CN110120346B - LDMOS transistor and manufacturing method thereof - Google Patents
LDMOS transistor and manufacturing method thereof Download PDFInfo
- Publication number
- CN110120346B CN110120346B CN201810118981.8A CN201810118981A CN110120346B CN 110120346 B CN110120346 B CN 110120346B CN 201810118981 A CN201810118981 A CN 201810118981A CN 110120346 B CN110120346 B CN 110120346B
- Authority
- CN
- China
- Prior art keywords
- insulating layer
- region
- shielding
- trench
- gate structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims description 84
- 239000004065 semiconductor Substances 0.000 claims description 74
- 239000000758 substrate Substances 0.000 claims description 74
- 230000008569 process Effects 0.000 claims description 65
- 238000005530 etching Methods 0.000 claims description 38
- 229920002120 photoresistant polymer Polymers 0.000 claims description 29
- 150000002500 ions Chemical class 0.000 claims description 27
- 238000002955 isolation Methods 0.000 claims description 24
- 238000005468 ion implantation Methods 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- 230000001154 acute effect Effects 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 abstract description 17
- 230000005684 electric field Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 6
- 238000002347 injection Methods 0.000 abstract description 6
- 239000007924 injection Substances 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 258
- 230000015572 biosynthetic process Effects 0.000 description 9
- -1 boron ions Chemical class 0.000 description 8
- 210000000746 body region Anatomy 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000002513 implantation Methods 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910008599 TiW Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910001439 antimony ion Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- OKZIUSOJQLYFSE-UHFFFAOYSA-N difluoroboron Chemical compound F[B]F OKZIUSOJQLYFSE-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910001449 indium ion Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/603—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0221—Manufacture or treatment of FETs having insulated gates [IGFET] having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended-drain MOSFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供一种LDMOS晶体管及其制造方法,其中栅极结构和漏区之间的屏蔽绝缘层中形成有上宽下窄的屏蔽沟槽,通过所述屏蔽沟槽可以增加远离栅极结构一侧的屏蔽绝缘层的平均厚度,降低金属层下方的电场强度,同时使所述金属层下方的电场更加均匀地分布,并有利于抑制栅极结构边缘的热载流子注入效应,从而能够实现更高的击穿电压和更低的导通电阻,最终提高器件性能。
The present invention provides an LDMOS transistor and a manufacturing method thereof, wherein a shielding trench with an upper width and a lower width is formed in the shielding insulating layer between the gate structure and the drain region, and the distance from the gate structure can be increased by the shielding trench. The average thickness of the shielding insulating layer on the side of the gate reduces the electric field strength under the metal layer, and at the same time makes the electric field under the metal layer more uniformly distributed, and is conducive to suppressing the hot carrier injection effect at the edge of the gate structure, so as to achieve Higher breakdown voltage and lower on-resistance ultimately improve device performance.
Description
技术领域technical field
本发明涉及集成电路制造技术领域,尤其涉及一种LDMOS晶体管及其制造方法。The present invention relates to the technical field of integrated circuit manufacturing, in particular to an LDMOS transistor and a manufacturing method thereof.
背景技术Background technique
横向双扩散场效应晶体管(LDMOS,lateral double diffused MOS transistor)具有线性度好、增益高、耐压高、输出功率大、热稳定性好、效率高、宽带匹配性能好、易于和MOS工艺集成等优点,并且其价格远低于砷化镓器件,是一种非常具有竞争力的功率器件,被广泛用于GSM,PCS,W-CDMA基站的功率放大器,以及无线广播与核磁共振等方面。LDMOS器件的击穿电压BV与导通电阻Rdson是两个用来衡量器件性能的重要参数。较高的击穿电压有助于保证器件在实际工作时的稳定性,如工作电压为50V的LDMOS器件,其击穿电压需要达到110V以上。而导通电阻Rdson则会直接影响到器件的输出功率与增益等特性。Lateral double diffused MOS transistor (LDMOS, lateral double diffused MOS transistor) has good linearity, high gain, high withstand voltage, high output power, good thermal stability, high efficiency, good broadband matching performance, easy to integrate with MOS process, etc. Advantages, and its price is much lower than GaAs device, is a very competitive power device, is widely used in GSM, PCS, W-CDMA base station power amplifier, as well as wireless broadcasting and nuclear magnetic resonance and so on. The breakdown voltage BV and the on-resistance Rdson of the LDMOS device are two important parameters used to measure the performance of the device. A higher breakdown voltage helps to ensure the stability of the device during actual operation. For example, an LDMOS device with an operating voltage of 50V needs to have a breakdown voltage of more than 110V. The on-resistance Rdson directly affects the output power and gain of the device.
因此,需要一种新的LDMOS晶体管及其制造方法,能够具有更高击穿电压和更低导通电阻。Therefore, there is a need for a new LDMOS transistor and a method for fabricating the same, which can have higher breakdown voltage and lower on-resistance.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种LDMOS晶体管及其制造方法,能够具有更高击穿电压和更低导通电阻。The purpose of the present invention is to provide an LDMOS transistor and a manufacturing method thereof, which can have higher breakdown voltage and lower on-resistance.
为了实现上述目的,本发明提供一种LDMOS晶体管,包括:In order to achieve the above purpose, the present invention provides an LDMOS transistor, comprising:
半导体衬底;semiconductor substrate;
掺杂类型不同的阱区和漂移区,所述阱区和漂移区横向分布在半导体衬底内且相隔第一横向距离,所述阱区中形成有源区,所述漂移区中形成有漏区;a well region and a drift region with different doping types, the well region and the drift region are laterally distributed in the semiconductor substrate and separated by a first lateral distance, an active region is formed in the well region, and a drain region is formed in the drift region Area;
栅极结构,位于所述半导体衬底表面上且横跨所述阱区的边缘和所述漂移区的边缘,所述源区和漏区分居所述栅极结构的两侧;a gate structure located on the surface of the semiconductor substrate and spanning the edge of the well region and the edge of the drift region, the source region and the drain region flanking the gate structure;
屏蔽绝缘层,覆盖在所述栅极结构的顶部并延伸至部分所述漂移区的表面上,所述屏蔽绝缘层暴露出所述漏区,且所述漏区和栅极结构之间的覆盖在所述漂移区的表面上的屏蔽绝缘层中形成有上宽下窄的屏蔽沟槽,所述屏蔽沟槽未贯穿所述屏蔽绝缘层;a shielding insulating layer covering the top of the gate structure and extending to part of the surface of the drift region, the shielding insulating layer exposing the drain region, and covering between the drain region and the gate structure A shielding trench with an upper width and a lower width is formed in the shielding insulating layer on the surface of the drift region, and the shielding trench does not penetrate the shielding insulating layer;
金属层,覆盖在所述源区和屏蔽绝缘层的表面上。a metal layer covering the source region and the surface of the shielding insulating layer.
可选的,所述的LDMOS晶体管还包括与所述源区掺杂类型不同的体连接区,所述体连接区和所述源区横向分布在所述阱区内且相隔第二横向距离。Optionally, the LDMOS transistor further includes a body connection region with a doping type different from that of the source region, the body connection region and the source region are laterally distributed in the well region and separated by a second lateral distance.
可选的,所述体连接区和所述源区之间设有一场氧隔离结构,以使所述体连接区和所述源区相隔另一横向距离。Optionally, a field oxygen isolation structure is provided between the body connection region and the source region, so that the body connection region and the source region are separated by another lateral distance.
可选的,所述漏区和栅极结构之间无场氧隔离结构。Optionally, there is no field oxygen isolation structure between the drain region and the gate structure.
可选的,所述金属层覆盖在所述屏蔽绝缘层的表面上的一端,覆盖在所述屏蔽沟槽靠近所述漏区的边缘上,或者,覆盖在所述屏蔽绝缘层靠近所述漏区的边缘上。Optionally, the metal layer covers one end of the surface of the shielding insulating layer, covers the edge of the shielding trench close to the drain region, or covers the shielding insulating layer close to the drain on the edge of the area.
可选的,所述屏蔽绝缘层的材质包括氧化硅、氮化硅和氮氧化硅中的至少一种。Optionally, the material of the shielding insulating layer includes at least one of silicon oxide, silicon nitride and silicon oxynitride.
可选的,所述栅极结构包括依次层叠在所述半导体衬底表面上的栅介质层和栅电极层以及覆盖在所述栅介质层和栅电极层的侧壁上的侧墙,所述屏蔽沟槽底部的屏蔽绝缘层的厚度大于等于所述栅介质层的厚度。Optionally, the gate structure includes a gate dielectric layer and a gate electrode layer sequentially stacked on the surface of the semiconductor substrate, and a spacer covering the sidewalls of the gate dielectric layer and the gate electrode layer, the The thickness of the shielding insulating layer at the bottom of the shielding trench is greater than or equal to the thickness of the gate dielectric layer.
可选的,所述屏蔽沟槽在膜层叠加方向上的形状为上宽下窄的直角梯形,所述直角梯形的直角位于靠近所述栅极结构的一侧;或者,所述屏蔽沟槽在膜层叠加方向上的形状为扇形;或者,所述屏蔽沟槽在膜层叠加方向上的形状为具有直角的多边形,所述多边形靠近所述栅极结构的一侧为直角边,远离所述栅极结构的一侧为连续的弧线段或者为斜率逐渐增大的多条线段依次连接而成的多角边。Optionally, the shape of the shielding trench in the film stacking direction is a right-angled trapezoid that is wide at the top and narrow at the bottom, and the right angle of the right-angled trapezoid is located on the side close to the gate structure; or, the shielding trench is The shape of the film layer stacking direction is a fan shape; or, the shape of the shielding trench in the film layer stacking direction is a polygon with a right angle, and the side of the polygon close to the gate structure is a right angle side, away from all One side of the gate structure is a continuous arc line segment or a polygonal side formed by connecting a plurality of line segments with gradually increasing slopes in sequence.
可选的,所述直角梯形的锐角为45°~70°。Optionally, the acute angle of the right-angled trapezoid is 45°˜70°.
本发明还提供一种LDMOS晶体管的制造方法,包括以下步骤:The present invention also provides a method for manufacturing an LDMOS transistor, comprising the following steps:
提供一半导体衬底,所述半导体衬底中形成有掺杂类型不同的阱区和漂移区,所述阱区和漂移区横向分布在半导体衬底内且相隔第一横向距离,所述半导体衬底的表面上形成有横跨所述阱区的边缘和所述漂移区的边缘的栅极结构;A semiconductor substrate is provided, in which a well region and a drift region of different doping types are formed, the well region and the drift region are laterally distributed in the semiconductor substrate and separated by a first lateral distance, the semiconductor substrate A gate structure spanning the edge of the well region and the edge of the drift region is formed on the surface of the bottom;
在所述半导体衬底和栅极结构的表面上形成具有上宽下窄的屏蔽沟槽的屏蔽绝缘层,所述屏蔽沟槽未贯穿所述屏蔽绝缘层;forming a shielding insulating layer with a shielding trench that is wide at the top and narrow at the bottom on the surfaces of the semiconductor substrate and the gate structure, and the shielding trench does not penetrate the shielding insulating layer;
刻蚀所述屏蔽绝缘层,至少形成暴露出所述阱区的部分表面的源极接触孔;etching the shielding insulating layer to at least form a source contact hole exposing a part of the surface of the well region;
在所述源极接触孔和剩余的屏蔽绝缘层的表面上形成金属层。A metal layer is formed on the surface of the source contact hole and the remaining shielding insulating layer.
可选的,在所述半导体衬底和栅极结构的表面上形成具有上宽下窄的屏蔽沟槽的屏蔽绝缘层的过程包括:Optionally, the process of forming a shielding insulating layer with shielding trenches that are wide at the top and narrow at the bottom on the surfaces of the semiconductor substrate and the gate structure includes:
在所述半导体衬底和栅极结构的表面上形成具有第一沟槽的屏蔽绝缘层,所述第一沟槽的底部保留有一定厚度的屏蔽绝缘层;forming a shielding insulating layer with a first trench on the surfaces of the semiconductor substrate and the gate structure, and a shielding insulating layer with a certain thickness is reserved at the bottom of the first trench;
在所述具有第一沟槽的屏蔽绝缘层表面上覆盖牺牲层,且所述牺牲层填满所述第一沟槽;A sacrificial layer is covered on the surface of the shielding insulating layer with the first trench, and the sacrificial layer fills the first trench;
在所述第一沟槽远离所述栅极结构的一侧的上方区域刻蚀所述牺牲层和所述屏蔽绝缘层,以形成上宽下窄的第二沟槽,所述第二沟槽的靠近所述栅极结构的侧壁为所述牺牲层,远离所述栅极结构的侧壁为所述屏蔽绝缘层,所述第二沟槽的底部低于或者等高于所述第一沟槽的底部;The sacrificial layer and the shielding insulating layer are etched in the upper region of the side of the first trench away from the gate structure, so as to form a second trench that is wide at the top and narrow at the bottom. The second trench is The sidewall close to the gate structure is the sacrificial layer, the sidewall far from the gate structure is the shielding insulating layer, and the bottom of the second trench is lower than or equal to the first trench the bottom of the groove;
去除所述牺牲层,以在所述屏蔽绝缘层形成上宽下窄的屏蔽沟槽。The sacrificial layer is removed, so as to form a shielding trench with a wide upper portion and a narrow lower portion in the shielding insulating layer.
可选的,在所述半导体衬底和栅极结构的表面上形成具有第一沟槽的屏蔽绝缘层的过程包括:Optionally, the process of forming the shielding insulating layer with the first trench on the surfaces of the semiconductor substrate and the gate structure includes:
在所述半导体衬底的漂移区的部分表面上形成第一绝缘层;forming a first insulating layer on a part of the surface of the drift region of the semiconductor substrate;
在所述半导体衬底、栅极结构和第一绝缘层的表面上依次形成顶部平坦化的第二绝缘层以及具有位于所述第一绝缘层上方的开口的图案化掩膜层;forming a top planarized second insulating layer and a patterned mask layer having an opening above the first insulating layer in sequence on the surfaces of the semiconductor substrate, the gate structure and the first insulating layer;
以所述图案化掩膜层为掩膜,采用垂直刻蚀工艺或者近似垂直的刻蚀工艺刻蚀所述第二绝缘层,以形成暴露出所述第一绝缘层表面的第一沟槽。Using the patterned mask layer as a mask, a vertical etching process or an approximately vertical etching process is used to etch the second insulating layer to form a first trench exposing the surface of the first insulating layer.
可选的,所述图案化掩膜层的材质包括光刻胶,所述第一绝缘层为氧化硅层,所述第二绝缘层为依次层叠在所述第一绝缘层表面上的氮化硅层和氧化硅层。Optionally, the material of the patterned mask layer includes photoresist, the first insulating layer is a silicon oxide layer, and the second insulating layer is a nitride layer sequentially stacked on the surface of the first insulating layer. silicon layer and silicon oxide layer.
可选的,所述垂直刻蚀工艺或者近似垂直的刻蚀工艺的刻蚀气体包括含碳氟的气体。Optionally, the etching gas of the vertical etching process or the approximately vertical etching process includes a gas containing carbon and fluorine.
可选的,在形成所述第一绝缘层之后且在形成所述第二绝缘层之前,以所述栅极结构和所述第一绝缘层为掩膜,对所述栅极结构两侧的半导体衬底进行源漏离子注入,以在所述阱区中形成源区,在所述第一绝缘层远离所述栅极结构一侧的漂移区中形成漏区;或者,刻蚀所述屏蔽绝缘层形成暴露出所述阱区的部分表面的源极接触孔的同时,还形成暴露出部分漂移区表面的漏极接触孔,所述漏极接触孔位于所述屏蔽沟槽远离所述栅极结构的一侧的屏蔽绝缘层中,在形成所述源极接触孔和漏极接触孔之后,以所述栅极结构和所述屏蔽绝缘层为掩膜,对所述源极接触孔和漏极接触孔底部的半导体衬底进行源漏离子注入,以在所述阱区中形成源区,在所述漂移区中形成漏区。Optionally, after the first insulating layer is formed and before the second insulating layer is formed, the gate structure and the first insulating layer are used as masks, and the gate structure and the first insulating layer are used as masks. performing source-drain ion implantation on the semiconductor substrate to form a source region in the well region and a drain region in the drift region on the side of the first insulating layer away from the gate structure; or, etching the shielding The insulating layer forms a source contact hole exposing part of the surface of the well region, and also forms a drain contact hole exposing part of the surface of the drift region, the drain contact hole is located in the shielding trench away from the gate In the shielding insulating layer on one side of the electrode structure, after the source contact hole and the drain contact hole are formed, using the gate structure and the shielding insulating layer as a mask, the source contact hole and the drain contact hole are formed. The semiconductor substrate at the bottom of the drain contact hole is implanted with source and drain ions to form a source region in the well region and a drain region in the drift region.
可选的,在形成源区之后,在所述阱区中形成与所述源区掺杂类型不同且相对所述源区更远离所述栅极结构的体连接区,所述体连接区和所述源区横向分布在所述阱区内且相隔第二横向距离。Optionally, after the source region is formed, a body connection region having a different doping type from that of the source region and being farther away from the gate structure than the source region is formed in the well region, the body connection region and The source regions are distributed laterally within the well region and are separated by a second lateral distance.
可选的,所述体连接区和所述源区之间设有一场氧隔离结构,以使所述体连接区和所述源区相隔第二横向距离;和/或,所述漏区和所述栅极结构之间无场氧隔离结构。Optionally, a field oxygen isolation structure is provided between the body connection region and the source region, so that the body connection region and the source region are separated by a second lateral distance; and/or, the drain region and There is no field oxygen isolation structure between the gate structures.
可选的,提供所述半导体衬底的过程中,在形成所述漂移区之前或之后,采用多步离子注入工艺对所述栅极结构远离所述漂移区一侧的半导体衬底进行多次离子注入,以形成所述阱区。Optionally, in the process of providing the semiconductor substrate, before or after forming the drift region, a multi-step ion implantation process is used to perform multiple operations on the semiconductor substrate on the side of the gate structure away from the drift region. ion implantation to form the well region.
可选的,在所述第一沟槽远离所述栅极结构的一侧的上方区域刻蚀所述牺牲层和所述屏蔽绝缘层,以形成上宽下窄的第二沟槽的过程包括:Optionally, the process of etching the sacrificial layer and the shielding insulating layer in the upper region of the side of the first trench away from the gate structure to form a second trench with an upper width and a lower width includes: :
首先,在所述牺牲层的表面上形成图案化光刻胶层,所述图案化光刻胶层具有与所述第一沟槽有一定错位的开口,所述开口相对所述第一沟槽更远离所述栅极结构;First, a patterned photoresist layer is formed on the surface of the sacrificial layer, the patterned photoresist layer has an opening that is displaced from the first trench, and the opening is opposite to the first trench further away from the gate structure;
然后,以所述图案化光刻胶层为掩膜,刻蚀所述牺牲层和所述屏蔽绝缘层,以形成上宽下窄的第二沟槽。Then, using the patterned photoresist layer as a mask, the sacrificial layer and the shielding insulating layer are etched, so as to form a second trench with an upper width and a lower width.
可选的,所述牺牲层包括具有平坦的顶部表面的抗反射层。Optionally, the sacrificial layer includes an anti-reflection layer having a flat top surface.
与现有技术相比,本发明的技术方案具有以下有益效果:Compared with the prior art, the technical scheme of the present invention has the following beneficial effects:
1、本发明的LDMOS晶体管,通过所述屏蔽沟槽可以增加远离栅极结构一侧的屏蔽绝缘层的平均厚度,降低金属层下方的电场强度,同时使所述金属层下方的电场更加均匀地分布,并有利于抑制栅极结构边缘的热载流子注入(HCI)效应,从而能够实现更高的击穿电压和更低的导通电阻,最终提高器件性能。 1. In the LDMOS transistor of the present invention, the shielding trench can increase the average thickness of the shielding insulating layer on the side away from the gate structure, reduce the electric field intensity under the metal layer, and at the same time make the electric field under the metal layer more uniform. distribution, and is beneficial to suppress the hot carrier injection (HCI) effect at the edge of the gate structure, thereby enabling higher breakdown voltage and lower on-resistance, and ultimately improving device performance .
2、本发明的LDMOS晶体管的制造方法,只需要将屏蔽绝缘层中形成的矩形沟槽变为上宽下窄的屏蔽沟槽即可,制造工艺简单。2. The manufacturing method of the LDMOS transistor of the present invention only needs to change the rectangular trench formed in the shielding insulating layer into a shielding trench that is wide at the top and narrow at the bottom, and the manufacturing process is simple.
附图说明Description of drawings
图1是一种LDMOS器件的剖面结构示意图;1 is a schematic diagram of a cross-sectional structure of an LDMOS device;
图2A至图2F是本发明具体实施例的LDMOS器件的剖面结构示意图;2A to 2F are schematic cross-sectional structural diagrams of an LDMOS device according to a specific embodiment of the present invention;
图3是本发明具体实施例的LDMOS器件的制造方法流程图;3 is a flowchart of a method for manufacturing an LDMOS device according to a specific embodiment of the present invention;
图4A至图4F是本发明具体实施例的LDMOS器件的制造方法中的器件剖面结构示意图;4A to 4F are schematic cross-sectional structural diagrams of a device in a method for manufacturing an LDMOS device according to a specific embodiment of the present invention;
图5A至5B分别是对图1所示的LDMOS和本发明的LDMOS进行性能测试的结果示意图。5A to 5B are schematic diagrams showing the results of performance testing of the LDMOS shown in FIG. 1 and the LDMOS of the present invention, respectively.
具体实施方式Detailed ways
正如背景技术中所述,较高性能的LDMOS晶体管需要具有更高击穿电压和更低导通电阻。为了获得更高击穿电压和更低导通电阻,目前的一种方法是通过在栅极结构和漏区上方形成具有矩形槽的屏蔽绝缘层(shield plate),并在屏蔽绝缘层上覆盖铝等金属层来形成高性能LDMOS晶体管,这种LDMOS晶体管的具体结构如图1所示,包括:半导体衬底100,横向分布在半导体衬底100中且具有一定横向间隔的N型漂移区(N-drift)103和P阱(P-WELL)105,形成在半导体衬底100表面上的栅极结构101以及位于栅极结构101侧壁上的侧墙102,形成在N型漂移区(N-drift)103中的漏区(N+,drian)104,形成在P阱(P-WELL)105中的源区(N+,source)107、体连接区(P-body)108以及隔离源区107和体连接区108的场氧隔离结构106,覆盖在侧墙102、栅极结构101以及漏区104与栅极结构101之间的N型漂移区103的表面上的屏蔽绝缘层109,覆盖在源区107和屏蔽绝缘层109的表面上的金属层110。在栅极结构101和漏区104之间的屏蔽绝缘层109中形成有矩形槽,屏蔽绝缘层109表面上的金属层110可以均匀N型漂移区104的场强分布,降低栅漏边缘电场,提高击穿电压,降低导通电阻。As described in the background, higher performance LDMOS transistors are required to have higher breakdown voltages and lower on-resistances. In order to obtain higher breakdown voltage and lower on-resistance, one current approach is to form a shield plate with rectangular grooves over the gate structure and drain region, and cover the shield plate with aluminum A high-performance LDMOS transistor is formed by using other metal layers. The specific structure of this LDMOS transistor is shown in FIG. 1, including: a
然而,这种结构LDMOS晶体管的击穿电压很难再得以提高,因为矩形槽底部的屏蔽绝缘层109因受热载流子注入效应而累积电荷,使得栅极结构边缘的电场仍旧较高。However, the breakdown voltage of the LDMOS transistor with this structure is difficult to improve, because the shielding insulating
基于此,本发明提供一种LDMOS晶体管及其制造方法,能够改善屏蔽绝缘层的沟槽底部的热载流子注入效应,均匀漂移区的场强分布,降低栅漏边缘电场,提高击穿电压,降低导通电阻。Based on this, the present invention provides an LDMOS transistor and a manufacturing method thereof, which can improve the hot carrier injection effect at the bottom of the trench of the shielding insulating layer, uniform the field intensity distribution of the drift region, reduce the gate-drain fringe electric field, and improve the breakdown voltage. , reduce the on-resistance.
为使本发明的目的、特征更明显易懂,下面结合附图对本发明的具体实施方式作进一步的说明,然而,本发明可以用不同的形式实现,不应只是局限在所述的实施例。In order to make the purpose and features of the present invention more clearly understood, the specific embodiments of the present invention will be further described below with reference to the accompanying drawings. However, the present invention can be implemented in different forms and should not be limited to the described embodiments.
请参考图2A至2E,本发明提供一种LDMOS晶体管,包括:半导体衬底200、栅极结构201、侧墙202、漂移区203、漏区204、阱区205、场氧隔离结构206、源区207、体连接区208、屏蔽绝缘层209和金属层210。2A to 2E, the present invention provides an LDMOS transistor including: a
其中,半导体衬底100可以是本领域技术人员熟知的任意一种半导体材料,例如体硅衬底、绝缘体上硅衬底、硅上有硅锗外延层的衬底等;阱区205和漂移区203的掺杂类型不同,例如当LDMOS晶体管为N型晶体管时,阱区205的掺杂类型为P型,即阱区205为P阱(P-well),漂移区203的掺杂类型为N型,当LDMOS晶体管为P型晶体管时,阱区205的掺杂类型为N型,即阱区205为N阱,漂移区204的掺杂类型为P型,所述阱区205和漂移区203横向分布在半导体衬底200内且相隔一横向距离。The
栅极结构201位于所述半导体衬底200表面上,且横跨所述阱区205的边缘和所述漂移区203的边缘,即栅极结构201不仅仅覆盖在阱区205和漂移区204之间的半导体衬底表面上,还部分覆盖在所述阱区205的表面上以及部分覆盖在所述漂移区203的表面上。所述栅极结构201可以包括栅介质层(未图示,例如为二氧化硅或者介电常数K大于等于4的高K介质)及层叠在所述栅介质层表面上的栅电极层(例如为多晶硅或者金属)。侧墙202位于所述半导体衬底200的表面上且覆盖在所述栅极结构201的侧壁上。The
漏区204位于所述漂移区203内,且掺杂类型与所述漂移区203相同,但掺杂浓度不同,漏区204和栅极结构201之间无场氧隔离结构。所述体连接区208和源区207横向分布在所述阱区205内且通过场氧隔离结构206相隔另一横向距离,源区207相对体连接区208更靠近栅极结构201,由此源区207和漏区204分居栅极结构201的两侧,且源区207相比漏区204更靠近栅极结构201,所述体连接区208和源区207的掺杂类型不同,其中,体连接区206的掺杂类型与阱区205的掺杂类型相同,但掺杂浓度不同,源区207的掺杂类型与漂移区203的掺杂类型相同,但掺杂浓度不同。场氧隔离结构206可以是通过浅沟槽隔离工艺形成的场氧隔离结构,也可以是通过局部场氧隔离工艺形成的场氧隔离结构。The
屏蔽绝缘层209覆盖在侧墙202、栅极结构201以及栅极结构201和漏区204之间的漂移区203的表面上,且在栅极结构201和漏区204之间区域中具有上窄下宽的屏蔽沟槽,屏蔽沟槽自所述屏蔽绝缘层209的表面延伸至所述屏蔽绝缘层209中,且未贯穿所述屏蔽绝缘层209,屏蔽沟槽底部保留的屏蔽绝缘层209厚度可以大于等于所述栅极结构201中的栅介质层的厚度。此时,所述屏蔽绝缘层209在漂移区203上方的部分仅暴露出所述漏区204。请参考图2A,所述屏蔽沟槽在膜层叠加方向(即从底部到顶部的方向)上的形状可以为上宽下窄的直角梯形209a,所述直角梯形209a的直角位于靠近所述栅极结构201的一侧,所述直角梯形中的锐角为45°~70°;或者,请参考图2C,所述屏蔽沟槽在膜层叠加方向上的形状为上宽下窄的具有直角和弧边的多边形209b,所述多边形209b靠近所述栅极结构201的一侧的底角Q为直角,底部为水平线段,远离所述栅极结构201的一侧的边为弧线段;或者,请参考图2D,所述屏蔽沟槽在膜层叠加方向上的形状为扇形209c,所述扇形209c靠近所述栅极结构201的一侧的边为竖直边,远离所述栅极结构201的一侧的边为弧线段,其所述弧线段使得所述屏蔽沟槽底部的屏蔽绝缘层209沿远离栅极结构201的方向越来越厚;或者,请参考图2E,所述屏蔽沟槽在膜层叠加方向上的形状为上宽下窄且具有直角的多边形209d,所述上宽下窄且具有直角的多边形209d靠近所述栅极结构201的一侧为直角边,远离所述栅极结构201的一侧为斜率逐渐增大的多条线段依次连接而成的多角边,所述多角边中斜率最大的边的斜率小于等于tg70°。屏蔽绝缘层209的材质可以为氧化硅、氮化硅或氮氧化硅,如图2A至2E中所示,也可以包括氧化硅、氮化硅和氮氧化硅中的两种以上,如图2F中的2091、2092、2093所示,即,图2F中的2091层和2093层的材质可以相同,也可以不同;图2F中的2092层的材质和2091层的材质不同。The shielding insulating
金属层210覆盖在所述源区207、栅极结构201侧壁和屏蔽绝缘层209的表面上,且所述金属层210覆盖在所述屏蔽绝缘层209的表面上的一端可以覆盖在所述屏蔽沟槽靠近所述漏区204的边缘上,如图2A、图2C至图2F所示,也可以覆盖在所述屏蔽绝缘层209靠近所述漏区204的边缘上,如图2B所示,即所述金属层210对所述屏蔽绝缘层209的覆盖可以是完全覆盖,也可以是部分覆盖。所述金属层210的材质包括Ti、Al、W、TiN或TiW中的至少一种。The
请参考图5A和图5B,对本发明的LDMOS晶体管和图1所示的LDMOS晶体管进行相同击穿电压BV下的饱和电流Idsat(即在栅压一定时源/漏之间流动的最大电流)和品质因素FOM2(figure of merit)测试分析,其中选取的本发明的LDMOS晶体管和图1所示的LDMOS晶体管,仅仅是屏蔽绝缘层在栅极结构和漏区之间的区域中沟槽形状不同,本发明的LDMOS晶体管的屏蔽绝缘层在栅极结构和漏区之间的区域中的屏蔽沟槽形状为直角梯形,图1所示的LDMOS晶体管的屏蔽绝缘层的沟槽形状为矩形,且本发明的LDMOS晶体管的屏蔽沟槽的顶部开口的宽度与图1所示的LDMOS晶体管的屏蔽绝缘层的沟槽的顶部开口的宽度相同。从图5A和5B中可以看出,本发明的LDMOS晶体管相比具有相同击穿电压的图1所示的LDMOS晶体管,其饱和电流Idsat和品质因数FOM2均相对较好,其中,FOM2或称器件优值,与导通电阻有关,该值越低,导通电阻越低,器件性能越好。也就是说,具有相同的Idsat和FOM2的情况下,本发明的LDMOS晶体管击穿电压更高,导通电阻更低。这是因为本发明的LDMOS晶体管,其屏蔽绝缘层在漂移区上方具有上宽下窄的屏蔽沟槽,当屏蔽沟槽的顶部开口宽度与现有的LDMOS晶体管的矩形沟槽的顶部开口宽度相同时,所述屏蔽沟槽可以增加远离栅极结构一侧的屏蔽绝缘层的平均厚度,降低金属层下方的电场强度,同时使所述金属层下方的电场更加均匀地分布,并有利于抑制栅极结构边缘的热载流子注入(HCI)效应,从而能够实现更高的击穿电压和更低的导通电阻,最终提高器件性能。 Referring to FIGS. 5A and 5B , the saturation current Idsat (that is, the maximum current flowing between the source/drain when the gate voltage is constant) and the LDMOS transistor shown in FIG. 1 are subjected to the same breakdown voltage BV and According to the FOM2 (figure of merit) test analysis, the selected LDMOS transistor of the present invention and the LDMOS transistor shown in FIG. 1 only have different trench shapes in the region between the gate structure and the drain region of the shielding insulating layer. The shielding trench shape of the shielding insulating layer of the LDMOS transistor of the present invention in the region between the gate structure and the drain region is a right-angled trapezoid, and the trench shape of the shielding insulating layer of the LDMOS transistor shown in FIG. 1 is a rectangle, and the present The width of the top opening of the shielding trench of the inventive LDMOS transistor is the same as the width of the top opening of the trench of the shielding insulating layer of the LDMOS transistor shown in FIG. 1 . It can be seen from FIGS. 5A and 5B that the LDMOS transistor of the present invention has relatively better saturation current Idsat and quality factor FOM2 than the LDMOS transistor shown in FIG. 1 with the same breakdown voltage, wherein FOM2 or device The figure of merit is related to the on-resistance. The lower the value, the lower the on-resistance and the better the device performance. That is to say, with the same Idsat and FOM2, the LDMOS transistor of the present invention has a higher breakdown voltage and lower on-resistance. This is because the shielding insulating layer of the LDMOS transistor of the present invention has a shielding trench with a wide top and a narrow bottom above the drift region, when the top opening width of the shielding trench is the same as the top opening width of the rectangular trench of the existing LDMOS transistor At the same time, the shielding trench can increase the average thickness of the shielding insulating layer on the side away from the gate structure, reduce the electric field intensity under the metal layer, and at the same time make the electric field under the metal layer more uniformly distributed, which is beneficial to suppress the gate The hot carrier injection (HCI) effect at the edge of the polar structure enables higher breakdown voltage and lower on-resistance, ultimately improving device performance .
请参考图3,本发明还提供一种LDMOS晶体管的制造方法,包括以下步骤:Please refer to FIG. 3 , the present invention also provides a method for manufacturing an LDMOS transistor, comprising the following steps:
S1,提供一半导体衬底,所述半导体衬底中形成有掺杂类型不同的阱区和漂移区,所述阱区和漂移区横向分布在半导体衬底内且相隔第一横向距离,所述半导体衬底的表面上形成有横跨所述阱区的边缘和所述漂移区的边缘的栅极结构;S1, providing a semiconductor substrate, in which a well region and a drift region of different doping types are formed, the well region and the drift region are laterally distributed in the semiconductor substrate and separated by a first lateral distance, the A gate structure spanning the edge of the well region and the edge of the drift region is formed on the surface of the semiconductor substrate;
S2,在所述半导体衬底和栅极结构的表面上形成具有上宽下窄的屏蔽沟槽的屏蔽绝缘层,所述屏蔽沟槽未贯穿所述屏蔽绝缘层;S2, forming a shielding insulating layer having a shielding trench that is wide at the top and narrow at the bottom on the surfaces of the semiconductor substrate and the gate structure, and the shielding trench does not penetrate the shielding insulating layer;
S3,刻蚀所述屏蔽绝缘层,至少形成暴露出所述阱区的部分表面的源极接触孔;S3, etching the shielding insulating layer to at least form a source contact hole exposing a part of the surface of the well region;
S4,在所述源极接触孔和剩余的屏蔽绝缘层的表面上形成金属层。S4, forming a metal layer on the surface of the source contact hole and the remaining shielding insulating layer.
请参考图4A,在步骤S1中,提供的半导体衬底400可以是本领域技术人员熟知的任意半导体材料,例如体硅衬底、锗硅衬底、绝缘体上硅衬底或者在一基底上有掺杂的半导体外延层结构。当所述半导体衬底400用于后继形成N型LDMOS晶体管时,所述半导体衬底400为P型掺杂;当所述半导体衬底400用于后继形成P型LDMOS晶体管时,所述半导体衬底400为N型掺杂,所述P型掺杂的离子为硼离子、铟离子、镓离子中的一种或几种,所述N型掺杂的离子为磷离子、砷离子、锑离子中的一种或几种。在步骤S1中,可以先通过浅沟槽隔离工艺或者局部场氧隔离工艺等器件隔离工艺(包括光刻、刻蚀、介质填充等步骤),在半导体衬底400中形成位于待形成的阱区405中场氧隔离结构401;然后,在半导体衬底400的表面上,通过沉积工艺或者热生长工艺形成栅介质层402a,并在栅介质层402a的表面上沉积栅电极层402b;然后通过栅极光刻、刻蚀工艺依次刻蚀栅电极层402b、栅介质层402a,从而形成栅极结构402,其中,所述栅介质层402a可以是氮化硅、氮氧化硅、氧化硅或高K介电材料,所述高K介电材料为HfO、ZrO、WN、Al2O3、HfSiO或其任意组合,所述栅电极402b可以是多晶硅或者金属。之后,可以采用侧墙成形工艺(包括侧墙材料沉积、刻蚀等)在栅极结构402的侧壁上形成侧墙403。Referring to FIG. 4A, in step S1, the provided
在步骤S1中,在形成栅极结构402之前或者形成栅极结构402之后或者形成侧墙403之后,通过相应的光掩膜工艺和离子注入工艺来分别形成漂移区404和阱区405,具体地,先通过一层光刻胶掩膜来保护用于形成源区一侧的半导体衬底400表面,而暴露出用于形成漏区一侧的半导体衬底400表面,再对暴露出的半导体衬底400表面进行一步较高能量的轻掺杂LDD离子注入,形成轻掺杂的漂移区404,注入离子如磷、砷等,能量为50keV~300keV,剂量为5e11cm-2-4e12cm-2,之后去除所述光刻胶掩膜。形成的所述漂移区404中可以无任何场氧隔离结构。In step S1, before the
在步骤S1中,在形成所述漂移区404之前或之后,先形成一层新的光刻胶掩膜来暴露出待形成阱区的半导体衬底400表面而保护包括漂移区404表面在内的半导体衬底400的其他表面,接着采用多步离子注入工艺来对暴露出的半导体衬底400表面进行离子注入,以形成阱区405。采用多步离子注入工艺形成阱区405的具体过程包括:先通过一步高剂量、高能量的垂直离子注入工艺对暴露出的半导体衬底400表面进行第一次离子注入,且注入的离子类型与所述漂移区404的掺杂离子类型相反,用以中和半导体衬底400中的反型离子,其中注入剂量例如为5e13 cm-2,注入能量例如为300keV,当阱区405为P阱时,所述第一次离子注入的离子例如为硼离子;接着,采用一步低剂量、低能量的垂直离子注入工艺对暴露出的半导体衬底400表面进行第二次离子注入,且注入的离子类型与所述漂移区404的掺杂离子类型相反,用于调节阈值电压和形成沟道,其中注入剂量例如为1e13 cm-2,注入能量例如为80keV,当阱区405为P阱时,所述第二次离子注入的离子例如为硼离子;然后,采用低能量、高剂量的倾斜离子注入工艺对暴露出的半导体衬底400表面进行第三次离子注入,且注入的离子类型与所述漂移区404的掺杂离子类型相反,用于防止穿通,其中注入剂量例如为2.5e13 cm-2,注入能量例如为30keV,与半导体衬底300的表面上的垂线之间的夹角(即倾斜角度)为30度~45度,当阱区405为P阱时,所述第三次离子注入的离子例如为硼离子。最后,通过退火处理,使得漂移区404和阱区405中的掺杂离子能够扩散到位,此时阱区405和漂移区404的边缘会向栅极结构402底部扩散一段距离,由此形成的阱区405和漂移区404横向分布在半导体衬底404内且相隔一横向距离,栅极结构402横跨所述阱区405的边缘和所述漂移区404的边缘。In step S1, before or after the
请参考图4B至4E,本实施例的步骤S2中,在所述半导体衬底400和栅极结构402的表面上形成具有上宽下窄的屏蔽沟槽的屏蔽绝缘层的具体过程可以包括:Referring to FIGS. 4B to 4E , in step S2 of the present embodiment, the specific process of forming a shielding insulating layer having shielding trenches with upper width and lower width on the surfaces of the
首先,请参考图4B,采用沉积工艺或者热生长(热氧化、热氮化或者热氧氮化)工艺,至少在漂移区404和阱区405的表面上覆盖一定厚度的第一绝缘层406,第一绝缘层406的厚度取决于器件性能的要求,其厚度通常大于等于栅介质层402a的厚度,第一绝缘层406的材质为氧化硅、氮化硅或氮氧化硅;然后对所述第一绝缘层406进行刻蚀,去除阱区405以及所述漂移区404用于形成漏区的表面上的第一绝缘层406,第一绝缘层406用于在后续形成屏蔽沟槽时保护漂移区404的表面,以及用作刻蚀停止层以保证后续屏蔽沟槽底部的屏蔽绝缘层的厚度。在本发明的一实施例中,在第一绝缘层406刻蚀完成之后,可以以栅极结构402、侧墙403以及第一绝缘层406为掩膜,对栅极结构402两侧的半导体衬底400进行源漏离子注入,且注入的离子类型与漂移区404的掺杂离子类型相同,以在阱区405中形成源区407,在第一绝缘层406远离栅极结构402一侧的漂移区404中形成漏区408,并在源区407形成之后进一步在所述阱区405中形成与所述源区407掺杂类型不同且相对所述源区407更远离所述栅极结构402的体连接区409,所述体连接区409和所述源区407横向分布在所述阱区404内且相隔第二横向距离。在本发明的另一实施例中,源区407、漏区408以及体连接区409的形成也可以在后续刻蚀屏蔽绝缘层形成源极接触孔和漏极接触孔之后,以屏蔽绝缘层为掩膜,向所述源极接触孔底部的阱区405表面和漏极接触孔底部的漂移区表面进行源漏离子注入,以形成所述源区407和漏区408。此外,在本发明的其他各实施例中,还可以在形成源区407和漏区408之前,先形成一图案化光掩模,所述图案化光掩模暴露出待形成体区409的阱区405表面而保护用于形成源区407的阱区405表面以及用于形成漏区408的漂移区404表面,然后通过向所述图案化光掩模暴露出待形成体区409的阱区405表面注入与阱区405掺杂类型相同的离子,以在阱区405中形成体连接区409。此外,当待形成的LDMOS晶体管为N型LDMOS晶体管时,源区407和漏区408中注入的源漏离子为N+离子,例如为磷或砷或锑,剂量比阱区405和漂移区404中掺杂的离子的剂量大,例如为1e14cm-2~1e16cm-2,体区409中注入的离子为P+离子,例如为硼或二氟化硼或铟或镓,剂量比阱区405中掺杂的离子的剂量大,例如为1e14 cm-2-1e16cm-2。First, referring to FIG. 4B , a deposition process or a thermal growth (thermal oxidation, thermal nitridation or thermal oxynitridation) process is used to cover at least the surfaces of the
接着,请继续参考图4B,在阱区405(包括体连接区409和源区407)、场氧隔离结构401、侧墙403、栅极结构402、第一绝缘层406以及漂移区404(包括漏区408)的表面上通过沉积工艺和化学机械抛光工艺来形成顶部平坦化的第二绝缘层,第二绝缘层一方面用于形成第一沟槽,另一方面还为后续层的形成提供平坦的工艺窗口。所述第二绝缘层可以是单层结构,也可以是叠层结构,所述叠层结构例如包括依次紧挨第一绝缘层406的一层较薄的介质绝缘层410以及一层较厚的介质绝缘层411,其中,所述较厚的介质绝缘层411的沉积厚度足以使其在通过化学机械平坦化工艺处理后具有平坦的上表面,较薄的介质绝缘层410相对于第一绝缘层406和较厚的介质绝缘层411均具有较高的刻蚀选择比,其材质例如为氮化硅或氮氧化硅,第一绝缘层406和所述较厚的介质绝缘层411的材质可以相同,也可以不同,第一绝缘层406和所述较厚的介质绝缘层411的材质可以选自氧化硅、氮化硅或氮氧化硅,在本发明的一实施例中,第一绝缘层406例如为氧化硅层,所述第二绝缘层例如为依次层叠在所述第一绝缘层406表面上的氮化硅层(即较薄的介质绝缘层410)和氧化硅层(即较厚的介质绝缘层411)。之后,在所述第二绝缘层的表面上形成具有开口的图案化掩膜层414,图案化掩膜层414可以为单层结构,也可以为叠层结构,其材质包括光刻胶,所述图案化掩膜层414的开口位于栅极结构402和漏区408之间的漂移区404的上方,以所述图案化掩膜层414为掩膜,采用垂直刻蚀工艺或者近似垂直的刻蚀工艺刻蚀所述第二绝缘层,刻蚀停止在以形成暴露出所述第一绝缘层406表面的第一沟槽413,第一沟槽413为直线型沟槽,即第一沟槽413的侧壁为竖直的,或者近似竖直的(即底角接近90°,例如为75°~89°)。所述垂直刻蚀工艺或者近似垂直的刻蚀工艺为干法刻蚀工艺,例如为等离子刻蚀工艺。在本发明的一实施例中,所述等离子刻蚀工艺采用的刻蚀气体包括含碳氟的气体(比如CF4、CHF3、C2F6、C3F8等),在刻蚀时提高形成的第一沟槽413的精度,并减小对第一沟槽底部暴露的第一绝缘层406表面的损伤。Next, please continue to refer to FIG. 4B , in the well region 405 (including the
然后,请参考图4C,可以根据图形化掩膜层414的材质选择合适的工艺(例如灰化工艺、化学机械抛光工艺或者刻蚀工艺)去除图案化掩膜层414,并通过沉积、涂覆等工艺在第二绝缘层以及第一沟槽413的表面上形成牺牲层414,所述牺牲层414的厚度需要填满第一沟槽413,此外,牺牲层414可以是单层结构,也可以是叠层结构,其材质可以包括含硅的抗反射层(Si-ARC)、聚酰亚胺(PMMA)或有机玻璃(PI);之后可以通过光刻工艺在所述牺牲层414的表面上形成图案化光刻胶层415,所述图案化光刻胶层415具有与所述第一沟槽413有一定错位的开口416,所述开口416相对所述第一沟槽413更远离所述栅极结构402,两者的错位距离为D,即图案化光刻胶层415和图形化掩膜层414中的图案可以相同,但相对有一些错位,因此,图形化光刻胶层415和图形化掩膜层414可以采用相同的掩膜版,在形成图案化光刻胶层415时将所述掩膜版进行一定的错位移动即可。Then, referring to FIG. 4C , a suitable process (eg, ashing process, chemical mechanical polishing process or etching process) can be selected according to the material of the patterned
接着,请参考图4D,以图形化光刻胶层415为掩膜,采用利于产生较多聚合物的刻蚀气体(heavy polymer gas,重聚合物气体)刻蚀所述牺牲层414和第二绝缘层(包括介质绝缘层410和介质绝缘层411),即在所述第一沟槽远离所述栅极结构的一侧的上方区域刻蚀所述牺牲层414和所述屏蔽绝缘层,以形成倒锥形沟槽,即上宽下窄的第二沟槽417,第二沟槽417靠近所述栅极结构402的侧壁为牺牲层414,远离所述栅极结构402的侧壁为所述屏蔽绝缘层(即依次层叠的第一绝缘层406、介质绝缘层410和介质绝缘层411),所述第二沟槽417的底部低于或者等高于所述第一沟槽413的底部,即第二沟槽417的底部暴露出所述第一绝缘层406的表面,所述刻蚀气体可以包括C4F6,还可以包括O2。Next, referring to FIG. 4D , using the patterned
然后,请参考图4E,可以采用氧灰化工艺去除图形化光刻胶层415,并通过合适的工艺(例如湿法腐蚀等)去除剩余的牺牲层,由此形成上宽下窄的屏蔽沟槽418,此时,所述屏蔽沟槽418实质上是由第一沟槽413和第二沟槽417叠加而成,呈直角梯形,所述直角梯形的直角位于靠近所述栅极结构402的一侧,所述直角梯形中的锐角为45°~70°。Then, referring to FIG. 4E , the patterned
需要说明的是,本发明其他实施例的步骤S2中形成的屏蔽沟槽418的形状不仅仅限于上述的上宽下窄的直角梯形,还可以为其他形状的上宽下窄的多边形,例如在本发明的一实施例的步骤S2中形成的屏蔽沟槽418可以为上宽下窄且具有直角的多边形(如图2E中的209d),所述上宽下窄且具有直角的多边形靠近所述栅极结构的一侧为直角边,远离所述栅极结构的一侧为斜率逐渐增大的多条线段依次连接而成的多角边,所述多角边中斜率最大的边的斜率小于等于tg70°,请参考图4B至4E,所述上宽下窄且具有直角的多边形的形成过程包括:先形成第一沟槽413,之后形成底部依次升高的多个锥形沟槽,每个锥形沟槽的形成过程即包括牺牲层沉积、图形化光刻胶错位掩膜、牺牲层和屏蔽绝缘层的锥形刻蚀、光刻胶和牺牲层去除),每个锥形沟槽的具体形成过程可以参考上述的锥形沟槽(即第二沟槽417)的形成过程,在此不再赘述。再例如,在本发明的另一实施例的步骤S2中形成的屏蔽沟槽418为上宽下窄的直角曲面(如图2C中的209b所示),所述直角曲面靠近所述栅极结构的一侧的底角为直角,底部为水平线段,远离所述栅极结构的一侧的边为弧线段,请参考图4B至4E以及图2C,所述上宽下窄的直角曲面的形成过程包括:先形成第一沟槽413,之后通过牺牲层沉积、图形化光刻胶错位掩膜、牺牲层和屏蔽绝缘层的圆形刻蚀或弧形刻蚀(以形成弧形沟槽)等步骤来形成具有弧形侧壁的沟槽,该沟槽靠近栅极结构的一侧侧壁为弧形的牺牲层,远离栅极结构的一侧侧壁为弧形的屏蔽绝缘层,之后去除光刻胶和牺牲层后获得所述上宽下窄的具有直角的多边形,具体过程可以参考上宽下窄、呈直角梯形的屏蔽沟槽418的形成过程,其中在形成第二沟槽时的刻蚀工艺参数进行适应性调整,以有利于形成弧形槽。再例如,在本发明的又一实施例的步骤S2中形成的所述屏蔽沟槽的形状为扇形(如图2D中的209c),所述扇形靠近所述栅极结构的一侧的边为竖直边,从竖直边的底部开始至沟槽顶部远离所述栅极结构的一侧而形成的边为弧线段,所述弧线段使得所述屏蔽沟槽底部的屏蔽绝缘层沿远离栅极结构的方向越来越厚。It should be noted that, the shape of the shielding
请参考图4E,在步骤S3中,通过相应的光刻、刻蚀工艺刻蚀所述屏蔽绝缘层,即刻蚀源区407、漏区408以及体连接区409上方的介质绝缘层410和介质绝缘层411,直至暴露出源区407、漏区408以及体连接区409的表面,从而形成源极接触孔420、漏极接触孔419以及体连接区421接触孔,源极接触孔420可以暴露出侧墙403的侧壁表面。需要说明的是,在本发明的其他实施例中,当在步骤S3之前还未形成源区407、漏区408以及体连接区409时,在步骤S3中刻蚀相应区域的所述屏蔽绝缘层,直至暴露出用于形成体连接区409和源区408的阱区405表面以及用于形成漏区408的漂移区404表面,以形成源极接触孔420、漏极接触孔419以及体连接区接触孔421;而且,在本发明的一些实施例中,也可以仅仅刻蚀源区408(或者用于形成源区408的阱区)上方的屏蔽介质层,刻蚀停止在源区408(或者阱区405)的表面,从而形成源极接触孔420。Referring to FIG. 4E, in step S3, the shielding insulating layer is etched through corresponding photolithography and etching processes, that is, the
此外,当步骤S3之前还未形成源区407、漏区408以及体连接区409时,可以先在屏蔽绝缘层上形成图形化的源漏光刻胶层,该图形化的源漏光刻胶层保护体连接区接触孔421及其下方的阱区405,而暴露出源极接触孔420、漏极接触孔419,然后以所述图形化的源漏光刻胶层和屏蔽绝缘层为掩膜,对源极接触孔420、漏极接触孔419下方的半导体衬底400进行源漏离子注入,从而在源极接触孔420下方的阱区405中形成源区407,在漏极接触孔419下方的漂移区404中形成漏区408,然后去除图形化的源漏光刻胶层,再形成图形化的体区光刻胶层,该图形化的体区光刻胶层保护源极接触孔420及其下方的源区407、漏极接触孔419及其下方的漏区408,而暴露出体连接区接触孔421及其下方的阱区405;然后以所述图形化的体区光刻胶层和屏蔽绝缘层为掩膜,对体连接区接触孔421下方的阱区405进行离子注入,从而在体连接区接触孔421下方的阱区405中形成体连接区409。In addition, when the
请参考图4F,在步骤S4中,首先,可以通过溅射沉积等工艺在包含源极接触孔420的整个器件表面上覆盖包括Ti、Al、W、TiN或TiW中的至少一种金属,以形成金属层422,即在屏蔽绝缘层及其暴露出的半导体衬底400(包括暴露出的阱区405、漂移区404、漏区407、源区408以及体连接区409)的表面上覆盖金属层422;然后,可以刻蚀去除多余的金属层,仅仅保留从源区408(远离栅极结构402的一侧)到屏蔽沟槽418(远离栅极结构402的一侧)之间的区域上的金属层,或者仅仅保留从源区408到漏区419靠近栅极结构402一侧边缘之间的区域上的金属层,即剩余的金属层422覆盖在所述源区407、侧墙403侧壁和屏蔽绝缘层的表面上,且剩余的金属层422对所述屏蔽绝缘层的覆盖可以是完全覆盖,也可以是部分覆盖,具体的,剩余的金属层422覆盖在所述屏蔽绝缘层的表面上的一端可以覆盖在所述屏蔽沟槽418靠近所述漏区408的一侧边缘上,也可以覆盖在所述屏蔽绝缘层靠近所述漏区408一侧的边缘上。剩余的金属层422横跨在栅极结构402上方,且其一端与源区407相接触,另一端与漏区408间隔一定的距离,金属层422与栅极结构402之间的屏蔽绝缘层的厚度不同,器件的耦合电容大小也会有所不同,金属层422的另一端与漏区408之间的距离不同,器件的源区407和漏区408之间的电场强度也会有所不同,因此,屏蔽绝缘层的厚度及其中的屏蔽沟槽418的位置,可以根据不同的器件性能要求进行适应性变化。Referring to FIG. 4F , in step S4, firstly, at least one metal including Ti, Al, W, TiN or TiW may be covered on the entire surface of the device including the
本发明的半导体器件的制造方法,其工艺步骤可以与现有的标准CMOS工艺兼容,只需要将原有的矩形沟槽变为上窄下宽的屏蔽沟槽,就可以降低栅极和漏区间的区域中的电场,并使所述电场更加均匀地分布,并有利于抑制栅极结构边缘的热载流子注入(HCI)效应,器件的输出电阻可以大幅度提高,从而可以实现更高的击穿电压和更低的导通电阻。The process steps of the semiconductor device manufacturing method of the present invention can be compatible with the existing standard CMOS process. It only needs to change the original rectangular trench into a shielding trench with a narrow top and a wide bottom to reduce the gate and drain interval. The electric field in the area of the device can be more uniformly distributed, and it is beneficial to suppress the hot carrier injection (HCI) effect at the edge of the gate structure, and the output resistance of the device can be greatly improved, so that higher breakdown voltage and lower on-resistance.
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (22)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810118981.8A CN110120346B (en) | 2018-02-06 | 2018-02-06 | LDMOS transistor and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810118981.8A CN110120346B (en) | 2018-02-06 | 2018-02-06 | LDMOS transistor and manufacturing method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110120346A CN110120346A (en) | 2019-08-13 |
| CN110120346B true CN110120346B (en) | 2022-04-22 |
Family
ID=67519460
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810118981.8A Active CN110120346B (en) | 2018-02-06 | 2018-02-06 | LDMOS transistor and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110120346B (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021035416A1 (en) * | 2019-08-23 | 2021-03-04 | 京东方科技集团股份有限公司 | Display device and manufacturing method therefor |
| CN112740317B (en) | 2019-08-23 | 2023-08-29 | 京东方科技集团股份有限公司 | Display device and manufacturing method thereof |
| DE102019216138A1 (en) * | 2019-10-21 | 2021-04-22 | Robert Bosch Gmbh | VERTICAL FIELD EFFECT TRANSISTOR AND METHOD OF FORMING THE SAME |
| CN114335156A (en) * | 2022-03-16 | 2022-04-12 | 北京芯可鉴科技有限公司 | Lateral double-diffused metal oxide semiconductor field effect transistor and method of making the same |
| CN115084245B (en) * | 2022-07-25 | 2023-01-17 | 北京芯可鉴科技有限公司 | LDMOS device and its preparation method and chip |
| CN117855283B (en) * | 2024-03-08 | 2024-05-17 | 粤芯半导体技术股份有限公司 | A LDMOS device and a method for manufacturing the same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101326643A (en) * | 2005-12-14 | 2008-12-17 | Nxp股份有限公司 | MOS transistor and method of manufacturing MOS transistor |
| CN101414634A (en) * | 2008-12-01 | 2009-04-22 | 西安电子科技大学 | Heterojunction field effect transistor for groove insulated gate type multiple source field plate |
| CN101529589A (en) * | 2006-07-28 | 2009-09-09 | 万国半导体股份有限公司 | Bottom source ldmosfet structure and method |
| CN105047716A (en) * | 2015-06-10 | 2015-11-11 | 上海华虹宏力半导体制造有限公司 | RF LDMOS device and manufacturing method thereof |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7282765B2 (en) * | 2005-07-13 | 2007-10-16 | Ciclon Semiconductor Device Corp. | Power LDMOS transistor |
| US20170207177A1 (en) * | 2016-01-18 | 2017-07-20 | Silanna Asia Pte Ltd. | Quasi-Lateral Diffusion Transistor with Diagonal Current Flow Direction |
-
2018
- 2018-02-06 CN CN201810118981.8A patent/CN110120346B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101326643A (en) * | 2005-12-14 | 2008-12-17 | Nxp股份有限公司 | MOS transistor and method of manufacturing MOS transistor |
| CN101529589A (en) * | 2006-07-28 | 2009-09-09 | 万国半导体股份有限公司 | Bottom source ldmosfet structure and method |
| CN101414634A (en) * | 2008-12-01 | 2009-04-22 | 西安电子科技大学 | Heterojunction field effect transistor for groove insulated gate type multiple source field plate |
| CN105047716A (en) * | 2015-06-10 | 2015-11-11 | 上海华虹宏力半导体制造有限公司 | RF LDMOS device and manufacturing method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110120346A (en) | 2019-08-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110120346B (en) | LDMOS transistor and manufacturing method thereof | |
| KR101795875B1 (en) | Semiconductor structure and manufacturing method thereof | |
| US9466700B2 (en) | Semiconductor device and method of fabricating same | |
| US9613960B2 (en) | Fin field effect transistors and fabrication method thereof | |
| US8664718B2 (en) | Power MOSFETs and methods for forming the same | |
| US8158475B2 (en) | Gate electrodes of HVMOS devices having non-uniform doping concentrations | |
| US8183626B2 (en) | High-voltage MOS devices having gates extending into recesses of substrates | |
| US20080160706A1 (en) | Method for fabricating semiconductor device | |
| US9660020B2 (en) | Integrated circuits with laterally diffused metal oxide semiconductor structures and methods for fabricating the same | |
| KR102051752B1 (en) | Semiconductor Device and Method for Manufacturing Thereof | |
| US10910493B2 (en) | Semiconductor device and method of manufacturing the same | |
| US9935176B1 (en) | Method for fabricating LDMOS using CMP technology | |
| CN108574014B (en) | LDMOS device and manufacturing method thereof | |
| US10418461B2 (en) | Semiconductor structure with barrier layers | |
| TWM635837U (en) | Semiconductor device | |
| CN109087859B (en) | A method of manufacturing a semiconductor device | |
| US8138559B2 (en) | Recessed drift region for HVMOS breakdown improvement | |
| US10269972B2 (en) | Fin-FET devices and fabrication methods thereof | |
| CN109427584B (en) | Manufacturing method of semiconductor device and semiconductor device | |
| US12424443B2 (en) | Fin field-effect transistor semiconductor device and method of forming the same | |
| US11545396B2 (en) | Semiconductor structure and method for forming the same | |
| CN110164964A (en) | Semiconductor structure and forming method thereof | |
| CN116153972B (en) | Semiconductor device and method for manufacturing the same | |
| US20160181418A1 (en) | Semiconductor device and fabrication method thereof | |
| CN109427887B (en) | Manufacturing method of semiconductor device and semiconductor device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |