CN111383994B - Semiconductor structures and methods of forming them - Google Patents
Semiconductor structures and methods of forming them Download PDFInfo
- Publication number
- CN111383994B CN111383994B CN201811640014.4A CN201811640014A CN111383994B CN 111383994 B CN111383994 B CN 111383994B CN 201811640014 A CN201811640014 A CN 201811640014A CN 111383994 B CN111383994 B CN 111383994B
- Authority
- CN
- China
- Prior art keywords
- layer
- fin
- forming
- channel
- isolation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 239000004065 semiconductor Substances 0.000 title claims abstract description 75
- 238000002955 isolation Methods 0.000 claims abstract description 179
- 239000000463 material Substances 0.000 claims abstract description 143
- 230000002093 peripheral effect Effects 0.000 claims abstract description 136
- 239000000758 substrate Substances 0.000 claims abstract description 70
- 238000005530 etching Methods 0.000 claims abstract description 64
- 230000008569 process Effects 0.000 claims abstract description 59
- 239000010410 layer Substances 0.000 claims description 549
- 229910052710 silicon Inorganic materials 0.000 claims description 44
- 239000010703 silicon Substances 0.000 claims description 44
- -1 silicon ions Chemical class 0.000 claims description 31
- 238000002513 implantation Methods 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 16
- 239000011241 protective layer Substances 0.000 claims description 5
- 238000005468 ion implantation Methods 0.000 claims description 4
- 238000003475 lamination Methods 0.000 claims 8
- 125000006850 spacer group Chemical group 0.000 claims 2
- 230000009286 beneficial effect Effects 0.000 abstract description 23
- 230000015572 biosynthetic process Effects 0.000 description 21
- 230000003071 parasitic effect Effects 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 9
- 230000005669 field effect Effects 0.000 description 6
- 229910052732 germanium Inorganic materials 0.000 description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0158—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0128—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/834—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET] comprising FinFETs
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种半导体结构及其形成方法,形成方法包括:提供基底,包括用于形成输入/输出器件的周边区和用于形成核心器件的核心区,基底包括衬底、凸出于衬底的鳍部、以及依次位于鳍部上的多个沟道叠层,每一个沟道叠层包括牺牲层和位于牺牲层上的沟道层;在沟道叠层露出的衬底上形成隔离膜;去除周边区沟道叠层,在隔离膜内形成开口;在开口内形成与鳍部相同材料的鳍部材料层,鳍部材料层和鳍部材料层底部的鳍部作为周边区鳍部结构;形成鳍部结构后,刻蚀隔离膜,刻蚀后的剩余隔离膜作为隔离层,核心区隔离层露出核心区的沟道叠层,周边区隔离层覆盖鳍部结构的部分侧壁。本发明实施例有利于简化工艺流程、降低工艺成本,提升半导体结构的电学性能。
A semiconductor structure and its forming method, the forming method comprising: providing a base, including a peripheral area for forming an input/output device and a core area for forming a core device, the base includes a substrate, a fin protruding from the substrate , and a plurality of channel stacks sequentially located on the fin, each channel stack includes a sacrificial layer and a channel layer located on the sacrificial layer; an isolation film is formed on the substrate where the channel stack is exposed; and the peripheral A region channel stack, forming an opening in the isolation film; forming a fin material layer of the same material as the fin in the opening, the fin material layer and the fin at the bottom of the fin material layer as a peripheral region fin structure; forming the fin After the internal structure is formed, the isolation film is etched, and the remaining isolation film after etching is used as an isolation layer. The isolation layer in the core area exposes the channel stack in the core area, and the isolation layer in the peripheral area covers part of the side wall of the fin structure. The embodiments of the present invention are beneficial to simplify the process flow, reduce the process cost, and improve the electrical performance of the semiconductor structure.
Description
技术领域technical field
本发明实施例涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。Embodiments of the present invention relate to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.
背景技术Background technique
随着半导体工艺技术的逐步发展,半导体工艺节点遵循摩尔定律的发展趋势不断减小。为了适应工艺节点的减小,MOSFET场效应管的沟道长度也相应不断缩短。然而随着器件沟道长度的缩短,器件源极与漏极间的距离也随之缩短,因此栅极对沟道的控制能力变差,栅极电压夹断(pinch off)沟道的难度也越来越大,使得亚阈值漏电(subthresholdleakage)现象,即所谓的短沟道效应(SCE:short-channel effects)更容易发生。With the gradual development of semiconductor process technology, the development trend of semiconductor process nodes following Moore's Law continues to decrease. In order to adapt to the reduction of process nodes, the channel length of MOSFET field effect transistors is also continuously shortened accordingly. However, with the shortening of the channel length of the device, the distance between the source and the drain of the device is also shortened, so the control ability of the gate to the channel becomes worse, and the difficulty of pinching off the channel by the gate voltage also decreases. The larger and larger the subthreshold leakage (subthreshold leakage), the so-called short-channel effect (SCE: short-channel effects) is more likely to occur.
因此,为了更好的适应器件尺寸按比例缩小的要求,半导体工艺逐渐开始从平面MOSFET向具有更高功效的三维立体式的晶体管过渡,如鳍式场效应晶体管(Fin Field-Effect Transistor,FinFET)、全包围栅极(Gate-all-around,GAA) 晶体管。FinFET的栅极至少可以从两侧对超薄体(鳍部)进行控制,因此对沟道的控制能力更强,能够很好的抑制短沟道效应,而且FinFET相对于其他器件,与现有集成电路制造具有更好的兼容性;全包围栅极晶体管栅极从四周包围沟道所在的区域,能够进一步增强栅极对沟道的控制能力,对抑制短沟道效应的效果较为显著。Therefore, in order to better meet the requirements of scaling down the device size, the semiconductor process has gradually begun to transition from planar MOSFETs to three-dimensional transistors with higher efficiency, such as Fin Field-Effect Transistors (FinFETs). , Gate-all-around (GAA) transistor. The gate of the FinFET can control the ultra-thin body (fin) from at least two sides, so the control ability of the channel is stronger, and the short channel effect can be well suppressed. Compared with other devices, the FinFET is different from the existing Integrated circuit manufacturing has better compatibility; the fully surrounded gate transistor gate surrounds the area where the channel is located from all sides, which can further enhance the control ability of the gate to the channel, and the effect of suppressing the short channel effect is more significant.
此外,MOSFET场效应管按照功能区分主要分为核心(Core)器件和输入 /输出(I/O)器件。通常情况下,输入/输出器件的工作电压比核心器件的工作电压大的多。为防止电击穿等问题,当器件的工作电压越大时,要求器件的栅介质层的厚度越厚,因此,输入/输出器件的栅介质层的厚度通常大于核心器件的栅介质层的厚度。In addition, MOSFET field effect transistors are mainly divided into core (Core) devices and input/output (I/O) devices according to their functions. Typically, input/output devices operate at much higher voltages than core devices. In order to prevent problems such as electrical breakdown, when the operating voltage of the device is greater, the thickness of the gate dielectric layer of the device is required to be thicker. Therefore, the thickness of the gate dielectric layer of the input/output device is usually greater than the thickness of the gate dielectric layer of the core device. .
发明内容Contents of the invention
本发明实施例解决的问题是提供一种半导体结构及其形成方法,提升半导体结构的电学性能。The problem to be solved by the embodiments of the present invention is to provide a semiconductor structure and a method for forming the same, so as to improve the electrical performance of the semiconductor structure.
为解决上述问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底包括用于形成输入/输出器件的周边区和用于形成核心器件核心区,所述基底包括衬底、凸出于所述衬底的鳍部、以及依次位于所述鳍部上的多个沟道叠层,每一个沟道叠层包括牺牲层和位于所述牺牲层上的沟道层;在所述沟道叠层露出的衬底上形成隔离膜;去除所述周边区的沟道叠层,在所述隔离膜内形成开口;在所述开口内形成鳍部材料层,所述鳍部材料层与所述鳍部的材料相同,所述鳍部材料层和鳍部材料层底部的鳍部作为外围区的鳍部结构;形成周边区的鳍部结构后,刻蚀所述隔离膜,刻蚀后的剩余隔离膜作为隔离层,所述核心区的隔离层露出所述核心区的沟道叠层,所述周边区的隔离层覆盖所述鳍部结构的部分侧壁。In order to solve the above problems, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a substrate, the substrate includes a peripheral region for forming an input/output device and a core region for forming a core device, and the substrate includes a substrate, a fin protruding from the substrate, and a plurality of channel stacks sequentially located on the fin, each channel stack including a sacrificial layer and a channel layer located on the sacrificial layer forming an isolation film on the substrate where the channel stack is exposed; removing the channel stack in the peripheral region to form an opening in the isolation film; forming a fin material layer in the opening, the The fin material layer is made of the same material as the fin, and the fin material layer and the fin at the bottom of the fin material layer are used as the fin structure in the peripheral region; after forming the fin structure in the peripheral region, etching the isolation film, the remaining isolation film after etching is used as an isolation layer, the isolation layer in the core area exposes the channel stack in the core area, and the isolation layer in the peripheral area covers part of the sidewall of the fin structure.
相应的,本发明实施例还提供一种半导体结构,包括:衬底,包括用于形成输入/输出器件的周边区和用于形成核心器件核心区;鳍部,凸出于所述衬底表面;沟道结构层,位于所述核心区的鳍部上且与所述鳍部间隔设置,所述沟道结构层包括多个间隔设置的沟道层;鳍部材料层,位于所述周边区的鳍部上,所述鳍部材料层和所述鳍部的材料相同,所述鳍部材料层和鳍部材料层底部的鳍部构成鳍部结构;隔离层,位于所述沟道结构层和鳍部结构露出的衬底上,所述核心区的隔离层露出所述核心区鳍部与沟道结构层之间的间隔,所述周边区的隔离层覆盖所述鳍部结构的部分。Correspondingly, an embodiment of the present invention also provides a semiconductor structure, including: a substrate, including a peripheral region for forming an input/output device and a core region for forming a core device; a fin protruding from the surface of the substrate a channel structure layer located on the fin of the core region and spaced apart from the fin, the channel structure layer comprising a plurality of channel layers arranged at intervals; a fin material layer located in the peripheral region On the fin part, the material layer of the fin part and the material of the fin part are the same, the material layer of the fin part and the fin part at the bottom of the material layer of the fin part constitute the fin part structure; the isolation layer is located in the channel structure layer On the substrate where the fin structure is exposed, the isolation layer in the core area exposes the space between the fin in the core area and the channel structure layer, and the isolation layer in the peripheral area covers part of the fin structure.
与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:
在半导体领域中,通常通过使周边区栅氧化层厚度大于核心区栅氧化层厚度的方式使所述周边区栅介质层厚度大于核心区栅介质层厚度,与周边区和核心区均采用沟道叠层的方案相比,本发明实施例中所述周边区采用鳍部结构、所述核心区采用沟道叠层结构,因此,后续可以在不同的工艺步骤中形成周边区和核心区的栅氧化层,避免进行去除所述核心区部分厚度栅氧化层的步骤,使所述周边区和核心区栅氧化层的形成步骤不会互相影响,从而简化了工艺流程、降低了工艺难度,而且有利于降低工艺成本;此外,栅氧化层通常和隔离层的材料相同,避免进行去除所述核心区部分厚度栅氧化层的步骤,从而避免所述隔离层在该步骤中发生损失的问题,有利于降低核心区隔离层露出的鳍部表面积增大的概率,降低了寄生器件的鳍部表面积,提升了半导体结构的电学性能。In the field of semiconductors, the thickness of the gate dielectric layer in the peripheral region is usually greater than the thickness of the gate dielectric layer in the core region by making the thickness of the gate oxide layer in the peripheral region greater than the thickness of the gate oxide layer in the core region, and both the peripheral region and the core region use a channel Compared with the stacking scheme, in the embodiment of the present invention, the peripheral region adopts a fin structure, and the core region adopts a channel stack structure. Therefore, the gates of the peripheral region and the core region can be formed in different process steps later. oxide layer, avoiding the step of removing part of the thickness of the gate oxide layer in the core region, so that the steps of forming the gate oxide layer in the peripheral region and the core region will not affect each other, thereby simplifying the process flow and reducing the difficulty of the process. It is beneficial to reduce the process cost; in addition, the material of the gate oxide layer is usually the same as that of the isolation layer, avoiding the step of removing the gate oxide layer with a partial thickness of the core region, thereby avoiding the problem of loss of the isolation layer in this step, which is beneficial The possibility of increasing the surface area of the fin exposed by the isolation layer in the core area is reduced, the surface area of the fin of the parasitic device is reduced, and the electrical performance of the semiconductor structure is improved.
可选方案中,形成所述隔离膜之后,形成所述隔离层之前,所述形成方法还包括:在周边区的隔离膜内形成刻蚀停止层,所述刻蚀停止层底部高于所述核心区鳍部的顶部,所述刻蚀停止层顶部能够在刻蚀所述隔离膜的步骤中,起到定义刻蚀停止位置的作用,从而使所述周边区的隔离层顶部高于所述核心区的隔离层顶部,因此在使所述隔离层露出核心区的沟道叠层的同时,使所述隔离层露出的周边区鳍部结构的高度较小,减小了周边区鳍部结构露出于所述隔离层的表面积,从而有利于降低周边区鳍部结构上的寄生电容,优化了输入/ 输出器件的电学性能。In an optional solution, after forming the isolation film and before forming the isolation layer, the forming method further includes: forming an etching stop layer in the isolation film in the peripheral region, the bottom of the etching stop layer is higher than the The top of the fin in the core area, the top of the etching stop layer can play a role in defining the etching stop position in the step of etching the isolation film, so that the top of the isolation layer in the peripheral area is higher than the top of the isolation film The top of the isolation layer in the core area, so while exposing the isolation layer to the channel stack in the core area, the height of the peripheral area fin structure exposed by the isolation layer is small, reducing the peripheral area fin structure The surface area exposed to the isolation layer is beneficial to reduce the parasitic capacitance on the fin structure in the peripheral area, and optimizes the electrical performance of the input/output device.
附图说明Description of drawings
图1至图8是一种半导体结构的形成方法中各步骤对应的结构示意图;1 to 8 are structural schematic diagrams corresponding to each step in a method for forming a semiconductor structure;
图9至图20是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。9 to 20 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.
具体实施方式Detailed ways
目前所形成的器件仍有性能不佳的问题。现结合一种半导体结构的形成方法分析器件性能不佳的原因。Currently formed devices still suffer from poor performance. The reasons for the poor performance of the device are analyzed in conjunction with a method of forming a semiconductor structure.
参考图1至图8,示出了一种半导体结构的形成方法中各步骤对应的结构示意图。Referring to FIG. 1 to FIG. 8 , schematic structural diagrams corresponding to each step in a method for forming a semiconductor structure are shown.
参考图1,提供基底,所述基底包括用于形成输入/输出器件的周边区I和用于形成核心器件的核心区II,所述基底包括衬底1、凸出于所述衬底1的鳍部2、以及依次位于所述鳍部2上的多个沟道叠层3,每一个沟道叠层3包括牺牲层4和位于所述牺牲层4上的沟道层5。Referring to FIG. 1 , a base is provided, the base includes a peripheral area I for forming input/output devices and a core area II for forming core devices, the base includes a
参考图2,在所述沟道叠层3露出的衬底1上形成隔离层6,所述隔离层6 露出所述周边区I和核心区II的沟道叠层3。Referring to FIG. 2 , an
参考图3,形成横跨所述沟道叠层3的伪栅结构9,所述伪栅结构9覆盖所述沟道叠层3的部分顶部和部分侧壁,所述伪栅结构9包括伪栅氧化层7以及覆盖所述伪栅氧化层7的伪栅层8。Referring to FIG. 3, a
参考图4,在所述伪栅结构9露出的衬底1上形成介质层10。Referring to FIG. 4 , a
参考图5,去除所述伪栅结构9,分别在所述周边区I和核心区II的介质层 10内形成第一开口11和第二开口12。Referring to Fig. 5, the
参考图6,去除所述周边区I和核心区II的牺牲层4,位于所述鳍部2上的多个间隔设置的沟道层5作为沟道结构层(未标示)。Referring to FIG. 6 , the sacrificial layer 4 in the peripheral region I and the core region II is removed, and a plurality of
参考图7,在所述第一开口11和第二开口12露出的沟道层5表面形成栅氧化层13。Referring to FIG. 7 , a
参考图8,在所述第一开口11内形成保护层14;形成所述保护层14后,去除第二开口12露出的部分厚度栅氧化层13。Referring to FIG. 8 , a
在半导体领域中,通常采用周边区I栅氧化层13的厚度大于核心区II栅氧化层13的厚度的方式使所述周边区I栅介质层的厚度大于核心区II栅介质层的厚度。所述形成方法中周边区I和核心区II均采用沟道叠层3的结构,在去除所述外围区I和核心区II的伪栅氧化层7和牺牲层4之后,为使所述核心区II 栅氧化层13的厚度小于周边区I栅氧化层13的厚度,需先在同一步骤中形成厚度较大的栅氧化层13,随后再去除核心区II部分厚度的栅氧化层13,相邻所述沟道层5之间的栅氧化层13较难去除,工艺流程复杂、工艺难度较大,而且容易导致工艺成本的增加。In the semiconductor field, the thickness of the gate
而且,在半导体领域中,所述栅氧化层13通常和隔离层6的材料相同,在去除第二开口12露出的部分厚度栅氧化层13的步骤中,容易造成所述隔离层 6的损失,从而容易增加核心区II隔离层6露出的鳍部2高度,使所述核心区II隔离层6露出的鳍部2表面积较大,增加了寄生器件的鳍部表面积,从而容易对半导体结构的电学性能产生不良影响,比如增加寄生电容、漏电流等。Moreover, in the field of semiconductors, the
为了解决所述技术问题,本发明实施例所述鳍部材料层和鳍部材料层底部的鳍部作为周边区的鳍部结构,与周边区和核心区均采用沟道叠层的方案相比,本发明实施例中所述周边区采用鳍部结构、所述核心区采用沟道叠层结构,因此,后续可以在不同的工艺步骤中形成周边区和核心区的栅氧化层,避免进行去除所述核心区部分厚度栅氧化层的步骤,使所述周边区和核心区栅氧化层的形成步骤不会互相影响,从而简化了工艺流程、降低了工艺难度,而且有利于降低工艺成本;此外,在半导体领域中,栅氧化层通常和隔离层的材料相同,避免进行去除所述核心区部分厚度栅氧化层的步骤,从而避免所述隔离层在该步骤中发生损失的问题,有利于降低核心区隔离层露出的鳍部表面积增大的概率,降低了寄生器件的鳍部表面积,提升了半导体结构的电学性能。In order to solve the above technical problems, the fin material layer and the fin at the bottom of the fin material layer in the embodiment of the present invention are used as the fin structure in the peripheral region, compared with the solution in which both the peripheral region and the core region use channel stacking In the embodiment of the present invention, the peripheral region adopts a fin structure, and the core region adopts a channel stack structure. Therefore, the gate oxide layers of the peripheral region and the core region can be formed in different process steps later, avoiding removal The step of forming the gate oxide layer with a partial thickness in the core region prevents the formation steps of the gate oxide layer in the peripheral region and the core region from interfering with each other, thereby simplifying the process flow, reducing process difficulty, and helping to reduce process cost; in addition , in the field of semiconductors, the material of the gate oxide layer is usually the same as that of the isolation layer, avoiding the step of removing part of the thickness of the gate oxide layer in the core region, thereby avoiding the problem of loss of the isolation layer in this step, which is beneficial to reduce The possibility of increasing the surface area of the fin exposed by the isolation layer in the core area reduces the surface area of the fin of the parasitic device and improves the electrical performance of the semiconductor structure.
为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the embodiments of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图9至图20是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。9 to 20 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.
参考图9至图10,提供基底,所述基底包括用于形成输入/输出器件的周边区I和用于形成核心器件的核心区II,所述基底包括衬底100(如图10所示)、凸出于所述衬底100的鳍部110(如图10所示)、以及依次位于所述鳍部110 上的多个沟道叠层103(如图10所示),每一个沟道叠层103包括牺牲层101 (如图10所示)和位于所述牺牲层101上的沟道层102(如图10所示)。Referring to FIGS. 9 to 10, a base is provided, the base includes a peripheral region I for forming an input/output device and a core region II for forming a core device, the base includes a substrate 100 (as shown in FIG. 10 ) , a
所述衬底100用于为后续在核心区I形成全包围栅极(Gate-all-around, GAA)晶体管、在周边区I形成鳍式场效应管晶体管(FinFET)提供工艺平台。The
本实施例中,所述衬底100为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟等其他材料,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底等其他类型的衬底。所述衬底的材料可以是适宜于工艺需要或易于集成的材料。In this embodiment, the
所述鳍部110露出部分衬底100,从而为后续在所述衬底100上形成隔离层提供工艺基础。本实施例中,所述鳍部110与所述衬底100通过对同一半导体材料层刻蚀所得到。在其他实施例中,所述鳍部也可以是外延生长于所述衬底上的半导体层,从而达到精确控制所述鳍部高度的目的。The
因此,本实施例中,所述鳍部110的材料与所述衬底100的材料相同,所述鳍部110的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟等适宜于形成鳍部的半导体材料,所述鳍部也可以与所述衬底的材料不同。Therefore, in this embodiment, the material of the
所述沟道叠层103用于为后续形成悬空间隔设置的沟道层102提供工艺基础。具体地,所述牺牲层101用于支撑所述沟道层102,同时为后续金属栅结构的形成占据空间位置,所述沟道层102用于提供全包围栅极晶体管的沟道。The
本实施例中,所述沟道层102的材料为Si,所述牺牲层101的材料为SiGe。在其他实施例中,当所形成的全包围栅极晶体管为PMOS晶体管时,为了提升 PMOS晶体管的性能,可以采用SiGe沟道技术,相应的,所述鳍部和沟道层的材料均为SiGe,所述牺牲层的材料为Si。In this embodiment, the material of the
本实施例中,所述鳍部110上形成有两个沟道叠层103,即所述鳍部110 上形成有交替设置的两个牺牲层101和两个沟道层102。在其他实施例中,根据实际工艺需求,所述沟道叠层的数量不仅限于两个。In this embodiment, two channel stack layers 103 are formed on the
需要说明的是,本实施例中,所述沟道叠层103顶部还形成有鳍部掩膜层 104,所述鳍部掩膜层104用于作为形成所述衬底100和鳍部110的刻蚀掩膜,所述鳍部掩膜层104还用于在后续工艺制程中保护沟道叠层103顶部。本实施例中,所述鳍部掩膜层104的材料为氮化硅。It should be noted that, in this embodiment, a
具体地,结合参考图9,形成所述衬底100、鳍部110和沟道叠层103的步骤包括:提供半导体材料层100a;在所述半导体材料层100a上形成至少两个沟道材料叠层103a,所述沟道材料叠层103a包括牺牲材料层101a和位于所述牺牲材料层101a上的沟道材料层102a;图形化所述沟道材料叠层103a和半导体材料层100a,形成衬底100、凸出于所述衬底100表面的鳍部110、以及位于所述鳍部110上的沟道叠层103。Specifically, referring to FIG. 9 , the step of forming the
本实施例中,所述沟道叠层103的数量为两个,所述沟道材料叠层103a 的数量相应为两个。In this embodiment, the number of the channel stacks 103 is two, and the number of the
本实施例中,所述沟道材料叠层103a通过外延生长的方式形成于所述半导体材料层100a上,因此所述牺牲材料层101a和沟道材料层102a的形成质量较好,所述牺牲层101和沟道层102的质量相应也较好,所形成全包围栅极晶体管的沟道位于高质量的材料中,从而有利于改善器件性能。In this embodiment, the
需要说明的是,本实施例中,所述沟道材料叠层103a顶部形成有鳍部掩膜材料层104a,所述鳍部掩膜材料层104a用于作为形成所述鳍部掩膜层104。相应的,在图形化所述沟道材料叠层103a和半导体材料层100a之前,还包括:图形化所述鳍部掩膜材料层104a,以形成所述鳍部掩膜层104。It should be noted that, in this embodiment, a fin
参考图11,在所述沟道叠层103露出的衬底100上形成隔离膜105。具体地,所述隔离膜105覆盖所述鳍部110和沟道叠层103的侧壁。Referring to FIG. 11 , an
所述隔离膜105用于后续形成隔离层,进而实现相邻器件之间的电性绝缘。The
本实施例中,所述隔离膜105的材料为氧化硅,有利于降低形成所述隔离膜105的工艺难度和成本、且提高后续隔离层用于隔离相邻器件的作用。在其他实施例中,所述隔离膜的材料还可以为氮化硅、氮氧化硅等其他绝缘材料。In this embodiment, the material of the
具体的,形成所述隔离膜105的步骤包括:在所述鳍部110露出的衬底100 上形成初始隔离膜(图未示),所述初始隔离膜覆盖所述沟道叠层103顶部;对所述初始隔离膜顶部进行平坦化处理,形成所述隔离膜105。Specifically, the step of forming the
本实施例中,采用流动性化学气相沉积(Flowable Chemical Vapor Deposition,FCVD)工艺形成所述初始隔离膜,有利于降低所述初始隔离膜内形成空洞等缺陷的概率,相应有利于提高所述隔离膜105的成膜质量。In this embodiment, the initial isolation film is formed by using a flowable chemical vapor deposition (Flowable Chemical Vapor Deposition, FCVD) process, which is beneficial to reduce the probability of forming defects such as cavities in the initial isolation film, and correspondingly helps to improve the isolation. The film-forming quality of the
本实施例中,采用化学机械研磨(Chemical-Mechanical Polishing,CMP) 工艺对所述初始隔离膜进行平坦化处理,有利于提高所述隔离膜105顶部表面的平坦度,相应有利于提高后续隔离层的形成质量。In this embodiment, the chemical-mechanical polishing (CMP) process is used to planarize the initial isolation film, which is conducive to improving the flatness of the top surface of the
本实施例中,为了降低形成所述隔离膜105的工艺难度,所述隔离膜105 顶部与所述鳍部掩膜层104顶部齐平。在其他实施例中,所述隔离膜顶部还可以低于所述鳍部掩膜层顶部。In this embodiment, in order to reduce the process difficulty of forming the
参考图12至图13,去除所述周边区I的沟道叠层103,在所述隔离膜105 内形成开口300(如图13所示)。Referring to FIGS. 12 to 13 , the
通过形成所述开口300,从而为后续在所述开口300内形成鳍部材料层提供空间位置,进而形成周边区I的鳍部结构。By forming the
具体地,形成所述开口300的步骤包括:形成覆盖所述核心区II的沟道叠层103和隔离膜105的第一掩膜层108(如图13所示);以所述第一掩膜层108 为掩膜,去除所述周边区I的沟道叠层103,在所述隔离膜105内形成开口300。Specifically, the step of forming the
本实施例中,所述第一掩膜层108的材料为光刻胶。In this embodiment, the material of the
本实施例中,采用干法刻蚀工艺,去除所述周边区I的沟道叠层103。In this embodiment, a dry etching process is used to remove the
干法刻蚀工艺具有良好的刻蚀剖面控制性,有利于使所述开口300的形貌满足工艺需求,从而提高后续鳍部材料层的形成质量。The dry etching process has good controllability of the etching profile, which is conducive to making the shape of the
需要说明的是,本实施例中,所述沟道叠层103顶部形成有鳍部掩膜层104,因此,去除所述周边区I的沟道叠层103之前,还去除了所述周边区I的鳍部掩膜层104。It should be noted that, in this embodiment, a
在实际工艺中,为保证所述周边区I的沟道叠层103能够完全被去除,通常对周边区I的沟道叠层103进行过刻蚀处理,因此,本实施例中,去除所述周边区I的沟道叠层103后,还会刻蚀周边区I的部分鳍部110。In an actual process, in order to ensure that the
结合参考图12,需要说明的是,本实施例中,形成所述隔离膜105之后,刻蚀所述隔离膜105以形成隔离层之前,所述形成方法还包括:在周边区I的隔离膜105内形成刻蚀停止层106,所述刻蚀停止层106底部高于所述鳍部110 顶部。With reference to FIG. 12 , it should be noted that, in this embodiment, after forming the
后续制程还包括:去除周边区I的沟道叠层103,在周边区I形成鳍部结构,由于所述核心区II的沟道层102与所述牺牲层101交替间隔设置,因此,在所述鳍部结构顶部与沟道叠层顶部齐平的情况下,所述周边区I的鳍部结构可用作沟道的材料较多。通过在周边区I的隔离膜105内形成刻蚀停止层106,后续能够以所述刻蚀停止层106顶部为停止位置,刻蚀所述隔离膜105,形成周边区I和核心区II的隔离层,且所述周边区I的隔离层顶部高于核心区II的隔离层顶部,因此在使隔离层露出核心区II沟道叠层的同时,使隔离层露出的周边区I鳍部结构的高度较小,从而有利于降低周边区I鳍部结构上的寄生电容,优化了输入/输出器件的电学性能。The subsequent process also includes: removing the
本实施例中,形成刻蚀停止层106的步骤包括:形成所述开口300之前,形成覆盖所述核心区II的沟道叠层103和隔离膜105的第二掩膜层107;以所述第二掩膜层107为掩膜,进行离子注入200,形成刻蚀停止层106,所述刻蚀停止层106底部高于所述鳍部110顶部。In this embodiment, the step of forming the
本实施例中,在形成所述开口300之前,形成所述刻蚀停止层106,与在形成开口、在所述开口内形成鳍部材料层之后形成刻蚀停止层的方案相比,有利于避免形成所述刻蚀停止层的离子注入工艺对周边区鳍部结构造成损伤,优化了输入/输出器件的电学性能。In this embodiment, before forming the
在其他实施例中,根据实际工艺需求,还可以在形成所述鳍部结构之后,形成所述刻蚀停止层。In other embodiments, according to actual process requirements, the etching stop layer may also be formed after forming the fin structure.
需要说明的是,本实施例中,形成所述刻蚀停止层106之后,形成开口300。因此,形成所述刻蚀停止层106之后,可以保留所述第二掩膜层107,作为去除周边区I沟道叠层103的刻蚀掩膜。相应地,本实施例中,所述第一掩膜层 108和第二掩膜层107为同一掩膜层。It should be noted that, in this embodiment, the
在其他实施例中,根据实际工艺需求,可以分别在形成开口和刻蚀停止层的步骤中形成不同的掩膜层。In other embodiments, according to actual process requirements, different mask layers may be formed in the steps of forming the opening and the etching stop layer.
具体地,通过在所述周边区I的隔离膜105内注入硅离子,形成所述刻蚀停止层106。Specifically, the
所述隔离膜105的材料为氧化硅,所述刻蚀停止层106的材料为掺杂有硅离子的氧化硅。The material of the
掺杂有硅离子的氧化硅材料硬度较大,而且,氧化硅和硅的刻蚀选择比较大,通过在所述隔离膜105中注入硅离子,有利于提高所述隔离膜105和刻蚀停止层106的刻蚀选择比,从而使所述刻蚀停止层106顶部能够起到定义刻蚀停止位置的作用。The silicon oxide material doped with silicon ions has higher hardness, and the etching selectivity of silicon oxide and silicon is relatively large. By implanting silicon ions into the
需要说明的是,本实施例中,硅离子的注入能量不宜过小,也不宜过大。如果硅离子的注入能量过小,则难以将硅离子注入到所述隔离膜105内,而且容易导致所述硅离子的注入深度不够,进而导致所述刻蚀停止层106顶部与所述沟道叠层103顶部的距离过小,后续以所述刻蚀停止层106顶部为刻蚀停止位置刻蚀所述隔离膜105形成隔离层后,所述周边区I的隔离层露出的鳍部结构高度过小,容易对输入/输出器件的载流子迁移率等电学性能造成不良影响;如果硅离子的注入能量过大,则容易导致所述硅离子的注入深度过深,从而容易导致所述刻蚀停止层106顶部与所述沟道叠层103顶部的距离过大,后续形成隔离层后,所述周边区I隔离层露出的鳍部结构高度过大,容易导致输入/输出器件的寄生电容较大,降低了输入/输出器件的电学性能。为此,本实施例中,硅离子的注入能量为1.0kev至20.0kev。It should be noted that, in this embodiment, the implantation energy of silicon ions should not be too small, nor should it be too large. If the implantation energy of silicon ions is too small, it will be difficult to implant silicon ions into the
还需要说明的是,本实施例中,硅离子的注入剂量不宜过小,也不宜过大。如果注入剂量过小,则容易导致所述刻蚀停止层106中硅的含量较低,所述刻蚀停止层106和隔离膜105刻蚀选择比增大的效果不显著,从而容易降低所述刻蚀停止层106顶部用于定义刻蚀停止位置的效果;如果注入剂量过大,容易导致所述刻蚀停止层106中硅离子的掺杂浓度较高,进而容易增加所述刻蚀停止层106中产生漏电流等问题的概率。为此,本实施例中,硅离子的注入剂量为5.0e12原子每平方厘米至1.0e16原子每平方厘米。It should also be noted that, in this embodiment, the implantation dose of silicon ions should not be too small, nor should it be too large. If the implant dose is too small, it will easily lead to low silicon content in the
此外,为保证硅离子能够注入到周边区I的预设区域且避免将硅离子注入到核心区II内,本实施例中,硅离子的注入角度为0°至5°。其中,所述注入角度指的是注入方向与所述衬底100表面法线的夹角。In addition, in order to ensure that silicon ions can be implanted into the predetermined area of the peripheral region I and avoid implanting silicon ions into the core region II, in this embodiment, the implantation angle of silicon ions is 0° to 5°. Wherein, the implantation angle refers to the included angle between the implantation direction and the surface normal of the
本实施例中,通过合理设定硅离子的注入能量、注入剂量以及注入角度等参数并合理搭配使用,从而使所述刻蚀停止层106顶部用于定义刻蚀停止位置的作用更为显著。In this embodiment, the role of the top of the
而且,通过合理设定所述注入能量、注入剂量和注入角度等参数,从而使所述刻蚀停止层106的厚度能够达到工艺需求。因此,本实施例中,所述刻蚀停止层106的厚度不宜过小,也不宜过大。如果所述刻蚀停止层106的厚度过小,容易降低后续所述刻蚀停止层106顶部用于定义刻蚀停止位置的作用;如果所述刻蚀停止层106的厚度过大,容易导致后续周边区I隔离层露出的鳍部结构高度过小,形成的输入/输出器件性能不佳。为此,本实施例中,所述刻蚀停止层106的厚度为2nm至4nm。Moreover, the thickness of the
参考图14,在所述开口300(如图13所示)内形成鳍部材料层115,所述鳍部材料层115与所述鳍部110的材料相同,所述鳍部材料层115和鳍部材料层115底部的鳍部110作为周边区I的鳍部结构120。Referring to FIG. 14 , a
在半导体领域中,通常通过使周边区栅氧化层厚度大于核心区栅氧化层厚度的方式使所述周边区栅介质层厚度大于核心区栅介质层厚度,与周边区和核心区均采用沟道叠层的方案相比,本发明实施例中所述周边区I采用鳍部结构 120、所述核心区II采用沟道叠层103,后续可以在不同的工艺步骤中形成周边区I和核心区II的栅氧化层,避免进行去除所述核心区部分厚度栅氧化层的步骤,使所述周边区I和核心区II栅氧化层的形成步骤不会互相影响,从而简化了工艺流程、降低了工艺难度,而且有利于降低工艺成本;此外,栅氧化层通常和隔离层的材料相同,避免进行去除所述核心区部分厚度栅氧化层的步骤,从而避免了隔离层在该步骤中发生损失的问题,有利于降低核心区II隔离层露出的鳍部110表面积增大的概率,降低了寄生器件的鳍部表面积,提升了半导体结构的电学性能。In the field of semiconductors, the thickness of the gate dielectric layer in the peripheral region is usually greater than the thickness of the gate dielectric layer in the core region by making the thickness of the gate oxide layer in the peripheral region greater than the thickness of the gate oxide layer in the core region, and both the peripheral region and the core region use a channel Compared with the stacking scheme, in the embodiment of the present invention, the peripheral region I adopts the
本实施例中,所述鳍部材料层115和鳍部110的材料相同,所述鳍部材料层115的材料也为Si。通过使所述鳍部材料层115和鳍部110的材料相同,从而使所述鳍部材料层115和鳍部材料层115底部的鳍部110构成周边区I鳍部结构120,从而提供输入/输出器件的沟道。In this embodiment, the material of the
本实施例中,采用外延生长工艺,在所述开口300内形成鳍部材料层115,从而有利于提高所述鳍部材料层115的形成质量,相应有利于提高周边区I鳍部结构120的形成质量,优化了输入/输出器件的电学性能。In this embodiment, the
本实施例中,形成所述鳍部材料层115的步骤中,所述鳍部材料层115的顶部与所述沟道叠层103顶部齐平,有利于提高工艺兼容性,降低半导体结构产生差异(variability)问题的概率。In this embodiment, in the step of forming the
结合参考图13,本实施例中,形成所述开口300后,形成所述鳍部结构120 之前,所述形成方法还包括:去除所述第一掩膜层108。Referring to FIG. 13 , in this embodiment, after forming the
本实施例中,所述第一掩膜层108的材料为光刻胶,因此通过湿法去胶工艺或干法刻蚀工艺去除所述第一掩膜层108。In this embodiment, the material of the
在其他实施例中,根据实际工艺需求,还可以在形成所述鳍部结构之后,去除所述第一掩膜层。In other embodiments, according to actual process requirements, the first mask layer may be removed after the fin structure is formed.
参考图15,形成周边区I的鳍部结构120后,刻蚀所述隔离膜105(如图 14所示),刻蚀后的剩余隔离膜105作为隔离层130,所述核心区II的隔离层 130b露出所述核心区II的沟道叠层103,所述周边区I的隔离层130a覆盖所述鳍部结构120的部分侧壁。Referring to FIG. 15, after forming the
由于所述核心区II的沟道层102与所述牺牲层101交替间隔设置,因此,在所述鳍部结构120顶部与所述沟道叠层103顶部齐平的情况下,所述周边区 I的鳍部结构120可用作沟道的材料较多。本实施例中,以所述刻蚀停止层106 顶部为停止位置,刻蚀所述隔离膜105,从而使所述周边区I的隔离层130a顶部高于核心区II的隔离层130b顶部,因此在使所述隔离层130露出核心区II 沟道叠层103的同时,使所述隔离层130露出的周边区I鳍部结构120高度较小,从而有利于降低周边区I鳍部结构120上的寄生电容,优化了输入/输出器件的电学性能。Since the channel layers 102 of the core region II and the
本实施例中,采用干法刻蚀工艺,刻蚀所述隔离膜105。干法刻蚀工艺具有较好的刻蚀剖面控制性,有利于提高所述隔离层130的形成质量。In this embodiment, a dry etching process is used to etch the
参考图16至图19,形成所述隔离层130后,还包括:形成第一栅氧化层 135,所述第一栅氧化层135覆盖所述隔离层130露出的鳍部结构120表面;形成第二栅氧化层141,所述第二栅氧化层141位于所述沟道层102表面,所述第二栅氧化层141的厚度小于所述第一栅氧化层135的厚度。Referring to FIG. 16 to FIG. 19, after forming the
通过使所述第二栅氧化层141的厚度小于所述第一栅氧化层135的厚度,从而使输入/输出器件的栅介质层厚度较大,有利于提高输入/输出器件的击穿电压。By making the thickness of the second
本发明实施例中在不同的工艺步骤中形成周边区I和核心区II的栅氧化层,避免进行去除所述核心区部分厚度栅氧化层的步骤,使所述周边区I和核心区 II栅氧化层的形成步骤不会互相影响,从而简化了工艺流程、降低了工艺难度,而且有利于降低工艺成本;此外,栅氧化层通常和隔离层的材料相同,避免进行去除所述核心区部分厚度栅氧化层的步骤,从而避免了隔离层在该步骤中发生损失的问题,从而有利于降低核心区II隔离层130b露出的鳍部110表面积增大的概率,降低了寄生器件的鳍部表面积,提升了半导体结构的电学性能。In the embodiment of the present invention, the gate oxide layer of the peripheral region I and the core region II is formed in different process steps, avoiding the step of removing the gate oxide layer with a partial thickness of the core region, and making the gate oxide layer of the peripheral region I and the core region II The formation steps of the oxide layer will not affect each other, thereby simplifying the process flow, reducing the difficulty of the process, and helping to reduce the cost of the process; in addition, the material of the gate oxide layer is usually the same as that of the isolation layer, and it is avoided to remove part of the thickness of the core region. gate oxide layer, thereby avoiding the problem of loss of the isolation layer in this step, thereby helping to reduce the probability of increasing the surface area of the
本实施例中,所述第一栅氧化层135和第二栅氧化层141与所述隔离层130 的材料相同,所述第一栅氧化层135和第二栅氧化层141的材料为氧化硅。在其他实施例中,所述第一栅氧化层和第二栅氧化层的材料还可以为氮氧化硅。In this embodiment, the material of the first
具体地,以下结合附图对形成第一栅氧化层135和第二栅氧化层141的步骤进行详细说明。Specifically, the steps of forming the first
如图16所示,形成横跨所述鳍部结构120和沟道叠层103的伪栅结构137,所述伪栅结构137包括第一栅氧化层135、以及覆盖所述第一栅氧化层135的伪栅层136。As shown in FIG. 16, a
需要说明的是,所述伪栅层136的侧壁上还形成有侧壁层138,所述侧壁层138用于在半导体结构的形成过程中保护所述伪栅层136的侧壁。It should be noted that a
如图17所示,在所述伪栅结构137露出的衬底100上形成介质层139。As shown in FIG. 17 , a
如图18示,去除所述伪栅层136,分别在所述周边区I的介质层139内形成第一开口340、在所述核心区II的介质层139内形成第二开口350,所述第一开口340和第二开口350露出所述第一栅氧化层135。As shown in FIG. 18, the dummy gate layer 136 is removed, and a
如图19所示,在所述第一开口340内形成保护层147;形成所述保护层147 后,去除所述第二开口350露出的第一栅氧化层135;去除所述牺牲层101;去除所述牺牲层101后,在所述第二开口350露出的沟道层102表面形成第二栅氧化层141,所述第二栅氧化层141的厚度小于第一栅氧化层135的厚度。As shown in FIG. 19 , a
参考图20,形成所述第二栅氧化层141之后,去除所述保护层147;形成覆盖所述第一栅氧化层135和第二栅氧化层141的高k介质层142、以及覆盖所述高k介质层142的栅电极层143,所述周边区I的第一栅氧化层135和高k 介质层142构成周边区I的栅介质层(未标示),所述周边区I的栅介质层和栅电极层143构成第一栅极结构144,所述核心区II的第二栅氧化层141和高k 介质层142构成核心区II的栅介质层(未标示),所述核心区II的栅介质层和栅电极层143构成第二栅极结构145。Referring to FIG. 20, after forming the second
所述第二栅氧化层141厚度小于所述第一栅氧化层135厚度,从而使所述核心区II的栅介质层厚度小于周边区I的栅介质层厚度。The thickness of the second
在其他实施例中,还可以在去除所述牺牲层后,不形成所述第二栅氧化层,从而使所述核心区的栅介质层包括高k介质层、外围区的栅介质层包括第一栅氧化层和高k介质层,进而使所述核心区的栅介质层厚度小于外围区的栅介质层厚度。In other embodiments, the second gate oxide layer may not be formed after removing the sacrificial layer, so that the gate dielectric layer in the core region includes a high-k dielectric layer, and the gate dielectric layer in the peripheral region includes a second gate dielectric layer. A gate oxide layer and a high-k dielectric layer, so that the thickness of the gate dielectric layer in the core area is smaller than the thickness of the gate dielectric layer in the peripheral area.
本实施例中,所述第一栅极结构144和第二栅极结构145为金属栅结构。In this embodiment, the
相应的,本发明还提供一种半导体结构。参考图20,示出了本发明半导体结构一实施例的结构示意图。Correspondingly, the present invention also provides a semiconductor structure. Referring to FIG. 20 , it shows a schematic structural diagram of an embodiment of the semiconductor structure of the present invention.
所述半导体结构包括:衬底100,所述衬底100包括用于形成输入/输出器件的周边区I和用于形成核心器件的核心区II;鳍部110,凸出于所述衬底100 表面;沟道结构层125,位于所述核心区II的鳍部110上且与所述鳍部110间隔设置,所述沟道结构层125包括多个间隔设置的沟道层102;鳍部材料层115,位于所述周边区I的鳍部110上,所述鳍部材料层115和所述鳍部110的材料相同,所述鳍部材料层115和鳍部材料层115底部的鳍部110构成鳍部结构120;隔离层130,位于所述沟道结构层125和鳍部结构120露出的衬底100上,所述核心区II的隔离层130露出所述核心区II鳍部与沟道结构层125之间的间隔,所述周边区I的隔离层130覆盖所述鳍部结构120的部分侧壁。The semiconductor structure includes: a
本发明实施例中,核心器件为全包围栅极场效应晶体管,有利于提高第二栅极结构145对沟道层102的控制能力,从而优化核心器件的电学性能。而且,与周边区和核心区均采用沟道结构层和全包围栅极结构的方案相比,本发明实施例中所述周边区I采用鳍部结构120、所述核心区II采用沟道结构层125,所述周边区I和核心区II的栅氧化层可以在不同步骤中形成,有利于避免所述周边区I和核心区II栅氧化层的形成步骤互相影响,简化了工艺流程、降低了工艺难度,而且有利于降低工艺成本。In the embodiment of the present invention, the core device is an all-enclosed gate field effect transistor, which is beneficial to improve the control ability of the
此外,在半导体领域中,栅氧化层通常和隔离层的材料相同,本发明实施例中避免进行去除所述核心区II部分厚度栅氧化层的步骤,避免了所述隔离层 130在该步骤中发生损失的问题,从而有利于降低核心区II隔离层130b露出的鳍部110表面积增大的概率,降低了寄生器件的鳍部表面积,提升了半导体结构的电学性能。In addition, in the field of semiconductors, the material of the gate oxide layer is generally the same as that of the isolation layer. In the embodiment of the present invention, the step of removing the gate oxide layer with a partial thickness of the core region II is avoided, and the
所述衬底100用于为全包围栅极晶体管和鳍式场效应管晶体管的形成提供工艺平台。The
本实施例中,所述衬底100为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟等其他材料,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底等其他类型的衬底。所述衬底的材料可以是适宜于工艺需要或易于集成的材料。In this embodiment, the
所述鳍部110露出部分衬底100,从而为所述隔离层130的形成提供工艺基础。本实施例中,所述鳍部110与所述衬底100通过对同一半导体材料层刻蚀所得到。在其他实施例中,所述鳍部也可以是外延生长于所述衬底上的半导体层,从而达到精确控制所述鳍部高度的目的。The
因此,本实施例中,所述鳍部110的材料与所述衬底100的材料相同,所述鳍部110的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟等适宜于形成鳍部的半导体材料,所述鳍部也可以与所述衬底的材料不同。Therefore, in this embodiment, the material of the
所述沟道层102用于提供全包围栅极晶体管的沟道。The
本实施例中,所述半导体结构为NMOS晶体管,所述沟道层102的材料为Si,从而提升NMOS晶体管的性能。在其他实施例中,当所述半导体结构为 PMOS晶体管时,为了提升PMOS晶体管的性能,可以采用SiGe沟道技术,相应的,所述鳍部和沟道层的材料均为SiGe。In this embodiment, the semiconductor structure is an NMOS transistor, and the material of the
本实施例中,所述鳍部110上形成有两个沟道层102。在其他实施例中,根据实际工艺需求,所述沟道层的数量不仅限于两个。In this embodiment, two
本实施例中,所述鳍部材料层115和所述鳍部110的材料相同,所述鳍部材料层115的材料也为Si。通过使所述鳍部材料层115和鳍部110的材料相同,从而使所述鳍部材料层115和鳍部材料层115底部的鳍部110构成周边区I的鳍部结构120,从而提供输入/输出器件的沟道。In this embodiment, the material of the
本实施例中,所述鳍部材料层115顶部与所述沟道结构层125顶部齐平,有利于提高鳍部结构120和沟道结构层125的高度一致性,降低半导体结构产生差异问题的概率。In this embodiment, the top of the
本实施例中,所述隔离层130的材料为氧化硅,有利于降低工艺成本以及提高隔离层130用于隔离相邻器件的作用。在其他实施例中,所述隔离层的材料还可以为氮化硅、氮氧化硅等其他绝缘材料。In this embodiment, the material of the
本实施例中,所述周边区I隔离层130顶部高于核心区II隔离层130顶部,从而使所述隔离层130露出的周边区I鳍部结构120的高度较小,有利于降低周边区I鳍部结构120上的寄生电容,优化了输入/输出器件的电学性能。In this embodiment, the top of the
需要说明的是,本实施例中,所述半导体结构还包括:刻蚀停止层106,位于所述周边区I的隔离层130顶部,所述刻蚀停止层106底部高于所述核心区II鳍部110的顶部。It should be noted that, in this embodiment, the semiconductor structure further includes: an
所述刻蚀停止层106顶部用于作为形成所述隔离层130时定义周边区I隔离层130a的刻蚀停止位置,从而使所述周边区I隔离层130a顶部高于所述核心区II隔离层130b顶部,所述隔离层130露出的周边区I鳍部结构120高度较小,有利于降低周边区I鳍部结构120上的寄生电容,优化了输入/输出器件的电学性能。The top of the
本实施例中,所述刻蚀停止层106为掺杂有硅离子的隔离层130材料。本实施例中,所述隔离层130的材料为氧化硅,所述刻蚀停止层106的材料相应为掺杂有硅离子的氧化硅。In this embodiment, the
掺杂有硅离子的氧化硅材料硬度较大,而且,氧化硅和硅的刻蚀选择比较大,有利于提高所述隔离层130和刻蚀停止层106的刻蚀选择比,从而使所述刻蚀停止层106顶部能够起到定义刻蚀停止位置的作用。The silicon oxide material doped with silicon ions has higher hardness, and the etching selectivity of silicon oxide and silicon is relatively large, which is conducive to improving the etching selectivity ratio of the
因此,本实施例中,所述刻蚀停止层106中硅离子的掺杂浓度不宜过小,也不宜过大。如果所述刻蚀停止层106中硅离子的掺杂浓度过小,所述刻蚀停止层106和隔离层130刻蚀选择比增大的效果不显著,从而容易降低所述刻蚀停止层106顶部用于定义刻蚀停止位置的作用;如果所述刻蚀停止层106中硅离子的掺杂浓度过大,容易增加所述刻蚀停止层106中产生漏电流等问题的概率。为此,本实施例中,所述刻蚀停止层106中硅离子的掺杂浓度为1.0e18原子每立方厘米至50.0e20原子每立方厘米。Therefore, in this embodiment, the doping concentration of silicon ions in the
需要说明的是,本实施例中,所述周边区I刻蚀停止层106顶部至核心区 II隔离层130b顶部的距离不宜过小,也不宜过大。如果所述距离过小,由于所述核心区II的沟道层102与所述鳍部110间隔设置,而周边区I为鳍部结构120,容易导致周边区I隔离层130a露出的鳍部结构120高度过大,导致输入/输出器件鳍部结构120上的寄生电容过大;如果所述距离过大,由于所述核心区II隔离层130b露出所述核心区II鳍部110与所述沟道结构层125之间的间隔,因此,所述周边区I的隔离层130a露出的鳍部结构120高度过小,所述鳍部结构120用于提供输入/输出器件的材料过少,容易对输入/输出器件的电学性能如驱动电流等产生不良影响。为此,本实施例中,所述周边区I的刻蚀停止层106 顶部至核心区II隔离层130b顶部的距离大于0nm且小于65nm。It should be noted that, in this embodiment, the distance from the top of the
具体地,本实施例中,所述周边区I的刻蚀停止层106顶部至所述鳍部结构120顶部的距离大于35nm且小于50nm,所述核心区I的隔离层130b顶部至所述沟道结构层125顶部的距离大于50nm且小于100nm。Specifically, in this embodiment, the distance from the top of the
还需要说明的是,本实施例中,所述刻蚀停止层106的厚度不宜过小,也不宜过大。如果所述厚度过小,容易降低所述刻蚀停止层106顶部用于作为定义刻蚀停止位置的作用;如果所述厚度过大,容易导致周边区I隔离层130a露出的鳍部结构120高度过小,形成的输入/输出器件性能不佳。为此,本实施例中,所述刻蚀停止层106的厚度为2nm至4nm。It should also be noted that, in this embodiment, the thickness of the
本实施例中,所述半导体结构还包括:第一栅氧化层135,位于所述隔离层130露出的鳍部结构120表面;第二栅氧化层141,位于所述隔离层130露出的沟道结构层125表面,所述第二栅氧化层141的厚度小于所述第一栅氧化层135的厚度。In this embodiment, the semiconductor structure further includes: a first
通过使所述第二栅氧化层141的厚度小于所述第一栅氧化层135的厚度,从而使输入/输出器件的栅介质层厚度较大,有利于提高输入/输出器件的击穿电压。By making the thickness of the second
本发明实施例中所述周边区I采用鳍部结构120、所述核心区II采用沟道结构层125,从而所述周边区I和核心区II栅氧化层的形成步骤不会互相影响,简化了形成半导体结构的工艺流程,而且有利于降低工艺成本;此外,栅氧化层和隔离层的材料通常相同,本发明实施例中避免了去除核心区II部分厚度栅氧化层的步骤中隔离层的损失,有利于降低核心区II隔离层露出的鳍部110表面积增大的概率,降低了寄生器件的鳍部表面积,提升了半导体结构的电学性能。In the embodiment of the present invention, the peripheral region I adopts the
本实施例中,所述第一栅氧化层135和第二栅氧化层141与所述隔离层130 的材料相同,所述第一栅氧化层135和第二栅氧化层141的材料为氧化硅。在其他实施例中,所述第一栅氧化层和第二栅氧化层的材料还可以为氮氧化硅。In this embodiment, the material of the first
需要说明的是,本实施例中,所述半导体结构还包括:高k介质层142,覆盖第一栅氧化层135和第二栅氧化层141;栅电极层143,覆盖所述高k介质层142,所述周边区I的第一栅氧化层135和高k介质层142构成周边区I的栅介质层(未标示),所述周边区I的栅介质层和栅电极层143构成第一栅极结构,所述核心区II的第二栅氧化层141和高k介质层142构成核心区II的栅介质层 (未标示),所述核心区II的栅介质层和栅电极层143构成第二栅极结构145。It should be noted that, in this embodiment, the semiconductor structure further includes: a high-
所述第二栅氧化层141厚度小于所述第一栅氧化层135厚度,从而使所述核心区II的栅介质层厚度小于周边区I的栅介质层厚度。在其他实施例中,所述第二栅介质层还可以不包括栅氧化层。The thickness of the second
本实施例中,所述第一栅极结构144和第二栅极结构145为金属栅结构。In this embodiment, the
还需要说明的是,本实施例中,所述半导体结构还包括:侧墙138,位于所述第一栅极结构144和第二栅极结构145的侧壁上;源漏掺杂层(图未示),位于所述第一栅极结构144两侧的鳍部结构120内、以及第二栅极结构145两侧的沟道结构层125内;介质层139,位于所述第一栅极结构144和第二栅极结构145露出的衬底100上。It should also be noted that, in this embodiment, the semiconductor structure further includes:
所述半导体结构可以采用前述实施例所述的形成方法所形成,也可以采用其他形成方法所形成。对本实施例所述半导体结构的具体描述,可参考前述实施例中的相应描述,本实施例在此不再赘述。The semiconductor structure may be formed using the forming methods described in the foregoing embodiments, or may be formed using other forming methods. For the specific description of the semiconductor structure described in this embodiment, reference may be made to the corresponding description in the preceding embodiments, and details will not be repeated here in this embodiment.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (22)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811640014.4A CN111383994B (en) | 2018-12-29 | 2018-12-29 | Semiconductor structures and methods of forming them |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811640014.4A CN111383994B (en) | 2018-12-29 | 2018-12-29 | Semiconductor structures and methods of forming them |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111383994A CN111383994A (en) | 2020-07-07 |
| CN111383994B true CN111383994B (en) | 2023-02-17 |
Family
ID=71221021
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811640014.4A Active CN111383994B (en) | 2018-12-29 | 2018-12-29 | Semiconductor structures and methods of forming them |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111383994B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112349592B (en) * | 2020-10-27 | 2022-07-19 | 中国科学院微电子研究所 | NS-FET for avoiding parasitic channel effect and preparation method thereof |
| CN115377101B (en) * | 2021-05-21 | 2025-04-25 | 北方集成电路技术创新中心(北京)有限公司 | Semiconductor structure and method for forming the same |
| CN114678329A (en) * | 2022-02-23 | 2022-06-28 | 中国科学院微电子研究所 | A method of manufacturing a semiconductor device |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104124210A (en) * | 2013-04-28 | 2014-10-29 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor structure |
| CN110707040A (en) * | 2018-07-10 | 2020-01-17 | 中芯国际集成电路制造(北京)有限公司 | Semiconductor device and method of forming the same |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3340308B1 (en) * | 2016-12-22 | 2022-09-07 | IMEC vzw | Method for forming transistors on a substrate |
-
2018
- 2018-12-29 CN CN201811640014.4A patent/CN111383994B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104124210A (en) * | 2013-04-28 | 2014-10-29 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor structure |
| CN110707040A (en) * | 2018-07-10 | 2020-01-17 | 中芯国际集成电路制造(北京)有限公司 | Semiconductor device and method of forming the same |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111383994A (en) | 2020-07-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111490092B (en) | Semiconductor structures and methods of forming them | |
| US7972914B2 (en) | Semiconductor device with FinFET and method of fabricating the same | |
| CN111223779B (en) | Semiconductor structure and forming method thereof | |
| CN111223778B (en) | Semiconductor structure and forming method thereof | |
| CN110718465B (en) | Semiconductor structure and forming method thereof | |
| CN107958873A (en) | Fin field effect pipe and forming method thereof | |
| CN111106009B (en) | Semiconductor structures and methods of forming them | |
| CN111081546B (en) | Semiconductor structures and methods of forming them | |
| CN110783193B (en) | Semiconductor structures and methods of forming them | |
| CN111383994B (en) | Semiconductor structures and methods of forming them | |
| CN111106064B (en) | Semiconductor structure and method of forming the same | |
| CN103839814A (en) | Method for forming fin field effect transistor | |
| CN111863609B (en) | Semiconductor structure and forming method thereof | |
| CN111341661B (en) | Transistors and methods of forming them | |
| CN103378129B (en) | Semiconductor structure and manufacturing method thereof | |
| CN111554635B (en) | Semiconductor structure and forming method thereof | |
| CN111354681B (en) | Transistor structure and method of forming it | |
| CN109087892B (en) | Semiconductor structure, forming method thereof and forming method of fin field effect transistor | |
| CN111554636A (en) | Semiconductor structure and forming method thereof | |
| CN119050114A (en) | Semiconductor structure and forming method thereof | |
| CN111276442B (en) | Semiconductor structure and forming method thereof | |
| CN112309864B (en) | Semiconductor structures and methods of forming them | |
| CN112652578B (en) | Method of forming semiconductor structure, transistor | |
| CN110875390B (en) | Semiconductor structure and forming method thereof | |
| CN104217948A (en) | Semiconductor manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |