CN119987164B - Energy calibration method and device for photoetching machine - Google Patents
Energy calibration method and device for photoetching machineInfo
- Publication number
- CN119987164B CN119987164B CN202510464927.9A CN202510464927A CN119987164B CN 119987164 B CN119987164 B CN 119987164B CN 202510464927 A CN202510464927 A CN 202510464927A CN 119987164 B CN119987164 B CN 119987164B
- Authority
- CN
- China
- Prior art keywords
- temperature
- lens
- temperature sensor
- energy conversion
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本公开实施例提供一种光刻机的能量校准方法及装置。所述方法包括:利用温度传感器测量得到光刻过程中的温度参数;根据预设关系模型,得到所述温度参数对应的能量转换系数;所述预设关系模型为能量转换系数与温度参数的关系模型;基于所述能量转换系数对光刻机进行能量校准。
The present disclosure provides a method and apparatus for energy calibration of a lithography machine. The method comprises: using a temperature sensor to measure a temperature parameter during a lithography process; obtaining an energy conversion coefficient corresponding to the temperature parameter based on a preset relationship model; the preset relationship model being a relationship model between the energy conversion coefficient and the temperature parameter; and performing energy calibration on the lithography machine based on the energy conversion coefficient.
Description
技术领域Technical Field
本公开涉及半导体技术领域,尤其涉及一种光刻机的能量校准方法及装置。The present disclosure relates to the field of semiconductor technology, and in particular to an energy calibration method and device for a lithography machine.
背景技术Background Art
光刻是半导体制造工艺中最为重要的步骤之一,它决定了整个集成电路工艺的技术水平。光刻机的状态并不是一成不变的,例如会随着光刻机的运行时间而导致光刻机关键部件的老化而引起机台状态的动态改变,或者由于光刻机当机或者停机维护而引起机台状态的动态改变,这些都会导致光刻机的状态发生动态的偏移。光刻机进行光刻时的曝光能量会直接影响关键尺寸CD的大小,关键尺寸CD的大小会影响后续图形转移等工艺的实际图形尺寸,导致工艺的不稳定,降低产品良率。因此,需要通过能量校准方法对光刻机的曝光能量进行精确控制。Photolithography is one of the most critical steps in the semiconductor manufacturing process, determining the technological level of the entire integrated circuit manufacturing process. The state of a photolithography machine is not static. For example, as the machine operates, key components age, causing dynamic changes in the machine's state. Alternatively, the machine may crash or shut down for maintenance, causing dynamic changes in the machine's state. These changes can cause the machine's state to shift dynamically. The exposure energy of the photolithography machine during photolithography directly affects the size of the critical dimension (CD). This CD size affects the actual pattern size in subsequent processes such as pattern transfer, leading to process instability and reduced product yield. Therefore, energy calibration methods are necessary to precisely control the exposure energy of the photolithography machine.
发明内容Summary of the Invention
有鉴于此,本公开实施例提供一种光刻机的能量校准方法及装置。In view of this, embodiments of the present disclosure provide an energy calibration method and device for a lithography machine.
为达到上述目的,本公开的技术方案是这样实现的:To achieve the above objectives, the technical solution of the present disclosure is implemented as follows:
第一方面,本公开实施例提供一种光刻机的能量校准方法,所述方法包括:利用温度传感器测量得到光刻过程中的温度参数;根据预设关系模型,得到所述温度参数对应的能量转换系数;所述预设关系模型为能量转换系数与温度参数的关系模型;基于所述能量转换系数对光刻机进行能量校准。In a first aspect, an embodiment of the present disclosure provides an energy calibration method for a lithography machine, the method comprising: using a temperature sensor to measure and obtain temperature parameters in the lithography process; obtaining an energy conversion coefficient corresponding to the temperature parameter according to a preset relationship model; the preset relationship model is a relationship model between the energy conversion coefficient and the temperature parameter; and energy calibrating the lithography machine based on the energy conversion coefficient.
在一些实施例中,利用温度传感器测量得到光刻过程中的温度参数,包括:利用第一温度传感器和第二温度传感器测量得到光刻过程中的第一温度参数和第二温度参数;所述第一温度传感器与所述光刻机中光罩承载台相邻设置,所述第二温度传感器与所述光刻机中透镜相邻设置。In some embodiments, temperature parameters in the lithography process are measured using a temperature sensor, including: first temperature parameters and second temperature parameters in the lithography process are measured using a first temperature sensor and a second temperature sensor; the first temperature sensor is arranged adjacent to the mask carrier in the lithography machine, and the second temperature sensor is arranged adjacent to the lens in the lithography machine.
在一些实施例中,利用第一温度传感器测量得到光刻过程中的第一温度参数,包括:利用第一温度传感器测量得到所述光罩承载台上的光罩在光刻过程中的第一温度,并根据所述第一温度和所述光罩的体积,得到所述光罩在所述第一温度下的热膨胀系数;所述第一温度以及所述光罩在所述第一温度下的热膨胀系数构成所述第一温度参数。In some embodiments, a first temperature parameter of the lithography process is measured using a first temperature sensor, including: using the first temperature sensor to measure the first temperature of the mask on the mask carrier during the lithography process, and obtaining the thermal expansion coefficient of the mask at the first temperature based on the first temperature and the volume of the mask; the first temperature and the thermal expansion coefficient of the mask at the first temperature constitute the first temperature parameter.
在一些实施例中,利用第二温度传感器测量得到光刻过程中的第二温度参数,包括:利用第二温度传感器测量得到所述透镜在光刻过程中的第二温度,并根据所述第二温度和所述透镜的体积,得到所述透镜在所述第二温度下的热膨胀系数;所述第二温度以及所述透镜在所述第二温度下的热膨胀系数构成所述第二温度参数。In some embodiments, measuring a second temperature parameter during the photolithography process using a second temperature sensor includes: measuring a second temperature of the lens during the photolithography process using the second temperature sensor, and obtaining a thermal expansion coefficient of the lens at the second temperature based on the second temperature and the volume of the lens; the second temperature and the thermal expansion coefficient of the lens at the second temperature constitute the second temperature parameter.
在一些实施例中,根据预设的能量转换系数与温度参数的关系模型,得到所述温度参数对应的能量转换系数,包括:根据所述关系模型得到所述第一温度参数对应的第一能量转换系数以及所述第二温度参数对应的第二能量转换系数。In some embodiments, the energy conversion coefficient corresponding to the temperature parameter is obtained according to a preset relationship model between the energy conversion coefficient and the temperature parameter, including: obtaining a first energy conversion coefficient corresponding to the first temperature parameter and a second energy conversion coefficient corresponding to the second temperature parameter according to the relationship model.
在一些实施例中,在利用温度传感器测量得到光刻过程中的温度参数之前,所述方法还包括:获取所述光刻机中光罩和/或透镜在不同温度下的样本温度参数;基于所述样本温度参数构建预设关系模型。In some embodiments, before using a temperature sensor to measure the temperature parameters in the lithography process, the method further includes: obtaining sample temperature parameters of the mask and/or lens in the lithography machine at different temperatures; and constructing a preset relationship model based on the sample temperature parameters.
在一些实施例中,所述预设关系模型为:;其中,为与所述光罩的材料相关的系数或者与所述透镜的材料相关的系数,为温度参数,为所述光罩或者所述透镜在常温下的体积,为所述光罩或者所述透镜在常温下的表面积,为能量转换系数。In some embodiments, the preset relationship model is: ;in, is a coefficient related to the material of the mask or a coefficient related to the material of the lens, is the temperature parameter, is the volume of the mask or the lens at room temperature, is the surface area of the light mask or the lens at room temperature, is the energy conversion coefficient.
第二方面,本公开实施例提供一种光刻机的能量校准装置,包括:温度传感器,用于测量光刻过程中的温度参数;计算模块,用于根据预设关系模型,得到所述温度参数对应的能量转换系数;所述预设关系模型为能量转换系数与温度参数的关系模型;校准模块,用于基于所述能量转换系数对光刻机进行能量校准。In a second aspect, an embodiment of the present disclosure provides an energy calibration device for a lithography machine, comprising: a temperature sensor for measuring temperature parameters during the lithography process; a calculation module for obtaining an energy conversion coefficient corresponding to the temperature parameter according to a preset relationship model; the preset relationship model is a relationship model between the energy conversion coefficient and the temperature parameter; and a calibration module for energy calibrating the lithography machine based on the energy conversion coefficient.
在一些实施例中,温度传感器包括:第一温度传感器和第二温度传感器;所述第一温度传感器与所述光刻机中光罩承载台相邻设置,所述第二温度传感器与所述光刻机中透镜相邻设置;所述第一温度传感器用于测量光刻过程中的第一温度参数;所述第二温度传感器用于测量光刻过程中的第二温度参数。In some embodiments, the temperature sensor includes: a first temperature sensor and a second temperature sensor; the first temperature sensor is arranged adjacent to the mask carrier in the lithography machine, and the second temperature sensor is arranged adjacent to the lens in the lithography machine; the first temperature sensor is used to measure the first temperature parameter in the lithography process; the second temperature sensor is used to measure the second temperature parameter in the lithography process.
在一些实施例中,所述第一温度传感器具体用于测量所述光罩承载台上的光罩在光刻过程中的第一温度,并根据所述第一温度和所述光罩的体积,得到所述光罩在所述第一温度下的热膨胀系数;所述第一温度以及所述光罩在所述第一温度下的热膨胀系数构成所述第一温度参数。In some embodiments, the first temperature sensor is specifically used to measure the first temperature of the mask on the mask carrier during the photolithography process, and obtain the thermal expansion coefficient of the mask at the first temperature based on the first temperature and the volume of the mask; the first temperature and the thermal expansion coefficient of the mask at the first temperature constitute the first temperature parameter.
在一些实施例中,所述第二温度传感器具体用于测量所述透镜在光刻过程中的第二温度,并根据所述第二温度和所述透镜的体积,得到所述透镜在所述第二温度下的热膨胀系数;所述第二温度以及所述透镜在所述第二温度下的热膨胀系数构成所述第二温度参数。In some embodiments, the second temperature sensor is specifically used to measure the second temperature of the lens during the photolithography process, and obtain the thermal expansion coefficient of the lens at the second temperature based on the second temperature and the volume of the lens; the second temperature and the thermal expansion coefficient of the lens at the second temperature constitute the second temperature parameter.
在一些实施例中,所述计算模块还用于根据所述预设关系模型得到所述第一温度参数对应的第一能量转换系数以及所述第二温度参数对应的第二能量转换系数。In some embodiments, the calculation module is further configured to obtain a first energy conversion coefficient corresponding to the first temperature parameter and a second energy conversion coefficient corresponding to the second temperature parameter according to the preset relationship model.
本公开实施例提供一种光刻机的能量校准方法及装置。所述方法包括:利用温度传感器测量得到光刻过程中的温度参数;根据预设关系模型,得到所述温度参数对应的能量转换系数;所述预设关系模型为能量转换系数与温度参数的关系模型;基于所述能量转换系数对光刻机进行能量校准。在公开实施例中,基于温度参数来表征光刻过程中的能量变化,由此可以基于温度参数对光刻机进行能量校准。The disclosed embodiments provide a method and apparatus for energy calibration of a lithography machine. The method comprises: using a temperature sensor to measure a temperature parameter during the lithography process; obtaining an energy conversion coefficient corresponding to the temperature parameter based on a preset relationship model; the preset relationship model being a relationship model between the energy conversion coefficient and the temperature parameter; and performing energy calibration of the lithography machine based on the energy conversion coefficient. In the disclosed embodiments, the energy variation during the lithography process is characterized based on the temperature parameter, thereby enabling energy calibration of the lithography machine based on the temperature parameter.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本公开实施例提供的一种光刻机的能量校准方法的步骤示意图;FIG1 is a schematic diagram of the steps of an energy calibration method for a lithography machine provided by an embodiment of the present disclosure;
图2为本公开实施例提供的光刻机的结构示意图;FIG2 is a schematic structural diagram of a lithography machine provided by an embodiment of the present disclosure;
图3为本公开实施例提供的一种光刻机的能量校准装置的结构示意图;FIG3 is a schematic structural diagram of an energy calibration device for a lithography machine provided by an embodiment of the present disclosure;
图4为本公开实施例提供的一种光刻机的能量校准装置的硬件结构图。FIG4 is a hardware structure diagram of an energy calibration device for a lithography machine provided in an embodiment of the present disclosure.
具体实施方式DETAILED DESCRIPTION
下面将结合本公开实施方式及附图,对本公开实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本公开的一部分实施方式,而不是全部的实施方式。基于本公开中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本公开保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present disclosure in conjunction with the embodiments of the present disclosure and the accompanying drawings. Obviously, the embodiments described are only part of the embodiments of the present disclosure, not all of the embodiments. Based on the embodiments of the present disclosure, all other embodiments obtained by ordinary technicians in this field without making any creative efforts are within the scope of protection of the present disclosure.
在下文的描述中,给出了大量具体的细节以便提供对本公开更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本公开可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本公开发生混淆,对于本领域公知的一些技术特征未进行描述;即,这里不描述实际实施例的全部特征,不详细描述公知的功能和结构。In the following description, numerous specific details are provided to provide a more thorough understanding of the present disclosure. However, it will be apparent to those skilled in the art that the present disclosure can be practiced without one or more of these details. In other instances, certain technical features known in the art are not described to avoid confusion with the present disclosure; that is, all features of actual embodiments are not described herein, nor are well-known functions and structures described in detail.
在附图中,为了清楚,层、区、元件的尺寸以及其相对尺寸可能被夸大。自始至终相同附图标记表示相同的元件。In the drawings, the sizes of layers, regions, elements and their relative sizes may be exaggerated for clarity. Like reference numerals denote like elements throughout.
应当明白,当元件或层被称为“在……上”、“与……相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在……上”、“与……直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本公开教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。而当讨论的第二元件、部件、区、层或部分时,并不表明本公开必然存在第一元件、部件、区、层或部分。It should be understood that when an element or layer is referred to as being "on, adjacent to, connected to, or coupled to" another element or layer, it may be directly on, adjacent to, connected to, or coupled to the other element or layer, or there may be intervening elements or layers. In contrast, when an element is referred to as being "directly on, directly adjacent to, directly connected to, or directly coupled to" another element or layer, there may be no intervening elements or layers. It should be understood that although the terms first, second, third, etc. may be used to describe various elements, components, regions, layers, and/or parts, these elements, components, regions, layers, and/or parts should not be limited by these terms. These terms are merely used to distinguish one element, component, region, layer, or part from another element, component, region, layer, or part. Therefore, without departing from the teachings of the present disclosure, the first element, component, region, layer, or part discussed below may be represented as a second element, component, region, layer, or part. However, when the second element, component, region, layer, or part is discussed, it does not necessarily mean that the first element, component, region, layer, or part exists in the present disclosure.
空间关系术语例如“在……下”、“在……下面”、“下面的”、“在……之下”、“在……之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在……下面”和“在……下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。Spatially relative terms such as "under," "beneath," "below," "under," "above," "above," etc., may be used herein for convenience of description to describe the relationship of an element or feature shown in the figures to other elements or features. It should be understood that in addition to the orientations shown in the figures, the spatially relative terms are intended to include different orientations of the device in use and operation. For example, if the device in the drawings is flipped, then the elements or features described as "under the other elements" or "under it" or "under it" will be oriented as "on" the other elements or features. Thus, the exemplary terms "under" and "under" may include both upper and lower orientations. The device may be oriented otherwise (rotated 90 degrees or in other orientations) and the spatial descriptors used herein are interpreted accordingly.
在此使用的术语的目的仅在于描述具体实施例并且不作为本公开的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。The purpose of the terms used herein is only to describe specific embodiments and is not intended to limit the present disclosure. When used herein, the singular forms "a", "an", and "the" are intended to include the plural forms, unless the context clearly indicates otherwise. It should also be understood that the terms "comprising" and/or "comprising", when used in this specification, determine the presence of the features, integers, steps, operations, elements and/or parts, but do not exclude the presence or addition of one or more other features, integers, steps, operations, elements, parts and/or groups. When used herein, the term "and/or" includes any and all combinations of the relevant listed items.
为了彻底理解本公开,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本公开的技术方案。本公开的较佳实施例详细描述如下,然而除了这些详细描述外,本公开还可以具有其他实施方式。In order to fully understand the present disclosure, detailed steps and detailed structures will be presented in the following description to illustrate the technical solution of the present disclosure. The preferred embodiments of the present disclosure are described in detail below. However, in addition to these detailed descriptions, the present disclosure may also have other implementation methods.
在产品制造过程中,工艺质量的稳定性是对设备、工艺过程的一项重要评估指标,决定着一些设备或者工艺是否能够进入量产制造。举例来说,在光刻过程中,曝光能量是否稳定影响着同一晶圆的不同位置的光刻效果,以及不同晶圆的光刻效果,因此对光刻机的工艺稳定性具有较高的要求,这样才能保证同一晶圆的不同位置具有可控的尺寸,保证利用同一光刻参数得到的不同晶圆具有一致的尺寸。During product manufacturing, process quality stability is a key evaluation metric for equipment and processes, determining whether certain equipment or processes can enter mass production. For example, during photolithography, the stability of exposure energy affects the lithography results at different locations on the same wafer, as well as the lithography results across different wafers. Therefore, high process stability requirements are placed on photolithography machines to ensure controllable dimensions at different locations on the same wafer, and to ensure consistent dimensions across different wafers using the same photolithography parameters.
在晶圆曝光期间,光刻机提供所需的曝光能量(输出能量),光刻机上的能量传感器(energy sensor)可以反馈控制该曝光能量,承载晶圆的晶圆载盘(chuck)上方的点传感器(spot sensor)用于探测晶圆接收到的曝光能量(输入能量)并反馈,由此可以得到输入能量和输出能量的能量转换系数ESCF(Energy Sensor Conversion Factor)。同时,对于twins chuck(双载盘)的光刻机,每个载盘上还各有一个能量校准传感器(Energy SensorCalibration,ESCAL),与双载盘中的第一个载盘上的点传感器进行输出能量数据传输,以保证每个载盘的能量一致。During wafer exposure, the lithography machine provides the required exposure energy (output energy). The energy sensor on the lithography machine can feedback control this exposure energy. The spot sensor above the wafer chuck that carries the wafer is used to detect the exposure energy (input energy) received by the wafer and feedback it. From this, the energy conversion factor (ESCF) between input energy and output energy can be obtained. At the same time, for lithography machines with twin chucks, each chuck also has an energy calibration sensor (Energy Sensor Calibration, ESCAL) to transmit output energy data to the spot sensor on the first chuck of the twin chucks to ensure consistent energy on each chuck.
随着核心器件的尺寸不断缩小,核心结构尺寸进入到几十纳米或几个纳米尺寸,对制造工艺的稳定性要求越来越高。基于此,对光刻机在工作过程中的能量校准成为了亟待解决的问题。As the size of core components continues to shrink, with core structure dimensions approaching tens or even a few nanometers, the requirements for manufacturing process stability are becoming increasingly stringent. Consequently, energy calibration of lithography machines during operation has become a pressing issue.
对此,提出了以下实施方式。In this regard, the following implementation methods are proposed.
图1为本公开实施例提供的一种光刻机的能量校准方法的步骤示意图。如图1所示,该能量校准方法包括如下步骤:FIG1 is a schematic diagram of the steps of an energy calibration method for a lithography machine provided by an embodiment of the present disclosure. As shown in FIG1 , the energy calibration method includes the following steps:
步骤S101:利用温度传感器测量得到光刻过程中的温度参数。Step S101: using a temperature sensor to measure and obtain temperature parameters during the photolithography process.
步骤S102:根据预设关系模型,得到所述温度参数对应的能量转换系数;所述预设关系模型为能量转换系数与温度参数的关系模型。Step S102: obtaining an energy conversion coefficient corresponding to the temperature parameter according to a preset relationship model; the preset relationship model is a relationship model between the energy conversion coefficient and the temperature parameter.
步骤S103:基于所述能量转换系数对光刻机进行能量校准。Step S103: performing energy calibration on the lithography machine based on the energy conversion coefficient.
在公开实施例中,基于温度参数来表征光刻过程中的能量变化,由此可以基于温度参数对光刻机进行能量校准。In the disclosed embodiment, the energy change in the lithography process is characterized based on the temperature parameter, so that the energy of the lithography machine can be calibrated based on the temperature parameter.
光刻机主要由照明光学模组、光罩模组和晶圆模组三部分构成。光学模组包括光源模组(source)、照明模组(illumination module)和投影物镜模组(projection lens)。光源模组可以简化为一个激光器,释放出深紫外光 (Deep Ultra Violet,DUV)或者极紫外光(Extreme Ultra Violet,EUV)。光罩模组包括光罩传送模组(Reticle Handler)及光罩承载台(Reticle Stage)。光罩传送模组负责将光罩由光罩盒传送到光罩承载台。而光罩承载台负责承载及快速来回移动光罩。晶圆模组包括晶圆传送模组(Wafer Handler)和晶圆承载台(Wafer Stage)。晶圆传送模组负责将晶圆由光阻涂布机传送到晶圆承载台,晶圆承载台负责承载晶圆及精准定位晶圆来曝光。投影物镜模组包括多个透镜,投影物镜模组用于将光罩模组中的光罩的图像投射于晶圆模组中的晶圆的表面上。A photolithography machine primarily consists of three parts: an illumination optical module, a mask module, and a wafer module. The optical module includes a light source module (source), an illumination module, and a projection lens module (projection lens). The light source module can be simplified to a laser that emits deep ultraviolet (DUV) or extreme ultraviolet (EUV) light. The mask module includes a reticle handler and a reticle stage. The reticle handler is responsible for transferring the mask from the reticle box to the reticle stage. The reticle stage is responsible for carrying and rapidly moving the mask back and forth. The wafer module includes a wafer handler and a wafer stage. The wafer handler is responsible for transferring the wafer from the photoresist coater to the wafer stage, and the wafer stage is responsible for carrying the wafer and accurately positioning it for exposure. The projection objective lens module includes a plurality of lenses and is used for projecting the image of the mask in the mask module onto the surface of the wafer in the wafer module.
在一些实施例中,温度传感器包括第一温度传感器和第二温度传感器,其中,第一温度传感器可以与所述光刻机中光罩承载台相邻设置,第二温度传感器与所述光刻机中透镜相邻设置。这里的相邻设置可以为紧邻设置。In some embodiments, the temperature sensor includes a first temperature sensor and a second temperature sensor, wherein the first temperature sensor may be disposed adjacent to a mask carrier in the lithography machine, and the second temperature sensor may be disposed adjacent to a lens in the lithography machine. The term "adjacent arrangement" herein may refer to a closely adjacent arrangement.
图2为本公开实施例提供的光刻机的结构示意图。需要说明的是,图2为光刻机的简化结构示意图,图2仅示意出了光刻机中的光罩承载台210、投影物镜模组220和晶圆承载台230。如图2所示,第一温度传感器设置在光罩承载台210的下方位置N1,并且第一温度传感器可以为可伸缩的温度传感器,第一温度传感器设于第一容纳部并能够相对于第一容纳部活动,第一温度传感器相对第一容纳部具有第一位置和第二位置;其中,在第一位置状态下,第一温度传感器的至少部分本体伸入光罩承载台的下方位置以对光罩承载台上的光罩进行温度测温;在第二位置状态下,第一温度传感器收纳于第一容纳部内。类似地,第二温度传感器设置在投影物镜模组220中最下方的透镜的下方位置N2,并且第二温度传感器可以为可伸缩的温度传感器,第二温度传感器相对第二容纳部具有第一位置和第二位置;其中,在第一位置状态下,第二温度传感器的至少部分本体伸入投影物镜模组中最下方的透镜的下方位置以对投影物镜模组中最下方的透镜进行温度测温;在第二位置状态下,第二温度传感器收纳于第二容纳部内。FIG2 is a schematic diagram of the structure of the lithography machine provided by the embodiment of the present disclosure. It should be noted that FIG2 is a simplified schematic diagram of the structure of the lithography machine, and FIG2 only illustrates the mask carrier 210, the projection lens module 220 and the wafer carrier 230 in the lithography machine. As shown in FIG2 , the first temperature sensor is arranged at a position N1 below the mask carrier 210, and the first temperature sensor can be a retractable temperature sensor, the first temperature sensor is arranged in the first accommodating portion and can move relative to the first accommodating portion, and the first temperature sensor has a first position and a second position relative to the first accommodating portion; wherein, in the first position state, at least part of the body of the first temperature sensor extends into the position below the mask carrier to measure the temperature of the mask on the mask carrier; in the second position state, the first temperature sensor is housed in the first accommodating portion. Similarly, the second temperature sensor is arranged at a position N2 below the lowest lens in the projection objective lens module 220, and the second temperature sensor can be a retractable temperature sensor, and the second temperature sensor has a first position and a second position relative to the second accommodating portion; wherein, in the first position state, at least part of the body of the second temperature sensor extends into the position below the lowest lens in the projection objective lens module to measure the temperature of the lowest lens in the projection objective lens module; in the second position state, the second temperature sensor is received in the second accommodating portion.
需要说明的是,图2示意出的N1和N2仅为一种示例性说明,第一温度传感器还可以设置于其他与光罩承载台210紧邻并且可以测量到光罩的温度参数的位置,第二温度传感器和投影物镜模组220还可以设置于其他与投影物镜模组220紧邻并且可以测量到投影物镜模组220中最下方的透镜的温度参数的位置,图2示意出的N1和N2并非用于限制本公开中第一温度传感器和第二温度传感器的设置位置。It should be noted that N1 and N2 shown in Figure 2 are only an exemplary illustration. The first temperature sensor can also be set at other positions that are close to the mask carrier 210 and can measure the temperature parameters of the mask. The second temperature sensor and the projection objective module 220 can also be set at other positions that are close to the projection objective module 220 and can measure the temperature parameters of the lowermost lens in the projection objective module 220. N1 and N2 shown in Figure 2 are not used to limit the setting positions of the first temperature sensor and the second temperature sensor in the present disclosure.
在一些实施例中,步骤S101包括:利用第一温度传感器和第二温度传感器测量得到光刻过程中的第一温度参数和第二温度参数。In some embodiments, step S101 includes: using a first temperature sensor and a second temperature sensor to measure and obtain a first temperature parameter and a second temperature parameter in a photolithography process.
在一些实施例中,第一温度传感器在执行光罩承载台对齐(reticle stagealign)的过程中测量得到第一温度参数。在进行光刻工艺时,每批次lot在进行曝光前需要执行光罩承载台对齐步骤。即通过X轴移动装置和/或Y轴移动装置,使得光罩承载台上的光罩上的需要曝光的实际图形区域的对角线中心与光刻机镜头中心重合。In some embodiments, the first temperature sensor measures the first temperature parameter during reticle stage alignment. During a photolithography process, a reticle stage alignment step is performed before exposure of each lot. Specifically, an X-axis motion device and/or a Y-axis motion device are used to align the diagonal center of the actual pattern area to be exposed on the reticle on the reticle stage with the center of the lithography machine lens.
在一些实施例中,第二温度传感器在执行晶圆组修正(lot correction)的过程中测量得到第二温度参数。在进行光刻工艺时,每批次lot在进行曝光前会做晶圆组修正。In some embodiments, the second temperature sensor measures the second temperature parameter during a wafer lot correction process. During a photolithography process, wafer lot correction is performed on each lot before exposure.
在一些实施例中,步骤S101包括:利用第一温度传感器测量得到所述光罩承载台上的光罩在光刻过程中的第一温度T1,并根据所述第一温度T1和所述光罩的体积V1,得到所述光罩在所述第一温度T1下的热膨胀系数β1;所述第一温度T1以及所述光罩在所述第一温度T1下的热膨胀系数β1构成所述第一温度参数。这里,光罩的体积V1为光罩在第一温度T1下的体积。In some embodiments, step S101 includes: measuring a first temperature T 1 of the mask on the mask carrier during the photolithography process using a first temperature sensor, and obtaining a thermal expansion coefficient β 1 of the mask at the first temperature T 1 based on the first temperature T 1 and the volume V 1 of the mask; the first temperature T 1 and the thermal expansion coefficient β 1 of the mask at the first temperature T 1 constitute the first temperature parameter. Here, the volume V 1 of the mask is the volume of the mask at the first temperature T 1 .
在一些实施例中,在常温T0下可测量得到光罩的体积VM。由于光罩在不同温度下的体积变化满足公式ΔV=VM×β×ΔT。因此,光罩的热膨胀系数可以通过以下公式得到:β=。在另一些实施例中,也可以通过测量光罩的面积以及厚度来计算得到光罩的体积。In some embodiments, the volume V M of the mask can be measured at room temperature T 0. Since the volume change of the mask at different temperatures satisfies the formula ΔV=V M ×β×ΔT, the thermal expansion coefficient of the mask can be obtained by the following formula: β= In other embodiments, the volume of the mask may also be calculated by measuring the area and thickness of the mask.
在一些实施例中,步骤S101包括:利用第二温度传感器测量得到所述透镜在光刻过程中的第二温度T2,并根据所述第二温度T2和所述透镜的体积V2,得到所述透镜在所述第二温度T2下的热膨胀系数β2;所述第二温度T2以及所述透镜在所述第二温度T2下的热膨胀系数β2构成所述第二温度参数。这里,透镜的体积V2为透镜在第二温度T2下的体积。In some embodiments, step S101 includes: measuring a second temperature T 2 of the lens during the photolithography process using a second temperature sensor, and obtaining a thermal expansion coefficient β 2 of the lens at the second temperature T 2 based on the second temperature T 2 and the volume V 2 of the lens; the second temperature T 2 and the thermal expansion coefficient β 2 of the lens at the second temperature T 2 constitute the second temperature parameter. Here, the volume V 2 of the lens is the volume of the lens at the second temperature T 2 .
在一些实施例中,在常温T0下可测量得到透镜的体积VL。由于透镜在不同温度下的体积变化满足公式ΔV=VL×β×ΔT。因此,透镜的热膨胀系数可以通过以下公式得到:β=。在另一些实施例中,也可以通过测量透镜的面积以及厚度来计算得到透镜的体积。In some embodiments, the volume V L of the lens can be measured at room temperature T 0. Since the volume change of the lens at different temperatures satisfies the formula ΔV=V L ×β×ΔT, the thermal expansion coefficient of the lens can be obtained by the following formula: β= In other embodiments, the volume of the lens may also be calculated by measuring the area and thickness of the lens.
在一些实施例中,当光刻机进行连续制程(包括更换光罩的连续制程)、非连续制程、高能量工艺层(layer)制程或者低能量工艺层制程时,第一温度传感器和第二温度传感器在每批次lot曝光前都会各自测得第一温度参数和第二温度参数。In some embodiments, when the lithography machine performs a continuous process (including a continuous process with mask replacement), a discontinuous process, a high-energy process layer process, or a low-energy process layer process, the first temperature sensor and the second temperature sensor will respectively measure the first temperature parameter and the second temperature parameter before each batch lot is exposed.
在一些实施例中,步骤S102包括:根据所述关系模型得到所述第一温度参数对应的第一能量转换系数ESCF1以及所述第二温度参数对应的第二能量转换系数ESCF2。In some embodiments, step S102 includes: obtaining a first energy conversion coefficient ESCF 1 corresponding to the first temperature parameter and a second energy conversion coefficient ESCF 2 corresponding to the second temperature parameter according to the relationship model.
在一些实施例中,预设关系模型为:;其中,为与光罩的材料相关的系数或者与透镜的材料相关的系数,为温度参数,为光罩或者透镜在常温下的体积,为光罩或者透镜在常温下的表面积,为能量转换系数。In some embodiments, the preset relationship model is: ;in, is a coefficient related to the material of the mask or a coefficient related to the material of the lens, is the temperature parameter, is the volume of the mask or lens at room temperature, is the surface area of the mask or lens at room temperature, is the energy conversion coefficient.
在一些实施例中,μ是在光能量穿透物体距离与反射率关系函数里面的一个系数,一般μ的取值范围通常在0.30到1.70之间,μ的取值由光罩或者透镜的材料决定,具体可以通过查询光罩或者透镜材料属性得到其对应的μ的取值。In some embodiments, μ is a coefficient in the function of the relationship between the distance that light energy penetrates an object and the reflectivity. Generally, the value range of μ is usually between 0.30 and 1.70. The value of μ is determined by the material of the mask or lens. Specifically, the corresponding value of μ can be obtained by querying the material properties of the mask or lens.
这里,和均为可以通过测量得到的有关光罩或者透镜的参数。基于预设关系模型可以计算得到在常温T0下的ESCF0,在每批lot的光刻过程中,基于将第一温度T1以及热膨胀系数β1带入预设关系模型可以得到在第一温度T1下的ESCF1,具体地,,其中,μ1为与光罩的材料相关的系数,VM为光罩在常温T0下的体积,为温度T0至T1的变化量,S1为光罩在常温T0下的表面积;基于将第二温度T2以及热膨胀系数β2带入预设关系模型可以得到在第二温度T2下的ESCF2,具体地,,其中,μ2为与透镜的材料相关的系数,VL为透镜在常温T0下的体积,为温度T0至T2的变化量,S2为透镜在常温T0下的表面积。here, and These are parameters of the mask or lens that can be obtained through measurement. ESCF 0 at room temperature T 0 can be calculated based on the preset relationship model. During the photolithography process of each lot, ESCF 1 at the first temperature T 1 can be obtained by substituting the first temperature T 1 and the thermal expansion coefficient β 1 into the preset relationship model. Specifically, , where μ 1 is a coefficient related to the material of the mask, V M is the volume of the mask at room temperature T 0 , is the change from temperature T 0 to T 1 , S 1 is the surface area of the mask at room temperature T 0 ; based on bringing the second temperature T 2 and the thermal expansion coefficient β 2 into the preset relationship model, the ESCF 2 at the second temperature T 2 can be obtained. Specifically, , where μ 2 is a coefficient related to the material of the lens, V L is the volume of the lens at room temperature T 0 , is the change from temperature T 0 to T 2 , and S 2 is the surface area of the lens at room temperature T 0 .
在本公开实施例中,测量并计算得到常温T0下的ESCF0,在光刻机对ESCF进行校准时,以T0作为基准温度,ESCF0作为基准能量转换系数,以保证每次校准前后的能量转换系数ESCF变化最小,从而改善因能量转换系数ESCF的更新导致的能量基线跳跃(energybaseline jump),而影响光刻的关键尺寸(Critical Dimension,CD)和R2R(Run to Run,通过先前的运作所获得的信息来控制之后的生产)反馈系统。In the disclosed embodiment, ESCF 0 is measured and calculated at room temperature T 0. When calibrating the ESCF on a lithography machine, T 0 is used as the reference temperature and ESCF 0 as the reference energy conversion coefficient to ensure that the energy conversion coefficient ESCF varies minimally before and after each calibration. This reduces energy baseline jumps caused by ESCF updates, which affect the critical dimension (CD) of the lithography process and the R2R (Run to Run, using information obtained from previous operations to control subsequent production) feedback system.
在一些实施例中,在步骤S101之前,能量校准方法还包括:获取所述光刻机中光罩和/或透镜在不同温度下的样本温度参数;基于所述样本温度参数构建预设关系模型。In some embodiments, before step S101, the energy calibration method further includes: obtaining sample temperature parameters of the mask and/or lens in the lithography machine at different temperatures; and constructing a preset relationship model based on the sample temperature parameters.
在一些实施例中,通过第一温度传感器获取光罩在不同温度下的第一样本温度参数,通过第二温度传感器获取透镜在不同温度下的第二样本温度参数,基于第一样本温度参数和第二样本温度参数构建预设关系模型。In some embodiments, first sample temperature parameters of the mask at different temperatures are obtained by a first temperature sensor, second sample temperature parameters of the lens at different temperatures are obtained by a second temperature sensor, and a preset relationship model is constructed based on the first sample temperature parameters and the second sample temperature parameters.
在一些实施例中,第一样本温度参数包括但不限于不同温度下的光罩的体积、热膨胀系数、表面积。第二样本温度参数包括但不限于不同温度下的透镜的体积、热膨胀系数、表面积。In some embodiments, the first sample temperature parameters include but are not limited to the volume, thermal expansion coefficient, and surface area of the mask at different temperatures. The second sample temperature parameters include but are not limited to the volume, thermal expansion coefficient, and surface area of the lens at different temperatures.
在一具体示例中,根据第一样本温度参数、第二样本温度参数量以及测量数据及故障检测系统(Fault Detection Control,FDC)参数,FDC参数包括能量转换系数ESCF,建立以能量转换系数ESCF为应变量,温度参数为自变量的预设关系模型。In a specific example, based on the first sample temperature parameter, the second sample temperature parameter, the measurement data and the fault detection system (FDC) parameters, the FDC parameters include the energy conversion coefficient ESCF, and a preset relationship model is established with the energy conversion coefficient ESCF as the dependent variable and the temperature parameter as the independent variable.
在本公开实施例中,;其中,为校准能量转换系数,为前一批次lot的能量转换系数,为当前批次lot的能量转换系数。根据前一批次lot的能量转换系数和当前批次lot的能量转换系数即可计算得到校准能量转换系数。基于校准能量转换系数即可对光刻机进行能量校准。In the embodiments of the present disclosure, ;in, To calibrate the energy conversion coefficient, is the energy conversion coefficient of the previous batch of lot, = is the energy conversion coefficient for the current lot. The calibration energy conversion coefficient can be calculated based on the energy conversion coefficients for the previous lot and the current lot. The lithography machine can then be energy calibrated based on the calibration energy conversion coefficient.
在一些实施例中,对于双载盘的光刻机,还涉及到点传感器输出的参数与能量校准传感器输出的参数的能量转换系数ECCF(Energy Sensor Calibration ConversionFactor)。In some embodiments, for a dual-carrier lithography machine, an energy conversion factor (ECCF) between parameters output by a point sensor and parameters output by an energy calibration sensor is also involved.
在本公开实施例中,测量并计算得到常温T0下的ECCF0,在光刻机对ECCF进行校准时,以T0作为基准温度,ECCF0作为基准能量转换系数,以保证每次校准前后的能量转换系数ECCF变化最小,从而改善因能量转换系数ECCF的更新导致的能量基线跳跃(energybaseline jump),而影响光刻的关键尺寸CD和R2R反馈系统。In the disclosed embodiment, ECCF 0 at room temperature T 0 is measured and calculated. When calibrating the ECCF on a lithography machine, T 0 is used as the reference temperature and ECCF 0 as the reference energy conversion coefficient to ensure that the energy conversion coefficient ECCF changes minimally before and after each calibration. This reduces energy baseline jumps caused by the update of the energy conversion coefficient ECCF, which affect the critical dimension CD and R2R feedback system of the lithography.
在一具体示例中,根据第一样本温度参数、第二样本温度参数量以及测量数据及故障检测系统(Fault Detection Control,FDC)参数,FDC参数包括能量转换系数ECCF,建立以能量转换系数ECCF为应变量,温度参数为自变量的预设关系模型。In a specific example, based on the first sample temperature parameter, the second sample temperature parameter, measurement data and fault detection control (FDC) parameters, the FDC parameters include the energy conversion coefficient ECCF, and a preset relationship model is established with the energy conversion coefficient ECCF as the dependent variable and the temperature parameter as the independent variable.
在本公开实施例中,;其中,为校准能量转换系数,为前一批次lot的能量转换系数,为当前批次lot的能量转换系数。根据前一批次lot的能量转换系数和当前批次lot的能量转换系数即可计算得到校准能量转换系数。基于校准能量转换系数即可对光刻机进行能量校准。In the embodiments of the present disclosure, ;in, To calibrate the energy conversion coefficient, is the energy conversion coefficient of the previous batch of lot, = is the energy conversion coefficient for the current lot. The calibration energy conversion coefficient can be calculated based on the energy conversion coefficients for the previous lot and the current lot. The lithography machine can then be energy calibrated based on the calibration energy conversion coefficient.
本公开实施例中,引入更多对光刻机的能量衰减有影响的因素(如温度参数),并且建立预设关系模型来进行光刻机的能量校准。如此,可以过滤非真实的能量变化,从而实现更精准的能量校准。In the disclosed embodiments, more factors that affect the energy attenuation of the lithography machine (such as temperature parameters) are introduced, and a preset relationship model is established to perform energy calibration of the lithography machine. This can filter out unrealistic energy changes, thereby achieving more accurate energy calibration.
本公开实施例中,由于引入更多对光刻机的能量衰减有影响的温度参数,使得能量转换系数的变化更平缓,基准(baseline)突变减少,ECCF校准周期延长。In the disclosed embodiment, more temperature parameters that affect the energy attenuation of the lithography machine are introduced, so that the energy conversion coefficient changes more smoothly, the baseline mutation is reduced, and the ECCF calibration period is extended.
在一些实施例中,能量校准方法还包括:利用能量传感器测量得到光刻过程中的能量参数;能量传感器设置在照明模组中,能量传感器用于测量所述光刻机中光源的输出光的能量。In some embodiments, the energy calibration method further includes: using an energy sensor to measure energy parameters in the photolithography process; the energy sensor is set in the illumination module, and the energy sensor is used to measure the energy of the output light of the light source in the photolithography machine.
在一些实施例中,基于所述能量转换系数对光刻机进行能量校准,包括:基于所述能量转换系数和所述能量参数对光刻机进行能量校准。In some embodiments, energy calibration of the lithography machine based on the energy conversion coefficient includes: energy calibration of the lithography machine based on the energy conversion coefficient and the energy parameter.
在一些实施例中,可以根据能量参数和点传感器探测得到的曝光能量得到输入能量和输出能量的能量转换系数ESCF3,根据能量转换系数ESCF3和当前批次lot的能量转换系数也可计算得到校准能量转换系数。基于校准能量转换系数即可对光刻机进行能量校准。In some embodiments, an energy conversion coefficient (ESCF 3 ) between input and output energy can be calculated based on the energy parameter and the exposure energy detected by the point sensor. A calibration energy conversion coefficient can also be calculated based on the energy conversion coefficient ESCF 3 and the energy conversion coefficient of the current lot. The lithography machine can be energy calibrated based on the calibration energy conversion coefficient.
本公开实施例中,将基于温度参数和预设关系模型得到的能量转换系数作为新的FDC参数进行检测和管控,从双边FDC limit管控变为单边FDC limit管控,更有利于设定准确的目标值(Target)和规格限(SPEC limit)。根据工艺层(layer)的关键尺寸规格限(CDSPEC)设定对应的FDC警报(alarm)和报错限制(error limit),可以有效防范产品的关键尺寸CD超出控制限(Out of control,OOC)和超出规格限(Out of specification,OOS),从而更有针对性地设定异常行为对策(Out of Control Action Plan,OCAP),提升在线(Inline)lots的关键尺寸CD的稳定性。In the disclosed embodiment, the energy conversion coefficient obtained based on the temperature parameter and the preset relationship model is used as a new FDC parameter for detection and control, changing from bilateral FDC limit control to unilateral FDC limit control, which is more conducive to setting accurate target values (Target) and specification limits (SPEC limits). Setting corresponding FDC alarms (alarms) and error limits (error limits) based on the critical dimension specification limits (CDSPEC) of the process layer (layer) can effectively prevent the critical dimension CD of the product from exceeding the control limit (Out of control, OOC) and exceeding the specification limit (Out of specification, OOS), thereby more specifically setting abnormal behavior countermeasures (Out of Control Action Plan, OCAP) and improving the stability of the critical dimension CD of the inline (Inline) lots.
本公开实施例中,由于将基于温度参数和预设关系模型得到的能量转换系数作为新的FDC参数进行检测和管控,FDC卡控异常和处理更精准,可以检测异常点并及时确认是真实突变还是非真实突变。In the embodiment of the present disclosure, since the energy conversion coefficient obtained based on the temperature parameter and the preset relationship model is used as a new FDC parameter for detection and control, the FDC card control anomaly and processing are more accurate, and abnormal points can be detected and whether they are real mutations or false mutations can be confirmed in a timely manner.
通过本公开实施例提供的光刻机的能量校准方法,能够有效提升光刻机的能量稳定性,减少非真实突变的能量突变,提升产品关键尺寸CD的稳定性,提高制程能力。The energy calibration method for the lithography machine provided by the embodiment of the present disclosure can effectively improve the energy stability of the lithography machine, reduce energy mutations that are not real mutations, improve the stability of the product's critical dimension CD, and improve process capabilities.
需要说明的是,尽管在附图中以特定顺序描述了本公开中光刻机的能量校准方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。It should be noted that although the steps of the energy calibration method for a lithography machine disclosed herein are described in a specific order in the accompanying drawings, this does not require or imply that the steps must be performed in this specific order, or that all steps shown must be performed to achieve the desired result. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step, and/or a single step may be broken down into multiple steps.
本公开的示例性的实施方式还提供一种光刻机的能量校准装置,图3为本公开实施例提供的一种光刻机的能量校准装置的结构示意图。如图3所示,光刻机的能量校准装置300包括:温度传感器310,用于测量光刻过程中的温度参数;计算模块320,用于根据预设关系模型,得到所述温度参数对应的能量转换系数;所述预设关系模型为能量转换系数与温度参数的关系模型;校准模块330,用于基于所述能量转换系数对光刻机进行能量校准。An exemplary embodiment of the present disclosure further provides an energy calibration device for a lithography machine. Figure 3 is a schematic structural diagram of an energy calibration device for a lithography machine provided in an embodiment of the present disclosure. As shown in Figure 3, the energy calibration device 300 for a lithography machine includes: a temperature sensor 310 for measuring a temperature parameter during the lithography process; a calculation module 320 for obtaining an energy conversion coefficient corresponding to the temperature parameter based on a preset relationship model; the preset relationship model is a relationship model between the energy conversion coefficient and the temperature parameter; and a calibration module 330 for performing energy calibration on the lithography machine based on the energy conversion coefficient.
在一些实施例中,温度传感器310包括:第一温度传感器和第二温度传感器;所述第一温度传感器与所述光刻机中光罩承载台相邻设置,所述第二温度传感器与所述光刻机中透镜相邻设置;所述第一温度传感器用于测量光刻过程中的第一温度参数;所述第二温度传感器用于测量光刻过程中的第二温度参数。In some embodiments, the temperature sensor 310 includes: a first temperature sensor and a second temperature sensor; the first temperature sensor is arranged adjacent to the mask carrier in the lithography machine, and the second temperature sensor is arranged adjacent to the lens in the lithography machine; the first temperature sensor is used to measure the first temperature parameter in the lithography process; the second temperature sensor is used to measure the second temperature parameter in the lithography process.
在一些实施例中,所述第一温度传感器具体用于测量所述光罩承载台上的光罩在光刻过程中的第一温度,并根据所述第一温度和所述光罩的体积,得到所述光罩在所述第一温度下的热膨胀系数;所述第一温度以及所述光罩在所述第一温度下的热膨胀系数构成所述第一温度参数。In some embodiments, the first temperature sensor is specifically used to measure the first temperature of the mask on the mask carrier during the photolithography process, and obtain the thermal expansion coefficient of the mask at the first temperature based on the first temperature and the volume of the mask; the first temperature and the thermal expansion coefficient of the mask at the first temperature constitute the first temperature parameter.
在一些实施例中,所述第二温度传感器具体用于测量所述透镜在光刻过程中的第二温度,并根据所述第二温度和所述透镜的体积,得到所述透镜在所述第二温度下的热膨胀系数;所述第二温度以及所述透镜在所述第二温度下的热膨胀系数构成所述第二温度参数。In some embodiments, the second temperature sensor is specifically used to measure the second temperature of the lens during the photolithography process, and obtain the thermal expansion coefficient of the lens at the second temperature based on the second temperature and the volume of the lens; the second temperature and the thermal expansion coefficient of the lens at the second temperature constitute the second temperature parameter.
在一些实施例中,所述计算模块320还用于根据所述预设关系模型得到所述第一温度参数对应的第一能量转换系数以及所述第二温度参数对应的第二能量转换系数。In some embodiments, the calculation module 320 is further configured to obtain a first energy conversion coefficient corresponding to the first temperature parameter and a second energy conversion coefficient corresponding to the second temperature parameter according to the preset relationship model.
在一些实施例中,所述装置300还包括:构建模块340,用于获取所述光刻机中光罩和/或透镜在不同温度下的样本温度参数;基于所述样本温度参数构建预设关系模型。In some embodiments, the apparatus 300 further includes: a construction module 340 for obtaining sample temperature parameters of the mask and/or lens in the lithography machine at different temperatures; and constructing a preset relationship model based on the sample temperature parameters.
在一些实施例中,所述装置300还包括:能量传感器350,所述能量传感器用于测量光刻过程中的能量参数;所述能量参数用于表征所述光刻机中光源的输出光的能量。In some embodiments, the apparatus 300 further includes an energy sensor 350 , which is used to measure energy parameters during the photolithography process; the energy parameters are used to characterize the energy of output light from the light source in the photolithography machine.
在一些实施例中,校准模块330具体用于基于所述能量转换系数和所述能量参数对光刻机进行能量校准。In some embodiments, the calibration module 330 is specifically configured to perform energy calibration on the lithography machine based on the energy conversion coefficient and the energy parameter.
对于本公开实施例未披露的细节,请参照前述实施例的描述而理解。For details not disclosed in the embodiments of the present disclosure, please refer to the description of the aforementioned embodiments for understanding.
可以理解地,在本实施例中,“模块”可以是部分电路、部分处理器、部分程序或软件等等,当然也可以是非模块化的。而且在本实施例中的各组成部分可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。It is understood that in this embodiment, a "module" can be a portion of a circuit, a portion of a processor, a portion of a program or software, etc., and of course, it can also be non-modular. Moreover, the various components in this embodiment can be integrated into a single processing unit, each unit can exist physically separately, or two or more units can be integrated into a single unit. The above-mentioned integrated units can be implemented in the form of hardware or software functional modules.
所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented as a software functional module and is not sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of this embodiment, or the portion that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product. This computer software product is stored in a storage medium and includes several instructions for causing a computer device (which can be a personal computer, server, or network device, etc.) or a processor to execute all or part of the steps of the method described in this embodiment. The aforementioned storage medium includes various media that can store program code, such as a USB flash drive, a mobile hard drive, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
因此,本公开实施例还提供了一种计算机存储介质,该计算机存储介质存储有计算机程序,所述计算机程序被至少一个处理器执行时实现前述实施例中任一项所述模型校准方法的步骤。Therefore, an embodiment of the present disclosure further provides a computer storage medium storing a computer program, which implements the steps of the model calibration method described in any one of the aforementioned embodiments when the computer program is executed by at least one processor.
基于上述的一种光刻机的能量校准装置的组成以及计算机存储介质,参见图4,其示出了本公开实施例提供的一种电子设备的组成结构示意图一。如图4所示,电子设备400可以包括:通信接口401、存储器402和处理器403;各个组件通过总线系统404耦合在一起。可理解,总线系统404用于实现这些组件之间的连接通信。总线系统404除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图4中将各种总线都标为总线系统404。其中,通信接口401,用于在与其他外部网元之间进行收发信息过程中,信号的接收和发送;Based on the composition of the energy calibration device of the above-mentioned lithography machine and the computer storage medium, refer to Figure 4, which shows a schematic diagram of the composition structure of an electronic device provided by an embodiment of the present disclosure. As shown in Figure 4, the electronic device 400 may include: a communication interface 401, a memory 402 and a processor 403; each component is coupled together through a bus system 404. It can be understood that the bus system 404 is used to realize the connection and communication between these components. In addition to the data bus, the bus system 404 also includes a power bus, a control bus and a status signal bus. However, for the sake of clarity, various buses are marked as bus systems 404 in Figure 4. Among them, the communication interface 401 is used to receive and send signals in the process of sending and receiving information between other external network elements;
存储器402,用于存储能够在处理器403上运行的计算机程序;Memory 402, used to store computer programs that can be run on processor 403;
处理器403,用于在运行所述计算机程序时,执行:The processor 403 is configured to, when running the computer program, execute:
利用温度传感器测量得到光刻过程中的温度参数;The temperature parameters during the photolithography process are measured using a temperature sensor;
根据预设关系模型,得到所述温度参数对应的能量转换系数;所述预设关系模型为能量转换系数与温度参数的关系模型;According to a preset relationship model, an energy conversion coefficient corresponding to the temperature parameter is obtained; the preset relationship model is a relationship model between the energy conversion coefficient and the temperature parameter;
基于所述能量转换系数对光刻机进行能量校准。Energy calibration of the lithography machine is performed based on the energy conversion coefficient.
可以理解,本公开实施例中的存储器402可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data RateSDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步链动态随机存取存储器(Synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器402旨在包括但不限于这些和任意其它适合类型的存储器。It is understood that the memory 402 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories. Among them, the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory. The volatile memory may be a random access memory (RAM), which is used as an external cache. By way of example and not limitation, many forms of RAM are available, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate synchronous DRAM (DDRSDRAM), enhanced synchronous DRAM (ESDRAM), synchronous link DRAM (SLDRAM), and direct RAM bus random access memory (DRRAM). The memory 402 of the systems and methods described herein is intended to include, but is not limited to, these and any other suitable types of memory.
而处理器403可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器403中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器403可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器402,处理器403读取存储器402中的信息,结合其硬件完成上述方法的步骤。Processor 403 may be an integrated circuit chip with signal processing capabilities. During implementation, each step of the above method can be completed by hardware integrated logic circuits or software instructions in processor 403. The above processor 403 may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components. It can implement or execute the various methods, steps, and logic block diagrams disclosed in the embodiments of this disclosure. A general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in conjunction with the embodiments of this disclosure can be directly implemented and executed by a hardware decoding processor, or by a combination of hardware and software modules in the decoding processor. The software module can be located in a storage medium well-known in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, etc. The storage medium is located in memory 402, and processor 403 reads the information in memory 402 and, in conjunction with its hardware, completes the steps of the above method.
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(ApplicationSpecific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable LogicDevice,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。It is understood that the embodiments described herein may be implemented using hardware, software, firmware, middleware, microcode, or a combination thereof. For hardware implementation, the processing unit may be implemented in one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), general-purpose processors, controllers, microcontrollers, microprocessors, other electronic units for performing the functions described in the present disclosure, or a combination thereof.
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。For software implementation, the techniques described herein can be implemented by modules (e.g., procedures, functions, etc.) that perform the functions described herein. The software code can be stored in a memory and executed by a processor. The memory can be implemented in the processor or external to the processor.
可选地,作为另一个实施例,处理器403还配置为在运行所述计算机程序时,执行前述实施例中任一项所述的光刻机的能量校准方法。Optionally, as another embodiment, the processor 403 is further configured to execute the energy calibration method of the lithography machine described in any one of the aforementioned embodiments when running the computer program.
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本公开的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。It should be understood that “one embodiment” or “an embodiment” mentioned throughout the specification means that specific features, structures or characteristics related to the embodiment are included in at least one embodiment of the present disclosure. Therefore, “in one embodiment” or “in an embodiment” appearing throughout the specification does not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that in the various embodiments of the present disclosure, the size of the serial numbers of the above-mentioned processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present disclosure. The serial numbers of the embodiments of the present disclosure are for description only and do not represent the advantages and disadvantages of the embodiments.
以上所述仅为本公开的优选实施方式,并非因此限制本公开的专利范围,凡是在本公开的发明构思下,利用本公开说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本公开的专利保护范围内。The above description is only a preferred embodiment of the present disclosure and does not limit the patent scope of the present disclosure. All equivalent structural transformations made by using the contents of the present disclosure and the drawings under the inventive concept of the present disclosure, or direct/indirect application in other related technical fields are included in the patent protection scope of the present disclosure.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202510464927.9A CN119987164B (en) | 2025-04-14 | 2025-04-14 | Energy calibration method and device for photoetching machine |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202510464927.9A CN119987164B (en) | 2025-04-14 | 2025-04-14 | Energy calibration method and device for photoetching machine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN119987164A CN119987164A (en) | 2025-05-13 |
| CN119987164B true CN119987164B (en) | 2025-08-15 |
Family
ID=95650008
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202510464927.9A Active CN119987164B (en) | 2025-04-14 | 2025-04-14 | Energy calibration method and device for photoetching machine |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN119987164B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116368436A (en) * | 2020-11-11 | 2023-06-30 | Asml荷兰有限公司 | Method and apparatus for thermally deforming optical element |
| CN118974660A (en) * | 2022-03-28 | 2024-11-15 | 佳能株式会社 | Information processing device, exposure device, and article manufacturing method |
| CN119439648A (en) * | 2024-12-12 | 2025-02-14 | 新毅东(北京)科技有限公司 | Exposure system, photolithography machine and exposure control method |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0532236B1 (en) * | 1991-09-07 | 1997-07-16 | Canon Kabushiki Kaisha | System for stabilizing the shapes of optical elements, exposure apparatus using this system and method of manufacturing semiconductor devices |
| JP2000208390A (en) * | 1999-01-11 | 2000-07-28 | Nec Kyushu Ltd | Exposing system and method |
| JP2002170761A (en) * | 2000-12-01 | 2002-06-14 | Nikon Corp | Exposure apparatus, exposure method, and device manufacturing method |
| US7978339B2 (en) * | 2005-10-04 | 2011-07-12 | Asml Netherlands B.V. | Lithographic apparatus temperature compensation |
| US7483804B2 (en) * | 2006-09-29 | 2009-01-27 | Tokyo Electron Limited | Method of real time dynamic CD control |
| DE102007022895B9 (en) * | 2007-05-14 | 2013-11-21 | Erich Thallner | Device for transferring structures provided in a mask onto a substrate |
| JP5771938B2 (en) * | 2010-10-14 | 2015-09-02 | 株式会社ニコン | Exposure method, server apparatus, exposure apparatus, and device manufacturing method |
| KR20240066549A (en) * | 2022-11-08 | 2024-05-16 | 삼성전자주식회사 | Mask exposure system and method of mask exposure |
-
2025
- 2025-04-14 CN CN202510464927.9A patent/CN119987164B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116368436A (en) * | 2020-11-11 | 2023-06-30 | Asml荷兰有限公司 | Method and apparatus for thermally deforming optical element |
| CN118974660A (en) * | 2022-03-28 | 2024-11-15 | 佳能株式会社 | Information processing device, exposure device, and article manufacturing method |
| CN119439648A (en) * | 2024-12-12 | 2025-02-14 | 新毅东(北京)科技有限公司 | Exposure system, photolithography machine and exposure control method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN119987164A (en) | 2025-05-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI434026B (en) | Method and apparatus for implementing a universal coordinate system for metrology data | |
| KR102269301B1 (en) | Lithographic method and lithographic apparatus | |
| US8440376B2 (en) | Exposure determining method, method of manufacturing semiconductor device, and computer program product | |
| CN110622069A (en) | Method for predicting yield of device manufacturing process | |
| TWI827068B (en) | Non-transitory computer readable medium for predicting defect location for subsequent scanning by a scanning electron microscope | |
| TW201921133A (en) | Method of adapting feed-forward parameters | |
| KR20130034631A (en) | Method of applying a pattern to a substrate, device manufacturing method and lithographic apparatus for use in such methods | |
| KR20120132683A (en) | Lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product | |
| JP7198912B2 (en) | Method and computer program for determining in-plane distortion (IPD) across a substrate | |
| TWI753479B (en) | Method for configuring a lithographic apparatus and computer program product | |
| CN115993754A (en) | Model calibration method and device, electronic equipment and computer storage medium | |
| CN114270271B (en) | Method for controlling a lithographic apparatus | |
| Jin et al. | Review of overlay error and controlling methods in alignment system for advanced lithography | |
| CN108170006B (en) | Lithography machine matching method | |
| KR102566155B1 (en) | Patterning method, lithography apparatus, and article manufacturing method | |
| CN119987164B (en) | Energy calibration method and device for photoetching machine | |
| US9606452B2 (en) | Lithography metrology method for determining best focus and best dose and lithography monitoring method using the same | |
| CN111771167A (en) | Alignment mark positioning in lithography process | |
| WO2024141256A1 (en) | Source mask optimization based on systematic effects on a lithographic apparatus | |
| TWI791321B (en) | Methods and computer programs for configuration of a sampling scheme generation model | |
| CN119335806A (en) | Optical proximity correction method and system, and mask manufacturing method | |
| EP3913435A1 (en) | Configuration of an imputer model | |
| KR20220154198A (en) | Construction techniques of the impute model | |
| CN116952545B (en) | Method and device for monitoring focus offset of photoetching machine, electronic equipment and storage medium | |
| JP7152597B2 (en) | Method and Apparatus for Setting Spatial Dimensions of a Scanning Beam |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |