel gas Substances 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 11
- 238000005261 decarburization Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 6
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 3
- 230000001502 supplementing effect Effects 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims 2
- 238000000926 separation method Methods 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 9
- 239000002699 waste material Substances 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 6
- 238000003723 Smelting Methods 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 5
- 238000002407 reforming Methods 0.000 abstract description 5
- 229910000831 Steel Inorganic materials 0.000 abstract description 4
- 239000010959 steel Substances 0.000 abstract description 4
- 239000002912 waste gas Substances 0.000 abstract description 4
- 150000002431 hydrogen Chemical class 0.000 abstract description 3
- 239000002918 waste heat Substances 0.000 abstract description 3
- 239000003034 coal gas Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- -1 CO 2 Chemical class 0.000 description 2
- LFZYLAXEYRJERI-UHFFFAOYSA-N [Li].[Zr] Chemical compound [Li].[Zr] LFZYLAXEYRJERI-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical class [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000002894 chemical waste Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 229910052912 lithium silicate Inorganic materials 0.000 description 2
- 235000012245 magnesium oxide Nutrition 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000010310 metallurgical process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- ZFXVRMSLJDYJCH-UHFFFAOYSA-N calcium magnesium Chemical class [Mg].[Ca] ZFXVRMSLJDYJCH-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- YLUIKWVQCKSMCF-UHFFFAOYSA-N calcium;magnesium;oxygen(2-) Chemical class [O-2].[O-2].[Mg+2].[Ca+2] YLUIKWVQCKSMCF-UHFFFAOYSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/02—Making spongy iron or liquid steel, by direct processes in shaft furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/10—Arrangements for using waste heat
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
本发明属于冶金工业技术领域,具体公开了一种富氢石化尾气耦合炉顶煤气回用方法与竖炉回路流程系统。所述方法包括如下步骤:对竖炉上部排出的热态煤气进行除尘净化处理得到净煤气;从净煤气中分离出含有H2和CO的回路循环气与高浓度CO2混合气;将回路循环气与富氢石化尾气掺混,并对富氢石化尾气进行预热,使二者形成混合煤气;将混合煤气加热至预设温度范围后,通入竖炉还原生产海绵铁。本发明方法采用石化尾气作为竖炉工艺系统的补充原料气,将含氢、碳等能介的石化尾气与钢铁冶炼工艺融合,实现废气能源的“变废为宝”,耦合顶煤气高温脱除技术,实现回路煤气余热利用,无需煤气重整或制备系统,简化煤气处理系统配置、占地及投资成本。
The invention belongs to the technical field of metallurgical industry, and specifically discloses a hydrogen-rich petrochemical tail gas coupled furnace top gas recycling method and a shaft furnace loop process system. The method comprises the following steps: performing dedusting and purification treatment on the hot gas discharged from the upper part of the shaft furnace to obtain clean gas; separating loop circulating gas containing H2 and CO and high-concentration CO2 mixed gas from the clean gas; The gas is mixed with hydrogen-rich petrochemical tail gas, and the hydrogen-rich petrochemical tail gas is preheated to form a mixed gas; after the mixed gas is heated to a preset temperature range, it is passed into a shaft furnace for reduction to produce sponge iron. The method of the present invention adopts petrochemical tail gas as the supplementary raw material gas of the shaft furnace process system, integrates the petrochemical tail gas containing hydrogen, carbon and other energy media with the iron and steel smelting process, realizes the "turning waste into treasure" of waste gas energy, and couples the high-temperature removal of top gas Technology, to realize the utilization of waste heat of loop gas, without gas reforming or preparation system, and simplify the configuration, land occupation and investment cost of the gas treatment system.
Description
技术领域technical field
本发明涉及冶金工业领域,特别是涉及一种富氢石化尾气耦合炉顶煤气回用方法与竖炉回路流程系统。The invention relates to the field of metallurgical industry, in particular to a hydrogen-rich petrochemical tail gas coupling furnace top gas recycling method and a shaft furnace loop process system.
背景技术Background technique
与传统高炉炼铁工艺相比,转变能源结构,摒弃高碳含量的焦煤资源,采用更加少碳多氢的化石能介作为还原剂,是气基竖炉直还工艺主要的技术特点,也是实现钢铁生产短流程应用,有效降低碳排放,实现绿色化、高效化的重要方向。Compared with the traditional blast furnace ironmaking process, changing the energy structure, abandoning coking coal resources with high carbon content, and using fossil fuels with less carbon and more hydrogen as the reducing agent are the main technical characteristics of the gas-based shaft furnace direct return process, and it is also the realization of The application of short-process iron and steel production can effectively reduce carbon emissions and realize an important direction of greening and high efficiency.
目前世界上在运行和生产的气基竖炉装置和工艺技术路线,主要是采用天然气外部重整或炉内自重整的方法来制取H2和CO作为有效还原气来供竖炉生产使用,在气源的供给及制备流程上较为复杂。另外,竖炉顶煤气产生的碳氧化物,如CO2,一般都要采用预先洗涤降温至常温条件下,再由常规的变压吸附装置或湿法脱碳装置处理并分离CO2,顶煤气显热浪费了或只能部分利用,从而实现循环煤气提质并回用。At present, the gas-based shaft furnace devices and process technology routes in operation and production in the world mainly use the method of external reforming of natural gas or self-reforming in the furnace to produce H2 and CO as effective reducing gas for shaft furnace production. , the gas source supply and preparation process are more complicated. In addition, the carbon oxides, such as CO 2 , produced by shaft furnace top gas are generally pre-washed and cooled to room temperature, and then treated by conventional pressure swing adsorption devices or wet decarbonization devices to separate CO 2 . Sensible heat is wasted or can only be partially utilized, so that the circulating gas can be upgraded and reused.
石化尾气是石油、化工领域生产过程中产生的废气,为了生产的安全,石油炼化工厂简单的做法是直接放空点燃处理,这不仅造成了富含氢、碳元素煤气能源空烧的浪费,也会对环境造成一定程度污染,没有实现废弃能源的有效利用。Petrochemical tail gas is the waste gas produced in the production process of petroleum and chemical industry. For the safety of production, the simple method of petroleum refining and chemical plants is to directly vent and ignite the gas, which not only causes waste of gas rich in hydrogen and carbon elements, but also It will cause a certain degree of pollution to the environment, and the effective utilization of waste energy has not been realized.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种富氢石化尾气耦合炉顶煤气回用方法与竖炉回路流程系统,用于解决现有技术中富氢石化尾气和炉顶煤气没有得到有效利用等问题。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a hydrogen-rich petrochemical tail gas coupling furnace top gas recycling method and a shaft furnace loop process system for solving the problem of hydrogen-rich petrochemical tail gas and furnace top gas in the prior art. Issues such as not being effectively utilized.
为实现上述目的及其他相关目的,本发明提供一种富氢石化尾气耦合炉顶煤气回用方法包括如下步骤:In order to achieve the above purpose and other related purposes, the present invention provides a hydrogen-rich petrochemical tail gas coupled furnace top gas recycling method comprising the following steps:
对竖炉上部排出的热态煤气进行除尘净化处理,得到净煤气;从净煤气中分离出含有H2和CO的回路循环气与高浓度CO2混合气;将所述回路循环气与富氢石化尾气掺混,并对富氢石化尾气进行预热,使二者形成混合煤气;将混合煤气加热至预设温度范围后,通入竖炉还原生产海绵铁。Dedust and purify the hot coal gas discharged from the upper part of the shaft furnace to obtain clean coal gas; separate the loop circulating gas containing H2 and CO and the high-concentration CO2 mixed gas from the clean coal gas; combine the loop circulating gas with hydrogen-rich The petrochemical tail gas is blended, and the hydrogen-rich petrochemical tail gas is preheated to form a mixed gas; after the mixed gas is heated to a preset temperature range, it is passed into a shaft furnace for reduction to produce sponge iron.
进一步,将竖炉上部排出的热态煤气送入煤气除尘设备进行除尘净化处理。Further, the hot gas discharged from the upper part of the shaft furnace is sent to the gas dust removal equipment for dust removal and purification treatment.
进一步,所述煤气除尘设备选自热旋风除尘装置和/或高温干法布袋装置;优选地,所述煤气除尘设备包括前后依次设置的热旋风除尘装置和高温干法布袋装置。Further, the gas dedusting equipment is selected from hot cyclone dedusting devices and/or high temperature dry bagging devices; preferably, the gas dedusting equipment includes hot cyclone dedusting devices and high temperature dry bagging devices arranged in sequence.
进一步,经过除尘净化处理后的净煤气温度为300℃~550℃,净煤气的含尘量<8mg/Nm3。Furthermore, the temperature of the clean gas after dust removal and purification treatment is 300°C-550°C, and the dust content of the clean gas is <8mg/Nm 3 .
进一步,将净煤气送入高温煤气脱碳设备中,分离出含有H2和CO的回路循环气与高浓度CO2混合气。Further, the clean gas is sent to the high-temperature gas decarbonization equipment, and the loop cycle gas containing H2 and CO and the high-concentration CO2 mixed gas are separated.
进一步,所述高温煤气脱碳设备为二氧化碳脱除装置,使用时,所述二氧化碳脱除装置处于高温运行工况,这样无需对高温煤气脱碳设备入口的净煤气预先进行降温和冷却。Further, the high-temperature gas decarbonization equipment is a carbon dioxide removal device. When in use, the carbon dioxide removal device is in a high-temperature operating condition, so that there is no need to pre-cool and cool the clean gas at the entrance of the high-temperature gas decarbonization equipment.
进一步,所述高温煤气脱碳设备入口煤气的温度≤600℃。Further, the temperature of the inlet gas of the high-temperature gas decarbonization equipment is ≤600°C.
进一步,由处于高温运行工况的二氧化碳脱除装置分离出的含有H2和CO的回路循环气与高浓度CO2混合气,两股气流的煤气温度为300℃~600℃。Further, the loop gas containing H2 and CO and the high-concentration CO2 mixture separated from the carbon dioxide removal device under high-temperature operating conditions, the gas temperature of the two streams is 300 ° C to 600 ° C.
进一步,所述高浓度CO2混合气中非二氧化碳气体的体积百分比小于10%。Further, the volume percentage of non-carbon dioxide gas in the high-concentration CO 2 mixed gas is less than 10%.
进一步,将所述高浓度CO2混合气作为补充燃料气,用于加热所述混合煤气。Further, the high-concentration CO 2 mixed gas is used as supplementary fuel gas for heating the mixed gas.
进一步,将80%及以上的回路循环气与富氢石化尾气掺混形成混合煤气,其余回路循环气作为燃料气,用于加热所述混合煤气;优选地,将85%~90%的回路循环气与富氢石化尾气掺混形成混合煤气,其余回路循环气作为燃料气,用于加热所述混合煤气。Further, 80% or more of the loop circulating gas is mixed with hydrogen-rich petrochemical tail gas to form a mixed gas, and the rest of the loop circulating gas is used as fuel gas to heat the mixed gas; preferably, 85% to 90% of the loop circulation Gas is mixed with hydrogen-rich petrochemical tail gas to form mixed gas, and the rest of the loop gas is used as fuel gas to heat the mixed gas.
进一步,将所述回路循环气与富氢石化尾气掺混后形成的混合煤气温度为300~600℃。Further, the temperature of the mixed coal gas formed after mixing the loop recycle gas and the hydrogen-rich petrochemical tail gas is 300-600°C.
进一步,所述富氢石化尾气的温度为20~40℃,包括以下体积百分比含量的化学组分:H2 75~95%,CH4<6.0%,C2+烷烃<5.0%,CO2<3.0%,N2<4.0%。Further, the temperature of the hydrogen-enriched petrochemical tail gas is 20-40°C, and includes the following chemical components in volume percentage: H 2 75-95%, CH 4 <6.0%, C2+ alkanes <5.0%, CO 2 <3.0% , N 2 <4.0%.
进一步,掺混时,所述富氢石化尾气的补充量为含有H2和CO的回路循环气体积流量的30~60%。Further, when blending, the supplementary amount of the hydrogen-rich petrochemical tail gas is 30-60% of the volume flow rate of the loop cycle gas containing H 2 and CO.
进一步,通过加热炉对所述混合煤气进行加热,所述加热炉优选为管式加热炉。Further, the mixed gas is heated by a heating furnace, and the heating furnace is preferably a tubular heating furnace.
进一步,所述混合煤气加热升温至820~1050℃后,通入竖炉还原生产海绵铁。Furthermore, after the mixed gas is heated to 820-1050° C., it is passed into a shaft furnace for reduction to produce sponge iron.
本发明还提供了一种竖炉回路流程系统,包括通过气管依次相连的煤气除尘设备、高温煤气脱碳设备、气体混合器、加热炉,所述煤气除尘设备的进气端通过气管与竖炉上部相连,所述高温煤气脱碳设备设有回路循环气出口和高浓度CO2混合气出口,所述回路循环气出口通过气管分别与所述气体混合器和所述加热炉相连,所述高温煤气脱碳设备还通过气管与所述加热炉相连,所述气体混合器设有富氢石化尾气进口,所述加热炉的出气端通过气管与竖炉中部相连。The present invention also provides a shaft furnace loop process system, which includes gas dedusting equipment, high-temperature gas decarburization equipment, gas mixer, and heating furnace connected in sequence through gas pipes. The upper part is connected, and the high-temperature gas decarbonization equipment is provided with a loop circulating gas outlet and a high-concentration CO 2 mixed gas outlet, and the loop circulating gas outlet is connected to the gas mixer and the heating furnace respectively through gas pipes, and the high-temperature The coal gas decarbonization equipment is also connected to the heating furnace through a gas pipe, the gas mixer is provided with a hydrogen-rich petrochemical tail gas inlet, and the gas outlet of the heating furnace is connected to the middle of the shaft furnace through a gas pipe.
进一步,所述煤气除尘设备选自热旋风除尘装置和/或高温干法布袋装置;优选地,所述煤气除尘设备包括前后依次设置的热旋风除尘装置和高温干法布袋装置。Further, the gas dedusting equipment is selected from hot cyclone dedusting devices and/or high temperature dry bagging devices; preferably, the gas dedusting equipment includes hot cyclone dedusting devices and high temperature dry bagging devices arranged in sequence.
进一步,所述高温煤气脱碳设备为二氧化碳脱除装置。Further, the high-temperature gas decarbonization equipment is a carbon dioxide removal device.
进一步,所述加热炉为管式加热炉。Further, the heating furnace is a tubular heating furnace.
如上所述,本发明的富氢石化尾气耦合炉顶煤气回用方法与竖炉回路流程系统,具有以下有益效果:As mentioned above, the hydrogen-rich petrochemical tail gas coupling furnace top gas recovery method and the shaft furnace loop process system of the present invention have the following beneficial effects:
1、本发明提供的方法采用石化领域产生的冶炼尾气作为竖炉工艺系统的补充原料气,将含氢、碳等能介的富氢石化尾气与钢铁冶炼工艺进行融合与应用,实现了废气资源的“变废为宝”,不仅降低了将其进行简单燃烧排放处理造成的环境污染,也丰富了废弃能源有效利用的途径。1. The method provided by the present invention uses the smelting tail gas produced in the petrochemical field as the supplementary raw material gas of the shaft furnace process system, and integrates and applies the hydrogen-rich petrochemical tail gas containing hydrogen, carbon and other energy media with the iron and steel smelting process, realizing waste gas resources The "turning waste into treasure" not only reduces the environmental pollution caused by simple combustion and emission treatment, but also enriches the ways of effective utilization of waste energy.
2、本发明提供的方法采用富氢石化尾气为补充气源并耦合炉顶煤气不降温高温脱除技术,来实现竖炉全流程系统中炉顶煤气余热的有效利用,同时将化工领域常规简单燃烧处理的尾气“变废为宝”,实现化工废气与冶金工艺的有效结合,简化了工艺气制备系统,缩短了流程布置、占地和投资成本,流程的运行能耗和碳排放更具比较优势。2. The method provided by the present invention adopts hydrogen-rich petrochemical tail gas as a supplementary gas source and couples the high-temperature removal technology of the top gas without cooling to realize the effective utilization of the residual heat of the top gas in the whole process system of the shaft furnace. Combustion treatment of tail gas "turns waste into treasure", realizes the effective combination of chemical waste gas and metallurgical process, simplifies the process gas preparation system, shortens the process layout, land occupation and investment cost, and the process's operating energy consumption and carbon emissions are more comparable Advantage.
3、本发明提供的竖炉回路流程系统,配合富氢石化尾气耦合竖炉顶煤气不降温高温脱除技术,实现了竖炉回路煤气余热的有效利用,无需补充原料气重整或制备系统,简化了煤气处理系统的配置、占地和投资成本。3. The shaft furnace circuit process system provided by the present invention, combined with the hydrogen-rich petrochemical tail gas coupled with the high-temperature removal technology of the shaft furnace top gas without cooling down, realizes the effective utilization of the residual heat of the shaft furnace circuit gas without supplementing the raw material gas reforming or preparation system, Simplifies the configuration, land occupation and investment cost of the gas treatment system.
附图说明Description of drawings
图1显示为本发明实施例中富氢石化尾气耦合炉顶煤气回用方法的流程示意图,以及竖炉回路流程系统的布置示意图。Fig. 1 shows a schematic flow diagram of a hydrogen-rich petrochemical tail gas coupling furnace top gas recovery method in an embodiment of the present invention, and a schematic layout diagram of a shaft furnace loop process system.
附图标记说明:Explanation of reference signs:
竖炉1、热旋风除尘装置2、高温干法布袋装置3、高温煤气脱碳设备4、气体混合器5、加热炉6、热态煤气P0、净煤气P1、回路循环气P2、高浓度CO2混合气P3、富氢石化尾气P4、海绵铁F。Shaft
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated. The structures, proportions, sizes, etc. shown in the drawings attached to this specification are only used to match the content disclosed in the specification for the understanding and reading of those who are familiar with this technology, and are not used to limit the conditions for the implementation of the present invention , so it has no technical substantive meaning, and any modification of structure, change of proportional relationship or adjustment of size shall still fall within the scope of the disclosure of the present invention without affecting the functions and objectives of the present invention. The technical content must be within the scope covered. At the same time, terms such as "upper", "lower", "left", "right", "middle" and "one" quoted in this specification are only for the convenience of description and are not used to limit this specification. The practicable scope of the invention and the change or adjustment of its relative relationship shall also be regarded as the practicable scope of the present invention without any substantial change in the technical content.
结合图1所示,本申请一实施方式提供一种富氢石化尾气耦合炉顶煤气回用方法,包括如下步骤:As shown in Figure 1, an embodiment of the present application provides a hydrogen-rich petrochemical tail gas coupled furnace top gas recycling method, including the following steps:
对竖炉1上部排出的热态煤气P0进行除尘净化处理,得到净煤气P1;从净煤气P1中分离出含有H2和CO的回路循环气P2与高浓度CO2混合气;将所述回路循环气P2与富氢石化尾气P4掺混,并对富氢石化尾气P4进行预热,使二者形成混合煤气;将混合煤气加热至预设温度范围后,通入竖炉1还原生产海绵铁F。Perform dedusting and purification treatment on the hot gas P0 discharged from the upper part of the
在一些实施例中,将竖炉1上部排出的热态煤气P0送入煤气除尘设备进行除尘净化处理。其中,所述煤气除尘设备选自热旋风除尘装置2和/或高温干法布袋装置3;优选地,所述煤气除尘设备包括前后依次设置的热旋风除尘装置2和高温干法布袋装置3。In some embodiments, the hot gas P0 discharged from the upper part of the
在一些实施例中,经过除尘净化处理后的净煤气P1温度为300℃~550℃,净煤气P1的含尘量<8mg/Nm3。In some embodiments, the temperature of the clean coal gas P1 after dust removal and purification treatment is 300°C-550°C, and the dust content of the clean coal gas P1 is <8 mg/Nm 3 .
在一些实施例中,将净煤气P1送入高温煤气脱碳设备4中,分离出含有H2和CO的回路循环气P2与高浓度CO2混合气。其中,所述高温煤气脱碳设备4为二氧化碳脱除装置,使用时,所述二氧化碳脱除装置处于高温运行工况,这样无需对高温煤气脱碳设备4入口的净煤气P1预先进行降温和冷却。In some embodiments, the clean gas P1 is sent to the high-temperature gas decarbonization device 4 to separate the loop gas P2 containing H 2 and CO and the mixed gas with high concentration of CO 2 . Wherein, the high-temperature gas decarbonization equipment 4 is a carbon dioxide removal device. When in use, the carbon dioxide removal device is in a high-temperature operating condition, so that there is no need to pre-cool and cool the clean gas P1 at the entrance of the high-temperature gas decarbonization device 4 .
进一步地,在一些实施例中,所述高温煤气脱碳设备4入口煤气的温度≤600℃;由处于高温运行工况的二氧化碳脱除装置分离出的含有H2和CO的回路循环气P2与高浓度CO2混合气,两股气流的煤气温度为300℃~600℃。其中,所述高浓度CO2混合气中非二氧化碳气体的体积百分比小于10%。Further, in some embodiments, the temperature of the inlet gas of the high-temperature gas decarbonization equipment 4 is ≤600°C; the loop cycle gas P2 containing H2 and CO separated from the carbon dioxide removal device in high-temperature operating conditions is separated from the High-concentration CO 2 mixed gas, the gas temperature of the two streams is 300°C to 600°C. Wherein, the volume percentage of non-carbon dioxide gas in the high-concentration CO 2 mixed gas is less than 10%.
在一些实施例中,可以将所述高浓度CO2混合气作为补充燃料气,用于加热所述混合煤气。In some embodiments, the high-concentration CO 2 mixed gas can be used as a supplementary fuel gas for heating the mixed gas.
本申请实施例中的二氧化碳脱除装置可以采用通过CO2吸附剂来吸附混合气体中的二氧化碳,来实现二氧化碳脱除的设备。其中,CO2吸附剂优选为细粒状高温固体吸附剂,高温固体吸附剂能够在较高的温度下(600℃)对CO2进行吸附,具体可以选自镁质氧化物、钙质氧化物、镁-钙质复合物、锂/锆硅酸盐及其复合物/改性物中的至少一种,例如氧化镁、氧化钙、氧化镁-氧化钙复合物、锆酸锂Li2ZrO3、硅酸锂Li4SiO4、锆酸锂-硅酸锂复合物等,但不局限于此;粒级分布范围一般控制在0.15mm~1.0mm。对于二氧化碳脱除装置的具体结构设置和其他技术参数,本申请实施例不做特别限制,可采用本领域常见或现有的设备。The carbon dioxide removal device in the embodiment of the present application may use a CO 2 adsorbent to absorb carbon dioxide in the mixed gas to achieve carbon dioxide removal. Among them, the CO2 adsorbent is preferably a fine-grained high-temperature solid adsorbent, which can adsorb CO2 at a relatively high temperature (600 ° C), and can be specifically selected from magnesium oxides, calcium oxides, At least one of magnesium-calcium composites, lithium/zirconium silicates and composites/modifications thereof, such as magnesium oxide, calcium oxide, magnesium oxide-calcium oxide composites, lithium zirconate Li 2 ZrO 3 , Lithium silicate Li 4 SiO 4 , lithium zirconate-lithium silicate composite, etc., but not limited thereto; the particle size distribution range is generally controlled within 0.15 mm to 1.0 mm. The specific structural configuration and other technical parameters of the carbon dioxide removal device are not particularly limited in the embodiment of the present application, and common or existing equipment in the field can be used.
在一些实施例中,将80%及以上的回路循环气P2与富氢石化尾气P4掺混形成混合煤气,其余回路循环气P2作为燃料气,用于加热所述混合煤气;优选地,将85%~90%的回路循环气P2与富氢石化尾气P4掺混形成混合煤气,其余回路循环气P2作为燃料气,用于加热所述混合煤气。In some embodiments, 80% or more of the loop circulating gas P2 is blended with the hydrogen-rich petrochemical tail gas P4 to form a mixed gas, and the rest of the loop circulating gas P2 is used as fuel gas for heating the mixed gas; preferably, 85 %-90% of the loop circulating gas P2 is blended with the hydrogen-rich petrochemical tail gas P4 to form a mixed gas, and the rest of the loop circulating gas P2 is used as fuel gas for heating the mixed gas.
进一步地,在一些实施例中,将所述回路循环气P2与富氢石化尾气P4掺混后形成的混合煤气温度为300~600℃。Further, in some embodiments, the temperature of the mixed gas formed after blending the loop recycle gas P2 and the hydrogen-rich petrochemical tail gas P4 is 300-600°C.
在一些实施例中,所述富氢石化尾气P4的温度为20~40℃,包括以下体积百分比含量的化学组分:H2 75~95%,CH4<6.0%,C2+烷烃<5.0%,CO2<3.0%,N2<4.0%。In some embodiments, the temperature of the hydrogen-enriched petrochemical tail gas P4 is 20-40°C, and includes the following chemical components in volume percentage: H 2 75-95%, CH 4 <6.0%, C2+ alkanes <5.0%, CO 2 <3.0%, N 2 <4.0%.
在一些实施例中,掺混时,所述富氢石化尾气P4的补充量为含有H2和CO的回路循环气P2体积流量的30~60%。In some embodiments, when blending, the supplementary amount of the hydrogen-rich petrochemical tail gas P4 is 30-60% of the volume flow rate of the loop cycle gas P2 containing H 2 and CO.
在一些实施例中,通过加热炉6对所述混合煤气进行加热,所述加热炉6优选为管式加热炉。In some embodiments, the mixed gas is heated by a
在一些实施例中,所述混合煤气加热升温至820~1050℃后,通入竖炉1还原生产海绵铁F。In some embodiments, the mixed gas is heated to 820-1050° C., and then passed into the
上述实施例提供的方法采用石化领域产生的冶炼尾气作为竖炉工艺系统的补充原料气,将含氢、碳等能介的富氢石化尾气与钢铁冶炼工艺进行融合与应用,实现了废气资源的“变废为宝”,不仅降低了将其进行简单燃烧排放处理造成的环境污染,也丰富了废弃能源有效利用的途径。The method provided in the above examples uses the smelting tail gas produced in the petrochemical field as the supplementary raw material gas for the shaft furnace process system, and integrates and applies the hydrogen-rich petrochemical tail gas containing hydrogen, carbon and other energy media with the iron and steel smelting process, realizing the utilization of waste gas resources. "Turning waste into treasure" not only reduces the environmental pollution caused by simple combustion and emission treatment, but also enriches the ways of effective utilization of waste energy.
同时,上述实施例提供的方法采用富氢石化尾气为补充气源并耦合炉顶煤气不降温高温脱除技术,来实现竖炉全流程系统中炉顶煤气余热的有效利用,同时将化工领域常规简单燃烧处理的尾气“变废为宝”,实现化工废气与冶金工艺的有效结合,简化了工艺气制备系统,缩短了流程布置、占地和投资成本,流程的运行能耗和碳排放更具比较优势。At the same time, the method provided in the above examples uses hydrogen-rich petrochemical tail gas as a supplementary gas source and couples the high-temperature removal technology of the top gas without cooling to realize the effective utilization of the waste heat of the top gas in the whole process system of the shaft furnace. The tail gas of simple combustion treatment "turns waste into treasure", realizes the effective combination of chemical waste gas and metallurgical process, simplifies the process gas preparation system, shortens the process layout, land occupation and investment cost, and the operation energy consumption and carbon emission of the process are more efficient Comparative Advantage.
结合图1所示,本申请一实施方式还提供了一种竖炉回路流程系统,包括通过气管依次相连的煤气除尘设备、高温煤气脱碳设备4、气体混合器5、加热炉6,所述煤气除尘设备的进气端通过气管与竖炉1上部相连,所述高温煤气脱碳设备4设有回路循环气P2出口和高浓度CO2混合气出口,所述回路循环气P2出口通过气管分别与所述气体混合器5和所述加热炉6相连,所述高温煤气脱碳设备4还通过气管与所述加热炉6相连,所述气体混合器5设有富氢石化尾气P4进口,所述加热炉6的出气端通过气管与竖炉1中部相连。As shown in FIG. 1 , an embodiment of the present application also provides a shaft furnace loop process system, including gas dust removal equipment, high-temperature gas decarbonization equipment 4,
在一些实施例中,所述煤气除尘设备选自热旋风除尘装置2和/或高温干法布袋装置3;优选地,所述煤气除尘设备包括前后依次设置的热旋风除尘装置2和高温干法布袋装置3。In some embodiments, the gas dedusting equipment is selected from a hot cyclone
在一些实施例中,所述高温煤气脱碳设备4为二氧化碳脱除装置。In some embodiments, the high-temperature gas decarbonization equipment 4 is a carbon dioxide removal device.
在一些实施例中,所述加热炉6为管式加热炉。In some embodiments, the
上述实施例提供的竖炉回路流程系统,配合富氢石化尾气耦合竖炉顶煤气不降温高温脱除技术,实现了竖炉回路煤气余热的有效利用,无需补充原料气重整或制备系统,简化了煤气处理系统的配置、占地和投资成本。The shaft furnace circuit process system provided in the above embodiments, combined with the hydrogen-rich petrochemical tail gas coupled with the high-temperature removal technology of the shaft furnace top gas without cooling, realizes the effective utilization of the waste heat of the shaft furnace circuit gas without supplementing the raw material gas reforming or preparation system, simplifying The configuration, land occupation and investment costs of the gas treatment system are determined.
结合图1所示,本申请另一实施方式提供了一种富氢石化尾气耦合炉顶煤气回用方法,包括如下步骤:As shown in Figure 1, another embodiment of the present application provides a hydrogen-rich petrochemical tail gas coupling furnace top gas recycling method, including the following steps:
1)直接还原竖炉1上部排出的热态煤气P0,先进入热旋风除尘装置2,再进入干法布袋系统进行二次除尘处理,除尘后的净煤气P1进入高温高温煤气脱碳设备4,分离出含H2和CO的回路循环气P2和高浓度CO2混合气,从高温高温煤气脱碳设备4输出的含H2和CO的回路循环气P2与经预处理后的富氢石化尾气P4掺混,形成预热温度约为300℃混合煤气,后再进一步通入加热炉6,加热至约860℃后,通入竖炉1还原生产海绵铁F。1) The hot gas P0 discharged from the upper part of the direct
2)上述步骤1)中,经过热旋风除尘,干法布袋系统装二次除尘后的净煤气P1,其温度为325℃,净煤气P1的含尘量为5mg/Nm3。2) In the above step 1), after hot cyclone dust removal, dry bagging system is used to install the clean gas P1 after secondary dust removal, the temperature is 325°C, and the dust content of clean gas P1 is 5mg/Nm 3 .
3)上述步骤1)中的高温高温煤气脱碳设备4,为适用于高温状态下进行CO2脱除的装置,脱碳设备入口煤气温度为325℃,高温煤气脱碳设备4中的CO2吸附材料为镁、钙质复合物,吸附材料为固体细粒形状,粒度分布为0.5mm~1.0mm占比60%。3) The high-temperature high-temperature gas decarbonization equipment 4 in the above step 1 ) is a device suitable for removing CO 2 at high temperature. The gas temperature at the inlet of the decarbonization equipment is 325° C. The adsorption material is a composite of magnesium and calcium, and the adsorption material is in the shape of solid fine particles, and the particle size distribution is 0.5mm-1.0mm, accounting for 60%.
4)上述步骤1)中,高温高温煤气脱碳设备4分离出的含H2和CO的回路循环气P2和高浓度CO2混合气,其温度约为320℃;4) In the above step 1), the temperature of the loop circulation gas P2 containing H2 and CO and the high-concentration CO2 mixture separated by the high-temperature high-temperature gas decarbonization equipment 4 is about 320° C.;
5)上述步骤1)中,高温煤气脱碳设备4排出的高浓度CO2混合气,气流中的非CO2含量为9.2%(体积百分比),作为加热系统补充燃料气使用。5) In the above step 1), the high-concentration CO2 mixed gas discharged from the high-temperature gas decarbonization equipment 4 has a non- CO2 content of 9.2% (volume percentage) in the airflow, and is used as supplementary fuel gas for the heating system.
6)上述步骤1)中,高温煤气脱碳设备4排出的含H2和CO的回路循环气P2,88%(体积百分比)的循环气与补充的富氢石化尾气P4掺混,并对石化尾气进行预热,形成预热温度约为300℃混合煤气,另外一部分12%(体积百分比)循环气回路循环气P2从管路抽出,作为加热系统的燃料气使用。6) In the above step 1), the circulating gas P2 containing H2 and CO discharged from the high-temperature gas decarbonization equipment 4 is mixed with the supplementary hydrogen-rich petrochemical tail gas P4, and the petrochemical The exhaust gas is preheated to form a mixed gas with a preheating temperature of about 300°C, and another part of the 12% (volume percentage) circulating gas circuit circulating gas P2 is extracted from the pipeline and used as fuel gas for the heating system.
7)上述步骤6)中,补充的富氢石化尾气P4,其温度范围为40℃,其主要的化学组分为:H2含量87.4%,CO含量2.5%,CH4含量4.96%,CnHm(n≥2)含量1.58%,CO2含量1.0%,N2含量3.60%。7) In the above step 6), the supplemented hydrogen-rich petrochemical tail gas P4 has a temperature range of 40°C, and its main chemical components are: H 2 content 87.4%, CO content 2.5%, CH 4 content 4.96%, C n The content of H m (n≥2) is 1.58%, the content of CO 2 is 1.0%, and the content of N 2 is 3.60%.
8)上述步骤6)中,补充富氢石化尾气P4流量为含有H2和CO的回路循环气P2流量的52%。8) In the above step 6), the supplemental hydrogen-rich petrochemical tail gas P4 flow rate is 52% of the loop cycle gas P2 flow rate containing H2 and CO.
结合图1所示,本申请另一实施方式提供了一种富氢石化尾气耦合炉顶煤气回用方法,包括如下步骤:As shown in Figure 1, another embodiment of the present application provides a hydrogen-rich petrochemical tail gas coupling furnace top gas recycling method, including the following steps:
1)直接还原竖炉1上部排出的热态煤气P0,先进入热旋风除尘装置2,再进入干法布袋系统进行二次除尘处理,除尘后的净煤气P1进入高温高温煤气脱碳设备4,分离出含H2和CO的回路循环气P2和高浓度CO2混合气,从高温高温煤气脱碳设备4输出的含H2和CO的回路循环气P2与经预处理的富氢石化尾气P4进行掺混,形成预热温度约为342℃混合煤气,再进一步通入加热炉6,加热至约910℃后,通入竖炉1还原生产海绵铁F。1) The hot gas P0 discharged from the upper part of the direct
2)上述步骤1)中,经过热旋风除尘,干法布袋系统装二次除尘后的净煤气P1,其温度为360℃,净煤气P1的含尘量为3mg/Nm3。2) In the above step 1), after the hot cyclone dust removal, the dry bagging system is used to install the clean gas P1 after secondary dust removal, the temperature is 360°C, and the dust content of the clean gas P1 is 3mg/Nm 3 .
3)上述步骤1)中的高温高温煤气脱碳设备4,为适用于高温状态下进行CO2脱除的装置,脱碳设备的入口煤气温度为360℃,高温煤气脱碳设备4中CO2吸附材料为锂-锆硅酸盐复合物,吸附材料为固体细粒状,粒度分布为0.5mm~1.0mm占比70%。3) The high-temperature high-temperature gas decarbonization equipment 4 in the above step 1) is a device suitable for removing CO 2 in a high- temperature state. The inlet gas temperature of the decarbonization equipment is 360° C. The adsorption material is a lithium-zirconium silicate compound, the adsorption material is in the form of solid fine particles, and the particle size distribution is 0.5mm-1.0mm, accounting for 70%.
4)上述步骤1)中,高温高温煤气脱碳设备4分离出的含H2和CO的回路循环气P2和高浓度CO2混合气,其温度达到约349℃。4) In the above step 1), the temperature of the loop gas P2 containing H2 and CO and the high-concentration CO2 mixture separated by the high-temperature gas decarbonization equipment 4 reaches about 349°C.
5)上述步骤1)中,高温煤气脱碳设备4排出的高浓度CO2混合气,气流中的非CO2含量为7.8%(体积百分比),作为加热系统补充燃料气使用。5) In the above step 1), the high-concentration CO2 mixed gas discharged from the high-temperature gas decarbonization equipment 4 has a non- CO2 content of 7.8% (volume percentage) in the airflow, and is used as supplementary fuel gas for the heating system.
6)上述步骤1)中,高温煤气脱碳设备4排出的含H2和CO的回路循环气P2,90%(体积百分比)的循环气与补充富氢石化尾气P4掺混,并对石化尾气进行预热,形成预热温度约为342℃的混合煤气,另外一部分10%(体积百分比)的循环气回路循环气P2从管路抽出,作为加热系统的燃料气使用。6) In the above step 1), 90% (volume percent) of the loop gas P2 containing H2 and CO discharged from the high-temperature gas decarbonization equipment 4 is mixed with the supplementary hydrogen-rich petrochemical tail gas P4, and the petrochemical tail gas Perform preheating to form a mixed gas with a preheating temperature of about 342°C, and another part of 10% (volume percentage) circulating gas circuit circulating gas P2 is extracted from the pipeline and used as fuel gas for the heating system.
7)上述步骤6)中,补充的富氢石化尾气P4,其温度范围为38℃,其主要的化学组分为:H2含量88.34%,CH4含量6.62%,CnHm(n≥2)含量0.68%,CO2含量1.14%,N2含量2.05%。7) In the above step 6), the supplemental hydrogen-rich petrochemical tail gas P4 has a temperature range of 38° C., and its main chemical components are: H 2 content 88.34%, CH 4 content 6.62%, C n H m (n≥ 2) Content 0.68%, CO 2 content 1.14%, N 2 content 2.05%.
8)上述步骤6)中,补充的富氢石化尾气P4流量为含有H2和CO的回路循环气P2流量的55%。8) In the above step 6), the supplementary hydrogen-rich petrochemical tail gas P4 flow rate is 55% of the loop cycle gas P2 flow rate containing H2 and CO.
结合图1所示,本申请另一实施方式提供了一种富氢石化尾气-耦合炉顶煤气回用方法,包括如下步骤:As shown in Figure 1, another embodiment of the present application provides a hydrogen-rich petrochemical tail gas-coupling furnace top gas recycling method, including the following steps:
1)直接还原竖炉1上部排出的热态煤气P0,先进入热旋风除尘装置2,再进入干法布袋系统进行二次除尘处理,除尘后的净煤气P1进入高温高温煤气脱碳设备4,分离出含H2和CO的回路循环气P2和高浓度CO2混合气,从高温高温煤气脱碳设备4输出的含H2和CO的回路循环气P2与经预处理的富氢石化尾气P4进行掺混,形成预热温度约为395℃混合煤气,再进一步通入加热炉6,加热至约950℃后,通入竖炉1还原生产海绵铁F。1) The hot gas P0 discharged from the upper part of the direct
2)上述步骤1)中,经过热旋风除尘,干法布袋系统装二次除尘后的净煤气P1,其温度为450℃,净煤气P1的含尘量为5mg/Nm3。2) In the above step 1), after the hot cyclone dust removal, the dry bagging system is used to install the clean gas P1 after secondary dust removal, the temperature is 450°C, and the dust content of the clean gas P1 is 5mg/Nm 3 .
3)上述步骤1)中的高温高温煤气脱碳设备4,为适用于高温状态下进行CO2脱除的装置,脱碳设备入口煤气温度为450℃,高温煤气脱碳设备4中CO2吸附材料为锂-锆硅酸盐复合物,吸附材料为固体细粒状,粒度分布为0.5mm~1.0mm占比达到74%。3) The high-temperature high-temperature gas decarbonization equipment 4 in the above step 1) is a device suitable for removing CO 2 at high temperature . The gas temperature at the inlet of the decarbonization equipment is 450° C. The material is a lithium-zirconium silicate compound, and the adsorption material is in the form of solid fine particles, with a particle size distribution of 0.5 mm to 1.0 mm, accounting for 74%.
4)上述步骤1)中,脱碳设备高温高温煤气脱碳设备4分离出的含H2和CO的回路循环气P2和高浓度CO2混合气,其温度达到约435℃。4) In the above step 1), the temperature of the loop gas P2 containing H2 and CO and high-concentration CO2 mixture separated by the decarbonization equipment high-temperature gas decarbonization equipment 4 reaches about 435°C.
5)上述步骤1)中,高温煤气脱碳设备4排出的高浓度CO2混合气,气流中的非CO2含量为8.0%(体积百分比),作为加热系统补充燃料气使用。5) In the above step 1), the high-concentration CO2 mixed gas discharged from the high-temperature gas decarbonization equipment 4, the non- CO2 content in the airflow is 8.0% (volume percentage), is used as supplementary fuel gas for the heating system.
6)上述步骤1)中,高温煤气脱碳设备4排出的含H2和CO的回路循环气P2,85%(体积百分比)的循环气与补充富氢石化尾气P4掺混,并对石化尾气进行预热,形成预热温度约为395℃的混合煤气,另外一部分15%(体积百分比)的循环气回路循环气P2从管路抽出,作为加热系统的燃料气使用。6) In the above step 1), 85% (volume percentage) of the circulating gas P2 containing H2 and CO discharged from the high-temperature gas decarbonization equipment 4 is mixed with the supplementary hydrogen-rich petrochemical tail gas P4, and the petrochemical tail gas Carry out preheating to form a mixed gas with a preheating temperature of about 395°C, and another part of 15% (volume percentage) circulating gas circuit circulating gas P2 is extracted from the pipeline and used as fuel gas for the heating system.
7)上述步骤6)中,补充的富氢石化尾气P4,其温度范围为35℃,其主要的化学组分为:H2含量90.6%,CO含量2.6%,CH4含量3.87%,CnHm含量1.15%,CO2含量0.11%,N2含量1.67%。7) In the above step 6), the supplemented hydrogen-rich petrochemical tail gas P4 has a temperature range of 35° C., and its main chemical components are: H 2 content 90.6%, CO content 2.6%, CH 4 content 3.87%, C n The Hm content is 1.15%, the CO2 content is 0.11%, and the N2 content is 1.67%.
8)上述步骤6)中,补充的富氢石化尾气P4流量为含有H2和CO的回路循环气P2流量的43%。8) In the above step 6), the supplementary hydrogen-rich petrochemical tail gas P4 flow rate is 43% of the loop cycle gas P2 flow rate containing H2 and CO.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310394185.8A CN116287521B (en) | 2023-04-13 | 2023-04-13 | Hydrogen-rich petrochemical tail gas coupling top gas recycling method and shaft furnace loop flow system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310394185.8A CN116287521B (en) | 2023-04-13 | 2023-04-13 | Hydrogen-rich petrochemical tail gas coupling top gas recycling method and shaft furnace loop flow system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN116287521A true CN116287521A (en) | 2023-06-23 |
| CN116287521B CN116287521B (en) | 2024-12-27 |
Family
ID=86781579
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310394185.8A Active CN116287521B (en) | 2023-04-13 | 2023-04-13 | Hydrogen-rich petrochemical tail gas coupling top gas recycling method and shaft furnace loop flow system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116287521B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118685581A (en) * | 2024-06-04 | 2024-09-24 | 河北河钢材料技术研究院有限公司 | A hydrogen-based shaft furnace reduction gas circulation system and method based on CO2 capture |
| CN120488778A (en) * | 2025-07-14 | 2025-08-15 | 丰镇市华兴化工有限公司 | System and method for recycling tail gas of direct-current submerged arc furnace |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106702065A (en) * | 2016-12-20 | 2017-05-24 | 江苏省冶金设计院有限公司 | Novel system and novel method for preparing sponge iron through gas-based shaft kiln |
| CN109971906A (en) * | 2019-04-11 | 2019-07-05 | 中冶赛迪技术研究中心有限公司 | A kind of restoring method of ultralow carbon emission production sponge iron |
| TW202219278A (en) * | 2020-07-28 | 2022-05-16 | 盧森堡商保爾沃特股份公司 | Metallurgic plant for producing iron products and method of operating thereof |
| CN114774611A (en) * | 2022-03-31 | 2022-07-22 | 中晋冶金科技有限公司 | Hydrogen-rich gas CO2 oxidation conversion and hydrogen-based shaft furnace direct reduction iron production method |
| CN114959153A (en) * | 2022-06-14 | 2022-08-30 | 中冶赛迪工程技术股份有限公司 | Process for producing direct reduced iron by hydrogen-rich shaft furnace |
-
2023
- 2023-04-13 CN CN202310394185.8A patent/CN116287521B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106702065A (en) * | 2016-12-20 | 2017-05-24 | 江苏省冶金设计院有限公司 | Novel system and novel method for preparing sponge iron through gas-based shaft kiln |
| CN109971906A (en) * | 2019-04-11 | 2019-07-05 | 中冶赛迪技术研究中心有限公司 | A kind of restoring method of ultralow carbon emission production sponge iron |
| TW202219278A (en) * | 2020-07-28 | 2022-05-16 | 盧森堡商保爾沃特股份公司 | Metallurgic plant for producing iron products and method of operating thereof |
| CN114774611A (en) * | 2022-03-31 | 2022-07-22 | 中晋冶金科技有限公司 | Hydrogen-rich gas CO2 oxidation conversion and hydrogen-based shaft furnace direct reduction iron production method |
| CN114959153A (en) * | 2022-06-14 | 2022-08-30 | 中冶赛迪工程技术股份有限公司 | Process for producing direct reduced iron by hydrogen-rich shaft furnace |
Non-Patent Citations (1)
| Title |
|---|
| 吴开基、张涛.等: "气基竖炉直接还原工艺发展现状及展望", 烧结球团, vol. 49, no. 3, 30 June 2024 (2024-06-30), pages 18 - 24 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118685581A (en) * | 2024-06-04 | 2024-09-24 | 河北河钢材料技术研究院有限公司 | A hydrogen-based shaft furnace reduction gas circulation system and method based on CO2 capture |
| CN120488778A (en) * | 2025-07-14 | 2025-08-15 | 丰镇市华兴化工有限公司 | System and method for recycling tail gas of direct-current submerged arc furnace |
| CN120488778B (en) * | 2025-07-14 | 2025-09-12 | 丰镇市华兴化工有限公司 | System and method for recycling tail gas of direct-current submerged arc furnace |
Also Published As
| Publication number | Publication date |
|---|---|
| CN116287521B (en) | 2024-12-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN116287521A (en) | Hydrogen-rich petrochemical tail gas coupling furnace top gas recovery method and shaft furnace loop process system | |
| CN112813219A (en) | System and process for realizing near-zero emission of ammonia direct reduced iron | |
| JP7710542B2 (en) | Apparatus and method for preparing pre-reduced pellets based on a grate rotary kiln | |
| CN101638702B (en) | Recycling method of outlet gas in direct reduction process using gas as reducing gas | |
| CN115011746B (en) | CO2 circulation-based total oxygen/high oxygen-enriched iron-making gas-making system and operation method | |
| CN102876824B (en) | Method for guaranteeing high blast temperature by using blast furnace gas | |
| TW201039911A (en) | Method and apparatus for sequestering carbon dioxide from a spent gas | |
| CN107337179A (en) | Preparation system and method of reducing gas of gas-based shaft furnace | |
| CN214655056U (en) | A system for realizing near-zero emission of ammonia gas for direct reduction of iron | |
| CN114752718A (en) | Ultra-low carbon consumption blast furnace smelting process and blast furnace smelting system | |
| CN204803377U (en) | Flue gas recirculation formula prereduction sintering device | |
| CN108486304B (en) | A kind of equipment and method for directly using coal gasification hot coal gas to produce direct reduced iron in gas-based shaft furnace | |
| CN114574647B (en) | System and method for preparing shaft furnace reducing gas by coupling coke oven gas with carbon dioxide | |
| CN113373274B (en) | Coal gas treatment process for full hydrogen shaft furnace | |
| CN115491487B (en) | A method and device for red mud dry desulfurization coupled with submerged arc furnace gas heat recovery | |
| CN213772103U (en) | System for preparing shaft furnace reducing gas by coupling coke oven gas with carbon dioxide | |
| CN117107001A (en) | An iron-making method, system and application coupling carbon capture and in-situ conversion | |
| CN213772106U (en) | Gas-based shaft furnace reducing gas preparation system | |
| WO2008138167A1 (en) | A method for producing coal gas | |
| CN115261542A (en) | Circulating fluidized bed direct reduction method and process for short-process smelting of coal powder and mineral powder | |
| CN114577002B (en) | Iron ore sintering device and method based on steel slag and hydrogen energy and flue gas desulfurization system | |
| CN221808572U (en) | A system for preparing synthesis gas by converting hydrogen-based shaft furnace tail gas | |
| CN218842080U (en) | System for preparing shaft furnace reducing gas from coke oven gas | |
| JP2016513004A (en) | Method and apparatus for separating carbon dioxide from spent gas | |
| CN213895741U (en) | Shaft furnace reducing gas preparation and humidification carbon elimination system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |